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ABSTRACT 

 

Stroke, ischemic or hemorrhagic, belongs among the foremost causes of death and 

disability worldwide. Massive brain swelling is the leading cause of death in large 

hemispheric strokes and is only modestly alleviated by the limited conservative 

treatments available today. Quite invasive surgical decompressive craniectomy is a 

promising option in selected patients. 

 

Aimed at fast restoration of circulation, thrombolysis with tissue plasminogen activator 

(TPA) is the only approved therapy in acute ischemic stroke, but fear of TPA-mediated 

hemorrhage is often a reason for withholding this otherwise beneficial treatment. In 

addition, recanalization of the occluded artery (spontaneously or with thrombolysis) may 

cause reperfusion injury (depending on severity and duration of the preceding 

ischemia) by promoting brain edema, hemorrhage, and inflammatory cell infiltration. A 

dominant event underlying these phenomena seems to be disruption of the blood-brain 

barrier (BBB). 

 

In contrast to ischemic stroke, no widely approved clinical therapy exists for 

intracerebral hemorrhage (ICH), which is associated with poor outcome mainly due to 

the mass effect of enlarging hematoma and associated brain swelling. 

Obviously, novel treatment strategies for brain swelling associated with large 

hemispheric strokes, TPA-associated hemorrhage, and spontaneous ICH are urgently 

needed.  

 

Mast cells (MCs) are perivascularly located resident inflammatory cells which contain 

potent vasoactive, proteolytic, and fibrinolytic substances encapsulated in their 

cytoplasmic granules. Experiments from our laboratory showed MC density and their 

state of granulation to be altered early following focal transient cerebral ischemia, and 

degranulating MCs were associated with perivascular edema and hemorrhage. This led to 

the hypothesis that MCs might be involved in regulation of BBB permeability, brain 

swelling, and neutrophil infiltration, as well as in hazardous TPA-mediated cerebral 

hematomas after stroke. Since the mass effect from increasing edema and hematoma 

volume are associated with poor outcome in ICH, the efficacy of MC-modulating 

strategies was tested also in this catastrophic condition. 

 

To examine the above hypothesis, the first question was whether MCs play a role in 

modulating BBB permeability, brain swelling, and neutrophil infiltration in a rat model of 

transient middle cerebral artery occlusion (MCAO) (I). Thereafter, in the same model, 

subsequent studies examined the potential role of MCs in TPA-mediated deleterious 

effects, and tested the effect of TPA on MCs in vitro (II). Finally, the role of MCs was 

studied in an autologous blood injection model of ICH (III). 

 

(I) Pharmacological MC stabilization led to significantly reduced ischemic brain swelling 

(40%) and BBB leakage (50%), whereas pharmacologically potentiated MC degranulation 
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raised these by 90% and 50%, respectively. Pharmacological MC stabilization also 

revealed a 40% reduction in neutrophil infiltration. Moreover, genetic MC deficiency was 

associated with an almost 60% reduction in brain swelling, 50% reduction in BBB 

leakage, and 50% less neutrophil infiltration, compared with control figures. 

 

(II) Experiments with TPA showed strong TPA-induced MC degranulation in vitro. In vivo 

experiments with post-ischemic TPA administration demonstrated 70- to 100-fold 

increases in hemorrhage formation (HF) compared with controls’ HF. HF was significantly 

reduced by pharmacological MC stabilization at 3 (95%), 6 (75%), and 24 hours (95%) 

of follow-up. Genetic MC deficiency again supported the role of MCs, leading to 90% 

reduction in HF at 6 and 24 hours. Pharmacological MC stabilization and genetic MC 

deficiency were also associated with significant reduction in brain swelling and in 

neutrophil infiltration. Importantly, these effects translated into a significantly better 

neurological outcome and lower mortality after 24 hours. 

 

(III) Finally, in experiments utilizing the ICH model, pharmacological MC stabilization 

resulted in significantly less brain swelling, diminished growth in hematoma volume, 

better neurological scores, and decreased mortality. Pharmacologically potentiated MC 

degranulation produced the opposite effects. Genetic MC deficiency revealed a beneficial 

effect similar to that found with pharmacological MC stabilization. 

 

In sum, the role of MCs in these clinically relevant scenarios is supported by a series of 

experiments performed both in vitro and in vivo. That not only genetic MC deficiency but 

also drugs targeting MCs could modulate these parameters (translated into better 

outcome and decreased mortality), suggests a potential therapeutic approach in a 

number of highly prevalent cerebral insults in which extensive tissue injury is followed by 

dangerous brain swelling and inflammatory cell infiltration. Furthermore, these 

experiments could hint at a novel therapy to improve the safety of thrombolytics, and a 

potential cellular target for those seeking novel forms of treatment for ICH. 
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1 INTRODUCTION 

 

Worldwide, ischemic stroke is one of the leading causes of disability and death. The 

major cause of death after a large hemispheric stroke is space-occupying brain 

swelling.1 Brain swelling occurs in about two-thirds of patients within 6 hours of 

ischemic stroke onset.2 The two main detrimental effects of swelling are (1) mass effect 

with compression of normal brain structures (herniation), and (2) decreased blood flow in 

the ischemic penumbra. Both effects damage the penumbra’s metabolism and facilitate 

its transformation into an infarction. Blood-brain barrier (BBB) damage increases 

tissue water content; the entry of serum proteins into brain tissue magnifies vasogenic 

edema and further swelling. Thus far, only limited conservative anti-edema treatment 

strategies exist. Invasive surgical decompressive craniectomy offers some benefit to 

selected patients, and experiments with hypothermia also seem promising. However, the 

possibilities to fight massive brain swelling are far from sufficient. 

 

Thrombolysis with tissue plasminogen activator (TPA) is the only approved 

pharmacological therapy for acute ischemic stroke, aiming to provide early recanalization 

of an occluded cerebral artery. For every 1000 patients treated with TPA within 3 hours 

after symptom onset, more than 140 will avoid disability, and the therapeutic window 

may extend to 4.5 hours.3 A major issue regarding this treatment is the risk for clinically 

relevant parenchymal hemorrhage, the etiology of which is not yet fully understood. 

In pooled analysis of placebo-controlled trials of thrombolysis, 6% of stroke patients 

developed a substantial brain hemorrhage, as compared to 1% in the placebo group.3 

Furthermore, TPA-treated patients with acute myocardial infarction have had a 1.1%,4 

and with pulmonary embolism a 3%5 risk for cerebral hemorrhage. 

 

Spontaneous recanalization or medical thrombolysis can evoke reperfusion injury (RI), 

which can worsen BBB leakage, leading to extravasation of plasma and of erythrocytes 

(formation of edema and of hemorrhage) and inflammatory cell infiltration. 

 

Intracerebral hemorrhage (ICH) accounts for 15% of all strokes in Western countries, 

and the percentage is even higher (20-30%) in Asian and black populations.6 ICH is 

associated with high mortality and disability, with only 40 to 50% of the patients 

surviving through the first year,7,8 many of them with chronic disability. Poor outcome 

results from direct tissue damage, especially in deep brain structures such as the basal 

ganglia, and the mass effect of the growing hematoma. In addition to the mass effect, 

the hematoma itself induces a number of early secondary changes in the surrounding 

tissue, including neuronal and glial cell death due to apoptosis9-11 as well as inflammation 

and vasogenic edema caused by disruption of the BBB.12,13 The compressive effect of 

perihematomal edema may contribute to secondary perihematomal ischemic injury, 

although its being ischemic is controversial. The mass effect of the growing hematoma 

and edema leads to displacement and disruption of brain structures and often to 

increased intracranial pressure (ICP). Currently, no approved effective acute medical 

treatment exists, and surgical evaluation of ICH was recently found non-beneficial.14 
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Mast cells (MCs) are tissue-based stationary effector cells that form a first-line defense 

against various challenges. They have been found in a variety of locations in the nervous 

system in different species, including humans,15 and appear to be concentrated in 

relatively few locations, which include the diencephalic parenchyma, particularly the 

thalamus, cerebral cortex, and the meninges, positioned in close proximity to potential 

cellular targets of mediator/cytokine action.16 Their metachromatic granules contain 

potent preformed vasoactive substances (e.g. histamine, bradykinin, leukotrienes (LT), 

and serotonin), proteolytic enzymes (e.g. chymase, tryptase, and cathepsin G), 

anticoagulants (heparin and chondroitin sulfate), and chemotactic factors (e.g. neutrophil 

and eosinophil chemotactic factor). MCs are well-known to be involved in allergic 

reactions but participate in various other conditions including inflammatory arthritis, 

coronary inflammation, interstitial cystitis, irritable bowel syndrome, multiple sclerosis, 

and migraine. Furthermore, they were found to play a role in angiogenesis, neoplasm 

formation, wound healing and tissue remodeling, blood clotting, tissue fibrosis, and 

ischemia-RI in the peripheral tissues. 

 

In the pilot microscopic experiments, MC density and their state of granulation was 

altered early following focal transient cerebral ischemia and degranulating MCs were 

frequently found in association with edema and hemorrhage formation. These findings 

together with characteristic perivascular location of MCs, the enormous potential to store 

and release potent mediators, and the ability of their proteases to degrade the basal 

lamina constituents17,18 led to hypothesis that MCs might be involved in the regulation of 

BBB permeability, brain swelling, neutrophil infiltration, as well as in the feared TPA-

mediated cerebral hemorrhages after stroke. In line with the assumed role in 

development of edema and hemorrhage, MC blocking was hypothesized to be beneficial 

in experimental ICH. 
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2 REVIEW OF THE LITERATURE 

2.1 Ischemic stroke 

 

Ischemic stroke originates from an abrupt decrease in the blood supply to a region of the 

brain, and results in a corresponding loss of neurologic function. The most common life-

threatening neurological disease, it is the third most common cause of death in 

developed countries, and the second most common in the world.19 It is estimated that 

one sixth of all human beings will suffer at least one stroke during their lives.20 Overall, 

stroke is killing more than 50/100,000 individuals annually in the USA, where its 

incidence is approximately 250/100,000 per year, costing around $40 billion annually.21 

In Finland, stroke mortality is around 40/100,000 per year, stroke incidence about 

270/100,000 per year, and costs approximately 6.1% of the whole health-care budget.19 

Ischemic stroke accounts for 80 to 85% of all cases of stroke. 

 

Stroke is not only the leading cause of death, but also of disability and long-term 

hospitalization, being second to Alzheimer’s disease as a cause of dementia.21 The 

earlier, rather nihilistic, view that acute ischemic stroke is untreatable has been replaced 

with some level of optimism based on the clinical use of thrombolysis and on some 

studies with neuroprotectants, although experience with clinical trials of the latter still 

offers no reason for much enthusiasm. However, multidisciplinary hospital treatment 

approaches, i.e., stroke unit therapy, have also been effective in reducing death and 

disability after stroke. 

 

Ischemic stroke is most commonly caused by atherosclerosis of extra- and intracranial 

arteries, embolism of cardiac origin, and small artery disease (lacunar stroke). 

Furthermore, ischemic stroke can be caused by vasculitides and dissections.  Risk factors 

for stroke include: advanced age, male gender, genetic predisposition, arterial 

hypertension, ischemic heart disease, hypercholesterolemia, thrombotic disorders (e.g., 

protein C-, protein S-, AT3-, and APC-deficiencies, lupus anticoagulans, elevated FVIII 

levels, FV-Leiden and FII-prothrombinogen mutation), diabetes mellitus, and smoking. In 

addition, excessive alcohol consumption, diet, physical inactivity, and obesity all play a 

role. 

 

2.1.1 Pathophysiology of cerebral ischemia 

2.1.1.1 Cerebral blood flow and ischemic cascade 

The brain represents only 2% of body weight but requires 15% of heart minute volume 

and 20% of the body’s oxygen supply. The brain’s energy source is glucose, the 

metabolism of which is 95% aerobic and 5% anaerobic; the latter can, however, be of 

short duration only. The brain has no stores of energy, and there exists a tight balance 

between oxygen and glucose supply. Should cerebral blood flow (CBF) in any area of 
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the brain be insufficient or absent, the subsequent loss of these two essential substances 

for oxidative phosphorylation disrupts the energy balance in brain cells and an ischemic 

cascade will be launched. This chain of spatial and temporal events following CBF 

reduction and energy failure includes free oxygen radical (e.g., hydrogen peroxide, 

hydroxyl radicals, and superoxide) formation, elevation of intracellular Ca2+ levels, 

excitotoxicity, and spreading depression, accompanied by ion changes, depolarization of 

cell membranes, and activation of enzymes with lytic activities, followed by the BBB 

disruption and inflammation.22 

 

Once the supply of energy substrates ceases or significantly decreases, lactate builds up 

via anaerobic glycolysis, free fatty acids are formed, and pH decreases, all potentially 

stimulating free radical formation.23 Energy-requiring calcium pumps fail with falling 

adenosine triphosphate (ATP) levels, resulting in perturbation of the Na+/K+-ATP-ase and 

Ca2+/H-ATP-ase pumps; the Na+-Ca2+ transporter is reversed. Even if sodium- and 

calcium-exchange pumps remove some of the Ca2+, three Na+ ions still enter for every 

two Ca2+ ions removed. 

 

The ionic changes described (elevation of intracellular Na+, Ca2+, Cl-, and elevation of 

extracellular K+ levels) lead to osmotic accumulation of water molecules inside the cell, 

called cytotoxic edema. Membrane depolarization and failure triggers the release of 

neurotoxic glutamate, with further increase in Ca2+ entry via glutamate receptors.24 

NMDA receptor-mediated glutamate neurotoxicity after cerebral ischemia may be at least 

partially mediated by excessive production of nitric oxide (NO).25 

 

Other sources of elevated intracellular levels of Ca2+ include: Ca2+ release from the 

endoplasmic reticulum, mitochondria, synaptic vesicles, and from Ca2+-binding proteins. 

Calcium activates a number of enzymes, such as protein kinase C, phospholipase A2, 

phospholipase C, cyclooxygenase, calcium-dependent NO-synthase, calpain, and various 

proteases and endonucleases affecting cellular integrity. 

 

Subsequently, formation of LT and free radicals (reactive oxygen, ROS, and nitrogen 

species) is launched. Free radicals react irreversibly with such cellular components as 

proteins, double bonds of phospholipids, and nuclear DNA26; they cause lipid 

peroxidation, membrane damage, dysregulation of cellular processes, and mutations of 

the genome. Oxygen radicals also serve as signaling molecules influencing inflammation 

and apoptosis.24 Both Ca2+- and free radical-mediated events are multiplied in association 

with reperfusion-mediated injury (see below). 

 

Crucial for the ultimate fate of the brain tissue is the severity and duration of the 

compromised CBF, calculated as cerebral perfusion pressure (CPP) divided by vessel 

resistance. CPP in turn is the difference between mean arterial blood pressure (MABP) 

and ICP. In humans, normal CBF value is approximately 50 ml per 100 g of brain tissue 

per minute. In the region with impaired blood supply, acidosis ensues, leading to local 

vasodilatation, hence reducing vessel resistance. The meaning of such autoregulation is 
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to maintain the CBF at sufficient levels. Ischemia caused by a drop in CBF to a third or a 

quarter can still be reversible; representing the ischemic threshold. On the other hand, 

CBF reduction below 10 ml / 100 g / min lasting for several minutes can already cause 

tissue damage, infarction (a histologic finding derived from a brain region that has 

suffered ischemic injury). 

 

Experimental work27 shows that 45 to 90 minutes of middle cerebral artery occlusion 

(MCAO) leads to swelling of astrocytes and endothelial cells (ECs), microvascular 

plugging by erythrocytes and polymorphonuclear leukocytes (PMNL) in regions with the 

lowest CBF, with minimal changes to the neuronal perikarya. Already 1 to 3 hours later, 

astrocytic changes spread to the cortex, and swollen and pale neurons appear in the 

striatum. Eosinophilic neurons (markers of necrosis) do not appear in the core of the 

ischemic lesion until more than 12 hours after MCAO and until 24 to 48 hours in the 

ischemic cortex. It is thus important, when acute treatment strategies are considered, to 

focus on salvageable ischemic tissue that is not irreversibly injured. 

 

2.1.1.2 The penumbra concept 

The region with CBF values below 10 to 15 ml / 100 g / minute represents the ischemic 

core; it undergoes rapid, anoxic cell death within minutes of ischemia onset with rapid (1 

hour or less) evolution into irreversible injury. Surrounding the core are the regions with 

CBF reduced to 15 to 35 ml / 100 g / minute, showing much slower (hours) evolution. 

These regions are potentially salvageable, depending on the duration and magnitude of 

perfusion deficit, collateral blood flow, temperature, glucose levels, and acidosis.28 Such 

tissue surrounding the ischemic core is called the ischemic penumbra. The penumbra is 

considered potentially salvageable tissue-at-risk and differs from the core in terms of the 

process of cellular injury and cell death. While necrosis is more dominant in the core 

tissue, both necrosis and apoptosis are involved in penumbral cell death, and apoptosis 

alone seems to be involved in cell death further away from the core.29 

 

Apoptosis can be triggered by a number of processes, including excitotoxicity, free-

radical formation (damaging cellular lipids, proteins and nucleic acids), inflammation, 

mitochondrial and DNA damage, and cytochrome c release from mitochondria.29 

Apoptotic cell morphology differs from the necrotic type. Cellular necrosis includes 

cellular swelling, loosening of cellular architecture by cytoskeletal disruption, breakdown 

of cellular organelles, and denaturation of cytoplasmic proteins followed by an 

inflammatory response. In contrast, apoptosis is characterized by cellular shrinkage down 

to 60% and marked condensation of chromatin in the nucleus. In addition, apoptotic 

features include membrane blebbing, and fragmentation of the cell by separation of the 

protuberances to form multiple small membrane-bound bodies that contain intact 

organelles or dense clumps (apoptotic bodies) or both.29,30 Apoptotic cells are rapidly 

removed by macrophage- and microglia-mediated phagocytosis without eliciting an 

inflammatory reaction, contrary to the PMNL-mediated phagocytosis of necrotic cells.30 



 

   15 

Recently, it was suggested that both necrosis and apoptosis are two extreme poles of 

cellular death after ischemic stroke, “aponecrosis”.26 Even if the features of apoptosis are 

wellknown from experimental work, few studies demonstrate apoptotic features in human 

stroke.30-32 As mentioned, apoptosis seems to occur after milder ischemic injury, 

particularly in association with the penumbra.29 

 

The process of recruiting the penumbral tissue into the core and of infarct propagation 

was, experimentally, found to involve recurrent waves of depolarization (an energy-

consuming process called spreading depression), which start within the core and extend 

outwards to surrounding tissue.33,34 Each wave of depolarization increases infarct volume 

by 20% during the first 3 hours after vessel occlusion.34 The most likely source for the 

depolarization is the elevated extracellular K+ level and increase in the glutamate release 

at the boundaries between the ischemic core and the penumbra.33 

 

The penumbra can be identified by imaging techniques and some studies suggest its 

existence for up to 48 hours in individual patients.35,36 In magnetic resonance imaging 

(MRI), the penumbra corresponds to a mismatch between perfusion- and diffusion-

weighted imaging (DWI).28,37 Hossmann and coworkers38 found that 7 hours after onset 

of ischemia, the DWI-based infarct region was almost identical to the severe ATP-decline 

region. With different durations of ischemia, those authors found the DWI changes 

already to be maximal at 105 minutes, but the severe ATP-decline region was noticeably 

smaller by that time; ATP decline corresponded well with CBF decline. 

 

Utilizing positron emission tomography (PET), Heiss and coworkers28 described the 

penumbra in terms of hypoperfusion (reduced CBF), preserved cerebral metabolic rate of 

oxygen (CMRO2), and increased oxygen extraction fraction (OEF). Altogether, they 

defined four different patterns of PET findings: autoregulation (increased cerebral blood 

volume (CBV) to maintain CBF), oligemia (decreased CBF and increased OEF to maintain 

CMRO2), ischemia (decreased CBF and decreased CMRO2 despite increased OEF), and 

irreversible injury (very low CBF and CMRO2). In that work, pattern 3 was widely present 

at 1 hour after MCAO, at 4 hours pattern 4 was common in the central zone and pattern 

3 peripherally, and at 24 hours everywhere had nearly completely pattern 4 (highly 

correlating with postmortem infarct size). 

 

When CMRO2 below 1.5 ml / 100 g / minute was used to define severely ischemic tissue 

in a PET MCAO study in primates,39 no significant change was found in the volume of 

tissue below this value in the ischemic hemisphere over the initial 7 hours, but the 

volume of such tissue significantly increased at 24 hours and was even larger at 14 days, 

suggesting that evolution of focal ischemic injury continues in primates over a longer 

time period. Similar results from a human study40 suggest that many stroke patients 

have potentially salvageable ischemic tissue within 24 hours after onset. In another PET 

study,41 CBF was calculated in 10 patients within 3 hours of onset of ischemia to define 

critically hypoperfused tissue, penumbral tissue, and sufficiently perfused tissue. After 2 

to 3 weeks, the authors calculated the relative contribution of these regions to final 
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infarct volume as defined by MRI. Almost 70% of the final infarct volume was caused by 

initially critically hypoperfused tissue, 18% by penumbral tissue, and 12% by initially 

sufficiently perfused tissue, demonstrating that acute critical CBF decline is the 

predominant cause of infarction. This in turn justifies a rather aggressive approach 

aiming at rapid recanalization of the occluded artery and reperfusion of ischemic brain 

tissue. 

 

2.1.2 Neuroprotection and recanalization 

2.1.2.1 Neuroprotection 

Several successful experimental attempts aimed to reduce infarct size and outcome. In 

the clinical setting, however, apart from approved intravenous (iv) thrombolysis (see 

below), many of the phase I to III clinical trials did not reproduce the exciting laboratory 

findings for pharmacologic neuroprotection. Among the numerous drugs found to be 

clinically ineffective were NMDA antagonists, GABA agonists, free radical scavengers, 

anti-adhesion molecules, calcium antagonists, and agents that promote cell membrane 

stabilization (citicoline). The reason for the discrepancies between experimental and 

clinical data may lay in the susceptibility of animals to ischemia and to neuroprotectants, 

adverse effects of neuroprotectants, differences in pharmacokinetics, and in the time 

windows and delayed treatment in human trials.24 

 

Thus, it is possible that glutamate pathway-related neuroprotectants can be effective 

when used within a shorter time window and, interestingly, a pilot trial of FAST MAG (The 

Field Administration of Stroke Therapy-Magnesium) with iv magnesium (acting 

presumably as an NMDA receptor blocker), was found beneficial.42 In contrast, the 

parallel study did not confirm the positive results in terms of primary outcome, i.e., 

mortality and 90-day disability.43 However, in the parallel study, most of the patients 

received treatment beyond 3 hours (up to 12 hours) of symptom onset, and the FAST-

MAG investigators received permission to start a phase III trial with magnesium 

administration within 1 to 2 hours of symptom onset. 

 

Another positive clinical trial was SAINT-I (Stroke-Acute Ischemic NXY Treatment I),44 

testing a free radical trapping agent NXY-057, which was found effective experimentally. 

This trial found improved primary outcome (90-day disability), but it did not significantly 

improve other outcome measures (neurological function evaluated by National Institutes 

of Health stroke scale score); therefore, results of the phase II trial (SAINT-II) were 

eagerly awaited. However, the SAINT-II trial was negative and did not meet its primary 

outcome in stroke-related disability.45 

 

Based on preliminary evidence, early induction of hypothermia may prove beneficial in a 

clinical situation.46 It seems likely that the neuroprotective approaches per se cannot be 

beneficial if blood circulation is not restored at least to some degree. They could play a 
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role in widening the therapeutic window for successful recanalization/reperfusion or in 

lessening cellular death (e.g., inhibiting apoptosis) following recanalization. 

 

2.1.2.2 Recanalization and thrombolysis 

Acute critical changes in CBF disturbances offer a major contribution to cumulative 

ischemic brain damage.41 Thus—apart from the unrivaled “time window” for stroke 

treatment, prevention—the most suitable and beneficial moment to reverse the drastic 

consequences of stroke is in the hyperacute phase before the tissue-at-risk evolves into 

infarction. Recent meta-analysis of angiography- or transcranial Doppler-monitored 

studies in humans reported that spontaneous recanalization occurs in approximately 

one-quarter of patients within 24 hours, and in approximately half the patients up to 1 

week after stroke.47 Therapeutic recanalization is reported to have a success rate of 

46% for intravenous fibrinolysis, 63% for intra-arterial and 67% for combined 

intravenous/intra-arterial thrombolysis, and 84% for mechanical thrombolysis.47 

 

To date, the most effective treatment for acute ischemic stroke is early reperfusion of the 

ischemic brain to salvage the penumbral tissue, reduce final infarct size, and improve 

functional outcome. The only proven reperfusion therapy is the administration of iv TPA 

within 3 hours of symptom onset in selected acute ischemic stroke patients. For every 

1000 patients treated with TPA within 3 hours after symptom onset, more than 140 will 

avoid disability, and the therapeutic window may extend to 4.5 hours.3 In that pooled 

analysis (based on all major randomized placebo-controlled trials of TPA for acute stroke 

including more than 99% of all TPA-treated patients), TPA treatment reduced death and 

disability at 3 months compared with results for the placebo group. According to the 

investigators, it is disappearance of the ischemic penumbra that is responsible for onset-

to-treatment-dependent beneficial outcome. 

 

While 15% of ischemic stroke patients admitted to the Helsinki University Central 

Hospital receive thrombolysis,48 fear of TPA-associated hemorrhage may in part explain 

why only a mean of 2 to 5% of ischemic stroke patients as of yet receive this beneficial 

treatment even in specialized stroke centers worldwide.49,50 Despite the clear benefit of 

early thrombolysis, tight inclusion and exclusion criteria exist as to patients to be treated, 

since TPA treatment is associated with an almost 6% risk (compared with 1% with 

placebo) of clinically relevant parenchymal hemorrhages.3 Such hemorrhages were 

not associated with onset-to-treatment time (3-6 hours vs < 3 hours), but rather with 

TPA-treatment per se and with age of patient.3 Risk for any hemorrhage in that analysis 

was 11%, including asymptomatic intracranial hemorrhage in patients treated with TPA. 

Moreover, patients treated with TPA for acute myocardial infarction or pulmonary 

embolism were at a 1.1%4 and 3%5 risk for cerebral bleeding, respectively. 

 

Hemorrhagic transformation is a frequent consequence of ischemic stroke even without 

thrombolysis. Up to 30 to 40% of all ischemic strokes51,52 and 60% of embolic strokes53 
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undergo spontaneous hemorrhagic conversion, i.e., transformation of a bland 

(anemic) infarct into a hemorrhagic one. The two types of hemorrhagic transformation 

are hemorrhagic infarction (without clinical deterioration) and parenchymal 

hemorrhage (clinically relevant) (Table 1). 

 

The percentage of parenchymal hemorrhages in different studies differs according to the 

criteria selected. Recently published and performed under European Union regulations, 

the SITS-MOST (Safe Implementation of Thrombolysis in Stroke-Monitoring Study) 

study54 reports a proportion of 1.7% patients with symptomatic (deterioration in National 

Institutes of Health stroke scale score of ≥4) ICH at 24 hours. There, hemorrhage was 

defined as a dense blood clot exceeding 30% of the infarct volume with a significant 

space-occupying effect (parenchymal hemorrhage type 2, Table 1). However, the 

proportion of patients with symptomatic ICH increased to 7.3% using the criteria for the 

National Institutes of Neurological Disorders and Stroke trial and for the Cochrane. These 

included patients with any degree of hemorrhage on computed tomography (CT) 

combined with any neurological worsening. 

 

The European Cooperative Acute Stroke Study investigators defined symptomatic ICH as 

any hemorrhage plus a neurological deterioration in a National Institutes of Health stroke 

scale score of ≥4. By this definition, the proportion of patients with symptomatic ICH in 

SITS-MOST was 4.6%. While it is most likely that—including parenchymal hemorrhage 

type 2 (Table 1)—the SITS-MOST will detect major symptomatic ICH, the Canadian 

counterpart of SITS-MOST recently reported that parenchymal hemorrhage type 1 and 

hemorrhagic infarction type 2 (Table 1) were also significant predictors of poor 

outcome.55 Despite variation in reported TPA-mediated hemorrhagic events, the SITS-

MOST registry justifies administration of TPA for selected acute ischemic stroke patients. 

 

 

Table 1. Definitions of cerebral bleeding 

 

National Institutes of Neurological Disorders and Stroke 

HI acute infarction with punctuate or variable hypodensity/hyperdensity, with an 

indistinct border within the vascular territory 

PH typical homogeneous, hyperdense lesion with a sharp border with or without 

edema or mass effect 

European Cooperative Acute Stroke Study 

HI petechial infarction without space-occupying effect 

HI1 small petechiae 

HI2 more confluent petechiae 

PH hemorrhage with mass effect 

PH1 < 30% of infarcted area with mild space-occupying effect 

PH2 > 30% of infarcted area with significant space-occupying effect 

HI, hemorrhagic infarction; PH, parenchymal hemorrhage 
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If no recanalization is achievable, potential unfavorable actions of TPA may overwhelm 

the purported beneficial effects of the treatment. Hemorrhages and vascular RI (the BBB 

disruption, brain swelling, and neutrophil infiltration) can devastate prognosis even 

following successful clot lysis. TPA is a pleiotropic molecule. It is a fibrin-specific 

activator for conversion of the precursor molecule plasminogen to active plasmin. 

Plasmin, in turn, dissolves fibrin-based clots. In addition to its role in clot lysis, TPA may 

also possess signaling and protease action in the vasculature.50 Such effects can mediate 

formation of hemorrhages in the brain parenchyma. 

 

Some data suggest, that TPA and plasmin are potentially neurotoxic, should they reach 

the extracellular space56; if TPA is administered promptly after ischemia onset, the BBB 

remains intact, and exogenous TPA remains within the vascular space and is eliminated 

within minutes due to its short half-life in circulation. Experiments with TPA-deficient 

mice57 showed increased TPA-associated neuronal damage in the hippocampus. Concern 

was, however, raised about that study, since under normal conditions, endogenous TPA 

does not lead to degeneration of the hippocampus.58 

 

It seems that the beneficial effects of TPA-induced early thrombolysis and restoration of 

CBF are overwhelmingly greater than the potential detrimental effects such as 

neurotoxicity (cleavage of the NMDA R1 subunit, amplification of intracellular Ca2+ 

conductance), BBB disruption, edema, and hemorrhage (matrix metalloproteinases, 

MMPs), and inflammatory exacerbation of ischemic insults (accumulation of PMNL and 

free radicals).56,59 Interestingly, the protease actions of TPA are involved in extracellular 

matrix (ECM) and parenchymal matrix modifications, which may mediate neuronal 

precursor migration as well as neurite and axonal extension60,61 and thus affect neuronal 

plasticity during recovery from stroke.50 

 

Indeed, the effects of TPA in the setting of cerebral ischemia are manifold, difficult to 

predict, and dependent on the stage of evolution of the imminent infarction as well as on 

the success in opening the occluded cerebral artery. 

 

2.1.2.3 Reperfusion injury 

In ischemic stroke, once the recanalization of the occluded artery has occurred either 

spontaneously or following a therapeutic intervention, the ensuing reperfusion delivers 

oxygen and glucose to the tissue and removes waste substances that have accumulated 

during ischemia. On the other hand, during reperfusion of the previously ischemic tissue, 

functionally impaired mitochondria are unable to use superfluous delivery of oxygen in 

electron transport, which may result in reduction in cellular ATP levels, production of 

ROS, activation of apoptosis, and initiation of inflammatory processes.22 

 

Such a cascade of events can lead to deterioration of the tissue state; hence the term 

reperfusion injury.62,63 Besides free radicals, several other substances have been 
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suggested to play a role in the cascade of RI, including excitatory amino acids, free fatty 

acids, cytokines, expression of endothelial adhesion molecules, Ca2+ influx, and protein 

kinases.22,62-64 A critical step is the remodeling of the microvascular structure. Free 

oxygen radicals may cause peroxidation of lipids in the cell membranes, resulting in the 

failure of membrane ATP-ase, changes in cellular homeostasis, and elevation in the 

concentration of free fatty acids.64 

 

The existence and nature of RI has been a subject of debate. Recanalization does not 

always lead to noticeable RI and, importantly, recanalization does not automatically 

mean adequate tissue reperfusion.65 Effective reperfusion may not occur despite 

recanalization because of complex phenomena leading to “no-reflow” such as migration 

of emboli, secondary thrombosis, hemorrhage, edema, swelling of the intima, 

microvascular plugging by PMNL and platelets, and tissue factor-mediated coagulation 

system activation in the microvessels.66 

 

Despite some controversies about RI (see below), a time window may exist, during which 

reperfusion is clearly beneficial, with only the late reperfusion being associated with RI. 

Early reperfusion (up to 90 minutes after MCAO) was beneficial in studies in rats,67 with 

later reperfusion being harmful, causing BBB disruption, formation of vasogenic edema 

and hemorrhage, neutrophil infiltration, and larger infarcts.62,68-71 The existence of such a 

time window for reperfusion to occur is very important from the clinical point of view, 

especially with respect to thrombolytic treatment and possible “anti RI” treatment 

strategies. 

 

Controversy exists as to hyperperfusion and RI as judged by differences between the 

human and experimental data including rodents,69 cats,72 or nonhuman primates.73 In 

human studies by Marchal and coworkers,74-76 early post-ischemic hyperperfusion was 

not seen to be deleterious for tissue survival; in one of their studies, they found almost 

no overlap between hyperperfusion as seen in initial PET and infarct area seen on final 

CT.76 However, patients with hemorrhage were excluded from this study; hence it is 

unknown whether hyperperfusion contributed to hemorrhage. Furthermore, normal CT 

rules out pan-necrosis, but not selective neuronal loss.77 In their studies, Marchal and 

coworkers74-76 suggested that when observed 5 to 18 hours after stroke onset, focal 

hyperperfusion without already extensive irreversible tissue damage invariably predicts 

minute (or absent) infarcts and excellent spontaneous recanalization/reperfusion, which 

presumably occurs sufficiently early to prevent ischemic tissue from evolving into 

infarction. 

 

Heiss and coworkers78 found hyperperfusion sometimes to be associated with incomplete 

infarction or selective neuronal loss and confirmed72 the findings of Marchal and 

coworkers74-76 that early hyperperfusion is beneficial and is a marker of good outcome. 

Hyperperfusion does not always occur after recanalization, however. In one study of 14 

patients, only 2 showed an area of hyperperfusion in relation to the recanalization noted 

in their angiograms.79 Furthermore, even though Olsen and coworkers80 noticed frequent 
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hyperperfusion 1 to 4 days after symptom onset, still only 4 of their 12 patients showed 

hyperperfusion within 48 hours and only 1 patient within 10 hours. 

 

Von Kummer and coworkers65 questioned the role of RI in the clinical setting even in 

cases of delayed recanalization (8-24 hours after symptom onset) and presumed that it 

was the collateral blood supply that kept the brain tissue viable more than 8 hours after 

MCAO in those who showed delayed recanalization. Similarly, Marchal and coworkers 

suggested that reperfusion does not contribute much to tissue injury and that RI 

develops only in the case of already irreversibly injured tissue, which would no longer 

benefit from recanalization/reperfusion anyway, nor from possible RI treatment. 

 

Still, the results of Marchal and coworkers can be interpreted in a way that early, not 

late, reperfusion is beneficial, fitting with the assumed existence of the time window for 

intervention. Indeed, Marchal and coworkers admit that RI may develop with late 

hyperperfusion and that selective neuronal loss occurs in areas with early post-ischemic 

hyperperfusion. 

 

Furthermore, Warach and Lawrence81 reported RI to be exacerbated by thrombolysis in 

human ischemic stroke and suggested that early BBB disruption in humans may be a 

crucial target for adjunctive therapy to reduce the complications of RI/thrombolysis, to 

broaden the therapeutic window, and to improve clinical outcome (Figure 1). Surely, 

further research is needed to find how wide this time window is and how it could 

potentially be modified. Von Kummer and coworkers65 suggested two critical periods for 

the time window, the first of which may already be closed by the time the patient is 

admitted, as it is influenced by the extent of primary ischemia. The second period seems 

to be open for an uncertain length of time, being influenced by collateral blood flow and 

cerebral oxygen supply. 

Transient focal cerebral ischemia

Reperfusion
(spontaneous or TPA-mediated)

Saved tissue Reperfusion injury

Beneficial effect Detrimental effect

• BBB leakage
• brain swelling

• hemorrhage
• neutrophils

 
Figure 1. Reperfusion injury
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It seems that more important than level of hyperperfusion after recanalization is the 

severity of CBF drop during the preceding ischemia together with the duration of 

ischemia. Aronowski and coworkers62 found that reperfusion of long-lasting severe 

ischemia in rats (480 and 1080 minutes) no longer led to RI (perhaps the changes 

caused by ischemia were already maximally detrimental), and it is generally accepted 

that reperfusion after very severe ischemia (no residual CBF) does not lead to RI. 

Clearly, reperfusion presents a dilemma, as on the one hand it can reduce lesion volume 

and edema formation, but on the other hand, it may promote BBB damage, with 

subsequent formation of vasogenic edema and hemorrhage and neutrophil infiltration. 

 

2.1.3 Blood-brain barrier and basal lamina disruption 

 

The microenvironment of the CNS and integrity of the cerebral microvasculature is 

secured by two barriers: the BBB and basal lamina (Figure 2, bottom left and right). 

The former is composed of tight interendothelial-cell junctions of capillary and 

postcapillary venules. Tight junctions form a continuous network of parallel 

intramembrane strands of protein connected to the internal actin cytoskeleton.82 Several 

integral transmembrane proteins exist (claudin, occludin, and junction adhesion 

molecule) as well as cytoplasmic accessory proteins that belong to the zona occludens 

family and others such as AF6 and cingulin. 

 

The second barrier, the basal lamina, is a specialized part of the ECM that connects the 

EC to the adjoining cell layers and the smooth muscle of the media. The constituents of 

the basal lamina include the matrix proteins laminin, collagen type IV (both connected 

by entactin), fibronectin, thrombospondin, various proteoglycans, and heparan 

sulfates.71,83 The basal lamina is connected to the endothelium by fibronectin and 

laminin. 

 

Continuous disappearance of antigens of the three main constituents of the basal lamina 

(laminin, fibronectin, and collagen type IV) occurs very early after ischemia onset, when 

the basal lamina loses its integrity.84,85 Some evidence exists (see below) that 

proteases, most importantly MMPs and PAs, are involved in the disruption of the ECM, 

which leads to changes in the vessel wall, and may loosen the matrix around cells. 

Recently, a role for another type of proteases (cathepsins) in degrading matrix 

components was demonstrated.86 

 

MMPs comprise a large family of proteolytic enzymes, zinc endopeptidases, which are 

secreted in an inactive form and require mediation by other proteases. They are divided 

into five groups, the collagenases (MMP-1, MMP-8, and MMP-13), gelatinases (MMP-2 and 

MMP-9), stromelysins (MMP-3, MMP-7, MMP-10, and MMP-11), elastases (MMP-12), and 

the membrane-type MMPs (MMP-14, which activates pro-MMP-2).87 Tissue inhibitors of 

metalloproteinases (TIMPs) are endogenous regulators of MMP activity.87 Gelatinase A 
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Figure 2. Schematic illustration of the neurovascular unit (middle) and the components of the 

blood-brain barrier (bottom left) and the basal lamina (bottom right). ECM=extracellular matrix, 

ZO=Zona occludens, AF6=afadin, 7H6=tight junction associated phosphoprotein. (Bottom left 

image adopted in part from del Zoppo, GJ et al. Arterioscler Thromb Vasc Biol 2006; 26:1966-1975 

and Huber JD et al. Trends Neurosci 2001; 24:719-725.
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(MMP-2) and B (MMP-9) are the largest members of the MMP family and are to date the 

only gelatinases identified.88 

 

Activated MMPs can degrade most protein constituents of the neurovascular matrix: 

collagen, elastin, fibronectin, vitronectin, and gelatine.89 Experimental data show 

involvement of the gelatinases MMP-2 and MMP-9 in degradation of components of the 

basal lamina followed by BBB disruption and development of edema and 

hemorrhage.71,84,90-94 Such digestion of the endothelial basal lamina has occurred as early 

as 2 hours after transient ischemia.84 Clinical data revealed some level of a positive 

correlation between degree of brain edema and level of MMP-9 in the cerebrospinal fluid 

(CSF).95 

 

Furthermore, MMP-mediated disruption of the tight junction proteins occludin and claudin 

occurs, and a MMP inhibitor has reduced BBB disruption 3 hours after transient focal 

cerebral ischemia.94,96 These results suggest rather early BBB disruption after transient 

MCAO. Fujimura and coworkers97 found activated MMP-9 to appear as early as 3 hours 

after 60 min of transient MCAO, and a significant increase in pro-MMP-9 occurred in a 

time-dependent manner during reperfusion, the latter was not caused by the reduction in 

TIMP-1. 

 

Neutralizing free oxygen radicals (their main source being arachidonic acid released from 

cell membrane phospholipids) by spin traps or scavenger enzymes (superoxide 

dismutase, catalase) reduces BBB disruption.98,99 Furthermore, mice lacking superoxide 

dismutase are highly susceptible to focal cerebral ischemia-reperfusion with more 

vasogenic edema and higher mortality than in their wild-type (WT) littermates.100 Free 

radicals may influence MMPs, either through activation of the latent forms or by mRNA 

induction.89 

 

Besides having detrimental consequences, MMP activity and BBB disruption can also play 

a physiologic role in neovascularization, angiogenesis, and reconstruction-

neurogenesis.1,101,102 MMPs can be induced in a variety of cells in the CNS, including 

ECs,103 astrocytes,104 oligodendrocytes,105 microglia,106 neurons,107 and MCs.88 MCs are 

also a major source of MMP-1,108 MMP-2,109 MMP-3,110 and MMP-9.109,111,112 

 

Multiple levels of cell-cell and cell-matrix interactions influencing cerebral 

microvasculature integrity led to a proposal of a neurovascular unit,26 including 

endothelium, basal lamina, ECM, neurons, astrocytes fibers and end feet, pericytes, and 

microglia (Figure 2, middle). Matrix adhesion receptors, e.g., the integrins and 

dystroglycan, are expressed in the microvasculature, by neurons, and by the glial cells, 

as recently reviewed.113,114 Integrins are cell-surface transmembrane αβ heterodimers 

that recognize matrix ligands,115 whereas dystroglycan is a single αβ heterodimeric 

transmembrane receptor which forms a link between the intracellular cytoskeleton and 

the ECM.116 Integrins α1β1 and α6β4 disappear rapidly—within 2 hours of ischemia.85,117 

Complex interactions within the neurovascular unit suggest the need for a multilevel 
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approach for therapeutically targeting the loss of microvascular integrity shown by basal 

lamina dissolution and BBB disruption and its consequences such as formation of edema 

and hemorrhage, and inflammatory cell infiltration. 

 

2.1.3.1 Ischemic brain edema: characteristics and treatment 

Evolution of cerebral infarction is invariably associated with development of some degree 

of brain edema. By definition, brain edema represents abnormal accumulation of fluid 

within the brain parenchyma, leading to volumetric enlargement of the tissue.118 Space-

occupying brain swelling is one of the major determinants of patient survival beyond the 

first few hours after a major stroke, being the leading cause of death after the large 

hemispheric middle cerebral artery (MCA) strokes,1,24 which account for 15 to 20% of all 

MCA strokes.119 In addition, brain swelling is a major prognostic factor in cerebellar 

strokes. 

 

Early ischemic brain swelling is already present in two-thirds of patients during the first 3 

to 6 hours,2 becomes evident within the first 24 hours, and peaks at 72 hours.1 Mortality 

from progressive edema in patients with large hemispheric strokes is approximately 

80%.119,120 Brain edema aggravates the ischemic process by its volumetric effect’s 

causing local compression of the microcirculation, rise in ICP, dislocation of parts of the 

brain (herniation), and decreased CBF in the ischemic penumbra. All these effects 

damage the penumbral metabolism and facilitate its transformation into infarction. 

 

Ischemic brain edema is a combination of two types of edema: cytotoxic (cellular) and 

vasogenic.118 Cytotoxic edema evolves over minutes to hours and may be reversible, 

whereas the vasogenic phase occurs over hours to days, and is considered an irreversibly 

damaging process. Cytotoxic edema is characterized by swelling of all the cellular 

elements of the brain. It represents a shift of water from the extracellular to intracellular 

compartment, accompanied by shrinkage of the former. In the presence of acute cerebral 

ischemia, neurons, astrocytes, and ECs swell within minutes of hypoxia due to failure of 

ATP-dependent ion (Na+ and Ca2+) transport. With the rapid accumulation of Na+ within 

cells, water follows to maintain osmotic equilibrium. Increased intracellular calcium 

activates phospholipases and the release of arachidonic acid, leading to the release of 

oxygen-derived free radicals and to cell death. 

 

Should the ischemia take only a short time, the disturbed membrane potential may 

recover. However, cellular swelling and Ca2+ influx are considered to cause irreversible 

damage to the cell.23 Vasogenic edema is characterized by an increase in extracellular 

fluid volume due to increased permeability of brain capillary ECs to macromolecules 

(e.g., albumin, IgG, and dextran). Normally, the entry of plasma protein-containing fluid 

into the extracellular space is limited by tight EC junctions, but after BBB disruption, 

water, Na+, proteins, and blood constituents enter the extracellular space. The degree of 
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edema is, like the BBB disruption, influenced by the severity and duration of ischemia 

and reperfusion.69,121 

 

The skull offers rather limited possibility to expand. An increase in volume of any 

intracranial structure (brain, CSF, and blood) will lead to an increase in ICP or shift one 

compartment of the brain, thus compressing others. Further increase in ICP promotes 

brain shifts and distortion (herniation), resulting in compression of neurons, nerve 

tracts, and cerebral arteries.  Herniation usually occurs in the tentorium, the foramen 

magnum, and the falx. Continuously increased ICP causes long-lasting ischemia and 

irreversible damage to brain cells. When ICP rises, CPP and CBF are reduced by 

autoregulatory vasodilatation. When CPP drops below a critical threshold of about 50 to 

60 mmHg, maximal vasodilatation takes place, and autoregulation fails. CBF is further 

compromised, and worsening ischemia aggravates edema. 

 

Several treatment strategies have been utilized in targeting ischemic brain edema and 

elevated ICP. Clinically, osmotherapy (mannitol, hypertonic saline (HS), glycerol, and 

sorbitol), steroids, barbiturates, hyperventilation, elevated head position, tromethamine, 

indomethacin, and furosemide have all been used with variable success. Hypothermia 

and invasive decompressive craniectomy seem promising. 

 

Osmotherapy has served for the management of patients with elevated ICP since the 

early 1960s, yet its use remains controversial. The rationale of its use comes from the 

existence of the intracellular and extracellular compartment, with the latter further 

divided into intravascular and interstitial compartments. Mechanisms of ICP reduction by 

osmotherapy include water extraction from the brain, raising of blood pressure (resulting 

in autoregulatory vasoconstriction and a fall in CBV), and lowering of serum viscosity 

(leading to reduced CBV). 

 

Mannitol neither crosses the cell membrane nor the intact BBB, i.e., it remains 

intravascular and can extract intracellular and interstitial water. However, mannitol can 

cross the injured BBB, arousing concern that it might accumulate within injured tissue, 

causing brain edema and midline shifts (not confirmed by others122) and shrinkage of the 

non-infarcted brain tissue.123 This would cause further expansion of the ischemic 

hemisphere and potentially aggravate the midline shift. However, Diringer and Zazulia124 

proposed that a) it is probably fiction that mannitol accumulates in the injured brain; b) 

it is probably fact that mannitol shrinks only the normal brain; c) it is fiction that 

mannitol increases midline shift; that osmolality can serve to monitor its administration; 

that mannitol should not be administered if osmolality exceeds 320 mOsm; and d) it is 

unknown whether HS and mannitol are equally effective. Evidence is generally lacking for 

the efficacy of mannitol, but still the American Heart Association recommendeds it to 

treat post-stroke edema. Nevertheless, Cochrane analysis125 lacked sufficient evidence 

for a general recommendation as to mannitol use. 
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Several human studies have compared HS with mannitol, but it is difficult to reach clear 

conclusions, since osmotically equivalent doses (this means 23.4% saline and mannitol) 

of the two agents were rarely used, and HS was used in cases refractory to mannitol. 

Prophylactic use of osmotherapy before onset of elevated ICP has not been addressed.  

 

The BBB has a higher osmotic reflection coefficient for Na+ and Cl- than for mannitol, so 

saline crosses into the interstitial space but is excluded from the intracellular 

compartment. In stroke patients, HS (7.5% + 100 ml hydroxyethyl starch) and 40 g 

mannitol reduced the increased ICP, the former approach significantly lowering ICP more 

rapidly and effectively (for 16 of 16 patients) and increased CPP significantly (although 

not as much as did mannitol).126 In another study by the same group, HS (10%) was 

beneficial after failure of other medical therapies including mannitol.127 However, almost 

no evidence exists for the use of HS in ischemic stroke, since systematic trials are 

lacking. 

 

In a study with ultrasound monitoring of ICP therapy with mannitol iv, sorbitol iv, and 

glycerol po (50 g each), the pulsatility index was significantly lowered in all groups on 

both the infarcted and healthy side, with no significant differences between the 

substances or sides. Glycerol showed the longest duration of effect, and all substances 

raised minimal flow velocity (glycerol showing the greatest increase), i.e., edema 

reduction.128 Although glycerol 10% was beneficial in some studies, Cochrane review129 

suggests just short-term benefit, no long-term, and does not support its use as standard 

therapy. 

 

Regarding treatment with steroids, the classical categorization of cerebral edema into 

cytotoxic and vasogenic118 is important. Whereas the clinical response to steroids of the 

cytotoxic edema type is uncertain, BBB damage with pathologically separated tight 

junctions, as well as with disturbed pinocytosis (as seen in brain tumors) is highly 

responsive. In a study comparing dexamethasone and a dexamethasone+mannitol 

combination with placebo,130 no effect on ten-day survival rate occurred. In a recent 

review,131 glucocorticoids were considered ineffective in treatment of ischemic edema, 

and Cochrane analysis does not support their use in ischemic stroke.132 

 

However, most conducted trials included few patients and started treatment too late; of 

22 published trials, only 7 were accepted for Cochrane analysis. Besides having 

inadequate numbers of patients, these trials had no uniformity of evaluation or 

assessment, and reached disparate conclusions. Still, some authors justify the use of 

steroids,133 and around 20% of US or Chinese physicians routinely use corticosteroids for 

ischemic stroke patients.132 

 

Steroids do, however, raise risk for infections, hyperglycemia, and muscle catabolism, 

and it is debated whether the widespread use of steroids in response to a marginal 

therapeutic gain would expose large numbers of stroke patients to the more serious 

hazard of steroid treatment and convert patients who would otherwise have died into 
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bedridden, miserable survivors; the majority would consider this worse than death. Some 

authors134 thus propose that no large multicenter trial is justified. 

 

Barbiturate coma reduced the increase in ICP, but seemed to have no positive effect on 

neurologic outcome.135 That study included no control group, however, and was tested 

only after failure of osmotherapy and hyperventilation. Indomethacin has achieved 

short-term ICP reduction, but a continuous infusion was ineffective.136 

 

Regarding more recent strategies, hypothermia reduces cerebral metabolic rate, BBB 

disruption, edema formation, free radical formation, release of excitatory aminoacids, 

inflammatory response, and apoptosis, and, importantly, improves clinical outcome.46 

Invasive decompressive craniectomy (< 48 hours) is recommended as the treatment of 

choice for patients aged 60 years or younger—with severe infarction of at least 50% of 

the MCA territory—reducing mortality and improving outcome.137 However, with this 

approach, the chance of surviving in a condition requiring assistance from others 

increases >10 times. 

 

Experimentally, besides these clinical strategies, an enormous number of other agents 

and approaches have been tested with promising results. These include albumin138 

(acting presumably by diminishing bulk flow through the disrupted BBB and ameliorating 

vasogenic edema), bradykinin receptor antagonists,139 and arginin vasopressin receptor 

antagonists.140 Furthermore, aquaporin-4 deletion,141 tumor necrosis factor (TNF)-α 

neutralization,142 interleukin (IL)-1 receptor antagonists,143 MMP inhibition,144 ET-A 

receptor antagonists,145 free radical scavenging,146 and many others to some degree 

help. Interestingly, the TPA inhibitor neuroserpin reduced ischemic edema in TPA-treated 

rats.147,148 

 

2.1.3.2 Hemorrhage 

The etiology of post-thrombolytic hemorrhage after TPA is not understood. However, the 

mechanisms that mediate hemorrhagic transformation are likely to be correlated with 

components of RI, especially the BBB and basal lamina disruption.83 Several suggested 

triggers include oxidative stress and oxidative damage to membranes constituting the 

BBB, matrix proteolysis, and vascular response (section 2.1.3). 

 

VEGF expression is induced by focal cerebral ischemia, and iv VEGF application 

significantly increases BBB disruption, hemorrhage, and lesion volumes in rats subjected 

to ischemia.149 An interesting approach to ameliorate endothelium damage and TPA-

associated hemorrhage was reported by the group of Eng Lo.150 In that study, 

immunoliposomes, recognizing intracellular antigens (anticytoskeletal antiactin) exposed 

in ECs after membrane damage, were used to bind to and “reseal” the damaged 

membrane. Endothelium can be directly injured by ROS,151 and this detrimental effect is 

blocked by antioxidants.152 Moreover, free radical spin traps have reduced experimentally 
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both spontaneous hemorrhage and thrombolysis-mediated hemorrhage,153,154 improving 

outcome. 

 

Confirming the overlapping pattern of pathways involved in hemorrhagic 

transformation, ROS production is highly correlated with focal areas of gelatinase activity 

in microvessels within the ischemic mouse brain.144 Gelatinases, in turn, can degrade 

constituents of the basal lamina, enhancing vascular permeability and erythrocyte 

extravasation with consequent hemorrhage. Studies from the del Zoppo group71,84 show 

that loss of integrity of basal lamina constituents and its connection with surrounding 

structures leading to BBB disruption is associated with hemorrhagic transformation. 

 

Extracellular proteolysis includes activity of the serine proteases, PAs, MMPs, and 

proteases secreted by activated PMNL. Plasmin, activated by TPA or urokinase type PA, 

activates MMP-9 and MMP-2.155 Activation of MMPs contributes to the dissolution of the 

basal lamina and correlates with development of hemorrhage.71,91 TPA-induced 

hemorrhage, in turn, is significantly reduced by MMP inhibition,92,156 as is TPA-mediated 

mortality157 in experimental ischemia-reperfusion. 

 

PAs contribute to ECM degradation,158 acting by plasmin generation or activation of 

MMPs. Plasmin augments capillary injury by acting with other proteolytic enzymes to 

disrupt the ECM, contributes to the activation of the membrane-type metalloproteinase 

involved in activating gelatinase A (MMP-2), and activates ECM-degrading enzyme 

stromelysin.159 Furthermore, plasmin can activate MMP-1 and MMP-3, whereas plasmin 

inhibitors as well as antibodies to urokinase type PA inhibit activation of pro-MMP-2.93,160 

 

There exists some body of clinical evidence showing that MMPs are involved in 

hemorrhagic transformation with or without thrombolysis,161-163 with one study showing a 

clear correlation between pretreatment levels of MMP-9 and intracranial hemorrhagic 

complications.163 Besides showing increased levels of MMP-2 and MMP-9, and, 

importantly, also significantly decreased levels of intact laminin and TIMP-2, the study by 

Horstman and coworkers162 was the only one that analyzed the activity of MMPs. In that 

study, the active form of MMP-9 appeared in only 4 of 17 patients treated with TPA but in 

no patients receiving heparin or undergoing hypothermia. 

 

Since most experimental and clinical studies report latent but not active forms of MMP-2 

and MMP-9 as appearing after MCA occlusion, their role in matrix degradation was in 

question.86 As one answer, a role for the cysteine proteases cathepsins B and L in 

degradation of the matrix component perlecan as early as 2 hours after MCA occlusion 

emerged experimentally.86 

 

Apart from spin trap agents and MMP inhibitors, the glycoprotein IIb/IIIa platelet 

receptor antagonist reduces hemorrhage when coadmistrated with thrombolysis,164 

presumably influencing vessel reocclusion and the ”no-reflow” phenomenon. 
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2.1.3.3 Neutrophil infiltration and inflammatory response 

Under normal conditions, the cerebral microvascular endothelium acts as a barrier to the 

immune system that limits the entry of neutrophils and other leukocytes into brain 

tissue. Neutrophils can be detected in the microvessels of the ischemic hemisphere as 

early as 30 minutes after the arterial occlusion, peaking at 12 hours.165 They are the first 

inflammatory cells to arrive in the ischemic tissue between 1 to 6 hours after 

reperfusion,101,165,166 peaking at 24 hours and still visible after 7 days.165 In the clinical 

scenario, neutrophil counts peaks at 1 to 3 days postinfarction.167 Neutrophils are 

believed to contribute to the secondary damage by causing capillary plugging, 

microvascular disruption, edema, and hemorrhage. This process involves cytokines, lipid-

derived mediators, proteases, and free radicals.168 

 

Circulating monocytes can be detected within the microvasculature of the ischemic 

hemisphere after 4 to 6 hours.165 Experimentally, macrophages become the predominant 

cell type within a few days,101 and clinically within 1 to 2 weeks of neutrophil 

infiltration.167 Interestingly, experiments with bone marrow chimeric mice during 

transient focal cerebral ischemia suggest that resident microglial activation precedes 

macrophage infiltration, and that the vast majority of macrophages in the infarcted area 

are derived by differentiation from local microglia.169 

 

Microvascular obstruction by platelets, fibrin, and neutrophils (the “no-reflow” 

phenomenon) can worsen the degree of ischemia,70,170-172 and production of toxic 

mediators by activated inflammatory cells and injured neurons (cytokines, NO, 

superoxide, and prostanoids) can amplify tissue damage. Neutrophils may contribute to 

further disruption of the endothelium and the BBB by producing free oxygen radicals and 

proteolytic enzymes; infiltrating neutrophils release an active form of MMP-9.173 Protease 

activity resulting from leukocytes binding to activated endothelium may lead to 

degradation of cadherin (Figure 2), a component of the endothelial cell-to-cell junction.174 

Furthermore, increased leukocyte migration alters the molecular organization of the tight 

junction complex, the reorganization of the actin cytoskeleton, and the BBB disruption.175 

 

The precise role of neutrophils in ischemia-reperfusion is still debated. Some authors 

consider neutrophils to have nothing but a bystander’s role in the ischemia-reperfusion 

scenario,166,176,177 while others suggest a critical causative role for them.178,179 Several 

lines of evidence support the latter view. First, correlation exists between the time course 

of neutrophil accumulation in the ischemic zone and the expansion of cerebral damage 

during reperfusion in rats,180,181 in nonhuman primates,70,182 and in humans.183 Second, 

the beneficial effect of neutropenia on RI in experimental settings184,185 and the 

deleterious effect of elevated neutrophil count on stroke outcome in humans186 is known. 

The last line of evidence comes from works studying adhesion molecules and recruitment 

of neutrophils during reperfusion as well as from the effect of anti-adhesion therapeutic 

strategies. 
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The adhesion of neutrophils to the endothelium follows initial contact and rolling; 

thereafter, transmigration into the cerebral compartment takes place. The recruitment 

process involves interactions between three groups of adhesion molecules: selectins, the 

immunoglobulin gene superfamily, and integrins.66,187 E-selectins occur in ECs, L-

selectins in leukocytes, and P-selectins in both platelets and ECs; all of these are 

involved in the low–affinity rolling of the neutrophil to the endothelium.66 The high-

affinity binding involves the immunoglobulin gene superfamily members together with 

their ligands, which are members of the integrin family.66,187 The immunoglobulin gene 

superfamily members are expressed in ECs, including intercellular adhesion molecule 

(ICAM)-1 and -2, vascular cell adhesion molecule-1 (CD106), platelet-endothelial cell 

adhesion molecule-1, and mucosal addressin.188 Integrins, in turn, are expressed in the 

circulating neutrophils and not only participate in binding of the neutrophils to ECs, but 

also mediate their adhesion to the ECM components fibronectin and laminin.188,189 The 

most common integrins share a subunit β2, αMβ2 (recognizes ICAM-1), αLβ2 (interacts 

with ICAM-1 and -2),190 or subunit β1.191 

 

Studies with adhesion molecules in the experimental192,193 and clinical167 setting showed 

different mediators to be involved in the upregulation of the adhesion molecules during 

experimental cerebral ischemia-reperfusion in vivo or in vitro. Specifically, TNF-α and IL-

1 influence the expression of selectins194 and ICAM-1.195 Furthermore, platelet-activating 

factor (PAF) upregulates integrins on neutrophils.196 Therapeutic antiadhesive approaches 

lead to amelioration of inflammatory response after transient ischemia in rats197,198 and 

nonhuman primates.171 In addition, Bowes and coworkers199 found treatment with the 

anti-ICAM-1 antibody to lengthen the therapeutic window for beneficial administration of 

TPA. Antiadhesive strategies, however, show no beneficial effect in models of permanent 

ischemia.200 

 

Despite promising results from anti-inflammatory strategy in experimental stroke, 

clinical trials with a murine anti-human ICAM-1 antibody (enlimomab) and inhibition of 

neutrophils were negative.201,202 To define the possible mechanism of this negative result 

in the enlimomab trial, Furuya and coworkers203 treated rats with a murine anti-rat 

ICAM-1 antibody and reported production of host antibodies against the heterologous 

protein administered and activation of circulating neutrophils, complement, and 

microvasculature. 

 

Furthermore, the nonhumanized murine IgG2a subtype antibody itself activates 

complement in human whole blood, which leads to inflammatory consequences such as 

increased expression of CD11b/CD18 adhesion molecules and radical production of 

neutrophils.204 These responses may be responsible for the failure of the clinical 

enlimomab trial as well as for the body-temperature elevation and the excess of cerebral 

causes of death in that trial.202 

 

Although, in their review, Emerich and coworkers,166 who claim the bystander’s role for 

neutrophils, found no clear cause-effect relationship between leukocyte recruitment and 
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the pathogenesis of ischemia, they call for additional experiments to shed light on this 

subject. 

 

2.1.4 Models of focal cerebral ischemia 

 

The clinical variability of stroke (causes, localization, duration, severity, and coexisting 

systemic diseases) requires large patient cohorts in clinical trials in order to avoid 

confounding effects of this diversity. Thus, experimental models serve as a tool of 

investigation under strictly controlled conditions, and can provide us with important and 

clinically relevant data concerning mechanisms of ischemic cerebral injury and 

development of novel drugs. 

 

In general, the ideal animal model should be relevant to the clinical situation, be 

reproducible, have minor or no extracerebral side-effects, and be technically easy to 

perform. It is obvious that no single animal model simulates all aspects of ischemic 

stroke, since it is a heterogeneous, incidental condition that occurs spontaneously, often 

triggered, if not governed, by profound precipitating factors such as infection, trauma or 

serious other comorbidity. 

 

It should be mentioned that the relevance of stroke models to human stroke has been 

debated, since many assumed neuroprotective compounds fail to show efficacy in 

humans, despite positive results in preclinical settings.205,206 On the other hand, ischemic 

stroke models contribute largely to understanding of pathophysiologic mechanisms, e.g., 

excitotoxicity, free radical generation, RI, periinfarct depolarizations, inflammation, BBB 

injury, programmed cell death, and gene expression after ischemia. Furthermore, these 

models play a significant role in developing methods for investigating the brain; a good 

example is the development of novel MRI modalities such as perfusion- and diffusion-WI, 

which were tested in rodent models in the 1990’s and were rapidly incorporated into 

clinical practice.207 Once we identify all possible causes of unsuccessful translation of the 

positive experimental neuroprotective studies into clinical practice, it is more likely that 

diverse effective treatments for ischemic stroke will soon be revealed. 

 

The rat is the animal most commonly used for studying cerebral ischemia, although 

larger animal species (cats, dogs, rabbits, and nonhuman primates) have also been used. 

What makes rodent models dominant is their low cost, easy transportation, storage, and 

feeding, relative homogeneity within strains (inbreeding), and resemblance of their 

cerebrovascular anatomy208 and physiology to that of higher species. Small brain size is 

suitable for fixation procedures, for microscopic and macroscopic examination, and for 

biochemical analysis. It is easy to perform physiological monitoring and to replicate 

studies, with greater acceptability from ethical perspectives. 
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The anatomic distribution of the anterior cerebral artery (ACA), posterior cerebral artery 

(PCA), and the MCA in rats is analogous to that in humans.208 Although in rats the PCA 

arises from the proximal intracranial portion of the internal carotid artery (ICA), the 

posterior communicating artery connects the terminal cerebellar branch of the basilar 

artery with the PCA. The blood supply to the rat thalamus and basal ganglia is also 

similar to that in humans.209 Most stroke models are based on inducing ischemia in MCA 

territory to mimic a common clinical situation. Extracranial occlusion of a carotid or 

vertebral artery without further surgical intervention does not produce cerebral ischemia 

in the rat (except in spontaneously hypertensive rats) because the circle of Willis 

provides sufficient collateral blood supply via the nonaffected vessels. 

 

2.1.4.1 Craniectomy-requiring early MCAO models 

These models are quite invasive, expose the brain to the atmosphere, affect ICP and BBB 

function, and do not produce large and reproducible infarcts.210 Robinson and 

coworkers211 first described ligation of the distal portion of the MCA in rats, which did not 

provide reproducible infarcts and cause no striatal damage. Others208 accessed the more 

proximal regions of the MCA via a subtemporal approach, which produced an infarct 

involving both the cortex and the striatum. This model was modified by using a ligature 

or a clip to occlude the MCA for achieving reperfusion, but inconsistent patterns of 

reperfusion occurred.208 

 

2.1.4.2 Intraluminal suture MCAO model 

The most popular experimental model to induce focal cerebral ischemia is the suture 

occlusion model of the MCA, first described by Koizumi and coworkers,212 who used a 4-0 

nylon monofilament occluder with its tip rounded near a flame and then coated with 

silicon. They permanently occluded the common carotid artery (CCA) and the external 

carotid artery (ECA). The monofilament was inserted through an arteriectomy of the 

ipsilateral CCA and moved forward approximately 17 mm beyond the carotid bifurcation 

into the ICA and upwards, occluding the origins of the ACA, MCA, and the posterior 

communicating artery. This model allows large, well-reproducible infarcts because the 

coated suture completely obstructs the MCA trunk and the major sources of collateral 

blood flow. Zea Longa and coworkers213 developed a similar model in which they inserted 

a 4-0 monofilament suture (without silicon coating) through the ECA while keeping the 

ipsilateral CCA patent. The infarct sizes produced with the Zea Longa’s model are 

smaller, with larger variability because of a higher and more variable residual blood flow 

into the ischemic regions.214 

 

Both models allow reperfusion, and do not require extensive surgery. The infarcts in 

suture models include cortical, subcortical, and hippocampal portions having a large 

penumbra, which makes these models preferable for drug-efficacy studies. Furthermore, 
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the time of reperfusion can be successfully controlled by withdrawal of a suture at 

desired intervals, making it practical for studies of RI. The high mortality rate limits, 

however, long-term observation studies with these two models. The length of the 

inserted filament required for a successful MCAO depends on several factors including 

body weight, rat strain, and vendor. Required filament length ranged from 17 to 22 mm 

among studies.212,213,215 

 

2.1.4.3 Thromboembolic models of the MCA 

This model simulates human stroke reasonably well and allows for study of both 

thrombolytic therapies and neuroprotectives. In the older thromboembolic models,216 a 

suspension of small thrombi was injected into the ICA while blood circulation was being 

allowed through the CCA. The thrombi usually lodged in small arteries in the MCA 

territory causing multiple small lesions not particularly relevant for human disease. 

Furthermore, early spontaneous recanalization was a disadvantage of this model. Later, a 

single macroclot (fibrin-rich embolus) was used for MCA trunk or major branch 

occlusion.217 Even if this model closely mimics human stroke, it causes a large variation 

in infarct size due to differences in the exact sites of occlusion. Its low reproducibility 

hampers its general use. Recently, Busch and coworkers218 reported considerable 

improvement by injecting multiple fibrin-rich clots into the ECA one after another; this 

led to a consistent reduction in CBF without spontaneous reperfusion within 3 hours after 

emboli injection. 

 

2.1.4.4 Other, non-clot, embolic models 

Different artificial embolic materials have served to induce ischemia. The lesion 

development is slow, increasing in size up to 24 hours postinjection. Microsphere model 

may provide a larger therapeutic window for drug testing in stroke, but the lesions are of 

a multifocal and heterogeneous nature.219 

 

2.1.4.5 Photochemically induced focal ischemia 

This relatively noninvasive model is not widely used. It involves systemic administration 

of the photosensitive dye rose bengal, and irradiation of specific areas of the brain with a 

focused light beam at a specific wavelength. A reaction between the light and the 

circulating dye generates free radicals, resulting in platelet aggregation and 

thrombosis.220 Lesion site and size can be selected by the researcher. Lesion size and 

depth depend upon intensity of the irradiating beam, duration of irradiation, and dose of 

rose bengal. The typical infarct is a sharply circumscribed, bowl-shaped necrotic lesion 

occupying the full cortical thickness but sparing underlying structures. Early BBB 

breakdown and vasogenic edema give rise to progressive microvascular compression at 
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the lesion periphery. The main disadvantage is the absence of a penumbra region around 

the ischemic core; there is, instead, a ring of hyperperfusion.221 However, model 

improvements seem to induce cortical ischemic lesions involving a penumbra-like 

lesion.222 Another disadvantage of this model is the end-arterial occlusive character of 

the lesion, which makes it resistant to collateral-perfusion-enhancing approaches. Still, 

this model can aid in testing drugs for restorative function and evaluation of neuronal 

repair. 

 

2.1.4.6 Endothelin-1-injection model 

A restriction associated with current models of MCAO is the mechanical damage caused 

to the vessel by clip or occluder. A novel method of MCAO is infusion of ET-1 directly onto 

the exposed MCA223 or adjacent to the MCA by stereotaxic injection.224 Such an ET-1 

infusion produces a dose-dependent narrowing/occlusion of the MCA. Although this model 

is less invasive and enables production of ischemia in a desired brain region, the dose-

dependent action of ET-1 still reduces control of ischemia: of its severity and duration. 

 

2.1.4.7 In-bore MCAO models for MRI studies 

Since the time that MRI became a powerful and widely available tool for studying 

hyperacute brain ischemia, developing models to induce focal ischemia and reperfusion in 

the MRI scanner has become a necessity. This allows for collection of pre- and post-

ischemic images that are spatially co-registered and later, comparison of preischemic 

findings to ischemic changes. Such in-bore occlusion models may be as successful as the 

classical MCAO models.215 

 

2.1.4.8. Summary of the ischemic stroke models 

To sum up, the thromboembolic model is most relevant to human stroke, but its 

disadvantage is varying rate of spontaneous recanalization (making controlled 

reperfusion impossible) and a higher variability in lesion volumes. Suture MCAO is easy 

to perform, allows absolute control over reperfusion, and makes lesion volumes more 

reproducible. Its disadvantages include: a risk for subarachnoid hemorrhage (SAH), 

higher mortality in long-term experiments, and hyperthermia in permanent ischemia. 

Although the craniectomy models allow control of the site of occlusion (thus the infarct 

size and mortality), they are rather invasive and depend on the surgeon’s skills. The 

photothrombotic model is less invasive and allows induction of the lesion in the desired 

cortical region. However, this model is less relevant to human conditions, since it 

typically lacks the penumbral tissue zone. Application of ET-1 to different brain regions 

controls lesion location and volume, but offers only modest control over ischemia 

duration and intensity. 
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2.2 Intracerebral hemorrhage 

 

ICH is caused by bleeding into the brain parenchyma. In Western countries, ICH accounts 

for 15% of all cases of stroke, and the rate is even higher (20-30%) in Asian and African 

populations.6 Nontraumatic ICH can be divided into one type that arises from pre-

existing macroscopic “ictohemorrhagic” vascular lesions (secondary ICH) and one that 

does not (primary ICH).225 The former includes arteriovenous malformations, cavernous 

malformations, aneurysms, brain tumors, and dural fistulas; the latter, accounting for 

approximately 85% of all cases,226 is caused by micro-aneurysm-associated (Charcot 

Bouchard aneurysms) hypertension and amyloid angiopathy.225 Other rare conditions 

include cerebral venous thrombosis, cerebral endometriosis, convulsions, and pregnancy 

toxemia. 

 

Arterial hypertension is the most important risk factor for a nontraumatic primary ICH, 

present in approximately 50 to 70% of such patients.226 Even borderline isolated 

hypertension is associated with increased risk for ICH.227 Other factors include excessive 

use of alcohol, smoking, serum cholesterol levels less than 4.1 mmol/l (although a less 

reliable factor), and the presence of ε2 and ε4 alleles of the apolipoprotein E gene as 

related to amyloid angiopathy-associated ICH. Deficiencies in coagulation factors I, VII, 

VIII, IX, XIII, and von Willebrand factor are associated with ICH, as well. In addition, 

advanced age, male gender, pregnancy, the delivery and postpartum period, African or 

Japanese race, and use of anticoagulants, antiplatelet drugs, and cocaine also play a 

role.226,228 

 

Physicians treating ICH patients possess no tool comparable to TPA in ischemic stroke. 

On the contrary, hemostatic therapy, considered the counterpart to emergency TPA 

treatment, was not found beneficial (see below). Currently, no widely approved effective 

acute medical treatment exists, and surgical evaluation of ICH was recently found not to 

be beneficial.14 

 

Thus, ICH is associated with high mortality and disability, with 60 to 70% of the patients 

surviving through the first month and only 40 to 50% through the first year,7,8 many of 

them with chronic disability. An even worse (95%) 3-month mortality is associated with 

those patients having large, deep hemorrhages associated with coma.228 Poor outcome 

results from direct tissue damage, especially in deep brain structures (associated with 

disruption of the internal capsule) and the mass effect of the growing hematoma and 

edema. These factors contribute to expansive brain swelling and lead to displacement 

and disruption of brain structures and often to increased ICP. 

 

While white matter and cortical hemorrhages are more likely due to amyloid angiopathy, 

arterial hypertension is usually deemed the underlying cause of ICH in areas that are 

supplied by the vessels arising from the high pressure of the circle of Willis (Figure 3), 

leading to hemorrhages in the basal ganglia (35-44% of cases), thalamus (10-25%), 
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cerebellum (5-10%), pons (5-9%), and neocortex (19-25%).6,228. Accordingly, ICH can 

be divided into supratentorial and posterior fossa hemorrhages. 

 

Figure 3. Common sites of intracerebral hemorrhage. A) 

Cerebral lobes - originating from penetrating cortical 

branches of the anterior, middle, or posterior cerebral 

arteries. B) Basal ganglia - originating from ascending 

lenticulostriate branches of the middle cerebral artery. C) 

Thalamus - originating from ascending thalamogeniculate 

branches of the posterior cerebral artery. D) Pons - 

originating from paramedian branches of the basilar artery. 

E) Cerebellum - originating from penetrating branches of the 

posterior inferior, anterior inferior, or superior cerebellar 

arteries. Reproduced from Qureshi A et al. N Engl J Med 

2001; 344:1450-1460 with the written permission of the 

copyright holders. 

 

2.2.1 Pathophysiology of intracerebral hemorrhage 

 

Nontraumatic intraparenchymal hemorrhage without pre-existing ictohemorrhagic 

vascular lesions arises from the rupture of the small penetrating arteries that originate in 

the ACA, MCA, PCA, and in the basilar artery, all affected by degenerative changes 

associated with  hypertensive arteriolosclerosis or amyloid angiopathy. Following 

the hemorrhagic event, direct tissue destruction and dissection of blood along tissue 

planes occurs, followed by edema formation and ICP increase. Delayed damage can be 

mediated by toxins associated with blood breakdown products, thrombin, and leukocyte 

infiltration. The role of secondary ischemia after ICH has been a subject of debate. 

 

2.2.1.1 Hematoma growth 

ICH is not a single-bleed event that stops quickly once it has started. In a prospective 

study,229 early hematoma growth occurred in 38% of 103 patients within 20 hours 

after baseline imaging (scanned primarily within 3 hours of symptom onset), with two-

thirds of the patients already showing hematoma growth 1 hour following baseline 

imaging. Hematoma expansion is suggested to arise from continuous bleeding from the 

primary source and from the mechanical disruption of surrounding vessels,230 with acute 

hypertension and a local coagulation deficit possibly contributing to the expansion.231,232 

 

Hematoma growth is an important predictor of outcome after primary ICH,233 and its 

clinical importance is supported by a recent meta-analysis.234 The mass effect of the 
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growing hematoma may result in increased ICP, transtentorial herniation, and dramatic 

reduction in CBF. In addition to the mass effect, the hematoma itself induces a number 

of secondary changes in the surrounding tissue, including neuronal and glial cell death 

due to necrosis and apoptosis,9-11 inflammation (see below), and vasogenic edema 

caused by disruption of the BBB.12,13 

 

2.2.1.2. Is there a perihematomal penumbra? 

The mass effect of the ICH is thought to induce secondary ischemic injury due to direct 

mechanical compression of the blood vessels surrounding the hematoma and 

vasoconstrictor substances in blood; to this end, the term “perihematomal penumbra” 

was proposed based on a number of experimental studies in rats235-237 and in primates,238 

as well as in clinical studies.239,240 

 

Debate is ongoing, however, as to whether such a perihematomal penumbra exists. No 

evidence of perihematomal ischemia was found by other researchers in 

experimental241,242 and clinical studies using MRI.243-245 Butcher and coworkers245 

reported self-limited perihematomal oligemia, which normalized 3 to 5 days after 

symptom onset, and reported that the relative apparent diffusion coefficient (ADC) (ratio 

of ADC perihematomal / contralateral homologous regions) independently predicted 

absolute and relative edema volume, demonstrating its correlation with the rate of 

diffusion. This is the case for edema derived from extravasated plasma, but not acute 

ischemia-associated cytotoxic edema. 

 

MRI-based results may, however, be misleading, since perihematomal measurement of 

diffusion may be influenced both by reduced ADC due to ischemia-related cytotoxic 

edema and, conversely, by increased ADC due to hemorrhage-related extracellular 

vasogenic edema.246 Moreover, hemoglobin and its degradation products may interfere 

with analysis of MRI data.246 

 

To continue the debate, PET studies (analyzing CMRO2, OEF, and CBF) produced findings 

not consistent with ischemia and showed preserved autoregulation. This suggests that 

hypoperfusion surrounding ICH reflects reduced metabolic rate rather than ischemia.247-

249 Similarly, Herweh and coworkers250 found in a human perfusion CT study no evidence 

of perihematomal penumbra. Diaschisis (remote autoregulatory hypoperfusion due to 

reduced oxygen demand), caused by inflammatory tissue damage and mass effect of the 

growing hematoma and clot-related vasogenic edema, is a probable reason for the 

commonly observed perihematomal perfusion alterations, as suggested earlier by the 

same group.243 

 

In addition, Sook Kim-Han and coworkers251 recently reported mitochondrial impairment 

and not ischemia to be responsible for the reduced metabolic demand. However, Nilsson 

and coworkers252 found in a human study a perihematomal penumbra zone with 
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biochemical characteristics similar to that of the penumbra surrounding traumatic brain 

contusions. Such penumbra shows a relatively rapid (24–48 hours) normalization after 

surgical evacuation of the hematoma. Still, the changes observed in traumatic brain 

injury patients are suggested to be of mitochondrial dysfunction origin rather than being 

ischemia,251 as supported by some others.253 Furthermore, ROS produced by impaired 

mitochondria are likely to play a role in a progressive decline in mitochondrial respiration, 

and interact with metals released from the blood, which leads to oxidative damage.251 

 

Because it seems that ischemia does not play a considerable role in the pathogenesis of 

perihematomal tissue damage, other mechanisms are proposed to play a role. These 

include excitotoxicity,13,254 inflammatory changes with activation of leukocytes and 

platelets leading to production of inflammatory mediators (IL-1, IL-6, ICAM, TNF-α, and 

VEGF),254-257 and involvement of complement258 and MMPs.12,259 In addition, a role for 

thrombin, fibrinogen, TPA,12,260,261 and clotting factors262 together with blood degradation 

products263 has been proposed. Studies in humans support the role of cytokines (IL-6 

and TNF-α)254,257,264 and MMPs (especially MMP-3, MMP-9, and presumably MMP-

12)254,265,266 in the pathophysiology of ICH. Last but not least, hyperglycemia exacerbates 

perihematomal cell death and brain edema.267 

 

2.2.1.3 ICH-induced edema 

Gebel and coworkers268 found absolute edema to increase by 37% from baseline to a 1-

hour CT scan and to double during the first 24 hours, whereas relative edema (absolute 

edema volume divided by hematoma volume) increased by 75% during the first 24 

hours. Relative edema, representing vasogenic edema (shown as increased relative 

ADC), is associated with outcome in some233 but not in all243 human studies. Such 

elevation of perihematomal ADC is significantly associated with hematoma volume.269 

Importantly, only a minimal association exists between relative edema volume and 

hematoma volume, confirming that hematoma volume does not confound relative edema 

volume measurement.268 

 

Several studies address the role of the blood together with its degradation products 

and the coagulation cascade in association with ICH-induced brain edema. Contact 

between blood and tissue factor activates the extrinsic coagulation system,270 leads to 

thrombin formation, and converts the blood into coagulum. Tissue factor was found in 

the cortex, basal ganglia, cerebellum, and cervical spinal cord of the baboon.271 Lee and 

coworkers272 studied the role of thrombin by injecting various solutions into the basal 

ganglia of rats. Evaluated 24 hours after injection, only whole blood but neither 

concentrated blood cells, nor serum from clotted blood, nor plasma from unclotted blood 

induced brain edema. However, adding prothrombinase to plasma led to edema 

formation similar to whole blood-mediated one; hirudin (a thrombin inhibitor) reduced it. 
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In further experiments, the same group found that infusion of packed erythrocytes led to 

delayed edema formation 72 hours later, whereas infusion of already lysed erythrocytes 

led to edema formation within 24 hours.242 The latter finding suggests hemoglobin 

involvement. The role of thrombin and the coagulation cascade was studied in another 

study by the same group273 when they injected blood, artificial clot (composed of styrene 

microspheres, fibrinogen, and thrombin), and separately the components of the artificial 

clot. Early edema was formed after clotting of the hematoma by exudation of the 

remaining serum proteins into the periphery of the hematoma.258,268,274 Such hyperacute 

perihematomal edema was reduced by intrahematomal administration of TPA and 

prevented by an intrahematomal heparin injection.275 

 

Based on extensive studies, the temporal evolution of experimental perihematomal 

edema has been described.226,276 Hyperacute edema (< 24 hours) seems to be caused 

oncotically by serum proteins, glucose, and electrolytes. Acute edema (24-72 hours) may 

be caused by cellular toxicity (white blood cells and platelets), humoral toxicity (IL-1, IL-

6, ICAM, TNF-α, prostaglandins (PG), LTs, VEGF, and complement), the coagulation 

cascade (thrombin, fibrinogen, and TPA), and excitotoxicity (glutamate). Finally, the late 

phase (> 72 hours) is suggested to involve blood degradation products (hemoglobin, 

iron, and biliverdin), NO, free radicals, apoptosis, and MMPs. 

 

The BBB, the target of the various pathways leading to its disruption, seems to remain 

intact against large molecules for the first several hours,274 with modest disruption at 12 

and 24, but progressive disruption 48 hours later.277 In our laboratory, we observed no 

BBB disruption, as judged by Evans blue (EB) albumin extravasation at 24 hours after 

ICH (unpublished data). Concordantly, Xi and coworkers242 reported BBB disruption only 

72 hours after packed erythrocyte injection, but only 24 hours after lysed erythrocyte 

infusion. 

 

Differing experimental approaches to counteract the ICH-induced edema include MMP 

inhibitors,87 inhibitors of monocytes/microglial activation leading to decrease in released 

cytokine levels,278 inhibitors of complement activation,258 NMDA-antagonists,279,280 

antioxidants,281 erythropoietin,282 and albumin.283 Thrombin preconditioning reduces 

edema caused by erythrocytes and free iron.284 Argatroban, an inhibitor of both fibrin-

bound and free thrombin, reduces brain edema after ICH, presumably by interfering with 

thrombin-induced inflammatory responses.285 

 

2.2.1.4 Inflammatory responses 

After the hemorrhagic event, extracellular spaces of the brain are exposed to many blood 

components (hemoglobin, thrombin, plasmin, complement, fibrin degradation products, 

and leukocytes), which induce inflammatory responses.255,276,286  Iron and iron-related 

compounds, including hemoglobin, catalyze hydroxyl radical production and lipid 

peroxidation, causing oxidative stress to the brain cells.287 Interestingly, the only clinical 
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study addressing the role of free radicals in ICH288 found no difference between ICH and 

control patients. However, the control tissue originated from peritumor and aneurysmal 

tissue, which may not represent an appropriate control.255 

 

Clotting blood and damaged brain tissue liberate chemotactic factors, including thrombin, 

which is suggested to potentiate neutrophil infiltration.289,290 Neutrophils, in turn, may 

contribute to the secondary tissue injury via processes involving the release of ROS, 

proteases,289,291 and cytokines such as TNF-α and IL-6.292 Although the primary role for 

activated microglia/macrophages after ICH is to clear the hematoma and tissue debris, 

they may contribute to further tissue damage12 through release of cytokines, ROS, and 

NO.11,255 

 

However, despite the increasing amount of evidence concerning the role of inflammatory 

machinery after ICH, what remains to be proven is whether the inflammation following 

ICH contributes directly to neuronal loss or is it merely an epiphenomenon. Some 

experimental data suggest a direct contribution based on the effects of various anti-

inflammatory therapies. 

 

To this end, different strategies were tested including antibodies against adhesion 

molecules,197 anti-inflammatory actions of atorvastatin (decreased inducible NO-synthase 

expression and leukocytes and microglia infiltration),293 cyclooxygenase-2 inhibitors,294 

targeting of microglial activation by minocycline12 or tuftsin fragment 1-3,278 MMP 

inhibitors,259,295 overexpression of IL-1 receptor antagonist,296 inhibition of TNF-α,256 

adenosine A2A receptor activation (presumably also by inhibition of TNF-α mRNA 

expression),297 heme oxygenases,281 deferoxamine,298 and free radical trapping.255,299 A 

clinical trial that primarily addressed the safety of the free radical-trapping agent NXY-

059 in ICH patients found no benefit nor harm in terms of the 3-month functional 

outcome,300 despite the positive results of an experimental study.299 

 

2.2.2 Surgery or medical treatment for intracerebral hemorrhage? 

 

Despite considerable efforts to dissect the pathophysiology of ICH, no other than 

supportive and symptomatic treatment modalities exist. These include proper control of 

the airways, breathing, and of circulation, blood pressure management, ICP monitoring, 

fluid balance, fever control, nutritional support, prophylaxis of gastrointestinal 

complications, seizures, and deep venous thrombosis. 

 

2.2.2.1 Surgery 

The rationale for surgical treatment in ICH is removal of the cause of the mass effect and 

reduction in toxic effects of the breakdown products of blood components. However, 
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surgical treatment of ICH failed to prove beneficial in a recent Surgical Trial in 

Intracerebral Hemorrhage (STICH).14 

 

Unfortunately, the STICH trial did not differentiate basal ganglia-located ICH associated 

with intraventricular hemorrhage and hydrocephalus from superficially-located lobar ICH, 

which shows better prognosis.301 Another unfortunate aspect of the STICH trial was the 

patients’ randomization according to the neurosurgeon’s subjective consideration of the 

need for surgical intervention either initially or during the immediate follow-up. This 

resulted in randomization of only 221 patients with lobar ICH (out of total 1033 patients), 

because many neurosurgeons favor surgery for these patients despite the absence of 

meaningful evidence for such a decision. Lack of any evidence was actually the reason to 

start the STICH trial. The pre-specified subgroup analysis of this trial found a 29% 

relative benefit for early surgery in patients with the more superficial ICH reaching 

subcortically within 1 cm of the cortical surface14; such subgroup analysis would, if 

corrected for the pre-specified subgroups, miss statistical significance. 

 

An ongoing STICH II trial will address the outcome of early surgery in lobar 

nonaneurysmal ICH (reaching to within 1 cm of the cortical surface) without 

intraventricular hemorrhage.302 The European Stroke Initiative recommends surgery for 

superficial hematomas in the latest guideline303; falling CCP and rising ICP together with 

deteriorating consciousness level are also indications for surgical evacuation.301 Other 

ongoing ICH trials address treatment of intraventricular hemorrhage with clot volume 

smaller then 30 ml (CLEAR IVH)304 and minimal invasive surgery in deep ICH 

(MISTIE).305 

 

2.2.2.2 Recombinant Factor VII 

Due to early hematoma growth, hemostatic therapy in ICH was considered to be a 

counterpart of emergency TPA treatment for acute ischemic stroke. To this point, ε-

aminocaproic acid, aprotinin, and tranexamic acid were tested, albeit unsuccessfully.306-

308 Recently, a phase II b trial of recombinant factor VII found a reduced rate of clot 

expansion and improved outcome in the active treatment arm of the trial,309 but the 

phase III trial failed to confirm improvement in outcome at 90 days despite finding the 

same rate of reduced clot expansion (presented by Dr. Stephan Mayer at the 16th 

European Stroke Conference 2007, Glasgow, UK). 

 

2.2.3 Models of intracerebral hemorrhage 

 

The ideal model should show reproducible volumes of hemorrhage, induce hemorrhage 

with mechanism(s) mimicking the clinical situation reasonably well, have the possibility 

of inducing hemorrhage in different regions of the brain by minimal variations of the 
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model, be easy to perform with slight variations among experimenters, and should not be 

burdened with unacceptable cost. Naturally, no model can be 100% relevant to the 

clinical situation, and different models can simulate reasonably well some clinically 

relevant aspects of the condition studied, but their limitations should be considered when 

interpreting study results. Luckily, there are several models to choose from, each more 

or less fulfilling the criteria mentioned. It is indisputable that experimental hemorrhagic 

stroke models are able to reproduce important pathophysiologic events relevant to the 

human situation. Such models helped us substantially in understanding the mechanisms 

and pathophysiology of hemorrhagic stroke and developing novel drugs. This is rather 

important, since, currently, nothing other than basic care is approved for acute medical 

treatment for ICH. The most commonly used ICH models are autologous blood injection 

model and collagenase injection model in the rat. In addition, there exists a balloon 

inflation model and a model of avulsion of cerebral blood vessels. Outcome measures 

include mortality, neurological scoring, behavioral tests, dynamics of the hematoma and 

of the edema growth (using MRI), extent of ischemic injury and apoptosis, 

neuroinflammation, and changes in CBF and ICP. 

 

2.2.3.1 Autologous whole blood-induced ICH 

Blood from an animal, collected from an easily accessible artery, is injected into the 

desired brain region, the basal ganglia (similar to human ICH) being the most common 

site of injection. Blood can be injected into virtually any brain region; but injection into 

the cortex is often complicated by SAH.310 As for the volume of injected blood, range of 

variation among projects is wide, but 50 µl is the volume used most commonly. This 

amount of blood, when injected over a sufficiently long period within the stereotactically 

determined target area, produces hematomas that do not usually leak into compartments 

different from those desired: not, for instance, into intraventricular, subarachnoidal, or 

subdural space. 

 

Although some researchers do inject larger volumes (up to 100 µl), such an approach 

may elevate ICP and lead to complications due to systemic effects.311 Experience from 

our own laboratory suggests that 50 µl of blood injected with a Hamilton syringe slowly 

over 5 minutes results in reasonably good reproducibility of hematoma volumes. It 

should be mentioned that faster injections of larger volumes lead to backflow of the 

injected blood along the needle track, the direct tissue damage in a larger area than 

desired, to interstitial blood drift along the corpus callosum, or even to rupture into the 

brain ventricles (intraventricular hemorrhage). For these reasons, we keep the injection 

time constant (2 µl per 12 sec) and, before injecting the blood, we slightly withdraw the 

Hamilton syringe by 0.5 mm, thus producing a small pouch. Such an approach usually 

prevents backflow of blood and resultant intraventricular hemorrhage. Other 

researchers11,312 have used double injection, i.e., the desired volume of blood injected at 

slow rate in two phases with a 7-minute break in between. In the first phase, a relatively 

smaller volume of blood is injected. It is possible that such a break will, however, lead to 
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clotting of blood along the needle track. For the same purpose, we keep the needle 

inserted at the site of injection for another 3 to 5 minutes after blood injection.  

Our model is associated with approximately 30% 24-hour mortality, depending on the 

animal strain used. 

 

2.2.3.2 Collagenase-induced ICH 

In this model, described by Rosenberg and coworkers,313 ICH is achieved by injection of 

bacterial collagenase into the basal ganglia region. As in the previous model, collagenase 

can be injected into virtually any brain region. The injection leads to degradation of one 

of the most important determinants of the basal lamina: collagen type IV. This produces 

the BBB leak, which in turn leads to extravasation of erythrocytes, eventually producing 

a solid hematoma. One can change the injected amount of bacterial collagenase. 

Rosenberg and coworkers313 injected a range of 0.1 to 1 units of bacterial collagenase 

diluted in 2 µl of saline, with 0.5 units achieving the desired conditions. The final size of 

the hematoma correlates well with the amount of injected bacterial collagenase.314 A 

major modification by Del Bigio and coworkers,289 was injecting 0.14 units diluted in 0.7 

µl saline. Interestingly, these authors added 1.4 units of heparin, leading to rather rapid 

evolution of the hematoma. Such hematomas not only show reasonable reproducibility, 

but appear in with uniform shapes as well. To exclude the possibility of collagenase’s 

affecting other than the brain region desired, an elegant approach was chosen by Mun-

Bryce and coworkers,315 in which the very tip of the collagenase injector was filled with 5 

µl of saline. 

 

2.2.3.3. Balloon inflation model 

This is a less commonly used mechanical model of ICH described by Sinar and 

coworkers,316 studying the mass effect of a hematoma and of its removal on ischemic 

brain injury. Since the inflation is confirmed by x-ray, the inflating material must be a 

contrast agent. Modifiable variables of this model are balloon volume and inflation 

duration, which makes this mechanical model quite reproducible. 

 

2.2.3.4 Cortical blood vessel avulsion 

This is a rather infrequently used simple model of cortical injury, in which the surface 

cortical blood vessels are stripped, whereafter, avulsion of the veins leads to cortical 

ICH.317,318 This model causes not only hemorrhage, however, but ischemic infarction as 

well; a fact which makes reliable comparison with other models rather challenging. 
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2.2.3.5 Summary of intracerebral hemorrhage models 

The autologous blood injection model mimics ICH reasonably well, but the duration of 

injection and time to reach desired hematoma volume is significantly shorter than for 

events leading to spontaneous ICH in human beings. Furthermore, this model lacks a 

bleeding blood vessel. In the collagenase model, the bleeding occurs as soon as 10 to 30 

minutes after injection, but develops rather slowly into a full hematoma 4 to 24 hours 

later.289,313 Brain edema reaches its maximum 24 hours after induction in the blood 

injection model, remaining stable for several days,277 and causes measurable 

deterioration in neurological function. 

 

In the collagenase model, cerebral edema has already developed within 4 hours after 

injection and is resolved 48 hours later, being temporarily associated with neurological 

outcome.313 Certainly, collagenase injection is simpler to perform and is not complicated 

by backflow of the blood along the needle track. Moreover, the amount of collagenase 

injected corresponds well to the hematoma’s final size. 

 

However, the cause of hemorrhage in this model differs from the clinical situation, and 

collagenase itself causes a robust inflammatory reaction which may cause early 

degradation of the hematoma,289 with neutrophils contributing to delayed ICH-induced 

deterioration. Furthermore, inflammation and cell death occur earlier and are more 

prolonged in the collagenase model than in other methods.318 Although anatomically the 

brain injury is most appropriate in the collagenase model, it is rather artificial 

biologically.318 The additional inflammatory changes differ the collagenase model from 

the clinical situation and from the blood injection model, which resembles the clinical 

scenario perhaps more faithfully.318 

 

In the autologous blood injection model, neutrophil infiltration begins within 24 hours, 

peaks at 2 to 3 days, and disappears at between 3 to 7 days.9,290 CD8a-positive, possibly 

natural killer T-lymphocytes became apparent at 48 hours and persisted until 1 week.9 

Microglial reaction was evident at 4 hours, was maximal at 48 to 72 hours, and persisted 

for 4 weeks.9,11 The temporal pattern of neutrophil infiltration is similar, although much 

more robust, in the collagenase model.289,318 

 

In the blood injection model, cell death is maximal at 42 to 72 hours, with apoptosis 

already present at 6 hours, peaking at 3 days and continuing for at least 2 weeks after 

induction.9,319 On the other hand, the collagenase model shows apoptosis within the first 

24 hours after injection, peaking at 3 days and lasting at least 4 weeks.10 The mechanical 

balloon inflation model was found to cause cell death involving apoptosis 6 to 24 hours 

after deflation. 320 
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2.3 Mast cells 

2.3.1 Basic characteristics 

 

MCs are well known to be effector cells of inflammation and immunity.321,322 They were 

first recognized by Friedrich von Recklinghausen in 1863, and their current name comes 

from the German word “Mastzellen” (well-fed cells, feeding cells) used by Paul Ehrlich 

in 1878.323 Ehrlich observed that their cytoplasm is filled with prominent granules, and 

he identified MCs by their metachromatic properties,324 which depend on the presence 

and degree of sulfation of proteoglycans such as heparin and heparan. MC identification 

by their metachromasia permits detection of MCs also in the brain.325,326 MCs are derived 

from the pluripotential stem cells of the bone marrow that produce all hematopoietic 

cells.327,328 

 

The number and distribution of MCs vary among individuals, species, and between 

genders; the sources of this variability are not well known. MCs contain granules that 

store preformed effector molecules, mediators, which are released upon activation in a 

process called compound exocytosis or degranulation.329 MCs can be activated by 

different factors, they are capable of releasing various mediators, and—due to their ideal 

position—they can respond to a wide selection of stimuli.330 

 

Besides releasing the stored content, activation of MCs triggers de novo synthesis and 

secretion of other mediators, including LT, PG, cytokines, and chemotactic factors, which 

produce profound inflammatory and vasoactive effects on the local tissue milieu. 

 

2.3.2 Differentiation, heterogeneity, location, and abundance 

2.3.2.1 Differentiation 

MCs leave the bone marrow as immature cells, committed precursors,331 before they 

home into specific tissues and then undergo differentiation under the specific 

microenvironmental conditions of the homing tissue.327,332 

 

Some authors report that MCs enter the brain as relatively mature cells, with numerous 

secretory granules, along penetrating blood vessels.333 Others326 note that immature MCs 

(containing only a minuscule amount of small granules) infiltrate the CNS and undergo in 

situ differentiation within the neuropil, a finding generally accepted.327,332 

 

It is well established that MC differentiation is dependent upon expression of the stem-

cell factor (SCF, c-kit ligand) in tissues and c-kit on precursor-cell surfaces.334 However, 

Shanas and coworkers335 showed experimentally that brain MCs lack expression of the c-

kit receptor necessary for MC survival and suggested that the special microenvironment 

of the CNS may provide factors other than SCF that sustain MC survival. Two factors, IL-
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3336 and nerve growth factor (NGF),335,337 were suggested. Still, Shanas and coworkers335 

admitted the possibility that the c-kit receptor is present, but not recognized by the 

antisera used, or that c-kit expression or translation of the mRNA or both may be down-

regulated. 

 

2.3.2.2 Heterogeneity 

Since MC differentiation occurs within organotypic tissue compartments, and MCs acquire 

phenotypes specific to their local microenvironment, MCs have a noteworthy 

heterogeneity.327 This phenotypic diversity of MC populations, supported by both human 

and experimental data, means they possibly express different functions in health and 

disease.327,328 At least three types of mature MCs are identified in rodents: serosal (lung, 

peritoneum, skin), mucosal (nasal, gastrointestinal), and brain (dural, perivascular, 

parenchymal),338 although some debate whether brain MCs constitute a distinct 

type.330,338 

 

MCs may, however, have a wider range of phenotypic heterogeneity, as assessed by 

their morphology, histochemistry, response to different drugs and stimuli of activation, 

and the qualitative and quantitative content of mediators they can release.339 

Fundamentally, serosal (connective tissue) MCs contain rat MC protease-I, heparin, 

tryptase, and chymase, whereas mucosal MCs store rat MC protease-II, chondroitin 

sulfate, and tryptase.334 

 

Since brain MCs contain not only histamine but also heparin and rat MC protease-I, they 

resemble connective tissue (serosal) MCs.340 Others341,342 have proposed parenchymal 

brain MCs to be of the classical connective tissue type, as, in the rat, is the case for MCs 

within the connective tissue coverings, i.e., meninges of the nervous system.343,344 

Interestingly, some authors340 showed that brain MCs lack the FcεRI receptor, which 

binds IgE, suggesting that brain MCs do represent a distinct phenotype.335 However, 

brain MCs showing functional FcεRI-bound IgE receptors were purified by others.345 

 

Once acquired, the MC phenotype is not permanent, since mucosal MCs can develop 

into connective-tissue MCs under proper microenvironmental conditions of the local 

milieu, mostly depending on the unique framework of local growth factors, stage of 

development, and the presence or absence of immune activation.334,339 Furthermore, 

adjacent astrocytes may influence the phenotype or the migration of MCs,346 since 

astrocytes synthesize MC growth factors such as IL-3347,348 and NGF349. Accordingly, 

changes in the expression of MC-stimulating factors such as SCF, NGF, and IL-3, -4, -9, 

and -10, all alter the content of stored mediators produced by MCs.321 Finally, the palette 

of mediators may vary between species, e.g., serotonin, a significant mediator in 

rodents, is absent from the MCs of higher mammals.339 
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2.3.2.3 Location 

MCs, resident cells in the brain,327,330 are often observed in close proximity to neurons in 

different peripheral tissues.339 That MCs are present within the nervous system has been 

known for over 100 years,350 and since then, the presence of MCs in the vertebrate brain 

has been accepted.330,338,339,351 MCs enter the CNS during development via penetrating 

blood vessels with which they remain associated,333 as shown by electron microscopic 

studies demonstrating the predominantly perivascular location of MCs.341,352  

 

The known association of MCs with the vascular bed (preferentially at branching points) 

during development is dependent on contact of the blood vessel with astroglial 

processes; such adhesion to the vascular wall during development is suggested to 

involve MC-expressed α4-integrins.353 In addition to their proximity to ECs, MCs reside 

close to fibroblasts, epithelial cells, or nerves,327 all of which are important targets for 

mediator/cytokine action. 

 

In mammals, MCs are typically found in the dura mater, leptomeninges, choroid 

plexus, and the thalamus.325,330,338,351 In the latter, they reside on the neuropil surface 

of the BBB.341,351 They also occur in the olfactory bulb, hypothalamus, and 

mesencephalon,342,343 and in the cerebral cortex,15,330,338 often—again—at the branching 

points of cortical penetrating arterioles. 

 

2.3.2.4 Mast cell abundance in the brain 

Although for unknown reasons, alterations appear in abundance of MCs in the brain, 

which may be caused by changes in marker-dependent detection, by the rate of both 

precursor entry and their differentiation activity, and by MC proliferation.326 It is 

generally accepted that MCs circulate as devoted precursors rather than as mature cells. 

 

But what is also possible (due to the rate of increase of a mature MC population in the 

adult brain) is that mature MCs translocate from peripheral sources into the CNS.354 In 

that study, migrated donor MCs represent 2 to 20% of the total MC population in the 

analyzed brain region one hour after injection, suggesting fast crossing of the BBB. In the 

same study, reconstructions of confocal images showed that MCs were localized deep in 

the basal lamina, in nests of glial processes. Furthermore, electron microscopic analysis 

showed that MCs indeed migrate into the CNS.355 

 

Although fully differentiated MCs as well as their precursors have been considered to be 

able to divide,356 no evidence of MC division was found through BrdU labeling,357 

supporting the hypothesis that increase in end-organ MC population is apparently due to 

migration from the periphery or entry of new precursors from the circulation. Since 

mature cells do not circulate in the blood, it is suggested that the source of the 

augmented population is likely to be via the pial sheath of the thalamic blood 

vessels.333,351 
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The mechanism of MC transmigration into the brain capillary endothelium and its basal 

lamina is unknown, but angiogenic factors do stimulate MC migration in the periphery.358 

Furthermore, MCs, like other immune cells, can adhere to the endothelium and exhibit P-

selectin-dependent rolling activity.359 MCs also contain many proteases (such as 

chymase, tryptase, gelatinases, and cathepsin G), which can enzymatically create a 

temporary pathway through the endothelial junctions and the ECM of the basal lamina. 

This is supported by the fact that peripheral MCs are able to migrate from a connective 

tissue across the basement membrane to access the epithelium.360 Moreover, in vitro 

data show that both dormant and activated MCs can attach to and/or move across a 

variety of structures,361,362 one of them laminin, for which MCs have receptors.361,362 

Laminin occurs in the basal lamina of brain ECs and can be produced by astrocytes as 

well.363 

 

Glial cells may also promote further MC movement by secreting matrix molecules364 or by 

the expression of chemotactic factors such as transforming growth factor-β1365 or IL-

3347,348; the former, an MC mediator itself,330 belongs among potent chemoattractants, as 

well,366 and is also produced by astrocytes.365 Suggesting the existence of some kind of 

autoregulatory mechanism, resident MCs can recruit other MCs by secreting ATP367 and 

NGF.368 

 

2.3.3 Activation  

 

MCs show both IgE-dependent explosive (anaphylactic) degranulation and a more 

controlled (piecemeal) secretory process in response to non-IgE-related stimuli.369 

Degranulation is a stereotyped cascade of stimulus-activated events, biochemical and 

morphologic, which results in the fusion of the cytoplasmic granule membranes with the 

plasma membrane (with extracellular release of granule-associated mediators). Since 

degranulation of MCs per se is not associated with changes in the normal ultrastructure 

of the surrounding neuropil and no other immune-system cells are present, this suggests 

that the secretion occurs ad hoc without ongoing inflammation or imminent tissue 

damage.330,370 Alternatively, MCs can secrete mediators without overt 

degranulation,352,371 through differential or selective release.372 

 

2.3.3.1 FcεRI-mediated activation 

FcεRI is expressed on the MC surface,373 and when adjacent FcεRIs are bridged (by 

antigens interacting with receptor-bound IgE, or by antibodies directed against either 

receptor-bound IgE or the receptor itself), the cells are rapidly activated and release their 

mediators. Bridging of only a few hundred pairs of IgE molecules is sufficient to trigger 

histamine release.374 Because so few MC FcεRI’s must be bridged to initiate the 

degranulation response, MCs cells may be simultaneously sensitized with IgE antibodies 
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of various specificities; they can therefore react to stimulation by many different 

antigens, which constitutes the basis for the stereotypic ‘bulk’ response of MCs in IgE-

dependent immune reactions and allergic disorders.322 

 

2.3.3.2 Nonimmunologic direct activation 

A wide range of biologic substances, including products of complement activation, 

acetylcholine, and PAF, but also mechanical trauma, ionization, changes in pH, and iodine 

contrast agents can provoke MC degranulation and the release of MC mediators.322,339,375 

The sensitivity of different populations of MCs to individual stimuli varies, however.339,375 

Moreover, these stimuli can induce a pattern of mediator release that differs from the 

one associated with FcεRI -dependent MC activation. 

 

2.3.4 Mediators 

 

MC granules are loaded with an armamentarium of bioactive molecules: mediators. These 

mediators are performed or newly synthesized or both, which is the case for certain 

cytokines. It should be mentioned that although MCs produce a variety of mediators, no 

single MC subtype synthesizes the whole possible repertoire.330 

 

2.3.4.1 Preformed mediators 

Preformed mediators stored in the cytoplasmic granules include biogenic amines, 

proteoglycans, serine proteases, carboxypeptidase A, and small amounts of sulfatases 

and exoglycosidases. 

 

Histamine is well known for its effects in allergic skin reactions like itching and swelling. 

It is a potent vasodilator and also mediates an immediate increase in vascular 

permeability; hence it contributes to capillary leak and edema formation in peripheral 

tissues and epithelium.376 MC-derived histamine regulates expression of selectins in ECs 

with consecutive rolling of leukocytes.376 Studies in genetically MC-deficient and normal 

mice indicate that MCs account for nearly all the histamine content stored in normal 

tissues, with the exception of the glandular stomach and the central nervous system. In 

the latter, MCs contribute up to 90% of the histamine content in the thalamus and up to 

50% of whole brain histamine levels.377 Other biogenic amines stored in MCs are the 

neurotransmitters dopamine and serotonin. 

 

Proteoglycans are major constituents of MCs,326 and MCs are the only endogenous 

cellular source of heparin in mammals.378,379 Depending on location and age, human MCs 

can produce proteoglycans of the chondroitin sulfate and heparin sulfate type within the 

same cell, or individual cells may make only one.380 Proteoglycans have several biologic 
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functions both within and outside the cells. They bind histamine, neutral proteases, and 

carboxypeptidases, and they may contribute (especially serglycin) to the packaging and 

storage of these molecules within the granules.381 

 

Heparin can inactivate the serine protease thrombin. Specific sulfated pentasaccharide 

units in heparin glycosaminoglycans can bind antithrombin III, a protein that circulates in 

the blood, inducing an allosteric change and to a great extent enhancing its anti-clotting 

activity.378,379 Studies in genetically MC-deficient mice382 show that the natural 

anticoagulant properties of the vasculature reflect the presence of the heparan sulfate 

proteoglycans—not the heparin proteoglycans—on the surface of the ECs that line blood 

vessels.379,382 As suggested by Forsberg and coworkers,383 endogenous heparin cannot 

play a physiological role in regulating blood coagulation, since it is absent from the blood. 

Heparin and heparans are also well established as molecules necessary for the activity of 

some growth factors such as the fibroblast growth factor family. 

 

Neutral proteases represent another major protein component of MC granules, where 

tryptase is the major enzyme stored in the cytoplasmic granules of all human MCs322; 

hence its measurement in biologic fluids such as plasma, serum, and inflammatory 

exudates can aid in assessing MC activation. 

 

Tryptase is a serine endopeptidase stored in the granules in active form, which is 

stabilized by its association with heparin and perhaps other proteoglycans.322 In the rat, 

only connective tissue MCs contain tryptase.384 Chymase, another serine protease stored 

in active form in the granules of some human MCs, seems to play a major role, together 

with tryptase, in the proteolytic activation of latent forms of MMP-1, MMP-2, and MMP-

9,18,385-387 as well as in the physiologic degradation of tissue fibronectin and thrombin.388 

Pro-MMP-9 is a substrate for chymase in vitro.389 

 

MCs themselves can release MMPs, in specific the gelatinases A (MMP-2) and B (MMP-

9),109 although it is debated whether latent MMP-9 coexists with histamine and tryptase 

in the granules111 or is produced de novo.88 The latter is supported by the finding of the 

MMP-9 protein being first detected at 6 hours and peaking at 22 hours after MC 

activation.88 Cathepsin G, also produced by neutrophils and monocytes/macrophages, is 

a MC-derived protease which cleaves many components of the extracellular and 

pericellular matrix including fibronectin and vitronectin.390 Last but not least, another 

serine protease, TPA, belongs to the palette of MC mediators.376 

 

2.3.4.2 Newly synthesized mediators 

Some of the MC mediators are not stored but are produced de novo and secreted only 

upon appropriate stimulation of the cells.375 Of particular importance are the 

cyclooxygenase and lipoxygenase metabolites of arachidonic acid, which have potent 

inflammatory activities and which may also play a role in modulating the release process 
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per se.375 The major cyclooxygenase product of MCs is neuromodulator PGD2,
391 and the 

major lipoxygenase products derived from MCs are the sulfidopeptide LTs: LTC4 and its 

peptidolytic derivatives, LTD4 and LTE4. Human MCs can also produce LTB4, albeit in 

much smaller quantities than PGD2 or LTC4.
375 PAF, another MC mediator, has substantial 

chemoattractant, vasoactive, and platelet-activating properties implicated in brain 

injury.392 

 

2.3.4.3 Cytokines 

Cytokines are a diverse group of glycoproteins synthesized and, typically, secreted by 

many cell types in response to their activation or injury. Cytokines can modulate both 

specific immune responses and immunologically nonspecific inflammation by alteration of 

the function or gene expression in responding cells. MCs are a source of a number of 

cytokines.16,322 Much of the ability of certain cytokines (IL-1, TNF-α) to promote allergic 

inflammation is thought to reflect the ability of these agents to enhance the recruitment 

of leukocytes by inducing increased expression of adhesion molecules such as P-selectin 

and E-selectin, vascular cell adhesion molecule-1, and ICAM-1, on ECs.393,394 

 

TNF-α represents a distinct type of MC mediator, since it is derived from both preformed 

and newly synthesized pools.334 Being probably the only cell type containing preformed 

stores of TNF-α,395 MCs are likely to represent a critical initial cellular source of TNF-α 

during inflammation.322 Later during the inflammation response, TNF-α is produced by 

neutrophils, eosinophils, T and B cells, and macrophages.16 TNF-α promotes leukocyte 

infiltration through its effects on ECs and leukocytes, as well as promotes inflammation, 

granuloma formation, angiogenesis, and tissue fibrosis; MCs are involved in all these 

processes.334 It should be noted, however, that most studies investigate release of 

cytokines upon activation via the FcεRI, and little is known as to whether indirect 

activation of MC leads to similar effects. 

 

2.3.5 Mast cell functions and related disorders 

 

Originally, Ehrlich thought that MCs help to maintain the nutrition of connective 

tissues.323 Nowadays, it is widely accepted that MCs serve the host by many different 

functions in health and disease. Some evidence indicates that MCs participate in bacterial 

recognition, followed by endocytosis, processing and presentation of bacterial antigen, 

immune cell recruitment, and elimination of parasites.321,396,397 In addition, MCs are 

involved in blood clotting, wound repair, and tissue remodeling.16,398,399 
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2.3.5.1 Type-1 hypersensitivity 

Type-1 hypersensitivity is an allergic reaction provoked by re-exposure to a specific type 

of antigen, an allergen. In peripheral tissues, MCs play well-established roles in 

mediating inflammation and allergic responses during the host response to various 

environmental challenges.334 The allergic reaction is generally divided into the acute 

(immediate) response mediated largely by degranulation and the late-phase response 

(LPR) resulting from MC activation and synthesis of de novo mediators. 

 

The acute response is the pathophysiologic hallmark of allergic rhinitis, allergic asthma, 

and anaphylaxis. An immediate hypersensitivity reaction is initiated on the surface of 

MCs by the interaction of antigen-specific IgE molecules with the relevant antigen. The 

physiologic effects are due to the biologic responses of target cells (e.g., ECs, smooth 

muscle cells, glandular cells, and leukocytes) to mediators released by activated MCs. 

Besides allergens, other stimuli like certain activated complement fragments 

(anaphylatoxins C3a and C5a), neutrophil lysosomal proteins, peptides and peptide 

hormones, venoms, radiocontrast agents, cold exposure, calcium ionophores, narcotics, 

and muscle relaxants, may lead to the acute response and rapid release of mediators 

from MCs independently of IgE.375 

 

The LPR follows the acute response by 4 to 8 hours as persistent swelling and leukocyte 

infiltration. Many of the consequences of IgE-dependent reactions are caused by the 

actions of the leukocytes recruited during the LPR rather than the direct effects of the 

initial release of MC mediators.394 

 

It has been suggested that “MC-leukocyte-cytokine cascade”334,394 makes a critical 

contribution to the initiation and perpetuation of IgE-dependent allergic inflammation in 

the airways and at other sites. Specifically, what is proposed is that activation of MCs 

through the FcεRI initiates the response, in part through the release of TNF-α and other 

cytokines that can influence the recruitment and function of additional effector cells. 

These recruited cells can consequently promote further progression of the inflammatory 

response by providing additional sources of certain cytokines. 

 

2.3.5.2 Demyelinating diseases 

The role of MCs in brain pathology was thus far rather ignored, even though their 

presence in the nervous system was demonstrated more than a century ago, in 1890, 

when they appeared in brain infarcts and at the edge of multiple sclerosis plaques.350 

One hundred years later, MCs have been suggested to serve as a link between the 

immune, endocrine, and nervous systems, to play an important role in the access of 

lymphocytes and pathogens to the brain,338 and to be involved in mediating changes in 

blood flow, neurotransmission, and local immune responses in the brain.330 
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Further research concerning MCs’ role in autoimmune demyelinating diseases 

demonstrated the ability of their neutral proteases to degrade myelin.400,401 MCs 

degranulate upon exposure to myelin basic protein and can induce peripheral402 and 

central403 demyelination. Furthermore, the MC-specific enzyme tryptase is significantly 

elevated in the CSF of multiple sclerosis patients.404 It is of interest that the Theoharides 

group405 performed a pilot open-label clinical trial using hydroxyzine (histamine-1 

receptor antagonist) in multiple sclerosis, concluding that hydroxyzine could serve as an 

adjuvant therapy in multiple sclerosis. However, the small number of enrolled patients 

and the short duration of the study precluded any definitive conclusions. 

 

2.3.5.3 Excitoxicity and cerebral ischemia 

Recently, Patkai and coworkers406 demonstrated that brain MCs may contribute to the 

exacerbation of neonatal excitotoxic brain lesions produced by IL-9, suggesting a role for 

MCs in neonates at risk for cerebral palsy. Regarding excitotoxicity, reports showed that 

CNS neurons can acquire MC products at least in three ways370 and that MC modulation 

causes excitation or inhibition of thalamic neuronal activity.407 Skaper and coworkers408 

demonstrated that histamine potentiated NMDA receptor-mediated excitotoxicity in 

cultured hippocampal neurons and suggested a role for MCs in conditions under which 

enhanced glutamatergic neurotransmission occurs in conjunction with tissue acidification, 

such as epilepsy and cerebral ischemia. 

 

Supporting this hypothesis, degranulation of MCs appeared to be dependent on local pH, 

which influenced the dissociation rates of proteoglycan-associated mediators; for 

instance, histamine is released very rapidly, with tryptase and chymase released much 

more slowly.322 Such a pH-dependent occurrence may be relevant to the local lactate 

acidosis that prevails under ischemic conditions. 

 

Indeed, brain MCs are demonstrated to be involved in cerebral ischemic insults,409-411 

with a role for MCs in cerebral ischemia and hemorrhage (I-III). Later, Jin and 

coworkers412 found a rapid increase in cerebral populations of MCs and in their activation 

in association with hypoxic-ischemic (HI) brain damage in the immature rat. Activated 

MCs were present in the pia mater and parenchyma as well, and, importantly, were 

found in those regions showing neuronal loss. Those in the latter region were significantly 

reduced by MC stabilization, administered either pre- or post-HI or post-HI only. Jin and 

coworkers412 observed a very important phenomenon: that hypoxia alone did not lead to 

MC-dependent brain damage, even if it was associated with elevated MC count and with 

some level of MC degranulation. This suggests that MCs react rather differently to 

different stimuli and not necessarily always by full-blown degranulation. 
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2.3.5.4 Other conditions 

MCs have been reported to be actively involved in a range of other conditions, including 

migraine, inflammatory arthritis, atopic dermatitis, coronary inflammation, interstitial 

cystitis, irritable bowel syndrome,413 atherothrombosis,414 angiogenesis, tissue damage, 

neoplasms, blood clotting, wound repair and tissue remodeling,16,398,399 and are found in 

human cerebral arteries after aneurysm rupture.415 
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3 AIMS OF THE STUDY 

 

The aims of the study included in this thesis were to test the hypothesis whether mast 

cells play a role in the pathophysiology of ischemic stroke and intracerebral hemorrhage 

by use of in vitro and in vivo experiments. The latter examined pharmacological 

modulation of mast cell degranulation by application both of stimulatory and of inhibitory 

interventions. In addition, genetically modified mast-cell-deficient rat strains allowed 

authentication of the hypothesis behind the studies. 

 

Specific questions elucidating possible mast cell involvement included: 

 

1. Do mast cells play a role in the regulation of blood-brain barrier permeability 

following transient focal brain ischemia? 

 

2. Are mast cells involved in promoting further sinister consequences of spontaneous or 

tissue plasminogen activator-mediated ischemia-reperfusion injury, such as 

development of brain edema and hemorrhage and neutrophil infiltration? 

 

3. Is there a role for mast cells in regulating the growth of hematoma and expansive 

brain edema in intracerebral hemorrhage? 

 

4. How are these effects of mast cell modulation related to neurological outcome and 

mortality? 
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4 MATERIALS AND METHODS 

 

All experiments were carried out in Biomedicum Helsinki. The animal research committee 

approved all studies. All experiments were blinded, and group assignments were 

randomized. 

 

4.1 Anesthesia 

Experimental animals were adult male Wistar rats (Harlan Nederland, Horst, The 

Netherlands), and MC-deficient WsRcWs/Ws rats (Japan SLC, Inc., Tokyo, Japan), 290 to 

340 grams. Anesthesia was achieved by an intraperitoneal injection of ketamin 

hydrochloride (50 mg/kg, Ketalar, Parke-Davis, Detroit, MI, USA) and a subcutaneous 

injection of medetomidine hydrochloride (0.5 mg/kg, Domitor, Orion, Espoo, Finland). 

 

4.2 Measurement/monitoring of physiological parameters 

A polyethylene tube was inserted into the left femoral artery for blood pressure 

monitoring (Olli Blood Pressure Meter 533, Kone, Espoo, Finland) and for collecting blood 

samples for measurement of arterial pH, blood gases, and blood glucose (AVL OPTI, 

Roche, Basel, Switzerland), and another tube into the left femoral vein for drug or vehicle 

infusion or both. Rectal temperature was maintained at 37 °C during the surgery with 

a heating blanket and a heating lamp. 

 

4.3 Focal cerebral ischemia model 

Transient focal cerebral ischemia was induced by the suture occlusion model. The right 

CCA and the right ECA were exposed through a ventral midline neck incision. The 

proximal CCA and the origin of the ECA were ligated. A 4-0 nylon monofilament suture 

(Ethilon Nylon Suture, ETHICON Inc., Somerville, NJ, USA) with its tip rounded by 

heating near a flame and then coated with silicone (Bayer, Leverkusen, Germany) was 

inserted into the right CCA via an arteriectomy approximately 3 mm below the right 

carotid bifurcation and was advanced into the ICA approximately 17 mm above the 

carotid bifurcation. At that point, a slight resistance is felt, indicating that the occluder is 

lodged in the ACA, thus occluding the orifice of the MCA, the ACA, and the posterior 

communicating artery. This model mimics well large hemispheric strokes, which are 

complicated with malignant swelling. 

 

Blood pressure and body temperature were continuously monitored and recorded every 

30 minutes. Reperfusion was accomplished by withdrawing the suture occluder 60 (I) 

or 90 (II) minutes after MCA occlusion. Sham-operated animals underwent the same  
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procedure, except that the suture occluder was inserted only 10 millimeters above the 

carotid bifurcation and was withdrawn one minute later. At the end of the experiment, 

the femoral catheters were removed, operation wounds sutured, and the animals allowed 

free recovery in separate cages. 

 

4.4 Cardiac perfusion and tissue handling 

After various periods of time following reperfusion, the rats were re-anesthetized with an 

intraperitoneal injection of 120 mg of pentobarbital sodium (Mebunat, Orion, Turku, 

Finland), and cardiac perfusion was performed. Briefly, the chest was opened, a catheter 

was inserted into aorta via the left ventricle while the heart was still beating but 

respiration had ceased, and 200 mL of ice cold 0.9% saline was infused at 100 mmHg 

inflow pressure into the arterial vascular system. Simultaneously, the right atrium was 

incised open to allow all the blood to be drained. 

 

After cardiac perfusion, the brains were quickly removed and dissected coronally into six 

2-mm-thick slices with a standard brain-cutting matrix. Each third slice was cut into two 

1-mm portions (rostral and caudal). The rostral part was embedded in Tissue-Tek 

(Sakura Finetek Inc., Tokyo, Japan), snap-frozen in liquid nitrogen, and kept thereafter 

at -80 °C until 15-µm sections were cut for BBB permeability analysis. 

 

Then 5-µm sections were cut from the caudal site of all slices and stained with a) 

hematoxylin-eosin; b) Toluidine blue, a standard metachromatic histopathological 

technique to detect the heparin-containing granules present exclusively in MCs (I, Figure 

1A,B); and c) chloracetate esterase (Leder)416 staining to detect polymorphonuclear 

neutrophils. Toluidine blue is an aniline dye to which MCs display the property of 

metachromasia, due to the dye’s binding to sulfated glycosaminoglycans in MC 

granules.417 The remaining slices were incubated for 15 minutes in 2,3,5 

triphenyltetrazolium chloride (TTC) at 37 °C, and subsequently immersion-fixed in 

10% formaldehyde. 

 

4.5 Laser-Doppler flowmetry 

CBF was measured by the BF/F/0.5 bare-fiber flexible probe of the Oxy-Flow device 

(Oxford Optronix, Oxford, UK). The scalp was incised in the midline and the skull 

exposed. The skull was thinned by a dental drill at an area ipsilateral to the ischemia 

between 1.0 to 2.5 mm posterior and 6.0 to 1.5 mm lateral from the bregma. The probe 

was attached, within the thinned area, to the skull surface at a place of representative 

baseline CBF signal. The CBF signal was then obtained from the same place throughout 

the entire experiment. 
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4.6 Intracerebral hemorrhage model 

For ICH, we used the autologous whole blood injection model described 

elsewhere.272 The head of the animal was fixed into a stereotaxic frame (Stoelting, 

Wood Dale, IL, USA) and a midline scalp incision was made to disclose the calvarium of 

the skull. A burr hole (1 mm in diameter) was drilled on the right side of the cranium: 

0.2 mm anterior and 3.0 mm lateral to the bregma. A 27-gauge needle attached to a 

Hamilton syringe was inserted into the core of the right basal ganglia (at a 6.0 mm 

depth from the skull surface) and subsequently lifted by 0.5 mm, creating a small cavity. 

Then, 50 µl of freshly collected homologous arterial blood was injected into the brain 

slowly over 5 minutes, after which the needle was kept in place for 3 minutes. The burr 

hole was sealed with bone wax, and the scalp was sutured. 

 

Twenty-four hours later, the animals were terminated with an overdose (120 mg) of 

sodium barbiturate (Pentobarbital, 1 mL, intraperitoneally) and underwent cardiac 

perfusion with 200 ml of ice-cold saline (see above). Afterwards, the brains were 

harvested, cut through the site of the intracerebral blood injection into 2 blocks (in order 

to examine the hematoma at its largest epicenter), and photographed with a digital 

camera (Sony Mavica, Tokyo, Japan). 

 

4.7 In vitro assay of TPA-mediated MC degranulation 

Rat peritoneal MCs were obtained from Wistar rats by an experienced coworker as 

described.418 A standard amount of 2x105 MCs in 50 µl of phosphate-buffered saline were 

placed into Eppendorf tubes and preincubated for 10 min at 37 °C. Then, freshly 

prepared TPA solution (Actilyse®, Boehringer-Ingelheim, Germany) was added to give 

the final concentrations indicated (ranging from 0 to 50 µg/ml), and incubation was 

continued for 15 min to allow completion of MC degranulation. Immersing the tubes in 

ice-cold water stopped the reaction, and the cells were sedimented by centrifugation at 4 

°C. The histamine concentration in the supernatant was determined fluorometrically 

according to Bergendorff and Uvnäs with modifications.419 Histamine release by TPA was 

expressed as a percentage of the maximal histamine release induced by the standard MC 

secretagogue compound 48/80 (1 µg/ml) set as 100%. 

 

4.8 Drug characteristics and administration 

1. Sodium cromoglycate (Sigma-Aldrich, Steinheim, Germany), a clinically recognized 

inhibitor of MC degranulation, given intracerebroventricularly (icv) to overcome its 

presumed minimal crossing of the BBB.420 Due to a short biological half-life (90 minutes), 

the icv administration of cromoglycate in the 24-hour group (II) was followed by 

continuous icv infusion of cromoglycate with Alzet® osmotic pumps (model 2001, 200 µl, 
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1 µl/hour) and Brain infusion kit 2 (both Durect Corporation, Cupertino, CA, USA) 

according to instructions. 

In Study III, however, in addition to icv administration, an iv route was also used, based 

on a report that cromoglycate was effective in an acute stress model when given iv.421 

This implies that this drug may penetrate into the brain at some extent. 

Cromoglycate was suggested to inhibit MC degranulation by regulating phosphorylation 

of an MC 78-kDa protein involved in the regulation of secretion.422 This protein appears 

to be involved in signal transduction by regulating functional associations between cell 

surface and cytoskeleton.422 

 

2. Compound 48/80 (Benzeneethanamine, 4-Methoxy-N-Methyl-(9CI)*N-(P-

Methoxyphen-ethyl) Methylamine*, Sigma-Aldrich, Steinheim, Germany) is a 

condensation product of N-methyl-p-methoxyphenethylamine with  formaldehyde and is 

a standard MC degranulating secretagogue.341,423,424 It inhibits calmodulin and activates G 

proteins. Compound 48/80 degranulates brain MCs in mammals.341,425 

 

3. TPA (Actilyse®, Boehringer-Ingelheim, Germany) is the only approved 

pharmacological therapy for acute ischemic stroke. Ten mg/kg of body weight is the 

standard dose for TPA thrombolysis in rats in studies focusing both on therapeutic 

efficacy and TPA-mediated hemorrhage.147 

 

4. Drug administration A polyethylene tube was inserted into the left femoral vein for 

drug or vehicle infusions or both. For icv drug administration, the head of the animal was 

fixed in a stereotaxic frame (Stoelting), and a midline scalp incision was made to disclose 

the calvarium of the skull. A burr hole was drilled on the left side of the skull: 0.9 mm 

posterior and 1.6 mm lateral to the bregma. A 27-gauge needle attached to a Hamilton 

syringe was then inserted into the left lateral brain ventricle (at 3.4 mm depth from the 

skull surface), and drug or saline was slowly injected over 3 minutes. 

 

4.9 Study protocols 

In addition to the pharmacological modulation of MCs, genetically modified MC-

deficient WsRcWs/Ws rats426,427 carrying a defective gene for c-kit (ligand for SCF 

required for MC differentiation) were used. In comparison to their WT littermates, 

newborn WsRcWs/Ws rats are MC deficient and anemic. Anemia, however, is already 

ameliorated by the age of 10 weeks, whereas the MC deficiency increases; this has led to 

wide use of adult rats in specific investigations of MC function.426  

 

The present studies used adult rats (13-14 weeks old). Table 2 shows their hematological 

(Coulter Counter T-660, Coulter Electronics, London, UK) and hemostatic markers 

(Coagulometer KC-40, Lemgo, Germany) obtained by a mechanical clot method from rat 

plasma with 3.8% sodium citrate addition, as provided by the supplier (Japan SLC, Inc., 

Tokyo, Japan). 
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Table 2. Hematological markers and coagulation parameters in 12- to 13-week-old MC-

deficient rats (WsWs) and their wild-type littermates 

 

Parameters WsWs (n=10) Wild-type (n=8) 

RBC (x104/mm3) 608.0 ± 10.2 765.0 ± 37.0 

Ht (%) 41.3 ± 1.1 44.2 ± 0.4 

Hb (g/dL) 14.8 ± 0.3 16.2 ± 0.2 

WBC (x102/mm3) 86.0 ± 7.3 93.0 ± 5.3 

BP (x 104/mm3) 99.2 ± 3.5 96.5 ± 2.7 

MCV (fL) 66.5 ± 0.9 52.3 ± 0.4 

MCH (pg) 25.5 ± 0.5 19.4 ± 0.2 

MCHC (g/dL) 38.3 ± 0.3 37.1 ± 0.2 

APTT (sec) 15.0 ± 0.8 16.5 ± 0.3 

PT (sec) 17.6 ± 0.3 18.6 ± 0.4 

RBC/WBC, Red/white blood cell; Ht, Hematocrit; Hb, Hemoglobin; BP, Blood platelets; MCV, 

Mean corpuscular volume; MCH, Mean corpuscular hemoglobin; MCHC, Mean corpuscular 

hemoglobin concentration; APTT, Activated partial thromboplastin time; PT, Prothrombin time 

 

4.9.1 Study I 

Pharmacological modulation: Three groups of rats that underwent transient MCA 

occlusion received cromoglycate or compound 48/80 or saline (Table 3). Furthermore, 

sham-operated animals were included (4 receiving each treatment) (Table 3). Three 

separated groups of animals that underwent transient MCA occlusion were included for 

laser-Doppler measurement: control (n=4), cromoglycate (n=5), and compound 48/80 

(n=4). 

 

Gene manipulation: Afterwards, I induced transient MCA occlusion in MC-deficient rats 

and in their WT littermates (Table 3). 

 

 

Table 3. Study protocols in Study I 

 

            Pharmacological modulation Gene manipulation 

Group Cromo/Sham C48/80 / Sham Control/Sham WsWs Wild-type 

N 14 / 4 11 / 4 13 / 4 10 8 

-5 min cromo icv saline icv saline icv - - 

0 min MCAO / sham MCAO / sham MCAO / sham MCAO MCAO 

57 min saline iv C 48/80 iv saline iv - - 

60 min R / - R / - R / - R R 

cromo icv or saline icv, cromoglycate 750 µg (dissolved in saline to a final volume of 10 µl) or 

saline 10 µl, given intracerebroventricularly (icv); C 48/80 iv or saline iv, compound 48/80 0.5 

mg/ml of saline (200 µl) or saline 200 µl given intravenously (iv); R, reperfusion; follow-up 3 hours 

after reperfusion 
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4.9.2 Study II  

Pharmacological modulation: Several series were performed with different timing of 

experiments. The infusion protocol of TPA was identical to that used in humans (Table 4). 

First, with 6 hours’ follow-up after induction of MCA occlusion, a model to evaluate TPA-

induced hemorrhage formation (HF), inflammatory cell infiltration, and the potential 

effect of the timing of the TPA infusion (before or after reperfusion) was established 

(Experiment 1). 

 

Then, with the same 6-hour follow-up, I focused on the effect of pharmacological MC 

stabilization with cromoglycate on TPA-induced HF (Experiment 2). To assess the effect 

of post-ischemic interval and the treatment effect on the HF and outcome, I performed 

experiments with pharmacological MC stabilization with a 3- and a 24-hour follow-up 

(Experiments 4 and 5). 

 

Gene manipulation: To confirm the role of MCs, I investigated the effect of TPA in 

genetically modified MC-deficient rats and their WT littermates after 6- and 24-hour 

follow-up (Table 4, Experiments 3 and 6). 

 

 

 Table 4. Study protocols in Study II 

 

                      Experiment 1 (6 h) Experiment 2 (6 h) Experiment 3 (6 h) 

Group Sham Saline Early TPA Late TPA Cromo/TPA Saline/TPA WsWs Wild-type 

N 7 7 11 7 10 12 6 4 

-5 min - - - - cromo icv saline icv - - 

0 min sham MCAO MCAO MCAO MCAO MCAO MCAO MCAO 

85 min saline saline TPA saline TPA TPA TPA TPA 

90 min - R R R R R R R 

180 min saline saline saline TPA - - - - 

 

 

                    Experiment 4 (3 h) Experiment 5 (24 h) Experiment 6 (24 h) 

Group Sal/Sal Sal/TPA Cromo/TPA Sal/Sal Sal/TPA Cromo/TPA WsWs Wild-type 

N 6 6 6 7 11 6 6 4 

0 min MCAO MCAO MCAO MCAO MCAO MCAO MCAO MCAO 

15 min saline icv saline icv cromo icv saline icv saline icv cromo icv - - 

85 min saline TPA TPA saline TPA TPA TPA TPA 

90 min R R R R R R R R 

 cromo icv or saline icv, cromoglycate 750 µg (dissolved in saline to a final volume of 10 µl) or saline     

 10 µl, given intracerebroventricularly (icv), and in the 24-hour groups followed by continuous icv  

 infusion of the same concentration of cromoglycate or saline with ALZET® osmotic pumps; saline  

 (Sal) or TPA, intravenous bolus (10%) of calculated dose of TPA (10 mg/kg of body weight dissolved  

 in saline)  or a corresponding amount of saline, followed by 60-minute infusion of the rest of TPA or  

 corresponding amount of saline; R, reperfusion 
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4.9.3 Study III 

Pharmacological modulation: Four groups of rats received cromoglycate (two groups), 

compound 48/80, or saline 5 minutes before induction of autologous blood injection into 

the basal ganglia (Table 5). 

 

Gene manipulation: MC-deficient rats and their WT littermates underwent the induction 

of ICH without any pharmacological modulation (Table 5). 

 

 

Table 5. Study protocols in Study III 

 

                   Pharmacological modulation                        Gene manipulation 

  Group Control Cromo icv Cromo iv C 48/80 WsWs Wild-type 

N 11 11 10 11 8 8 

-5 min saline icv cromo icv saline icv saline icv - - 

-5 min saline iv saline iv cromo iv C 48/80 iv - - 

0 min ICH ICH ICH ICH ICH ICH 

cromo icv or saline icv, cromoglycate 750 µg (dissolved in saline to a final volume of 10 µl) or 

saline 10 µl, given intracerebroventricularly (icv); cromo iv or C 48/80 iv or saline iv, 

cromoglycate (100 mg/kg of body weight dissolved in saline to a final volume of 200 µl), or 

compound 48/80 (0.5 mg/ml of saline, 200 µl), or saline 200 µl given intravenously (iv); ICH, 

intracerebral hemorrhage 

 

4.10 Magnetic resonance imaging 

MRI scanning was performed with a 4.7 Tesla scanner (PharmaScan, Bruker BioSpin, 

Ettlingen, Germany) using a linear birdcage radiofrequency coil with an inner diameter of 

38 mm. Following shimming and scout images, coronal T2
*-weighted images were 

acquired with a gradient echo sequence (repetition time = 277 ms, echo time = 8 ms, 

flip angle = 35 o, matrix size = 256 × 256, field of view = 40 × 40 mm, number of 

averages = 4, slice thickness = 1 mm). Afterwards, coronal T2-weighted images (T2-WI) 

were acquired by rapid acquisition with a relaxation enhancement sequence (repetition 

time = 5257 ms, effective echo time = 64 ms, echo train length = 16, matrix size = 256 

× 256, field of view = 40 × 40 mm, number of averages = 2, slice thickness = 1 mm). 

The rats were placed in the MRI scanner within 10 minutes after ICH induction. The 

survivors were reanesthetized 24 hours later, and MRI data were collected using the 

same sequences. Baseline data corresponds to 40 to 50 minutes after ICH induction. 

 

Core body temperature during imaging was maintained at 37 o C by use of a MRI-

compatible heating pad and pump (Gaymar Industries, Orchard Park, NY, USA). 

 

MR images correlated very well with histopathological changes in a collagenase model of 

ICH, and the evolving appearance of human ICH on T2-WI images has been attributed to 
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the effects of hemoglobin degeneration together with changes in tissue water (edema).289 

T2*-WI is preferentially used to visualize the hematoma in ICH experiments.245 

 

4.11 Evaluation of the blood-brain barrier damage 

To visualize BBB leakage, animals received a 2% solution of EB albumin (fluorescent dye, 

Sigma, 20 mg/mL dissolved in 1% albumin) into the femoral vein (0.3 mL/100 g) 20 

minutes before cardiac perfusion. EB is a standard method of BBB permeability 

assessment.428 

 

In the experiments with pharmacological modulation of MCs (I), the 15-µm brain sections 

were examined for distribution of characteristic red fluorescence of EB in brain 

parenchyma by epifluorescent microscope Axioplan 2 (Carl Zeiss, Hallbergmoos, 

Germany) and a fluorescence filter specific for EB (Chroma, Rockingham, VT, USA, 

excitation at λ = 620 nm, emission at λ = 680 nm). For evaluation of BBB damage, 

images of 5 pre-specified regions of interest (3 from cortex and 2 from basal ganglia) 

from the infarcted area, as well as a reference image from the healthy hemisphere, were 

captured with an AxioCAM HR digital camera (Carl Zeiss). Digital imaging fluorescence 

microscopy is reliable in measurement of tracer concentration in sectioned tissue.429 

 

We quantified EB-fluorescent pixels with Image J analyzing software (NIH, Bethesda, MD, 

USA). The level of autofluorescence was based on that obtained from the healthy 

hemisphere. For each animal, we calculated the difference between the fluorescence 

signal in five selected regions of interest (represented by the characteristic red 

fluorescence) and the level of autofluorescence. Finally, signals from all five regions of 

interest were averaged. 

 

Following the acquisition of an improved fluorescence scanner Typhoon 9400 

(Amersham Biosciences, Buckinghamshire, UK), a slightly revised technique was adopted 

for the gene-manipulated animals in Study I, and for the entire Study II. With this 

scanner, the difference in average fluorescence signal intensity (Figure 4) between the 

entire infarcted area and the intact hemisphere could be measured by image analyzer 

software ImageQuant (Amersham). 

          

Figure 4. Extravasated Evans blue, digital imaging and fluorescence scanner 
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4.12 Histological evaluation 

Light microscopy was performed by an experienced hematopathologist without prior 

knowledge of animal grouping with an Olympus BH-2 (Olympus, Tokyo, Japan). Findings 

were photographed with a Nikon Eclipse E600 microscope connected to a Nikon Coolpix 

995 digital camera (Nikon, Tokyo, Japan). 

 

The densities of intravascular and emigrated neutrophils were counted in systematically 

placed target areas in 5-µm chloracetate esterase-stained cross-sections through the 

area of maximal infarction. In each area, a total of 60 to 100 microscopic fields of 0.1 

mm2 were counted and averaged. Neutrophil number was counted in the temporoparietal 

infarction core and in the adjacent parasagittal infarct penumbra, as well as in the deep 

thalamic and basal ganglia. 

 

4.13 Calculation of brain infarction and swelling 

All (six) TTC-stained brain slices mounted on a scale were photographed (Figure 5) with 

a digital camera (Sony, Tokyo, Japan). TTC staining has served as a stain to detect 

ischemic infarction since 1958. This water-soluble salt is not a dye and is reduced in 

normal tissue by mitochondrial enzymes (specifically, succinate dehydrogenase) to a fat-

soluble, light-sensitive compound called formazan that turns intact tissue deep red. The 

unstained area represents infarcted tissue. 

 

Figure 5. TTC staining, infarction 

Infarction and corrected infarction volumes were calculated. Briefly, the areas of the 

infarcted tissue and the areas of both hemispheres were calculated for each brain slice. 

The uncorrected infarct volume was calculated by measuring the unstained area in 

each slice, multiplying it by slice thickness, and then summing all six slices. The 

corrected infarct volume was calculated to compensate for the effect of brain edema. 

The difference between the areas of the right and left hemisphere in a slice was 

considered edema and subtracted from the infarct area of that slice (corrected infarct 

area = uncorrected infarct area – [right hemisphere area – left hemisphere area]). The 

result was multiplied by slice thickness, and all six slices were summed to get total 
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corrected infarct volume. Percentage of brain swelling was derived from the 

volumetric growth of the ischemic hemisphere in comparison to the intact one (% of 

hemispheric expansion = [(right hemisphere volume / left hemisphere volume) – 1] * 

100). 

 

4.14 Calculation of hemorrhage formation 

The areas of hemorrhage were calculated from the caudal site of all slices stained with 

hematoxylin-eosin (Figure 7D) by use of an Axioplan 2 microscope (Carl Zeiss, 

Hallbergmoos, Germany). All areas with HF were photographed with an AxioCam MRc 

digital camera (Carl Zeiss) connected to the microscope. Finally, total areas containing 

extravasated erythrocytes and representing intracerebral HF were calculated from digital 

images using Image J analysis software (NIH, Bethesda, MD, USA). 

 

4.15 Calculation of intracerebral hemorrhage, brain swelling, and edema 

Based on the specific signal intensity on T2*-weighted images, hematoma volume was 

calculated at 30 minutes and 24 hours (III, Figure 1). The boundaries of the hematoma 

were tracked manually (Paravision, Bruker BioSpin, Ettlingen, Germany), the surface 

area on each slice was multiplied by slice thickness, and the values were summed to 

yield total hematoma volume. 

 

Since the hematoma volume was calculated from T2* images, these were used for 

calculation of brain swelling as well. The area of both hemispheres was first outlined 

and calculated on each slice (Paravision), and the areas were then multiplied by slice 

thickness, yielding the total volume of the two hemispheres.  Afterwards, the percentage 

of hemispheric expansion (the volumetric increase of the ICH hemisphere compared to 

the intact one, was calculated (% of hemispheric expansion = [(right hemisphere volume 

/ left hemisphere volume) – 1] x 100). The reliability of this approach was recently 

reported.430 

 

The characteristic hyperintense area on T2-WI, representing brain edema (III, Figure 4), 

was outlined on each slice and multiplied by slice thickness. The values were summed to 

yield total volume. Furthermore, I calculated T2 ratios by dividing the mean T2 signal 

intensity of the hyperintense areas by a reference point outside the brain tissue, a 

method adopted from Del Bigio and coworkers.289 The T2 ratio is reported as the average 

of all hyperintense areas and separately as the average of the perihematomal 

hyperintense rims (III, Figure 5). 

 

Postmortem, hematoma area was calculated at its maximal diameter from the digital 

images obtained after the second MRI round, 24 hours after ICH induction. The 
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hematoma area was outlined and measured with Image J software, and the percentage 

of brain swelling was calculated from the same digital images just as it was from MR 

images. 

 

4.16 Mortality and neurological score 

We scored neurological performance at 24 hours, before re-anesthesia, on a 6-point 

scale,431 comprising 0: normal; 1: contralateral paw paresis; 2: same as 1, plus 

decreased resistance to lateral push; 3: same as 2, plus circling behavior; 4: no 

spontaneous walking, plus depressed level of consciousness; 5: death. 

 

4.17 Statistical analysis 

Data are presented as mean ± SE (I and II) and as mean ± SD (III). Normally 

distributed parametric data sets in multiple groups were compared with one-way ANOVA 

followed by the Holm-Sidak post-hoc test; an unpaired t-test was used in cases of two-

group comparison. Neurological scores in multiple groups were compared with the 

Kruskal-Wallis ANOVA on ranks, followed by Dunn’s post-hoc test; the Mann-Whitney 

rank sum test served for two-group comparison (neurological scores reported as medians 

and individually for each animal). Comparison of mortality versus control values was 

performed with Fisher’s exact test. A two-tailed value of P<0.05 was considered 

significant. 
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5 RESULTS 

5.1 Study I 

 

This study addressed a role for MCs in regulation of BBB permeability, brain swelling, and 

neutrophil infiltration following transient (60 minutes) focal cerebral ischemia in the MCA 

occlusion model. Experiments involved both pharmacological modulation of MCs 

(either blocking or promoting their degranulation) and gene-manipulated MC-

deficient animals. 

 

No significant differences appeared among study groups in physiological parameters 

(MABP, temperature, pH, PaCO2, PaO2, glucose). After MCAO, a transient nonsignificant 

7% reduction, compared with control figures, in MABP in the compound 48/80-treated 

group occurred at 100 min. 

 

To confirm successful MCA occlusion and reperfusion, CBF was monitored by laser-

Doppler flowmetry in three groups of animals: control, cromoglycate, and compound 

48/80. No significant differences in CBF appeared among the study groups at monitored 

time points. 

 

Corrected lesion volumes were similar in experiments with both pharmacological MC 

modulation and gene manipulation (P=0.33 and P=0.41, respectively), with no lesions in 

sham-operated animals, as calculated from TTC-stained brain sections. 

 

Brain sections stained for histopathological evaluation revealed that already in the 

early post-ischemic phase, 4 hours after MCAO, ischemic neuronal necrosis was visible 

(hematoxylin-eosin staining). The sections stained with toluidine blue for detection of 

heparin in MC granules (MCs being the only cell type containing heparin378,379) showed 

that MCs were frequently visible in the vicinity of small cerebral cortical and thalamic 

penetrating vessels, often in widened Virchow-Robin spaces (Figure 2, middle), as 

described earlier.341 In ischemic areas, extracellular granules on the abluminal surfaces of 

blood vessels were accompanied by perivascular edematous changes. Histopathological 

evaluation suggested milder ischemic edematous changes in MC-deficient rats than in 

their WT littermates. 

 

BBB disruption (assessed by magnitude of EB albumin extravasation) was highest after 

treatment with compound 48/80, followed by control figures, and was least in the 

cromoglycate group (Figure 6A). Furthermore, MC-deficient rats showed significantly less 

BBB disruption than did their WT littermates (Figure 6B). In the sham-operated animals, 

no changes occurred in amount of fluorescence between left and right hemispheres 

(P=0.96). 

 

In accordance with level of BBB disruption, the maximum brain swelling was associated 

with compound 48/80 treatment (an 89% increase compared with control) and, again, 
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was least in the cromoglycate group (a 39% decrease compared with control) (ANOVA 

P<0.001). Similarly, MC-deficient rats responded to transient MCAO with 58% less 

ischemic brain swelling than did their WT littermates (P<0.001). No difference appeared 

between the volumes of the right and left hemispheres in the sham-operated animals 

(P=0.71). 

 

Figure 6. Magnitude of Evans blue fluorescent signal representing intensity of albumin 

extravasation and BBB leakage. (A) Pharmacologically modulated groups (cromo=cromoglycate, c 

48/80=compound 48/80). Kruskal-Wallis ANOVA showed a highly significant effect of 

pharmacological modulation (P<0.001); post-hoc tests: *P<0.05, **P<0.01. B) MC-deficient rats 

(WsWs) and their wild-type littermates (WT). *P<0.05 (B). (Figure 2 in I). 

Finally, neutrophil count was up to 2.5-fold higher in the ischemic hemisphere than in 

the non-ischemic one or in sham-operated rats (P<0.05) even at this early (4 hours) 

post-ischemic time point. The lowest neutrophil counts in the ischemic hemisphere were 

in the MC-deficient rats, being only 47% of their WT littermates (P<0.01). Furthermore, 

cromoglycate significantly reduced neutrophil density in the ischemic hemisphere (by 

37%) compared with controls (P<0.01). This difference was most pronounced in the 

infarct core and basal ganglia. Cromoglycate reduced not only the number of emigrated 

neutrophils (P<0.05) but also of those still detectable within the intravascular space 

(P<0.01). 

 

Treatment with compound 48/80 was associated with a clear trend toward enhanced 

neutrophil response, with borderline significance in the area of the basal ganglia (35% 

increase, P=0.06). In sham-operated rats, the pharmacological treatments cause no 

changes in neutrophil counts that would be comparable to the ipsilaterally elevated levels 

in the rats that underwent MCA. 
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5.2 Study II 

 

This study described the involvement of MCs in regulation of BBB damage, formation of 

edema and hemorrhage, and neutrophil infiltration in experiments with TPA. In vitro 

assay of TPA-mediated MC degranulation preceded in vivo MCAO experiments with 

pharmacological modulation of MCs and experiments in MC-deficient animals. 

 

In vitro experiments with TPA showed a dose-dependent release of histamine indicating 

MC degranulation (Figure 7A). TPA-dependent histamine release reached almost 50% of 

the maximal MC degranulation-associated histamine release achieved by the classic MC-

secretagogue compound 48/80. Thus, even small concentrations of TPA, achievable also 

in vivo during therapeutic thrombolysis, strongly stimulated MCs to degranulate and 

release histamine in vitro. 

 

No significant differences emerged in physiological parameters (MABP, temperature, 

pH, PaCO2, PaO2) among study groups. 

 

To confirm successful MCA occlusion and reperfusion, CBF was monitored by laser-

Doppler flowmetry in Experiments 4 (pharmacological modulation with 3 hours of 

follow-up), 5 (pharmacological modulation with 24 hours of follow-up), and 6 (gene 

manipulation with 24 hours of follow-up). No significant differences in CBF appeared 

among the study groups at monitored time points (unpublished data). 

 

Corrected lesion volumes calculated from TTC-stained brain slices were not influenced 

by the treatment assignments in any of the experiments (P ranging from 0.44 to 0.96) 

and ischemic neuronal changes were confirmed by light microscopy of hematoxylin-

eosin-stained tissue sections. 

 

Further histological evaluation showed that TPA treatment was frequently associated 

with erythrocyte extravasation (Figure 7D), generally manifested as a perivascular 

hemorrhagic cuff arising from segmental structural deterioration of the vessel wall 

(Figure 7B), often accompanied by disseminated intraparenchymal hemorrhages. Similar 

to Study I, in sections stained with heparin-detecting toluidine blue, metachromatic 

perivascular cells were found frequently beside cerebral cortical and thalamic penetrating 

vessels (Figure 7C). 

 

Fluorescent evaluation of EB albumin extravasation revealed significantly diminished BBB 

disruption in cromoglycate+TPA-treated animals compared with saline-treated and TPA-

alone-treated ones (Figure 8A). Similarly, MC-deficient rats showed less severe BBB 

disruption than did their WT littermates (Figure 8B). 

 

Furthermore, pharmacological stabilization of MCs and MC deficiency led to significant 

reduction in posththrombolytic brain swelling at all time-points (II, Figure 3A,B)  
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Figure 7. TPA-mediated hemorrhage. A) TPA activates mast cells in vitro. B) Mast cell residing in 

proximity to a blood vessel (arrow). C) Mediator release from activated mast-cell granules. D) 

Multifocal areas of hemorrhage formation in a brain section from a TPA-treated rat. (Republished 

with permission from Duodecim Medical Journal). 

 

Figure 8. Fluorescent signals representing magnitude of Evans blue albumin extravasation and BBB 

leakage. A) Pharmacological stabilization of MCs with cromoglycate (cromo) on BBB permeability 

studied after 3 (ANOVA: P<0.01), 6 (t-test: P<0.01), and 24 hours (ANOVA: P<0.01). B) MC-

deficient rats (WsWs) and their wild-type (WT) littermates (only one animal survived until EB 

albumin administration in the 24-hour WT group). Significance levels of post-hoc (multiple groups) 

or t-tests (two groups): versus saline+saline-treated group: * P<0.05, ** P<0.01, *** P<0.001; 

and pharmacological modulation of MCs versus no modulation in TPA-treated rats: ## P<0.01, 

### P<0.001. (Additional Figure 2, Supplementary online data in II). 
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Parenchymal hemorrhages seen on brain sections (Figure 7D) were quantitatively 

analyzed. TPA caused robust (70- to 100-fold) induction of HF given either before or after 

reperfusion (P<0.001), compared with that of saline-treated controls. Such TPA-

mediated hemorrhage was significantly reduced at 3 (95%, P<0.01), 6 (75%, P<0.01), 

and 24 hours (95%, P<0.05) of follow-up by pharmacological MC stabilization. 

Importantly, genetic MC deficiency supported the role of MCs, leading to 90% reduction 

in TPA-mediated hemorrhage at both 6 (P<0.01) and 24 hours (P<0.001). 

 

Both TPA regimens (either 5 minutes before or 90 minutes after reperfusion) led to a 2- 

to 3-fold increase (P<0.05) in post-ischemic neutrophil infiltration, but the earlier 

infusion had a more substantial effect. Interestingly, a 6-fold increase in neutrophil 

infiltration took place also in the non-infarcted hemisphere. Notably, MC deficiency led to 

a 40% reduction in post-ischemic neutrophil counts compared with their WT littermates 

(P<0.05, all regions counted altogether), similarly in emigrated and intravascular 

neutrophils (data not shown). A comparable reduction was noticed when emigrated 

neutrophils were analyzed separately by region (P<0.01). 

 

Importantly, pharmacological MC stabilization led to significantly (P<0.01) better 

neurological scores at 24 hours (median 2) than for saline-treated (median 3) and 

TPA-alone-treated (median 5) rats. Furthermore, MC-deficient rats had a significantly 

(P<0.05) better neurological outcome (median 1.5) than did their WT littermates 

(median 5). In addition, in pharmacologically modulated groups, 29% mortality 

occurred in the saline-treated group and 64% in the TPA-alone-treated group. No deaths 

occurred in the cromoglycate+TPA-treated group (P<0.05). I observed 17% mortality (1 

dead animal) in the MC-deficient rats, whereas 75% of their WT littermates died 

(P<0.05). 

 

5.3 Study III 

 

Based on the promising results of the previous studies, the possible role of MC 

modulation (pharmacological or genetic manipulation) on edema and hematoma 

growth was examined in an autologous blood injection model of ICH. Further, the 

influence of such effects on the neurological outcome was addressed. 

 

No significant differences arose in the physiologic parameters (MABP, temperature, 

blood glucose, pH, PaCO2, PaO2) between study groups. 

 

Importantly, baseline hematoma volume did not differ among the pharmacologically 

modulated groups (P=0.27). However, hematoma growth during the next 24 hours was 

significantly smaller after both iv and icv MC stabilization than in saline-treated controls, 

as analyzed from MRI (P<0.001) and ex vivo obtained digital images (P=0.02). 

Hematoma growth in the compound 48/80 group was not different from that of the 
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control group (P=0.28), but it was significantly larger than both cromoglycate groups 

(both P<0.001) in all-pairwise comparison. Furthermore, hematoma volumes in the MC-

deficient rats, although being almost significantly larger at baseline than for their WT 

littermates (P=0.059), showed significantly smaller growth during 24 hours (P=0.04). 

Similarly, based on the data from ex vivo images, hematoma volumes were larger in the 

WT littermates than in the MC-deficient rats (P<0.01). 

 

Brain edema volumes calculated from the hyperintense areas of T2 images at 24 

hours were significantly smaller in both cromoglycate groups than in the saline and 

compound 48/80 groups (P<0.001), demonstrating a 25% increase in the control and a 

46% increase in the compound 48/80 group and approximately a 15% reduction in both 

cromoglycate groups during 24 hours. Experiments with genetically modified animals 

revealed that T2-based brain edema calculated at 24 hours was significantly smaller in 

the MC-deficient rats than in their WT littermates (P=0.036), representing a 10-fold 

higher increase in the WT littermates compared with the MC-deficient rats during 24 

hours. 

 

Furthermore, in the pharmacologically modulated groups, brain swelling (hemispheric 

expansion seen on T2*-WI) was, compared with controls, significantly smaller in both 

cromoglycate groups and significantly larger in the compound 48/80 group even at 

baseline (P<0.001). This difference was further magnified after the next 24 hours 

(P<0.001), with brain edema being 75% smaller in the icv cromoglycate, and 48% 

smaller in the iv cromoglycate group, and 61% larger in the compound 48/80 group than 

in controls. The difference in brain swelling at 24 hours was even significantly smaller in 

the icv cromoglycate group than in the iv cromoglycate group (P<0.05). MC-deficient rats 

developed 42% less brain swelling than did their WT littermates after 24 hours 

(P=0.035), although it was somewhat larger at baseline. Similarly, the percentage 

change in brain swelling between baseline- and 24-hour values was significantly smaller 

in the MC-deficient rats than in the WT ones (P<0.05). 

 

In line with these described MRI-derived observations, planimetric data obtained after 24 

hours from the digital images of ex vivo tissue slices revealed 83% less brain swelling 

(hemispheric expansion) in the icv cromoglycate, 63% less brain swelling in the iv 

cromoglycate, and 50% more brain swelling in the compound 48/80 group than in the 

controls (P<0.001). Similar calculations showed 87% less brain swelling in the MC-

deficient rats than in their WT littermates at 24 hours (P <0.001). 

 

Neurological scores obtained at 24 hours were highly significantly (P<0.001) better 

after MC stabilization (median 1 for both routes of administration) compared with the 

control (median 4) and compound 48/80 (median 5) groups. The neurological outcome of 

MC-deficient rats (median 1) was significantly (P<0.001) improved compared to their WT 

littermates (median 3). Mortality at 24 hours was 45% in the control group, 0% in both 

cromoglycate groups, and 55% in the compound 48/80 group. No deaths occurred in the 

MC-deficient group, whereas the WT rats experienced 25% mortality. 
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6 DISCUSSION 

6.1 General discussion 

 

Stroke (ischemic and hemorrhagic), a leading cause of death and disability worldwide, 

consumes a significant portion of the material and immaterial resources available for 

health care in general. The principal cause of clinical deterioration and premature death 

following large ischemic hemispheric strokes is brain swelling, increased ICP, and 

distortion of the brain structures, herniation. Several approaches to fight malignant brain 

swelling clinically are based on empirical support, but scientific evidence for their efficacy 

is lacking. At present, invasive surgical decompressive craniectomy and hypothermia 

seems to be promising. 

 

Thus far, thrombolysis with intravenously administered TPA is the only proven 

pharmacological therapy for acute ischemic stroke, although, its application is associated 

with risk for clinically relevant parenchymal hemorrhage. Fear of hemorrhage may be 

a reason for withholding this otherwise beneficial treatment from a large proportion of 

patients. A critical step in the formation of edema and hemorrhage is disruption of the 

basal lamina and the BBB. These detrimental processes may be aggravated by 

inflammatory responses, which may be further promoted by therapeutically administered 

TPA. 

 

In contrast to ischemic stroke, no medical or surgical treatment has thus far been 

efficacious in primary intracerebral hemorrhage, the poor outcome of which is mainly 

due to the mass effect of the growing hematoma and edema. Furthermore, the 

hematoma itself induces secondary inflammatory changes. Clearly, novel 

pharmacological discoveries are needed for the acute stage to improve long-term 

outcome of the victims. 

 

Studies included in this thesis addressed the possible role of MCs in experimental 

ischemic and hemorrhagic stroke. MCs are resident cellular mediators of immediate 

hypersensitivity and initiate local phlogistic reactions to mechanical, toxic, and allergic 

stimuli. They are tissue-based cells and occurred in several end-organs, including the 

brain. Their metachromatic granules contain potent preformed vasoactive, proteolytic, 

anticoagulant, and chemotactic substances. We and others341,352 have observed MCs 

positioned abluminally to the basal lamina and BBB (I, Figure 1A,B). In pilot studies,409 

MC density and their state of granulation were altered early following focal transient 

cerebral ischemia, and MCs were frequently found degranulating in association with 

edema and hemorrhage formation. 

 

These findings, together with the characteristic perivascular location of MCs and the 

ability of their proteases to degrade the basement membrane proteins,17,18 led to the 

hypothesis that following transient focal cerebral ischemia, MCs may be involved in the 

regulation of BBB permeability, brain swelling, TPA-mediated cerebral hemorrhage, and 
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inflammatory cell (neutrophil) infiltration. Finally, since the mass effect of a growing 

hematoma and edema is associated with poor outcome after primary ICH, I studied 

whether MC blocking would exert a therapeutic effect in an experimental ICH model. 

Apart from pharmacological modulation of MCs, I induced focal cerebral ischemia and ICH 

in a genetically manipulated MC-deficient rat strain. In addition, in vitro tests of TPA-

mediated MC degranulation were performed. 

 

Briefly, these results demonstrate MC’s mediation of BBB permeability, brain swelling, 

and neutrophil accumulation following focal transient cerebral ischemia (I). Furthermore, 

in the same model, MCs were found to be involved in formation of hemorrhage 

associated with the application of TPA, and that hemorrhages and eventual unfavorable 

outcomes were reduced by cromoglycate treatment (II). Finally, MCs were shown to 

regulate the growth of hematoma and edema in ICH (III). Importantly, also here the 

pharmacological and genetic modulations of MC effects described were related to 

neurological performance and rates of fatal outcome. 

 

6.2 Mast cell mediation of BBB permeability, brain swelling, and neutrophil 

infiltration after focal transient cerebral ischemia (I) 

 

Studies with the MCAO model demonstrated that cerebral MCs participate in the 

regulation of early post-ischemic BBB disruption, brain swelling, and neutrophil 

infiltration. Pharmacological stabilization of MCs reduced these outcome measures, 

whereas pharmacological augmentation of MC degranulation had the opposite effect. 

Moreover, the experiments with MC-deficient rats confirmed the specific role of MCs in 

this scenario. 

 

Although the precise mechanism of MC activation in ischemia remains unclear, it may 

possibly be launched by the blood serum-derived activated complement proteins C3a and 

C5a, since mixing of serum with CSF in vitro as well as plasma extravasation after BBB 

damage in clinical stroke and in SAH leads to fast activation of these anaphylatoxins 

which are potent stimulators of MCs.432 MC granule constituents (especially histamine, 

heparin, and bradykinin), in turn, show significant microcirculatory effects, and 

modulation of their liberation during ischemia may influence the extent of the damage. 

 

What is striking is that extravasation of EB albumin was in direct correlation with degree 

of expansive cerebral swelling even a few hours after reperfusion (I, Figure 4), 

suggesting that, even during the very early (ultra-acute) phase of ischemic stroke, 

vasogenic volumetric enlargement is a very dominant mechanism of brain edema in 

this model. This is important for the future design of anti-edema therapies since it has 

been widely held that interventions targeting the vascular wall and basal lamina may not 

be of enormous importance at the ultra-acute stage, when the cytotoxic mechanism of 

brain edema has been considered to be at its peak. 
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Accordingly, digestion of the endothelial basal lamina occurs as early as 2 hours after 

ischemia.84,85 Such loss of microvascular integrity may link blood-protein and blood-

cell extravasation to edema and hemorrhage formation.71,84 A large body of evidence 

(section 2.1.3) indicates that proteases are involved in this process. Furthermore, MMP-

mediated disruption of the tight junction proteins occludin and claudin occurs, and the 

MMP inhibitor already reduces the BBB damage 3 hours after transient focal cerebral 

ischemia.94,96 These results also support the likelihood of rather early BBB disruption 

after transient MCAO. 

 

Besides vasolytic and anticoagulant properties, I propose five lines of MC involvement in 

these processes: First, cerebral MC-derived chymase341 is a potent protease which 

cleaves fibronectin and also activates procollagenases.18,387 This happens even in the 

presence of TIMP-1433. A key role for MC chymase in the activation of pro-MMP-2 and 

pro-MMP-9 was demonstrated and confirmed recently.385 Second, another MC-derived 

protease, tryptase, is also able to activate MMPs.386 Third, MCs themselves can release 

the gelatinases A (MMP-2) and B (MMP-9),109 and both MC-derived chymase and 

tryptase can degrade TIMP-1 protein,88 suggesting a role for MCs in regulation of this 

proteolytic system. Fourth, MC granules contain cathepsin G, which is able to cleave 

many components of the extracellular and pericellular matrix, including fibronectin and 

vitronectin.390 The role of cathepsins in microvascular matrix degradation has been 

reported.86 Finally, apart from proteases, MCs can release various cytokines (e.g., TNF-

α and IL-1) shown to be involved in upregulation of MMPs434 and in edema 

formation.435,436 Indeed, MCs do possess a potent armamentarium to target the 

components of the BBB and basal lamina shortly after their activation, whereas de novo 

production of these and additional mediators reactivates and maintains the process. 

 

In addition to the BBB disruption and brain swelling, RI includes the release of free 

radicals and inflammatory mediators promoting leukocyte infiltration. Neutrophils start 

to accumulate within hours after reperfusion at the ischemia site,181,437 a process which 

also occurs in the human brain.167 In this inflammatory response, current data suggest 

MC participation (I, Figure 5). Clinical trials based on inhibition of neutrophils have had 

no success (section 2.1.3.3) perhaps explained by the fact that leukocytes arrive too 

late166 to influence damage-propagation in viable, non-apoptotic neural tissue, or by 

adverse reactions to heterologous protein.203 

 

The extremely potent resident (hence already present at the very outset of ischemia) 

proinflammatory MCs may offer an alternative and more proximal target for early 

antichemotactic intervention before the involvement of any circulating inflammatory cells. 

The fact that MC stabilization was associated with reduction in both the number of 

transmigrated neutrophils and of those still within the intravascular space (I, Figure 5B, 

right) suggests a role for MCs not only in reducing passive neutrophil trafficking through 

BBB breaches, but probably also in attenuating the perivascular chemotactic gradient up 

which blood-borne neutrophils start to transmigrate. Indeed, tissue-based MCs release 

potent mediators (PAF, TNF-α, IL-4, IL-5, IL-8 and neutrophil, eosinophil, and 
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macrophage chemotactic factors) known to attract inflammatory cells. Moreover, MC-

derived histamine regulates expression of selectins in ECs with consecutive rolling of 

leukocytes376 and plays a role in translocation of P-selectin to the cell surface,438 further 

revealing the proinflammatory character of MCs. Traditionally, the main cerebral cellular 

sources of these chemotactic mediators include ECs, astrocytes, microglia, and neuronal 

cells, but the present work adds MCs to this list also within the cerebral ischemic 

cascade. 

 

In this study, infarct volumes were not influenced by the MC interventions; this was 

expected at this early post-ischemic time point and by the fact that we tested a drug, 

sodium cromoglycate, without any known direct neuroprotective properties. Importantly, 

experiments performed after sham surgery and pharmacological MC modulation suggest 

that the changes observed were related to the ischemic response rather than to the 

pharmacological effects alone. Furthermore, the pharmacological manipulations seemed 

to cause no significant influence on post-ischemic CBF that could have mediated the 

effects observed. 

 

Thus far, the MC as a regulator of BBB has not been widely recognized. Current 

experiments imply the strong involvement of this multi-active and potent cell type (with 

an armory of bioactive granule mediators able to target vascular basal lamina) in early 

BBB failure and brain swelling following focal transient cerebral ischemia. Furthermore, 

stabilization of MCs may provide an early opportunity to prevent infiltration of other 

inflammatory cells and their consequences such as no-reflow and further release of free 

radicals, all of which enhances vascular damage. Since the MCs respond rather 

stereotypically with degranulation of multi-active mediators to a variety of physico-

chemical environmental and disease-associated challenges, MC stabilization could be a 

promising avenue of research also in conditions other than ischemic stroke. 

 

6.3 Mast cell regulation of TPA-mediated hemorrhage formation after focal 

transient cerebral ischemia (II) 

 

Hemorrhages, together with other components of the vascular RI (the BBB disruption, 

brain swelling, and neutrophil infiltration), can devastate a good prognosis following 

successful stroke thrombolysis. Although herniation and edema were once not considered 

a major problem in TPA-treated patients,56 the European Cooperative Acute Stroke Study 

reported herniation- and brain edema-related mortality to be higher than hemorrhage-

mediated mortality, and to be more prevalent in the TPA group.439 Furthermore, cerebral 

bleedings do occur in patients undergoing thrombolytic treatment for acute myocardial 

infarction and pulmonary embolism, as well. Fear of post-thrombolytic hemorrhage leads 

to withholding of this beneficial therapy from number of patients. 
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The mechanism of post-thrombolytic hemorrhage is generally not understood, but it 

occurs with all fibrinolytic substances such as TPA, streptokinase, prourokinase, and 

reteplase,440,441 all of which invariably induce plasminemia.442 Plasmin, in turn, is a multi-

active substance with proinflammatory activity (section 2.1.3.2); it degrades a range of 

ECM proteins and activates MMPs, which in turn digests matrix proteins443 and causes 

brain tissue damage.102,444 

 

In addition to proteolytic mechanisms of BBB disruption, BBB damage (leading to 

erythrocyte extravasation) may be mediated by the numerous preformed MC-mediators 

influencing vascular permeability (e.g., histamine and bradykinin). Perhaps more 

important in the setting of thrombolytic therapy for cerebral ischemia, hemorrhage 

development may be further promoted by a strong anticoagulant, heparin, which is 

produced in mammals by MCs only.378,379 Heparin released locally from perivascularly 

positioned MCs may stop the formation of hemostatic plugs to patch BBB breaches to 

prevent erythrocytes extravasation, thereby contributing to hemorrhagic events. 

Interestingly, activation of the fibrinolytic system was found in dogs with MC tumors and 

a similar effect in dogs was achieved after very high levels of MC secretagogue 

compound 48/80 application,445 confirming the fibrinolytic potential of MC mediators. 

 

In sum, the present work, as extrapolated from Studies I and II, is in agreement with the 

recent suggestion that formation of hemorrhage may represent the end stage of a 

cascade that started as vasogenic edema following the BBB disruption,446 as suggested 

even earlier.71,84 The data in Study II support the fact that TPA aggravates all of these 

phenomena. In vitro experiments demonstrate that TPA by itself degranulates MCs to a 

great degree, a finding not reported for any other fibrinolytic drug thus far. Future 

studies should examine whether this is a class effect for all serine protease 

thrombolytics. Importantly, based on the present data, these phenomena may not only 

be modulated by targeted genetic MC manipulation but also be prevented by MC 

stabilization; this may identify a therapeutic pharmacological target. This study therefore 

establishes a novel cellular mechanism underlying these catastrophic phenomena. 

 

In the present work, neutrophils were largely intravascular, but the count of neutrophils 

already having emigrated into the brain parenchyma was also significantly elevated by 

TPA (data not shown). This occurrence was influenced by MCs. Besides the possible 

mechanism discussed in the previous section, the proinflammatory effect of TPA may 

be mediated by plasmin, which is able to induce the synthesis of PAF and activates the 

terminal complement cascade.447 Furthermore, when injected into the brain, it recruits 

neutrophils.444 Interestingly, after TPA treatment, a consistent increase in neutrophil 

infiltration occurred not only in the ischemic but also in the intact hemisphere (II, Figure 

4A). This suggests an independent proinflammatory effect of TPA which has been largely 

overlooked but may be clinically relevant. The intrinsic proinflammatory effect (increased 

neutrophil emigration) of TPA in the non-ischemic brain portions appeared also in 

experiments with pharmacological MC modulation (unpublished data). If the in vitro TPA-



 

   79 

mediated MC degranulation can be reproduced also in vivo, this could in part explain this 

very phenomenon. 

 

Since we focused on the untoward post-reperfusion effects of TPA rather than therapeutic 

recanalization, TPA did not reduce infarct size. To have better control over the 

reperfusion per se, we used the suture occlusion and not the blood clot model. The 

suture model was utilized in experiments studying the effect of TPA on RI and formation 

of hemorrhage.153 In that work, reperfusion 6 hours after filament MCA occlusion was not 

associated with hemorrhage in experiments without TPA (a finding similar to that of 

Study I), whereas the same experiment with TPA treatment was associated with 

hemorrhage; this shows the utility of the suture model in studying reperfusion-mediated 

hemorrhage. 

 

The results show, indeed, the MC as a largely fibrinolytic cell type in the microvascular 

milieu. This, in the light of current results, clearly potentiates the unwanted side-effects 

of therapeutic thrombolytics after ischemic stroke. Pharmacological stabilization of MCs is 

therefore a potential novel adjuvant therapy to prevent the occasional devastating 

complication from thrombolytics after ischemic stroke as well as after acute myocardial 

infarction and pulmonary embolism. 

 

6.4 Mast cell regulation of growth of hematoma and brain swelling in 

experimental intracerebral hemorrhage (III) 

 

This study demonstrated that pharmacologically induced inhibition of MC degranulation 

led to significant reductions in hematoma volume and brain swelling at 24 hours after 

the induction of experimental ICH, whereas pharmacologically stimulated MC 

degranulation produced the opposite effect. The specific role of MCs in this response was 

confirmed by experiments in MC-deficient rats and their WT littermates. These results 

translated into neurological outcome and mortality in favor not only of MC deficiency but 

also pharmacological MC stabilization, supporting the association between mass effect of 

hematoma and of swelling and poor outcome after ICH. 

 

Clinically, relentlessly progressing cerebral edema causes neurological deterioration as 

early as within 24 to 48 hours after ICH,6 often leading to displacement of brain 

structures, increased ICP, and fatal outcome233—as supported also by the present 

findings. Extensive experimental studies of the pathophysiology of ICH-associated edema 

revealed a role for blood degradation products (specifically thrombin) and MMPs (section 

2.2.1). Although the precise cellular pathomechanisms of brain edema formation after 

ICH are still not well established, Study III contributes to the list of potential causes of 

hazardous expansive tissue displacement and mortality from ICH, specifically, 

degranulation of MCs and the ensuing liberation of vasoactive, anticoagulant, and 

proteolytic substances. 
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However, despite the information gathered in the present studies, the particular 

pathophysiologic basis of MC-dependent brain edema and swelling during ICH remains 

essentially speculative. It may depend on the release of a host of MC-derived vasoactive 

substances (histamine, bradykinin) and proteolytic enzymes (tryptase, chymase), which 

may cause increased vascular permeability. As with ischemia, this may disrupt the basal 

lamina of the vasculature along with the surrounding extracellular tissue matrix, leading 

to secondary aggravation of extravasation of blood cells and of plasma proteins. 

 

Moreover, MC-derived chymase and tryptase both activate MMPs, which may further 

contribute to the disruption. Results from our previous studies in focal transient cerebral 

ischemia would support the concept of MC-dependent induction of local breaches in BBB 

that could occur also in perihematomal zones and thereby contribute to the expansive 

edema formation in ICH. In view of the MC activation by TPA in vitro, it is of interest that 

PAs potentiate thrombin-induced brain edema,448 and that—in an experimental setting—

TPA used to liquefy the hematoma causes massive edema and inflammation.449 

 

Apart from the possible role for the mentioned MC mediators, MC-mediated cytokines 

(e.g., TNF-α and ILs) may be involved as well. Some human studies show a correlation 

between plasma concentration of TNF-α and IL-6 (both belonging among MC mediators) 

and magnitude of perihematomal brain edema and hematoma growth.254,257 In all 

likelihood, we are dealing with the mainly multifactorial basis of ICH-related brain 

expansion. 

 

Hematoma expansion has also been attributed to continuing bleeding from the primary 

source and to mechanical disruption of the surrounding vessels.6 In addition to direct 

tissue-compressing effects and secondary microcirculatory failure, these effects could 

also trigger local MC degranulation and activation in the perihematomal zone. This view 

is compatible with recent evidence suggesting that secondary growth of ICH may result 

from secondary bleeding within the peripheral zone around the ICH.450 

 

Although thrombin is considered to be involved in the pathophysiology of ICH-associated 

edema formation, thrombin inhibitors did not succeed in reducing hematoma size.273 To 

add another mechanism to the causes of secondary bleedings, MC-derived heparin 

may, in theory, prolong blood extravasation and also promote secondary hemorrhages, 

especially in areas where the BBB has been compromised by extravasated blood 

components and their vasoactive derivatives. This hypothesis is in line with the present 

data showing significant growth of the hematoma after augmented MC degranulation 

(with compound 48/80) and in non-treated control animals, and with the absence of 

hematoma growth after MC stabilization and in MC-deficient rats. 

 

The present results and the mechanisms suggested to explain them support the role of 

MCs in regulating hematoma and edema growth after experimental ICH. Such regulation 

translated into neurological outcome and mortality. This makes pharmacological MC 

modulation interesting for development of clinical strategies to prevent space-occupying 
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edema and hematoma growth early after the onset of ICH, especially with no medical 

and surgical treatment for this devastating condition yet proving effective. 

 

6.5 A place for MCs in the neurovascular unit? 

 

The integrity of the microvasculature is provided not only by the BBB and the basal 

lamina, but by various components of the neurovascular unit (Figure 2, center), as well. 

Complex interactions between cellular and extracellular components within the unit 

involve matrix adhesion receptors, the integrins, and dystroglycan (section 2.1.3). 

 

MCs show several types of interactions—some of which still remain speculative—with 

constituents of the neurovascular unit. 

 

Astrocytes During development, MC association with the vascular bed (preferentially at 

branching points) is dependent on contact of the blood vessel with astroglial processes. 

This adhesion to the vascular wall involves MC-expressed α4-integrins.353 Mature MCs can 

be grown on astrocytes,339,451 and astroglial processes elongate in close proximity to 

MCs.335 MC cytoplasm, in turn, extends into the neuropil.351 Adjacent astrocytes can 

influence the phenotype and the migration of MCs,346 presumably synthesizing MC growth 

factors such as IL-3347,348 and NGF.349 

 

Neurons Mast cell products enter neurons at least in three ways (transgranulation) in 

the dove brain370: a) direct fusion of the granule and plasma membranes of both mast 

cell and neuron; b) engulfment of mast cell processes containing granules or capture of 

released granule remnants; and c) receptor-mediated endocytosis. Interestingly, the 

frequency of transgranulation events is related to the activity status of the mast cell. 

 

Endothelial cells Changes in endothelial cell-matrix interactions may be influenced by 

TNF-α and IL-1β,452 most likely by down-regulation of integrin receptors of the β1 

subfamily.453 Accordingly, TNF-α reduces ECs’ integrin α1β1 expression, leading to 

decreased adhesion to laminin,453 whereas IL-1β contributes to early ischemic brain 

edema, presumably by altering β1 expression.
436 Both cytokines can be released by 

different cells, but belong among MC mediators, as well. 

 

Basal lamina and ECM MCs can attach to and migrate on laminin- and fibronectin-

coated surfaces.362 Furthermore, MCs’ surface receptors (one of them for laminin) 

regulate MC trafficking and distribution by engaging ECM components, including the 

classical integrin receptors.361 

 

Considered together, these data suggest some kind of biologically and 

pathophysiologically relevant interactions between MCs and the neurovascular unit, an 

idea apparently not previously suggested. 
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7 SUMMARY AND CONCLUSIONS 

 

The present work on focal transient cerebral ischemia with pharmacological and genetic 

modulation of MCs demonstrates that cerebral MCs participated in regulation of early 

BBB disruption, brain swelling, and neutrophil infiltration. That not only genetic MC 

deficiency but also pharmacological interventions targeting MCs showed similar results 

suggests a potential novel therapeutic approach to be studied in cerebral insults, where 

tissue injury is followed by florid extravasation, hazardous brain swelling, and 

inflammatory cell infiltration. The importance of such an approach is supported by the 

fact that no effective medical treatment exists for malignant brain swelling after large 

hemispheric strokes. 

 

The efficacy of the same approaches was reproduced in association with TPA-mediated 

hemorrhage. Furthermore, TPA was found to degranulate MCs in vitro, an observation 

worth noticing by the manufacturers of thrombolytic compounds. Since the key findings 

also translated into improved neurological outcome and reduced mortality, they are 

relevant to the understanding and prevention of the occasional devastating complications 

following administration of thrombolytics (acute ischemic stroke, acute myocardial 

infarction, pulmonary embolism). If found useful also in humans, the safety of 

thrombolytic therapy could improve, so that more stroke patients could receive this 

beneficial treatment. 

 

Since neither medical nor surgical treatment has been beneficial in primary ICH, 

findings of reduced hematoma and edema growth and of improved neurological outcome 

as well as of reduced mortality associated with MC stabilization suggest that it is an 

interesting, novel therapeutic avenue also in this life-threatening condition. All these 

antihemostatic effects, superimposed on the vasculopathic proteolytic capacity, 

emphasize the fibrinolytic properties of MCs in both ischemic and hemorrhagic brain 

insults, properties that could well be utilized in future research. 

 

Future studies on this subject could also include more detailed dissection of the 

mechanism underlying MC-mediated BBB disruption and its consequences, as well as 

elucidation of how, exactly, MCs influence hemorrhage and edema growth in ICH. Of 

further interest would be the nature and behavior of particular MC mediators during 

ischemia, since some of these may also serve in tissue protection. For instance, 

histamine release may promote vasodilatation in areas of secondary microcirculatory 

ischemia. Further work might involve application of MMP antagonists, antihistamines; 

more detailed morphological studies of the early BBB opening after ischemia could reveal 

the interplay of MCs with other components of the neurovascular unit at different points 

during evolving brain damage. 

 

Since brain edema is a key contributor to increased mortality and morbidity in numerous 

brain conditions apart from stroke, further study would be useful in the area of brain 

trauma, brain tumors, and infections. However, the most important task is to examine 
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whether any of these promising data can be translated into human medicine, since 

differences arise in the biological tasks of MCs among species. It is possible that the 

cerebral MCs are less abundant in humans and may possess a different operative 

repertoire than in rodents. 

 

Cromoglycate, the model compound, is a well-known and safe drug used topically for 

decades for allergic clinical conditions. However, for purposes of the present work, the 

fact that it has presumably too low penetration through the BBB presents a problem that 

needs expertise from those in, for example, the pharmaceutical industry. However, the 

observation that intravenously administered cromoglycate in an ICH model showed the 

same positive effects as did intracerebroventricular application might speed its 

translation into human trials. 

 

Another limitation of this study is that only one model compound was used to 

substantiate the utility of MCs as a pharmacological target for limiting deleterious effects. 

Moreover, the issue of appropriate dosages must be further addressed. 

 

Novel therapeutic strategies are necessary to prevent loss of microvascular integrity. 

Interactions within the neurovascular unit are complex. This calls for interventions at 

multiple levels (e.g., those between individual mediators and their target receptors or 

structures, and the level of cellular activation and interactions) rather than a single-

impact molecular target approach. Such a single-pathway approach (glutamate release, 

calcium antagonism, free radical release) prevailed in recent failed clinical trials of 

neuroprotective agents in ischemic stroke. 

 

MCs reside in the pivotal perivascular position and contain an abundance of vasoactive, 

proinflammatory, anticoagulant, and proteolytic mediators. Hence, MC stabilization 

may represent a multiple-level strategy, blocking simultaneously several 

molecular cascades that participate in progressive tissue damage instead of 

blocking just one single pathway. The present results propose the MC to be 

considered an essential player in the neurovascular unit, where it contributes to cell-cell 

and cell-matrix interactions as well as controls vascular permeability and participates in 

recruitment of blood-derived inflammatory cells. 

 

To reproduce the findings of these studies in human disease—to reduce suffering after 

large hemispheric strokes and intracerebral hemorrhages as well as to improve the safety 

of thrombolysis—is my earnest intention. 
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