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Tiina Kuivanen

Matrix metalloproteinases as biomarkersin premalignant and malignant tumors of the
human skin

Department of Dermatology, Helsinki University Central Hospital and University of Helsinki

ABSTRACT

The incidence of non-melanoma skin cancer is increasing worldwide. Basal cell carcinoma
followed by squamous cell carcinoma and malignant melanoma are the most frequent skin
tumors. Keratoacathoma is a benign tumor resembling both clinically and histologically
squamous cell carcinomas. Extramammary Paget's disease is a rare intragpidermal
adenocarcinoma, usually glandular in origin. Immunosuppressed patients have an increased
risk of neoplasia, of which non-melanoma skin cancer is the most common. Matrix
metalloproteinases (MMPs) are structurally related, zinc-dependent proteolytic enzymes that
collectively are capable of degrading virtually all components of the extracellular matrix.
MMPs can also process substrates distinct from extracellular matrix proteins and influence
cell proliferation, differentiation, angiogenesis, and apoptosis. Under normal physiological
conditions MMPs are expressed at low levels, but their expression is induced in diseases, like
arthritis, atherosclerosis, blistering dermatoses, chronic wounds, periodontitis, and cancer.
MMP activity is regulated by their natural inhibitors, tissue inhibitors of metalloproteinases
(TIMPs).

In this study, the expression patterns of MMPs, TIMPs, and certain cancer-related molecules
were investigated in premalignant and malignant lesions of the human skin. As methods were
used immunohistochemisty, in situ hybridization, and reverse transcriptase polymerase chain
reaction (RT-PCR) from the cell cultures. Our aim was to evaluate the expression pattern of
MMPs in extramammary Paget's disease in order to find markers for more advanced tumors,
aswell asto shed light on the origin of this rare neoplasm. Novel MMP -21, -26, and -28 were
studied in melanoma cell culture, in primary cutaneous melanomas, and their metastases. The
MMP expression profile in keratoacanthomas and well-differentiated sguamous cell
carcinomas was analyzed to find markers to differentiate benign Kkeratinocyte
hyperproliferation from malignantly transformed cells. Squamous cell carcinomas of
immunosuppressed organ transplant recipients were compared to squamous cell carcinomas
of matched immunocompetent controls to investigate the factors explaining their more
aggressive nature.

We found that MMP-7 and -19 proteins are abundant in extramammary Paget's disease and
that their presence may predict an underlying adenocarcinoma in these patients. In
melanomas, MMP-21 was upregulated in early phases of melanoma progression, but
disappeared from the more aggressive tumors with lymph node metastases. The presence of
MMP-13 in primary melanomas and lymph node metastases may relate to more aggressive
disease. In keratoacanthomas, the expression of MMP-7 and -9 is rare and therefore should
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raise a suspicion of well-differentiated squamous cell carcinomas. MMP-19 and pl6 are
expressed abundantly in keratoacanthomas, but they disappear from malignant squamous cell
carcinomas and thus, could aid in differentiating between these two tumors. MMP-26 staining
was significantly stronger in squamous cell carcinomas and Bowen's disease samples of
organ transplant recipients and it may contribute to the more aggressive nature of squamous
cell carcinomas in immunosuppressed patients. In addition, the staining for MMP-9 was
significantly stronger in macrophages surrounding the tumors of the immunocompetent group
and in neutrophils of those patients on cyclosporin medication.

In conclusion, based on our studies, MMP-7 and -19 might serve as biomarkers for more
aggressive extramammary Paget's disease and MMP-21 for malignant transformation of
melanocytes. MMP -7, -9, and -26 seem to play an important role in the pathobiology of
keratinocyte derived keratoacanthomas, Bowen’s diseases, and squamous cell carcinomas of
immunocompetent as well as immunosuppressed patients, and could be interesting MMPs to
investigate in future studies.
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1. INTRODUCTION

The incidence of skin cancer is continuously rising. Basal cell carcinoma (BCC) followed by
squamous cell carcinoma (SCC) and melanoma are the most frequent skin tumors. The role of
matrix metalloproteinases (MMPs) in cancer has been intensely studied over the last two
decades. The knowledge on MMPs in cancer initiation and growth has greatly benefited from
the development of animal models and the use of transgenic and knock-out (KO) mice. The
contribution of MMPs in cancer progression is complex and the evidence shows that members
of the MMP family may promote or inhibit cancer development. Extracellular matrix (ECM)
and stromal cells are important contributors to tumor growth and metastasis and recent studies
have shown how stromal MM Ps promote cancer progression. The bivalent role of MMPs and
the timing of their administration may be the reason for rather disappointing results with
synthetic MMP inhibitors in the treatment of various cancers in clinical trials. More research
is needed to evaluate the specific functions of various MMPs in tissues in order to provide
better targeted therapies. This study aimed to investigate the roles of MMPs in various benign
and malignant skin tumors and to shed light on the pathobiology of these lesions. Knowing
the precise functions of MMPs in tumors is important for the development of targeted
therapies in various cancers.
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2. REVIEW OF THE LITERATURE

2.1. Structure of the skin

The histology of skin is exceptionally complex. Divided into two different but functionally
interdependent layers (epidermis and dermis), the skin is composed of cells with many
functions including mechanical- and photoprotection, immunosurveillance, nutrient
metabolism, and repair (Murphy 1997). The cutaneous basement membrane (BM) zone
separates these two distinct compartments and provides adhesion and a dynamic interface
between them.

2.1.1. Epidermis

The epidermis is derived from the ectoderm in the developing embryo and consists of
stratified epithelium, which is made up of cells known as keratinocytes. They compose 90%
of the epidermal cells, with minority populations of Langerhans cells, melanocytes, and
neuroendocrine (Merkel) cells (Khavari 2006). Keratinocytes are arranged into four layers:
the basal, the squamous, the granular, and the cornified cell layers. Basal cells are responsible
for the mitotic activity and are connected to each other and overlying spinous cells by specific
intercellular junctions (Murphy 1997). Intercellular junctions are important for the integrity of
the epidermis. Four kinds of cell-cell junctions have been described in the epidermis:
desmosomes, adherens junctions, gap junctions, and tight junctions (see Hentula et al. 2001).
At their base, basal cells are attached to the BM via hemidesmosomes. Keratinocytes move
upwards to the surface of the skin and mature from basal cells to spinous, granular, and
cornified cells (Figure 1). During differentiation keratinocytes change their shape, get filled
with keratin and finally lose their nuclei preceding scaling. Melanocytes are pigment
producing cells that are located among basal cells and provide protection against mutagenesis
caused by ultraviolet (UV) light. Langerhans cells have antigen-presenting capacity and play
an important role in contact sensitization, immunosurveillance againgt viral infections, and
neoplasms of the skin. Merkel cells are present within the basal cell layer and their function is
still unclear. They take part in mechanoreception or at least interact with neurons, but little is
known about their interactions with other epidermal cells (Boulais and Misery 2007).
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Figure 1. Thelayers of the epider mis.
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Modified from Oikarinen et al. 2003.

2.1.2. Basement membr ane

The epidermal BM zone lies between the basal keratinocytes and the dermis. The BM has
three main functions: 1) it attaches epithelial cells to the underlying extracellular matrix, 2) it
acts as a permeability barrier, and 3) it controls cell organization and differentiation by mutual
interactions between cell-surface receptors and molecules in the ECM (Masunaga 2006).

The basal keratinocytes contain small, electron-dense structures called hemidesmosomes
(HDs) (McMillan et al. 2003). The cytoplasmic part of the HDs can be further divided into
the inner and outer plague (Figure 2). In the BM zone, the electron-lucent area along the
basilar surface of keratinocytes is called lamina lucida and the electron-dense area is called
lamina densa (Figure 2). Intermediate filaments, consisting of cytokeratins-5 and -14, are
inserted into the inner plaque of the hemidesmosome. The transmembrane components of
HDs include the integrin a6p4 receptor, which contains transmembrane o and 8 subunits, and
a 180kD bullous pemphigoid antigen (also called collagen XVII), and also intracellular
components 230kD bullous pemphigoid antigen and plectin. Anchoring filaments are located
within the lamina lucida and connect hemidesmosomes to the lamina densa. Anchoring fibrils
are fibrillar structures composed of type VIl collagen and they attach the dermis to the BM.
They originate at the lamina densa and extend into the dermis (Figure 2) (Masunaga 2006).
Lamina densa is composed mainly of type IV collagen and laminin-5 (LN-5).
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Figure 2. Epidermal BM zone and some of its proteins.
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Abbreviations: a6p4, integrin a6p4; A. Fib, anchoring fibrils; A.Fil, anchoring filaments, BP, bullous
pemphigoid antigen; BM, basement membrane; Call, Collagen; ECM, extracellular matrix; HD,
hemidesmosome; LD, laminadensa; LL, LaminaLucida; LN-5, laminin-5. Modified from Schneider et al.
2007.

Laminin-5

Laminins are a family of large extracellular glycoproteins that are abundant in the BM zone
and comprise three distinct chains that together assemble into the cross-shaped cruciform
molecule (Figure 2) (see McMillan et al. 2003). To date, five a chains, three B chains and
three y chains have been discovered and as many as 16 different laminin isoforms with
distinct functions have been identified (Marinkovich 2007). Laminins are involved in several
important biological processes such as tissue remodeling, wound healing, and tumorigenesis.
Laminin-5 (LN-5), also known as laminin 332, is highly upregulated in several types of
epithelial tumors including cutaneous, oral, esophageal, laryngeal, tracheal, cervical, and
colon carcinomas and its expression correlates positively with tumor invasiveness and poor
prognosis (Marinkovich 2007). The secreted form of LN-5 contains 3 a-chains, 3 p-chains
and 2 y-chains. These chains can be proteolytically processed, for example, by plasminogen
activators and MMPs. In particular, overexpression of the y2-chain has been described as a
marker of invasion in epithelia cancers (Sadowski et al. 2005). LN-5 interacts with two major
epithelial intergrin receptors, a3pl and a6p4, and stimulates migration of various cells,
including tumor cells.
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MMPs cleave LN-5: MMP-2 and MMP-14 cleave its y2-chain in mice and MMP-19-
dependent processing of the y2-chains leads to the integrin switch favoring epithelial
migration in cell lines. (Giannelli et al. 1997; Koshikawa et al. 2000; Sadowski et al. 2005).
MMPs-3, -12, -13, and -20 are able to cleave LN-5 in human cell lines (Pirila et al. 2003).

2.1.3. Dermis

The dermis was previously considered to be a cutaneous layer primarily responsible for taking
care of the circulation that served to nourish the epidermis. Today we know that it is a
dynamic microenvironment with several cells and matrix proteins with important functions.
The dermis is derived from the embryonic mesoderm and divided into the subepithelial
papillary dermis where collagen fibers are arranged as finely woven meshwork and the
reticular dermis where collagen fibers are united into thick bundles. Fibroblasts, endothelial
cells, macrophages, and mast cells are located in the dermis together with emigrant
inflammatory cells, neutrophilic, eosinophilic, and basophilic granulocytes, lymphocytes, and
plasma cells, derived from blood vessels (Murphy 1997). Hair follicles, sebaceous and sweat
glands, and sensory nerves are all embedded in the dermis. The dermis consists primarily of
type | and type |1l collagens, whereas type 1V, VII, and XVII collagens are found in the
dermo-epidermal junction (Uitto and Pulkkinen 1997).

2.1.4. Extracellular matrix

The interaction of cells with the ECM is critical for the normal development and function of
organisms. Cellular growth and migration are critically dependent on turnover and
remodelling of the ECM, which is regulated by a fine balance between the synthesis and
degradation of ECM proteins. The ECM is a relatively stable structurad material that lies
under the epithelia and surrounds connective tissue cells. The main protein constituents of the
ECM are collagenous and elastic fibres. The fibrillar collagens (types |, 11, I11, V, X1, XXIV,
and XXVII) typically consist of three a-chains containing a variable number of Gly-X-Y
repeats that form atight triple-helix. The a-chains are secreted as precursors with N- and C-
terminal propeptides that prevent them from folding prematurely (Ricard-Blum and Ruggiero
2005). The main collagens found in skin are type |, which gives strength, and type 111, which
gives flexibility to tissues. Various proteoglycans and glycoproteins are important
components of the ECM (Wight et al. 1991). Proteoglycans (syndecan, versican, aggregan,
decorin) consist of a core protein attached by numerous sulfated sugar chains,
glycosaminoglycans (hyaluronan, chondroitin and dermatan sulphate, heparan sulphate, and
keratan sulphate). Glycoproteins differ from proteoglycans in that their carbohydrate
component constitutes a much smaller proportion of the ovarall molecule (Ruoslahti and
Vaheri 1974; Cattaruzza and Perris 2006). Fibronectin (FN) is one of the most abundant
glycoproteins in the ECM. It is prominent in the matrix of a variety of connective tissues and
is most abundant during embryonic development and tissue remodeling, whereas malignantly
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transformed cells tend to lack FN production (Amstrong and Amstrong 2000). Cell surface
receptors, such as integrin receptors, link the cytoskeleton to the extracellular environment.
Most of the components of the ECM are formed by fibroblasts, but also by keratinocytes and
other stromal cells, or from the co-operative interactions between these two cell populations.
ECM is now recognized as a major component regulating cell activity and is important in
proper tissue development, adult tissue maintenance, wound healing, and oncogenesis (Ziober
et al. 2006).

Tenascin-C

Tenascin-C (TN-C) is a star-shaped molecule that is capable of mediating both adhesive and
anti-adhesive interactions, as well as binding to certain proteoglycans and FN. TN-C is
temporarily upregulated in fetal development and absent or greatly reduced in adult tissues
(Orend and Chiquet-Ehrismann 2006). Its expression is associated with morphogenetic events
such as wound healing, inflammation, and tumorigenesis. In skin tumors, it is expressed both
by transformed keratinocytes and stromal cells, and its expression is upregulated in actinic
keratoses (AKs) and SCCs (Dang et al. 2006). The effects of TN-C interactions on cellular
signalling are mainly unknown. TN-C and MMPs are often co-localized in areas of active
tissue remodeling in pathologic conditions, suggesting reciprocal regulation (Kalembeyi et al.
2003) and several MMPs, suchas MMP-1, -2, -3, -7, -8, -14, -15, and -19, can cleave TN-Cin
vitro (see Kerkeld and Saarialho-Kere 2003).

2.2. Matrix metalloproteinases

Matrix metalloproteinases (MMPs), 23 highly homologous human extracellular zinc-
dependent endopeptidases, are known for their ability to cleave several ECM constituents as
well as non-matrix proteins (Egeblad and Werb 2002) (Table 1). They mediate tumor
angiogenesis, malignant conversion, proliferation, and apoptosis by degrading BMs, cell
attachment proteins, and various matrix components, as well as by activating chemokines and
growth factors (Egeblad and Werb 2002). MMPs are secreted or anchored to the cell surface,
thereby confining their catalytic activity to membrane proteins or proteins within the secretory
pathway or extracellular space. They comprise a large family of proteases sharing common
structural and functional elements (Figure 3). All MMPs contain a signa peptide, an
approximately 80 amino acids long prodomain with consensus sequence PRCXXPD, and a
catalytic domain with three conserved histidines in the sequence HEXXHXXGXXH, which
ligates zinc at the active center. In addition, MMPs have variable inserts such as a furin-
cleavage dite insert, fibronectin-like repeats, proline-rich hinge region, hemopexin like C-
terminal domain and membrane insertion extension (Figure 3) (Woessner 1998; Ra and Parks
2007).
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Figure 3. Structur e and subclasses of vertebrate MM Ps.
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cysteine array region; lg, 1gG-like domain. Furin cleavage site marked as a black band between propeptide and
catalytic domain.

The structural similarity suggests that MMPs arose by duplications of an ancestor gene.
MMPs are secreted as inactive zymogens from inside the cell to the cell surface and into the
extracellular environment where they are able to degrade both ECM and non-ECM proteins.
Eight distinct structural classes of MMPs exist, which on the basis of their substrate
specificity and function can be further divided into six distinct subfamilies of collagenases,
gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs (Figure 3)
(Table 1).
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Table 1. Common substrates of human matrix metalloproteinases investigated in this study

ENZYME

COMMON SUBSTRATES

Collegenase-1
(MMP-1)

Callagen I, 11, 111, VII, VIII, X, and X1, aggregan, gelatin, FN, nidogen, TN-C,
vitronectin, fibrin, fibrinogen, casein, pro-TNFa, IL-18, a1-Pl, 02-M, proMMP-1, and -2

Collagenase-2
(MMP-8)

Collagen I, 11, and 111, aggregan, a1-Pl, a2-M, fibrinogen, LN-5, TN-C, nidogen,
proMMP-8

Collagenase-3

Collagen |-V, IX, X, and X1V, aggregan, fibrillin, FN, gelatin, LN-1, TN-C,

(MMP-13) osteonectin, serpins, fibrinogen, pro-TNF-a, endostetin, 02-M, casein, proMMPs -9 and -
13

Gelatinase A Callagen I, 1V, V, VII, and X, gdatin, FN, TN-C, fibrillin, osteonectin, decorin, a2-M,

(MMP-2) LN-5, pro-IL-1B, pro-TNF-a, pro-TGF-§, a1-Pl, proMMPs-1, -2, and -13

Gelatinae B Callagen I, 1V, V, VII, and X, gdatin, FN, TN-C, fibrillin, osteonectin, decorin, a2-M,

(MM P-9) LN-5, pro-IL-1B, pro-TNF-a, pro-TGF-B, FGFR-1, a1-proteinase inhibitor, proMMPs -
1,-2,and -13

Stromelysin-1 Cdlagen I, 1V, V, VII, IX, and X, dastin, FN, fibrillin, gelatin, aggregan, LN-1,

(MMP-3) nidogen, osteonectin, decorin, TN-C, a1-Pl, pro-TNFa, E-cadherin, fibrinogen,
plasminogen, B-catenin, vitronectin, osteonectin, proMMPs -1, -2, -8, -9, and -13

Stromelysin-2 Cdlagen I, 1V, V, IX, X, and X1V, LN-5, elagtin, FN, gdatin, aggregan, LN-1,

(MMP-10) nidogen, fibrinogen, proMMPs -1, -2, -8, and -13

Matrilysin-1 Collagen 1V, aggregan, elagtin, nidogen, gelatin, FN, LN-1, entactin, TN-C, vitronectin,

(MMP-7) E-cadherin, pro-a-defensin, fibrinogen, a1-Pl, pro-TNF-a, plasminogen, decorin, FasL,
syndecan-1, HB-EGF, proMMPs -1, -2, and -9.

Matrilysin-2 Collagen IV, FN, gelatin, fibrinogen, a1-PI, B-casein, TNF-a-converting enzyme,

(MM P-26) proMMP-9

MMP-19 Collagen IV, FN, gdlatin, LN-1, TN-C, aggregan, LN-5

MMP-21 al-antitrypsin

Epilysin (MM P-28)

Casein

al-Pl, al-proteinase inhibitor; a2-M, a2-macroglobulin. Modified from Sternlicht and Werb 2001; Kerkdaand
Saarialho-Kere 2003; Folgueras et al. 2004; Sadowski et al. 2005; Nagase et al. 2006.
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2.2.1. Collagenases (MM P-1, MM P-8 and M M P-13)

Collagenases are the principal secreted proteinases capable of cleaving types|, II, 111, V, and
IX collagens and they play a decisive role in remodelling and degradation of the ECM.
Collagenases have a multidomain structure consisting of a signal peptide, a propeptide, a
catalytic domain, a hinge region, and a hemopexin domain (Figure 3). They cleave fibrillar
collagens at the specific site of the a-chain resulting in the generation of % N-terminal and %
C-terminal fragments, which can be further degraded by other MMPs (Ala-aho and Kahari
2005). The three collagenases are: collagenase-1 (MMP-1), collagenase-2 (MMP-8), and
collagenase-3 (MMP-13). MMP-1 hydrolyzes type 111 collagen more rapidly than type I,
while MMP-8 shows a dlight preference for type | collagen (see Ala-aho and Kahéri 2005;
Sternlicht and Werb 2001). Conversely, MMP-13 preferstype |1 collagen and hydrolyzes this
collagen much more rapidly than MMP-1 or MMP-8 (Hasty et al. 1987; Knduper et al.
1996a).

MMP-1

Human fibroblast collagenase (MMP-1) was the first vertebrate collagenase purified from the
tail of atadpole (Gross and Lapiere 1962) and cloned and sequenced as the first MMP cDNA
from adult skin fibroblasts (see Goldberg et al. 1986). MMP-1 is expressed in vitro by several
cells such as keratinocytes, fibroblasts, endothelial cells, monocytes, macrophages,
hepatocytes, chondrocytes, and osteoblasts (Ala-aho and Kahéri 2005). MMP-1 is mainly
upregulated during tissue remodelling including embryonic development, wound healing, and
different types of malignant tumors, but is undetectable in resting tissues. It degrades
collagens as well as other matrix molecules (Table 1) (Pardo and Selman 2005). MMP-1 is
also able to cleave cell surface molecules and other non-matrix substrates, for example,
antichymotrypsin, antitrypsin and tumor necrosis factor-a (TNF-o), making MMP-1 a
multifunctional protein (McCawley and Matrisian 2001).

MMP-8

For a long time MMP-8, also called neutrophil collagenase, was considered to only be
expressed in neutrophil precursors during late myeloid maturation, but it is now evident that it
is expressed by a variety of cells a different stages of inflammation and in cancer (Balbin et
al. 2003; Moilanen et al. 2002). It is expressed predominantly by polymorphonuclear
leukocytes in vivo, and by other inflammatory cells, fibroblasts, migrating keratinocytes, and
tumor cells in SCCs (Moilanen et al. 2002; Pirila et al. 2007). In culture, MMP-8 is expressed
by a variety of cells, including inflammatory cells, chondrocytes, fibroblasts, cutaneous
keratinocytes, bronchial and oral epithelial cells, and endothelial cells (Van Lint and Libert
2006). The common substrates for MMP-8 are listed in Table 1 (Van Lint and Libert 2006;
Pirilaet al. 2003).

MMP-13
MMP-13 plays an important role in forceful tissue remodeling as well as in pathological
processes such as cancer and arthritis.
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It was first cloned from a breast cancer cDNA library (Freije et al. 1994). It is produced as an
inactive proenzyme and activation by cleavage of the N-terminal propeptide can be carried
out by various compounds, including MMP -2, -3, and -14 (Knauper et al. 1996a; 1996b).
Endothelial cells, fibroblasts, macrophages, epithelial cells, osteoblasts and chondrocytes
synthesize MMP-13 by means of different stimuli (Vaalamo et al. 1997; Zaragoza et al. 2002;
Ala-Aho and Kahéri 2005). MMP-13 cleaves fibrillar collagens and a large variety of ECM
components in addition to inactivating chemokines and activating pro-transforming growth
factor-p3 (TGF-B3) (Ala-Aho and Kahéari 2005) (Table 1).

2.2.2. Gelatinases (MM P-2 and MM P-9)

Interest in gelatinases (MMP-2 and —9) originates from their ability to break type IV collagen,
found inthe BM (Devarajan et al. 1992). They play an important role in angiogenesis as well
as tumor invasion and metastasis, and have frequently been associated with poor prognosis
(Coussens et al. 2000; Egeblad and Werb 2002). In addition to gelatin and type IV collagens,
they are responsible for the final degradation of fibrillar collagens after initial cleavage by
collagenases. Gelatinases are secreted as inactive pro-forms that are activated extracellularly
(Woessner 1991). The FN domains within their catalytic domains are important for elastolytic
activity (Shipley et al. 1996).

MMP-2

Unlike many other MMPs, MMP-2 is constitutively expressed by a wide range of cell types,
including endothelial cells, macrophages and many malignant cells (Chakrabarti and Patel
2005). MMP-2 cleaves several ECM components, growth factors and also proMMP-1, -2, and
-13 (Table 1) (McCawley and Matrisian 2001). MMP-2 is detected during cancer invasion
(Egeblad and Werb 2002), but in MMP-2 knock-out (KO) mice reduced angiogenesis and
tumor growth was detected (Itoh et al. 1998).

MMP-9

Congtitutive expression of MMP-9 is restricted to neutrophils (Devargjan et al. 1992), but
MMP-9 is detected in malignant transformation of various cells and is associated with tumor
metastasis (Coussens et al. 2000; Egeblad and Werb 2002). Inflammatory stimulation can
induce MMP-9 expression in several cells, including endothelial cells, macrophages,
fibroblasts and mast cells (Coussens et al. 2000). MMP-9 participates in the angiogenic
switch necessary for tumor development (Bergers et al. 2000), although other reports suggest
anti-angiogenic effect (Heljésvaara et al. 2005). MMP-9 mostly cleaves the same ECM
components as MMP-2 (Table 1). In addition, however, MMP-9 can cleave several non-ECM
components, including pro-TGF-B2, pro-interleukin (IL)-1p, cell-surface bound interleukin-2
receptor antagonist (IL-2Ra), plasminogen, ol-proteinase inhibitor and pro-TNF-a
(McCawley and Matrisian 2001).
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2.2.3. Matrilysins (MM P-7 and MM P-26)

Matrilysins (MMP-7 and MMP-26) are the smallest MMPs. They lack the C-terminal
hemopexin domain common to other MMP family members, and they have markedly smaller
molecular weights (Wilson and Matrisian 1996).

MM P-7

Matrilysin -1 (MMP-7), first discovered as an enzyme of the involuting rat uterus (Woessner
and Taplin 1988), is secreted as a proenzyme and activated by endoproteinases and plasmin
through proteolytic removal of the prodomain (Wilson and Matrisian 1996). It has wide-
ranging substrate specificity against ECM components (Table 1) (Wilson and Matrisian
1996). MMP-7 activates intestinal crypt a-defensins, which are antimicrobial peptides
participating in the innate immune system of the intestine (Wilson et al. 1999). It aso
activates latent forms of other MMPs (proMMP -1, -2, and -9) and plays an important role in
ectodomain shedding of cell-surface molecules to promote inflammation and tumor invasion,
such as TNF-a precursor (Gearing et al. 1995), Fas ligand (FasL) (Powell et al. 1999),
heparin-binding epidermal growth factor (HB-EGF) (Yu et al. 2002), and E-cadherin (No6e et
al. 2001). MMP-7 iswidely expressed by glandular epithelium in normal adult tissues and its
upregulation is associated with cancers of epithelial origin (Kerkela and Saarialho-Kere
2003), and more recently also with inflammation (Wielockx et al. 2004).

MM P-26

MMP-26 (Matrilysin-2) was recently cloned from fetal cDNA (Park et al. 2000; Uria and
Lopez-Otin 2000). A unique PH81CGVPD cystein-switch distinguishes human MMP-26
from other MMPs (Marchenko et al. 2002) and leads to the unorthodox, autolytic mechanisms
of the MMP-26 zymogen activation (Zhao et al. 2003). MM P-26 primarily accumulatesin the
intracellular milieu (Park et al. 2000; Uria and LOpez-Otin 2000) and efficiently cleaves
collagen 1V, gelatin, FN, and vitronectin (Marchenko et al. 2002), and the non-ECM
substrates fibrinogen, inactive serpin (Park et al. 2000), and proMMP-9 (Zhao et al. 2003). It
is upregulated in dysplastic changes in prostatic tissue but downregulated in invasive cancer
(Lee et al. 2006) and in a similar manner becomes downregulated during the spreading of
ductal breast cancers (Zhao et al. 2004). Unlike many other MM Ps, MMP-26 has an estrogen-
response element in the promoter and can be induced in hormone regulated carcinomas (Li et
al. 2004). It has been linked to inflammation and favorable prognosis in breast cancer
patients, so it might also have anti-tumor properties (Strongin 2006).
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2.2.4. Stromelysins

Stromelysins degrade various components of the ECM and activate collagenases via the
proteolytic removal of a propeptide (Sternlicht et al. 2000). Stromelysin-1 (MMP-3) and -2
(MMP-10) are highly structurally and functionally related, whereas stromelysin-3 (MMP-11),
in some classifications called stromelysin-like or other MMP, diverges significantly from
stromelysin-1 and -2 in amino acid sequence and in enzymatic activity (Birkedal-Hansen
1995).

MMP-3 and MM P-10

MMP-3 was first cloned as a cancer-specific gene (Matrisian et al. 1985). It degrades ECM
(Table 1), and also activates MMP-9, serpin-type serine proteinase inhibitors, and releases a
number of cell-surface molecules, like E-cadherin, L-selectin, HB-EGF, and TNF-a
(Sternlicht et al. 1999). MMP-3 is expressed by various cells including keratinocytes,
fibroblasts and chondrocytes (Kerkeld and Saarialho-Kere 2003) and acts as a natural tumor
promoter in mammary carcinogenesis (Sternlicht et al. 2000). MMP-10 was originally
identified in an adenocarcinoma cDNA libary (Muller et al. 1988). It has a structure and
substrate specificity similar to that of MMP-3, athough with a lower proteolytic efficiency
and is expressed in migrating keratinocytes, enterocytes and epithelial tumor cells (Vaalamo
et al. 1998; Rechardt et al. 2000).

2.2.5. Other MM Ps(MMP-19, -21, and -28)

MMP-19

MMP-19 was first cloned from human mammary gland (Cossins et al. 1996) and liver cDNA
libraries (Pendas et al. 1997). On the basis of its structura characteristics, chromosomal
location, and expression pattern it was proposed to be a member of a new MMP subfamily
(Pendas et al. 1997). MMP-19 has an unusual expression pattern compared to other MMPs. It
is detected in many normal adult tissues like placenta, lung, pancreas, ovary, spleen, intestine,
and basal keratinocytes (Murphy et al. 1999). MMP-19 is upregulated in suprabasal and
spinous layers in psoriasis, eczema and tinea, (Sadowski et al. 2003), but becomes
downregulated in invasive carcinomas (I mpola et al. 2005). Recent results in MM P-19-knock
out (KO)- mice indicated that an increased early angiogenic response and increased tumor
invasion were associated with MMP-19 deficiency (Jost et al. 2006). MMP-19 degrades
components of the BM, connective tissue, and cartilage (Table 1) (Stracke et al. 2000).
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MMP-21

MMP-21 is the last cloned human MMP (Ahokas et al. 2002; Marchenko et al. 2003). It has
all the typical features of an MMP family member: pro-, catalytic-, and hemopexin domains
with signal sequence. Additionally, MMP-21 has a furin activation sequence (Ahokas et al.
2002). It is most closely related to MMP-17, -23, and -25 (Ahokas et al. 2002). The only
known physiological substrate for MMP-21 is al-antitrypsin (Ahokas et al. 2002; Marchenko
et al. 2003). Using reverse transcriptase polymerase chain reaction (RT-PCR), MMP-21
MRNA has been found in various normal adult tissues like the kidney, brain, lung, tedis,
ovary, and colon as well as several cancer cell lines (Ahokas et al. 2002). In vivo, it has been
detected in BCCs and SCCs (Ahokas et al. 2002; 2003). MMP-21 is upregulated in primary
keratinocyte culture by TGF-p1 (Ahokas et al. 2003) and is a putative target of p-catenin
transactivation in promoter analysis (Marchenko et al. 2003).

MM P-28

MMP-28 (epilysin) was originally cloned from human keratinocyte and testis cDNA libraries
(Lohi et al. 2001), and also from a lung cDNA library (Marchenko and Strongin 2001). The
structure of epilysin consists of classical MMP domains. the signal sequence, pro-, cataytic-,
and hemopexin domains followed by specific furin activation sequence and it’s most closely
related to MMP-19 (Lohi et al. 2001). MMP-28 is widely expressed in several normal and
malignant tissues like the testis, lung, heart, and gastrointestinal tract as shown by RT-PCR
(Lohi et al. 2001; Marchenko and Strongin 2001), but is downregulated in colon cancer
(Bister et al. 2004). The presice function, physiological substrates, regulation, and specific
epilysin-producing cells, except for keratinocytes, are still mostly unknown (Saarialho-Kere et
al. 2002; lllman et al. 2006). Recombinant epilysin degraded casein in a zymography assay
(Lohi et al. 2001) and it induced TGF-B1 mediated epithelial to mesenchymal transition
(EMT), important in cancer progression particularly, in lung carcinoma cells (Illman et al.
2006).

2.3. Regulation of MMPs

2.3.1. Introduction for theregulation of MM Ps

Formerly MMPs were thought to function mainly as enzymes that degraded structural
components of the ECM. Recent reports, however, have demonstrated that MMPs act on non-
matrix substrates as well, such as cytokines, chemokines, growth factors, cell surface
receptors, and adhesion molecules (Chakraborti et al. 2003). MMPs can affect cell behavior in
many ways. the cleavage products of MMPs signal in an autocrine or paracrine manner, they
cleave intercellular junctions or the BM regulating epithelial tissue architecture and they
activate the action of latent and deactivate the action of active signalling molecules (Ra and
Parks 2007). Cdl-ECM interactions trigger cellular signalling that promotes cell
differentiation, migration, and mobilization, essential for normal cellular homeostasis. With
the exceptions of MMP-2, -7, -19 and -28, which are constitutively expressed in normal
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tissues, most MMPs are induced only in repair or remodelling processes or in response to
various diseases or inflammation (Ra and Parks 2007). Regulation of MMP activities can be
achieved at multiple levels: transcriptional and posttranscriptional regulation, proenzyme
activation, compartmentalization, enzyme inactivation, and availability and affinity of
substrates (Nagase and Woessner 1999).

2.3.2. Transcriptional and post-transcriptional regulation

Transcriptional regulation

MMP gene promoters have several cis-elements like TATA box, activator protein-1 (AP-1)
binding site, polyoma enhancer A binding protein-3 (PEA3)-binding site, GC box, and
nuclear factor (NF)-«B binding site that can regulate MMP gene expression by various trans-
activators like AP-1, PEAS, Sp-1, B-catenin/T-cell factor-4 (Tcf-4), and NF-«xB (Yan and
Boyd 2007). MMPs have been recently sorted into three groups on the basis of the mechanism
regulating their expression, which could be an important viewpoint in guiding the
development of drugs (Yan and Boyd 2007). Group 1 contains the TATA box and AP-1
binding site (MMP-1, -3, -7, -9, -12, -13, -19, and -26), group 2 the TATA box without an
AP-1 binding site (MMP-8, -11, and -21), and group 3 lack both AP-1 binding site and the
TATA box (MMP-2, -14, and -28). All MMP promoters contain multiple elements, such as
Sp-1 and NF-xB that either induce or repress gene expression. The presence of the AP-1
binding site in most MMPs sensitizes them alone or in cooperation with PEA3 to trans
activators and to a large variety of cytokines and growth factors (Chakraborti et al. 2003; Y an
and Boyd 2007). The effect of specific growth factors varies in different MMP genes, for
example the TGF-B1 suppresses the expression of MMP-1 and MMP-3, but induces the
expression of MMP-13 and MMP-10 (Uria et al. 1998; Wilkins-Port and Higgins 2007).
Nuclear NF-xB levels are regulated by an inflammatory cytokine-activated pathway
(Mercurio and Manning 1999) and NF-xB-binding site, located in the human MMP-9
promoter, exposes MMP-9 gene to tumor necrosis factor-o (TNF-a). Functional
polymorphisms in promoters derived from nucleoside insertions, substitutions, or
microsatellite instability also regulate MMP gene expression by enhancing or reducing
promoter activity (Ye 2000). For example, the invasiveness of cutaneous malignant
melanoma is influenced by a variation in the MMP-1 gene promoter and a polymorphism at
the MMP-3 promoter region may be associated with unfavorable prognosis in breast cancer
patients (Ye et al. 2001; Ghilardi et al. 2002).

Post-transcriptional regulation

Pogt-transcriptional mechanisms are also involved in the control of MMP expression, for
example TGF-B1 increases MMP-2 and -9 levels by extending the half-life of MMP mRNAs
in human gingival fibroblasts (Overall et al. 1991) and induces MMP-11 expression by both
inducing transcription and stabilizing the transcript in mouse osteoblasts and fibroblasts
(Delany and Canalis 2001).
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Several pharmacological reagents, including doxycycline, all-trans retinoic acid, 13-cis-
retinoic acid, and lo25-dihydroxyvitamin D(3), regulate MMP expression by affecting
MRNA stability (Y an and Boyd 2007).

2.3.3. Proenzyme activation

Cysteine switch and proenzyme activation

MMPs are produced as secreted or membrane-bound proenzymes or zymogens, which
become activated by removal of the NH-terminal propeptide (Nagase and Woessner 1999).
The interaction of the conserved cysteine in the propeptide with the catalytic Zn?* ion seals
the catalytic activity and keeps the proMMP in an inactive state. A mechanism common to all
MMPs is called the cystein-switch mechanism (Van Wart and Birkedahl-Hansen 1990). Once
the propeptide is removed, the Zn*" ion becomes available for the binding of a substrate due
to a conformational change. MMPs are activated by proteolytic removal of the propeptide
domain. This activation can be mediated by: 1) cleavage of a prodomain by proteases (furin,
MMPs, plasmin), 2) reduction of free thiol by oxidants or by heavy metal ions, and
disulphides, or 3) alosteric activation of zymogen (Van Wart and Birkedahl-Hansen 1990; Fu
et al. 2008). In allosteric activation, the prodomain cleavage is not necessary for zymogen
activation and only disruption of the zinc-thiol interaction is absolutely required (Fu et al.
2008). Furinis a serine protease located in intracellular trans-Golgi network and those MMPs
@@l MT-MMPs, MMP-11, and MMP-28) possessing a furin cleavage site are processed
intracellularly before secretion (Thomas 2002; Nagase et al. 2006). Plasmin, generated from
plasminogen through the action of urokinase-type plasminogen activator (UPA), can activate
proMMP-1 and -3 (Nagase et al. 2006). In vitro, a number of MMPs can cleave the
prodomain of other MMP zymogens leading to activation and it has been suggested that they
mediate the final proteolytic step to produce a fully active enzyme (Nagase 1997). The
relevance of this mode of activation, in vivo, is uncertain since MMPs might need other
compounds to work with, such as serine proteinases, other MMPs, aspartate proteinases, or
cysteine proteinases. For example, proMMP-2 activation requires cooperative action of both
MMP-14 and TIMP-2 (Strongin et al. 1995; Ra and Parks 2007) and activated MMP-2 and -
13 can both activate proMMP-9 (Fridman et al. 1995; Knduper et al. 1997). Oxidants, such as
hypochlorous acid (HOCI), a product of neutrophil myeloperoxidase, and hydroxyl radicals
activate in vitro proMMP -1, -7, and -9 (Michaelis et al. 1992; Fu et al. 2001). The in vivo
role of oxidants has not been established. Recent studies, however, indicate that the
pericellular production of HOCI by phagocytes provides a physiological mechanism for
regulating both the activation and inactivation of MMPs within an inflammatory setting (Fu et
al. 2001; 2003).

Compartmentalization

Compartmentalization means where and how in the pericellular environment MMP isreleased
and held and is important for regulating the specificity of proteolysis and the affinity of the
enzyme-substrate interaction (Ra and Parks 2007). A significant overlap exids in the
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substrates MMPs can cleave and specific enzymes cleave some substrates more efficiently
than others (Sternlicht and Werb 2001). MMPs are secreted and anchored to the cell
membrane, thereby targeting their catalytic activity to specific substrates within the
pericellular space. MMPs are attached to cells via specific interaction to membrane proteins,
and determining these anchors will lead to identifying activation mechanisms and pericellular
substrates. In addition to membrane-bound MMPs, various specific cell-MMP interactions
have been reported, such as the binding of MMP-2 to the avB3 integrin (Brooks et al. 1996),
MMP-9 to CD44 (Y u and Stamenkovic 2000), and MMP-7 to surface proteoglycans (Yu and
Woessner 2000).

2.3.4. Inhibition of MM Ps

The proteolytic activity of MMPs is under tight control by specific inhibitors. In plasma, the
general protease inhibitor ax-macroglobulin is the predominant inhibitor, whereas the tissue
inhibitors of metalloproteinases (TIMPs) are considered to be the main inhibitors in tissue.
Direct endocytosis also playsarole in silencing of MMPs (Ra and Parks 2007).

Tissueinhibitors of MMPs

TIMPs comprise a family of four (TIMP-1, -2, -3, and -4) proteins that inhibit MMP activity
by binding to the catalytic site of these enzymesin a 1:1 stoichiometric fashion. They have N-
and C-terminal domain, which each have three conserved disulfide bonds (Nagase et al.
2006). The N-terminal domain folds wedge-like as an independent unit and slots into the
active site cleft of MMP in a manner similar to that of the substrate (Visse and Nagase 2003;
Nagase et al. 2006). TIMPs are multifunctional proteins that, in addition to their MMP
inhibitory effect, can regulate apoptosis, inflammation and cell proliferation (Sternlicht et al.
2001). Their diminished or increased expression has been reported in various cancers,
dependent on the tumor type (Chirco et al. 2006). Whereas TIMP-2 expression is constitutive
and widely expressed throughout the body, TIMP-1, -3, and -4 expression is inducible and
often tissue specific (Chirco et al. 2006). TIMP-1 can be resistant to apoptosis, whereas
TIMP-2 and -3 promote cell death (Lambert et al. 2004). Unbalanced activities of MMPs and
TIMPs are associated with pathological conditions. Individual TIMPs differ in their ability to
inhibit various MMPs. TIMPs inhibit all MMPs tested so far in vitro, except TIMP-1 is a poor
inhibitor for MT1,3,5-MMPs and MMP-19. The therapeutic use of TIMPs also in cancer
treatment is till in its infancy, since TIMPs possess other important biological capacities.

Other natural MMP inhibitors and endocytosis

Several other known or suspected inhibitors of MMPs exist. An important role is played by
ax- macroglobulin in the irreversible clearance of MMPs in tissue fluids, while as.-
macroglobuli/MMP complexes are removed by scavenger receptor-mediated endocytosis of
macrophages (Visse and Nagase 2003).
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Protein subdomains are another recently recognized class of MMP inhibitors. The procollagen
C-terminal proteinase enhancer protein (PCPE) functions as an MMP inhibitor in vitro (Mott
et al. 2000) and RECK (reversion-inducing cystein rich protein with Kazal motifs), a
membrane-bound glycoprotein, inhibits MMP-2, -9, and -14 (Oh et al. 2001). Inhibitors of
MMP gene expression, like TGF-1, glucocorticoid hormones, and vitamin A analogues
(retinoids) can diminish transcription of MMPs (Egeblad and Werb 2002). MMPs are also
regulated viatheir own proteolytic inactivation and physical clearance (Sternlicht et al. 2001).
Little is known about the autoproteolysis of active MMPs, while endocytosis at the cell
surface clearly could be used directly to silence MMPs. For example, MMP-13 is rapidly
internalized after it binds to an MMP-13 specific receptor on various cell types via low
density lipoprotein receptor-related protein (LRP) (Barmina et al. 1999).

Synthetic MMP inhibitors

Several agents have been developed to block the synthesis of MMPs (Egeblad and Werb
2002). Clinical trials using synthetic MMP inhibitors (MMPIs) have proved disappointing in
cancer treatment and none of the developed drugs have passed yet (Fingleton 2008). The
presence of a zinc-binding group in MMPIs is essential for chelating the catalytic Zn** ion.
Several different groups of MMPIs have been developed and tested: peptidomimetic MMP
inhibitors, non-peptidic inhibitors, tetracycline derivatives, and bisphosphonates (Vihinen and
K&héri 2005). They may inhibit tumor growth by developing a fibrotic capsule around the
tumor, by stabilizing cell-cell contacts (Ho et al. 2001) and by inducing apoptosis (Nelson et
al. 2000). Peptidomimetic MMPIs mimic the cleavage sites of MMP substrates and include
Batimastat and Marimastat. Batimastat cannot be administered orally and was soon replaced
in clinical trials by the oral analog, Marimastat, which inhibits the activity of MMP-1, -2, -3, -
7,-9, and -12 and has shown improved survival in pancreatic and gastric carcinoma (Egeblad
and Werb 2002; Vihinen and Ké&hari 2005). The non-peptidomimetic MMPIs like
Primomastat and BAY 12-9566 have not yet proven to be beneficial in cancer treatment.
Tetracycline derivatives like Metastat, which not only inhibit MMPs, but decrease their
production, have shown benefit in patients with Kaposi’s sarcoma (Vihinen et al. 2005).
Bisphosphonates inhibit the enzymatic activity of MMPs and have shown beneficial, but also
adverse, effects in several cancers (Vihinen et al. 2005). Various factors, like the lack of
selectivity, mechanism of MMPI activity, trial design, and side effects have caused the failure
of MMPIs in clinical trials (Egeblad and Werb 2002). In the future, it might be important to
target MMPs early in cancer progression or their specific functions and to remember that they
could also be used as adjuvant drugs in combination with other treatments. The identification
of MMPs that favor the host instead of the tumor is an important aspect for future clinical
drug trials (Lopez-Otin and Matrisian 2007).
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2.4. Cancer

2.4.1. Tumorigenesis and invasion

Tumor growth

Cancer cells have defects in regulatory circuits that govern normal cell proliferation and
homeostasis. Cancer progression is a multistep process that includes various alterations in
cellular physiology, such as production of autocrine growth signals, insensitivity to growth-
inhibitory signals, escape from apoptoss, limitless replicative potential, sustained
angiogenesis, tissue invasion, and metastasis (Hanahan and Weinberg 2000) (Figure 4). Each
step is critical for the development of a tumor that can later metastasize. These steps are
regulated through interactions of many genes, including MMPs. M utations associated with the
development of tumors alter structural and functional properties of proto-oncogenes and lead
to activation of oncogenes, such as growth factors, growth factor receptors, signal transducers,
transcription factors, and regulators of apoptosis (programed cell death) (Langley and Fidler
2007). The development of a malignant tumor requires both oncogene activation and tumor
suppressor inactivation. For example, the tumor suppressor gene p53 has critical roles in cell-
cycle arrest, apoptosis, cellular senescence and differentiation. Somatic p53 mutations occur
in about half of all human cancers (Hollstein et al. 1996) and the inactivation of p53 leads to
rapidly growing tumors containing few apoptotic cells (Symonds et al. 1994). The formation
of new blood vessels (angiogenesis) is essential for tumor growth. The induction of
angiogenesis is a consequence of an imbalance between multiple inhibitor and stimulator
molecules and referred to as the angiogenic switch (Bergers and Benjamin 2003). The
activators of angiogenesis include vascular endothelial growth factor (VEGF), fibroblast
growth factor (FGF), platelet derived growth factor (PDGF) and epidermal growth factor
(EGF). The inhibitors of angiogenesis include thrombospondin, angiostatin, endostatin, and
tumstatin (Bergers and Benjamin 2003). MMPs can contribute to tumor growth either
directly, through processing of several growth factors such as TGF-$ and fibroblast growth
factor (FGF) (Peschon et al. 1998), or indirectly by regulating proliferative signals through
integrins (Agrez et al. 1994). MMPs can regulate tumor growth by promoting or inhibiting
apoptosis (Egeblad and Werb 2002), e.g. MMP-7 generates a soluble form of FasL (Powell et
al. 1999). MMPs also contribute to angiogenic regulatory balance, MM P-9 acts by increasing
the bioavailability of pro-angiogenic VEGF (Bergers et al. 2000). MMPs may also participate
in the inhibition of neovascularization by converting plasminogen to angiostatin, which is
another potent antiangiogenic protein (Cornelius et al. 1998). They also release fragments of
ECM that are anti-angiogenic, like MMP-9 that releases a fragment from type 1V collagen,
called tumstatin (Martin and Matrisian 2007).
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Figure 4. Thecellular changesin tumor progression.
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Invasion and metastasis

During invasion and metastasis cancer cells must complete sequential steps. 1) degrade the
BM zone and penetrate into the interstitial stroma, 2) penetrate into blood and lymphatic
vessels, and 3) invade from the bloodstream to target organs and undergo expansive growth
(Woodhouse et al. 1997). Over 90 % of all human neoplasms arise in epithelia that are bound
by an underlying BM. BM invasion is a critical determinant of malignancy in most epithelial
cancers, including those of the skin, breast, prostate, lung, and kidney (Friedl and Wolf 2003).
Cancer cell-migration is typically regulated by integrins, cell-cell adhesion molecules, and
MMPs. Carcinoma cells shift the integrin expression present in normal epithelium to those
intergrins (e.g. a6p4, aVB3, aVP6) that facilitate invasion and metastasis (Guo and Giancotti
2004). E-cadherin, a cell-to-cell adhesion molecule, acts as a tumor suppressor of invasion
and metastasis, since its function is lost in a majority of epithelial cancers (Perl et al. 1998).
Invasive tumor cells penetrate the BM zone using laminins and integrin receptors, and BM
zone degrading enzymes, gelatinases (MMP -2 and - 9), which are all typically overexpressed
in cancers with poor prognosis (Liotta et al. 1980; Sternlict and Werb 2001; Cukierman et al.
2001; Rabinovitz et al. 2001). TIMP-1 expression correlated both with suppression or
inhibition of metastasis in experimental and spontaneous metastasis models (Khokha 1994;
Watanabe et al. 1996). Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell
surface glycoprotein and highly expressed on the surface of tumor cells and stimulates
adjacent fibroblasts or tumor cells to produce matrix metalloproteinases. EMMPRIN has been
reported to induce several MMPs, including MMP-1, -2, -3, -9, -14, and -15 (Nabeshima et al.
2006).
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MMPsin tumor suppression

Recent studies have shown that several members of the MMP family (MMP -8, -12, and -26)
provide a protective effect at different stages of cancer progression (Lopez-Otin and Matrisian
2007) (Figure 5). Other protumorigenic MMPs (-3, -9, -11, and -19) might function as
protective enzymes in some specific situations (Figure 5). Anima models have provided new
evidence for MMP research. In the vast mgjority of cases, MMP-null-animals have been made
as congtitutive knock-outs (KO), that is they are genetically deficient in the relevant enzyme.
Surprisingly, only MM P14-K O-mice show a significant phenotype related to total lack of the
enzyme (Holmbeck et al. 1999). To reveal aberrant phenotypes in other KO-mice they are
challenged using wounding, tumor inoculation, phorbol myristate acetate (PMA)
pretreatment, etc. Either disease induction or reduction of various types of cancer as well as
inflammatory conditions predisposing to cancer has been observed in several of the MMP-
KO-mice (Table 2). The incidence of skin tumors strongly increases in MMP-8 deficient mice
and loss of MMP-8 causes profound abnormalities in the inflammatory response induced by
carcinogens leading to sustained inflammation (Balbin et al. 2003). MMP-3 accelerates the
rate of apoptosis, and in the skin of MMP-3 deficient mice, squamous cell carcinomas (SCCs)
are less differentiated and grow faster (McCawley et al. 2004).

MMP-26 expression is strongly induced in different hormone-regulated carcinomas and
associated with favorable clinical outcome in breast cancer patients (Savinov et al. 2006).
Both MMP-8 and -26 might take part in an anti-tumor inflammatory response that contributes
to better clinical prognosis in patients with certain cancers (Savinov et al. 2006). Other studies
showed that human papilloma virus (HPV)-16-induced carcinomas in MMP9-null-mice are
more aggressive and MMP-9 inversely correlates with liver metastasis in patients with
colorectal cancer (Takeha et al. 1997; Coussens et al. 2000). The decreased suspectibility of
MMP19-KO-mice to develop chemically induced skin tumors suggests that MMP-19 might
promote tumor growth (Pendas et al. 2004), although MMP-19 has also been reported to
inhibit tumoral angiogenesis (Jost et al. 2006). Table 2 shows several examples of MMPs
with dual roles in cancer.

Figure 5. The protectiverolesof MM Psin tumor progression.
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Table 2. Cancer and inflammatory response phenotypes of KO or transgenic mice deficient of MM Ps.

MMP-1(TG) Increased chemical skin carcinogenesis with MMP-1 overexpression

MMP-2 (KO) Suppressed tumor-induced angiogenesis, decreased ductal invasion in the mammary gland,
melanoma growth, and lung and pancreatic carcinoma metastasis, reduced skin tumor
progression

MMP-3 (KO) Less differentiated and faster growing SCCs, fewer chemically induced breast tumors

MMP-7 (KO) Reduced intestinal and pancreatic neoplasia, reduced skin tumor progression

MMP-8 (KO) Increased skin carcinogenesis, delayed neutrophil recruitment to dermis surrounding skin
tumors

MMP-9 (KO) Reduced skin and pancreatic carcinogenesis, reduced experimental metastasis, more
aggressive HPV 16-induced tumors, reduced angiogenesis

MMP-10 (KO) Increased inflammation and increased mortality in response to infection or wounding

MMP-11 (KO) Reduced mammary carcinogenesis, decreased tumor cell survival and growth, increased
number of metastasis

MMP-12 (KO) Increased lung tumor growth, increased angiogenesis

MMP-19 (KO) Decreased susceptibility to chemically induced skin tumors, earlier onset of tumoral
angiogenesis

MMP-28 (KO) Increased inflammatory response

TG, transgenic; KO, knock-out; Based on Balbin et al. 2003; Folgueras et al. 2004; Pendas et al. 2004; Handsley
and Edwards 2005; Overall and Kleifeld 2006; L opez-Otin and Matrisian 2007; Page-McCaw et al. 2007;
Fingleton 2008

2.4.2. Cancer and inflammation

The infiltration of leukocytes into solid tumors was noticed over a century ago and it has
become evident that early inflammatory responses lie at the basis of neoplasms (Van Kempen
2006). In normal tissue injury the inflammatory response is downregulated upon re-
epithelialization, but in cancer, however, it seems to be chronic, with persistent inflammatory
cell recruitment and high levels of cytokines/chemokines (Mueller 2006). In animal models,
mast cells, neutrophils, and macrophages are contributors to the progression of cancer
(Coussens and Werb 2001). The same phenomenon is also detected in humans (Mueller
2006). Progression of malignant and invasive SCCs is associated with enhanced and
persistent recruitment of neutrophils and macrophages. Mast cells, on the other hand, might
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have an important role in the initial stages of tumor development (Mueller 2006). Neutrophils
promote angiogenesis and tumor invasion by generating reactive oxygen and nitrogen, and
secreting MMP-9 (Vosseler et al. 2005; Van Kempen et al. 2006). Macrophages are
differentiated in the vicinity of tumors into tumor-associated macrophages (TAMs), which
promote tumor progression by secreting pro-inflammatory cytokines, chemokines, as well as
angiogenic factors and MMPs (Lewis and Pollard 2006). Inflammatory cell infiltration might
be a protective sign in certain tissues or microenvironments (Takeha et al. 1997). The pro-
inflammatory transcription factor NF-xB, links chronic inflammation and cancer by
preventing apoptosis and by stimulating production of pro-inflammatory cytokines (Pikarsky
et al. 2004). In neoplastic tissues, chronic availability of TNF-a has been associated with
invasion and survival of neoplastic cells (Balkwill 2002). TNF-a null-mice could not develop
benign or malignant skin tumors, thus, this pro-inflammatory cytokine could be important in
the early stages of tumor promotion (Moore et al. 1999).

2.4.3. Premalignant lesions of the skin

Actinic keratoses (AK) and Bowen’ sdisease (BD)

Actinic keratoses (AKS) are rough, erythematous, scaly patches on chronically sun-exposed
skin. They are the most common premalignant lesions in humans, the prevalence varying
from 11-25% of the population in the northern hemisphere and up to 50% of the population in
Australia over the age of 40 years (Sober and Burstein 1995; Quaedvlieg et al. 2006). AKs
may have three evolutionary possibilities: 1) spontaneous clearing, 2) persistence, and 3)
progression into invasive SCC at the rate of 0.025-20% (Callen et al. 1997; Glogau 2000;
Cassarino et al. 2006a). The risk factors for AKs include fair skin, excessive sun exposure,
aging, outdoor work, immunosuppressive medication, and the clinical features of the lesion
like induration, diameter, rapid enlargement, bleeding, erythema, and ulceration (Salasche
2000; Quaedvlieg et al. 2006). Several histopathological variants of AKs have been
described, such as the pigmented, proliferative, atrophic bowenoid, acantholytic, or
hyperplastic type. All are characterized by atypical keratinocyte proliferation involving the
lower portions of the epidermis with overlying parakeratosis. Hyperchromaticity of nuclei and
mitotic figures are present (Cockerell 2000; Cassarino et al. 2006a). Mutated p53 plays a key
role in their pathogenesis (Leffell 2000). Some AKs (hypertrophic and proliferative) have
been reported to transform at a higher rateto SCC, but any of the variants can potentially lead
to any type of invasive SCC (Cassarino et al. 2006a).

Bowen's disease (BD) is an intragpidermal in situ SCC, which appears as a slowly
progressive, scaly, sharply demarcated, erythematous plague on sun-exposed skin surfaces
(Sober and Burstein 1995). Genital lesions with the same histology as BD include
erythroplasia of Queyrat in males, vulvar intragpithelial neoplasia in females, and bowenoid
papulosisin both sexes (Cox et al. 2007).
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BD primarily affects older persons (T hestrup-Pedersen et al. 1988), and the etiological factors
include chronic sun exposure, carcinogens e.g. arsenic, immunosuppression, HPV infection,
male sex, and chronic injury (Kossard and Rosen 1992; Sober and Burstein 1995; Bordea et
al. 2004; Cox et al. 2007). It may develop into invasive SCC in 3-5% of the patients (Sober
and Burstein 1995). The clinical differential diagnosis includes psoriasis, basal cell carcinoma
(BCC), nummular eczema, AK, and Paget’s disease (Cassarino et al. 2006a). Histologically
BD demonstrates full thickness intragpidermal keratinocyte atypia with mononuclear
inflammatory infiltrate in the dermis (Sober and Burstein 1995). Recently, few morphological
variants have been recognized, including clear cell, Pagetoid, and pigmented forms (Cassarino
et al. 2006a).

Keratoacanthoma (KA)

Keratoacanthomas (KAS) are rapidly growing hyperkeratotic papules or nodules arising from
follicles and pilosebaceous units. They resemble SCC, but rapid progression and frequent
swift resolution distinguishes them from SCC (Schwartz 2004). KA tends to occur on areas
most prone to sunlight exposure and more often in older patients (Mantegna and luculano
1995). Some cases are associated with genetic syndromes, like those of Ferguson-Smith,
Muir-Torre, and Grzybowski (Weedon 2002a; Schwartz 2004; Ponti and Ponz de Leon 2005).
Other risk factors include carcinogens e.g. tar, trauma, immunodeficiency, and HPV
(Fordund et al. 2003; Schwartz 2004). Histologically KA is characterized by having a central
keratin plug, basaloid layer in proliferating endophytic lobules, large cells with paler
eosinophilic cytoplasm, lack of anaplasia, and a sharp outline between tumor nests and the
stroma (Weedon 2002a). Some authors believe that KA is a well-differentiated variant of SCC
representing a range of neoplastic activity with no clear distinction, while some consider the
higtological and cytological differentiation precise, sure, and possible (Strieth et al. 2002;
Schwartz 2004; Boukamp 2005). Practically all these tumors are currently surgically excised
(Goldberg et al. 2004). The expression of adhesion molecules, such as E-cadherin/p-catenin,
and syndecan-1 have recently been reported to distinguish KA from SCC (Mukunyadzi et al.
2002; Papadavid et al. 2002). The staining pattern of KA for p53 resembles that of grade |
SCC, but they show different chromosomal aberrations (Clausen et al. 2002).

2.4.4. Malignant lesions of the skin

Basal cell carcinoma (BCC)

The incidence of skin cancer is continuously rising in Finland. The total number of cases is
about 8000/year. The most frequently encountered skin cancers are basal cell carcinoma
(BCC), melanoma, and SCC accounting for 1800 cases/year (Cancer in Finland 2006). BCC
is the most common cancer in individuals with fair skin and its incidence is continuously
increasing (Diepgen and Mahler 2002). Although BCC is a malignant tumor, it is generally
only locally invasive and rarely metastasizes (Spates et al. 2003). The development of BCC is
linked to genetic factors, including the individual skin phototype (skin type | and 1), as well
as the cumulative exposure to solar ultraviolet B (UVB) radiation (Boukamp 2005).
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Other risk factors include male sex, older age, chronic sun exposure, ionizing radiation,
chemical carcinogens like arsenic and tars, and immunosuppression (Diepgen and Mahler
2002; Tilli et al. 2005). The majority of BCCs are sporadic tumors, while familial cases
associated with certain hereditary syndromes, like Gorlin syndrome (nevoid basal cell
carcinoma syndrome), are less common. At the molecular level, BCCs are characterized by
aberrant activation of the hedgehog signaling pathway genes, usually due to mutations either
in the Patched (ptch), sonic hedgehog (Shh), or smoothened (smo) genes (Athar et al. 2006).
In addition, about half of the cases carry mutations in the p53 tumor suppressor gene, which
are often UVB-associated C-->T transition mutations (Reifenberger et al. 2005). Clinically,
BCCs may show a high degree of phenotypical variability and generally occur on sun-
exposed areas such as the head and neck (Tilli et al. 2005). Histologically they are composed
of uniform cells with darkly stained nuclel and they often form typical palisading structures
(Brenn and McKee 2005). They can be classified into three different groups: superficial,
nodular, and morpheaform (or sclerosing).

Squamous cdll carcinoma (SCC)

Cutaneous squamous cell carcinoma (SCC) can be defined as a malignant proliferation of
keratinocytes of the spinous layer of the epidermis. It is the second most common cancer
among white individuals, accounting for 20% of all cutaneous malignancies (Bernstein et al.
1996), and associated, unlike BCC, with a substantial risk of metastasis (Rowe et al. 1992).
The main risk factors are exposure to UV or ionizing radiation, chemical carcinogens, far
skin, chronically injured or diseased skin, ulcers, immunosuppression and potential HPV
infection (Alam and Ratner 2001; Boukamp 2005). A recent study classified cutaneous SCCs
as low malignant potential (SCCs arising in AK, verrucous and HPV-related, spindle cell,
tricholemmal), intermediate malignant potential (acantholytic, lymphoepithelioma-like,
Jadassohn tumor with invasion), high malignant potential (invasive BD, adenosguamous,
malignant proliferating pilar, desmoplastic, de novo, arising in chronic conditions, radiation
induced) and indeterminate malignant potential (clear cell, signet ring cell, papillary,
pigmented, follicular, arising from adnexal cysts, squamoid eccrine ductal) (Cassarino et al.
20063, 2006b). The most invasive SCCs occur on the head and neck and the five-year rate of
metastasis is 5% (Rowe et al. 1992). Another study suggested large size of the tumor (>2cm),
site of the tumor (lip, ear), rapid growth, immunosuppression, recurrence, and histologic
features like deep (>4cm or Clark 1V, V), poorly differentiated, spindle-cell or acantholytic
tumor with perineural invasion as risk factors for metastasis (Alam and Ratner 2001). SCC
usually arises as a sporadic tumor, but it is also encountered in several inherited disorders
where they might appear as a result of increased genomic mutagenesis, including xeroderma
pigmentosum, and dystrophic epidermolysis bullosa (Mallipeddi 2002; Cleaver 2005).
Spontaneous SCC is associated with mutations in the p53 tumor suppressor gene, cyclin-
dependent kinase inhibitor p16 "™**, and Ras oncogene (Boukamp 2005). Co-expression of
oncogenic Ras with either cyclin dependent kinase 4 (CDK4) or NF-xB blockade produced
highly invasive SCCs with downregulation of E-cadherin and upregulation of MMPs and
vascular endothelial growth factor (VEGF) (Lazarov et al. 2002; Dajee et al. 2003).
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Extramammary Paget’ s disease (EM PD)

Extramammary Paget’s disease (EMPD) is an uncommon cutaneous neoplasm mostly
affecting elderly people and localized in the apocrine-gland bearing body areas on the genital,
anorectal, or axillary areas (Siesling et al. 2007). The skin lesions are well defined, slowly
enlarging erythematous patches usually associated with itching and discomfort. The etiology
of EMPD is unknown, but three main theories have been presented: 1) Paget cells arise from
the pluripotential cells located in the epidermis; 2) dermal adenocarcinoma cells of apocrine
duct origin migrate into the epidermis as Paget cells, or 3) Paget cells migrate into the
epidermis from an underlying adenocarcinoma of adjacent organs (Pierie et al. 2003). The
lesion is defined as an intra-epidermal neoplasm, and may be accompanied by an invasive
adenocarcinoma or in situ adenocarcinoma of the apocrine glands. Visceral carcinomas,
mostly adenoocarcinomas originating from the colorectum, prostate, breast, and extragenital
skin can develop in EMPD patients (Siesling et al. 2007). Histological diagnostic confusion
can arise between EMPD and malignant melanoma and atypical sguamous disease. The
glandular differentiation of EMPD is indicated by morphological appearances: the presence of
intracellular mucin and positive immunohistochemical staining for glandular cytokeratins,
such as CAM 5.2, epithelial membrane antigen (EMA), and carcinoembryonic antigen (CEA).
The molecular events underlying EMPD differ from those of other epithelial malignancies:
e.g. p53 mutations are often encountered in BCCs and SCCs, but not in EMPD (Takata et al.
1997). EMPD tumors, however, frequently show overexpression of the membrane associated
receptor erbB2 (HER-2), a member of the human epidermal growth factor (EGF) family
(Takata et al. 1999). To our knowledge, no studies have investigated the role of MMPs in
EMPD. The recommended treatment of EMPD involves surgical excision, however, surgery
is associated with a high rate of recurrence. The prognosis for in situ EMPD is good, but it
may become invasive and metastasize with poor prognosis (Pierie et al. 2003). Probably due
to itsrarity, the role of MMPs in EMPD has not been investigated before.

Malignant melanoma (MM)

Malignant melanoma (MM) is a malignant tumor derived from melanin-producing
melanocytes in the epidermis and its incidence has increased over the past several decades.
Clinically melanomas are irregularly shaped asymmetrical lesions with various colors. They
are classified into four subtypes. nodular, superficial spreading, lentigo maligna, and acral
lentigous melanoma (Weedon 2002b). Both environmental factors and genetic predisposition
are important in tumor development and progression (Benjamin et al. 2007). Some families
have an incresed incidence of melanoma, mostly having a dysplastic nevus syndrome.
Previous studies have located the gene of this syndrome to chromosome 1 (Bale et al. 1989).
Epidemiological evidence supported by mouse models indicates that exposure to UV light,
red or light-colored hair, fair skin, and the number of nevi is possible risk factors for
melanoma.
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The influence of UV light is debatable, however, because of an absence of UV signature
mutations (Benjamin et al. 2007). The molecular pathogenesis of melanoma deviates from
other skin cancers. Mutations affecting p53 or Ras oncogene appear to be rare or rather late
events in melanoma progression, whereas activating mutations of the v-raf murine sarcoma
viral oncogene homolog B1 (BRAF) and loss of a functional p16 "™** are detected in the
majority of melanomas (Davies et al. 2002; Daniotti et al. 2004). The switch from E-cadherin
to N-cadherin expression, which frees melanocytic cells from the control of keratinocytes,
appears to be critical in melanoma progression (McGary et al. 2002). The majority of
melanomas do not require immunohistochemistry to be diagnosed, however, spindle cell
melanoma and metastatic melanoma reguire routine immunohistochemistry for confident and
accurate diagnosis. The most freguently used antibody is the S-100 protein, and if additional
stainings are needed, melanoma antigen Mart-1 and HMB-45 (gp100 melanosome-associated
protein) (Carlson et al. 2005). The prognosis of melanoma has traditionally been based on
histological criteria, such as tumor thickness (Breslow 1970), level of invasion (Clark et al.
1969), mitotic rate, increased nuclear volume, satellite deposits, and hemangiolymphatic
invasion (Weedon 2002b). These criteria have been further supplemented by tumor ulceration
and sentinel lymphadenectomy, which was created as a minimally invasive technique to
provide regional lymph node staging information for patients at high risk for metastatic
melanoma and it has become the most significant prognostic factor for patients with
melanoma (Perrot et al. 2003). If not detected and removed early, MM is very aggressive and
unresponsive to current therapeutic approaches (Benjamin et al. 2007).

2.4.5. Skin cancer in organ transplant recipients

The increased incidence of malignant tumors, of which non-melanoma skin cancer (NMSC) is
the most common (Kyllénen et al. 2000), in organ transplant recipients (OTRs) has been
ascribed to the immunosuppressive medication (Penn 1974). Other skin cancers such as
Merkel cell cancer, sebaceous cancers and cutaneous lymphomas also occur a greater
frequency in OTRs (Ho and Murphy 2008). Immunosuppressive drugs may accelerate the
development of skin cancer by decreasing immunosurveillance or by being directly
carcinogenic (Hojo et al. 1999; de Graaf et al. 2008). The level of immunosuppression is also
significant in progression of malignant skin tumors in OTRs (Jensen et al. 1999). The most
frequently encountered skin cancers in OTR are SCCs followed by BCCs. However, the ratio
of SCC to BCC (1:4) noted in immunocompetent patients is reversed in OTRs (Bouwes
Bavinck et al. 1996; Stockfleth et al. 2001). The overall incidence of malignancy after renal
transplantation has been reported as being 3 to 5 times higher compared to the general
population (Birkeland et al. 2000; Peto 2001), but SCC occurs 65-250 times as frequently,
BCC increases up to 10-fold, and melanoma 2-5-fold (Euvrard et al. 2003; Le Mire et al.
2006). The incidence of skin cancer in OTRs rises with the: 1) duration and intensity of
immunosuppressive drugs, 2) UV exposure, and 3) age at the time of transplantation (Bouwes
Bavinck et al. 1996; Bordea et al. 2004; Cassarino et al. 2006b).
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Cumulative UV exposure, in particular pre-transplantation, can hasten the onset of SCC post-
transplantation in patients transplanted after the age of 50 (Ulrich and Stockfleth 2007). The
relationship between tumorigenesis and immunosuppression is not fully understood. Some
speculate that depletion of natural killer cells, which play an important role in the host’s
defence against malignancy, might have an impact on tumorigenesis in OTRs (Farag et al.
2003). As in the general population several risk factors, such as fair-skin, UV exposure, p53
mutation, and HPV infection, also play a role in the development of skin cancer in OTRs
(Bouwes Bavinck et al. 1996; Espana et al. 2000; Meyer et al. 2003). Immunosuppressed
patients have a higher HPV prevalence rate of up to 90% in SCCs than immunocompetent
patients, and the same HPV types can be detected in different lesions of one patient (Berhout
et al. 2000; Harwood et al. 2000; Pfister 2003). A portion of OTR-related SCCs have a
tendency to be aggressive in behavior and metastasize in 5-8% of patients (Martinez et al.
2003). Recent studies suggest that OTRs developing large numbers of skin cancers may
benefit from retinoid chemoprevention (DiGiovanna 2001).

2.4.6. MMPsand TIMPsin skin cancer

The expression and activation of MMPs is upregulated in almost all human cancers, in which
they regulate centra processes, like cancer cell proliferation, differentiation, apoptosis,
migration, angiogenesis, and the function of the immune system (Folgueras et al. 2004).
MMPs are expressed in tumor cells as well as stromal cells especialy macrophages,
fibroblasts, mast cells, and endothelial cells. Interestingly, recent studies have also
demonstrated that several MMPs, such as MMP -8, -12, and -26 provide a protective effect in
different stages of cancer progression and even MMP-3 and -19 might aso function as
protective enzymes in specific situations (McCawley et al. 2004; Lopez-Otin and Matrisian
2007).

MMPsand TIMPsin non-melanoma skin cancer (NM SC)

MMP-1 is frequently expressed in SCCs of the head and neck (Rosenthal and Matrisian 2006)
and its upregulation in AKs has been associated with the early events in SCC development
(Tsukifuji et al. 1999). Microarray analysis shows upregulation of MMP-1 in SCCs (Nindl et
al. 2006). MMP-1 is expressed by epithelial and stromal cells of BCCs, in which it is the
major collagenolytic MMP (Varani et al. 2000; Y ucel et al. 2005; Boyd et al. 2008). MMP-8
isexpressed in head and neck SCCs (Moilanen et al. 2002), and patient serum levels correlate
positively with the tumor stage (Kuropkat et al. 2004). MMP-8 might serve as a protective
marker in tumors, however, because loss of MMP-8 enhances rather than reduces skin
carcinogenesis in male KO-mice (Balbin et al. 2003). MMP-8 has not been detected in BCCs
except for occasional neutrophils (Varani et al. 2000; Boyd et al. 2008). MMP-13 expression
is specific for transformed keratinocytes and not detected in, e.g. migrating keratinocytes, and
is abundant in cutaneous SCCs (Airola et al. 1997; Johansson et al. 1997). In cancer cells, the
constitutive expression of MMP-13 has been detected in 85.7% of SCCs of the head and neck
and in 52.2% of malignant melanomas (Leeman et al. 2002).
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Suppression of MMP-13 in human SCCs reduces tumor growth (Ala-aho et al. 2002).
Expression of MMP-13 has also been detected in tumor cells of BCCs (Airolaet al. 1997).
High activity of MMP-2 and -9 correlates with the invasiveness of oral SCC (Ikebe et al.
1999), but there are conflicting reports on the expression of MMP-2 and -9 in BCC (Varani et
al. 2000; O’ Grady et al. 2007; Boyd et al. 2008). MMP-2 and MMP-9 expression was more
extensive in the stroma of SCC than of BCC or BD (O’ Grady et al. 2007). In culture, MMP-2
is constitutively expressed by fibroblasts and melanoma cells, but barely by keratinocytes and
BCC cells (Chen et al. 2006). In SCCs, infiltration by mast cells and activation of MMP-9
coincides with the angiogenic switch in premalignant lesions (Coussens et al. 1999).
Transgenic mice lacking MMP-9 show reduced keratinocyte hyperproliferation at all
neoplastic stages and a decreased incidence of invasive SCCs (Coussens et al. 2000). MMP-9
expression is upregulated in SCCs of immunosuppressed patients, as demonstrated by
microarray expression profiling (Nindl et al. 2006).

MMP-7 is produced by cancer cells in SCCs and aggressive BCCs (Karelina et al. 1994). The
expression of MMP-7 is common in oral SCC (Impola et al. 2004) and its epithelial
expression provides a diagnostic clue for distinguishing SCCs from pseudoepitheliomatous
hyperplasia in chronic wounds (Impola et al. 2005). MMP-26 protein is produced by cancer
cells in grade | and Il SCCs, but seems to disappear from poorly differentiated tumors,
whereas tumor cells of BCCs are devoid of this enzyme (Ahokas et al. 2005).

MMP-10 expression does not correlate with the invasive behaviour of SCCs (Kerkela et al.
2001). In BCCs, MMP-10 mRNA is expressed in tumor as well as stromal cells (Kerkela et
al. 2001; Boyd et al. 2008). Upregulation of MMP-10 may correlate to aggressiveness of
BCC, since it is expressed most abundantly in the aggressive sclerosing subtype (Kerkela et
al. 2001). MMP-3 is detected mostly in stromal cells in BCCs and SCCs (Kerkela et al.
2001). SCCs of MMP3-KO-mice are less differentiated and grow faster, suggesting a
protective role for MMP-3 (McCawley et al. 2004). MT1-MMP is expressed in both tumor
and stromal cells in SCCs, but only by stromal cells in BCCs (Kerkeld et al. 2001). Elevated
MT1-MMP expression in SCC of the head and neck has been shown to positively correlate
with an aggressive pattern of invasion, poor survival, and lymph node metastasis (Rosenthal
and Matrisian 2006).

MMP-19 is detected in keratinocytes under normal quiescent conditions and downregulated in
invasive SCCs and BCCs (Impola et al. 2003; 2005), and it might participate in the slowing
down the angiogenic process in SCC (Jost et al. 2006). MM P19-KO-mice, however, have less
chemically induced skin carcinomas (Pendas et al. 2004). MMP-21 has been detected in
BCCs and poorly differentiated SCCs (Ahokas et al. 2003; 2005). MMP-28 is expressed in
ord SCCs, but not in premalignant lesions (Lin et al. 2006). MMP-28, however, was not
detected in the invading cancer cell nests of sclerosing BCCs or SCCs of various grades
(Saarialho-Kere et al. 2002).
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In cutaneous and oral SCCs, TIMP expression is detected in tumor as well as stromal cells
(Kerkela and Saarialho-Kere 2003). In a skin carcinogenesis model of HPV16 mice
overexpressing TIMP-1, it inhibited the activity of gelatinases in tumor stroma but enhanced
tumorigenicity and did not inhibit malignant progression or development of metastasis (Rhee
et al. 2004). Novel studies have reported that TIMP-1 expression is greater in the stroma of
BCC than that of SCC or BD and that TIMP-2 expression was higher in the stroma of SCC
than of BD (O'Grady et al. 2007; Boyd et al. 2008). TIMP-3 is present in tumor cells of
infiltrative BCCs and in surrounding stromal cellsin SCCs (Airola et al. 1998). TIMP-1 and -
3 are clearly upregulated during invasion of oral SCC (Sutinen et al. 1998). Recent murine
studies show that TIMP-3 functions to inhibit metastatic dissemination of diverse cancer cells
to multiple organs (Cruz-Munoz et al. 2006).

MMPsand TIMPsin melanoma

Various MMPs contribute to melanoma cell invasion. In MM, the most abundant expression
of MMP-1 is observed by the peritumoral stromal cells, but also within the tumor by
intratumoral endothelial cells (Johansson et al. 1997). Melanoma patients with MMP-1 or
MMP-3 positive metastases had a significantly shorter disease-free survival time compared to
patients with MMP-1 negative metastases (Nikkola et al. 2002). In invasive MM cell lines,
MMP-1 synthesis is induced in fibroblasts by interleukin (IL)-1a and fibroblast growth factor
(FGF)-mediated mechanisms (Loffek et al. 2005). Knockdown of MMP-1 in MM does not
affect primary tumor growth, but significantly inhibits the overall collagenase activity of the
tumors and prevents MM metastasis (Blackburn et al. 2007). MMP-13 is associated with
aggressive MMs (Airolaet al. 1999; Corte et al. 2005).

In cutaneous MM, stromal cells are the main source of MMP-2 (Hoffman et al. 2005). The
expression of MT1-MMP and TIMP-2 and the activation of MMP-2 are correlated with tumor
progression in human MM (Hoffman et al. 2000). MT1-MMP expression in melanoma cell
lines has been linked to activation of proMMP2 and increased tumor formation (Sounni et al.
2002), and its upregulation promotes melanoma invasion into Matrigel (lida et al. 2004). In
melanocytic lesions, MMP-9 is variably expressed in radial, but not in the vertical growth
phase, and de novo expression seems associated with early invasion (van den Oord 1997).
High serum levels of MMP-1 and -9 were associated with rapid progression in patients with
metastatic melanoma (Nikkola et al. 2005). MMP-7 is moderately expressed in primary
cutaneous MM and strongly expressed in metastatic MM, but not in common nevi (Kawasaki
et al. 2007).

TIMP-1 and -3 are abundantly expressed in invasive MM, but the expression of TIMP-2
diminishes with malignant progression of MM (Airola et al. 1999). TIMP-3 regulates
invasion and survival of malignant cells and could be used in adenovirus-mediated gene
therapy of malignant melanoma (Ahonen et al. 1998).

39



3. AIMS OF THE STUDY

The principal aim of this study was to investigate the role of several MMPs and other cancer-
related proteins in precancerous lesions and different forms of skin cancer to find biomarkers
for differentiating more aggressive tumors from slower growing ones. Since stromal cells
produce various MMPs and play an important role in cancer progression, we included the
analysis of MMPs in stromal cells. SCCs of patients under immunosuppression are more
aggressive than those of immunocompetent patients and our interest was to explore if
differences in MMP or TIMP expression patterns occur in immunosuppressed compared to
immunocompetent patients. A key to develop more effective MMP inhibitors or other drugs
against cancer is to identify the critical proteases involved in cancer initiation of aggressive
tumors and in the formation of metastases in order to target them or their signal transduction
pathways. In addition, when this doctoral thesis was started the biology of the novel MMP -
19, -21, -26, and -28 was unknown in the skin and we aimed to further define their expression
and functions in normal skin and tumorigenesis.

The specific aims of the work were:

) To investigate whether MMP -1, -2, -3, -7, -9, -13, and -19 are expressed in EMPD,
whether these MMPs assist in the invasion of Paget’'s cells, and whether their expression
pattern reveals secondary EMPD.

I1) To study the expression pattern of MMP-21, -26, and -28 in melanoma cells in vivo and in
culture and to correlate the results with lymph node status as determined by sentinel node
biopsies.

[11) To investigate whether the expresson of MMPs can differentiate KAs from well-
differentiated SCCs, and if differential expression of cancer-related molecules known to be
involved in the early skin carcinogenesis, like LN-5 and p16, can be found between these two
entities.

V) To study whether the profile of epithelia or stromal MMP or TIMP expression could

explain why SCCs behave more aggressively in patients under immunosuppression compared
to immunocompetent patients.
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4. MATERIALS AND METHODS

4.1. Tissue samples (I-1V)

All tissue samples were paraffin-embedded, formalin-fixed histological skin biopsies of
tumors obtained from Helsinki University Central Hospital (I-1V). The diagnoses were
confirmed by an experienced dermatopathologist in each study. All studies were approved by
the corresponding Hospital Ethical committee.

I) Extramammary Paget’s disease (EMPD)

Histological material was obtained from 21 EMPD patients (9 males and 12 females) treated
during the years 1990-2000. The tumors were located on the vulva and perineum of the
females, and in scrotum, penis, and perineum of the males. The average age at diagnosis was
70 years. Six of the patients had an underlying adenocarcinoma of an adjacent organ. Tumors
were classified into three groups: 1) epidermal (Paget’s cells only in the epidermis), 2) micro-
invasive (unclear, inflamed basement membrane zone and thickened epidermis), and 3)
invasive (clear tumor in the dermis). Five specimens of mammary Paget’s disease were used
as controls.

I1) Melanoma

The melanoma specimens were obtained from 63 cases (10 in situ melanomas and 53 invasive
melanomas of 21 females and 32 males, of which all invasive melanoma patients had
undergone lymphatic mapping and sentinel node biopsies during the years 2001-2003 (27
samples with no metastasis and 26 samples with nodal micrometastases). Five nevi, seven
sentinel node positive, and 12 sentinel node negative biopsies obtained from these patients
were also analyzed. The average age at diagnosis was 65 years. Clark’s classification was
used to determine the invasion level (mean 3.7 mm) and Breslow’s classification to measure
the tumor thickness (mean 3.1 mm).

I11) Keratoacanthoma

Samples were obtained from 31 keratoacanthomas (KAS) of 11 males and 20 females and 15
grade | (well-differentiated) squamous cell carcinomas (SCCs). The average age at diagnosis
was 69 years. Twenty of the KAs were located on the face and the rest on limbs or elsewhere
on the body. Three of the KA samples were from patients that had undergone organ
transplantation. KAs were characterized histologically by their structure, number of atypical
cells (0-2), neovascularization (0-3), and inflammation (0-6).

V) SCCs

SCC samples were acquired from 20 immunosuppressed renal transplant recipients (2 females
and 18 males with mean age of 62 years) and 20 immunocompetent controls (11 females and
9 males with mean age of 79 years) so that the location and histology of the samples were
matched. The tumors were histologically divided into 1) well-differentiated, 2) moderately
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differentiated, and 3) poorly differentiated (Brenn and McKee 2005). Histological changes
suggestive of HPV infection (keratinocytes with coarse keratohyaline granules in the upper
layers of the acanthotic epidermis next to the malignant SCC areas, but not in the tumor cells
themselves) were also recorded (Brenn and McKee 2005). Nine matched pairs of BD samples
as an example of early stage cutaneous SCC, were also studied.

4.2. Immunohistochemistry (I-1V)

Immunostaining of the sections was performed by the avidin-biotin-peroxidase complex
technique using the Vectastain ABC Kit (Vector laboratories, Inc, Burlingame, CA, USA),
DAKO Kit (DAKOStreptABComplex/HRP Duet, Mouse/Rabbit, Glostrup, Denmark), or by
the antibodypolymer detection technique (PowerVision Poly-HRP IHC Kit, ImmunoVision
Technologies Co, Brisbane, CA, USA). Diaminobenzidine (DAB) or aminoethylcarbatzole
(AEC) were used as chromogenic substrates and Mayer hematoxylin as counterstain, as
described in detail in Saarialho-Kere et al. (1993). Samples were deparaffinized, dehydrated,
and endogenous peroxidase was blocked by incubation with 3% H,O, for 10 minutes at room
temperature. If necessary, sections were pre-treated with 10 mg/ml trypsin, incubated in
citrate (pH 6) or ethylenediaminetetraacetic acid (EDTA) (pH 9) buffer in a 95°C water bath
or in amicrowave oven. Primary antibodies (Table 3) were incubated for 1-2 hours a 37°C or
overnight at 4°C in a humified chamber. Controls were performed from unimmunized
animals.

4.3. In situ hybridization (I, )

The production and specificity of the antisense MMP-1, -3, -7, -10, and -13 cRNA probes
have been previously described (Saarialho-Kere et al. 1994; 1996; Vaalamo et al. 1997). In
situ hydridization was performed on 5 pm sections using **S-labeled probes. Sections were
hybridized overnight at 50-55°C after which slides were washed under stringent conditions
and treated with RNAase A to remove unhybridized probe. After 20-50 days of
autoradiographic exposure, the photographic emulsion was developed and the dides were
stained with hematoxylin and eosin. Samples previously positive for each antisense probe
were used as positive controls.
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Table 3. Antibodies used in immunohistochemistry

ANTIBODY | SOURCE DILUTION/PRETREATMENT

MMP-1 IM35L, Oncogene, San Diego, CA, USA 1:500/Trypsin

MM P-2 IM33L, Oncogene 1:75/Trypsin

MM P-7 IM40L, Oncogene 1:100/95°C water bath in citrate
buffer

MMP-8 IM38L, Oncogene 1:20/Trypsin

MMP-9 GE-213, Research Diagnostics, Flanders, NJ, USA 1:100/Trypsin

MMP-9 MS-569, Neomarkers, Fremont, USA 1:100/Trypsin

MMP-10 NCL-MMP10, Novocastra, Newcastle, UK 1:250/Trypsin

MM P-13 MS-825, Neomarkers 1:10/95°C water bath in citrate buffer

MMP-19 RDI-MMP19abR, Research Diagnostics 1:70/ No pretreatment

MMP-21 RP3MMP-21, Triple Point Biologics, Portland, OR, 1:70/ No pretreatment

USA

MM P-26 Prof Keiichi 1saka 1:150/95°C water bath in citrate
buffer

MM P-28 Dr. Jouko Lohi 1:800/microwave in EDTA buffer

TIMP-1 IM63L, Oncogene 1:100/95°C water bath in citrate
buffer

TIMP-3 IM43L, Oncogene 1:400/95°C water bath in citrate
buffer

Laminin-5 Prof Karl Tryggvason 1:800/Trypsin

Tenascin-C MAB143DB?7, Biohit, Helsinki, Finland 1:2000/Trypsin

p16'Nk4 G-175-405, BD Biosciences, San Jose, CA, USA 1:350/95°C water bath in citrate

buffer
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4.4. Cell cultures (Il)

Commercial melanoma cell lines Bowes, G361, WM852, WM164, and WM165 were
cultivated in Dulbecco’'s modified Eagle’s medium/F-12 (D-MEM/F-12) (Gibco BRL,
Gaithersburg, MD, USA), supplemented with 10% heat in activated fetal bovine serum (FBS),
2 mM L-glutamine, 100 1U/ml penicillin, 50 mg/ml streptomycin, 0.1 pg/ml cholera toxin,
and 3 ng/ml fibroblast growth factor-2 (FGF-2) at 37°C in humified atmosphere. The medium
was changed twice a week.

4.5. Polymerase chain reaction and mRNA analysis (Il)

Total cellular RNA from cultured cells was extracted using Rneasy Miniprep-kit (Qiagen,
Chasworth, CA) according to manufacturer’s instructions. RNA was then reverse transcribed
to complementary DNA (cDNA) with Tagman™ Reverse Transcription reagents (Applied
Biosystems, Foster City, CA, USA) with random hexamers and used in a 1:5 dilution as a
template for conventional RT-PCR. As primers we used T21F (forward nucleotides) and
T21R (reverse nucleotides) for human MMP-21 (Sigma Genosys, Cambridge, U.K) as
previously described (Ahokas et al. 2003). TagMan PCR primers for human MMP-26 were
purchased as a ready-to-use 20x reaction mix and the sequences are property of the vendor
(Applied Biosystems). MMP-28 primers (Sigma Genosys, Cambridge, U.K) and probes (PE
Biosystems, Warrington, U.K), described in more detail in our previous work (Saarialho-Kere
et al. 2002), were designed using computer program Primer Express (Applied Biosystems).
Human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous
control. The PCR for MMP -21, -26, and -28 was performed by conventional PCR, in
separate reactions. The primers were used in a final concentration of 200 nM each (T21F,
T21R, GAPDH forward, and GAPDH reverse), 400 uM of each nucleotide, 0.5 pl
Advantage-2, 5.5 mM MgCl,, and 3 ul of cDNA-template in a reaction volume of 25 ul. The
PCR was started with an initial denaturation of 3 min at 94°C, followed by atotal of 40 cycles
of 30 sec denaturation at 94°C, 30 sec of annealing at 60°C, and 30 sec of elongation at 72°C
with a final elongation of 10 min at 72°C. Finally, PCR products were analyzed in a 2.5%
agarose gel and stained with 5 ng/ml of ethidium bromide and visualized under ultraviolet
light.

4.6. Statistical methods (I, I, 1V)
Unpaired two-tailed t-test, chi-square test and Mann-Whitney U tests were performed to
investigate the significance of resultsin Studies|l, 111 and IV with SPSS 13.0 for Windows. A

p value under 0.05 was considered as significant.



5. RESULTS AND DISCUSSION

MMPs are produced abundantly by various cells, but their functions or substrates in vivo are
still often unknown. MMPs are rarely produced constitutively, but in response to specific
signals. In order to understand their role in skin tumors it is necessary to study samples that
reflect physiological and disease processes as they occur in vivo instead of relying merely on
animal models that can differ in oncogenes or expression patterns of MMPs from humans.
Immunohistochemistry and in situ hybridization are suitable methods for studying
localizations of MMPs in tissues. RT-PCR, which shows cytosolic and nuclear mRNA, can be
used to study gene expression. We investigated the expressions of various MMPs as well as a
few tumor related proteins in precancerous lesions, in situ carcinomas and invasive tumors
using immunohistochemistry, in situ hybridization and RT-PCR to find markers for detailed
categorization of these tumors and to shed more light on the pathobiology of these lesions.
Due to the different regulatory levels of MMP activity, it was convenient to use different
methods to provide the most comprehensive view of the tissue events. | mmunohistochemical
assays, however, cannot discriminate between inactive zymogens and active enzymes.
Additional studies using, for example, in situ zymography or western blotting, could have
been done to further validate these results.

51. MMP-7 and MMP-19 are expressed by Paget’'s cells in
extramammary Paget’s disease ().

EMPD is a rare adenocarcinoma of the apocrine skin and molecular events underlying EMPD
differ from other epithelial malignancies. Since the contribution of MMPs to the biological
behavior of EMPD has not been previously investigated, we studied a large panel of proteases
in EMPD to gain more knowledge about the nature of these rare tumors (Table 4). Among the
MMPs we investigated, positive staining for MMP-7 was detected in Paget’s cells in 10/27
tumors. MMP-7 has many known functions in inflammation, apoptosis, proliferation,
invasion, and angiogenesis, and it is widely expressed in epithelial and mesenchymal tumors
associated with poor prognosis (i et al. 2006). The origin of EMPD is still unclear, but it may
be the secretory cells of apocrine glands. Interestingly, MMP-7 isone of the few MMP family
members expressed in glandular epithelium and detected during tumor progression in benign
and malignant tumors arising from glandular epithelium (Wilson and Matrisian 1996; Nelson
et al. 2000). The majority of MMPs are expressed by stromal cells, but some MMPs,
including MMP-7, are expressed by tumor cells themselves, indicating that MMP-7 is
expressed in atumor-associated fashion. In our study it was detected in several of the EMPD
tumors, which supports this theory of tumor-associated expression. Thus, the production of
MMP-7 in tumor cells in EMPD could be a biological marker of an aggressive phenotype and
used to guide therapeutic interventions. Since EMPD is a rare disease and large cohorts are
difficult to obtain, however, these results should be confirmed by other studies. MMP-7
mediates cleavage of the E-cadherin ectodomain, resulting in disruption of the
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E-cadherin/catenin complex (Noé et al. 2001). E-cadherin was recently shown to be
downregulated in EMPD (Liu et al. 2007), which might be a consequence of MMP-7
overexpression. Accumulation of B-catenin coordinates upregulation of the MMP-7 gene
transcription in intestinal adenocarcinomas (Crawford et al. 1999), but neither cytoplastic nor
nuclear accumulation of B-catenin has been observed in EMPD (Takata et al. 1999).

We detected MMP-19 in Paget’s cells in 12/26 samples. The physiologic function of MMP-19
is &ill mostly unknown, but it is typically expressed in the basal layer of healthy
interfollicular epidermis and upregulated in suprabasal and spinous layers in psoriasis,
eczema, cutaneous wounds, and tinea (Sadowski et al. 2003; Suomela et al. 2003; Impola et
al. 2003). MMP-19 has also been detected in sweat glands of normal skin, but it is
downregulated in malignant breast cancer cells and SCCs (Djonov et al. 2001; Impola et al.
2003). It is suppressed in human keratinocyte cell lines at high calcium concentrations and
calcium-regulation occurs through E-cadherin mediated cell-cell contacts (Sadowski et al.
2003). Unlike in cutaneous SCCs, where MMP-19 is downregulated in malignant cells
(Impola et al. 2003), we found positive staining for MMP-19 in malignant cells in several
EMPD samples. This could indicate that the origin of the tumor plays a significant role in
MMP expression.

5.2. MMP-7 and MMP-19 can predict an underlying carcinoma in
extramammary Paget’s disease ().

MMP overexpression in the samples with underlying visceral malignancy was also of interest.
We could find 3/7 MMP-7 positive specimens and 4/6 MMP-19 positive specimens with
underlying malignancy. If the trend would become stronger with a larger cohort, these MMPs
could aid in guiding the therapy and further investigations and also serve as prognostic factors
in EMPD. The principal treatment of EMPD is surgical excision with local recurrences up to
30-60% (Pierie et al. 2003) and patients with recurrent EMPD might benefit from adjuvant
therapies. Tumors strongly overexpressing certain MMPs could respond to agents interfering
with MMP-signaling pathways, like patients having HER2 gene mutation may benefit from
HER2 targeting immunotherapy (Tanskanen et al. 2003). According to our results, the
patients with overexpression of MMP-7 and -19 in Paget’s cells had had a variable number of
operations and recurrences. No trend was observed between the expression of certain MMPs
and malignant nature of the EMPD, so we could not find proper candidates for MMPI

therapy.

5.3. MMP-2 and MMP-3 are not detected in Paget cells (I).

For the important functions that MMP-1, -2, -3, -9, and -13 have in tumorigenesis, we wanted
to investigate their expression in EMPD as well (Egeblad and Werb 2002; Ala-aho and K&héri
2005). Interestingly, MMP-2 was expressed occasionally by fibroblasts, but both MMP-2 and
MMP-3 were absent in the malignant cells of EMPD samples. In addition, other MMPs
tightly linked to epidermal transformation, MMP-1 and -13, were not overexpressed either.
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MMP-9 was expressed in the surgical specimen of only one patient, who had undergone 10
operations due to aggressive disease, and in two lymph node metastases of different patients.
MMP-9 positive neutrophils and macrophages were detected in several samples, but their
presence did not correlate with the number of operations or underlying malignancy.

Previous studies have shown that MMP-2 is expressed by various types of adult cells under
normal physiological conditions, especially fibroblasts, and it is a potent proteolytic enzyme
with a major role in the digestion of BM type IV collagen, which is an important mechanism
for vascular invasion and metastasis (Kahari and Saarialho-Kere 1999). Upregulation of
MMP-2 is a common feature seen in invasive carcinomas of different organs (Kéhéari and
Saarialho-Kere 1999). The expression of MMP-3 is upregulated by growth factors, like HB-
EGF (Suzuki et al. 1997), and it is detected in a wide variety of tumor cell types. The
upregulation of MMP-3 correlates with the progression and metastasis of breast, skin, and
colon tumors (Sternlicht et al. 1999; Inuzuka et al. 2000; Kerkela et al. 2001). Recent studies
have shown its protective role in skin cancer. SCCs in MMP3-null mice are less differentiated
and grow faster and MMP-3 expression accelerates the rate of apoptosis in transformed cells
(McCawley et al. 2004). Interestingly, the wild-type p53, which is usually encountered in
EMPD (Takata et al. 1997) downregulates the transcription of MMP-1, -2, and -13 (Overall
and Lopez-Otin 2002; Ala-aho et al. 2002). It is possible that the lack of overexpression of
these proteases contributes to the fact that a subset of EMPD tumors can behave in an indolent
manner (Parker et al. 2000).

5.4. LN-5 is expressed in 50% of EMPD lesions while staining for
TN-C is faint (1)

Since LN-5 is known to be proteolytically processed by several MMPs included in our study,
we wanted to evaluate the staining pattern of LN-5 in our EMPD samples. Eleven of 20
samples showed LN-5 positivity in Paget cells and by growing invasiveness of the tumor, LN-
5 positivity decreased. In a few of the samples, only keratinocytes had positive
immunostaining for LN-5, because re-epithelializing cells are known to produce LN-5 as well
as keratinocytes that are located on a disrupted BM (Giannelli et al. 1997; Koshikawa et al.
2000). The tumors with underlying visceral carcinomadid not differ from othersin their LN-5
staining. Thus, LN-5 positivity does not serve as a marker for underlying adenocarcinoma.

LN-5 is considered to be a potential marker for carcinoma invasion (Lohi 2001) and the
processing of y2-chain has been shown to trigger epithelial cell migration (Giannelli et al.
1997; Koshikawa et al. 2000). Co-localization of LN-5 and MMP-19 was recently found at
the invading front of well-differentiated SCCs and suggested that MMP-19-dependent
processing of the y2-chains leads to the integrin switch favoring epithelial cell migration
(Sadowski et al. 2005). We could not find co-localization of LN-5 and MMP-19. On the
contrary, most samples overexpressing MMP-19 were negative for LN-5. When comparing
the LN-5 expression with other MMPs, we also found no association. Our results are in
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agreement with previous data suggesting that molecular events differ in EMPD compared to
other cutaneous malignancies.

Since TN-C is upregulated in transformed keratinocytes, as well as stromal cells in
premalignant and malignant skin lesions (Dang et al. 2006) and as it is cleaved by several
MMPs, like MMP-2, -7, -13, and -19 in vitro (Table 1), we immunostained for TN-C in
EMPD samples. The staining was faint and seen only at the border of EMPD lesions and no
co-localization or co-expression of TN-C with the MMPs studied occured. According to our
results, the weak staining for TN-C, compared to many other tumor types, may contribute to
the slow growth of Paget’slesions.

5.5. MMP-21 is wupregulated at early stages of melanoma
progression, but disappears with more aggressive phenotype (ll).

Since MMP-21 is expressed in a subset of BCCs and SCCs in vivo (Ahokas et al, 2002;
2003), we wanted to investigate its expression in melanoma cells in vivo and in culture, as
well as to correlate these results with lymph node satus. In our study, MMP-21 protein
staining was detected in invasive melanoma cells in 29/53 samples and in 6/10 in situ
melanomas. Its expression was more intensive in melanoma samples without
micrometastases. 18/27 of the cases without nodal invasion and 11/26 with nodal invasion
were positive for MMP-21. We could not detect any connection between MMP-21 expression
and ulceration. MMP-21 was also expressed in fibroblasts surrounding melanoma islands,
agreeing with the results of Skoog et al. (2006), but we didn’t observe positive staining for
MMP-21 in endothelial cells or keratinocytes. MMP-21 staining was not detected in 19
metastatic lymph node samples. To study how MMP-21 behaves in benign melanocytic cells,
we stained five additional samples of compound nevi for MMP-21. They all turned out
negative. Since MMP-21 expression seemed to weaken with nodal invasion, we performed
the Mann-Whitney U test comparing MMP-21 expression in grade I1-111 tumors versus grade
IV-V tumors irrespective of lymph node status and found that MMP-21 expression was
significantly stronger in well-differentiated melanomas (mean 1.0 vs. 0.57, p=0.04). Our
results indicate that upregulation of MMP-21 is an early event in melanoma progression.
While melanoma progresses, MMP-21 expression weakens and is finally absent from nodal
metastases. This is supported by the fact that in situ melanomas showed positive staining for
MMP-21, but all nevi samplesturned out negative. Thus, MMP-21 could serve as a marker of
malignant transformation in melanocytes. Larger cohorts, however, are needed to confirm
these results. Furthermore, immunohistochemical approach cannot differentiate between
latent and active MMP-21, which would need conventional or in situ zymography, but would
lead to difficulties in determining the cells of origin on tissue level.

Similar results on the expression profile of MMP-21 in pancreatic adenocarcinoma were
recently published from our group: MMP-21 was expressed in well-differentiated tumors, but
diminished from the poorly differentiated ones (Bister et al. 2007). In contrast to this,
expression of MMP-21 was associated with invasion in esophageal SCCs, but localized to
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well-differentiated areas of the tumors (Ahokas et al. 2006) and with aggressive subtypes of
BCCs and SCCs (Ahokas et al. 2003). This suggests that in certain cancers and cancer cell
lines MMP-21 may, indeed, promote invasion. Interestingly, MMP-21 is upregulated in
keratinocytes and downregulated in fibroblasts in cell culture by TGF-f1 (Ahokas et al. 2003;
Skoog et al. 2006), which is also known to modulate melanoma growth and survival (Berking
et al. 2001). Thus, TGF-f might also be a potential candidate to upregulate MMP-21 in
melanoma cells in vivo. In promoter analyses, MMP-21 is a putative target of p-catenin
transactivation (Marchenko et al. 2003). Indeed, alterations of B-catenin pathway have been
reported in melanoma (Kielhorn et al. 2003). Our group recently published that MMP-21
expression was induced in pancreatic cell lines by EGF (Bister et al. 2007). A discrepancy,
however, in the results of the role of EGF in MM exigts (Shahbazi et al. 2002; McCarron et
al. 2003). MMP-21 is induced in monocytic cells and in keratinocytes by all-trans-retinoic
acid (atRA) (Skoog et al. 2006; Skoog et al. unpublished) and putative retinoid receptor
binding sites have been detected in its promoter (Skoog et al. 2006). Interestingly, cultured
melanoma cells treated with atRA induced cellular growth inhibition on both primary and
metastatic melanoma cell lines (Zhang et al. 2003). Although the primary tumor cells were
relatively more susceptible to this effect as compared to the matched metastatic melanoma
cells, the study suggested the possibility to utilize atRA in the treatment of early human MM.
If atRA induces MMP-21 expression in cells, it might have a protective role in the early
phases of melanoma progression. MMP-21-KO-mice could give valuable data in further
studies on the role of MMP-21 in MM.

5.6. MMP-26 is not detected in melanoma cells while MMP-28 is
present occasionally in melanomas (ll).

Twenty-one melanoma samples and 5 nevus samples were immunostained for MMP-26. They
were all negative except for fibroblasts surrounding the tumor in a few of the samples and for
the occasional basal migrating keratinocytes bordering ulcerations. We stained 36 invasive
melanoma and 10 in situ melanoma samples for MMP-28 and found positive immunostaining
inonly five of them.

MMP-26, arecently cloned MMP, has been associated with early stages of tumor progression
(Lee et al. 2006; Ahokas et al. 2005), but conflicting studies reporting its upregulation in
invasive tumors, such as pancreatic, ovarian, and esophageal cancers exist (Yamamoto et al.
2004; Ripley et al. 2006; Bister et al. 2007). MMP-26 has been detected in benign skin
lesions, like sarcoid granulomas and granuloma annulare (Skoog et al. 2006). According to
our results MMP-26 does not seem to have an important role in the malignant transformation
of melanocytes or even in benign melanocytic lesions. Greater estrogen receptor-f (ER-B)
expression in severely dysplastic nevi and lentigo malignas compared with thick nodular
MMs with greater Breslow depth was reported recently and investigators stated that estrogen
may play a role in MM (Schmidt et al. 2006). The presence of a MMP-26-mediated
intracellular regulatory pathway targets ER-[3 in hormone-regulated malignancies (Savinov et
al. 2006). If ER-B plays a significant role in MM and MMP-26 is important in the regulatory
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pathway of ER-f3, one would assume we would have found more positive staining for MMP-
26 in our in vivo MM or nevus samples. We detected MMP-26 in a few fibroblasts
surrounding melanoma islands, which is in agreement with the reported expression of MMP-
26 by corneal fibroblasts (Marchenko et al. 2004). This all may be related to the contribution
of host-derived proteases in tumor progression.

The precise role of MMP-28 in cutaneous biology is still unknown, but it is expressed in
various carcinomas, including ovarian, colon, and pancreatic adenocarcinoma (Marchenko
and Strongin 2001) and also by proliferative keratinocytes during wound repair (Lohi et al.
2001; Saarialho-Kere et al. 2002) as well as in intestinal inflammatory conditions (Bister et
al. 2004). MMP-28 can induce EMT and cell invasion through a TGF-B1-dependent
mechanism, suggesting novel biological roles for this enzyme in the induction of
carcinogenesis (Illman et al. 2006). Since most of the in vivo samples in our study (41/46)
were negative for MMP-28, it does not seem to be important in the pathogenesis of MM.

Figure 6. The mRNA expression of MMP-21 and -26 by RT-PCR in different cell lines.
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5.7. MMP-21 is expressed in melanoma cells in culture, but
detection of MMP-26 and -28 in melanoma cell lines is insignificant
(11).

We examined five melanoma cell lines (Bowes, G361, WM852, WM 164, and WM 165) to
study whether melanoma cells are able to express any mRNAS of the three novel MMPs in
culture. MMP-21 mRNA was expressed by RT-PCR in Bowes and ML852 melanoma lines
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while lower levels were apparent in WM 164, WM 165, and G361 cells (Figure 6). MMP-26
MRNA was detected only at low levels in ML852 and WM 165 cells (Figure 6). A very low
level of MMP-28 mRNA was detected in WM 165 cells, while all other cell lines turned out
negative (data not shown). Human glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as an endogenous control and placenta as a positive control (Figure 6). The
expression of MMP-21 in melanoma cell lines strengthened our hypothesis that MMP-21
could serve as a marker of malignant transformation in melanocytes. This is further supported
by our negative findings in metastatic sentinel nodes. A larger cohort of various stages of
melanoma would be required to finally confirm this, however.

We could detect in vitro two melanoma cells lines expressing MMP-26, a phenomenon not
found in tissue samples. Such conflicting results in MMP studies are often observed as the
amount of MMP proteins may be so low in tissues that it is undetectable by
immunohistochemical staining in vivo, but generally expressed in cancer cell lines in vitro
(Kerkeld and Saarialho-Kere 2003). Alternatively, cell-matrix and cell-cell interactions may
up- or downregulate MMPs in vivo. While our study was in progress, another study reported
high expresson of MMP-26 by several melanoma cell lines in culture using
immunohistochemistry and its correlation with estrogen dependency (Li et al. 2004). Our
negative results on MMP-26 and MMP-28 expression in G361 cell line are identical to results
published by Nuttall et al. (2003).

We detected only very low levels of MMP-28 in one cell line, though it was detected in a few
melanoma samples in vivo. This further supported our conclusion that MMP-28 does not play
asignificant role in MM. So, as previously suggested (Bister et al. 2004), it may have a more
vital function in tissue homeostasis rather than in tumor progression.

5.8. The presence of MMP-13 positive cells in melanoma and its
micrometastases may correlate to more aggressive disease (ll).

We found positive MMP-13 staining in melanoma cells of 39/53 samples of invasive
melanoma, from which 19/27 specimens were without micrometastases and 20/26 had
micrometastases. All metastatic sentinel lymph nodes expressed MMP-13, whereas MMP-13
was not detected in any of the non-metastatic lymph nodes. MMP-13 is a powerful and
potentially destructive proteinase with strictly controlled expression under normal physiologic
conditions (Ala-aho and Kahari 2005). Studies that our group and others have published
previoudy indicate that MMP-13 expression is induced in melanoma progression (Airola et
al. 1999; Nikkola et al. 2002). High expression of MMP-13, however, is not associated with
survival parameters (Nikkola et al. 2002). According to our results MMP-13 is upregulated in
aggressive metastatic melanoma and associated with nodal micrometastases, agreeing with
previous knowledge about the nature of this MMP.
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5.9. The presence of MMP-7 and -9 in the epithelial pushing border
of KAs is rare and should raise a suspicion of SCC (lll).

We found positive staining for MMP-7 protein in epithelial cells of 4/31 KAs and 9/15 well-
differentiated SCCs. The gtaining intensity for MMP-7 was clearly lower in KAs than in
SCCs and agrees with previous findings (Impola et al. 2005). Thus, this MMP might be
valuable in differentiating these closely related tumors. Neovascularization was observed in
al MMP-7 positive KA samples, but the presence of MMP-7 did not associate with
keratinocyte atypia or inflammation. The literature, expresses a lot of controversy about the
guestion of whether KA is a variant of SCC or a unique benign lesion. Although most of the
lesions that fit the diagnosis of KA behave in a predictably benign manner, occasional
aggressive behavior, including metastases, has been described (Y us et al. 2000; Gottfarstein-
Maruani et al. 2003; Schwartz 2004). MMP-7 has been detected in malignantly transformed
keratinocytes (Karelina et al. 1994; Impola et al. 2005) and contributes to the initiation of
EMT by cleavage of E-cadherin (Noé et al. 2001; Van Kempen et al. 2002). The presence of
MMP-7 in angiogenic endothelial cells in various cancer types suggests that endothelial cell-
derived MMPs are involved in neo-angiogenesis (Sier et al. 2007). Another study suggested
that the VEGF-mediated angiogenic switch of fibroblasts is regulated by MMP-7 from cancer
cells (Ito et al. 2007). Our results are congruent with these findings, since neovascularization
occurred in all MMP-7 positive samples. MMP-7 has been upregulated in inflammation in
earlier studies (Parks et al. 2004; Wielockx et al. 2004), but we could not find a connection
between MMP-7 and histological grading of inflammation.

The expression of MMP-9 was detected in 5/31 KAs and 8/15 SCCs in a small number of
epithelial cells at the pushing border. Thus, the expression of MMP-9 was rare in epithelial
cells in KAs, but it was clearly upregulated in SCCs. MMP-9 was, however, detected in
inflammatory cells in several KAs. In 22/31 KAs, MMP-9 was produced only by
macrophages and neutrophils. Epithelial MMP-9 expression did not associate with
keratinocyte atypia, angiogenesis, or inflammation in KAs. Our results agree with previous
studies suggesting that MMP-9 might serve as a prognostic marker for more aggressive
tumors, whereas its absence from epithelia cells may serve as a prognostic marker of non-
invasive SCC (Kobayashi et al. 1996; Impola et al. 2004). Neutrophils, macrophages, and
magt cells are the predominant source of MMP-9 in a mouse model of multistage SCC, rather
than the neoplastic cells themselves (Coussens et al. 1999). In humans, high stromal MMP-9
expression correlated with a more advanced disease in ovarian cancer (Sillanpaa et al. 2007).
Whether the stromal positivity for MMP-9 is a result of the inflammatory response around the
tumors rather than specific tumor activation is still unknown. Induction of angiogenesis
involves MMP-9, which is upregulated in angiogenic islets and tumors, rendering VEGF
more available to its receptors (Bergers et al. 2000). We could not find, however, an
association between epithelial MMP-9 expression and angiogenesis. No connection was noted
between MMP-9 expressing stromal cells and angiogenesis in KAs either (unpublished data).
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5.10. The loss of MMP-19 and pl6 from KA could aid in
distinguishing between well-differentiated SCC and KA (lll).

MMP-19 was generally present in epithelial keratinocytes at the pushing border of KAs, but
only in 6/15 SCCs. In SCCs, MMP-19 was expressed by hyperproliferative epidermis, but
generally disappeared from the invasive cancer cell nests. Indeed, our group and others have
previously demonstrated that MMP-19 is absent from the invasive cancer cell nests of well-
differentiated SCCs (Impola et al. 2005; Sadowski et al. 2005). Thus, the down-regulation or
loss of MMP-19 might serve as a prognostic marker for malignant transformation in KAs,
MMP-19 is upregulated in the hyperproliferative areas of keratinocytes in psoriasis (Suomela
et al. 2003), which might explain its strong expression in rapidly growing, hyperproliferative,
KAs.

Cyclin-dependent kinase inhibitor p16'™<* (p16) plays an important role in inhibition of the
cell cycle by specifically blocking the cyclin-dependent kinase 4 (CDK4) from
phosphorylating the retinoblastoma protein (Boukamp 2005). The contribution of p16 to skin
cancer development is controversial (Hodges and Smoller 2002; Salama et al. 2003). In our
study, pl6 was detected in hyperproliferating areas of KAs independent of the number of
atypic keratinocytes or the degree of inflammation. Some specimens, however, clearly had
fewer pl6 positive cells than others. P16 expression was stronger in MMP-13 negative
samples. In SCCs, pl6 was mostly absent from the invasive cancer cell nests and only 7/15
samples had occasional p16 positive cells at the invasive front.

P16 expression is activated in cells in response to BM degradation/invasion and is detected in
normal migrating keratinocytes as well as in chronic wounds (Natargjan et al. 2003; Ahokas
et al. 2005). In our study, upregulation of p16 in Kas, however, was not uniform. This might
be due to differencesin UV exposure (Hashemi et al. 2003) or the nature of our KA samples.
Burnworth et al. (2007) developed a skin carcinogenesis model, where p16 was strongly
upregulated in KAs, but detected only in a few SCCs, whereas p16 was absent from invasive
areas of SCCs (Impola et al. 2005). MMP-13, a marker of malignant transformation of
keratinocytes (Ala-Aho and K&hari 2005), was also negative in the KAs with pl16 positive
staining. According to our results, plé might have a protective role in KA and its
downregulation might serve as a warning sign for a more aggressive nature of KA, agreeing
with previous reports from our group and others (Impola et al. 2005; Burnworth et al. 2007).

5.11. The staining for MMP-2, MMP-8, MMP-10, MMP-13 or LN-5 does
not assist in differentiating KAs from well-differentiated SCCs (lll).

MMP-2 protein was not detected in the epithelium of KAs or SCCs, but was abundantly
expressed by fibroblasts in all samples. MMP-2 is expressed by various types of cells, e.g.
fibroblasts as well astumor cells, and it is a powerful proteolytic enzyme with a major role in
the digestion of BM type IV collagen (Devargjan et al. 1992). The role of MMP-2 in
cutaneous SCC is, however, unclear. Using different antibodies than ours, two groups
reported positive MMP-2 staining in keratinocytes of a subset of SCCs (Fundyler et al. 2004;
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O'Grady et al. 2007), but another group only found positive MMP-2 staining in fibroblasts
surrounding SCCs, agreeing with our results (Tsukifuji et al. 1999). These discrepancies may
be dueto, e.g., different antibodies used.

MMP-10 was expressed in the basal epithelial cells of the pushing border in 28/31 KAsand in
the basal epithelium of cancer cell nestsin all SCCs. MMP-10, also known as stromelysin-2,
degrades multiple components of the ECM and is overexpressed in various cancers (Mathew
et al. 2002; Cho et al. 2004). MMP-10 expression was not, however, associated with invasion
and metastasis in cutaneous SCC, but rather reflected inflammation and matrix remodelling
associated with tumor growth (Kerkela et al. 2001). UV light is known to induce the
expression of MMP-10 in cultured keratinocytes (Dazard et al. 2003; Ramos et al. 2004) and
may account for the abundant expression of MMP-10 in KAs. Strong upregulation of MMP-
10 in the epithelium may contribute to excessive degradation of type IV collagen, FN, and
nidogen in the BM zone (Bigter et al. 2007). Thus, elevated MMP-10 expression may play a
role to the aberrant matrix degradation seen in KA patients. Co-stimulation of cultured
keratinocytes with transforming growth factor-f1 (TGF-f1) and epidermal growth factor
(EGF) leading to epithelial-to-mesenchymal-transition (EMT) correlates strongly with
increased expression of MMP-10 (Wilkins-Port and Higgins 2007). In the future, studies on
the interaction of MMP-10 with TGF-B1 or EGF receptor in different tumors and the
mechanism of their putative interaction could be valuable. On the basis of our results, MMP-
10 protein expression was increased in benign KAs as well as malignant SCCs. Since most of
the KAs and all SCCs stained positively for MMP-10, however, it does not appear to be a
significant marker in differentiating KAs from SCCs.

MMP-13 was expressed by basal keratinocytes in 16/31 KAs and 11/15 SCCs. No correlation
of MMP-13 expression with atypical cells in KAs was noted, but a trend existed for more
abundant angiogenesis in MMP-13 positive samples. MMP-13 expression is induced in
forceful tissue remodeling and malignant transformation of keratinocytes (Johansson et al.
1997). No expression of MMP-13, however, is noted in premalignant tumors in human skin
(Airola et al. 1997), or by normal epidermal keratinocytes in culture or in vivo (Johansson et
al. 1997; Vaalamo et al. 1997). Interestingly, this powerful MMP was expressed in half of the
benign KAs studied. Our results suggest that at least a subset of KAs cannot be classified as
benign. We could not find differences in the positive staining of MMP-13 between KAs and
SCCs. Thus, immunostaining for MMP-13 does not assist in distinquishing KAs from well-
differentiated SCCs.

Epithelial expression for MMP-8 was detected in 3/30 KAs, but only MMP-8 positive
neutrophils were seen in 5/15 SCCs. MMP-8 positive neutrophils detected in 14/32 KAs
usually localized in the upper parts of the tumors rather than near the pushing epithelial
border. The staining of MMP-8 in neutrophils was also more abundant in KA samples. All
MMP-8 positive KAs had neovascularization. MMP-8 is mainly expressed by neutrophils, but
relatively low sporadic MMP-8 expression has also been reported in ora SCCs (Moilanen et
al. 2002). The in vivo function and biologic role of MMP-8 is, however, mostly unknown.
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According to our previous report (Impola et al. 2005), MMP-8 is not detected in tumor cells
of well-differentiated SCCs, but mostly in neutrophils. MM P-8 positive staining was observed
in keratinocytes, however, in few of the KA samples. A recent study showed that increased
inflammation in the absense of MMP-8 in KO-mice delayed wound healing. Therefore,
MMP-8 might be necessary for the wound healing process to be properly completed
(Gutiérrez-Ferndndez et al. 2007). MMP-8 was suggested to have protective functions in
cancer due to the processing of inflammatory mediators which contribute to the host
antitumor defence system (Balbin et al. 2003). Another study demonstrated that the TIMP-
resistant form of MMP-8 activity expressed on the surface of human polymorphonuclear
leukocytes is likely to contribute in important ways to its anti-inflammatory and interstitial
collagen-degrading activities (Owen et al. 2004). Indeed, MMP-8 positive neutrophils in KAs
might serve as a protective factor and also function in resolution of KA. We could find
neovascularization in all MMP-8 positive samples, which might reflect the on-going process
of resolution or matrix remodelling where blood supply is needed.

To our knowledge, this is the first study examining LN-5 protein expression in KA. The
number of keratinocytes at the pushing border with cytoplasmic staining for LN-5 in this
study was variable. LN-5 is a magjor adhesion protein of the cutaneous BM and involved in
cell substrate attachment of keratinocytes, which is important for keratinocyte migration
during epidermal wound healing as well asin cancer (Pyke et al. 1994; Sadowski et al. 2005).
Several MMPs are known to process LN-5y2 in vitro (Pirila et al. 2003) and indeed, we could
find a trend for stronger LN-5 expression in MMP-13 positive samples. MMP-10 enhances
cell migration in wound healing and participates in the remodeling of LN-5 in keratinocytes
(Sadmela et al. 2004; Krampert et al. 2004). Interestingly, in our study LN-5 positive
keratinocytes co-localized with MMP-10 positive cells at the pushing border in most samples.
According to our study, however, LN-5 is not valuable in differentiating KA from SCC, since
it iswidely detected in both KA and SCC (Airolaet al. 1997; Kerkeld et al. 2001).

5.12. MMP-26 may contribute to the more aggressive behavior of
SCCs in organ transplant recipients (IV).

In the final study we compared the expression of MMPs in SCCs of the immunosuppressed
(1S) and immunocompetent (IC) patients. Positive staining for MMP-26 was detected in
cancer cells at the invasive front in 17/20 IS and in 8/20 IC SCCs. MMP-26 was detected in
basal keratinocytes in 8/9 BD samples in IS patients, and in 3/9 tumors of the IC patients.
MMP-26 expression was significantly stronger in cancer cells at the invasive front of SCCs
(p= 0.01) and in epithelial cells of BD samples (p=0.04) of IS patients. MMP-26 has been
implicated in keratinocyte migration during cutaneous wound repair and in the early stages of
skin carcinogenesis (Ahokas et al. 2005). It is very tightly regulated as none of the common
cytokines/growth factors are able to induce its expression in keratinocyte culture (Ahokas et
al. 2005). The function of MMP-26 cannot be investigated using mouse models since the
MMP-26 gene is not present in rodents (Uria and Lépez-Otin 2000). Therefore, additional
studies on MMP-26 protein using human tissues are necessary in elucidating its role. These
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results show a significant difference in the MMP-26 staining of malignant keratinocytes
between IS and IC patients. MMP-26 may function to promote inflammation (Li et al. 2004)
and this may influence the more aggressive phenotype of the SCCs in IS patients. In addition,
MMP-26 is known to activate MMP-9, one of the most critical MMPs in the growth of SCC
(Mueller 2006). In cutaneous wounds and well- and moderately differentiated SCCs MMP-26
colocalizes with LN-5 and may be regulated by this matrix protein (Ahokas et al. 2003).
MMP-26 may also be needed to degrade FN or type IV collagen when cancer cells initially
penetrate the cutaneous BM (Ahokas et al. 2003). Another study suggested that estrogen-
induced MMP-26 has a functional role in inflammation through proteolysis of the cytoplasmic
estrogen receptor-f and it aso has anti-tumor properties in several hormone-regulated
malignancies (Savinov et al. 2006). The function and role of MMP-26, however, might be
different in hormone-regulated cancers compared to skin cancer.

When patients were pooled into two groups irrespective of immune status, those using
cyclosporin and those not, MMP-26 expression was significantly more intense in patients
using cyclosporin (p=0.04). This agrees with recent Affymetrix data on a SCC cdll line
demonstrating differential regulation of various MMPs after treatment with cyclosporin A in
culture (Tiu et al. 2006). Neither cyclosporin nor estradiol, however, is able to stimulate
MMP-26 mRNA expression in HaCaT keratinocyte cell cultures (Saarialho-Kere and Skoog,
unpublished data). All, except for two, of our immunosuppressed patients used azathioprine
medication. Thus, when patients were pooled into two groups, those patients using
azathioprine and those not, results were similar with results comparing 1S and IC groups. The
contribution of immunosuppressive medication to malignancy is complex and unclear. Jensen
et al. (1999) noted that kidney transplant recipients using cyclosporin and prednisolone had a
higher risk of NMSC than those taking azathioprine and prednisolone. In groups with the
triple-drug regimens including cyclosporin, azathioprine, and corticosteroids, however, the
skin cancer incidence was the highest (Jensen et al. 1999). Oral steroid use is associated with
an increased risk of SCCs in several studies (Karagas et al. 2001; Patel et al. 2007). A recent
study demonstrated that calcineurin inhibitor monotherapy reduces the risk for SCCs after
kidney transplantation compared with bi or tritherapy (Abou et al. 2007). While the high
incidence of neoplasm and its aggressive progression are thought to be due to the resulting
impairment of the OTRs immune-surveillance system, azathioprine and cyclosporin might
induce the risk of SCC independently of immunosuppression (Hojo et al. 1999; de Graaf et al.
2008). Another study compared the risk of skin cancer with different drug combinations and
concluded that immunosuppression per se is responsible for the increased skin cancer risk and
that this is independent of the agent used (Bouwes Bavinck et al. 1996). Although cyclosporin
did not induce MMP-26 expression in vitro, this would be an interesting aspect to investigate
in vivo in the future, like the regulation of cancer-related MMPs in epithelia cell cultures
treated with immunosuppressive drugs. Affymetrix analysis could be used in comparing
tumor samples of IC and IS patients or cell lines overexpressing MMP-26 and corresponding
vector controls to understand the mechanism of immunesuppression-mediated tumorigenesis.

56



5.13. MMP-9 is induced in macrophages surrounding SCCs of the IC
patients and in stromal neutrophils of the patients using
cyclosporin (V).

We detected MMP-9 in epithelial cells at the pushing border in 8/20 IS and 5/20 IC SCCs,
with no differences between the two groups. In BDs, however, MMP-9 was only detected in a
small number of epithelial cells in one sample of an IS patient. MMP-9 was also produced by
neutrophils and macrophages in several samples. Its production in neutrophils tended to be
more abundant in SCCs of the IS group, athough in macrophages it was expressed more in
the 1C group. The differences, however, were not datistically significant between these
groups. Due to the trends observed, we stained five additional pairs of SCCs and found that
MMP-9 protein was significantly more prevalent in macrophages surrounding SCCs of the IC
group (p=0.02).

These results on the expression of MMP-9 in tumor cells, as well as inflammatory cells of
SCCs, are consistent with previous studies (Chebassier et al. 2002; Impola et al. 2005).
Increased staining for MMP-9 has frequently been associated with cutaneous tumor
progression and metastasis (Coussens et al. 2000; Egeblad and Werb 2002) and was also
detected in SCCs of post-transplant patients by microarray expression profiling (Nindl et al.
2006). A recent study on mice suggests that TNF-a regulates epithelial MMP-9 expression
during tumor promotion and TNF-a stimulated keratinocyte migration occurs via an MM P-9-
dependent pathway (Scott et al. 2004). Interestingly, we found no statistically significant
differences in MMP-9 expression between the IS and IC groups in tumor cells, which agrees
with the results of a previous study done on SCCs of immunosuppressed patients (Chebassier
et al. 2002). Tumor-associated inflammatory cells, neutrophils, macrophages and mast cells,
are the mgjor providers of MMP-9 in a skin carcinogenesis model (Coussens et al. 2000).
MMP-9 participates in the angiogenic switch necessary for tumor development (Bergers et al.
2000). Infiltration of tumor-associated macrophages (TAMS) is a key process during cancer
development in various cancer types (Tlsty and Coussens 2006). Indeed, induction of cervical
carcinoma in K14-HPV 16 mice is markedly reduced when mice are systemically treated with
an amino-bisphosphonate that acts on MM P-9-expressing macrophages (Giraudo et al. 2004).
A recent study suggested that MMP-9 from neutrophils is released as a TIMP-free zymogen
and is readily available for activation, and therefore may serve as a unique proangiogenic
molecule at the sites of physiologic and tumor angiogenesis (Ardi et al. 2007). The studies on
the role of MMP-9 expressing macrophages show contradictory results on its role in tumor
progression (Takeha et al. 1997; Giraudo et al. 2004). In liver cancer MMP-9 expressing
macrophages were associated with better prognosis while cervical carcinogenesis was
markedly suppressed after inactivating MM P-9 expressing macrophages. High stromal MMP-
9 expression correlated with an advanced stage of the tumor and short disease-related survival
in epithelial ovarian cancer (Sillanp&a et al. 2007). Only few reports have investigated the
expression of MMPs in skin cancers of the OTRs (Chebassier et al. 2002; Boyd et al. 2008).
Boyd et al. (2008) reported that MMP-9 was detected more frequently in stromal
macrophages in the BCCs of IC patients agreeing with our results. MMP-9 expressing
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macrophages may have a protective role in IC SCCs that may be related to the role of
macrophages in tumor regression (Takeha et al. 1997).

When immunosuppressed patients were pooled into two groups based on cyclosporin
medication irrespective of the immune status, MM P-9 expression was significantly stronger in
stromal neutrophils of the SCCs in patients using cyclosporin (p=0.04). A trend for more
abundant staining of MMP-9 in neutrophils of the IS group and patients using cyclosporin
may explain the behavior of SCCs in IS patients, since neutrophils promote angiogenesis and
tumor invasion by secreting MMP-9 (Mueller 2006).

When the two patient groups were pooled irrespective of immune status and the
immunostaining was compared for individual MMPs between well-differentiated and
moderately-poorly differentiated SCCs, the only significant difference among MMPs studied
noted was that MMP-9 expression increased in cancer cells of poorly differentiated tumors
(p=0.03). MMP-9 induction is likely to be relevant for tumor development, because mice
lacking MMP-9 show reduced keratinocyte hyperproliferation and a decreased incidence of
invasive tumors during skin carcinogenesis (Coussens et al. 2000).

When the two patient groups were pooled irrespective of immune status and immunostaining
was compared for individual MM Ps between SCC samples with signs of HPV infection and
those without, the only significant difference noted was that MMP-9 expression increased
significantly in HPV-associated SCCs (p=0.03). Although it is widely accepted that certain
high-risk HPV types play a central role in cervical cancer (Walboomers et al. 1999), the role
of HPV in the development of cutaneous SCCs remains controversial. Strong evidence
implicates HPV in the pathogenesis of cutaneous SCCs in immunosuppressed individuals
(Harwood et al. 2000). OTRs also develop large numbers of warts, primarily on sun-exposed
skin, that carry a high risk of subsequent malignant transformation to cutaneous SCCs
(Harwood et al. 2000). The mechanism by which HPV causes oncogenesis in cutaneous SCC
development is unclear. Skin tumors of HPV8 transgenic mice had elevated levels of
proMMP-9 (Akgul et al. 2006), agreeing with our results that staining for MMP-9 was more
intense in SCCs with signs of HPV infection.

5.14. Expression of MMP-1, -7, -8, and -13 does not differ in SCCs of
IS and control patients (IV).

In healthy adult tissues, the levels of MMP-1 are usually low, but it is frequently activated in
SCC of the head and neck as well as various other tumors often associated with poor
prognosis. MMP-1 mRNA expression has been shown in epithelial cells within tumor islands
but also with in the fibrous connective tissue adjacent to the tumor (Pardo and Selman 2005;
Rosenthal and Matrisian 2006). In our study, positive staining for MMP-1 was detected in
keratinocytes at the invasive front in 8/20 IS and in 12/20 IC SCCs and stromal staining for
MMP-1 was detected in fibroblasts and macrophages. No datistical differences occured
between these groups in epithelial or stromal staining. MMP-1 was expressed in epithelial
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cells in 7/18 BD tumors with no statistically significant differences between the groups.
Previous studies are congruent with our results (Pardo and Selman 2005; Rosenthal and
Matrisian 2006). Tsukifuji et al. (1999) suggested that MMP-1 expression could be an early
event in the development of SCC. We could not, however, find differences in the expression
of MMP-1in grade| vsgrade I1-1V SCCs or between BDs and SCCs. Another study from our
group detected more MMP-1 staining in stromal macrophages in the BCCs of
immunocompetent patients (Boyd et al. 2008), but we could not find the same phenomenon in
our SCC samples.

We could detect positive MMP-8 staining in keratinocytes at the invasive front in 6/20 1S and
in 3/20 IC SCCs. A trend existed for stronger MMP-8 expression in the IS SCC group (p=
0.15). The differences, however, were not statistically significant. The production of MMP-8
by stromal neutrophils was detected in four IS SCCsand in one IC SCC mostly in tumors that
also expressed MMP-8 in cancer cells (p=0.15). MMP-8 was detected epithelially in 7/18 BD
samples. Thus, we detected MMP-8 in transformed keratinocytes of SCCs and BD lesions as
well as in stromal neutrophils. The expression of MMP-8 has been detected in tumor cells in
SCCs of the head and neck, but not in cutaneous SCCs (Moilanen et al. 2002; Impola et al.
2005). Our results are mostly congruent with previous findings (Moilanen et al. 2002; Impola
et al. 2005). Inhibiting MMP-8 promotes tumor formation and spreading in mice (Balbin et
al. 2003). MMP-8 degrades type | collagen which is essential for cancer cell spread
(Moilanen et al. 2002). In our study, we could not find significant differences in MMP-8
expression between the IS and I1C groups. Overall, the positive staining for MMP-8 in SCCs
was not strong (6/20 IS and 3/20 IC patients). Positive staining for MMP-8, however, was
already detected in several of the BD samples (7/18). MMP-8 may, indeed, have a protective
function in cancer (Balbin et al. 2003).

High MMP-13 expression level is detected in several invasive tumors often associated with
poor prognosis and suppression of MMP-13 in human SCCs reduces tumor growth (Ala-Aho
et al. 2002). In our study, epithelial staining for MMP-13 was detected in 12/20 IS and in
10/20 1C SCCs agreeing with previous reports, and it was expressed in fibroblasts, endothelial
cells and giant cells in some of the samples. No statistical differences in epithelial or stromal
expression occured between the two groups. MMP-13 was detected in epithelial cells in 8/18
BD specimens with no significant differences between the groups. Surprisingly, the
expression of MMP-13 by tumor cells at the invasive front or by stromal or endothelial cells
in SCC as well as BD was not significantly different in the post-transplant group compared to
the immunocompetent.

MMP-7 was detected in the epithelial keratinocytes in 8/20 1S and in 11/20 IC SCCs and
positive stromal staining for MM P-7 was detected in few macrophages and giant cells in both
IS and IC SCCs agreeing with previous reports. Epithelial expression of MMP-7 was detected
in 7/18 BD samples with no significant differences between the groups. We could not find
any differences in staining for MMP-7 between the IS and IC groups. Overexpression of
MMP-7 is predominantly associated with epithelial malignant cells as well as normal adult
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glandular epithelium (Kerkeld and Saarialho-Kere 2003). It also plays an important role in
ectodomain shedding of cell-surface molecules, such as epidermal growth factor receptor
(EGFR) (Mimori et al. 2004), heparin binding epidermal growth factor (HB-EGF) (Yu and
Woessner 2000), Fasl (Powell et al. 1999) and E-cadherin (Noé et al. 2001) to promote
invasion and angiogenesis. Interestingly, it does not seem to play a significant role in the
pathobiology of NMSC of OTRs.

5.15. Expression of TIMPs-1 and -3 is not altered in tumors of IS
patients

Epithelial staining for TIMP-1 at the invasive front was detected in 5/20 1S and 3/20 1C SCCs,
with no differences between the IS and IC groups. In cutaneous and oral SCCs, TIMP
expression is detected in tumor as well as stromal cells (Kerkeld and Saarialho-Kere 2003).
TIMPs have both pro- and antineoplastic effects during cancer progression (Mannello and
Gazzanelli 2001). In a skin carcinogenesis model of HPV 16 mice overexpressing TIMP-1, it
inhibited activity of gelatinases in tumor stroma but enhanced tumorigenity and did not inhibit
malignant progression or development of metastasis (Rhee et al. 2004). Retinoid acid
decreases the activity of several MMPs in UVB-irradiated skin (Fisher et al. 1996), and is
associated with upregulation of TIMP-1 (Schroen and Brinckerhoff 1996). Recent results
from our group reported that TIMP-1 expression was stronger in macrophages surrounding
BCCs of the immuncompetent patients (Boyd et al. 2008). In our study, however, stromal
staining for TIMP-1 in fibroblasts and macrophages was also detected, but the results did not
differ between the IS and I1C groups.

TIMP-3 was expressed in keratinocytes at the invasive front in 18/20 1S SCCs and 14/20 IC
SCCs with no significant differences between the two groups. TIMP-3 is a multifunctional
protein tightly bound to the ECM. It inhibits TNF-a converting enzyme and induces apoptosis
through the stabilization of TNF-a receptors on the cell surface (Mannello and Gazzanelli
2001). Adenoviral expression of TIMP-3 inhibits SCC tumor growth more potently than p53
adenovirus in mice (Ahonen et al. 2002). Interestingly, using in situ hybridization as
analyzing method previous studies have found TIMP-3 expression in infiltrative tumor cells
of BCCs, but only surrounding stromal cellsin SCCs (Airola et al. 1998; Sutinen et al. 1998).
Because of these abilities TIMP-3 has, we wanted to see if its expression is different in IS
group compared to IC group. No significant differences between the two groups were noted,
however, although it was expressed in keratinocytes at the invasive front in the mgjority of
SCCsin both groups.
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Table4. Summary of MM Psinvestigated in thisthesis.

KA BD SCC MM EMPD

e e e e e
MMP-1 n.d. + + n.d. +
MMP-2 - n.d. - n.d. -
MMP-3 n.d. n.d. n.d. n.d. -
MMP-7 + + + n.d. +
MM P-8 + + + n.d. n.d.
MMP-9 + + + n.d. +
MM P-10 + n.d. + n.d. n.d.
MMP-13 + + + N N
MMP-19 + n.d. + n.d. +
MM P-21 n.d. n.d. n.d. + n.d.
MM P-26 n.d. + + - n.d.
MM P-28 n.d. n.d. n.d. + n.d.

-, No staining; +, positive staining; n.d., not determined; e, epithelial cancer cell saining; KA, keratoacanthoma;
BD, bowen’ s disease; SCC, squamous cell carcinoma; MM, malignant melanoma; EMPD, extramammary
Paget’s disease
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6. CONCLUSION

Cutaneous cancer is the most common human malignant disease and over 50% of all
neoplasms arise in the skin. Lifelong immunosuppression in OTRs increases the risk of
NMSC leading to substantial morbidity and mortality in these patients. MMPs are associated
with many types and stages of cancer in numerous studies. This study aimed to investigate the
roles of MMPs in various benign and malignant skin tumors in vivo and to shed light to the
pathobiology of these lesions.

This is the first study on MMPs in EMPD. We found, among the several MMPs studied,
expression of MMP-7 and -19 in Paget cells in EMPD. Ther presence might predict an
underlying adenocarcinoma in these patients. Since thistumor is very rare, however, stainings
with larger patient cohorts would be valuable in the future. Furthermore, expression of MM P-
7 and -19 supports the theory that Paget cells originate from dermal adenocarcinoma cells of
apocrine duct origin. Unlike in most cancers, upregulation of classical MMPs is not a general
feature in EMPD, which may associate with the rather benign clinical behavior of a subgroup
of EMPD tumors.

This study was the first to compare MMP expression in primary melanomas and their sentinel
nodes. In MM, MMP-21 was upregulated in the early phases of malignant progression, but
disappeared from the more aggressive lesions and nodal micrometastases. In conclusion,
MMP-21 might serve as a protective MMP in MM. A murine MMP-21-knock-out model
would be needed to examine this hypothesis further. MMP-13 was detected in the more
aggressive MMs as well as lymph node metastases agreeing with previous studies. Thus,
MMP-13 might serve as a marker for more aggressive tumors.

Adhesion molecules and the degree of angiogenesis have been previously studied to
differentiate KAs from well-differentiated SCCs. We were the first to compare their protein
profiles and observed that positive staining for MMP-7 and -9 in the epithelial pushing border
should raise a suspicion of malignant conversion to SCC. The expression of MMP-19 and p16
were abundant in KAs, but disappeared from SCCs, suggesting that lack of MMP-19 and pl16
in clinical KAs could indicate that KAs are turning into SCCs. Frequent expression of the
transformation-specific MMP-13 in KAs supports their treatment by excision, as a subgroup
of them are already incomplete SCCs.

Differences in the inflammatory cell profile, adhesion molecules, or the profile of proteases or
their inhibitors might contribute to the exceptionally aggressive behavior of cutaneous SCCs
in OTRs. In SCCs and BDs of the IS patients, positive staining was found significantly more
often for MMP-26 than in those of control patients. MMP-26 expression was also
significantly stronger in patients using cyclosporin. According to previous studies, MMP-26
may function to promote inflammation or to activate MMP-9 and this may influence the more
aggressive phenotype of the SCCs in IS patients. Since MMP-26 is not present in rodents,
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more studies in human tissues are needed to specify its role in cancer progression, particularly
as it is known that the progression sequence for cutaneous cancers may vary between the
human disease and its corresponding mouse models. Expression of MMP-9 was significantly
stronger in macrophages surrounding SCCs of the IC patients being understandable as tumor-
associated macrophages may have a protective role in progression of SCCs possibly through
participation in the host-response reaction provoked by the cancer. On the contrary, when our
two patient groups were pooled irrespective of immune status, MMP-9 staining in neutrophils
of patients using cyclosporin was significantly more abundant. MMP-9 expression in tumor
cells was also upregulated in less differentiated SCCs and in SCCs with histological signs of
HPV infection. MMP-9 expressing neutrophils have been associated with tumor angiogenesis
and progression in previous studies. Thus, they may have an important function in tumor
progression in OTRs using cyclosporin. Surprisingly, classical cancer-related MMPs, such as
MMP-1 and -13, did not differ in their expression between IS and IC groups, nor did we
observe diminished expression of TIMP -1 or -3 in immunosuppressed patients.

MMPs have an important role in tumor progression. Recent studies have revealed, however,
that some of them might also provide protective effects in different stages of cancer
progression or in certain cancer types. The future challenges in MMP research are to increase
our understanding of the relevant in vivo substrates for specific MMPs. The actual role of an
individual MMP in tumor progression and in different cancers is relevant for targeting the
therapies more precisely. Expression of certain MMPs could also be used as prognostic
markers in planning of treatment strategies or adjuvant therapies.
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