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ABSTRACT

Background and aims. Highly active antiretroviral therapy (HAART) has improved the prognosis of HIV-

infected patients, but is also associated with adverse events, such as lipodystrophy and insulin resistance 

caused by unknown mechanisms. Glitazones appear promising drugs to treat HAART-associated 

lipodystrophy (HAL), since they both improve insulin sensitivity and increase the amount of subcutaneous 

adipose tissue (SAT) in patients with type 2 diabetes. Present studies were undertaken to gain insight into the 

pathogenesis of HAL, and to evaluate whether rosiglitazone could increase the amount of SAT in these 

patients.  

Subjects and methods. Three groups were included in the study: HIV-infected, HAART-treated patients with 

(HAART+LD+, n=25-30) and without lipodystrophy (HAART+LD-, n=9–13), and HIV negative subjects 

(HIV-, n= 15–35). Effects of rosiglitazone (8 mg/d for 24 weeks) were studied in a randomized, double-

blind, placebo-controlled trial in the HAART+LD+ group. Body composition was measured using magnetic 

resonance imaging, liver fat by proton spectroscopy, and gene expression in SAT by real-time PCR. 

Results. Liver fat content was increased in the HAART+LD+ compared to the HAART+LD- and the HIV- 

group, and correlated with fasting serum insulin concentrations. Serum adiponectin and its expression in 

SAT were decreased in the HAART+LD+ compared to the HAART+LD- group, and correlated inversely 

with features of insulin resistance. The expression of peroxisome proliferator-activated receptor (PPAR) γ

and δ, sterol regulatory element-binding protein 1c, PPARγ coactivator-1 (PGC-1), lipoprotein lipase, acyl 

CoA synthase and glucose transport protein 4 were decreased, whereas the expression of CD45 and 

interleukin 6 were increased in the HAART+LD+ compared to the HAART+LD- group. Rosiglitazone 

treatment did not increase the amount of SAT. Rosiglitazone decreased serum insulin concentration and liver 

fat content, but worsened dyslipidemia. Rosiglitazone increased the expression of adiponectin, PPARγ and 

PGC-1, and decreased the expression of IL-6. PAI-1 concentration in plasma and its expression in SAT were 

increased in the HAART+LD+ compared to the HAART+LD- and the HIV- group. Rosiglitazone did not 

change the expression of PAI-1 in SAT, but caused a decrease in plasma PAI-1 concentration, which 

correlated with the decrease in the liver fat content. 

Conclusions. Increased liver fat content may contribute to insulin resistance and to plasma PAI-1 

concentrations in patients with HAL. Multiple alterations in gene expression in SAT imply decreased 

adipocyte maturation, increased inflammation and decreased adiponectin production, which all may 

contribute to insulin resistance. The present data do not support use of rosiglitazone in patients with HAL, 

although it decreased liver fat content and fasting serum insulin concentrations. The insulin-sensitizing 

effects of rosiglitazone may have been mediated by the increased expression of adiponectin.  
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1. INTRODUCTION 

The prognosis of human immunodeficiency virus (HIV) -infected people has dramatically improved after the 

introduction of highly active antiretroviral therapy (HAART) in 1996 (1). However, eradication of the virus 

is not possible with current regimens (2), and therefore patients need to use HAART permanently. HAART 

is also associated with adverse events, such as lipodystrophy, i.e. loss of subcutaneous fat (lipoatrophy) and 

accumulation of intra-abdominal fat, and insulin resistance (3). During the last few years, HAART-

associated lipodystrophy (HAL) has become the most common form of human lipodystrophy. Severe 

lipodystrophy, especially facial lipoatrophy can be stigmatizing and reduce adherence to otherwise effective 

HAART (4,5). Long term consequences of the adverse events still remain unknown, but preliminary data 

suggest that HAART is associated with increased cardiovascular morbidity (6).  

The pathogenesis of HAL remains unknown. It is not known whether lipoatrophy results from decreased 

differentiation of adipocytes, increased loss of adipocytes, or both. The inability to store fat in adipose tissue 

in patients with non-HIV lipodystrophies and in lipodystrophic mouse models results in fat accumulation in 

the liver and skeletal muscle, which is associated with development of insulin resistance (7,8). Whether this 

occurs also in HAL is not known. Adipose tissue is an active endocrine organ, which produces several 

proteins that regulate whole body metabolism (9). Data are sparse regarding the possible contribution of 

altered secretory function of the adipose tissue to the pathogenesis of HAL.  

Currently there is no pharmacological treatment available for HAL. Thiazolidinediones are novel insulin-

sensitizing agents, which increase subcutaneous fat mass in patients with type 2 diabetes (10). The latter is an 

undesirable side effect in patients with type 2 diabetes. However, in patients with HAL, both the adipose 

tissue-increasing and insulin-sensitizing effects of thiazolidinediones would be beneficial. 

Thiazolidinediones therefore appear promising drugs for the treatment of HAL, but have not been tested in a 

controlled trial.  

The present studies were undertaken to gain insight into the pathogenesis and treatment of HAL. We 

examined whether the adipocyte differentiation is abnormal in lipodystrophic adipose tissue by measuring 

the expression of several transcription factors and other genes necessary for normal maturation of adipocytes. 

We also evaluated physiologic function of lipodystrophic adipose tissue by quantifying the expression of 

several adipocytokines, e.g. adiponectin, leptin and interleukin (IL) -6 in adipose tissue and their circulating 

concentrations. We studied whether liver fat content measured using proton spectroscopy is increased in 

HAL, and whether liver fat content is associated with features of insulin resistance. We also studied the 

possibility that liver fat content could be a significant correlate of the concentration of plasminogen activator 

inhibitor-1 (PAI-1) in plasma. Finally, we conducted a randomized, placebo-controlled, double-blind trial to 
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evaluate whether rosiglitazone could increase the amount of subcutaneous adipose tissue (SAT) in patients 

with HAL. Currently there are no human in vivo data available on the effects of rosiglitazone on gene 

expression in adipose tissue. We therefore quantified the expression of multiple genes, which could possibly 

be involved in the insulin-sensitizing action of rosiglitazone in subcutaneous fat of patients with HAL. 
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2. REVIEW OF THE LITERATURE 

2.1. INSULIN RESISTANCE AND ADIPOSE TISSUE METABOLISM 

2.1.1. PHYSIOLOGIC ACTIONS OF INSULIN 

GLUCOSE METABOLISM 

Maintenance of plasma glucose concentration within narrow limits is of vital importance to humans. 

Insufficient glucose availability would be deleterious especially to the brain and other neuronal tissues, 

which cannot use alternative energy sources. At any given moment, plasma glucose concentration represents 

the balance between glucose absorption from the intestine, endogenous glucose production and glucose 

utilization. Insulin serves as the main regulator of blood glucose concentration by inhibiting hepatic glucose 

production and by increasing glucose uptake primarily in skeletal muscle (11).  

Endogenous glucose production

In the fasting (postabsorptive) state, an equal amount of glucose is produced and utilized. The liver produces 

most of the circulating glucose in the fasting state. Also the kidneys can synthesize glucose, but it is 

considered important only following prolonged fasting (11). The liver can produce glucose by breaking 

down glycogen (glycogenolysis) or by de novo glucose synthesis mainly from lactate, alanine, pyruvate and 

glycerol (gluconeogenesis) (11). The early studies suggested that glycogenolysis accounted for ~75% of 

glucose production after an overnight fast (11). However, novel in vivo measurements using 13C magnetic 

resonance imaging (MRI) spectroscopy have shown that gluconeogenesis accounts for up to 50% of the 

hepatic glucose production even during early hours of fasting (12). Total depletion of hepatic glycogen (70 to 

150 g) occurs within 24-64 hours depending on the method used for quantification of glycogen stores (13).  

Insulin inhibits both gluconeogenesis and glycogenolysis. In normal subjects, serum insulin concentration of 

~30 mU/l halve hepatic glucose production and complete suppression is achieved at insulin concentrations of 

50-60 mU/l in studies employing [3-3H] glucose under non-steady state conditions (14). Insulin induces the 

transcription of sterol regulatory element binding protein 1c (SREBP-1c) by a phosphatidylinositol 3 (PI 3)-

kinase dependent mechanism (vide infra) (15). After the proteolytic cleavage of the precursor SREBP-1c, the 

truncated, mature form of SREBP-1c translocates into the nucleus, where it activates transcription of glucose 

kinase, an enzyme that increases glucose phophorylation and glycogen repletion (15). Mature form of 

SREBP-1c also inhibits the transcription of phosphoenolpyruvate carboxykinase (PEPCK), an important 

enzyme in gluconeogenesis (15). Insulin also decreases the activity of the enzyme glycogen phosphorylase, 

which stimulates breakdown of glycogen to glucose (11,13). Furthermore, insulin indirectly decreases 

gluconeogenesis by suppressing lipolysis and proteolysis, thus reducing peripheral release of gluconeogenic 

precursors (11).  An increase in plasma glucose concentration regulates hepatic glucose production by 
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inhibiting both gluconeogenesis and glycogenolysis, independent of changes in glucoregulatory hormones 

(11).

Glucagon rapidly increases both glycogenolysis and gluconeogenesis (16). Catecholamines also rapidly 

stimulate glycogenolysis and gluconeogenesis. However, their role for preventing hypoglycemia is 

considered significant only as a compensatory mechanism if glucagon secretion is deficient (17). Also 

glucocorticoids enhance hepatic glucose production, but in contrast to the acute stimulatory effects of 

glucagon and catecholamines, the effects of corticosteroids take several hours to occur. Corticosteroids 

activate gluconeogenic enzymes and augment the transfer of free fatty acids (FFA) to the liver (11). Growth 

hormone impairs the ability of insulin to suppress hepatic glucose production (18). In addition, a complex 

paracrine signaling system operates between Kuppfer cells, hepatocytes and endothelial cells and may, at 

least judging from animal data, regulate glucose production (13).  

Other factors involved in hepatic glucose production include fat accumulation in the liver (Chapter 2.1.4), 

which is associated with hepatic insulin sensitivity in several animal models (Chapter 2.1.5.) and in humans 

(19). Adiponectin is an adipocyte-derived protein (Chapter 2.1.3.), which in vitro and in animal models has 

been shown to increase the ability of insulin to suppress glucose production and to downregulate the 

expression of enzymes involved in gluconeogenesis (20,21). Interestingly, adiponectin infusion in animals 

increases insulin sensitivity and decreases liver fat content (22).  

Glucose utilization  

Insulin regulates glucose utilization mainly by increasing glucose uptake in skeletal muscle. Under fasting 

conditions, when circulating concentration of insulin is low, glucose utilization occurs mainly in insulin-

independent tissues, such as the brain, renal medulla and erythrocytes, which cannot use alternative energy 

sources. According to various studies, it has been estimated that the brain accounts for ~50%, splanchnic 

area (the liver and gut) ~25%, skeletal muscle and fat ~10%, kidneys ~6% and heart ~5% of the basal 

glucose disposal (14). Under fasting conditions, insulin-dependent tissues, such as skeletal muscle and 

splanchnic tissues use FFA as the main source of energy (11). 

After oral glucose administration, insulin-dependent tissues switch their energy supply from FFA to glucose. 

Consequently, one third of glucose is taken up by skeletal muscle, one third by the splanchnic tissues and 

one third by other tissues, especially the brain (14,23). 

Under intravenously maintained normoglycemic hyperinsulinemia, e.g. during hyperinsulinemic euglycemic 

clamp, glucose utilization can increase up to 6-fold compared to glucose utilization rate after an overnight 

fast (14). Under these experimental conditions, skeletal muscle by far accounts for most of glucose 
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utilization (~70%), the brain for 14%, heart 6%, splanchnic area 6%, kidneys 2%, and adipose tissue for 1% 

(14).

In order to exert its effect on cells, insulin must first bind to an extracellular α-subunit of its cell membrane-

associated receptor. This binding leads to autophosphorylation of the intracellular β-subunit of the receptor, 

which consequently results in activation of the tyrosine kinase activity of the receptor (24). Tyrosine kinase 

catalyzes phosphorylation of several insulin receptor substrate (IRS) proteins. IRS-1 is the main IRS in 

skeletal muscle (25). Intracellular insulin signaling involves two major pathways: the mitogen-activated 

protein (MAP) kinase and the PI 3-kinase pathway. The MAP kinase pathway mediates growth-promoting 

effects of insulin and PI 3-kinase most of the metabolic responses to insulin, such as translocation of 

intracellular glucose transport protein 4 (GLUT4) (vide infra) to the cell membrane, and glycogen and 

protein synthesis (24).   

Specific glucose transport proteins are needed for glucose entry into the cells. Seven functional isomers of 

glucose transport proteins are known today (11). GLUT4 is the main insulin-dependent glucose transport 

protein expressed in skeletal muscle and adipose tissue (26,27). Insulin-induced intracellular signaling results 

in translocation of the intracellular GLUT4 to the cell membrane and also enhances GLUT4 activity (16). 

GLUT1 is the main insulin-independent glucose transporter. It is expressed ubiquitously and is present on 

the cell surface (16). GLUT2 is present on the plasma membrane and mediates glucose entry into the 

hepatocytes (15). GLUT2 also mediates the export of glucose out of hepatocytes during gluconeogenesis 

(11).

LIPID METABOLISM  

Lipoproteins are particles that transport hydrophobic lipids in the blood and mediate their delivery to various 

tissues. Dietary fat enters circulation in chylomicrons, which are triglyceride-rich lipoproteins synthesized by 

enterocytes in the small intestine (28). On the vascular endothelium, lipoprotein lipase (LPL) releases fatty 

acids from chylomicrons (28). FFA can then be taken up by tissues, such as skeletal muscle and adipose 

tissue. The resulting chylomicron remnant particles are cleared from the circulation by the liver (28).  

The liver synthesizes both triglyceride and cholesterol, which are released into the circulation as very low 

density lipoproteins (VLDL) (28). Following the release of fatty acids from VLDL by endothelial LPL, 

VLDL are converted into VLDL remnants, intermediate density lipoproteins and finally into low density 

lipoproteins (LDL) (28). High density lipoprotein (HDL) particles can originate from the liver and the gut, 

and hydrolysis of chylomicrons and VLDL yield components which can form HDL particles (28).  

Insulin suppresses VLDL secretion by directly inhibiting the assembly and production of VLDL particles 

(29). In addition, insulin suppresses VLDL production indirectly by decreasing FFA availability for VLDL 
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assembly by inhibiting lipolysis in adipose tissue (29). Insulin acutely increases the activity of LPL in 

adipose tissue (30), but normally decreases the activity of LPL in skeletal muscle (29,31). Lipolysis in 

adipose tissue is a very insulin sensitive process. Insulin inhibits lipolysis primarily through inhibiting 

hormone sensitive lipase (HSL), the rate-limiting enzyme of intracellular triglyceride hydrolysis in adipose 

tissue (32,33). These combined effects of insulin tend to “keep fat where it belongs”, i.e. in adipose tissue 

(29).   

FIBRINOLYSIS AND OTHER EFFECTS 

PAI-1 is an inhibitor of fibrinolysis. Plasma PAI-1 concentrations are increased in insulin resistant subjects 

(34). In vitro, insulin increases the synthesis of PAI-1 in human vascular endothelial and smooth-muscle 

cells, and in hepatoma HepG2 cells (34,35). Insulin also increases PAI-1 expression in human subcutaneous 

adipocytes in vitro (36). The relative contributions of these tissues in vivo to PAI-1 production in different 

physiological and pathological situations are unknown.  

Physiologic concentrations of insulin acutely decrease the stiffness of large arteries measured using pulse 

wave analysis (37). Insulin has also been shown to cause vasodilatation in peripheral resistance vessels, but 

this effect requires prolonged or high doses of insulin and its physiologic relevance has therefore been 

questioned (29). In hypothalamus, insulin stimulates sympathetic nervous system resulting in e.g. increases 

in sympathetic nervous activity in muscle (29). Insulin also regulates the autonomic control of heart rate by 

decreasing vagal and increasing sympathetic tone (29).  

2.1.2. INSULIN RESISTANCE 

Insulin resistance is defined as the inability of insulin to produce its usual biological actions at circulating 

concentrations that are effective in normal subjects (29). Insulin resistance can develop to any of the 

metabolic actions of insulin.  

CAUSES OF INSULIN RESISTANCE 

Obesity 

Obesity is associated with an impaired action of insulin to inhibit glucose production and to increase glucose 

uptake (29). Body mass index (BMI), however, accounts only for a part of the variance in insulin sensitivity 

in the normal population, and the mechanisms by which obesity induces insulin resistance are poorly 

understood (29). Recent data would suggest that the amount of fat stored within the liver and skeletal muscle 

is the most proximal correlate of insulin resistance in obesity (38). In fact, fat may also accumulate in the 

liver and skeletal muscle in the absence of subcutaneous fat, in lipodystrophic conditions in humans and 

animals, as will be discussed later. 

Physical inactivity  
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Several prospective epidemiological studies have shown an inverse correlation between physical activity and 

the incidence of type 2 diabetes (29,39). Physical inactivity increases the risk of diabetes, even after 

adjusting for age, smoking, alcohol consumption, family history of diabetes, BMI, HDL-cholesterol, 

triglycerides and hypertension (29). Studies on the effects of physical exercise training in diabetic and non-

diabetic subjects suggest a preferential loss of visceral fat over total fat and a decrease in inflammatory 

markers, such as C-reactive protein (CRP) and tumor necrosis factor (TNF) α (40,41).  

Insulin and contractions of muscle fibers stimulate glucose uptake in skeletal myocytes through independent 

mechanisms (42). Contractions of the myocytes increase glucose uptake by stimulating the adenosine 

monophosphate-activated protein kinase (AMPK) (43). AMPK is an energy-sensing enzyme, which is 

activated in response to cellular fuel depletion, hypoxia and contraction (44). AMPK activation leads to 

increased glucose uptake, enhanced insulin sensitivity and increased oxidation of fatty acids in skeletal 

muscle, and to an increase in hepatic fatty acid oxidation and inhibition of glucose production in the liver 

(45,46).  

Gender

The glucose uptake is 45% higher in women than in men when expressed per kilogram of muscle tissue after 

controlling for age and maximal oxygen uptake (47). Female sex steroids are unlikely to be responsible for 

this gender difference, since estradiol does not improve insulin sensitivity in postmenopausal women (48).  

Age

Several factors, such as increasing adiposity, a reduction in muscle mass, physical inactivity, medications 

and coexisting illnesses may contribute to age-related insulin resistance (49). In a recent report, increased 

insulin resistance in healthy elderly people was associated with increased fat accumulation in skeletal muscle 

and the liver, and with a ~40% reduction in mitochondrial oxidative and phosphorylative activity in the 

muscle when compared to healthy young people matched for body composition and physical activity (50). 

These data would support the hypothesis that an inability of skeletal muscle and the liver to metabolize fatty 

acids, possibly because of mitochondrial dysfunction, may lead to intracellular accumulation of fatty acid 

metabolites and defects in insulin signaling and action in these tissues (51).  

2.1.3. ADIPOSE TISSUE 

Traditionally, adipose tissue was regarded merely as a passive energy reserve capable of storing lipids in the 

form of triacylglycerol at times of energy surplus, and releasing FFA and glycerol at times when energy 

expenditure exceeds energy intake. A grown-up person has usually 10 - 25 kg of fat, which stores 90 000 to 

225 000 kcal energy in the form of triglyceride (11). However, it is now recognized that adipose tissue has a 

wide range of endocrine and paracrine functions, and participates in the regulation of metabolism in other 

tissues. It is also important to bear in mind that adipose tissue does not consist of adipocytes only but also of 
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a variety of other functionally active cells such as preadipocytes, vascular endothelial and smooth muscle 

cells, fibroblasts, mast cells and macrophages (52).  

DIFFERENTIATION AND FUNCTION OF ADIPOCYTES  

Adipocytes originate from pluripotent mesenchymal stem cells, which can differentiate to adipocytes, 

myocytes, chondrocytes or osteoblasts (Fig. 1) (52,53). Stem cells first develop into preadipocytes and so 

become committed to the adipocyte lineage (54). The regulation of this first step is poorly known (54). 

Interestingly, it has recently been shown that under experimental conditions in mice preadipocytes can be 

converted also into macrophages (55).  

After being committed to the adipocyte lineage, the preadipocytes have an exponential growth phase, which 

leads to cell confluence and subsequently to a cell cycle arrest usually achieved through contact inhibition 

(54). Thereafter contact-inhibited preadipocytes re-enter the cell cycle due to hormonal induction and 

undergo a limited number of cell divisions known as the clonal expansion of preadipocytes (52).  

In the final step of differentiation, fibroblast-like preadipocytes accumulate intracellular lipids and become 

typical round adipocytes. The main regulators of the terminal differentiation are three classes of transcription 

factors: CCAAT/enhancer-binding proteins (C/EBPs), peroxisome proliferator-activated receptor (PPAR) γ

and SREBP-1c (Fig. 1) (52). These transcription factors act in a sequential cascade. First, C/EBPβ and δ are 

transiently induced and seem to have a direct transcriptional effect through C/EBP binding sites in the 

PPARγ promoter. PPARγ is then responsible for inducing C/EBPα. PPARγ and C/EBPα reinforce the 

expression of each other, thus ensuring sufficient expression of the two major stimulators of adipocyte 

differentiation (53). PPARγ and C/EBPα synergistically activate differentiation-linked gene expression. 

Many of these genes are known to have binding sites for both C/EBP proteins and PPARγ (53). In addition to 

C/EBPβ- and δ-dependent induction, PPARγ expression can also be induced by SREBP-1c, which may 

additionally be involved in the production of an endogenous PPARγ ligand and consequently increase 

PPARγ activity (53). SREBP-1c stimulates adipogenesis not only via inducing PPARγ, but also by directly 

activating expression of adipogenic genes (56). Eventually, the activation of the transcription factors results 

in de novo or enhanced expression of genes that characterize the mature adipocyte phenotype along with 

massive triglyceride accumulation. The products of these genes include e.g. fatty acid synthase (FAS), 

GLUT4, insulin receptor and adipocyte lipid binding protein (ALBP) (53). 

Factors stimulating adipogenesis 

The combination of insulin, dexamethasone and cyclic adenosine monophosphate (cAMP) is conventionally 

used to stimulate adipocyte differentiation in vitro (57). Insulin increases the percentage of preadipocytes  
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Figure 1. Differentiation of an adipocyte from a multipotent mesenchymal stem cell. After the clonal 
expansion of preadipocytes a cascade of several transcription factors gets activated. PPARγ is the major 
transcription factor for the activation of adipogenic genes, which results in lipid accumulation and final 
maturation of the adipocyte.

that differentiate, adipocyte lipogenesis and it also has antiapoptotic activity (53). Glucocorticoids are 

believed to stimulate adipogenesis through binding to glucocorticoid receptor. Glucocorticoid-induced 

transcriptional effects in adipocyte differentiation may include induction of C/EBPδ expression and 

reduction of the expression of preadipocyte factor-1, which is a negative regulator of adipogenesis (53). 

Increase in cellular cAMP concentration promotes adipocyte differentiation at least in part, by inducing 

C/EBPβ, but may also act through the cAMP response element binding protein (CREB) (53). 

Factors inhibiting adipocyte differentiation 

Inflammatory cytokines, such as TNFα, IL-1, IL-6, IL-11 and interferon γ inhibit adipocyte differentiation in 

vitro, and may contribute to atrophy of adipose tissue in cancer cachexia, inflammatory and chronic 

infectious diseases (56). Exposure of preadipocytes to TNFα or to other inflammatory cytokines inhibits 

adipogenesis by blocking induction of PPARγ and C/EBPα (56). Growth hormone has been shown to 
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decrease adiposity in vivo through activation of lipolysis (56). However, in vitro growth hormone can both 

promote and inhibit adipocyte differentiation (58). 

Physiology of mature adipocytes 

Surplus energy is stored in adipocyte lipid droplets as triglycerides. Depending on the size of the lipid 

droplet, the mature adipocyte can change its diameter by 20-fold and the volume by several thousand-fold 

(9).

Adipocytes synthesize triglycerides from fatty acids. In order to enter the adipocytes, fatty  acids must first be 

released from circulating triglyceride-rich lipoproteins, chylomicrons and VLDL (Fig. 2). The release of 

fatty acids from circulating lipoproteins is catalyzed by LPL, which is located on the adipose tissue capillary 

endothelium (11). The activity of LPL is regulated mainly by insulin, but is also controlled by the removal 

rate of liberated fatty acids from the capillary, i.e. if fatty acids are not taken up by adipocytes, LPL activity 

decreases (59). The less fatty acids are taken up by the adipocytes, the more fatty acids enter the general 

circulation and reach the liver and skeletal muscle  (59). 

Entry of fatty acids into the adipocyte is likely to occur both by passive diffusion and active transport (Fig. 

2) (60). Three groups of proteins have been implicated in the transport process: fatty acid transport proteins 

(FATPs), CD36 also known as fatty acid translocase (FAT), and plasma membrane-associated fatty acid 

binding protein (FABPpm). Their expression is upregulated during adipocyte differentiation (60). Acylation 

stimulating protein (ASP) is another protein regulating the uptake of fatty acids by the adipocyte. ASP is 

formed via posttranslational interactions of three proteins secreted by adipocytes: factor B, adipsin (factor D) 

and the third component of complement C3 (61).  

Once inside the adipocyte, fatty acids are bound to cytoplasmic fatty acid-binding proteins (FABP). Two 

FABPs are expressed in human white adipose tissue, ALBP (the human homologue of the mouse aP2) and 

keratinocyte lipid binding protein (KLBP) (Fig. 2) (62). Acyl coenzyme A synthase (ACS) in turn catalyzes 

the conversion of long-chain fatty acids to their acyl CoA esters than can then be used either for the synthesis 

of triglycerides or for oxidation in mitochondria (63).  

The breakdown of adipocyte intracellular triglycerides, lipolysis, is catalyzed by HSL (Fig. 2). Insulin and 

ASP decrease lipolysis by increasing re-esterification of fatty acids and inhibiting HSL activity (61,64). 

Other regulators of lipolysis include TNFα, which increases lipolysis (65), and autonomous nervous system, 

which increases lipolysis via β1- and β2- receptors, or decreases lipolysis via α2-receptors (66).   
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Figure 2. Schematic picture of FFA trafficking in the adipocyte. FFA (• ) are released from triglyceride-rich 
lipoproteins (VLDL, chylomicrons) on capillary endothelium by LPL. FFA can then enter the adipocyte via 
passive diffusion or by using transport proteins (FATP-1 and -4, FAT/CD36, FABPpm). Intracellular FFA 
are bound to ALBP or KLBP. ACS catalyzes the formation of AcylCoA, which can either be oxidized in 
mitochondria or used for triglyceride synthesis. Glucose uptake via GLUT4 and GLUT1 transporters is 
needed for glycerol formation. HSL catalyzes breakdown of intracellular triglycerides.

In addition to storing and releasing fatty acids, adipose tissue is capable of producing a large number of 

proteins such as adiponectin, leptin, TNFα, IL-6, LPL, PAI-1, tissue factor, angiotensinogen, adipsin, ASP, 

some of which are important in the regulation of whole body metabolism (Chapter 2.1.3.). Of note, some of 

these proteins do not exclusively originate from adipocytes, but also from other cells such as macrophages 

and endothelial cells present in adipose tissue.  

Brown adipose tissue 

The primary function of brown adipose tissue is not to store energy but to produce heat. Brown adipocytes 

differ from white adipocytes morphologically: brown adipocytes are rich in mitochondria and store lipids in 

small droplets instead of one large droplet as seen in white adipocytes (67). In rodents, brown and white 

adipocytes have specific tissue distribution; inguinal, epididymal and retroperitoneal depots contain mainly 

white adipocytes, whereas interscapular and perirenal depots contain mainly brown adipocytes (68). 
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Abundant brown adipose tissue is present in human newborns, primarily in the thoracic cavity surrounding 

the great vessels (53). In healthy human adults, there are no specific brown fat depots, but occasional brown 

adipocytes can be detected within normal white adipose tissue (68). Expression of uncoupling protein-1 

(UCP-1), which confirms the presence of brown adipocytes, has been found to be significantly increased in 

omental vs. subcutaneous fat both in lean and obese subjects (69). It has been estimated that in omental fat 

approximately 1 in 100-200 adipocytes is brown (69).  

The PPARγ coactivator –1 (PGC-1) is expressed in brown fat, skeletal muscle, heart, kidney and brain, but 

not in white fat in mice (53). PGC-1 may preferentially direct preadipocytes to a brown adipocyte phenotype, 

since overexpression of PGC-1 in human and mouse white adipocytes in culture induces endogenous UCP-1 

expression and mitochondrial biogenesis (53,70).  

PGC-1 expression has not been measured in patients with HAL, but is an interesting protein in this context 

for multiple reasons. As a co-activator of PPARγ (71), it may affect adipogenesis via PPARγ activation. In 

addition, PGC-1 has been shown to regulate mitochondrial biogenesis (72), which may have impact in the 

pathogenesis of the mitochondrial alterations observed in HAL (Chapter 2.3.4.). Furthermore, in muscle cells 

in vitro, adenovirus-mediated PGC-1 expression results in increased GLUT4 expression (73). PGC-1 

expression in transgenic mice has been shown to convert type II muscle fibers into type I which are rich in 

mitochondria, express more GLUT4 and are more dependent in oxidative metabolism than type II fibers 

(74).

ADIPOSE TISSUE AS A REGULATOR OF WHOLE BODY INSULIN RESISTANCE  

Mechanisms of insulin resistance in adipose tissue 

The mechanisms underlying insulin resistance in adipocytes are not fully understood. Subcutaneous 

adipocytes from patients with type 2 diabetes have reduced IRS-1 protein expression and reduced PI 3-kinase 

activity when compared to adipocytes from non-diabetic subjects (75). Low messanger RNA (mRNA) and 

protein levels of IRS-1 in subcutaneous adipocytes have also been found in healthy individuals with an 

increased risk of type 2 diabetes, i.e. in massively obese subjects and subjects with first-degree relatives with 

type 2 diabetes (76). Those healthy adults, who had low IRS-1 expression in subcutaneous adipocytes had 

also impaired downstream insulin signaling, reduced PI 3-kinase activation, GLUT4 expression and insulin-

stimulated glucose transport in adipocytes (77). Low IRS-1 expression in subcutaneous adipocytes of insulin 

resistant subjects was associated with decreased expression of genes related to fat cell differentiation, such as 

adiponectin, ALBP, PPARγ and LPL (77,78). Women with gestational diabetes have been reported to have a 

decreased cellular content of GLUT4, but normal content of GLUT1 in isolated omental adipocytes (79). 

Similarly, GLUT4 expression in SAT has been reported to be reduced both in obese patients with type 2 

diabetes and in obese non-diabetic subjects when compared to lean controls (80).  
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Free fatty acids 

FFA have emerged as a major link between obesity and insulin resistance (81). In normal subjects, an acute 

elevation of FFA by a lipid infusion decreases insulin-stimulated glucose uptake (82,83). It has been 

demonstrated using MRI spectroscopy that FFA infusion into healthy humans causes a decrease in 

intracellular glucose-6-phosphate concentration in skeletal muscle (84). This decrease was a consequence of 

reduced insulin-stimulated glucose transport and insulin-stimulated induction of PI 3-kinase activity (84).  

Acute elevation of FFA in the plasma inhibits the ability of insulin to suppress glucose production in the 

liver (82,85). Although data are somewhat contradictory, increased plasma FFA may reduce hepatic insulin 

clearance (86). Because approximately half of the insulin secreted by β-cells is removed on first pass by the 

liver, this reduction in clearance may contribute to peripheral hyperinsulinemia in insulin resistance (86).  

Adipocytokines 

The term adipocytokine is used to describe a wide range of proteins produced by adipose tissue. 

Adipocytokines include both classical cytokines such as TNFα and IL-6, and other proteins, such as 

adiponectin and leptin (87). Adipocytokines may act locally as autocrine or paracrine factors, or have 

remote-acting endocrine functions. 

Adiponectin

In 1995, a novel 30-kDa secretory protein, which was later named adiponectin, was described in 3T3-L1 

adipocytes (88). The protein was expressed exclusively in adipocytes and its mRNA was induced 100-fold 

during adipocyte differentiation (88). Adiponectin was originally named Acrp30 (adipocyte complement-

related protein of 30 kDa) and later was also called AdipoQ, apM1, GBP28 (89).  

Since adiponectin is exclusively expressed in adipocytes, it was surprising that the plasma concentrations in 

humans were inversely rather than directly correlated with BMI both in women and men, although women 

had higher plasma concentrations than men (90). Adiponectin concentrations have also been shown to 

increase after weight loss (91). Adiponectin seems to act as a metabolically protective adipocytokine, since 

age- and BMI-matched diabetic patients have lower serum adiponectin concentrations than non-diabetic 

subjects (91). Furthermore, diabetic and non-diabetic patients with coronary artery disease have lower 

adiponectin concentrations than diabetic or non-diabetic subjects without coronary artery disease, 

respectively (91,92). Adiponectin mRNA levels were significantly reduced in omental adipose tissue of 

obese patients with type 2 diabetes compared with lean and obese normoglycemic subjects (93). Although 

less pronounced, adiponectin mRNA levels were reduced also in SAT of type 2 diabetic patients (93).  

In addition to the cross-sectional studies listed above, the role for adiponectin in the development of insulin 

resistance has been evaluated in some longitudinal animal and human studies. In a prospective study with 
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rhesus monkeys, decrease in plasma adiponectin concentration paralleled with the development of insulin 

resistance and this decrease preceded overt hyperglycemia (94). In apparently healthy humans, high 

concentrations of adiponectin seem to be associated with a substantially reduced relative risk of developing 

type 2 diabetes even after adjusting for age, sex, waist to hip ratio (WHR), BMI, smoking, exercise, alcohol 

consumption, education and HbA1c concentration at baseline (95). Similarly, baseline plasma adiponectin 

concentration was lower in those Pima Indians who after a mean follow-up of 6.7 years developed diabetes 

than in those who did not develop diabetes matched for age, sex, BMI (96).  

Further evidence for an antidiabetic and cardioprotective role of adiponectin has been obtained in animal and 

in vitro studies. Infusion of adiponectin reverses insulin resistance both in obese and lipoatrophic mouse 

models (22). In vitro adiponectin has been shown to inhibit the TNFα-induced expression of endothelial 

adhesion molecules (97). Furthermore, adiponectin suppresses the in vitro transformation of human 

monocyte-derived macrophages into foam cells (98). 

Regulation of adiponectin expression has recently been evaluated in several studies. Known inhibitory 

regulators of adiponectin expression in 3T3-L1 adipocytes include TNFα and dexamethasone (99), IL-6 

(100) and ghrelin (101). TNFα also decreases adiponectin expression in differentiating primary human 

adipocytes (102). Both TNFα and IL-6 decrease adiponectin mRNA levels also in cultured human SAT 

(103). In non-diabetic subjects, adiponectin expression in SAT has been shown to have an inverse correlation 

with the expression of TNFα, but not with the expression or plasma levels of IL-6 concentration (104). The 

effect of insulin on adiponectin expression remains controversial even in 3T3-L1 cell line; one study showed 

an insulin-induced inhibition of adiponectin expression (99), whereas in another study insulin enhanced the 

secretion of adiponectin (105). In humans, insulin appears to decrease circulating levels of adiponectin (106). 

β-Adrenergic stimulation inhibits adiponectin expression in human visceral adipose tissue (VAT) explants 

(107) and 3T3-L1 adipocytes (108). In mice, castration increases plasma adiponectin concentrations and 

improves insulin sensitivity (109). Treatment with thiazolidinediones increases adiponectin plasma 

concentrations in humans (110) and adiponectin mRNA concentrations in adipose tissue of obese mice (111). 

A functional PPAR-responsive element was recently identified in the human adiponectin promoter (112).  

The molecular mechanisms by which adiponectin enhances insulin sensitivity are still incompletely 

understood. Infusion of adiponectin decreases insulin resistance and triglyceride content in skeletal muscle 

and in the liver both in obese and lipoatrophic mice (22). Adiponectin increases fatty acid oxidation in 

isolated muscle in mice (113). Both globular and full-length adiponectin stimulate phosphorylation and 

activation of AMPK in skeletal muscle (21). In parallel with the activation of AMPK, adiponectin stimulates 

phosphorylation and thereby inhibition of acetyl coenzyme A carboxylase (ACC) activity (21). Lower ACC 

activity leads to a fall in malonyl-CoA content and relieves the inhibitory effect of malonyl-CoA on carnitine 
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palmitoyl transferase 1, which results in enhanced entry of fatty acids into mitochondria for oxidation 

(21,114). In isolated rat hepatocytes, adiponectin increases the ability of insulin to suppress glucose 

production (20). Full-length adiponectin, but not the globular domain was capable of activating AMPK in the 

mouse liver and subsequently reduced expression of molecules involved in gluconeogenesis, such as PEPCK 

and glucose-6 phosphatase (21). 

 Very recently, two adiponectin receptors (AdipoR) have been cloned (115). Human and mouse AdipoR1 

share 96.8% and AdipoR2 95.2% identity (115). In mice, AdipoR1 is abundantly expressed in skeletal 

muscle, whereas AdipoR2 is predominantly expressed in the liver (115).  

Leptin 

Leptin is the protein product of the obese (ob) mouse gene cloned in 1994 (116). Leptin is expressed mainly, 

but not exclusively in white adipocytes (117). Originally leptin was thought to act merely as a satiety 

hormone (118) and reduce food intake via central mechanisms. Today, however, it is clear that leptin has 

multiple other functions, such as regulation of the hypothalamic-pituitary-endocrine axes, hematopoiesis, 

angiogenesis, immune functions, osteogenesis, and wound healing (117).  

Since leptin expression in adipose tissue is increased in obese humans (119), and serum leptin concentration 

and mRNA in adipocytes are positively correlated with total body fat, it has been suggested that obese 

people are resistant to the effects of leptin (120). Since leptin treatment induces weight loss in leptin-

deficient (ob/ob) obese mice (121), exogenous leptin therapy has also been tested in human obesity. 

However, leptin treatment in normal obese humans with high leptin concentrations, induced only modest 

weight loss in a few subjects and had no effect on glycemic control (122). However, in patients with 

different forms of non-HIV lipodystrophy with low baseline leptin levels, leptin treatment induced a marked 

improvement in glycemic control (123). In this study, the improvements in hepatic and skeletal muscle 

insulin sensitivity were associated with a decrease in hepatic and muscle triglyceride content (124). 

Pro-inflammatory cytokines 

TNFα has been suggested to contribute to obesity-induced insulin resistance. TNFα is overexpressed in 

adipose tissue of obese humans and its expression is decreased by weight loss (125). Although TNFα

appears to be secreted into conditioned media of human adipose tissue explants (126), the release of TNFα

from adipose tissue to the circulation has not been shown in vivo (127). TNFα mRNA levels in human 

adipose tissue have been shown to correlate closely with the level of hyperinsulinemia (126). However, 

correlations between TNFα expression in SAT and BMI or insulin sensitivity have not been found in all 

studies (128).  
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The cellular actions of TNFα are mediated through two receptors, TNFα receptor 1 (TNFR1 or p60 in 

humans, and p55 in rodents), and TNFR2 (p80 in humans and p75 in rodents) (129). The suggested 

mechanisms of TNFα to cause insulin resistance involve increased lipolysis and a consequent increase in 

circulating FFA levels, decrease in GLUT4, insulin receptor and IRS-1 synthesis, inhibition of PPARγ

synthesis and/or function, and serine phosphorylation of IRS-1 (130). However, the contribution of TNFα to 

insulin resistance in humans still remains to be defined; the first trial using TNFα-neutralizing antibodies 

failed to change insulin sensitivity in patients with type 2 diabetes (131). 

IL-6 is secreted from SAT to the circulation and adipose tissue-derived IL-6 is estimated to account for 15-

35% of its total circulating concentration in humans (127). Serum concentrations of IL-6 are increased in 

obesity (132) and in type 2 diabetes (133), and correlate with the degree of insulin resistance in non-diabetic 

subjects (134,135). IL-6 protein content in adipose tissue has been found to be inversely correlated with in 

vivo insulin-stimulated glucose uptake, and in vitro glucose uptake in human subcutaneous adipocytes (136). 

Weight loss enhances insulin sensitivity and is associated with a decrease in IL-6 protein levels in both SAT 

and serum (137). Furthermore, the change in circulating IL-6 level has been found to correlate with the 

improvement in insulin sensitivity after weight loss (138).  

The mechanisms linking IL-6 to insulin resistance are not fully understood. In the human hepatocarcinoma 

cell line, HepG2, IL-6 decreases tyrosine phosphorylation of IRS-1 and the association of the p85 subunit of 

PI 3-kinase with IRS-1, and inhibits insulin-dependent activation of protein kinase B (139). IL-6 does not 

cause an acute lipolytic effect in human adipocytes (140). In 3T3-L1 adipocytes, IL-6 decreases transcription 

of IRS-1, GLUT4 and PPARγ genes, and insulin-stimulated glucose transport (140).                   

Resistin 

Resistin is a peptide hormone, which has been shown to impair glucose tolerance and insulin action in 

normal mice (141). Administration of anti-resistin antibody has been shown to improve glycemia and insulin 

action in mice with diet-induced obesity (141). However, several studies have later reported an association 

between decreased rather than increased resistin expression and insulin resistance in various rodent models 

(142). Resistin mRNA (143) and protein (144) concentrations were significantly increased in abdominal 

subcutaneous and omental fat when compared with breast and thigh subcutaneous fat in non-diabetic 

subjects. However, the role of resistin in human insulin resistance remains elusive, since several studies have 

not been able to detect resistin mRNA in human adipocytes (142). 

 METABOLIC CHARACTERISTICS OF DIFFERENT ADIPOSE TISSUE DEPOTS  

Already in the 1950s, the association between android, i.e. upper body obesity and type 2 diabetes was 

recognized (145). In 1985, Ashwell et al. studied fat distribution using computed tomography (CT) and 
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suggested that the metabolic complications of obesity may relate specifically to the amount of intra-

abdominal fat (146). Intra-abdominal fat can be further divided into an intraperitoneal depot (omental [0.5-3 

kg] and mesenteric [0.5-2 kg]) and retroperitoneal, i.e. perirenal fat (0.5-2 kg) (147). Omental and mesenteric 

fat depots are also referred to as visceral fat since their venous drainage is mainly through the portal vein 

(147). However, subcutaneous fat is the largest abdominal fat depot with an estimated weight of 1-20 kg 

(147). Of the whole body adipose tissue mass, subcutaneous fat constitutes at least 80% in both lean and 

obese subjects (148).   

Intra-abdominal fat 

VAT constitutes less than 20% of the whole body adipose tissue. Thus, for VAT to be more important than 

SAT in the pathogenesis of insulin resistance, there should be significant differences in the metabolic activity 

of VAT vs. SAT. Indirect evidence in favor of major functional differences between fat depots comes from a 

study, in which obesity was treated surgically with adjustable gastric binding (AGB) only, or with AGB and 

removal of the greater omentum fat which represented less than 1% of total fat mass (149). After 24 months, 

improvements in insulin sensitivity, and decreases in fasting plasma glucose and insulin concentrations were 

2-3 times greater in omentectomized subjects as compared to those treated with AGB only (149). 

The anatomic location of VAT may make it more important than SAT in the development of insulin 

resistance. Due to the portal venous drainage of visceral fat, the liver may get exposed to high concentrations 

of FFA and adipocytokines released from VAT, which could then stimulate hepatic glucose production and 

triglyceride synthesis, and decrease insulin clearance by the liver (147,150).   

Gene expression in VAT vs. SAT in humans has been evaluated in several studies (Table 1). Omental fat 

secretes more IL-6 than subcutaneous fat, although IL-6 secreted from the isolated adipocytes is estimated to 

account only for ~10% of the total adipose tissue release (151). By contrast, leptin expression is higher in 

SAT than VAT (152,153). Some other adipocytokines, such as TNFα are similarly expressed in both SAT 

and VAT (148). It is impossible to draw firm conclusions regarding the expression of most genes, since they 

have only been evaluated in a single study or because the results from diverse studies show conflicting 

results. Furthermore, since many of these studies have included morbidly obese subjects, the results may not 

be generalizable to people with normal or moderately increased body weight.  
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Omental and mesenteric adipocytes have higher rate of lipolysis, i.e. FFA release, than subcutaneous 

adipocytes, and their lipolysis is more readily stimulated by catecholamines and less readily suppressed by 

insulin (147,150,176). Unexpectedly, in one study the mRNA expression and the activity of HSL, which is 

the major determinant of the maximum lipolytic capacity of human fat cells (177), was found to be higher in 

SAT than in VAT (165). In two other studies available, HSL expression was not different between VAT and 

SAT (152,162).  

In the view of stable or increasing amount of VAT in obese subjects, increased lipolysis in VAT should be 

compensated by increased lipogenesis. This has been shown in a study, where the uptake of orally 

administered fatty acids was ~50% higher in VAT than in SAT (178). However, in vitro triacylglycerol 

synthesis was greater in human SAT fragments and subcutaneous preadipocytes than in omental adipose 

tissue and preadipocytes (179). LPL regulates hydrolysis of plasma triglycerides and consequently FFA 

availability for deposition in adipose tissue. LPL mRNA expression has either been reduced in VAT 

compared to SAT (167) or it has been similar in both fat depots (152,162).   

Subcutaneous fat  

The origin and concentration of FFA in the human portal vein are poorly known due to the difficult anatomic 

accessibility of the portal vein. According to catheterization studies, only ~10% of the FFA reaching the liver 

originate from VAT (147,180). Postprandial FFA delivery to the liver is greater in women with upper than 

lower body obesity (181). The excess FFA, however, seem to originate from the non-splanchnic adipose 

tissues rather than from VAT (181).  

Paucity rather than excess of lower body subcutaneous fat may independently contribute to the development 

of insulin resistance and diabetes. In a cross-sectional study, a narrow hip circumference adjusted for age, 

BMI and waist circumference was associated with features of insulin resistance (182). Conversely, the 

protective role of abundant lower body subcutaneous fat was demonstrated in a recent prospective study 

where large hip and thigh circumferences at baseline were associated with a lower risk of development of 

type 2 diabetes, independently of BMI, age and waist circumference (183). 

Taken together, there are differences in the metabolic activity of VAT vs. SAT. However, the exact 

mechanisms of these different fat depots to contribute to insulin resistance in humans in vivo are currently 

not fully understood.  

2.1.4. FAT IN INSULIN SENSITIVE TISSUES OTHER THAN ADIPOSE TISSUE  

Patients with excess (the obese) or too little (the lipoatrophic) adipose tissue are insulin resistant and at 

increased risk of developing type 2 diabetes. A common denominator for both groups appears to be 

excessive deposition of lipids in the liver and skeletal muscle (38).  
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THE LIVER 

The term “nonalcoholic fatty liver disease” (NAFLD) is used to describe a spectrum of abnormalities ranging 

from simple steatosis to nonalcoholic steatohepatitis (NASH) (184). The term “nonalcoholic steatohepatitis” 

was originally used to describe liver disease that histologically mimicked alcoholic hepatitis and that could 

progress to cirrhosis (185). Steatosis without inflammation seems to be a benign condition (186). It has been 

suggested that the development of NASH requires two pathogenic steps: hepatic fat accumulation and 

thereafter oxidative stress capable of initiating significant lipid peroxidation and cytokine induction 

(187,188).  

Both steatosis and NASH are associated with obesity and diabetes (189). Subjects with normal glucose 

tolerance, who had biopsy-proven NAFLD with or without steatohepatitis had central fat accumulation, 

increased triglycerides and uric acid, and a low HDL cholesterol irrespective of BMI (190). In the same 

study, patients with NAFLD had impaired insulin-induced suppression of hepatic glucose production, and 

reduced glucose disposal rate when compared to healthy subjects even after adjusting for age, BMI and 

WHR (190).  

Liver fat content measured using spectroscopy has been found to be more closely correlated with insulin-

induced suppression of hepatic glucose production in type 2 diabetic patients than any other measure of body 

composition (191). In healthy non-diabetic men, liver fat content was associated with several features of 

insulin resistance, including hyperinsulinemia, hypertriglyceridemia, a low HDL cholesterol concentration 

and high 24-h systolic blood pressure, and impaired insulin-induced suppression of hepatic glucose 

production and of serum FFA concentration (19). Similarly in obese non-diabetic women, those with higher 

liver fat content had an increased serum triglyceride and insulin concentrations, a lower HDL cholesterol 

concentration, higher 24-h systolic and diastolic blood pressure, and lower glucose uptake during 

hyperinsulinemic euglycemic clamp than women with lower liver fat content but similar BMI (192).  

SKELETAL MUSCLE 

With MRI proton spectroscopy it is possible to non-invasively differentiate intramyocellular lipid (IMCL) 

from extramyocellular lipid (193,194). Using spectroscopy, a group of healthy men with higher IMCL have 

been shown to have reduced glucose uptake when compared to healthy men with lower IMCL independent 

of BMI and physical fitness (195). In obese subjects with unaltered insulin sensitivity, the preservation of 

insulin sensitivity has been associated with unaltered IMCL content, but increased fat oxidation when 

compared to lean subjects (196). 

Aerobic fitness and recent strenuous exercise are important confounding factors when interpreting the 

relationship between IMCL and insulin resistance. A 2-week training program has been shown to 
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significantly increase IMCL whereas insulin sensitivity tended to improve (197). On the other hand, a 3-hour 

cycling exercise has been found to acutely decrease IMCL content (197).  

MECHANISMS OF INSULIN RESISTANCE WITH FAT ACCUMULATION IN THE LIVER AND 

SKELETAL MUSCLE  

Since triglycerides themselves are inert, increased intracellular triglyceride content is likely to be merely a 

surrogate marker of some other fatty acid-derived factor(s), such as long chain acyl-CoA, which can induce 

insulin resistance by multiple mechanisms, including diacylglycerol formation, activation of protein kinase 

C-theta, and ultimately serine, instead of tyrosine, phosphorylation of IRS-1, and reduction in PI 3-kinase 

activity (84,198,199). Other potential mechanisms of long chain acyl-CoA to induce insulin resistance 

include inhibition of insulin signaling via de novo ceramide synthesis and direct inhibition of hexokinase and 

glycogen synthase (200).  

2.1.5. MOUSE MODELS OF LIPODYSTROPHY 

Several mouse models of lipodystrophy with varying severity of fat loss have been reported in recent years. 

These models have been crucial in understanding the deleterious effects of the accumulation of lipids in 

insulin sensitive tissues, such as the liver and skeletal muscle, when adipose tissue cannot normally store fat.  

Adipocyte specific-expression of diphtheria toxin A chain virtually eliminates white and brown fat in mice 

(8). Histologic examination of fat revealed atrophy, necrosis and monocytic infiltration, livers were enlarged 

and filled with fat, and mice developed diabetes (8). Troglitazone significantly decreased serum glucose, 

insulin, triglyceride, FFA and cholesterol concentrations, but did not change serum leptin concentration, or 

liver or muscle fat content in these mice (8). 

Another model of fatless mouse was developed by expressing a truncated nuclear version of SREBP-1c in 

adipocytes (201,202). Surprisingly, overexpression of truncated SREBP-1c, a known adipogenic 

transcription factor, reduced adipose tissue mass and induced hypoleptinemia, hepatic steatosis and type 2 

diabetes (201,202). Continuous leptin infusion decreased liver fat content and corrected insulin resistance 

(202).     

A fatless mouse has also been developed by expressing a dominant-negative protein, termed A-ZIP/F (203). 

These A-ZIP/F-1 transgenic mice have no white fat, dramatically reduced brown fat, severe hepatosteatosis, 

diabetes, reduced serum leptin and increased glucose, insulin, triglyceride and FFA concentrations (203). 

Transplantation of wild-type fat tissue to A-ZIP/F-1 fatless mice reversed hyperglycemia, lowered insulin 

concentrations, improved muscle insulin sensitivity, corrected insulin signaling defects and normalized fat 

content in the liver and muscle (204,205).  
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2.1.6. NON-HIV HUMAN LIPODYSTROPHIES

Human lipodystrophies are rare genetic or acquired disorders characterized by total or partial loss of adipose 

tissue (lipoatrophy) and occasionally by local accumulation of fat (lipohypertrophy). The prevalences for the 

congenital forms have been estimated to be in the range of 1:10 million people (7). Of note, lipodystrophy 

must be differentiated from paucity of adipose tissue due to negative energy balance, e.g. due to starvation or 

extreme physical training. In contrast to lipodystrophies, in the latter condition the remaining adipocytes are 

functionally normal and retain the ability to store lipids during periods of energy surplus.   

Human lipodystrophies can be classified according to the presumed etiopathogenesis, i.e. genetic, presumed 

inflammatory or autoimmune, and acquired lipodystrophies; or according to the severity of fat loss, i.e. 

generalized or partial (206). Various forms of congenital lipodystrophies have been described, such as 

congenital generalized (Berardinelli-Seip syndrome) and familial partial (Dunnigan and Köbberling variety) 

lipodystrophies (7,206). Presumed inflammatory or autoimmune lipodystrophies include acquired 

generalized (Lawrence syndrome), acquired partial (Barraquer-Simons syndrome) and injection site -

associated lipodystrophy e.g. due to insulin injections before the availability of purified or human insulin 

(7,206).  

Mutations causing Dunnigan-type partial lipodystrophy have recently been described (207). These mutations 

are found in the LMNA gene, which encodes type A lamins (207). Nuclear lamins are filament-type proteins 

that are the major building blocks of the nuclear lamina, a fibrous proteinaceous meshwork underlying the 

inner nuclear membrane thereby giving the cell nucleus its shape and interacting with proteins that regulate 

gene expression (206,208). The binding of lamin A to SREBP-1 is reduced by mutations causing 

lipodystrophy (209). Since SREBP-1 is a transcription factor, which promotes adipocyte differentiation, this 

defective interaction has been suggested to, at least partly, cause loss of fat in Dunnigan lipodystrophy (209).  

Clinical and laboratory findings of lipodystrophic patients vary considerably, but they usually include insulin 

resistance and type 2 diabetes, hypertriglyceridemia, low HDL-cholesterol concentration, hypertension and a 

fatty liver (7,206). Women may suffer from oligo-amenorrhea and polycystic ovaries. Severe 

hypertriglyceridemia may cause pancreatitis, and fatty liver may lead to cirrhosis (7). Early onset diabetes 

and dyslipidemia are likely to accelerate atherosclerosis (7,210). 

There are only limited data regarding treatment of lipodystrophy and its complications. Metformin may work 

in lipoatrophic diabetic patients, but the efficacy has been described in a single case report only (206,211). 

Insulin at very large doses may correct metabolic abnormalities in lipodystrophic patients with diabetes, 

whereas sulfonylureas have not been useful (206). Thiazolidinediones would seem ideal to treat 

lipodystrophy since they both improve insulin sensitivity and increase adipose tissue mass (212). In an open-

label, uncontrolled study including 20 patients with various forms of lipodystrophy, use of troglitazone for 
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six months was shown to significantly decrease HbA1c levels, triglyceride and FFA concentrations (213). 

The respiratory quotient decreased significantly suggesting increased fat oxidation. Body fat measured by 

dual-energy x-ray absorptiometry (DEXA) increased significantly and MRI showed an increase in 

subcutaneous but not visceral fat. The size of the liver measured using MRI decreased (213). The effect of 

leptin has been studied in a small open-label, uncontrolled study in nine lipodystrophic patients with low 

serum leptin concentrations at baseline (123). Treatment with subcutaneous recombinant leptin injections for 

four months decreased HbA1c, triglyceride and FFA concentrations. Liver size decreased on the average by 

28%. Body weight decreased in all but one patient. The effects on body composition were not reported (123). 

Leptin treatment in three of these patients significantly reduced hepatic and intramyocellular lipid content, 

and enhanced the insulin-induced suppression of hepatic glucose production and the insulin-stimulated 

peripheral glucose disposal (124).  

2.2. HIV INFECTION AND ANTIRETROVIRAL THERAPY 

2.2.1 HISTORY OF THE HIV EPIDEMIC 

On June 5, 1981 Centers for Disease Control published a report of five cases of Pneumocystis carinii 

pneumonia among previously healthy young men in Los Angeles (214); this report is often referred to as the 

beginning of general awareness of acquired immunodeficiency syndrome (AIDS). It was soon realized that a 

new acquired disease of cellular immunodeficiency that manifested as Pneumocystis carinii pneumonia, 

Kaposi’s sarcoma, mucosal candidiasis and other opportunistic infections had emerged among gay men, 

intravenous drug users and hemophiliacs (215). By 1982, the new disease was being referred to by its new 

name “AIDS” (216). In May 1983, Dr Montagnier’s group from France reported an isolation of a new virus, 

which they believed was the cause of AIDS (217). In 1984, Dr Gallo’s group reported isolation of a new 

human retrovirus from blood samples of patients with AIDS and at risk for AIDS (218). It was later shown 

that LAV (lymphadenopathy-associated virus) described by Dr Montagnier and HTLV-III (human T-cell 

leukemia virus III) described by Dr Gallo were the same virus, and in 1986 the virus was renamed HIV 

(Human Immunodeficiency Virus) (219).  

By 1999, according to World Health Organization, HIV infection had become the fourth leading cause of 

death worldwide after ischemic heart disease, cerebrovascular disease and acute lower respiratory infections 

(220). Among infectious disease pathogens, HIV causes more deaths than any other single agent (220). In 

2002, 42 million people were estimated to live with HIV, the vast majority of them in sub-Saharan Africa, 

and in 2002 alone, 3.1 million people died from HIV/AIDS (221).  

2.2.2. PATHOGENESIS  

CD4+ T LYMPHOCYTES 
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Loss of immune system competence, and in particular, loss of cellular immunity is the major cause of 

clinical symptoms of HIV infection. T-lymphocytes expressing a CD4-receptor (CD4+ cells) are a critical 

component of intact cellular immunity. Loss of CD4+ cells occurs throughout HIV disease with an 

approximate decline of 80-90 cells/mm3 per year (222). Since the beginning of the HIV epidemic, the blood 

CD4+ count has been used to indicate disease stage. CD4+ counts of healthy subjects are in the range of 500

to 1300 cells/mm3 (223). A patient with a CD4+ cell count below 200 cells/mm3 is at substantial risk of 

developing opportunistic infections and malignancies, and according to classification by Centers for Disease 

Control, is categorized as having AIDS even in the absence of opportunistic infections (224).  

VIRAL LIFE CYCLE (Fig. 3)

Binding of the virus to the CD4 molecule on the host cell surface initiates a complex mechanism of viral 

entry, which leads to fusion of the viral lipid envelope with the cell membrane. The core of the virus 

penetrates into the cytoplasm and liberates viral genomic RNA. Viral reverse transcriptase enzyme converts 

RNA into double-stranded DNA, which is transported to the nucleus. In the nucleus, a viral enzyme called 

integrase mediates the integration of the viral DNA into the host chromosomal DNA. Thereafter viral DNA 

functions as a mammalian gene resulting in production of viral RNA and proteins. The viral structural 

proteins assemble around viral genomic RNA at the plasma membrane to produce new viruses. The final 

stage of the viral life cycle consists of proteolytic cleavage of precursor molecules by the viral protease 

enzyme (225).  

During its clinical latency, HIV infection was earlier considered to be a relatively static infection. However, 

it is currently known that as many as 1010 virion particles are produced and cleared daily in an untreated 

individual (226). Rapid rate of virus production and high mutation rate create genetically diverse virus 

population within an individual patient. It is estimated that every possible point mutation will occur at least 

once daily in an HIV-infected non-treated person (227). The diversity of the viral population places high 

requirements for the potency of antiretroviral treatment. 

2.2.3. CLINICAL COURSE  

HIV is transmitted either through unprotected sexual contact, contaminated blood products, contaminated 

needles or injection equipment, or through mother-to-child transmission as transplacental or intra-partum 

infection or during breast-feeding (228). Symptomatic primary infection develops in ~50% of infected 

persons, usually 2-8 weeks after contracting the virus, and is characterized by fever, lymphadenopathy, 

pharyngitis and morbilliform skin eruption (222). The natural course of HIV infection thereafter is variable, 

but chronic HIV infection can remain clinically latent for years with minimal or no symptoms (229). With  
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Figure 3. Schematic picture of the life cycle of HIV and the site of action of antiretroviral agents. HIV enters
the human host cell by using the CD4- and co-receptors (1). The released viral single-stranded RNA is 
converted into double-stranded DNA by the viral reverse transcriptase (2). Double-stranded viral DNA 
enters the cell nucleus and is incorporated into the cell DNA in a reaction catalyzed by the viral integrase 
enzyme (3). Viral proteins and RNA are synthesized (4) and new viruses assembled (5). Viral proteins are 
modified by the viral protease. Fusion inhibitors block the viral entry into the cell, NRTIs and NNRTIs 
inhibit the reverse transcriptase and PIs the protease enzyme. 

advancing immunodeficiency, patients often develop nonspecific symptoms such as fever, night sweats, 

mucosal and dermatological manifestations (229). The final stage of the infection is named AIDS and is 

defined by the occurrence of an opportunistic infection or tumor considered indicative of advanced infection 

with HIV. In untreated individuals, the median time for progression from contracting HIV to the 

development of AIDS is ~10 years (223). 

2.2.4. TREATMENT  

HISTORY OF ANTIRETROVIRAL THERAPY  

Until late 1980s, the only therapeutic interventions available for HIV-infected persons were prophylaxis and 

treatment of opportunistic diseases. Since the treatment of opportunistic diseases does not affect the gradual 

loss of CD4+ T cells, patients remained at constant risk for further opportunistic diseases and the overall 

prognosis remained poor. The first antiretroviral agent to decrease mortality among patients with AIDS was 
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zidovudine (230). The superiority of a dual nucleoside combination over zidovudine monotherapy on 

survival and disease progression was shown later (231).  

After mid 1990s it became possible to monitor the progression of HIV infection not only by measuring the 

CD4+ count but also by quantifying the amount of HI-virus in plasma (viral load). Viral load was soon 

shown to independently predict disease progression (232) and, even more importantly, the measurement of 

viral load made it possible to monitor the virologic efficacy of antiretroviral treatment. In 1995-96, it was 

understood that mono and dual therapies could only transiently suppress viral replication, whereas the 

introduction of triple-drug regimens resulted in durable virologic suppression and lead to enormous positive 

impact on the prognosis of HIV-infected people (233,234). The acronym HAART, originally referring to 

triple combination therapy, was widely used already in 1996. After the introduction of HAART, the 

mortality rates declined by ~60-80% (Fig. 4) (1). Improved prognosis was based on the recovery of immune 

system after the viral replication was controlled for by the combination therapy. Successful HAART is not 

only able to stop the gradual loss of CD4+ cells, but it also allows the regeneration of these cells. Prophylaxis 

for opportunistic infections can be successfully discontinued after sustained increase in CD4+ count (235). 

However, since it is impossible to eradicate the virus with present antiretroviral agents (236), HAART most 

likely needs to be continued permanently. 

ANTIRETROVIRAL AGENTS  

Nucleoside reverse transcriptase inhibitors (NRTI) 

NRTIs are structurally similar to the natural building blocks of nucleic acids, but are unable to form 

phosphodiester linkage essential for deoxyribonucleic acid (DNA) elongation. They compete with the natural 

substrates of reverse transcriptase enzyme and when incorporated into the viral DNA, they terminate further 

elongation of DNA (Fig. 3) (237). NRTI-associated adverse events include e.g. polyneuropathy, 

gastrointestinal side effects, myositis, lipodystrophy, and in rare cases lactic acidosis (237,238). As of 

summer 2003, there are six NRTIs available in Finland: abacavir, didanosine, lamivudine, stavudine, 

zalcitabine, zidovudine (Table 2). These agents require intracellular activation through incorporation of three 

phosphate groups into the molecule before they can function as NRTIs. A novel agent, tenofovir, has one 

phosphate group bound to it, and hence it only requires two additional intracellular phosphorylations (239). 

Tenofovir is therefore regarded a nucleotide analogue instead of a nucleoside analogue, albeit eventually the 

mechanism of action is identical to that of other NRTIs. 

Non-nucleoside reverse transcriptase inhibitors (NNRTI) 

NNRTIs bind reversibly at a non-substrate binding site in the reverse transcriptase enzyme (Fig. 3). They 

inhibit non-competitively the function of reverse transcriptase by causing a change in the shape of the 

enzyme or blocking the polymerase active site (240). Rash is the most common side effect of NNRTIs; in  
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Figure 4. Trends in annual rates of death per 100 000 population due to the leading causes of death among 
persons 25-44 years of age in the United States 1987-2000. HAART became widely available in 1996. 
Modified from http://www.cdc.gov/hiv/graphics/images/l285/l285-10.htm.  

addition, nevirapine is associated with liver toxicity and efavirenz with central nervous system symptoms 

(237). Currently there are three NNRTIs available in Finland: delavirdine, efavirenz and nevirapine (Table 

2).

Protease inhibitors (PI) 

The HIV protease, the target molecule of the PIs, is a 99 –amino-acid protein with aspartyl protease activity 

(241). PIs hinder the cleavage of the viral precursor proteins and therefore the released viral particles remain 

non-infectious to uninfected cells (Fig. 3). Mammalian cells also contain aspartyl proteases, but they do not 

efficiently cleave the viral polyproteins. PIs used for the treatment of HIV infection are inactive or only 

weakly active against human aspartyl proteases (241). All PIs may cause gastrointestinal side effects, other 

adverse events include elevations in liver function tests, hyperlipidemia (with the exception of atazanavir), 

glucose intolerance and fat redistribution (241,242). There are currently 8 PIs available in Finland: 

amprenavir, atazanavir, fosamprenavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir (Table 2).
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Table 2. Antiretroviral agents available in Finland as of autumn 2003.

Nucleoside reverse  

transcriptase inhibitors 

NRTI 

Non-nucleoside reverse 

transcriptase inhibitors 

NNRTI 

Protease inhibitors 

PI 

Fusion inhibitor 

Zidovudine AZT/ ZDV  Nevirapine NVP Saquinavir SQV Enfuvirtide T-20 

Lamivudine 3TC  Efavirenz EFV Ritonavir RTV  

Didanosine ddI  Delavirdine DLV Indinavir IDV  

Stavudine d4T   Nelfinavir NFV  

Zalcitabine ddC   Amprenavir APV  

Abacavir ABC   Lopinavir LPV  

Tenofovir TDF  Fosamprenavir fAPV  

 Atazanavir ATZ  

Fusion inhibitors 

Fusion inhibitors are the newest class of antiretroviral agents. They block the viral entry into the host cell by 

preventing fusion of the viral envelope with the cell membrane (Fig. 3) (243). The only fusion inhibitor 

available today for clinical use, enfuvirtide, is a synthetic peptide and must be administered by subcutaneous 

injections. The most common adverse events include injection site complications and gastrointestinal 

disturbances (244,245). Due to its parenteral administration and high cost, enfuvirtide is currently used in 

salvage regimens of patients who harbor viruses resistant to other antiretroviral agents (246). 

INITIATION OF THERAPY 

HAART is recommended for HIV-infected patients with severe symptoms and also for asymptomatic 

patients with CD4+ cell counts less than 200/mm 3 (247,248). Treatment should be considered in patients with 

CD4+ counts between 200-350/mm3, but is rarely indicated in patients with CD4+ counts above 350/mm3

(248). The first-line alternatives are the combinations of two NRTIs with either a NNRTI or a PI (248). The 

success of the initial treatment is mainly determined by the patient’s adherence to the medication. The 

combination of drugs must be individualized, since different combinations have different dosing patterns, 

dietary restrictions, and antiretroviral agents may have interactions with concurrent illnesses and 

medications. It is estimated that at least 90-95% of the doses must be taken at correct times with drug-

specific eating or fasting requirements to maintain optimal drug concentrations in plasma and complete 

virologic suppression (247). Since the eradication of the virus is not possible with current regimens (2), high 

level of adherence must be maintained permanently.  
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2.3. HAART-ASSOCIATED LIPODYSTROPHY  

2.3.1. METABOLIC ALTERATIONS OF HIV INFECTION BEFORE HAART 

BODY COMPOSITION 

Before HAART was available, the progression of HIV infection was often accompanied by loss of body 

weight. In its most severe form, loss of body weight results in HIV wasting syndrome, which is recognized 

as one of the AIDS-defining conditions (224). The wasting syndrome is characterized by loss of both lean 

body mass and fat mass (249). Loss of lean body mass makes the wasting syndrome distinctly different from 

lipodystrophy, which affects fat tissue only.  

FEATURES OF INSULIN RESISTANCE 

Before the HAART era, diabetes was rare in HIV-infected patients (250). The observed disturbances in 

glucose metabolism were often considered to be induced by medications, such as pentamidine (251), 

corticosteroids or megestrol acetate (250). Prior to HAART, patients with advanced HIV infection typically 

had increased serum concentrations of triglycerides, but decreased concentrations of total, LDL and HDL 

cholesterol (252).  

2.3.2. CLINICAL AND METABOLIC CHARACTERISTICS OF HAL 

HAART became widely available in 1996. The first case reports describing HAART-associated buffalo 

humps (253) and thinning of the buttocks and thighs together with hypertrophy of breasts (254) were 

published as early as 1997. Soon thereafter, accumulation of intra-abdominal fat (255) and facial lipoatrophy 

(256) were reported in patients using HAART. Today, these features are recognized as symptoms of HAL, 

which has also been named fat redistribution or fat maldistribution syndrome. Patients with HAL often have 

also hyperlipidemia and insulin resistance (257).  

2.3.3. DEFINITION OF HAL 

The main clinical features of lipodystrophy are subcutaneous fat loss and fat accumulation intra-

abdominally, within breasts or over the dorsocervical spine (Fig. 5) (3,258,259). However, as of today there 

is no uniformly approved definition for lipodystrophy. Recently, an objective case definition of 

lipodystrophy has been suggested (260). However, despite its relatively complex composition (the definition 

requires DEXA scan, abdominal CT scan, measurement of HDL cholesterol and anion gap in blood) the 

model reaches only 79% sensitivity and 80% specificity in diagnosing lipodystrophy.  
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Figure 5. Abdominal MRI scan of a person with normal fat distribution characterized by abundant 
subcutaneous and little intra-abdominal fat (left), and of a person with HAL (right) with almost complete 
loss of subcutaneous and severe accumulation of intra-abdominal fat. Fat is shown in white in these MRI 
scans.

2.3.4. PATHOGENESIS AND ETIOLOGY OF HAL     

LIPODYSTROPHIC HUMAN ADIPOSE TISSUE 

There are limited in vivo human adipose tissue data describing changes in lipodystrophic adipose tissue. 

Morphology of lipoatrophic tissue is characterized by a greater variation in adipocyte size with an increased 

number of small adipocytes when compared to HIV-infected treatment naive patients or HIV negative 

controls (261-263). Adipocytes have been found to contain clusters of small lipid droplets instead of a single 

large droplet (264). Lipogranulomata with lipid-laden macrophages and vascular proliferation have been 

reported (261,263). Also apoptosis has been present in lipoatrophic adipose tissue (263).   

Gene expression in SAT in patients with HAL has only been evaluated in a single study (262). Patients with 

HAL had decreased mRNA concentrations of PPARγ, SREBP-1c, C/EBPα, C/EBPβ, HSL, GLUT4, leptin, 

but increased mRNA concentration of TNFα (262). At the protein level, SREBP-1 was increased, although 

SREBP-1c mRNA was decreased. Protein levels of the β-subunit of insulin receptor and the insulin-signaling 

kinase protein kinase B were decreased. Protein concentration of PPARγ was also decreased in keeping with 

its decreased mRNA concentration. SREBP-1c mRNA concentration correlated negatively with insulin 

resistance, and weaker inverse correlations were found between insulin resistance and PPARγ, leptin and 

GLUT4 mRNA concentrations. The mRNA concentrations of TNFα correlated positively with insulin 

resistance (262). In this study patients with HAL are compared to a group of healthy HIV negative subjects. 

It therefore remains uncertain to what extent the observed alterations are due to lipodystrophy, HAART per 

se or HIV-infection (262).  
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NRTI-induced mitochondrial toxicity due to inhibition of mitochondrial DNA polymerase γ has been 

suggested to cause lipodystrophy, especially lipoatrophy (265). In keeping with this hypothesis, 

mitochondrial DNA (mtDNA) has been found to be reduced in SAT of patients with HAL when compared to 

HAART-treated patients without lipodystrophy, HIV-infected treatment-naive patients or HIV negative 

controls (264,266). The number of mtDNA copies per cell has been shown to be decreased in adipocytes 

from patients with HAL when compared to treatment naive HIV-infected patients or healthy controls (261). 

Loss of mtDNA was more severe in stavudine- than zidovudine-treated patients (261). Electron microscopy 

has revealed abnormal cristae and inclusions in mitochondria in lipoatrophic adipose tissue (264). No large 

mitochondrial deletions, insertions or point mutations have been found in these studies (264,266).    

There are no tissue data on the hypertrophic intra-abdominal fat in patients with HAL. In a single case report 

of a patient with HAART-associated buffalo hump, gross pathological examination revealed unremarkable 

adipose tissue with a few septae and the microscopic appearance was consistent with non-encapsulated 

mature fat tissue (267).  

INSULIN RESISTANCE IN PATIENTS WITH HAL 

In one of the most comprehensive studies on insulin resistance in patients with HAL, multiple alterations in 

glucose metabolism were detected: lipodystrophic patients had increased post-absorptive glucose production, 

decreased insulin-induced suppression of endogenous glucose production and lipolysis, and decreased 

insulin-stimulated glucose disposal when compared to healthy subjects (268). In a longitudinal study, 12 

weeks of PI-containing treatment reduced insulin-stimulated glucose disposal implying insulin resistance in 

skeletal muscle, but did not affect the ability of insulin to suppress hepatic glucose production (269). Insulin 

resistance was also suggested to affect adipose tissue, since insulin-induced suppression of lipolysis was 

impaired after 12 weeks of treatment (269). In keeping with insulin resistance in skeletal muscle, IMCL 

content is increased in patients with HAL and correlates with insulin resistance (270,271). Increased 

circulating FFA concentrations may also contribute to HAART-associated insulin resistance. Two doses of 

acipimox were used as an inhibitor of lipolysis in a pilot study of seven men with HAL (272). Acipimox 

decreased FFA concentrations significantly and resulted in a significant increase in insulin sensitivity 

compared to placebo (272). 

ETIOLOGY OF HAL 

Since HAART usually consists of at least three drugs, it is difficult, if not impossible to assess the effect of 

an individual antiretroviral agent on lipodystrophy in HIV-infected patients. PIs were primarily suspected to 

cause lipodystrophy and other metabolic abnormalities. However, since basically all PI-treated patients 

receive also two or more NRTIs, their potential contribution to the development of adverse events must be 

taken into account. Furthermore, HIV infection itself, nadir CD4+ count, degree of the HAART-induced 
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viral suppression, older age, gender and ethnicity may play a role in the development of lipodystrophy and 

metabolic abnormalities (273). 

PROTEASE INHIBITORS 

Effects of PIs in vitro 

Several PIs have been shown to inhibit differentiation of various adipocyte cell lines (Table 3). The 

proposed mechanisms include both PPARγ-dependent (274,275) and –independent (276,277) mechanisms. 

The earlier events of differentiation, such as mitotic clonal phase of preadipocytes does not seem to be 

affected (274,275). PIs have also been shown to increase lipolysis (278) and decrease LPL expression (279) 

and activity (280). Nelfinavir has been associated with increased apoptosis in mature adipocytes (274). Pre- 

or co-treatment of cells with rosiglitazone or troglitazone has been shown to reverse the PI-induced 

inhibition of adipocyte differentiation and the increased basal lipolysis (275,281,282), whereas concomitant 

treatment with TNFα has been shown to exacerbate the suppressive effects of PIs on adipogenesis (281). 

Although patients with HAL often present with both subcutaneous lipoatrophy and hypertrophy of visceral 

fat, there are hardly any data suggesting mechanism(s) for fat hypertrophy. Stimulation of differentiation of 

3T3-L1 adipocytes by a PI has been reported in a single study, which showed increased expression of the 

active, mature SREBP-1 protein, but decreased expression of PPARγ and C/EBPα (283).

PIs have been shown to decrease insulin-stimulated glucose uptake in several models, but there is no 

consensus regarding the mechanisms of insulin resistance. In some (282), but not all models (284), PIs seem 

to inhibit GLUT4 translocation. PIs inhibit the action of insulin also in HepG2 hepatoma cells, which express

no or almost no GLUT4 (285). PIs have caused inhibition of early insulin signaling in HepG2 hepatoma cells 

(286), but not in 3T3-L1 adipocytes (284). It has also been shown that different PIs and different exposure 

times result in different effects on glucose transport (287). Troglitazone pre- and co-treatment with nelfinavir 

had no effect on the impairment in insulin-stimulated glucose uptake induced by nelfinavir (282).  

Effects of PIs in animal models 

There are limited data from animal models evaluating metabolic adverse events of PIs. In Wistar 

rats, a single intravenous dose of indinavir decreased glucose uptake in the muscle but did not alter 

the suppression of hepatic glucose output under hyperinsulinemic conditions (288). Ritonavir has 

been shown to increase plasma triglyceride and cholesterol levels, and liver fat content (289). These 

abnormalities were due to accumulation of the active SREBP-1 protein, but not mRNA of SREBP 

in the liver and white adipose tissue (289). The increase of the active form of SREBP-1 was 

suggested to be due to its decreased degradation (289). However, in another model ritonavir 

treatment in rats decreased serum triglyceride concentration, increased body fat and caused no 

change in insulin sensitivity (290). 
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These discrepant in vitro and animal data regarding the metabolic effects of HAART underscore the 

importance of defining in vivo effects of antiretroviral agents on gene expression in humans.  

Effects of PIs in humans 

Lipodystrophy was originally described as an adverse event of PIs (257,294). Although lipodystrophy has 

been described in patients not receiving PIs (295), the prevalence of lipodystrophy is greater in patients 

receiving PIs than in PI-naive or antiretroviral therapy-naive HIV-infected patients (296). In a study with 655 

HIV-infected patients receiving first-line antiretroviral therapy and followed for a median of 86 weeks, 

indinavir exposure significantly increased the risk of developing combined form of both lipoatrophy and fat 

accumulation (297). In another report with 366 patients receiving their first antiretroviral therapy, 

lipoatrophy and lipohypertrophy were independently associated with the initiation of a PI-containing 

regimen (298). One study found an association between high nelfinavir trough concentrations in plasma and 

overall lipodystrophy and peripheral fat wasting scores (299), and another study found an increased risk of 

lipodystrophy with increasing duration of PI therapy (300).  

In cross-sectional studies, PI-treated patients have higher prevalence of insulin resistance than non-PI-treated 

(301,302), treatment-naive HIV-infected patients (302) or healthy subjects (257). In longitudinal studies, 

treatment with a PI-containing HAART for 3 months increased fasting serum insulin concentration by 96% 

(303), and diabetes was diagnosed in 6% of 117 patients after a 12-month treatment with a PI-containing 

regimen (304). In a cohort of 1785 women, the use of PIs was associated with a threefold increase in the risk 

of developing diabetes (305).    

Most of the studies evaluating the effects of PIs on insulin resistance have compared PI-treated patients with 

either HIV-infected drug naive or healthy subjects. Therefore it remains unknown to what extent PI 

treatment per se and to what extent PI-associated lipodystrophy contribute to insulin resistance. There are 

some data demonstrating the development of insulin resistance in PI-treated patients in the absence of 

changes in body composition. The effects of a single antiretroviral drug can be evaluated in HIV negative 

subjects, since there is no risk for development of viral resistance due to suboptimal HIV therapy. In these 

studies, a 4-week treatment with indinavir or even a single dose of it decreased insulin sensitivity without 

changes in circulating lipoproteins or FFA concentrations, or in the amount of intra-abdominal or 

subcutaneous fat (306,307). However, several studies have shown that PI-treated patients with lipodystrophy 

are more insulin resistant than PI-treated patients without lipodystrophy (257,308,309). Patients with both 

subcutaneous lipoatrophy and intra-abdominal fat accumulation have been found to be more insulin resistant 

than those with atrophy only or those with no lipodystrophy (302,309). Taken together, it seems likely that 

both PI treatment per se and lipodystrophy may contribute to the development of insulin resistance in HIV-

infected patients.  
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NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS 

Effects of NRTIs in vitro and in animal models 

There are substantially less in vitro data on the effects of NRTIs than of PIs on adipocyte differentiation. 

When 3T3-F442A cells were treated either with zidovudine, stavudine, didanosine or lamivudine, only 

zidovudine exerted a significant antiadipogenic effect (310). NRTI-associated lipoatrophy has been 

suggested to result from NRTI-induced inhibition of mitochondrial DNA polymerase γ (265). In vitro studies 

of the NRTIs demonstrate the following hierarchy of mitochondrial DNA polymerase γ inhibition: 

zalcitabine > didanosine > stavudine > lamivudine > zidovudine > abacavir (311). In lean mice, stavudine 

decreased hepatic and muscle mtDNA, but only in obese (ob/ob) mice stavudine decreased mtDNA in white 

adipose tissue (312). 

Effects of NRTIs in humans 

Lipodystrophy, especially lipoatrophy, has been described in HIV-infected patients who have been treated 

with NRTIs only (295,313,314). Trunk-to-extremity fat ratio was increased and extremity-to-total fat ratio 

decreased in NRTI-treated, PI-naive patients when compared with BMI-matched HIV-infected, treatment 

naive controls (315). In addition, lipodystrophy was significantly more common among patients randomized 

to receive two PIs and stavudine than among patients who received dual PI therapy without stavudine (316). 

Of the various NRTIs, stavudine has most commonly been associated with lipodystrophy (295,297,317-319). 

The use of lamivudine has been associated with the development of lipodystrophy in one study (319). 

There are only limited and contradictory data regarding insulin resistance and the use of NRTIs. In a cross-

sectional study with 45 patients, NRTI treated patients were not more insulin resistant than HIV-infected 

therapy-naive patients (302). In a small longitudinal study with 9 subjects, dual NRTI therapy for 5 months 

did not change serum glucose, insulin or lipid concentrations (303). However, the duration of NRTI 

treatment has independently predicted fasting hyperinsulinemia (309), and the use of stavudine and the rate 

of lipolysis have been strong independent predictors of insulin resistance (320).  The use of stavudine has 

also been associated with an increased risk of developing diabetes in a large retrospective study with 1011 

patients (321). However, when therapy naive patients were compared with PI-naive, but either zidovudine or 

stavudine treated patients, those on stavudine had lower total body fat, markedly reduced subcutaneous-to-

visceral fat ratio and higher serum triglycerides, but plasma glucose, insulin and C-peptide concentrations 

were not different between the groups (295). 

NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS  

There are limited human and no in vitro data on the effects of NNRTIs on HAL and metabolic adverse 

effects. In a longitudinal study using DEXA scans, the use of nevirapine has been associated with a reduced 

rate of loss of subcutaneous fat when compared with PI-containing regimens (322). Favorable effects of 
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nevirapine on blood lipids have been reported in a study comparing three different first-line antiretroviral 

combinations: in addition to 2 NRTIs, patients were randomized to receive nevirapine, indinavir or 

lamivudine. The nevirapine group had a 49% increase from baseline in HDL-cholesterol concentration after 

24 weeks of treatment as opposed to 16% increase in the lamivudine and indinavir groups (323). 

HOST-ASSOCIATED FACTORS  

Patients with older age (317,324) and female gender appear to have an increased risk for developing 

lipodystrophy (297,298,324). Co-infection with hepatitis C (325), male gender (326) and white race (322) 

have been associated with an increased risk of developing lipoatrophy.  

Preliminary data suggest that genetic susceptibility may influence the development of HAART-associated 

metabolic adverse events. TNFα polymorphism has been evaluated in two studies. Data from a genetic case-

control study suggest that a G to A substitution in the –238 position in the promoter region of the TNFα gene 

predisposes to HAL (327). Similarly, the TNFα -238G/A promoter polymorphism has been found to 

independently enhance the progression of lipodystrophy in a cohort of HAART-recipients (328). A single-

nucleotide polymorphism (3'322C/G) in the SREBP-1c gene was found to be predictive of HAART-related 

dyslipidemia in a group of 67 patients, although it did not alter the amino acid sequence of the protein (329). 

A larger study with 355 HAART-treated patients, however, could not confirm the association of this SREBP-

1c polymorphism and dyslipidemia (330). 

2.3.5. PREVALENCE OF HAL 

LIPODYSTROPHY 

The reported prevalences of lipodystrophy vary from as low as 2% among 272 PI-treated patients (331) up to 

83% among 113 PI-treated patients (332) depending on the age and sex of the patients, type and duration of 

HAART, and the different definitions of lipodystrophy. Estimates from large surveys indicate a 50% 

prevalence of at least one physical abnormality after 12-18 months of therapy (3,273).  

ABNORMALITIES IN GLUCOSE METABOLISM 

It is difficult to compare the results from different studies examining glucose metabolism in patients with 

HAL due to differences in the methods used. In oral glucose tolerance test (OGTT), 35% of patients with 

HAL had impaired glucose tolerance (IGT), and an additional 7% had diabetes (309). These prevalences of 

IGT and diabetes were 7-fold higher than those in age- and BMI-matched controls (309). Other studies have 

reported a 17 - 46% prevalence of IGT and a 7 - 13% prevalence of diabetes measured using the OGTT 

(301,332), and up to a 61% prevalence of peripheral insulin resistance measured using the intravenous 

insulin tolerance test (333) among patients using PIs. In a retrospective study of 1011 patients followed for a 

median of 289 days, 16 new cases of diabetes were diagnosed; the risk for developing diabetes was 

significantly increased in patients receiving indinavir or stavudine (321). A large cohort study with 17 852 
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HIV-infected subjects with or without antiretroviral therapy has found only a 2.5% -prevalence of diabetes 

(334). NNRTI and a combination of NNRTI and PI therapy were independently associated with the presence 

of diabetes in this large cohort (334).  

LIPID ABNORMALITIES 

The prevalence of hyperlipidemia among HIV-infected patients using PIs is in the range of 30-75% 

(301,332,334). Among patients receiving non-PI containing HAART, 11% had cholesterol levels >6.5 

mmol/l and 26% triglycerides >2.2 mmol/l (335). In a longitudinal study, treatment with HAART including a 

PI for a mean of 3.4 months increased serum total cholesterol by 23% and triglyceride concentration by 48% 

(303).   

IMPAIRED FIBRINOLYSIS  

In addition to having altered glucose and lipid metabolism, patients with HAL have also been found to have 

increased plasma PAI-1 and tPA antigen levels when compared to HIV negative controls (336). PAI-1 and 

fibrinogen levels were also significantly higher in 266 patients (42% with lipodystrophy) receiving PI-

containing HAART when compared to 97 treatment naive HIV-infected subjects (337). In this study, the 

plasma PAI-1 concentration was independently correlated with the use of PI-containing HAART, serum 

triglyceride and insulin concentrations, and BMI (337).  

2.3.6. SIGNIFICANCE OF HAL 

Lipodystrophy has a variety of physical and psychological effects, ranging from bodily discomfort to low 

self-esteem and depression (338,339). Especially facial lipoatrophy may be a visible marker of HIV infection

(340) and may lead to social isolation (338). In addition, self-perceived lipodystrophy is an independent 

cause of nonadherence to HAART (5).  

Due to the short history of HAART, long-term effects of HAART-associated insulin resistance and 

dyslipidemia on cardiovascular morbidity still remain unknown. Dyslipidemias have been associated with an 

increased intima-media thickness of the carotid artery suggesting an increased risk of atherosclerosis in HIV-

infected patients (341,342), but in a multivariate analysis HAART or lipodystrophy were not independent 

risk factors for the increased intima-media thickness (342). HIV-infected patients may have a high 

prevalence of conventional cardiovascular risk factors, such as cigarette smoking (343). Also dietary habits 

may be inappropriate especially among individuals with long history of HIV infection, since dietary advice 

given to HIV-infected persons prior to mid 1990s was targeted to prevent wasting by increasing caloric, 

especially fat intake. 

Data from large cohort studies are inconsistent regarding the risk of cardiovascular events in HAART-treated 

patients. In the Veterans Affairs Cohort with follow-up of 36 766 HIV-infected persons, the introduction of 
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HAART was associated with a reduction, and not an increase, in the rate of hospital admission for cardio- or 

cerebrovascular disease (344). However, these patients had been exposed to combination antiretroviral 

therapy for relatively short duration: the median exposure time for NRTIs was 17 months, for PIs 16 months 

and for NNRTIs 9 months (344). In the HOPS cohort (HIV Outpatient Study) with 5672 HIV-infected 

patients, the frequency of myocardial infarction increased significantly after the introduction of PIs, and the 

use of PIs was strongly associated with the likelihood of having a myocardial infarction (345). In the DAD 

cohort (Data collection on Adverse events of anti-HIV Drugs) with 23 468 HIV-infected people, each year of 

exposure to antiretroviral therapy increased the risk of myocardial infraction by 26% even after adjusting for 

known cardiovascular risk factors such as age, gender and smoking (6).  

2.3.7. TREATMENT OF HAL 

Attempts to treat HAL are based either on the modification of HA ART, or on the addition of another agent to 

treat the metabolic complication. Simple removal of an agent from HAART has been shown to lead to an 

unacceptably high risk of virologic failure (346). Therefore, in the so called “switch-studies” the suspected 

toxic antiretroviral agent is usually replaced by another agent, which is believed to be metabolically less 

toxic . 

If adverse events are severe, discontinuation of all antiretroviral agents may be considered. Development of 

viral resistance is unlikely to occur, if all agents are discontinued simultaneously (347). However, due to the 

inevitable rebound in viral replication and the consequent decrease in the CD4+ cell count, it is usually not 

possible to discontinue HAART for a long time. In an uncontrolled study, 7-week interruption of all 

antiretroviral agents caused a significant decrease in triglyceride, total and LDL cholesterol concentration, 

but there were no significant changes in glucose or insulin levels or anthropometric measurements (348). 

SWITCHING ANTIRETROVIRAL AGENTS 

It is difficult to draw firm conclusions regarding the switch studies due to differences in study population, 

study design and methods applied (Table 4). Most of the published studies have evaluated the effect of 

replacing a PI by a NNRTI. There are no constant beneficial effects on body composition in these studies. 

However, blood lipids have improved in most (349-353), but not all (354-356) studies after commencing a 

NNRTI. Although the effects on glucose metabolism are less pronounced, some studies report an 

improvement (349,350,356). Another approach is to replace a PI by a NRTI, mainly by abacavir. This switch 

does not appear to correct body composition, but is associated with improvements in blood lipids (357-359). 

Data regarding effects on glucose metabolism are very limited.    

A couple of studies have evaluated the effect of replacing a thymidine analogue NRTI, i.e. stavudine (or 

zidovudine), by abacavir. This switch seems to result in an increase in the amount of limb fat measured using 
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DEXA. However, the absolute change in fat mass has been very modest, e.g. limb fat increased by 310 g 

during 24 weeks of abacavir therapy compared to the control group (360), and in another study leg fat 

increased by 9 g and arm fat by 14 g per month after switching to abacavir (361). Although statistically 

significant, the increase in leg fat was not noticed either by the patients themselves or the treating physicians 

(360). Blood lipid and glucose concentrations have remained unchanged in these studies (360,361).    

Switching of antiretroviral agents has been shown to be virologically safe in several studies in patients with 

no previous virologic failure (362). Virologic failure has been reported to be less or at most equally common 

in patients who were randomized to switch their PI to abacavir (358), nevirapine (352,353,355) or efavirenz 

(352) as compared to those who were randomized to continue with the PI. Switching of stavudine or 

zidovudine to abacavir had no effect on viral load when compared to those who continued with stavudine or 

zidovudine treatment (360). However, some studies have reported an increased risk of virologic failure 

among patients who switched their PI to abacavir (363), efavirenz or nevirapine (359), especially among 

patients who had received prior partially suppressive NRTI mono- or dual therapy.   

MODIFICATIONS OF LIFE STYLE  

The amount of aerobic, or combined aerobic and resistant training has been independently inversely 

associated with fasting triglyceride concentration and almost significantly associated with insulin resistance 

in a group of 120 HIV-infected patients and also in the subgroup of 69 patients with HAL (364). In small 

intervention trials involving HAART-treated patients with and without lipodystrophy, physical exercise has 

been shown to increase lean body mass, either to cause no change or decrease fat mass, and to decrease 

blood lipids, especially serum triglycerides (365-368). Taken together, physical exercise appears to improve 

blood lipids, and might be helpful in patients with abdominal lipohypertrophy but not with subcutaneous 

lipoatrophy.    

                      

The effect of diet on HAL and associated metabolic adverse events is unclear. In a study involving 100 HIV-

infected subjects, there was no significant difference in the intake of total or saturated fat between patients 

with or without lipodystrophy (369). However, total energy intake was higher in lipodystrophic patients 

compared to non-lipodystrophic patients (369). Lipid-lowering diet for 6 months decreased serum cholesterol 

by 10% and triglycerides by 23% in those patients who self-reported good compliance with dietary advice, 

whereas there were no changes in blood lipids in patients who reported poor compliance (370). 
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LIPID-LOWERING AGENTS 

Overall, lipid-lowering agents often fail to reduce lipid concentrations to target levels in HAART-associated 

hyperlipidemia (372). There are several small studies reporting effects of pravastatin, atorvastatin and 

fluvastatin on HAART-associated hyperlipidemia. The mean decrease in total cholesterol has been in the 

range of 17-27%, while that in serum triglycerides has varied from no effect to a 37% decrease (372). 

Gemfibrozil and fenofibrate have decreased serum triglyceride concentrations by 18-54% in small trials 

(372).  

PIs, NNRTIs and statins are all either metabolized by or affect the activity of various cytochrome P450 

isoforms; therefore their concomitant use may lead to adverse pharmacological interactions (372). In healthy 

volunteers, the combination of ritonavir and saquinavir increased the median estimated area under the curve 

of simvastatin by 3059%, atorvastatin by 79% and decreased that of pravastatin by 50% (373). Pravastatin is 

considered safe, fluvastatin may be a safe alternative and atorvastatin can be used with caution with low 

initial doses in patients using PIs (372). Any statin can probably be used safely in persons using efavirenz or 

nevirapine, although more data are needed (372). Drug-drug interactions with fibrates and antiretroviral 

agents are unlikely to occur (372).  

METFORMIN  

The effect of metformin on HAART-associated insulin resistance and lipodystrophy has been evaluated in 

two studies. In a randomized, open-label study with 29 non-diabetic patients with HAART-associated insulin 

resistance, 2-month treatment with metformin significantly decreased plasma glucose, insulin, C-peptide and 

triglyceride concentrations when compared to placebo. VAT and VAT-to-total fat ratio also decreased in the 

metformin group (374). In a randomized, double-blind, placebo-controlled trial with 26 patients, metformin 

demonstrated significant reductions in insulin area under the curve during OGTT in patients with HAL with 

abnormal OGTT or hyperinsulinemia at baseline (375). The metformin group lost weight, and the amount of 

both VAT and SAT decreased (375). Metformin also decreased plasma tPA and PAI-1 concentrations (336).   

THIAZOLIDINEDIONES 

Thiazolidinediones (glitazones) are novel insulin-sensitizing anti-diabetic agents, two of which, rosiglitazone 

and pioglitazone, are available for treatment of type 2 diabetes both in Europe and the U.S. The first agent in 

this group, troglitazone was withdrawn due to hepatotoxicity (376). Thiazolidinediones are ligands for the 

transcription factor PPARγ, activation of which is critical for adipocyte differentiation (Chapter 2.1.3.) 

(377,378). In patients with type 2 diabetes, treatment with rosiglitazone improves insulin sensitivity despite 

increasing body weight and fat mass (10,379-382). The increase in fat mass amounts to 3.5-4.0 kg in 12 

weeks (379,382) and appears to occur almost exclusively in SAT (380,381,383), an effect which would be 

desirable in patients with lipodystrophy. The expression of PPARγ in SAT has been shown to be decreased 
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in HIV-infected patients with lipodystrophy (262). In vitro, rosiglitazone has been shown to increase the 

expression of PPARγ (377) and to prevent the block in adipocyte differentiation induced by PIs (275).  

In an uncontrolled study of patients with various forms of non-HIV lipodystrophy, troglitazone treatment 

improved insulin sensitivity, increased body fat % and the amount of SAT, but not that of VAT (213). 

Thiazolidinediones have also been used in two small, uncontrolled studies in patients with HAL. Six diabetic 

patients with HAL were treated with troglitazone for 3 months (384). Due to the small sample size, statistical 

significances were not reported, but a potential improvement in insulin sensitivity, an increase in total, LDL 

and HDL cholesterol concentrations, and a decrease in triglyceride concentration were reported (384). 

Troglitazone also appeared to decrease the amount of VAT and increase the amount of SAT (384). In 

another uncontrolled study involving 8 patients with HAL, rosiglitazone treatment for 6 to 12 weeks was 

reported to significantly improve insulin sensitivity, decrease the amount of VAT and increase the amount of 

SAT (385). There are, however, no controlled studies evaluating the effects of thiazolidinediones in HAL or 

in non-HIV lipodystrophies.   

GROWTH HORMONE 

Growth hormone with doses ranging from 6 mg/day to 4 mg every other day has been shown to decrease % 

body fat and the amount of VAT in patients with HAL (386-388). However, body composition rebounds to 

or near baseline after a wash out period of 12 weeks (387). Furthermore, insulin sensitivity decreased, and 

four out of 30 patients developed diabetes and three developed cancer of unknown relationship to treatment 

(387). In another study, insulin sensitivity decreased after one month of therapy, but returned to almost 

baseline after 6 months of treatment (388).  

OTHER INTERVENTIONS 

In small series of patients, topical hyaluronic acid injections for severe facial lipoatrophy have been reported 

to give good results (389,390). Liposuction has been used for the treatment of buffalo hump (391).  
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3. AIMS OF THE STUDY 

The present studies were undertaken to answer the following questions: 

1) Is hepatic fat content increased, and does the amount of hepatic fat correlate with features of insulin 

resistance in HIV-infected patients with HAL? 

2) Are the circulating concentration of adiponectin and its expression in SAT decreased, and does 

adiponectin concentration correlate with features of insulin resistance in HIV-infected patients with 

HAL? 

3) Is expression of genes involved in adipogenesis, fatty acid metabolism and inflammation altered in SAT 

in HIV-infected patients with HAL compared to HAART-treated patients without lipodystrophy? 

4) Does treatment with rosiglitazone increase the amount of subcutaneous fat and improve features of 

insulin resistance in HIV-infected patients with HAL? 

5) Does rosiglitazone treatment affect gene expression in SAT in HIV-infected patients with HAL? 

6) Is plasma PAI-1 concentration increased, and does it correlate with hepatic fat content before and after 

rosiglitazone treatment in HIV-infected patients with HAL? 
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4. SUBJECTS AND STUDY DESIGNS 

SUBJECTS 

All HIV-infected patients were enrolled from the outpatient clinic of the Helsinki University Central 

Hospital. Both male and female subjects were included in the study. They had to be older than 18 years, have 

been treated with HAART for at least 18 months with no changes in the treatment regimen during eight 

weeks prior to enrollment, and did not have signs or symptoms of current opportunistic infections. Patients 

with HAART-associated lipodystrophy (HAART+LD+) had self-reported symptoms of loss of subcutaneous 

fat with or without increased abdominal girth, breast size or development of a buffalo hump. HIV-infected 

patients without lipodystrophy (HAART+LD-) had received HAART without developing symptoms of 

lipodystrophy. Both the presence and absence of the signs of lipodystrophy were confirmed by the single 

investigator (J.S.) before enrollment. Exclusion criteria for the rosiglitazone vs. placebo treatment study 

(Studies IV-VI) included serum transaminase concentrations greater than three times the upper limit of 

normal, heart failure, severe hypertriglyceridemia (serum triglycerides > 10 mmol/l), diabetes and 

pregnancy. HIV negative normal subjects (HIV-) were recruited from occupational health services in 

Helsinki. They were healthy as judged by history and physical examination and standard laboratory tests, and 

did not use any regular medication. None of the study subjects was a carrier of hepatitis B or C. Baseline 

characteristics of the study subjects are given in Tables 5 and 6.

The purpose, nature and potential risks of the study were explained to the study subjects before their written 

informed consent was obtained. Treatment study with rosiglitazone was investigator-initiated and not 

supported by the manufacturer of rosiglitazone. The study protocols were approved by the ethics committee 

of Helsinki University Central Hospital.  

STUDY I: Hepatic fat in HAL 

In this cross-sectional study, liver fat content was measured using proton spectroscopy in three age- and 

weight-matched groups of men: HIV-infected men using HAART who had developed lipodystrophy 

(HAART+LD+), HIV-infected men using HAART but without lipodystrophy (HAART+LD-) and HIV 

negative normal subjects (HIV-). Interrelationships between liver fat content and volumes of intra-abdominal 

and subcutaneous fat, and various laboratory parameters associated with insulin resistance were studied. 

STUDY II: Adiponectin and HAL 

Serum adiponectin and adiponectin mRNA concentration in SAT were measured in two gender-, age- and 

BMI-matched groups of HIV-infected, HAART-treated patients either with (HAART+LD+) or without 

lipodystrophy (HAART+LD-). Correlations of serum adiponectin concentration and its expression in SAT 

were examined with features of insulin resistance and liver fat content. 
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STUDY III: Gene expression in SAT in HAL 

Expressions of multiple genes in SAT were compared between two gender-, age- and BMI-matched groups: 

HIV-infected, HAART-treated patients with lipodystrophy (HAART+LD+) and HIV-infected, HAART-

treated patients without lipodystrophy (HAART+LD-). The mRNA concentrations measured using real-time 

PCR were determined for transcription factors (PPARγ, SREBP-1c, PPARδ) and PGC-1, for genes involved 

in lipogenesis and fatty acid metabolism (LPL, ACS, ALBP, KLBP, FATP-1, FATP-4), glucose transport 

(GLUT4, GLUT1) and inflammation (IL-6 and CD45). 

STUDY IV: Treatment of HAL with rosiglitazone 

 Thirty HIV-infected patients with HAL participated in this randomized, double-blind, placebo-controlled 

study that consisted of treatment with either rosiglitazone 8 mg/d (n=15) or an identical-looking placebo 

(n=15) in a parallel fashion for 24 weeks. The following characteristics were considered during 

randomization: age, sex, BMI, fasting serum triglyceride and cholesterol concentrations, and use of PIs. The 

primary aim was to determine whether rosiglitazone increases the amount of subcutaneous fat in these 

patients. Measurements of body composition were performed at baseline and 24 weeks, and included 

quantification of intra-abdominal and subcutaneous fat using MRI, total body fat by bioelectrical impedance 

analysis (BIA), liver fat by proton spectroscopy, serum leptin concentration as a marker of adipose tissue 

mass and anthropometric measurements. Secondary aims included evaluation of the effects of rosiglitazone 

on features of insulin resistance and safety parameters. For the secondary aims of the study, blood samples 

were taken at outpatient visits at baseline, 2, 6, 12, 18 and 24 weeks. 

STUDY V: Effects of rosiglitazone on gene expression in SAT in HAL 

Thirty HIV-infected, HAART-treated patients with lipodystrophy who participated in Study IV had a 

subcutaneous fat biopsy performed at baseline and after 24 weeks of treatment. Effects of rosiglitazone vs. 

placebo on the expression of multiple genes were analyzed and these changes were correlated with the 

changes in features of insulin resistance and body composition. 

STUDY VI: PAI-1 in HAL 

In the cross-sectional part of the study, three gender- and BMI-matched groups were included: HIV-infected 

patients using HAART who had developed lipodystrophy (HAART+LD+), HIV-infected patients using 

HAART but without lipodystrophy (HAART+LD-) and HIV negative normal subjects (HIV-). In addition to 

measuring plasma PAI-1 and tPA concentrations, and mRNA of PAI-1 in SAT, body composition was 

measured using MRI and liver fat by proton spectroscopy. In the treatment part of the study, the 

HAART+LD+ group was treated with rosiglitazone or placebo for 24 weeks. Correlations of plasma PAI-1 

concentration and its expression in SAT with features of insulin resistance were studied both before and after 

rosiglitazone vs. placebo treatment.  
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Table 6. HIV- and HAART-related characteristics of the study subjects. 

Variable  

STUDY I 

HAART+LD+ HAART+LD- 

STUDY II-VI 

HAART+LD+ HAART+LD- 

Number of subjects 25 9 30 13 

Time since diagnosis of HIV (years) 8.3 ± 0.7 8.6 ± 1.9 8.4 ± 0.6 8.7 ± 1.3 

Currently using PI 76% 56% 73% 69% 

Currently using NNRTI 32% 44% 33% 31% 

Currently using NRTI 100% 100% 100% 100% 

Duration of PI therapy (months) 39 ± 4 29 ± 8 39 ± 4 39 ± 7 

Duration of NNRTI therapy (months) 6 ± 2 9 ± 4 6 ± 2 9 ± 3 

Duration of NRTI therapy (months) 69 ± 5 * 45 ± 11  68 ± 5 57 ± 10 

Most recent CD4+ cell count (x 106/l) 561 ± 64 504 ± 102 572 ± 54 516 ± 70 

Most recent HIV-1 RNA log 10 (copies/ml) 1.9 ± 0.2 1.8 ± 0.4 1.9 ± 0.1 1.6 ± 0.2 

Data are shown as mean ± SEM. *<0.05 for the comparison between the HAART+LD+ vs. HAART+LD-. 
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5. METHODS 

5.1. BODY COMPOSITION 

The volumes of intra-abdominal and subcutaneous fat were measured using MRI. A total of 16 T1-weighted 

trans-axial scans extending from 8 cm above to 8 cm below the 4th and 5th lumbar interspace (a single scan at 

the level of the 4th and 5th lumbar interspace in Study I) were analyzed for the determination of intra-

abdominal and subcutaneous fat (field of view 375 x 500 mm2, slice thickness 10 mm, breath-hold repetition 

time 138.9 msec, echo time 4.1 msec). Intra-abdominal and subcutaneous fat volumes were measured using 

an image analysis software (Alice 3.0, Parexel, Waltham, MA). A histogram of pixel intensity of each MRI 

scan was displayed, and the intensity corresponding to the nadir between the lean and fat peaks was used as a 

cut point. First, total abdominal adipose tissue was defined as the area of pixels above this cut point. Intra-

abdominal adipose tissue was thereafter manually erased and the area of subcutaneous fat was calculated. 

Intra-abdominal fat was finally determined by subtracting the SAT area from the total abdominal adipose 

tissue area. MRI analyses were performed by a single investigator (J.S.) blinded for treatment randomization 

(Study IV-VI). The reproducibility of intra-abdominal and subcutaneous fat measurements performed on two 

separate occasions in non-diabetic subjects (n=10) is 5 and 3% (coefficient of variation ) at our institute. 

Percentage of total body fat and body fat mass were determined using BIA (BioElectrical Impedance 

Analyzer System model #BIA-101A; RJL Systems, Detroit, MI). Waist circumference was measured 

midway between the lower rib margin and the iliac crest, and hip circumference over the great trochanters. 

Skinfold thicknesses (sum of mean values of triplicate measurements) were determined at 6 sites (triceps, 

biceps, subscapular, iliac crest, thigh and cheek). Bioelectrical impedance analyses and all anthropometric 

measurements were performed by a single investigator (J.S.) blinded for treatment randomization. 

5.2. LIVER FAT  

Liver fat content was measured using MRI proton spectroscopy. Localized single voxel (2 x 2 x 2 cm3)

proton spectra were recorded using a 1.5 T whole body system (Siemens Magnetom Vision, Erlangen, 

Germany), which consisted of the combination of whole body and loop surface coils for radiofrequency 

transmitting and signal receiving. T1-weighed high resolution MRI images were used for localization of the 

voxel within the right lobe of the liver. Vascular structures and subcutaneous fat were avoided in localization 

of the voxel. Subjects were lying on their stomach on the surface coil, which was embedded in a mattress in 

order to ensure a firm contact between the chest wall and the surface coil, and to minimize movement 

artefact caused by breathing. 
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The single voxel spectra were recorded using the stimulated –echo acquisition mode sequence with an echo 

time of 20 msec, a repetition time of 3000 msec, a mixing time of 30 msec, 1024 data points over 1000 kHz 

spectral width with 32 averages. Water-suppressed spectra with 128 averages were also recorded to detect 

weak lipid signals. The short echo time and long repetition time were chosen to ensure fully relaxed water 

signal, which was used as an internal standard. Chemical shifts were measured relative to water at 4.80 ppm. 

The methylene signal, which represents intracellular triglyceride, was measured at 1.4 ppm (Fig. 6) (392). 

Signal intensities were quantified using an analysis program VAPRO-MRUI (393). Spectroscopic 

intracellular triglyceride content (in percent) was expressed as a ratio of the area under the methylene peak to 

that under the sum of the methylene and the water peaks x 100. All spectra were analyzed by a single 

physicist who was unaware of any of the clinical data and treatment randomization. The reproducibility of 

repeated measurements of liver fat in non-diabetic subjects studied on two occasions at our institute is 11% 

(coefficient of variation). 

Figure 6. Spectra from the liver of a person with a 3% (left) and 21% (right) hepatic fat content measured 
using MRI proton spectroscopy. TG = triglyceride.  

Water TGLiver fat 3% Liver fat 21% Water TG
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5.3. GENE EXPRESSION IN SAT 

A needle aspiration biopsy of abdominal SAT was taken under local anesthesia. The fat sample was 

immediately frozen and stored in liquid nitrogen until analysis. A part of the biopsy was immediately treated 

with collagenase for 30 min at 37 °C. From this sample, the diameter of 200 adipocytes was determined 

using a microscope. In order to measure blood contamination in the samples, 100 µl of supernatant was

quantified for hemoglobin concentration after homogenization. Supernatant hemoglobin was measured by 

absorbance at 560 nm, compared to the hemoglobin standard curve and the hemoglobin reading was divided 

by the individual blood hemoglobin concentration. 

Total RNA and cDNA preparation  

Frozen fat tissue (50-150 mg) was homogenized in 2 ml of RNA STAT-60 (Tel-Test, Friendswood, TX) and 

total RNA was isolated according to the manufacturer’s instructions. After DNase treatment (RNase-free 

DNase set, Qiagen, Hilden, Germany), RNA was purified using the RNeasy mini kit (Qiagen). RNA 

concentrations were measured using the RiboGreen fluorescent nucleic acid stain (RNA quantification kit, 

Molecular Probes, Eugene, OR). The quality of RNA was checked by agarose gel electrophoresis. Average 

yields of total RNA were 3.3 ± 0.4 µg per 100 mg of adipose tissue wet weight, and did not differ between 

the groups. Isolated RNA was stored at –80 oC until quantification of the target mRNAs. A total of 0.1 µg of 

RNA was transcribed into cDNA using M-MLV reverse transcriptase (Life Technologies, Paisley, UK) and 

oligo (dT)12-18 primer. 

Quantification of mRNA concentration of β-actin, adiponectin, PPARγ, LPL and SREBP-1c 

Quantification of the mRNAs was performed by real-time PCR using LightCycler technology (Roche 

Diagnostics GmbH, Mannheim, Germany). 2 µl of 1:10 diluted cDNA was brought to a final volume of 20 

µl, which contained 3 mM MgCl2, 2 µl of LightCycler-FastStart DNA SYBR Green I Mix (Roche 

Diagnostics), and 0.5 µM of primers. After initial activation of the DNA polymerase at 95 oC for 10 min, the 

amplification conditions were as follows: 40 cycles consisting of denaturation at 95 oC for 15 sec, annealing 

for 5 sec at 57 oC (β-actin), 58 oC (adiponectin), 56 oC (PPARγ), 58 oC  (LPL), or for 10 sec at 60 oC

(SREBP-1c) and extension at 72 oC. The extension times (sec) were calculated from the amplicon size (base 

pairs/25). Fluorescent data were acquired at the end of each extension phase. After amplification, a melting 

curve analysis from 65 oC to 95 oC with a heating rate of 0.1 oC/sec with a continuous fluorescence 

acquisition was made. The primers for β-actin, adiponectin, PPARγ, LPL and SREBP-1c are listed in Table 

7. For β-actin, adiponectin, LPL and SREBP-1c expression, standard curves were created from a specific 

PCR product. A standard curve for PPARγ was created using purified cloned plasmid cDNA (QIAquick

PCR purification kit, Qiagen, Hilden, Germany). To account for differences in RNA loading, adiponectin, 

PPARγ, SREBP-1c and LPL were expressed relative to β-actin.  
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Quantification of mRNA concentration of β2-microglobulin, PAI-1, leptin, GLUT1, GLUT4, PGC-1, PPARδ,

ALBP, KLBP, FATP-1, FATP-4, ACS, CD45 and IL-6  

TaqMan real-time semiquantitative PCR was performed according to the manufacturer’s protocol using ABI 

PRISM 7000 Sequence Detection System instrument and software (PE Applied Biosystem, Foster City, CA). 

Primer and probe sets were designed using the manufacturer’s software and sequences available in 

GeneBank (Table 7). IL-6 was measured using Pre-Developed TaqMan Assay Reagents (PE Applied 

Biosystem, Foster City, CA). The GLUT4 primer set has been published (394). Expression levels were 

quantified (arbitrary units) by generating a six-point serial standard curve (395). The mRNA concentrations 

of PAI-1, leptin, GLUT1, GLUT4, PGC-1, PPARδ, ALBP, KLBP, FATP-1, FATP-4, ACS, CD45 and IL-6 

were given relative to β2-microglobulin mRNA concentration. 

5.4. LABORATORY ANALYSES 

Serum free insulin concentrations were determined with radioimmunoassay (Phadeseph Insulin RIA, 

Pharmacia & Upjohn Diagnostics, Uppsala, Sweden) after precipitation with polyethylene glycol (396). 

Serum C-peptide concentrations were determined by a time-resolved fluoroimmunoassay (AUTOdelfiaTM C-

peptide, Wallac, Turku, Finland). HbA1c was measured by a high pressure liquid chromatography using a 

fully automated Glycosylated Hemoglobin Analyzer System (BioRad, Richmond, CA). Plasma glucose 

concentrations were measured by a hexokinase method. Serum total and HDL cholesterol, and triglyceride 

concentrations were measured by respective enzymatic kits from Roche Diagnostics using an autoanalyzer 
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(Roche Diagnostics Hitachi 917, Hitachi Ltd, Tokyo, Japan). Serum aspartate aminotransferase, alanine 

aminotransferase (ALT), and gamma glutamyltransferase activities were determined according to 

recommendations of the European Committee for Clinical Laboratory Standards using the Roche 

Diagnostics Hitachi 917 autoanalyzer. Venous blood gas analysis was performed using specific electrodes 

with a blood gas analyzer (Ciba Corning 850, Medfield, MA). Blood lactate was determined using an 

enzymatic method (Dade Behring ACA Analytical Test Packs, Dade Behring, Deerfield, IL). 

The concentration of leptin in serum was measured by radioimmunoassay using a commercial kit (Human 

leptin RIA kit, Linco Research, St. Charles, MO). Serum concentration of adiponectin was measured using a 

commercial enzyme-linked immunosorbent assay (Human Adiponectin ELISA kit, B-Bridge International, 

San Jose, CA). Serum concentrations of IL-6 and TNFα were measured using commercial enzyme-linked 

immunoassays (Quantikine, R&D Systems, Minneapolis, MN).  Serum CRP was analyzed using a 

commercial kit (Ultrasensitive CRP Kit, Orion Diagnostica, Espoo, Finland). Serum FFA were measured by 

a fluorometric assay (397). Plasma PAI-1 and tPA concentrations were measured by enzyme immunoassays 

TintElize PAI-1 and TintElize tPA, respectively (Biopool International, Umeå, Sweden).

HIV viral load was measured using the HIV-1 Monitor Test (Roche Diagnostics, Branchburg, NJ) with a 

detection limit of 50 copies/ml. Serum PI trough concentrations were determined using liquid 

chromatography; the assay was available for indinavir, nelfinavir, ritonavir and saquinavir. 

All blood samples were drawn after an overnight fast and either analyzed immediately, or stored at –20 ºC or 

- 80 ºC until analyses.  

5.5. STATISTICAL METHODS 

The unpaired t-test or analysis of variance followed by pairwise comparison using Fisher’s Least-Significant-

Difference test was used to compare differences between the groups. Correlations were calculated using 

Spearman’s rank correlation coefficient. Categorical variables were compared using Fisher’s exact test. 

Effects of rosiglitazone and placebo treatment were calculated by comparing changes between the groups 

during 24 weeks using the unpaired t-test. Changes within rosiglitazone and placebo groups were calculated 

by the paired t-test. Repeated measurements over time were compared using analysis of variance followed by 

Fisher’s Least-Significant-Difference test. Logarithmic transformation was performed on skewed data. All 

data are given as mean ± standard error of mean (SEM). Sample size for study IV was calculated based on 

the effects of troglitazone on the amount of subcutaneous fat measured by MRI in patients with non-HIV 

lipodystrophy (213). In this study, subcutaneous fat in the abdominal region increased by 837 ml after 6 

months of troglitazone treatment. In the present study, a sample size of 15 in each group has 95 % power to 

detect a difference in means of abdominal subcutaneous fat of 450 ml assuming that the common standard 
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deviation is 300 ml using a two group t-test with a significance level of 0.05. All calculations were 

performed using the Systat statistical package, version 10.0 (Systat, Evanston, IL) or GraphPad Prism 

version 2.01 (GraphPad Inc, San Diego, CA). A p-value less than 0.05 was considered statistically 

significant.  
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6. RESULTS 

6.1. HEPATIC FAT IN HAL (Study I) 

The HAART+LD+, HAART+LD- and HIV- groups were comparable with respect to age and BMI (Table 

5). Alcohol consumption was comparable between the groups (107 ± 27 vs. 153 ± 57 vs. 78 ± 11 grams/week 

in the HAART+LD+ vs. HAART+LD- vs. HIV-, non-significant [NS]). None of the subjects was a carrier of 

hepatitis B or hepatitis C. All HIV-infected patients had contracted HIV through sexual contact. HIV-related 

characteristics were comparable between the HAART+LD+ and the HAART+LD- groups with the exception 

of the HAART+LD+ group having had a longer duration of NRTI therapy (Table 6).

Body composition 

The total amount of fat in the abdominal region was comparable between the groups, but its distribution was 

different (Table 5). The HAART+LD+ group had significantly more intra-abdominal fat than the 

HAART+LD- or the HIV- group, and significantly less subcutaneous fat than the HIV- group (Table 5). The 

ratio of intra-abdominal to subcutaneous fat was 4.4-fold higher in the HAART+LD+ group (3.1 ± 0.6) than 

in the HAART+LD- group (0.7 ± 0.1, p<0.001) and 6.2-fold higher than in the HIV- group (0.5 ± 0.1, 

p<0.001). The WHR was significantly higher in the HAART+LD+ group than in the HAART+LD- or the 

HIV- group (0.94 ± 0.01, p<0.01).   

Biochemical characteristics 

Serum insulin concentrations were significantly higher in the HAART+LD+ group than either in the 

HAART+LD- or the HIV- group (Table 5). Serum insulin concentrations did not correlate with the amount 

of intra-abdominal fat within the HAART+LD+ group (r=0.26, NS). The HAART+LD+ group had 

significantly lower serum HDL cholesterol concentration, and higher concentrations of triglyceride and total 

cholesterol than the HAART+LD- or the HIV- groups (Table 5). Serum ALT concentrations were 

significantly higher in the HAART+LD+ group than in the HAART+LD- or the HIV- groups (Table 5). 

Blood lactate concentrations were similar in both HIV-infected groups (1.3 ± 0.1 vs. 1.1 ± 0.2 mmol/l in the 

HAART+LD+ vs. HAART+LD- group, NS) and none of the patients had acidosis.  

Liver fat 

Liver fat content in the HAART+LD+ group was 53% higher than in the HIV- group and 179% higher than 

in the HAART+LD- group (Table 5).  Liver fat content was not significantly different between the 

HAART+LD- and HIV- groups. Liver fat content correlated significantly with fasting serum insulin 

concentration in the HAART+LD+ and the HIV- group (Fig. 7). Similar significant relationships were 

observed between liver fat content and serum C-peptide concentrations (Fig. 7). The slopes of the regression 

lines relating liver fat and fasting insulin concentration were similar in the HAART+LD+ and the HIV- 
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groups. The intercepts of the regression lines were, however, significantly different between the 

HAART+LD+ and the HIV- group (p<0.001) implying that for a given percentage of liver fat, serum fasting 

insulin concentrations were significantly higher in the HAART+LD+ than in the HIV- group (Fig. 7). Liver 

fat did not correlate with the amount of intra-abdominal fat or WHR in the HAART+LD+, the HIV- (Fig. 7)

or the HAART+LD- group (data not shown). 
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Figure 7. Relationships between liver fat and serum fasting insulin concentration (panel A), serum C-peptide 
concentration (panel B), the amount of intra-abdominal fat (panel C), and the waist-to-hip ratio (panel D) in 
patients with HAL (• , solid line) and in HIV negative subjects (o, dotted line). r = correlation coefficient.

Leptin 

The HAART+LD+ group had significantly lower leptin concentrations than the two other groups (2.9 ± 0.3 

vs. 4.0 ± 0.6 ng/ml in the HAART+LD+ vs. the two other groups, p<0.05). Serum leptin concentrations were 

closely correlated with the amount of SAT in both the HAART+LD+ and the HIV- groups (Fig. 8). Within 

the HAART+LD+ and the HIV- groups, serum leptin correlated with BMI, but the slopes of these 

relationships were different (Fig. 8). For the same BMI above approximately 20 kg/m2, the HAART+LD+ 

group had a lower leptin concentration than the HIV- group.  
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Figure 8. Relationship between the amount of abdominal subcutaneous fat and serum leptin concentration 
(left), and between body mass index and serum leptin concentration (right) in patients with HAL (• , solid 
line) and in HIV-negative subjects (o, dotted line). r = correlation coefficient. 

6.2. ADIPONECTIN IN HAL (Study II) 

Body composition and biochemical characteristics of the study groups 

Age and BMIs were comparable between the HAART+LD+ and the HAART+LD- groups (Table 5). The 

amount of total abdominal fat measured using MRI was similar between the groups, but the HAART+LD+ 

group had significantly less subcutaneous and more intra-abdominal fat than the HAART+LD- group (Table 

5). The HAART+LD+ group had significantly higher fasting serum insulin and triglyceride, and lower HDL 

cholesterol concentrations than the HAART+LD- group (Table 5). Liver fat content was significantly higher 

in the HAART+LD+ group than the HAART+LD- group (Table 5). Among all HAART-treated patients, 

liver fat content correlated closely with serum fasting insulin concentration (r= 0.60, p<0.001). 

Adiponectin  

The mRNA concentration of adiponectin in SAT was significantly decreased in the HAART+LD+ patients 

when compared with the HAART+LD- patients (Fig. 9). Serum adiponectin concentration was significantly 

lower in the HAART+LD+ than in the HAART+LD- group (Fig. 9).

In all HAART-treated patients, adiponectin expression in SAT correlated significantly with serum 

concentration of adiponectin (r=0.52, p<0.001). Serum adiponectin concentrations correlated with features of 

insulin resistance: serum triglyceride (r=-0.52, p<0.001), HDL cholesterol (r=0.39, p<0.01), insulin (r=-0.36, 

p<0.05) and C-peptide (r=-0.38, p<0.05) concentrations. In addition, serum adiponectin concentrations 

correlated inversely with liver fat content (r=-0.50, p<0.001, Fig. 9) and with the amount of intra-abdominal 

fat (r=-0.54, p<0.001), but not with the amount of subcutaneous (r=0.20, NS) fat. Serum adiponectin 

concentrations also correlated inversely with those of ALT (r=-0.51, p<0.001). Similar correlations were 
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found between the mRNA concentration of adiponectin in SAT and features of insulin resistance: fasting 

serum triglycerides (r=-0.65, p<0.001), HDL cholesterol (r=0.44, p<0.01), insulin (r=-0.43, p<0.01), C-

peptide (r=-0.44, p<0.01), liver fat (r=-0.55, p<0.001, Fig.9) and intra-abdominal fat content (r=-0.68, 

p<0.001), but not with the amount of subcutaneous fat (r=0.27, NS).  

Figure 9. Serum adiponectin and adiponectin mRNA concentration in SAT (upper panels) and their 
relationships with liver fat content (lower panels). Error bar = SEM, r = correlation coefficient. 
***p<0.001.  

6.3. GENE EXPRESSION IN SAT IN HAL (Study III) 

Body composition and biochemical characteristics of the study groups 

The study subjects were the same as in Study 2 and their clinical and biochemical characteristics are given in 

Table 5. HIV- and HAART-related characteristics did not differ between the groups (Table 6).

Adipose tissue gene expression 

The mRNA concentrations of control genes were not different between the groups (β-actin 217 ± 44 vs. 180

± 40 in the HAART+LD+ vs. HAART+LD-, NS; β2-microglobulin 606 ± 71 vs. 645 ± 73, respectively, NS). 

The blood contamination percentage did not differ significantly between the groups (17.2 ± 2.2 vs. 14.3 ± 

2.1% volume/weight, HAART+LD+ vs. HAART+LD-, NS).  
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Transcription factors and coactivator: PPARγ, SREBP-1c, PPARδ and PGC-1 

The mRNA concentrations of PPARγ, SREBP-1c, PPARδ and PGC-1 are shown in Table 8. Expressions of 

all these genes were significantly lower in the HAART+LD+ than in the HAART+LD- group. PPARγ and

SREBP-1c expressions were significantly interrelated within the HAART+LD+ group (r = 0.68, p<0.0001). 

Table 8. The expression of the defined genes in SAT in the HAART+LD+ and the HAART+LD- groups.

Variable HAART+LD+ HAART+LD- 

PPARγ 13 ± 2 x 10-3 ** 28 ± 6 x 10-3

SREBP-1c 1.8 ± 0.2 ** 3.1 ± 0.5 

PGC-1 19 ± 4 x 10-3 * 27 ± 7 x 10-3

PPARδ 15 ± 3 x 10-3 * 20 ± 3 x 10-3

LPL 7 ± 1 x 10-3 *** 19 ± 3 x 10-3

ACS 10 ± 2 x 10-4  * 15 ± 3 x 10-4

FATP-1 16 ± 3 x 10-4  15 ± 2 x 10-4

FATP-4 13 ± 2 x 10-4  12 ± 1 x 10-4

KLBP  13 ± 1 x 10-3  10 ± 2 x 10-3

ALBP 0.26 ± 0.03 0.27 ± 0.02 

GLUT4 0.8 ± 0.2 * 1.6 ± 0.3 

GLUT1 10 ± 1 x 10-3  13±2 x 10-3

IL-6 0.8 ± 0.3 * 0.2 ± 0.1 

CD45 16 ± 3 x 10-4 * 9 ± 1 x 10-4

Adiponectin 68 ± 10 x 10-5 *** 242 ± 62 x 10-4

Data are shown as mean ± SEM.  
*p<0.05, **p<0.01, ***p<0.001 for comparisons between HAART+LD+ and HAART+LD-. 

Lipogenesis and fatty acid metabolism: LPL, ACS, ALBP, KLBP, FATP-1 and FATP-4

Expression of LPL and ACS were significantly decreased in the HAART+LD+ group compared to the 

HAART+LD- group (Table 8). The mRNA concentrations of the fatty acid transport proteins FATP-1 and 

FATP-4, or the fatty acid intracellular binding proteins ALBP and KLBP did not differ between the groups 

(Table 8).

Glucose transport proteins: GLUT4 and GLUT1 

The mRNA concentration of GLUT4 was significantly decreased in patients with lipodystrophy (Table 8). 

Expression of PGC-1 correlated closely with that of GLUT4 within the HAART+LD+ group (Fig. 10). The 

mRNA concentration of GLUT1 was not different between the groups (Table 8). 
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Figure 10. Relationship between mRNA concentration of PGC-1 and GLUT4 in SAT in patients with HAL.   
r = correlation coefficient.  

Markers of inflammation: CD45 and IL-6 

The mRNA concentrations of CD45 and IL-6 were significantly higher in the HAART+LD+ than the 

HAART+LD- group (Table 8). Serum IL-6 concentration (2.2 ± 0.3 vs. 1.9 ± 0.6 pg/ml, HAART+LD+ vs. 

HAART+LD-, NS) did not differ between the groups. There was no correlation between serum IL-6 and 

adipose tissue mRNA concentration of IL-6 (r=0.24, p=0.14).  

6.4. TREATMENT OF HAL WITH ROSIGLITAZONE (Study IV and V) 

Body composition and biochemical characteristics at baseline 

At baseline, the placebo and rosiglitazone groups were similar with respect to age, gender, body weight and 

composition (Table 9). The HIV-related characteristics of the subjects are given in Table 6. There were no 

significant differences between the rosiglitazone and the placebo group with respect to HIV-related 

characteristics at baseline (data not shown). None of the patients changed any of the antiretroviral agents 

during the study. 

Compared to the age- and weight-matched HIV- group, the HAART+LD+ group had significantly less 

subcutaneous and more intra-abdominal fat, and higher WHR (Table 5). Fasting serum insulin and 

triglyceride concentrations were significantly higher and HDL cholesterol concentrations lower in the 

HAART+LD+ than in the HIV- group (Table 5). Plasma glucose (Table 5) or HbA1c (5.2 ± 0.2 vs. 5.5 ± 0.1 

%, HAART+LD+ vs. HIV-, NS) concentrations were not different between the groups.  
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Table 9. The number, age, body composition and laboratory characteristics of the subjects in the 
rosiglitazone and the placebo groups at baseline and at 24 weeks.
Variable Rosiglitazone 

0 weeks 24 weeks 

Placebo

0 weeks 24 weeks 

Number of patients 15 15 15 15 

Males / females 12 / 3  13 / 2  

Age (years) 44 ± 3  42 ± 2  

Body mass index (kg/m2) 23.7 ± 0.7 23.9 ± 0.6 23.6 ± 0.8 23.9 ± 0.9 

Body weight (kg) 73.0 ± 2.5 73.7 ± 2.5 73.3 ± 3.4 74.4 ± 3.6 

Subcutaneous fat (cm3) 980 ± 200 1040 ± 230 1300 ± 250 1330 ±250 

Intra-abdominal fat (cm3) 2000 ± 250 2030 ± 260 1830 ± 330 1780 ± 320 

Total body fat (%) 17.6 ± 1.6 18.0 ± 1.6 17.4 ± 1.9 18.0 ± 1.9 

Skinfolds (mm) 38 ± 4 36 ± 4 38 ± 4 38 ± 3 

Serum leptin (ng/ml) 4.2 ± 1.0 3.8 ± 0.9 3.8 ± 0.8 3.9 ± 0.9 

Serum insulin (mU/l) 12.6 ± 1.5 9.3 ± 0.6 * † 9.6 ± 1.8 16.3 ± 5.7 

Serum HDL cholesterol (mmol/l) 1.0 ± 0.1 0.9 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 

Liver fat content (%) 7.3 ± 1.6 6.2 ± 1.3 † 8.0 ± 3.1 10.1 ± 3.3 

Serum CRP (mg/l) 1.5 ± 0.3 1.0 ± 0.3 * 1.6 ± 0.4 1.6 ± 0.3 

Serum IL-6 (pg/ml) 2.0 ± 0.3 1.8 ± 0.3 2.4 ± 0.4 2.1 ± 0.4 

B-leukocytes (x 109/l) 5.6 ± 0.3 5.0 ± 0.3 * † 5.9 ± 0.6 6.1 ± 0.6 

Serum FFA (µmol/l) 550 ± 35 422 ± 36 * 572 ± 64 516 ± 55 

Serum TNFα (pg/ml) 1.7 ± 0.2 1.7 ± 0.2 1.5 ± 0.2 1.8 ± 0.3 

Serum adiponectin (ug/ml) 3.6 ± 0.5 6.2 ± 1.1 * † 3.1 ± 0.6 3.6 ± 0.6 

Data are shown as mean ± SEM.  *p<0.05 for the change between 0 and 24 weeks within rosiglitazone or 
placebo group. † p<0.05 for the comparisons of changes between the rosiglitazone and placebo group.  

Clinical effects of rosiglitazone  

After 24 weeks of treatment, there were no significant changes in body weight or in the amount of intra-

abdominal or subcutaneous fat as determined by MRI, serum leptin concentrations, the sum of skinfold 

thicknesses or other measures of adiposity in either placebo or rosiglitazone group (Table 9).

Serum insulin concentrations and liver fat content decreased in the rosiglitazone group, but increased in the 

placebo group (Table 9); the changes between the groups were statistically significant. In the rosiglitazone 

group, the change in serum insulin concentration correlated with the change in the liver fat content (r=0.52, 

p<0.05), but not with any other measure of body composition. Serum triglyceride concentrations increased 

significantly during rosiglitazone treatment (Fig. 11). Serum total cholesterol concentrations also increased 
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significantly (Fig. 11). Serum HDL cholesterol did not change significantly in either group (Table 9). 

Plasma glucose concentration decreased non-significantly in both groups: by 0.01 ± 0.2 in the placebo and 

0.15 ± 0.1 mmol/l in the rosiglitazone group. Serum CRP and FFA concentrations, and total white blood cell 

count decreased significantly in the rosiglitazone group (Table 9). Serum adiponectin concentration 

increased significantly in the rosiglitazone group, but remained unchanged in the placebo group (Table 9).

Figure 11. The effect of rosiglitazone vs. placebo on serum triglyceride and total cholesterol concentration. 
Error bars = SEM. Dashed line = mean value of HIV negative normal subjects. *p<0.05, **p<0.01 for 
comparisons vs. baseline. #p<0.05 for comparisons between the rosiglitazone and the placebo groups.  

Serum ALT and hemoglobin concentrations decreased significantly in the rosiglitazone group and remained 

stable in the placebo group (Fig. 12). One patient in the rosiglitazone group discontinued the study after 12 

weeks of treatment due to increased triglyceride concentration (32.5 mmol/l). None of the patients developed 

hypoglycemia or clinically detectable edema. Venous blood pH and bicarbonate concentrations did not 

change significantly in either group (data not shown). CD4+ cell counts and serum PI concentrations did not 

change significantly in either group (data not shown). None of the patients lost virologic control during the 

study.  

Effects of rosiglitazone on gene expression in SAT 

There were no significant differences in the mRNA concentrations for any of the genes at baseline between 

the placebo and rosiglitazone group (Table 10). Rosiglitazone induced a significant increase in the 

expression of adiponectin and PGC-1, and a significant decrease in the expression of IL-6. In addition, the 

expression of PPARγ was increased in the rosiglitazone group when compared with the placebo group. 

Expression of other genes involved in lipogenesis, fatty acid metabolism or glucose transport remained 

unchanged in both groups. 
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Figure 12. The effect of rosiglitazone vs. placebo on serum ALT and hemoglobin concentration. Error bars 
= SEM. Dashed line = mean value of HIV negative normal subjects. *p<0.05, **p<0.01, ***p<0.001 for 
comparisons vs. baseline. #p<0.05, ##p<0.01 for comparisons between the rosiglitazone and the placebo 
groups.

Interrelationships between gene expression and features of insulin resistance 

Among lipodystrophic patients at baseline, the mRNA concentration of adiponectin in SAT correlated with 

that of SREBP-1c (r=0.69, p<0.0001) and LPL (r=0.95, p<0.0001), and with liver fat content (r=-0.39, 

p<0.05). Similar correlations were also found after 24 weeks between adiponectin expression and the liver 

fat content (r=-0.34, p=0.07), and between adiponectin and SREBP1-c (r=0.79, r<0.0001) and LPL (r=0.94, 

p<0.0001) expression in SAT. Serum adiponectin concentration at 24 weeks but not at baseline correlated 

significantly with the liver fat content (r=-0.36, p<0.05) and the fasting serum insulin concentration (r=-0.38, 

p<0.05).  

In all patients with HAL, the change in the concentration of adiponectin mRNA in SAT correlated closely 

with the corresponding changes in the concentrations of LPL mRNA (r=0.89, p<0.0001) and SREBP-1c 

mRNA (r=0.47, p<0.05). The change in serum adiponectin concentration was inversely correlated with the 

change in fasting serum insulin concentration (r=-0.49, p<0.01), the liver fat content (r=-0.45, p<0.05) (Fig. 

13) and serum ALT concentration (r=-0.38, p<0.05). The change in fasting serum insulin concentration and 

the change in liver fat content correlated significantly (r=0.45, p<0.05).   

The change in the mRNA concentration of IL-6 in adipose tissue correlated positively with the changes in 

fasting serum FFA (r=0.52, p<0.01) and serum CRP (r=0.40, p<0.05) concentrations. The change in the 

serum concentration of CRP also correlated inversely with the changes in mRNA concentrations of SREBP-

1c (r=-0.45, p<0.05) and LPL (r=-0.45, p<0.05) in SAT.  

S-ALT

0 6 12 18 24

20

40

60

***

**
*

Time (weeks)

U
/
l

Hemoglobin

0 6 12 18 24

130

140

150

160

***

##
#

**

***

***

Rosiglitazone

Placebo

Time (weeks)

g
/
l



78

Table 10. The expression of the defined genes in the rosiglitazone and the placebo group at baseline and at 
24 weeks.

 Rosiglitazone 

0 weeks 24 weeks 

Placebo

0 weeks 24 weeks 

PPARγ 12.5 ± 3.3 x 10-3 13.3 ± 2.4 x 10-3 †  13.9 ± 2.6 x 10-3 12.0 ± 2.4 x 10-3

SREBP-1c 1.7 ± 0.4 1.7 ± 0.2 1.8 ± 0.3 1.7 ± 0.3 

PGC-1 15 ± 4 x 10-3 20 ± 4 x 10-3 * 23 ± 7 x 10-3 23 ± 6 x 10-3

PPARδ 14 ± 4 x 10-3 14 ± 3 x 10-3 16 ± 4 x 10-3 12 ± 3 x 10-3

Adiponectin 62 ± 16 x 10-5 72 ± 14 x 10-5* 73 ± 18 x 10-5 74 ± 16 x 10-5

GLUT1 9 ± 2 x 10-3 12 ± 2 x 10-3 10 ± 2 x 10-3 10 ± 1 x 10-3

GLUT4 0.64 ± 0.15  0.66 ± 0.16 0.96 ± 0.26 0.67 ± 0.12 

IL-6 1.05 ± 0.60 0.33 ± 0.08 ** † 0.56 ±0.33 0.43 ± 0.12 

CD45 19 ± 6 x 10-4 19 ± 5 x 10-4 14 ± 2 x 10-4 15 ± 2 x 10-4

LPL 7 ± 2 x 10-3 7 ± 1 x 10-3 7 ± 2 x 10-3 7 ± 2 x 10-3

ACS 7 ± 1 x 10-4 7 ± 1 x 10-4 13 ± 3 x 10-4 10 ± 3 x 10-4

FATP-1 14 ± 4 x 10-4 13 ± 3 x 10-4 18 ± 4 x 10-4 13 ± 2 x 10-4

FATP-4 12 ± 3 x 10-4 10 ± 2 x 10-4 15 ± 3 x 10-4 10 ± 2 x 10-4

KLBP 11 ± 2 x 10-3 9 ± 1 x 10-3 14 ± 2 x 10-3 11 ± 1 x 10-3

ALBP 0.24 ± 0.04 0.25 ± 0.03 0.27 ± 0.05 0.22 ± 0.03 

Leptin 0.078 ± 0.025 0.061 ± 0.023 0.052 ± 0.020 0.046 ± 0.019 

Data are shown as mean ± SEM.  *p<0.05 and **p<0.01 for the change between 0 and 24 weeks within the  
rosiglitazone or placebo group. † p<0.05 for the comparisons of changes between the rosiglitazone and 
placebo group.  

6.5. PAI-1 IN HAL (Study VI)

Body composition and biochemical characteristics of the groups  

Clinical and biochemical characteristics of the study groups are given in Table 5. 

Circulating PAI-1, tPA and cytokine concentrations  

Plasma PAI-1 antigen concentrations were significantly increased in the HAART+LD+ group (28.4 ± 2.4 

ng/ml) compared with the HAART+LD- (17.8 ± 2.6, p<0.05) and the HIV- groups (10.4 ± 2.7, p<0.001) as 

were plasma tPA concentrations (10.7 ± 0.6 vs. 7.3 ± 0.6 vs. 6.1 ± 0.8 ng/ml, p<0.01 for HAART+LD+ vs. 

HAART+LD-, p<0.001 for HAART+LD+ vs. HIV-). These differences persisted even after age was 

included as a covariate in the analysis of variance. 
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Figure 13. Relationship between the change in serum adiponectin concentration and the change in serum 
insulin concentration (left), and between the change in serum adiponectin concentration and the change in 
liver fat content (right) in patients with HAL. r = correlation coefficient..  

Serum TNFα concentrations were not significantly different between the groups (1.6 ± 0.1 vs. 1.5 ± 0.2 vs. 

2.0 ± 0.8 pg/ml, HAART+LD+ vs. HAART+LD- vs. HIV-). Serum IL-6 concentrations, on the other hand, 

were increased in both HIV-infected groups relative to the HIV- group (2.2 ± 0.2 vs. 1.9 ± 0.6 vs. 0.7 ± 0.2 

pg/ml, p<0.05 for HIV-infected groups vs. HIV-).  

PAI-1 and leptin expression in SAT 

In SAT, PAI-1 mRNA concentration averaged 0.019 ± 0.003 in the HAART+LD+ group, which was 

significantly higher than in the HAART+LD- (0.007 ± 0.002, p<0.005) and the HIV- (0.006 ± 0.001, 

p<0.005) groups (Fig. 14). Fat cell diameter was greater in the HIV- (94 ± 3 µm) than in the HAART+LD+ 

(74 ± 3 µm, p<0.01) or in the HAART+LD- group (80 ± 4 µm, p<0.05). Leptin mRNA concentration in SAT

was significantly lower in the HAART+LD+ group (0.06 ± 0.02) when compared to the HAART+LD- (0.17 

± 0.03, p<0.005) or the HIV- (0.28 ± 0.06, p<0.001) group. 

Relationships between PAI-1 and physical and biochemical characteristics before rosiglitazone therapy 

Fig. 15 depicts the relations of plasma PAI-1, and Fig. 16, those of plasma tPA antigen concentrations to 

liver fat content,  and to the amount of subcutaneous and intra-abdominal fat in all study groups. Within the 

HAART+LD+ group, plasma PAI-1 antigen concentration correlated with liver fat content before 

rosiglitazone therapy (r=0.49, p<0.01, Fig. 15) but not with serum TNFα (r=-0.03, NS) or IL-6 (r=0.18, NS) 

concentrations, the amount of subcutaneous (r=-0.05, NS, Fig. 15) or intra-abdominal fat (r=0.33, NS, Fig. 

15), serum C-peptide (r=0.33, NS) or insulin (r=0.26, NS) concentrations, or body weight (r=0.26, NS). 

Within the HAART+LD+ group, the correlation coefficient between PAI-1 mRNA concentrations in SAT 

and plasma PAI-1 concentrations before rosiglitazone therapy was 0.39 (p<0.05).  
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Figure 14. The mRNA concentration of PAI-1 in SAT in the HAART+LD+, HAART+LD- and HIV- groups 
(left); the change by rosiglitazone vs. placebo treatment in PAI-1 mRNA concentration in SAT (middle) and 
plasma PAI-1 antigen concentration (right). Error bars = SEM.  *p<0.05, ***p<0.005. 

Effects of rosiglitazone treatment  

Compared with baseline, PAI-1 mRNA concentration in SAT decreased slightly in the placebo group 

(p<0.05 for before vs. after) but not in the rosiglitazone group (p>0.1); the changes between the groups were 

not statistically significant (Fig. 14). Rosiglitazone treatment was associated with a decrease in plasma PAI-1 

concentration from 30 ± 4 to 23 ± 2 ng/ml (p<0.05; Fig. 14). Plasma PAI-1 remained unchanged in the 

placebo group (27 ± 3 vs. 26 ± 3 ng/ml, before vs. after, NS; Fig. 14). The mean size of the adipocytes or the 

distribution of cell sizes were not changed by placebo or rosiglitazone treatment (data not shown). Plasma 

tPA decreased from 11.3 ± 0.8 to 10.5 ± 0.8 ng/ml (p<0.05) in the rosiglitazone group but remained 

unchanged in the placebo group (10.1 ± 0.7 vs. 9.8 ± 0.7 ng/ml, NS). Serum IL-6 concentration did not 

change with rosiglitazone treatment when compared to placebo (Table 9). Serum TNFα concentration 

increased almost significantly in the placebo group (p=0.06), but remained unchanged in the rosiglitazone 

group (Table 9). Leptin expression remained unchanged in both rosiglitazone and placebo groups (Table 

10).

The change in plasma PAI-1 concentration within the HAART+LD+ group was significantly correlated with 

the change in serum insulin concentration (r=0.42, p<0.05), which in turn was significantly correlated with 

the change in liver fat content (r=0.49, p<0.01). The correlation coefficient between the change in plasma 

PAI-1 concentration and the change in liver fat content was 0.37 (p<0.05). Except for the latter correlation, 

there were no significant correlations between the change in plasma PAI-1 concentration and changes in 

body composition, nor were there any significant correlations between the change in plasma PAI-1 

concentration and the changes in serum TNFα or IL-6 concentrations (data not shown). The change in 

plasma PAI-1 concentration did not correlate with the change in PAI-1 mRNA concentration in SAT (r=-

0.04, NS).
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Figure 15. Relationships between liver fat (LFAT), subcutaneous and intra-abdominal fat, and plasma PAI-1 
antigen concentrations in HAART-treated patients with (closed circles, HAART+LD+) and without (open 
triangles, HAART+LD-) lipodystrophy, and in HIV-negative normal subjects (open circles, HIV-). The 
correlation coefficients and the corresponding p-values were for LFAT: r = 0.49, p<0.01 in the 
HAART+LD+ group, r = 0.54, p<0.05 in the HAART+LD- group, r = -0.17, NS in the HIV- group; for 
subcutaneous fat: r = -0.05, NS in the HAART+LD+ group, r = 0.17, NS in the HAART+LD- group, r = 
0.19, NS in the HIV- group; for intra-abdominal fat: r = 0.33, NS in the HAART+LD+ group, r = 0.45, NS 
in the HAART+LD- group, r = 0.63, p<0.05 in the HIV- group.   



82

-0.5 0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

log LFAT (%)

P
la

sm
a 

tP
A

 a
nt

ig
en

(n
g/

m
l)

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

Subcutaneous fat (cm3)

P
la

sm
a 

tP
A

 a
nt

ig
en

(n
g/

m
l)

0 2000 4000 6000
0

5

10

15

20

25

Intra-abdominal fat (cm3)

P
la

sm
a 

tP
A

 a
nt

ig
en

(n
g/

m
l)

Figure 16. Relationships between liver fat (LFAT), subcutaneous and intra-abdominal fat, and plasma tPA 
antigen concentrations in HAART-treated patients with (closed circles, HAART+LD+) and without (open 
triangles, HAART+LD-) lipodystrophy, and in HIV-negative normal subjects (open circles, HIV-). The 
correlation coefficients and the corresponding p-values were for LFAT: r = 0.65, p<0.0001 in the 
HAART+LD+ group, r = 0.65, p<0.05 in the HAART+LD- group, r = 0.03, NS in the HIV- group; for 
subcutaneous fat: r = 0.02, NS in the HAART+LD+ group, r = -0.30, NS in the HAART+LD- group, r = 
0.36, NS in the HIV- group; for intra-abdominal fat: r = 0.33, NS in the HAART+LD+ group, r = 0.49, NS 
in the HAART+LD- group, r = 0.71, p<0.05 in the HIV- group.   
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7. DISCUSSION 

7.1. SUBJECTS AND METHODS 

7.1.1. SUBJECTS 

In the current study, three groups of subjects were included. Most of the comparisons were made between the

HAART+LD+ and the HAART+LD- groups in order to distinguish findings associated with lipodystrophy 

from those associated with HIV and HAART. This is important, since a chronic HIV infection per se induces 

expression of inflammatory cytokines (398,399). Furthermore, it has recently been shown that human 

preadipocytes express CD4, CXCR4 and CCR5 receptors, which are necessary for entry of HIV into 

inflammatory host cells (400). At least in vitro, adipocytes can actually express viral proteins (400). 

Therefore the mere presence of HIV may influence gene expression in adipocytes. When two HIV-infected, 

HAART-treated groups were compared, these potential interferences could be avoided. 

There is no international consensus regarding the diagnosis of lipodystrophy. Therefore clinical criteria, i.e. 

presence of symptoms (HAART+LD+) or lack thereof (HAART+LD-) reported by the patients and the 

findings confirmed by the single investigator (J.S.), were used for grouping of the HIV-infected patients. The 

clinical criteria classified the patients correctly as was later shown by objective measurements of body 

composition: regardless the similar body weight and total body fat, the HAART+LD+ group had 

significantly less subcutaneous fat and more intra-abdominal fat than the HAART+LD- group (Table 5). The 

HAART+LD+, HAART+LD- and HIV- groups were matched for gender and BMI, and also for age with the 

exception of Study VI, in which the HIV- group was somewhat younger than the HAART+LD+ group. 

However, the results of Study VI did not change when age was included as a covariate in the analyses.  

At the time of the initiation of Study IV, there were no data available regarding the use of rosiglitazone in 

HAL. Patients with serum transaminase concentrations higher than three times the upper limit of normal, 

patients with heart failure and with severe hypertriglyceridemia were excluded from the study in order to 

minimize the risk of potential side effects due to rosiglitazone. These exclusion criteria must be taken into 

account before generalizing the results. Although there were no interaction studies available evaluating 

concomitant use of thiazolidinediones and antiretroviral agents, harmful interactions were considered 

unlikely, since rosiglitazone does not interact with other cytochrome P450 3A4 substrates (401,402). As 

expected, there were no significant changes in PI concentrations and none of patients who had undetectable 

amount of the virus in plasma at baseline lost virologic control during the study. 
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7.1.2. LIVER FAT  

MRI proton spectroscopy is a novel method that allows non-invasive quantification of liver fat without 

radiation exposure. Other common non-invasive methods for evaluating liver fat content, such as ultrasound 

are at best only semi-quantitative (403). The recorded methylene signal from the liver specifically represents 

intrahepatocellular triglyceride, since there is no extrahepatocellular fat in the liver. Quantification of hepatic 

fat by proton spectroscopy correlates closely with that determined histologically from liver biopsies and with

liver density measurements calculated by CT (191,404,405), although the units of measurement are different. 

In our hands, the spectroscopic fat percentage is about half of the histologic fat percentage (Vehkavaara S et 

al, unpublished data). Spectroscopy has also the advantage that a larger volume of liver (8 cm3) can be 

analyzed than by performing a liver biopsy (406). An important limitation of all non-invasive methods is 

their inability to differentiate benign fat accumulation (hepatosteatosis) from steatohepatitis, which has a 

significantly worse prognosis as a liver disease (407). 

7.1.3. BODY COMPOSITION 

Body composition was measured using MRI, BIA and anthropometric measurements. MRI and CT imaging 

allow depot-specific quantification of abdominal subcutaneous vs. intra-abdominal fat in contrast to DEXA, 

which can measure total truncal fat, but not separate the two depots (408). This limitation of DEXA is of 

great significance in patients with lipodystrophy (409) since, as in the present study, the total amount of 

abdominal fat does not necessarily differ between lipodystrophic and non-lipodystrophic subjects (Table 5). 

Abdominal subcutaneous and intra-abdominal fat depots are most commonly measured using a single CT or 

MRI scan at the level of L4-L5. Even though a good correlation has been shown between the fat mass 

measured by MRI covering total abdominal cavity and the fat mass from a single MRI scan (410), we 

preferred to quantify adipose tissue mass by using a total of 16 slices 1 cm apart to increase the accuracy of 

the measurement.  

BIA is a non-invasive, inexpensive method for determining total, but not compartment-specific body 

composition, and has been validated in HIV-infected patients before the era of HAART (411). However, the 

method may not be reliable in patients with HAL and the predictive equations should be developed 

specifically for patients with lipodystrophy (412). Reliability of anthropometric measurements could perhaps 

also be questioned. However, in the current study anthropometry was considered useful, since measurements 

are known to be more reliable in lean subjects with thin subcutaneous fat layer than in obese subjects (408). 

The inter-observer error was eliminated by having a single investigator to perform all measurements. The 

coefficient of variation of repeated skinfold measurements by the same trained observer is approximately 

only 5%, but it rises to 10-20% between different observers (408).  

Lack of DEXA imaging should be considered a limitation of the current study, since DEXA would have 

provided an additional measure of total limb fat mass. This would have been useful when evaluating the 
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effects of rosiglitazone on the amount of SAT. However, since rosiglitazone is not known to affect lean body

mass, an increase in the amount of subcutaneous fat should either have caused an increase in total body 

weight, or alternatively it should have been compensated by a reciprocal decrease in the amount of intra-

abdominal fat if the body weight remained unchanged. The lack of change in body weight or in the amount 

of intra-abdominal fat measured by covering almost all abdominal cavity (16 MRI scans), makes it unlikely 

that such a significant increase in the amount of subcutaneous fat remained unnoticed. 

7.1.4. GENE EXPRESSION  

Gene expression was quantified using real-time polymerase chain reaction (PCR). Because RNA cannot 

serve as a template for PCR, mRNA must first be converted into cDNA. DNA is thereafter amplified by a 

PCR reaction. Real-time PCR is currently the most sensitive method for quantification of mRNA (414).  

PCR reaction generates copies of the DNA template in an exponential fashion. Due to various limiting 

factors, the reaction eventually does not remain exponential, but reaches a ”plateau phase”; some reactions 

reach a higher plateau than others (415). The variability of the plateau level reached makes the end-point 

quantification of PCR products unreliable (415). With the ability to follow the concentration of the PCR 

product as they are accumulating, i.e. in ”real time”, it is possible to measure the amount of the PCR product 

at a point in which the reaction is still in the exponential range. It is only during this exponential phase of the 

PCR reaction that it is possible to extrapolate back to determine the starting amount of the template (415). 

Measurements of gene expression in adipose tissue in humans are often limited by the size of the sample and 

by the high lipid content of adipose tissue samples (416). The extreme paucity of subcutaneous fat in patients 

with severe lipodystrophy limited the size of fat samples also in the current study. Protein expression could 

not be evaluated in these small samples, which is a limitation of the current study. One must also keep in 

mind, when interpreting results of gene expression in adipose tissue samples that adipose tissue is not 

composed of adipocytes only, but also of other cells, such as endothelial cells and macrophages (52), which 

contribute to the total mRNA and protein concentrations of the adipose tissue samples. 

7.2. GENE EXPRESSION IN SAT AND ADIPOCYTOKINE PRODUCTION 

Lipodystrophy in its most typical form is characterized not only by a loss of subcutaneous fat but also by an 

accumulation of intra-abdominal fat and occasionally by a development of a buffalo hump or an increase in 

breast size. There are, however, no human or animal data regarding the effects of antiretroviral agents on 

gene expression in the hypertrophic adipose tissue. Although also non-HIV human data are limited, there is 

some evidence that differences in gene expression exist between different fat depots even in non-

lipodystrophic conditions (Table 1).
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Prior to the current study, gene expression in SAT of patients with HAL had been evaluated in one study 

(262). Since the subjects in the control group of this study were not HIV-infected and did not use HAART, it 

remained unclear as to whether the differences between the groups were due to the HIV infection, HAART 

or lipodystrophy. 

7.2.1. TRANSSCRIPTION FACTORS AND CO-ACTIVATOR (Table 8) 

The mRNA concentrations of PPARγ, SREBP-1c, PPARδ and PGC-1 in SAT were decreased in patients 

with HAL when compared to HIV-infected, HAART-treated patients without lipodystrophy. Since PPARγ is 

considered the main adipogenic transcription factor, and its expression is decreased also when patients with 

HAL are compared to HIV negative subjects (262), it seems likely that defective PPARγ expression plays a 

role in the development of lipodystrophy. Upstream regulators of PPARγ in the cascade of adipocyte 

differentiation include C/EBPβ, δ and α (53). These transcription factors were not measured in the current 

study, but C/EBPβ and α expressions were reported to be decreased in patients with HAL in the study of 

Bastard et al (262). PPARγ can also be activated by SREBP-1c, the expression of which was decreased in 

patients with HAL compared to the HAART+LD- group in the current study and compared to healthy 

controls in the study of Bastard et al (262). We also found a close correlation between PPARγ and SREBP-

1c mRNA concentrations. The expression of PPARδ, which may play a role in the earlier events of adipocyte

differentiation, such as proliferation of adipocyte precursor cells (417), was found to be decreased in patients 

with HAL and may contribute to the reduction in adipocyte differentiation. 

The expression of PGC-1 has not previously been evaluated in patients with HAL. PGC-1 is an interesting 

protein in this context, since it was originally identified as a co-activator of PPARγ (71), but has also been 

found to be involved in the biogenesis of mitochondria (72). In the present study, PGC-1 expression in SAT 

was decreased in patients with HAL. Low expression of PGC-1 may therefore have contributed both to the 

low transcriptional activity of PPARγ and to the mitochondrial alterations in SAT described earlier in 

patients with HAL (264,266). As mitochondrial dysfunction may lead to apoptosis (418), mitochondrial 

damage in adipose tissue may, at least partly, explain the apoptotic findings in SAT of patients with HAL 

(263). PGC-1 expression in adipose tissue was closely correlated with that of GLUT4 in patients with HAL 

(Figure 10). This is in keeping with a recent report, which found PGC-1 expression in SAT to be reduced in 

the insulin-resistant subjects and its expression to correlate with the expression of GLUT4, IRS-1, UCP-1 

and insulin sensitivity (419). In the same study, a correlation between PGC-1 and GLUT4 expression was 

found also in skeletal muscle (419). Currently there are no data regarding PGC-1 expression in the liver in 

man, but hepatic expression of PGC-1 in mice somewhat surprisingly has resulted in increased 

gluconeogenesis (420). 
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7.2.2. GENES OF LIPOGENESIS AND FATTY ACID METABOLISM (Table 8) 

The expression of fatty acid transport proteins (FATP-1, FATP-4) and intracellular binding proteins (ALBP, 

KLBP) were similarly expressed in the HAART+LD+ and the HAART+LD- groups. The expression of most 

fatty acid transport proteins are known to be upregulated by PPARγ in mice in vivo and in vitro (60,421). 

However, the lower expression of PPARγ in patients with HAL in the current study was not associated with 

reduced levels of expression of fatty acid transport or intracellular binding proteins. Whether this is due to 

different regulation of the expression of these genes in man when compared to mice is unclear.  

Both ALBP and KLBP, and at least CD36 of the fatty acid transport proteins, are also expressed in human 

macrophages (422,423). It is thus possible that the unchanged expression of these genes in SAT of patients 

with HAL could reflect a decrease in the expression in adipocytes and an increase in macrophages. A recent 

mouse model, in which macrophages were deficient in aP2 (corresponding human ALBP), expressed low 

levels of pro-inflammatory cytokines (TNFα, IL-1β, IL-6) (422). If ALBP expression was increased in 

macrophages in the current study, this might have contributed to the increased expression of IL-6. 

Interestingly, incubation of human peripheral blood mononuclear cells (PBMCs) with PIs increased the 

expression of CD36, which may increase the rate of lipid accumulation in macrophages and development of 

atherosclerosis (424). Human data in this regard are, however, as yet inconclusive. Seven to 30 day treatment 

of healthy volunteers and HIV-infected subjects with HAART has been shown to decrease rather than 

increase CD36 expression in PBMCs (425).  

Expression of ACS and LPL genes were reduced in the HAART+LD+ group compared with the 

HAART+LD- group. PPARγ is known to increase the expression of ACS both in preadipocytes in vitro and 

in adipose tissue in the rat in vivo (426). Pro-inflammatory cytokines decrease the expression of ACS in the 

liver and adipose tissue of hamsters (427). The low ACS expression in patients with HAL may therefore be a 

consequence of downregulation of PPARγ and upregulation of inflammatory cytokines, i.e. IL-6 and TNFα

(262). Regulation of LPL expression resembles that of ACS in adipose tissue. Both SREBP-1 and PPARγ

increase LPL expression in vitro and in rat adipose tissue (428,429), whereas pro-inflammatory cytokines 

decrease LPL  expression (9). Thus, both the decreases in PPARγ and SREBP-1, and the increases in IL-6 

and TNFα (262) expressions could have contributed to the low LPL expression. 

7.2.3. MARKERS OF INFLAMMATION  (Table 8) 

In the present study, the expression of IL-6 in SAT was increased in the HAART+LD+ group when 

compared to the HAART+LD- group. IL-6 is a multifunctional cytokine produced by several different cell 

types including immune cells, adipocytes, fibroblasts, stromal-vascular cells, endothelial cells, myocytes, and 

a variety of endocrine cells (9). As much as a third of the total circulating concentration of IL-6 has been 

estimated to originate from adipose tissue (9), but only ~10% of the IL-6 secreted from adipose tissue 
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originates from adipocytes (9). The HAART+LD+ group had a higher number of white blood cells capable 

of IL-6 production in SAT as judged from the significantly higher concentration of the mRNA coding for 

CD45. CD45 is a tyrosine phosphatase, which is expressed exclusively in white blood cell lineage (430). The 

expression of a specific macrophage marker, CD68 (431), is of great interest in these patients regarding the 

source of inflammatory cytokines. The expression of CD68 appears to be increased in patients with HAL 

(Sutinen J et al., unpublished). TNFα has considerable catabolic effects in adipose tissue, including 

inhibition of CEBPα, PPARγ and LPL expression, and induction of apoptosis (9). TNFα and IL-6 may also 

inhibit the expression of adiponectin (Chapter 7.2.4.). Increased inflammation in lipodystrophic adipose 

tissue may therefore have multiple direct and indirect effects in the pathogenesis of lipodystrophy and the 

associated insulin resistance. 

Because of the cross-sectional design of the current study, the results are limited to show associations 

between altered gene expression and lipodystrophy in the pathogenesis of HAL. Only prospective studies can 

prove the cause and effect. In addition, the role of a specific drug or even a drug class cannot be evaluated 

due to the small number of subjects and the large variety of HAART-combinations used by the patients. 

Taken together, multiple alterations have been found to characterize gene expression in SAT of patients with 

HAL compared with HIV-infected, HAART-treated patients without lipodystrophy implying that the 

changes were attributable to or responsible for lipodystrophy.  

7.2.4. ADIPONECTIN

In the present study, adiponectin expression in SAT and its serum concentration (Fig. 9) were significantly 

decreased in the HAART+LD+ when compared to the HAART+LD- group. Both serum concentration and 

adipose tissue mRNA concentration of adiponectin correlated closely with features of insulin resistance 

including liver fat content, suggesting that adiponectin deficiency may contribute to hepatic insulin 

resistance in these patients.  

The expression of adiponectin in SAT of patients with HAL was measured for the first time in the current 

study. Low expression of adiponectin in lipodystrophic adipose tissue has thereafter been reported by Lihn et 

al (432). The low serum adiponectin concentration in HAL in the current study is in keeping with findings of 

other recent reports comparing patients with HAL with HIV-infected subjects without HAL or with HIV 

negative healthy controls (432-435). All of these studies have also found an inverse correlation between 

circulating adiponectin concentrations and features of insulin resistance (432-436). In one study, adiponectin 

concentration was inversely correlated with the use of NRTI, and was suggested to mediate the worsening of 

insulin resistance during NRTI therapy (435). Serum adiponectin concentrations are decreased also in the 

generalized vs. the partial forms of non-HIV lipodystrophies and correlate with features of insulin resistance 

(437). Taken all data together, there is striking consistency, in contrast to data with leptin (Chapter 7.2.5.), 
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demonstrating adiponectin deficiency in human lipodystrophy. Even though cross-sectional studies cannot 

define the cause and effect, adiponectin is a candidate link between adipose tissue dysfunction and 

disturbances in whole body metabolism. 

The serum concentrations of adiponectin correlate inversely with BMI in persons with normal body weight 

and in obese individuals (90). However, body weight did not explain low adiponectin levels in the current 

study, since the HAART+LD+ and the HAART+LD- groups had comparable BMIs. Because in general 

population lean subjects have increased adiponectin, the paucity of subcutaneous fat per se in the 

HAART+LD+ group is not sufficient to explain low expression of adiponectin. Since adiponectin expression 

is induced 100-fold during adipocyte differentiation (88), the decrease in the expression of PPARγ and other 

transcription factors may have contributed to the low adiponectin expression.  

Current data are controversial regarding the expression of adiponectin in SAT vs. VAT (Table 1). Visceral 

fat has also been suggested to produce an as-yet unidentified substance, which may destabilize adiponectin 

mRNA (438). The significantly decreased serum adiponectin concentration together with significantly 

increased intra-abdominal fat mass in the HAART+LD+ group and the strong inverse correlation between 

the serum adiponectin concentration and the intra-abdominal fat mass, would suggest an inhibitory rather 

than stimulatory effect of intra-abdominal fat on adiponectin production. 

In the present study, serum adiponectin concentrations correlated closely with liver fat content, and liver fat 

content correlated with serum insulin concentrations. Currently there are no other human data available 

relating liver fat content and adiponectin concentrations. However, adiponectin has been found to be 

negatively correlated with IMCL in the oxidative soleus muscle, but not in the non-oxidative tibialis anterior 

muscle in healthy volunteers (439,440). Serum adiponectin concentration has also been shown to correlate 

positively with the increase in insulin-stimulated insulin receptor tyrosine phosphorylation in human skeletal 

muscle (441).   

In mice, adiponectin infusion enhances insulin sensitivity, fat oxidation in muscle and decreases liver and 

muscle fat content (22). In another mouse model, adiponectin inhibits the expression of hepatic 

gluconeogenic enzymes PEPCK and glucose 6 phosphatase and the rate of endogenous glucose production 

(442). In isolated primary rat hepatocytes, physiologic doses of adiponectin have been shown to enhance 

insulin-induced suppression of glucose production (20). Adiponectin treatment of mice with alcohol- or 

obesity-induced fatty livers has been shown to alleviate hepatomegaly, steatosis and decrease ALT 

concentrations (443). These therapeutic effects resulted partly from an increase in the carnitine 

palmitoyltransferase-1 activity and hepatic fatty acid oxidation, and from a decrease in the activities of 

enzymes involved in fatty acid synthesis in the liver, including ACC and FAS (443). These data strongly 

suggest that adiponectin regulate hepatic lipid accumulation and endogenous glucose production. 
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Adiponectin has also anti-inflammatory properties antagonizing the effects of TNFα (444), which may 

contribute to the insulin-sensitizing effects of adiponectin. Disruption of the adiponectin gene in mice is 

associated with high levels of TNFα in adipose tissue and plasma (445). Adenovirus-induced adiponectin 

expression in these mice normalized the increased TNFα expression (445). In mice with a fatty liver, 

adiponectin treatment suppresses hepatic production of TNFα and its plasma concentrations (443). On the 

other hand, TNFα has been shown to decrease the expression of adiponectin in 3T3-L1 adipocytes (99), and 

both TNFα and IL-6 have been found to decrease the expression of adiponectin in human adipose tissue 

culture in vitro (103). Plasma TNFα and its expression in SAT have been shown to be increased, and to 

correlate negatively with plasma adiponectin concentration in patients with HAL (432). IL-6 expression is 

also increased in SAT in patients with HAL as shown in the current study and by Lihn et al (432). It is 

therefore possible that increased TNFα and/or IL-6 contribute to the decreased adiponectin expression in 

HAL or vice versa. Very recently, the expression of CRP has been demonstrated in human SAT (446). The 

expression of CRP in SAT correlated inversely with that of adiponectin (446).  

Adiponectin deficiency may also enhance atherosclerosis by increasing the rate of foam cell formation, since 

in vitro adiponectin has been shown to reduce human macrophage-to-foam cell transformation (98). In this 

study, adiponectin suppressed the expression of the class A macrophage scavenger receptor without affecting 

the expression of CD36 (98). In vitro data therefore suggest that HAART may increase macrophage lipid 

accumulation by two mechanisms, i.e. by a direct PI-induced increase in the expression of CD36 in human 

PBMCs (424) and by an adiponectin deficiency-mediated increase in the expression of macrophage 

scavenger receptor (98). 

7.2.5. LEPTIN 

The HAART+LD+ group had a significantly lower serum leptin concentration than the HAART+LD- or the 

HIV- group (Study I). These data are consistent with data comparing patients with HAL to HIV negative 

controls (447). In some studies, however, serum leptin concentrations have not been different between 

lipodystrophic and non-lipodystrophic HIV-infected patients (270,433,448), and HAL has also been 

associated with an increased leptin concentration when compared to non-lipodystrophic HIV-infected 

patients (449). The reasons for the contrasting results between the current study and some previous studies 

are not clear, but may include lack of statistical power due to a smaller sample size (270), or less severe 

lipoatrophy of study subjects as judged from BMI (433) than in the current study. The latter hypothesis is 

supported by the findings of a study, in which only patients with pure lipoatrophy, as opposed to patients 

with pure lipohypertrophy or mixed form of lipodystrophy, had decreased circulating leptin concentrations 

when compared to non-lipodystrophic subjects (450). Large variation in the results regarding leptin in these 

studies also raises the question whether altered leptin expression is at all a characteristic feature of HAL.  
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In the current study, serum leptin concentration correlated with BMI and especially with the amount of 

subcutaneous fat both in the HAART+LD+ and the HIV- group (Fig. 8). The slope of the relationship 

between BMI and serum leptin concentration was significantly different between the HAART+LD+ and the 

HIV- groups; for a given BMI above 20 kg/m2 the lipodystrophic patients had a lower leptin concentration 

than the HIV negative subjects. This could be explained by increased leptin expression in SAT vs. VAT 

(Table 1), since for the same BMI lipodystrophic patients have less SAT and more VAT than non-

lipodystrophic subjects. When the relationship between subcutaneous fat mass and serum leptin 

concentration was evaluated in the lipodystrophic and HIV negative subjects, the relationships had similar 

slopes in both groups (Fig. 8). But again, for the same amount of SAT, the lipodystrophic patients have 

additionally more VAT than the non-lipodystrophic patients. The contribution of the additional VAT to 

serum leptin concentration in the HAART+LD+ group should be compensated by a decreased leptin 

expression in SAT when compared to HIV-group. This was later directly shown when leptin expression was 

measured by quantifying mRNA concentration in SAT: patients with HAL had lower leptin expression than 

HAART-treated patients without lipodystrophy or HIV negative subjects (Study VI) (262).  

Data from lipodystrophic mouse models suggest that leptin can reverse insulin resistance when normal 

adipose tissue is absent (202). Leptin treatment has also been shown to decrease serum cholesterol and 

triglyceride concentrations and interscapular fat mass, and to improve liver steatosis in a ritonavir-induced 

lipodystrophic mouse model (451). In non-HIV lipodystrophic humans with a low baseline leptin 

concentration, leptin-replacement therapy for four months has been shown to improve glycemic control and 

to decrease triglyceride concentrations and liver volume (123). As of today there are no data regarding the 

effect of leptin therapy in HAL.  

7.2.6. PAI-1 

The increased plasma PAI-1 and tPA concentrations in the HAART+LD+ group when compared to the 

HAART+LD- or the HIV- group (Study VI) are in keeping with a previous study comparing patients with 

HAL to HIV negative subjects (336). PAI-1 expression in adipose tissue of patients with HAL has not been 

previously reported. 

PAI-1 mRNA concentrations in SAT are approximately 2-fold increased in obese as compared to lean 

subjects (452,453). Given that the obese subjects in the latter studies had mean BMIs of 42.6 kg/m2 (452) 

and 35.6 kg/m2 (453), adipose tissue mass was markedly increased and thus SAT probably contributed 

substantially to the increase in plasma PAI-1 concentrations. We found a 2-3 -fold increase in PAI-1 gene 

expression in SAT in the HAART+LD+ group compared with the HAART+LD- and the HIV- groups (Fig. 

14).  However, SAT was almost 2-fold reduced in the abdominal region (Table 5). This implies that even 

though the concentration of PAI-1 mRNA was 2-3 -fold increased in subcutaneous fat, this increase, in the 
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face of a 2-fold reduction in total SAT mass, is unlikely to explain the greater than 2-fold increase in plasma 

PAI-1 antigen concentration. Another factor worth considering is that PAI-1 has been suggested to originate 

from stromal cells rather than adipocytes in adipose tissue (170). There are more inflammatory cells in the 

lipodystrophic than in the non-lipodystrophic adipose tissue as judged from the increased CD45 expression 

(Table 8). The lack of a correlation between the size of the SAT depot and plasma PAI-1 (Fig. 15) could 

therefore be due to altered composition of adipose tissue. Again, even here opinions are divided as some 

authors have suggested that SAT does not contribute to circulating plasma PAI-1 concentrations (454).    

Significant associations between plasma PAI-1 concentrations and the amount of VAT rather than SAT have 

been found (455). Visceral fat may produce more PAI-1 than subcutaneous fat (170,455). In the present 

study within the HAART+LD+ group, which had a 2-fold increase in intra-abdominal fat (Table 5), there 

was no correlation between the amount of intra-abdominal fat and plasma PAI-1 concentration (Fig. 15)

suggesting that other factors are important in the regulation of plasma PAI-1 concentration (Chapter 7.4.3).  

7.3. LIVER FAT 

In the current study, the liver fat content was significantly higher in the HAART+LD+ group when compared 

to the HAART+LD- and the HIV- group (Table 5). Liver fat has not been previously quantified in patients 

with HAL.  

The increased hepatic fat content of the patients with HAL could not be explained by alcohol consumption, 

which was comparable in all groups (Study I). Hepatitis C has recently been shown to increase the risk for 

severe liver damage (456) and insulin resistance (325) during HAART. This association, however, cannot 

explain the findings in the current study, since none of the subjects had serologic evidence of hepatitis C or 

B. The HAART+LD+ and the HAART+LD- groups were comparable with respect to the HIV-related 

characteristics with the exception of the HAART+LD+ group having a longer exposure to NRTIs (Table 6). 

Even though this is unlikely to alone explain lipodystrophy and insulin resistance, we cannot exclude the 

possibility that NRTI-specific effects, such as mitochondrial toxicity (265) could have contributed to these 

side effects. NRTI-induced mitochondrial toxicity has been suggested to cause lactic acidosis and hepatic 

steatosis in some patients using HAART (457,458). None of the subjects in the current study had symptoms 

of lactic acidosis and serum lactate concentrations were similar in the HAART+LD+ and the HAART+LD- 

groups (Study I). However, in the absence of liver biopsies, we cannot exclude the possibility that 

mitochondrial abnormalities, such as those described in insulin resistant patients with non-alcoholic 

steatohepatitis (459), characterized also the present participants. Very recently, mild to diffuse steatosis and 

ultrastructural mitochondrial abnormalities have been found in liver biopsies of HIV-infected patients who 

had been treated with NRTI-based regimens and had only mildly elevated transaminases (460) suggesting 

that mitochondrial abnormalities may contribute to liver steatosis also in the absence of lactic acidosis.  
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Data are limited regarding the direct effects of HAART on the liver. Treatment of monkeys with stavudine 

has been shown to deplete mtDNA and disturb oxidative phosphorylation in the liver (461). The effects of 

stavudine in the human liver are not known, but the use of stavudine has been associated with the loss of 

mtDNA in subcutaneous adipocytes in patients with HAL (261). In mice, ritonavir caused enlargement of the 

liver and hepatic lipid accumulation especially when fed with a high fat diet (289). The proposed mechanism 

was an excessive accumulation of SREBP-1 and –2 in the nucleus of hepatocytes. These data in mice would 

suggest that features of insulin resistance in patients with HAL were a consequence of a primary effect of PIs 

in the liver. This is, however, controversial. At least in adipocytes, PIs have been shown both to decrease and 

to increase the expression of SREBP (Table 3).  In human SAT, SREBP-1 mRNA concentration is 

decreased in patients with HAL when compared to HAART-treated patients without lipodystrophy (Table 8)

and to HIV- negative subjects (262).  

It is also possible that steatosis is not due to a direct effect of the drugs in the liver, but is a consequence of 

the inability of the adipose tissue to store triglycerides (38). Furthermore, the dysfunction of the remaining 

lipoatrophic subcutaneous fat and hypertrophic intra-abdominal fat may result in upregulation of insulin 

resistance-inducing cytokines, such as TNFα (432), and downregulation of beneficial adipocytokines, such 

as adiponectin (Table 8).

In the current study, liver fat content correlated with fasting serum insulin and C-peptide concentrations, but 

not with the amount of intra-abdominal fat or WHR (Figure 7). Furthermore, the amount of intra-abdominal 

fat did not correlate with serum insulin concentrations (Study I). The lack of this correlation challenges the 

idea that accumulation of fat intra-abdominally is, at least alone, responsible for insulin resistance in HAL. 

For a given amount of liver fat, serum insulin concentrations were higher in the lipodystrophic patients than 

the HIV negative subjects (Fig. 7) implying that liver fat alone was insufficient to explain all the variation in 

serum insulin concentrations. Fat may not be deposited only in the liver but also in skeletal muscle cells. The 

amount of IMCL has been shown to correlate negatively with insulin sensitivity in HIV negative subjects 

(195,462-465). IMCL is also increased in patients with HAL when compared to HIV negative controls (271) 

or to HIV-infected non-lipodystrophic patients (270), and correlates inversely with insulin sensitivity 

(270,271). In humans, HAART-associated insulin resistance is most likely caused by a combination of direct 

and indirect mechanisms, e.g. indinavir has been shown to induce an acute decrease in glucose disposal even 

after a single dose in healthy subjects (307).  

Accumulation of liver fat may not only affect patients’ health via contributing to insulin resistance, but may 

also lead to steatohepatitis and eventually to cirrhosis (407). The presence of steatohepatitis can only be 

confirmed by performing liver biopsies. Since this is an invasive procedure and p laces the subjects at risk for 
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bleeding complications, biopsies were not performed in the current study. Fatty liver disease is a significant 

contributor to morbidity in patients with non-HIV lipodystrophy (206) and NAFLD is the most common 

cause of cryptogenic cirrhosis, which is the third leading cause of liver transplantation in the United States 

(466). It has also recently been shown that patients who have hepatitis C and NAFLD have an increased risk 

of advanced fibrosis when compared to hepatitis C patients without NAFLD (467). This additive effect may 

be especially important in patients with HAL, since co-infections with HIV and hepatitis C are common.  

7.3.1. LIVER FAT AND PAI-1 

A striking finding in the present study was the close correlation of plasma PAI-1 concentrations with liver fat 

content in the HAART+LD+ and the HAART+LD- groups (Fig. 15). It can be concluded that plasma PAI-1 

concentration is likely to be regulated directly via changes in production or uptake of PAI-1 by the liver, or 

indirectly via alterations in serum insulin concentrations due to changes in hepatic insulin sensitivity 

(19,191). This interpretation is also supported by the intervention study (Chapter 7.4.3.). 

In the normal human liver, PAI-1 mRNA has been localized to endothelial cells but not to hepatocytes (468). 

On the other hand, PAI-1 synthesis in hepatocytes is induced by specific mediators and under certain 

pathological conditions. Mediators of the acute phase response (IL-1 alone and in combination with IL-6) 

stimulate PAI-1 gene transcription in HepG2 hepatoma cells (469,470). Insulin can increase PAI-1 

production in cultured hepatocytes and HepG2 cells (471,472). Hepatosteatosis is associated with increased 

synthesis of a variety of proteins including hepatic enzymes and coagulation factors (188). The latter include 

PAI-1 and tPA, which are increased in men with steatosis, independently of obesity (473). Liver enzymes are 

also correlated with plasma PAI-1 concentrations, independently of serum triglycerides in 

hypertriglyceridemic subjects (474), and independently of triglycerides, insulin and obesity in asymptomatic 

hyperlipidemic men (475). Recently, increases in PAI-1 mRNA concentrations were found in hepatocytes of 

rabbits with a fatty liver after high fat feeding (476). These studies support the notion that the liver may be a 

source of circulating PAI-1 in subjects with a fatty liver. Whether it is the simultaneous increase in serum 

triglycerides or insulin, or perhaps changes in circulating FFA or some other factor, which increases PAI-1 

under such conditions remains unclear. Since PAI-1 is cleared by the liver (477), fat accumulation in the 

liver could increase PAI-1 concentration in plasma by impairing its clearance. 

7.4. TREATMENT OF HAL WITH ROSIGLITAZONE 

7.4.1. CLINICAL EFFECTS 

This is the first controlled study evaluating the efficacy and safety of a thiazolidinedione in patients with 

HAL. In contrast to results in type 2 diabetic patients (10,379-382), in non-HIV lipodystrophic patients (213) 

and in vitro data (275), treatment with rosiglitazone did not increase any of the several measures of adiposity. 

The results of the current study contrast also those of an uncontrolled study evaluating the effects of 
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rosiglitazone in HAL. In the latter study, treatment of 8 patients with 8 mg of rosiglitazone for 6-12 weeks 

significantly increased the amount of SAT and decreased the amount of VAT measured using a single CT 

scan (385). Peripheral SAT was measured at baseline using DEXA. Body weight or DEXA results after 

rosiglitazone treatment were not reported (385). Possible explanations for the different results may arise from 

the differences in study design, i.e. open-label uncontrolled vs. double-blind placebo-controlled, or possibly 

from differences in the background HAART regimens. 

The lack of effect of a 24-week treatment with rosiglitazone on body fat in the present study demonstrates 

that either rosiglitazone is unable to increase adipose mass in patients with HAL, or these patients require 

much longer treatment than HIV negative patients. It can also be hypothesized that rosiglitazone caused a 

stimulatory effect on adipocyte differentiation, but this beneficial effect was neutralized by the unaltered use 

of HAART. It therefore remains to be studied, whether thiazolidinediones could increase fat mass under the 

circumstances that the concomitant HAART could be simultaneously modified to exert a less deleterious 

effect on the differentiating adipocytes, or if thiazolidinediones were given prophylactically.  

In HIV negative subjects, rosiglitazone lowers or has neutral effects on serum triglyceride concentrations 

(10,379-382,478). Both LDL and HDL cholesterol concentrations generally increase by rosiglitazone 

(380,478). In the study by Gelato et al., rosiglitazone increased serum triglycerides non-significantly by 1.5 

mmol/l in patients with HAL (385). In the current study, serum triglycerides increased markedly in the 

rosiglitazone group but remained unchanged in the placebo group (Fig. 11). At baseline, serum triglycerides 

exceeded 5 mmol/L in 20% of the patients both in the rosiglitazone and the placebo groups. After 6 and 12 

weeks of treatment with rosiglitazone these percentages had increased to 40% and 53%, respectively. These 

data imply, given the risk of pancreatitis and the need of lipid-lowering drugs when triglycerides exceed 10 

mmol/l (479) that triglycerides need to be monitored closely in future trials using rosiglitazone in patients 

with HAL. The cause of the increase in serum triglycerides remains speculative as effects of rosiglitazone on 

VLDL kinetics are unknown even in HIV negative individuals. Possibly, rosiglitazone mobilized 

triglycerides from the liver, but was unable to sufficiently enhance their clearance by adipose tissue.  

Despite the lack of effect on adipose tissue mass or distribution, rosiglitazone decreased liver fat content and 

fasting serum insulin concentrations in the current study (Table 9). Rosiglitazone improved insulin 

sensitivity measured using the clamp technique also in the study by Gelato et al. in patients with HAL (385). 

In the present study, liver function tests continuously improved in the rosiglitazone group, possibly as a 

consequence of the decrease in the liver fat content (Fig. 12). The decrease in the liver fat content by 

rosiglitazone is similar to that reported in HIV negative subjects in an uncontrolled study (382).  

Regarding treatment of HAL, the effects of rosiglitazone in the current study should be compared with those 

of metformin in HAART-treated patients (375). Although inclusion criteria were somewhat different, both 
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metformin and rosiglitazone improved insulin sensitivity and reduced PAI-1 concentrations (Fig. 14)

(336,375). Metformin decreased serum triglycerides, whereas rosiglitazone at least temporarily worsened 

dyslipidemia. Rosiglitazone, however, decreased liver fat content and transaminase concentrations, which 

remained unchanged after metformin treatment. Liver fat content was not assessed in the metformin study. 

Although neither rosiglitazone nor metformin reversed lipodystrophy, metformin might be considered at the 

moment the drug of choice to treat insulin resistance in these patients in view of the significant increases in 

blood lipids by rosiglitazone. On the other hand, the two drugs have not yet been compared in the same study 

in patients with HAL.  

In vitro, both PIs (Table 3) and NRTIs (310) can inhibit adipocyte differentiation. The suggested 

mechanisms include both SREBP-1 / PPARγ -dependent and -independent mechanisms (Table 3). In vitro,

the PI-induced block in adipocyte differentiation can be prevented by pre- or co-incubation of preadipocytes 

with rosiglitazone (Table 3). However, it is unclear to what extent PIs vs. NRTIs are responsible for the loss 

of subcutaneous fat in humans (Chapter 2.3.4.). The present data imply that the reversal of the PI-induced 

block in adipocyte differentiation observed in vitro does not appear to happen in vivo. Because glitazones 

promote preadipocyte differentiation into mature adipocytes through activation of PPARγ (378), the low 

baseline expression of PPARγ in the lipodystrophic adipose tissue may contribute to the poor effect (Table 

8) (262). Another possibility is that the loss of adipocytes could perhaps be prevented if patients were treated

with glitazones before rather than after the development of lipodystrophy simulating the in vitro experiments 

of pre- or co-incubation with rosiglitazone (Table 3).

7.4.2. EFFECTS ON GENE EXPRESSION IN SAT  

Effects of thiazolidinediones on gene expression in human adipose tissue in vivo have not been previously 

reported. In human adipocytes in vitro, rosiglitazone has been shown to increase the expression of UCP-2 

and the p85α-subunit of PI 3 kinase, decrease leptin expression, and have no effect on the expression of 

insulin receptor, IRS-1, GLUT4, LPL, HSL, ASP, FATP-1, angiotensinogen, PAI-1 and PPARγ (480).  

Despite the lack of effect on the amount of subcutaneous and intra-abdominal fat (Table 9), rosiglitazone 

induced changes in gene expression in SAT of patients with HAL. These included significant increases in 

adiponectin and PGC-1 expression, and a decrease in the expression of IL-6. Rosiglitazone also increased 

PPARγ expression. However, the increase in PPARγ expression was of limited magnitude and significant 

only when compared with the decrease in the placebo group. Rosiglitazone also caused a significant increase 

in the serum concentration of adiponectin, which  correlated significantly with the decrease in serum insulin 

concentration and liver fat content. These data demonstrate that rosiglitazone can have insulin-sensitizing 

effects without increasing the amount of SAT.  
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A 23% decrease in FFA concentration in the rosiglitazone group in the present study is in keeping with 

previous findings of 20-30% decreases in FFA concentrations in patients with type 2 diabetes treated with 

rosiglitazone (379,478). The decrease in serum FFA concentration can be due to decreased production or 

increased clearance of FFA. In patients with type 2 diabetes, rosiglitazone seems to lower fasting FFA 

concentrations by decreasing lipolysis (379). In patients with HAL, rates of lipolysis have been suggested to 

be increased (320). Since the sizes of adipose tissue depots remained unchanged, it is not possible to explain 

the decrease in serum FFA concentration by a decrease in lipolysis in adipose tissue. FFA originating from 

intravascular lipolysis is unlikely to be decreased, since serum triglycerides increased and the expression of 

LPL remained unchanged. Other possibilities, which cannot be resolved based on the present study, include 

increased FFA utilization in skeletal muscle as has been found in the rat (481), possibly mediated by an 

increase in adiponectin production (113). In mice, thiazolidinediones induce expression of fatty acid 

transport proteins (FATP-1, CD36), intracellular fatty acid binding protein (aP2) and acyl CoA synthase in 

white adipose tissue (482). Such changes could increase the clearance of FFA. Human data are limited 

regarding effects of rosiglitazone on the expression of genes involved in FFA utilization. In isolated human 

adipocytes, rosiglitazone has been reported to have no effect on the expression of FATP-1 (480). The lack of 

induction of these genes and of other genes involved in lipogenesis (SREBP-1c, ACS, PPARδ, LPL) may 

have contributed to the lack of increase in adipose tissue mass in the current study. Rosiglitazone did not 

increase the expression of LPL as has been described in human SAT in vitro (483). The lack of increase in 

LPL expression could have contributed to the increase in serum triglyceride concentration but cannot explain 

why triglycerides increased in the first place. Possibly, rosiglitazone mobilized triglycerides from the liver, 

the fat content of which significantly decreased compared to placebo treatment.  

There are conflicting in vitro data regarding the effects of thiazolidinediones on glucose transport proteins 

(480,484,485). The mRNA concentrations of GLUT1 and GLUT4 in SAT remained unchanged in the 

current study and thus cannot explain the improved insulin sensitivity. These data do not exclude the 

possibility that rosiglitazone increased GLUT4 expression or translocation in muscle (486,487). On the other 

hand, the major physiological function of fasting insulin is to control hepatic glucose production (14). 

Changes in liver fat content have been found to be closely correlated with changes in the ability of insulin to 

suppress hepatic glucose production (19). Consistent with these data and the idea that the decrease in serum 

fasting insulin was due, at least in part, to enhanced hepatic insulin sensitivity, the decrease in serum fasting 

insulin and liver fat content were significantly correlated in the present study.  

In the current study, treatment with rosiglitazone decreased serum CRP concentration and total white blood 

cell count, but did not change serum IL-6 concentration (Table 9). Similarly, in patients with type 2 diabetes, 

rosiglitazone has been found to decrease serum CRP and matrix metalloproteinase-9 concentrations and total 

white blood cell count, but did not change serum IL-6 concentrations (488). Thiazolidinediones have anti-

inflammatory effects both in animals and in humans. In mice, troglitazone decreases the expression of TNF α
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and IL-6 in white adipose tissue and in the liver (489). IL-6 is a key regulator of CRP production in 

hepatocytes (490). The unchanged serum IL-6 concentration in the present study cannot explain the decrease 

in serum CRP concentration. In mice, thiazolidinediones dowregulate pro-inflammatory cytokines in Kupffer 

cells in the liver (491). Whether thiazolidinediones have similar local anti-inflammatory properties in the 

liver of humans is not known. In the present study, despite having no effect on the total circulating IL-6 

concentration (Table 9), rosiglitazone markedly decreased the expression of IL-6 in SAT (Table 10). Very 

recently, expression of CRP has been demonstrated also in human adipose tissue (446). If IL-6 regulates the 

expression of CRP in adipose tissue, it is possible that the decreased IL-6 expression in SAT may have 

decreased the expression of CRP in SAT. However, the contribution of adipose tissue-derived CRP to serum 

CRP concentration is unknown. 

Rosiglitazone significantly increased adiponectin expression in SAT (Table 10) and almost doubled its 

circulating concentration (Table 9). Thiazolidinediones appear to have a direct effect on adiponectin 

expression via a recently identified functional PPAR-responsive element in the promoter region of the 

human adiponectin gene (112). The change in serum adiponectin concentration correlated inversely with the 

change in serum insulin concentration and liver fat content (Fig. 13). In rats, pioglitazone treatment increases 

plasma adiponectin, which is inversely correlated with hepatic glucose output (481). In vivo expression of 

adiponectin during thiazolidinedione treatment has previously not been reported in humans. In vitro

incubation of isolated human adipocytes from omental but not from subcutaneous depots with rosiglitazone 

increases the secretion of adiponectin (155). In keeping with the results of the current study, an increase in 

the serum adiponectin concentration by rosiglitazone treatment has also been reported in patients with type 2 

diabetes (110), glucose intolerant (111) and normal (492) subjects.  

Based on animal data, one can hypothesize that adiponectin may have mediated most of the favorable effects 

of rosiglitazone treatment, such as the decrease in liver fat content (22), in serum insulin and FFA 

concentrations (113), and in inflammatory markers (445). However, other effects of rosiglitazone, such as a 

decrease in the expression of 11β-hydroxysteroid dehydrogenase type 1 could also have contributed (493).  

7.4.3. EFFECTS ON PAI-1 

In the current study, the mRNA concentrations of PAI-1 in SAT did not change in the rosiglitazone group, 

but plasma PAI-1 concentrations decreased significantly (Fig. 14). The decrease in plasma PAI-1 

concentrations is similar to that reported with troglitazone in studies with type 2 diabetic patients (494-496). 

We did observe a small decrease in the PAI-1 expression in SAT in the placebo group, the cause of which is 

unclear. However, the changes in the mRNA concentrations of PAI-1 in SAT did not differ between the 

groups, and could therefore not explain the decrease of plasma PAI-1 concentration in the rosiglitazone 

group (Fig. 14). Of all clinical and biochemical parameters, the only significant correlates of the decrease in 
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plasma PAI-1 concentration were the decreases in serum insulin concentration and liver fat content (Study 

VI). The data thus suggest that the fatty liver may significantly contribute to plasma PAI-1 concentrations via 

affecting either the synthesis or the clearance of PAI-1. This hypothesis is supported by a recent study, which 

showed a correlation between the degree of steatosis in liver biopsies and plasma PAI-1 concentrations in 

obese humans (497). In the same report, a significant correlation was found between PAI-1 expression in the 

liver and its plasma concentration, thus further supporting a role of the liver in the regulation of plasma PAI-

1 concentration (497). 

7.5. FUTURE PROSPECTS 

Life-long treatment with HAART will most likely increase the risk of severe adverse events, such as 

enhanced cardiovascular morbidity and stigmatizing lipodystrophy. Large prospective studies are needed to 

determine the incidence and risk factors of HAL, and clinical significance of long-term toxicity of HAART. 

It is important to increasingly combine the expertise in infectious diseases and metabolism in the routine care 

of HIV-infected individuals in order to assure the optimal virologic response to HAART a nd to minimize the 

adverse consequences of long-term HAART. In order to prevent future complications, blood lipid and 

glucose levels must be regularly monitored in patients receiving HAART. Emphasis should also be placed on 

the reduction of classical risk factors of cardiovascular diseases, such as smoking. Fully developed 

lipodystrophic, especially lipoatrophic changes appear to be resistant to reversal. Therefore it is increasingly 

important to try to prevent the loss of subcutaneous fat in patients receiving HAART.  

Understanding of the pathogenesis of HAL is ultimately needed for its successful prevention and treatment. 

Since HIV-infected patients are treated with a combination of antiretroviral agents, it is difficult to determine 

the contribution of each individual antiretroviral agent to the metabolic adverse events. Single antiretroviral 

agents could be tested as monotherapy in HIV negative subjects, since in the absence of the virus there is no 

risk of the development of viral drug resistance. Quantifying gene expression in SAT instead of waiting for 

the appearance of visible changes in body composition may considerably shorten the exposure time needed 

for these studies.  

The finding of an increased liver fat content in patients with HAL warrants further studies on its 

pathogenesis and clinical impact. The potential role of NRTI-induced mitochondrial toxicity in the 

pathogenesis of hepatosteatosis warrants to be evaluated. Hepatosteatosis in patients with HAL may not only 

contribute to insulin resistance, but also increase the risk of steatohepatitis and cirrhosis. Monitoring of the 

potential consequences of the fatty liver in patients with HAL should be included in future studies.  

Although rosiglitazone did not alleviate lipoatrophy in the current study, it decreased liver fat content and 

serum insulin levels. It remains to be studied, whether treatment with rosiglitazone could increase SAT in 

patients whose HAART regimen would be simultaneously modified by replacing the more toxic drug(s) with 
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metabolically less toxic antiretroviral agent(s). Under these circumstances, the adipogenic effects of 

rosiglitazone could possibly exceed the diminished anti-adipogenic effects of the modified HAART, and 

eventually increase the amount of SAT. It would also be of interest to study whether rosiglitazone could 

prevent HAL if started before lipoatrophy has fully developed. Pioglitazone, which may act as a partial 

PPARα agonist (498), would also be an interesting agent, since pioglitazone appears to have more favorable 

effects on blood lipids than rosiglitazone at least in patients with type 2 diabetes (499). In the future, agonists 

which are active for both PPARγ and α may offer a dual effect by improving insulin sensitivity and 

correcting dyslipidemia (500). However, the effects of these drugs on lipoatrophy are probably not different 

from those of thiazolidinediones, since their action in adipose tissue is dependent on the activation of PPARγ

as is that of rosiglitazone.

Currently there are no human data, and very limited in vitro or animal data regarding the mechanisms 

underlying the intra-abdominal fat accumulation in HAL. Since VAT is anatomically difficult to access, 

studies on the hypertrophic fat in buffalo humps might provide information regarding the pathogenic 

differences between the hypertrophic and atrophic adipose tissue in HAL. 
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8. SUMMARY  

The results of the Studies I-VI can be summarized as follows: 

I. Liver fat content was significantly increased in HIV-infected patients with HAL when compared to 

HIV-infected, HAART-treated patients without lipodystrophy and healthy controls. Fasting serum 

insulin concentrations correlated more closely with liver fat content than with other measures of 

body composition.  

II. The expression of adiponectin in SAT and its circulating concentrations were decreased in HIV-

infected patients with HAL when compared to HIV-infected, HAART-treated patients without 

lipodystrophy. Both adiponectin concentration in serum and its expression in SAT correlated with 

features of insulin resistance including liver fat content.  

III. The expression of several transcription factors (PPARγ, SREBP-1c, PPARδ, PGC-1) important for 

the normal maturation of adipocytes were decreased in SAT of patients with HAL when compared to 

HIV-infected, HAART-treated patients without lipodystrophy. Also the expression of other genes 

involved in adipogenesis (LPL, ACS) and in glucose transport (GLUT4, GLUT1) were decreased in 

patients with HAL. The markers of inflammation, i.e. the expression of IL-6 and CD45 were 

increased in SAT of patients with HAL compared to HIV-infected, HAART-treated patients without 

lipodystrophy.  

IV. Rosiglitazone did not increase the amount of subcutaneous fat in patients with HAL after 24 weeks 

of treatment. Rosiglitazone appeared to ameliorate insulin resistance as judged by the decrease in 

fasting serum insulin concentration and in liver fat content. Rosiglitazone markedly increased serum 

triglyceride and cholesterol concentrations in most patients.  

V. Rosiglitazone upregulated the expression of adiponectin, PPARγ and PGC-1, and downregulated the 

expression of IL-6 in SAT of patients with HAL. Rosiglitazone also increased serum adiponectin 

concentration. The change in serum adiponectin concentration correlated with the change in fasting 

serum insulin concentration and the change in liver fat content.  

VI. PAI-1 concentration in plasma and its expression in SAT were increased in HIV-infected patients 

with HAL when compared to HIV-infected, HAART-treated patients without lipodystrophy. Plasma 

PAI-1 concentration correlated with the amount of hepatic fat. Rosiglitazone did not change the 

expression of PAI-1 in SAT, but decreased PAI-1 concentration in plasma. The decrease in plasma 

PAI-1 concentration correlated with the decrease in liver fat content.  
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9. CONCLUSIONS 

The results of the current studies imply that the pathogenesis of HAL involves multiple mechanisms. 

Downregulation of several transcription factors and other genes involved in adipogenesis in SAT may result 

in reduced adipocyte maturation and lipid accumulation in fat cells. Increased inflammation in SAT may 

inhibit adipocyte differentiation and increase lipolysis. Increased inflammation and mitochondrial alterations 

may also increase apoptosis of adipocytes.  

Increased liver fat content in patients with HAL appears to contribute to hepatic insulin resistance. Liver fat 

also seems to regulate plasma PAI -1 concentrations in these patients. Increased hepatic fat accumulation may 

be a consequence of a direct effect of antiretroviral agents on the liver, or alternatively the inability to store 

fat in SAT may cause shifting of lipids into the liver and skeletal muscle. Decreased expression of 

adiponectin and increased inflammation in SAT may also contribute to the increased liver fat content and 

insulin resistance.  

These data do not support the use of rosiglitazone for the treatment of subcutaneous lipoatrophy in HAART-

treated patients, although rosiglitazone appeared to ameliorate insulin resistance and hepatosteatosis. 

Because of the worsened dyslipidemia by rosiglitazone, blood lipid concentrations should be monitored 

carefully in future trials using thiazolidinediones in patients with HAL. Increased expression of adiponectin 

may contribute to the insulin-sensitizing effects of rosiglitazone.  

Finally, regardless the potential long-term toxicity of HAART, it is important to emphasize the dramatically 

decreased total HIV-associated mortality and morbidity after the introduction of HAART. Therefore, HAL 

and other metabolic adverse events must not prevent the use of HAART in HIV-infected patients when 

treatment is clinically indicated.  
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