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Abstract

Background: Opiod dependence is a chronic severe brain disorder associated with enormous health
and social problems. The relapse back to opioid abuse is very high especially in early abstinence,
but neuropsychological and neurophysiological deficits during opioid abuse or soon after cessation
of opioids are scarcely investigated. Also the structural brain changes and their correlations with the
length of opioid abuse or abuse onset age are not known. In this study the cognitive functions,
neural basis of cognitive dysfunction, and brain structural changes was studied in opioid-dependent
patients and in age and sex matched healthy controls.

Materials and methods: All subjects participating in the study, 23 opioid dependents of whom, 15
were also benzodiazepine and five cannabis co-dependent and 18 healthy age and sex matched
controls went through Structured Clinical Interviews (SCID) to obtain DSM-IV axis | and Il
diagnosis and to exclude psychiatric illness not related to opioid dependence or personality
disorders.

Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) measurements
were done on 21 opioid-dependent individuals on the day of hospitalization for withdrawal therapy.
The neural basis of auditory processing was studied and pre-attentive attention and sensory memory
were investigated.

During the withdrawal 15 opioid-dependent patients participated in neuropsychological tests,
measuring fluid intelligence, attention and working memory, verbal and visual memory, and
executive functions. Fifteen healthy subjects served as controls for the MEG-EEG measurements
and neuropsychological assessment.

The brain magnetic resonance imaging (MRI) was obtained from 17 patients after approximately
two weeks abstinence, and from 17 controls. The areas of different brain structures and the absolute
and relative volumes of cerebrum, cerebral white and gray matter, and cerebrospinal fluid (CSF)
spaces were measured and the Sylvian fissure ratio (SFR) and bifrontal ratio were calculated. Also
correlation between the cerebral measures and neuropsychological performance was done.

Results: MEG-EEG measurements showed that compared to controls the opioid-dependent patients
had delayed mismatch negativity (MMN) response to novel sounds in the EEG and P3am on the
contralateral hemisphere to the stimulated ear in MEG. The equivalent current dipole (ECD) of
N1m response was stronger in patients with benzodiazepine co-dependence than those without
benzodiazepine co-dependence or controls.

In early abstinence the opioid dependents performed poorer than the controls in tests measuring
attention and working memory, executive function and fluid intelligence. Test results of the Culture
Fair Intelligence Test (CFIT), testing fluid intelligence, and Paced Auditory Serial Addition Test
(PASAT), measuring attention and working memory correlated positively with the days of
abstinence.

MRI measurements showed that the relative volume of CSF was significantly larger in opioid
dependents, which could also be seen in visual analysis. Also Sylvian fissures, expressed by SFR
were wider in patients, which correlated negatively with the age of opioid abuse onset. In controls
the relative gray matter volume had a positive correlation with composite cognitive performance,
but this correlation was not found in opioid dependents in early abstinence.

Conclusions: Opioid dependents had wide Sylvian fissures and CSF spaces indicating
frontotemporal atrophy. Dilatation of Sylvian fissures correlated with the abuse onset age. During
early withdrawal cognitive performance of opioid dependents was impaired. While intoxicated the
pre-attentive attention to novel stimulus was delayed and benzodiazepine co-dependence impaired
sound detection. All these changes point to disturbances on frontotemporal areas.
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1. Literaturereview
1.1 Opioids

Opium is prepared from the milky juice of the unripe seed capsules of poppy, Papaver somniferum,
by drying and powdering. Some of the opioids are natural products isolated from opium as
morphine or semisynthetic as heroin which is synthesized from morphine. A wide spectrum of
synthetic opioid receptor ligands, which are produced mainly for treatment of severe pain, also
exists. Methadone and buprenorphine are synthetic opioids used in heroin withdrawal or
maintenance therapy. Buprenorphine came to the market in 1980 and the abuse potential was soon
recognized (Strang 1985). Buprenorphine -naloxone tablets were introduced to avoid the abuse
potential of buprenorphine. Naloxone is an opioid receptor antagonist and it blocks the effects of
opioids. A recent study showed that 80% of drug abusers felt the intravenous (IV) use of
buprenorphine-naloxone was a ‘bad’ experience (Alho et al. 2007), demonstrating the effectiveness
of the combination.

1.2 Opioid abusein Finland

In Finland in the year 2002 approximately 16100-21100 substance abusers existed, in which 4200-
5900 using opioids. In recent years opioid abuse has become more common, 1997 in Finland was
only an estimated 1500-3300 opiod users (STAKES: Huumetilanne Suomessa 2006). Different
from other European countries buprenorphine is the main abused opioid in Finland (EMCDDA
Annual report 2006; Table TDI 26) and it istypically used IV as 79.3 % of drug abusersin Finland
preferred 1V route as method of administration. This is among the highest figures in Europe
(EMCDDA Annual report 2006; Table TDI 17). Benzodiazepine co-dependence is also very
common and probably simultaneous use of buprenorphine and benzodiazepine combined with
alcohol is adding the risk of death (EMCDDA Annual report 2006, http://ar2006.emcdda.europa.eu/
en/page011-en.html#10.3). In the Finnish adult population (15-64 years) approximately 0.5-0.7%
use amphetamine or opioids, but among the youngest age group (15-25) the prevalence of abusersis
0.9-1.3% (STAKES: Huumetilanne Suomessa 2006).

1.3 Opioid dependence
1.3.1 Neurobiology

Opioids are compounds that act by binding to specific opioid receptors and mediate their action
through the opioid system. Opioid receptors are widely spread throughout the neuroaxis. Three
major groups of opioid receptors are mu (), kappa (), and delta (5). All divided into subtypes as
M1, M2, K1, K2, K3, 01, and &2 (Dhawan et al. 1996). Also an additional opioid receptor ORL-1 (orphan
opioid receptor) has been identified (Fukuda et al. 1994). All major groups have endogenous opioid
ligands p—endorfin have a preference for u-receptor, enkephalins for 5-receptors, dynorphins for k-
receptors and nociceptin for ORL-1-receptor (Lord et a. 1977, Pugsley 2002). The abused
substances, morphine and heroin, are full p-receptor agonists and buprenorphine is a partial p-
receptor agonist and k-receptor antagonist (Altman et al. 1996). All opioids induce euphoria, which
is the cause of abuse of these substances.

Opioids have very high addictive potential and the reinforcing affects of these drugs are induced by
activation of the mesocorticolimbic (MCL) dopamine reward pathway (Bassareo et a 1995, Di
Chiara 1995, Di Chiara 2002, Koob 1992, Xi & Stein 2002). This same reward pathway plays a
critical role in addiction of any abused substance or addictive behaviour (Nestler 2005, Wise 1996).



The MCL reward system is usually activated by natural sources of pleasure like eating and sex,
which are lifesaving acts necessary for the survival of species. The effect of abused substances
especially when administered 1V is significantly stronger than the effect of natural reinforces and
chronic use of these compounds decrease sensitivity to natural stimuli.

The rewarding and analgesic effects of opioids are mediated mostly by activation of the p-receptors
(Kieffer 1999), which are predominantly located on GABAergic (gamma amino-butyric acid) cells
in the ventral tegmental area (VTA) and Nucleus accumbens (NAcc) (Haberstock-Debic et al. 2003,
Xi & Stein 2002). Opioid receptor activation generally leads to neuronal inhibition (Xi & Stein
2002) in GABAergic interneurons in the VTA leading to a decrease in GABA release (Solecki et al.
2005), which results in increasing firing of VTA dopaminergic neurons and release of dopamine in
the NAcc, amygdala, and orbitofrontal cortex. Opioid peptides probably also modulate neuronal
response to excitatory glutamatergic neurotransmission in N-methyl d-aspartate (NMDA) receptors
(Giacchino & Henriksen 1998).

Another main target for opioids is the locus ceruleus (LC), where they act as inhibitors, suppressing
the neurons reducing sympathetic tonus (McClung et al. 2005). LC produces noradrenalin, which
stimulates among other functions breathing, modulates blood pressure, wakefulness, and general
alertness. As noradrenalin production is diminished, after administration of opioids respiration is
depressed, blood pressure declines, and one becomes drowsy.

It is known that neural adaptation to chronic opioid exposure as a compensatory homeostatic
mechanism induced by persistently altered metabolic dynamics of many neurotransmitter systems
in brain, causes tolerance and then withdrawal symptoms when the substance is not available. The
brain cells become less responsive to opioid stimulation and higher doses of opioids are needed to
get adesired rewarding effect. Because tolerance rate varies between drug effects with higher doses
arisk of overdose and depression of respiration always exists (Hurle et al. 1982).

After cessation of opioids the p-receptor activity is decreased causing elevation of GABAergic
activity followed by reduced dopamine activity in the mesolimbic system and its projections, but
dynorphin, an endogenous opioid peptide release in the striatum and limbic system is elevated.
These changes are followed by an increased release of noradrenaline in the LC and bed nucleus of
the stria terminalis and also excessive glutamate release in the hippocampus and anterior cingulate
cortex. The medial prefrontal cortex dopamine, noradrenalin, and serotonin contents are markedly
increased (Espegjo et al. 2001). In the hypothalamus and amygdala corticotrophin releasing factor
secretion elevates as a sign of brain stress system activation and cortisol secretion is enhanced
(Bearn et al. 2001, Cami & Farre 2003). All these neurotransmitter changes induce the clinical
withdrawal syndrome; feeling of anhedonia and dysphoria, muscle cramps, diarrhea, palpitation,
changes in blood pressure, and runny eyes. Because part of the withdrawal syndrome is induced by
noradrenergic hyperactivation the withdrawal symptoms can be ameliorated with o,-adrenergic
agonists, lofexidine, or clonidine, which reduces the noradrenergic activation.

Based on animal models it has also been hypothesized that the prefrontal cortex noradrenalin has an
important role in relapse to opioid abuse, since morphine-induced elevations in the prefrontal
cortex noradrenalin release mediate dopamine release in the NAcc (Bossert et a. 2005). The
orbitofrontal cortex and anterior cingulate gyrus, which are both activated during intoxication and
also during craving, are neuroanatomically connected to limbic structures (Goldstein & Volkow
2002). The amygdala, hippocampus, and dorsal striatum are also activated during craving and these
are the areas involved in memory by long-term synaptic potention or depression. It is assumed that
therelapse is a learned behavior that is activated by various stressors (Volkow et a. 2002).
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The most important change in the drug use pattern is when abuse, which is an impulsive behavior,
changes to dependence, which is a compulsive behavior. During impulsive behavior increasing
tension is followed by an act that gives one pleasure and relief (positive reinforcement). Later this
impulsive act is regretted and one feels guilty. During compulsive behavior anxiety and stress is
followed by an act that gives one relief from anxiety (negative reinforcement). This behavior
becomes an obsession that leads to anxiety and a repetitive cycle of compulsive acts (Koob et al.
2004).

The central problem of addiction treatment is not detoxification, but keeping abstinence and
avoiding relapses, since months or years after withdrawal symptoms have vanished some stimuli
might induce craving and a possible return to opioid abuse. The craving can be induced by exposure
to the substance, drug-associated cues (Carter & Tiffany 1999), or stress (Sinha 2001).

1.3.2 Neuropsychological changes

The effects of opioids on neuropsychological functioning have scarcely been studied compared to
the volume of research on effects of stimulants or cannabis. Some evidence from
neuropsychological studies show that patients with opioid dependence have short-term impairments
in attention, concentration, working memory, verbal and visual memory, and executive functions
(Mintzer et al. 2005, Verdejo-Garcia et al. 2004). Even a general intellectual decline has been
shown while intoxicated or very recently detoxified (Rounsaville et al. 1982). Guerra et a. (1987)
showed that after rapid detoxification heroin abusers who had shown a deficit in attention, working
and episodic memory, and verbal fluency during abuse did not differ from controls after one to two
weeks of abstinence. It seems that opioid abuse induces partially transient alterations of cognitions.
On the other hand, after long term abstinence a consistent deficit in executive functioning,
especially in impulse control has been found (Davis et al. 2002, Lee & Pau 2002, Orngtein et al.
2000, Pau et al. 2002).

The prefrontal cortex is involved in cognitive functions such as planning, anticipation and
establishment of goals, organization and motivation of behaviour, defined as executive functions
(Fellows 2007). The functional imaging studies of substance abusers also point to those frontal
pathways related to cognition (Volkow et al. 2002, Y ucel et al. 2007).

1.3.3 Event-related potentials

Only a couple of electroencephalography (EEG) studies exist in which the event-related potentials
(ERP) of opioid dependents have been studied. These studies have evaluated the auditory response
P300, which is a late cognitive auditory response, considered a manifestation of active operations
since it is elicited during target detection tasks.

These studies have shown that after cessation of opioids the P300 response is attenuated for months
(Papageorgiou et al. 2004). In patients with cocaine and opioid dependence the buprenorphine
administration enhanced P300 amplitude back to same level as while intoxicated or in controls
(Kouri et al. 1996). Attenuation of the response is probably due to physiological abnormalities
during the withdrawal.
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1.3.4 Structural brain changes

Only few studies of brain structural changes of opioid dependent patients exist. Previous computed
tomography (CT) studies have revealed significant ventricular enlargement and cortical volume loss
in male opioid-dependent patients (Pezawas et al. 1998, Strang & Gurling 1989). Liu et al. (1998)
showed in a magnetic resonance imaging (MRI) study that polysubstance abusers had significantly
smaller gray matter volumes than controls, particularly in the prefrontal lobe and to a smaller extent
in temporal lobes. Their subjects however, were polysubstance abusers and not al were opioid
dependents. In agreement with these former studies Lyoo et a (2006) reported that opioid
dependent patients have significantly smaller gray matter densities in the frontal and temporal areas
than healthy controls. They used voxel based morphometry (VBM), which can differentiate the
densities of different brain tissue types from MRI data. On the other hand, the other VBM study by
Schlaepfer et al. (2006) showed diminished white matter volumes on the frontal areas, but could not
find any changes in gray matter volumes. Studies also exist that did not find remarkable
morphological changes in the brain of opioid dependents among polysubstance abusing addicts
(Aadly et al. 1993, Amass et al. 1992).

Most of the functional neuroimaging studies have concentrated on patients using substances other
than opioids, such as cocaine. These studies reveal changes in regional blood flow and dopamine
D2-receptor availability. Only a couple of studies have been investigating opioid dependents. In a
Single Positron Emission Computed Tomography (SPECT) study the significant perfusion deficits
were found in the frontal, temporal, and parietal cortices of opioid dependents after a week of
abstinence (Rose et al. 1996). But in another study after four months of abstinence only
nonsignificant decreases in cerebral blood flow in the frontal, parietal, and left temporal cortex were
found (Gerra et a. 1998). A very recent functional magnetic resonance imaging (fMRI) and MRI
spectroscopy study showed that patients using opioids showed a normal task-related activation of
prefrontal cortex, precisely cingulate cortex, but the activation did not correlate with the cognitive
measures as expected. On the other hand, activation of frontal, parietal and cerebellar regions was
increased, probably as a compensatory mechanism. Spectroscopy showed that the neuronal
substrates n-acetyl aspartate and glutamate were decreased in prefrontal cortex indicating neuronal
damage (Y ucel et a. 2007). Opioid dependents also seem to have decreased striatal dopamine D2-
receptor availability when compared to controls during intoxication or naloxone withdrawal (Wang
et a. 1997).

Most of the structural changes seem to be located in the frontal or temporal areas. These areas are
also involved in several cognitive deficits especially executive functioning and memory functions,
associated with drug abuse.

1.4 M agnetoencephalography-electr oencephalography (MEG-EEG)

Positron Emission Tomograhy (PET), SPECT and fMRI studies measure brain metabolism and
hemodynamics. Those operate in the temporal scale limited to seconds, but electromagnetic
methodes such as magnetoencephalography (MEG) and EEG can measure brain function on
millisecond scale, and give valuable information about neuronal abnormalities not detected with
other functional methods. MEG and EEG are closely related methods both investigating the
electrical activity of the brain. EEG is used to measure the electric field pattern and MEG detects
the magnetic field non-invasively outside the head (Haméldinen et al. 1993). Where an electrical
current occurs, also a magnetic field occurs and the primary currents causing the signals measured
are the same. MEG isreference free, but EEG is dependent on the position of reference electrodes.

-12 -



The electrical potentials and magnetic fields produced by neurons are so weak that to be able to
detect them outside the skull there must by coherent activity of thousands of cells. It is believed that
the measured activity is mainly induced by synchronous pyramidal postsynaptic potentials.
Pyramidal cells are predominantly oriented perpendicular to the cortex (Figure 1). MEG can not
detect the radial sources because of its physical basis, but the magnetic fields induced by tangential
primary currents can be measured. Therefore activity in sulcus, where the current is oriented
parallel to the device is better measured with MEG. Superconducting Quantum Interference Device
(SQUID) magnetometers are able to measure these very weak signals outside the head and collect
information of the cerebral activity. MEG locates the sources accurately in contrast to EEG, because
the skull, extracerebral tissues, and cerebrospinal fluid are almost transparent to magnetic field, but
they transmit electricity distorting the EEG signal. On the other hand with EEG it is also possible to
detect the radial sources invisible to MEG. Therefore, a combined MEG and EEG technique can
provide a comprehensive view of brain function with high spatial and temporal accuracy (Virtanen
et al. 1996, Virtanen et al. 1997)
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Figure 1. Electrical currents of pyramidal cells (yellow arrows) induce the magnetic field (green
arrows) measured with MEG. Courtesy of Elekta Neuromag Oy

The spontaneous activity of the brain can be recorded, but it is also possible to investigate the
stimulus-elicited currents, ERPs, and magnetic fields called Event-Related Fields (ERF). The
stimulus has to be repeated many times and the responses must be averaged to be able to detect the
desired response curve among spontaneous activity. The measured electromagnetic activity outside
the head can be explained with numerous different sources in the brain. This so called inverse
problem has many mathematical solutions. With the selection of channels over for example the
auditory cortex one can limit the number of possible electrical sources and can get a good spatial
resolution of brain activity.

These ERPs and ERFs reveal information of the neural basis of perception and cognition providing
an objective and high temporal resolution index of auditory processing in the human brain.

1.4.1 Auditory evoked potentialsand magnetic fields
The sonic air pressure waves are transformed into neural signals in the auditory pathway. First the

external and middle ear filters and amplifies the sound waves and the auditory ossicles transmit the
vibrations to the inner ear and cochlear fluids. The movement of the fluid in the cochlea is
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transformed to the neural signals. The sensory cells adapted to high frequencies are located in the
base and those to low frequencies in the apex of the cochlea. This organized pattern of fibers
remains all the way to auditory cortex. The afferent nervefibers from the inner ear are located in the
brain nerve number VIII; nervus vestibulocochlearis. The nervefibers synapse at ipsilateral cochlear
nucleus. The maor outputs project into the hemisphere contralateral to the stimulated ear. The
second-order neurons ascend into the superior olivary nuclei bilaterally and via latera lemniscus to
the colliculus inferior. From there the pathway continues through the medial geniculate nucleus of
the thalamus to the auditory cortex in the temporal lobe. The primary auditory cortex is located in
the supratemporal cortex in Brodmans' areas 41 and 42.

The auditory ERP in EEG and ERF in MEG are thought to reflect the processing of the heard
information. The cortical responses peak 50-800 ms after stimulus onset and are defined as long-
latency components following the earlier brain stem and subcortical auditory responses (Hari et al.
1980). Long-latency ERP and ERF represent a sum of neural activity from several sources. The
reflections are classified by the polarity (P positive or N negative) and approximate latency of the
peak or succession. The ERF responses have an additional m for magnetic. The first of the long
latency response P1 (P1m) peaks approximately 50 ms after stimulus onset. The most conspicuous
of the auditory responses is N1 (N1m), a negative reflection that peaks at an average of 100 ms after
stimulus onset and reflects the activity of at least three different sources (Naéatanen & Picton 1987).
The main sources are located on the supratemporal auditory cortex immediately posterior to the
primary auditory cortex and two other components in the superior temporal gyrus and around motor
cortex (Hari et al. 1980, Naétanen & Picton 1987). These responses can be found in both auditory
cortices, on contra- or ipsilateral to the stimulated ear (Figure 2). Onthe ipsilateral side the latencies
are usually dlightly longer than on contralateral hemisphere (Pantev et al. 1998).

Figure 2. Equivalent current dipoles (green) of N1m auditory responses shown on auditory cortices
on the contralateral and ipsilateral to the stimulated ear. The magnetic field around the electrical
current dipole is also shown.

1.4.2 Mismatch negativity (MMN)
The electric mismatch negativity MMN (and its magnetic counterpart MMNmM) is a cognitive
response indexing the neural basis of sensory memory and involuntary attention (Kujala et al. 2006,

N&dtanen et al. 1993). It is elicited without subjects’ attention when the train of standard stimulusis
erupted with a deviant stimulus differing from the standard in some respect. It is assumed that the
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standard repetitive stimulus is forming a sensory-memory trace in the auditory cortex to which the
incoming stimulus is compared. If incoming stimulus differs from the standard in some respect for
example by frequency, intensity or duration the change is automatically detected and MMN is
elicited. It has also been shown that abstract regularities in a series of sounds can act as standard
and a mistake in these regular series can elicit MMN. The response is also found when there is a
change in repetitive linguistic stimuli (Jacobsen et a. 2004, Shestakova et al. 2002).

The major MMN generators are located in the auditory cortices on both hemispheres (Alho 1995).
The MMN peak on the right hemisphere is stronger than on the left hemisphere when non-linguistic
sounds are evaluated by auditory system, while language specific response is stronger on left
hemisphere. Frontal MMN generators, on the right hemisphere, also activate a few milliseconds
later than temporal sources (Rinne et al. 2000). The temporal activation might indicate a change
detection which then triggers the frontal component proposed to be involved in an attention shift to
this change (Naéténen et al 1993).

The temporal generators, on the auditory cortex are better detected with MEG, while those
generators are located in sulci and activation is tangentially orientated compared to the skull
surface. The frontal generators are probably located radially since those are better detected with
EEG (Alho et al. 1998). Probably additional parietal (Lavikainen et al. 1994) and subcortical
generators exist (Csepe 1995, Kujala et al. 2006, Molholm et a. 2005).

MMN usually peaks at 150-250 ms after stimulus onset and it is followed by a positive peak
approximately 300 ms after stimulus. This response called P3a (P3am) is believed to be associated
with switching attention towards the change in auditory stimulus (Escera et a. 1998).

P3a response is proposed to have sources located in the temporal and frontal lobes. The source
responsible for the early peak of P3a is located in the superior temporal cortex (Alho et al. 1998)
and the later peak is generated in the prefrontal cortex (Baudenaet al. 1995).

1.4.3 Neurochemical features of event-related potentialsand fields

The neurochemical basis of auditory responses has been investigated with single-dose drug
challenge studies in animals and humans. The generation of N1 response appears to be regulated by
GABAergic inhibition. Different GABA agonists have been shown to attenuate N1 amplitude
(Meador 1995, Rockstroh et al. 1991, Semlitsch et al. 1995, van Leeuwen et al. 1995) and but
apparent counterpart of N1 in monkeys was enhanced by GABA receptor antagonist (Javitt et al.
1996). The role of other receptors is less evident. Haloperidol, which is a dopamine D2-receptor
antagonist, did not have any effect on N1 nor N1m responses in the study of Kéhkonen (Kahkonen
et a. 2001).

Neurochemical mechanisms underlying the MMN response of NMDA receptors are most
systematically studied. Drug challenge studies have shown that NMDA receptor antagonists block
the generation of the MMN response (Javitt et al. 1996, Kreitschmann-Andermahr et al. 2001,
Umbricht et al. 2000, Umbricht et al. 2002). Evidence also show that other transmitters modulate
MMN; serotonergic (Ahveninen et al. 2002, Kéhkénen et al. 2005, Umbricht et al. 2002),
dopaminergic (Kéhkotnen & Ahveninen 2002), cholinergic (Pekkonen et al. 2001, Pekkonen et al.
2005) and GABAergic involvement (Kasai et al. 2002, Nakagome et al. 1998) have been found.
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1.5 Magnetic Resonance Imaging (MRI)

MRI is a very useful tool for studying the brain anatomy and structural changes because of the
ability of tissue differentiation.

The patient is situated in an imaginer with a very strong magnetic field (1.5T in this study)
generated by the MRI equipment. The protons of the body's hydrogen atoms have a positive
electrical charge and these protons are in constant spinning motion.The moving electrical charge is
by definition an electrical current. This electrical current induces a magnetic field making the
protons little bar magnets and these magnets turn into aignment with the imaginers magnetic field,
parallel or antiparallel (longitudinal magnetization). A few more protons always stay in the lower
energy level, this equilibrium state is disturbed by a radiofrequency (RF) energy pulse the machine
emits. The protons with the same frequency as the RF pulse absorb the energy and tilt to the higher
energy level in a phenomenon called resonance. This phenomenon is essential for the imaging
method that is why it is called magnetic resonance imaging. The protons are spinning around the
magnetic field lines like a spin top and this motion is called precession. Another effect this RF pulse
has on protons is that they start to precess in a synchronous matter, in phase instead of randomly
(transversal magnetization). After the RF pulse the energy is released as protons return to their
relaxed position in the magnetic field and lose the precession coherence. The shed energy, as
longitudinal and transversal magnetization returns to their relaxed state is collected with sensors and
a computer calculates the position of each proton that omits energy. The image is formed from this
collected information of proton densities in different sites of the viewed field. The different
sequences are induced with different RF pulse repetition time (TR) and signal collecting time (TE).
It is possible to get different kinds of images; proton density, T1 and T2 weighted images, or
images where fluid is attenuated. (Bushberg et al. 2002)

From MRI images it is possible to measure the areas of structures and calculate indeces of different
measures. Voxel (volume element) isaterm for a piece of matter where the information is collected
and a density of the pixel (picture element) is calculated. The sophisticated computer programs can
differentiate brain tissue types from the data. VBM is a technique that allows the determining of
different tissue types voxel by voxel and determines the volumes of each tissue compartment.
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2. Aims of the study

The general aim was to investigate the brain structural and functional changes in a group of long
term opioid dependent patients.

The purposes of the present study were to find:

1. If structural brain changes in long-term opioid dependents exist compared to heathy
controls (1,1V).

2. How opioid dependents perform in neuropsychological tests during early opioid withdrawal
(1,1v).

3. Arethere changes in pre-attentive auditory processing in opioid dependents (111).

4. If any correlation appears between structural brain changes and neuropsychological tests
(V).

5. How the age of abuse onset and the length of abuse history affects these structural and
functional changes (I-1V).
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3. Materials and methods
3.1 Subjects (Studies1-1V)

Twenty three opioid-dependent patients (Table 1) and 18 healthy controls with no history of drug
abuse were attended this study. Opioid dependents were admitted to an in-patient drug
detoxification unit in the Helsinki University Central Hospital for withdrawal and evaluation for
the methadone maintenance program. The criteria for the methadone maintenance program were a
minimum age of 20 years, four years of documented opioid dependence, and the failure of
institutional or long-lasting outpatient withdrawal therapy, which also served as criteria for
inclusion in the study. Exclusion criteria for methadone maintenance therapy were uncontrolled
polysubstance abuse, physical or psychiatric illness that made the routine of therapy impossible,
and alcohol dependence. In this study, additional exclusion criteria for both patients and controls
were major head trauma, chronic neurological illness or ongoing medication for neurological
symptoms, and metallic foreign objects in the body.

All patients had severe long-term opioid dependence (Table 1). They had used opioids from 5 to 26
years (mean 12+8), mainly 1V. The self reported daily doses of different opioids were 0.05-1.5 g for
street heroin, 2-32 mg for buprenorphine and 250-750 mg for ethyl morphine. Fifteen patients (5
women, mean age 31.5 + 6.0) also abused benzodiazepines daily (approximate equivalent dose to
diazepam 38 + 21 mg according to Ashton table (Ashton 2005)). Before the study patients gave
urine samples twice a week from four to six weeks to exclude other illicit substance abuse than
opioids or benzodiazepines.

Patients were in good physica health as determined by a physical examination, laboratory
evaluation including a complete blood count, electrolytes, glucose, renal, and thyroid analyses. HIV
antibody test was negative in all patients tested (one patient refused). All except two of the patients
had positive hepatitis C antibody analysis. Hepatic enzymes were mildly elevated in 7 patients and
moderately in 1 patient.

The Structured Diagnostic Interviews (SCID | and SCID 11, American psychiatric Association,
1994) (First et al. 19944, First et al. 1994b) were done on all patients while they were hospitalized
by trained psychiatrists to obtain the DSM-1V (Diagnostic and Statistical Manual of mental
disorders) diagnosis of axes | and |1. Sixteen patients fulfilled the criteria of DSM-IV for antisocial
personality disorder and 13 had multiple diagnoses on SCID 1I. (Table 1)

Controls were healthy volunteers from hospital staff and their friends with no experience of illicit
drugs. All had used alcohol in social occasions, but did not meet the criteria of abuse or dependence
on alcohol. Patients and controls were age and sex matched and in the subgroup attending the
neuropsychological tests verbal intelligence also matched. The control subjects had no DSM-1V
axis| or Il diagnosis in the SCID evaluation.

The simultaneous MEG-EEG measurement carried out to 21 patients while intoxicated (111) and 15
healthy controls. Neuropsychological tests were done to 15 patients (11, 1V) and 15 age, gender and
verbal intelligence matched controls. Brain MRI was obtained from 17 patients during the
withdrawal therapy in the clinic (I, 1V) and 17 controls. Written informed consent was obtained
fromall subjects and the study had the approval of the local ethical committee.
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age | documented axis| diagnoses axis || diagnoses MRI MEG/ Neuro-
opioid abuse EEG psychol ogy
(years)
1 21 4 Opioid dependence antisocial (X) X X
2 24 7 Opioid and benzodiazepine borderline X
dependence EEG only
3 25 8 Opioid and benzodiazepine antisocial, obsessive-compulsive | x X X
dependence
4 25 8 Opioid and benzodiazepine antisocial, obsessive-compulsive | x X
dependence and borderline
5 26 7 Opioid and benzodiazepine antisocial X X X
dependence
6 28 8 Opioid and benzodiazepine antisocial X X X
dependence
7 29 9 Opioid, benzodiazepine and antisocial, borderline X
cannabi s dependence
8 29 12 Opioid, benzodiazepine and antisocial, obsessive- X X X
cannabis dependence compulsive, (features of
borderline and dependent) EEG Only
9 30 7 Opioid and benzodiazepine antisocial X
dependence
10 30 10 Opioid and benzodiazepine antisocial, paranoid, borderline, X X X
dependence schizotypal, narcissstic and
obsessive-compulsive (features
of passive-aggressive and
depressive)
11 32 5 Opioid dependence antisocial, obsessive- X X
amphetamine and compulsive, paranoid (features
benzodiazepin abuse of borderline)
12 33 12 Opioid dependence antisocial, obsessive-compulsive | x X X
13 33 10 Opioid and benzodiazepine obsessive-compulsive (features X X X
dependence of narcissistic and antisocial)
amphetamine and cannabis
abuse
14 34 9 Opioid, cannabisand antisocial, passve-aggressive, X X X
amphetamine dependence paranoid
15 35 5 Opioid and cannabis antisocial, borderline (featuresof | x X X
dependence obsessive-compulsive, passve-
aggressive and paranoid)
16 35 20 Opioid and benzodiazepine antisocial, paranoid (features of X X X
dependence depressive, schizotypal and
borderline)
17 36 6 Opioid dependence antisocial, paranoid, schizoid, X X X
amphetamine abuse borderline, narcissistic,
dependent, obsessive-
compulsive, passve-aggressive,
depressve
18 36 8 Opioid and benzodiazepine paranoid, borderline, obsessive- X X
dependence compulsive
alcohol abuse
19 38 20 Opioid and benzodiazepine antisocial X
dependence
20 41 26 Opioid and benzodiazepine obsessive-compulsive, not X X
dependence otherwise specified (features of
amphetamine abuse passive-aggressive, antisocial,
borderline and
21 43 26 Opioid and benzodiazepine not otherwise specified (features | x X
dependence of antisocial, borderline and EEG onIy
narciss ic)
22 44 25 Opioid and cannabis antisocial, obsessive- X
dependence compulsive, narcissstic
(features of schizotypal)
23 46 10 Opioid and cannabis antisocial, obsessive- X X X
dependence compulsive, avoidant, depressive

Table 1. The demographic data of patients in the study. DSM-1V axis | and Il diagnoses obtained
with structural clinical interviews. Attendance of each patient to the measurements is marked.
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3.2 Neuropsychological tests (Studies|l and 1V)

The battery of cognitive tests including the tests measuring working memory, episodic memory,
executive function, verbal and visual learning and memory, and fluid intelligence were used.

Working memory performance was tested with the Digit Span subtest from the Wechsler Memory
Scale-Revised (WSM-R) and a computerized version of Paced Auditory Serial Addition task
(PASAT) from the FORAMENRehab softwear package. During the Digit Span Test one has to
repeat the series of numbers in a same order as heard. Numbers are given one per second. This test
measures verbal working memory storage. During the PASAT test one is presented a number
between 1 and 9 every 1.6 seconds and they have to add the two previous numbers heard and say
out loud the result. The PASAT test performance requires continuous storage of incoming
numbers, rapid arithmetic processing, and executive control of interference of heard and calculated
numbers. This requires complex working memory function.

The immediate verbal learning was studied with the Rey Auditory Verbal Learning Test (RAVLT)
in which three learning trials of 15 presented words were given to all participants. The sum of the
results of the three tries was calculated to form aresult for the test. Visual memory was measured
by the Benton Visual Retention test. In thistest 10 drawings, one at the time, are shown and these
designs have to be reproduced onto plain paper from memory as exactly as possible.

Executive function was measured with a modified Stroop task. In the first part of this test there
were 50 words, names of different colors written with black ink, and in the second part the same
words were written with different ink colors. The color of the ink was different from the written
word. The result was the time of naming the ink colours in the second part subtracted with the
reading time of the first list. Inhibition of not reading the words in the second part and the time of
naming the colors affect the test result. The Ruff Figural Fluency (RFFT) test, which forms from
two parts of unique designs and preservative errors, measures the executive function, planning and
fluency of action. The squares with five dots in each are presented and one has to draw as many
different figures as possible drawn with connecting at least two dots with straight lines in each
square.

Culture Fair Intelligence Test (CHT), includes a group of visuo-spatial reasoning tasks that are
sensitive to fluid intelligence deficit due to various origins. The performance of the test reflects
fluid and general intelligence needed in highly demanding novel problem solving situations.

The composite cognitive function was calculated as a sum of the z-score of all test results. Only
one score per tests was used if the test yielded more than one score. The result of each test wasfirst
standardized to z-scores which were calculated from the individual’s test score by subtracting the
group’s mean score and dividing the difference by the group’s standard deviation. These z scores
were summed up to obtain person’s composite cognitive function.

3.3 Combined MEG-EEG (Study 111)

3.3.1 Measurements

MEG and EEG recordings were carried out a 306-channel MEG, consisting of 204 planar
gradiometers and 102 magnetometers (Vectorview, Neuromag TM) and a 60-channel EEG. The

position of the subjects” head relative to the recording instrument was determined by measuring
the magnetic fields produced by marker coils attached to the scalp. The locations of these coils in
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relation to cardinal points on the head (nasion, left and right pre-auricular points) were determined
before the experiment using an Isotrak 3D-digitizer (Polhemus, Colchester, VT, U.S.A.). During
the measurement the subject sat in a comfortable chair in a magnetically and electrically shielded
room (Euroshield, Finland) and watched a silent video. Auditory stimulus was presented
monaurally to the left ear through a plastic tube and an earpiece and the subject was instructed to
ignore the tones. The stimulus block consisted of the standard (80%) stimulus (700 Hz with 60 ms
duration, including 5 ms rise and fall times) randomly embedded with infrequent (6.6% for each
type) deviant tones differing in frequency (larger deviant 400 Hz and smaller deviant 600 Hz) and
novel sounds (10 different complex sound bursts in random order). The interstimulus interval was
599 ms. Each two-channel sensor unit measured two independent magnetic field gradient
components B/fx and B/1y, with the z-axis being normal to the local helmet surface. The
recording band-pass was 0.03-172 Hz and the sampling rate was 600 Hz. Epoch was averaged
from 150 ms prestimulus until 600 ms poststimulus.

AEPs were recorded with an electrode cap (Virtanen et al. 1996) and an amplifier (Virtanen et al.
1997) specifically designed and built for simultaneous EEG and MEG measurements. The nose
electrode was used as a reference. Vertical and horizontal electro-oculograms (EOG) were
recorded. First responses in the train, and all the epochs coinciding with EOG or MEG changes
exceeding 150 nV or 3000 fT/cm, respectively, were omitted from averaging. At least 100
artefact-free standard and deviant responses were recorded and averaged.

3.3.2 Analysisof MEG-EEG

Digital band-pass filtering was performed off-line at 2-40 Hz for P1/P1m, at 1-30 Hz for NI/N1m,
a 2-15 Hz for MMN/MMNm and P3a/P3am. The analysis period was 500 ms. Distinct ERP/ERF
peaks were obtained from latency ranges of 30-70 ms for P1/P1m, 60-150 ms for N1I/N1m, 100-
250 for MMN/MMNmM and 170-500 ms for P3a/P3am. The responses were judged significant
when they were two standard deviations (SD) larger than the pre-stimulus noise.

MEG analysis was done with a source modelling program with software provided by Neuromag
Ltd. (Hamalédinen et al. 1993). The dipole modelling was performed using a subset of 64 channels
separately over each auditory cortex using one's own brain MRI image if available. In the four
cases MRI images were not obtained the sphere model was used.

For EEG analysis, the peak latencies of P1 and N1 were determined from standard responses at the
channel Cz. The peak latencies of the MMN and P3a were determined from subtraction curves at
the electrode sites Fz or FCz depending on which channel a given deflection was larger.
Subtraction curves were calculated by subtracting the standard AEP from the deviant. The P1, N1,
MMN, and P3a amplitudes were determined from the averaged amplitude of 15 channels in groups
of three (prefrontal; AF1, AFz, AR2, frontal; F1, Fz, F2, frontocentral; FC1, FCz, FC2, central; C1,
Cz, C2, centroparietal; CP1, CPz, and CP2).

3.4 Brain MRI (Studies| and V)

3.4.11maging

Brain MRIs were acquired with a 1.5 T Siemens Magnetom imager. After scout images, axia and
corona T2- and proton density weighted images with a spin echo sequence, 3000/14-85 (TR/TE)

with a dice thickness of 5.0 mm, axial fluid attenuated inversion recovery (FLAIR) 9999/105
(TR/TE) with a dlice thickness of 5.0 mm, and a three dimensional (3D) magnetization-prepared
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rapid acquisition gradient echo (MPRAGE 9.7/4.0 (TR/TE) with a slice thickness of 1mm were
obtained. The 3D-series were used in MEG analysis to localize the equivalent current dipoles
(ECD).

3.4.2 Analysisof MRI

The visual analysis was done by two radiologists (RK and TA) to detect the anatomical pathology
of the brain or changes in gray and white matter signal intensity. Sizes of ventricles, cortical
cerebrospinal fluid spaces and Sylvian fissures were evaluated by using a series of standard FLAIR
images demonstrating the upper limits of each of the three lower grading categories, the fourth
category being the widest. (Figures 3 and 4)

Figure 3. Standard images for grading the size of lateral ventricles. Two axial slices are
snhown for each category. The images show the upper limits of each grade. Grade 1
showing narrow lateral ventricles;, grade 2 shows dlightly enlarged ventricles; grade 3
shows moderately enlarged ventricles. Every image showing larger ventricles than in grade
three was graded four indicating severely enlarged lateral ventricles. (1)
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Figure 4. Standard images used grading Sylvian fissures. Axial slices through Sylvian fissures
show maximal sizes of the spaces in grades 1-3. Grade four is not shown. Grade 1 showing
narrow Sylvian fissures; grade 2 shows dlightly enlarged temporal parts of Sylvian fissures;
grade 3 shows enlarged frontal and temporal parts of Sylvian fissures. Every image which
showed larger Sylvian fissures than in grade three was graded four. (1)

The measurements of different brain areas were done in the slice of the 3D-series were the
agueduct was best seen defined as the midsagittal image. The areas of the midline internal skull
surface (MISS), vermis and corpus callosum were obtained (Laissy et al. 1993). FLAIR images
were used while measuring the Sylvian fissure ratio (SFR) defined as the average width of both
Sylvian fissures divided by the transpineal temporal brain width (van Zagten et al. 1999). Bifrontal
ratio was measured at the level of third ventricle from T2 axial images. Bifrontal ratio was defined
as a distance between the most lateral tips of the anterior horns of lateral ventricles divided by the
brain width in the same line and level (Aylward et a. 1991). (Figure 5)
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Figure 5. The Sylvian fissure ratio was calculated as an average width of the
Sylvian fissures divided by transpineal width of the brain. The bifrontal ratio was
calculated as a measure between the tips of the frontal horns divided by the brain
width at the same level. (1)

Volumetric analysis with VBM was done using the SPM2 software package and Matlab program
(http://www.fil.ion.ucl.ac.uk/spm). The total absolute volumes of CSF, white matter, and gray
matter were computed by explicitly segmenting these structures in the MPRAGE images using a
fully automated image-processing procedure. First, a digital brain atlas, containing information
about the expected location of the major tissue types, was aligned with each image under study
(Evans et a. 1993). To thisend, anonlinear registration technique was employed that minimizes the
residual squared difference between an image under study and a template associated with the atlas,
while simultaneously maximizing the smoothness of the deformations (Ashburner & Friston 1999,
Ashburner & Friston 2000). After alignment, the atlas information was fed into an automated
segmentation algorithm that iteratively estimates the tissue classification in each voxel while
simultaneously training a Gaussian mixture model classifier and correcting for MR intensity
inhomogeneity artifacts (Van Leemput et a. 1999).

The relative volume percentages were calculated by normalizing the absolute volumes of white and
gray matter and CSF with the total absolute cerebral volume.

3.5 Statistical analysis

The SPSS satistical PC program version 11.0 (I, 11) and version 12.0 (111, 1V) were used.

In MRI studies the patients and controls were compared with the Mann-Whitney U test (1, 1V).

The one-way analysis of variance (ANOVA) test was used to compare the raw scores of cognitive
tests(I1, 1V).

The statistics in the MEG-EEG studies were done with one-way and repeated-measures of ANOV A
(111). In the MEG-EEG measures for one-way ANOV A group membership (patients or subgroups of
opioid-dependents with and without benzodiazepine co-dependence and healthy controls) was
entered as a factor and latencies, amplitudes (EEG), dipole strengths (MEG) or locations (MEG)
were entered as dependents. For repeated-measures ANOV A between group factors were group
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membership and within subject variables were electrode location (prefrontal, frontal, frontocentral,
central, centroparietal) in EEG or hemisphere in MEG measurement analysis. Differences between
the subgroups were calculated with the Fisher’'s LSD test. Statistical significance was set at 0.05
(two-tailed).

Correlation between different measurements and age of abuse onset, years of opioid abuse and days
of abstinence were calculated with the Pearson correlation coefficient. (1V)

4. Results
4.1 Cognitive performance (Studies |l and 1V)

In neuropsychological tests the opioid-dependent patients had inferior performance compared to
healthy controls in working memory tests (PASAT) (F(1,28)=12.0, p=0.002), executive function
(RFFT unique designs) (F(1,28)=5.22, p=0.03) and fluid intelligence (CFIT) tests (F(1,27)=7.97,
p=0.009) (Table 2) A positive correlation emerged between PASAT and CFIT test results and the
days of abstinence (r?=0.39, r=0.63, p=0.01 and r’=0.43 r=0.65, p=0.009) showing better test results
with longer abstinence. (Figures 6 and 7) None of the results of neuropsychological tests correlated
with the years of abuse or the age of abuse onset. (11)

The composite cognitive function evaluated with the z-score sum was inferior (p=0.005) in opioid
dependents (mean -0.25, SD 0.43) compared to controls (mean 0.25, SD 0.36). In controls the z-
score sum correlated positively with gray matter volume (r?=0.35, r=0.59, p=0.032), but this
correlation was not found in opioid-dependents in early abstinence. (1V) (Table 3)

Cognitive tests Patients Controls

Fluid intelligence Mean (SD) Mean(SD) F df p
CHT 30.4 (4.2) 34.0 (3.8) 7.97 1,27 0.009
Attention, working memory

PASAT 36.1 (10.1) 47.5 (7.8) 12.00 1,28 0.002
WMS-R Digit Span 14.9 (2.7) 15.4 (3.8) 015 128 ns
Executive funtion

Stroop, modified interference time 25.1 (8.8) 245(120) 030 1,28 ns
RFFT, unique designs 68.1 (21.2) 86.3(22.6) 522 1,28 0.03
RFFT, perseverative errors 3.4 (29) 2.8 (2.6) 034 128 ns
Memory

RAVLT, learning trials 1-3 28.9 (6.0) 32.3 (6.1) 264 128 ns
RAVLT, delayed recall 9.0 (2.8) 10.7 (2.8) 265 128 ns
WMS-R Logical memory, immediate 22.3 (7.3) 25.1 (6.6) 0.72 128 ns
WMS-R Logical memory, delayed recall 22.3(7.3) 25.1 (6.6) 120 128 ns
BVRT number of right figures 6.8 (1.6) 7.4 (1.3) 0.88 128 ns

Table 2. The results of the neuropsychological tests (ANOVA)

CFIT=Culture Fair Intelligence Test, PASAT=Paced Auditory Serial Addition Task, WMS-R
=Wechder Memory Scale-Revised, RFFT=Ruff Figural Fluency Test, RAVLT=Rey Auditory
Verbal Learning, and BVRT=Benton Visual Retention Test.
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Correlations Composite Composite abuse onset age duration of
cognitive function cognitive function opioid
(z-score sum) (z-score sum) dependence
controls patients patients patients

Gray matter p=0.032r=0.594 ns ns ns

White matter ns ns ns ns

Cerebrospinal fluid  ns ns ns ns

spaces

Sylvian fissureratio ns ns p=0.036 r=-0.585 ns

Table 3 Correlations between cognitive performance, cerebral measurements and opioid abuse
history.
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35 -
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The CFIT score
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4 6 8 10 12 14 16
Days of withdrawal

Figure 6. A positive correlation was found between the days of abstinence and the test score of the
fluid intelligence test CFIT. (1)
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Figure 7. PASAT test results measuring
60 - attention and complex working memory
correlated positively with the duration of
withdrawal. (I1)
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42 MEG (Study I11)

While intoxicated the repeated measures ANOV A revealed a significant main effect on N1m dipole
strength (F(2,26)= 5.9, p=0.008). The post hoc analysis showed that this effect was due to
significantly stronger source activity in opioid-dependent patients with benzodiazepine co-
dependence than in opioid-dependent patients without benzodiazepine co-dependence (p=0.005) or
in controls (p=0.013). N1m group X hemisphere interactions were not significant.

MEG contralateral hemisphere ipsilateral hemisphere

Source all patients  patients withBZ ~ patients controls all patients  patients with BZ  patients controls
activity dependence without BZ dependence without BZ

(nAm) dependence dependence

P1im 12.3(7.6) 13.2(8.4) 9.7 (4.0) 95(5.2) 7.8(4.1) 9.2(3.8) 4.7(3.) 9.9(6.1)
N1m 20.3(10.3)  23.3(10.8) 145 (6.6) 159(79) 133(82) 16.9(7.4)¢* 55(1.9) 10.1(8.6)
MMN

larger 26.7 (19.5)  29.8(20.9) 19.9 (15.6) 355(24.1) 195(13.1) 21.8(14.4) 125 (4.6) 18.2(8.2)
deviant

MMN

smaller 20.1(10.9)  20.7 (10.3) 17.1(18.4) 31.3(30.2) 195(13.1) 20.9(14.8) 147 (2.) 15.3(7.2)
deviant

MMN

novel 344155 37.3(154) 22.8(10.8) 57.4(48.8) 21.2(11.8) 22.1(13.9) 19.6 (7.7) 24.8 (13.1)
P3a 20.6 (16.3)  24.6 (17.8) 10.1(1.3) 37.7(36.7) 22.7(13.8) 25.3(13.6) 14.6 (13.7) 20.8 (11.0)

Table 4. The mean strength of equivalent current dipoles of auditory responses in both hemispheres
in patients and controls. Also the results of patient subgroups with or without benzodiazepine co-
dependence are shown. BZ benzodiazepine

*Patients with benzodiazepine co-dependence compared to patients without benzodiazepine co-
dependence p=0.005 and controls p=0.013. (Repeated measures ANOV A)
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stimulus

-

A patient with benzodiazepine codependence = i
B patient without benzodiazepine codependence
Cecontol me——————

Figure 8. The N1m response in opioid dependents (A) with benzodiazepine co-
dependence, (B) without benzodiazepine co-dependence, and (C) healthy control
shown as response curves and equivalent current dipolesin ones MRI image. (111)

Latencies of the P3am on the contralateral hemisphere to the stimulated ear were longer
in patients with opioid dependence compared to healthy controls (one-way ANOVA)
F(1,23) = 4.3, p=0.049), but no differences were observed in latencies of P1m, N1m and
MMNm (p>0.05). (Table 5) The strengths or locations of the PLm, N1m, MMNm and
P3am ECD did not differ significantly between patients and healthy controls (p>0.05)
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MEG
latency ms contralateral ipsilateral
mean (SD) hemisphere hemisphere

patients controls patients controls
Pl 46.9 (11.1) 45.6 (14.3) 63.8 (8.0) 62.5 (14.8)
N1 88.6 (18.0) 88.9 (17.1) 109.4 (17.7)  117.2(27.1)
MMN (devl) 148.0 (26.3) 139.7 (19.9) 153.0 (23.7) 160.1 (18.3)
MMN (dev?)  151.6 (245) 157.1(24.0) 159.8(26.8)  163.9 (17.0)
MMN (novel) 136.0(19.6) 1251 (14.1) 151.1(3L7) 140.0 (14.4)
P3a 2234 (42,00 1985(10.1)° 230.0(24.6) 212.0(19.0)

Table 5. Latencies of auditory responses in MEG measurement.
*£0.05, one-way ANOV A

4.3 EEG (Study I11)

Latency of MMN to novel sound (F(1,34)=4.9, p=0.033, one-way ANOV A) was longer in patients
than in controls, but no differences were observed in P1, N1, MMN or P3alatencies (p>0.05). No
statistically significant changes emerged in P1, N1, MMN and P3a amplitudes (p>0.05). (Table 6

and Figure 7)

EEG

Latency ms patients controls Table 6. Latencies of auditory responses
mean (sd) in EEG.

P1 51.9(14.2) 47.3(9.9) *£0.05, one-way ANOVA

N1 98.8(12.6) 91.2(12.7)

MMN to largedeviant 147.9(29.5) 146.8(24.1)

MMN to small deviant 152.9 (33.0) 166.8 (28.6)

MMN to novel sound  159.0 (45.8) 130.0 (22.2)

P3a 260.4 (55.4) 235.9 (23.9)
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Figure 9. The grand average of MMN to novel sound EEG of pateints and controls. (111)
4.4 Brain imaging (Studies| and 1V)

No signs of ischemic changes appeared in the visual analysis. The gray and white matter intensities
were otherwise normal, but one patient had a small post-traumatic subcortical lesion on the parietal
cortex. Visual analysis with a standard set of reference images showed that Sylvian fissures and
lateral ventricles were wider in patients than controls (p=0.008 and p=0.04 respectively, Mann-
Whitney U-test) (Table 7) The calculated SFR and the bifrontal ratio were larger in patients
(p=0.005 and p=0.013, respectively) (1) (Table 8) A significant negative correlation emerged
between SFR and the age opioid abuse had started; the younger the substance abuse had started the
wider the Sylvian fissures were (p=0.017, r=-0.569, n=17). (Table 3) Also some of the opioid-
dependents had smaller vermian areas than controls, even though the difference between the groups
was not significant (p=0.109). Only one control, but 5 out of 17 patients had area of vermis -1 SD
or below. The measured area of MISS and of corpus callosum did not differ between the groups
(p=0.125 and p=0.277, respectively) (1).

The volumetric analysis carried out with 16 patients (excluding one patient with subcortical
posttraumatic lesion) and 16 controls showed that the total cerebral volume was smaller in patients
p=0.043. The relative CSF volume normalized with the total cerebral volume was significantly
larger in patients (p=0.021). (Table 8)

In controls the composite cognitive function (z-score sum) correlated positively with gray matter
volume (r*=0.35, r=0.594, p=0.032), but this correlation was not found in opioid-dependents in
early abstinence. (p=0.017, r=-0.569). (Table 3) This correlation was calculated in those 13 patients
who had both neuropsychological tests and MRI volumetric analysis done.
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Visual analysis Gradel | Grade?2 | Grade3 | Grade4 | p
Size of the Sylvian fissures | patients | 4 10 2 1

controls | 12 4 1 - 0.008
Size of the ventricles patients | 7 4 6 -

controls | 12 4 1 - 0.04
Size of the cortical sulci patients | 3 8 5 1

controls | 3 12 2 - 0.26

Table 7. The size of the cerebrospinal fluid spaces graded with standard images.
(Mann-Whitney U test)

patients controls
Measurements (n=17) mean (SD) mean (SD) p
Vermis (cnr) 12.2 (1.30) 13.0 (1.47) 0.1
MISS (cnr) 156 (10.92) 162 (11.14) 0.1
Corpus calosum (cm?) 7.12 (0.79) 7.47 (1.00) 0.3
Distance between tips of the
lateral ventricle anterior horns(cm) 3.5 (0.18) 3.2(0.35) 0.01
Width of the frontal brain (cm) 10.9 (0.41) 10.8 (0.41) 0.7
Bifrontal ratio 0.317 (0.015) 0.296 (0.030) 0.01
Average of the width of the
Sylvian fissures (cm) 0.315 (0.023) 0.174 (0.003) 0.005
Width of the temporal brain (cm) 13.2 (0.48) 13.2 (0.53) 0.8
Sylvian fissureratio 0.024 (0.011) 0.013 (0.004) 0.005
Volumes (n=16)
tota volume (ml) 1360 (0.116) 1436 (0.113) 0.04
Gray matter
relative to total cerebral volume 0.537 (0.009) 0.541 (0.007) 0.34
White matter
relative to total cerebral volume 0.320 (0.006) 0.327 (0.011) 0.067
Cerebrospinal fluid spaces
relative to total cerebral volume 0.142 (0.013) 0.132 (0.013) 0.021

Table 8. Cerebral measurements in patients and controls.
MISS=midsagittal interna skull surface. (Mann-Whitney U test)

4.5 Correlations between brain structure, opioid abuse and neuropsychological performance
(Studiesl and V)

SFR had a negative correlation with the opioid abuse onset age. The Sylvian Fissures were wider in
the individuals who started the opioid abuse younger (r?=0.32, r=-0.569., p=0.017, n=17). (Figure
10) Correlations between age of the subject or the length of the opioid abuse history and SFR were
not found. The CFIT and PASAT test results correlated with the days of abstinence. In opioid-
dependents in early abstinence the composite cognitive function (z-score sum) did not correlate
with an abuse history or any cerebral measurements but in controls the positive correlation between
gray matter volume and composite cognitive function was found (r?=0.35, r=0.594, p=0.032).
(Table 3) Electromagnetic measures did not correlate with opioid abuse history, cerebral
measurements, or neuropsychological performance.
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Figure 10. Correlation between the age of opioid abuse onset and the Sylvian fissureratio. (1V)
5. Discussion

We studied the neurocognitive performance and auditory evoked potentials and magnetic fields as
well as the structural brain changes in opioid dependents. The auditory responses MMN and P3am
were delayed compared to controls indicating changes in neuronal circuits involved in pre-attentive
auditory processing and involuntary attention. The benzodiazepine co-dependence seemed to affect
the N1 response, which was enhanced in patients with opioid and benzodiazepine dependence. In
early withdrawal the composite cognitive performance was debilitated in opioid dependents
compared to controls. Complex working memory and fluid intelligence were particularly impaired
and the duration of abstinence had a positive correlation with the test results. The test scores of
executive function were also inferior in patients with no correlation to the withdrawal period. The
composite cognitive function correlated with relative gray matter volume in controls but not in
patients in early abstinence. The CSF spaces especially the Sylvian fissures were enlarged in opioid
dependents indicating frontotemporal atrophy. All the changes found in these patients point to
impaired frontotemporal neural circuits and brain areas.

-32-



5.1. Changesin neural basis of pre-attentive attention

MMN and P3a are suggested to reflect the operation of auditory sensory memory and attention
switching to irrelevant tones in ones surrounding (Escera et a. 1998, Grillon et al. 1990, Sams et
al. 1985, Woods 1992), indexing the simplest form of working memory. Both responses seem to
have temporal and frontal subcomponents reflecting different states of detection and orienting of
sound change.

While intoxicated the patients with opioid dependence showed delayed latencies of MMN response
to novel sounds in EEG and delayed P3am at the contralateral hemisphere to the stimulated ear in
MEG. The temporal MMN subcomponent is first elicited indexing the sound change detection in a
train of repetitive series of similar tones and the subsequent involuntary attention shift to this sound
change is probably reflected by the later frontal MMN subcomponent (Alho et al. 1998, Rinne et al.
2000, Takegata et a. 2001). Since MMN latencies to novel sounds were increased in EEG, but not
in MEG, it can be assumed that the frontal MMN component is specifically affected the frontal
MMN is probably radially orientated and invisible to MEG (Rinne et al. 2000).

P3a is also proposed to have temporal and frontal located sources. The source responsible for the
early peak of P3ais located in the superior temporal cortex (Alho et al. 1998) and the later peak is
generated in the prefrontal cortex (Baudena et al. 1995). The delayed P3am activity mainly reflected
the earlier superior temporal source on the contralateral hemisphere to the stimulated ear. This thus
suggests that impairment of attention shifting in opioid dependent patients also involves superior
temporal regions, in addition to the presumed frontal MMN generator abnormalities. The change in
frontotemporal interactions has been found in these same patients when the spontaneous activity
was studied (Fingelkurts et al. 2006a, Fingelkurts et al. 2006b). This finding of changes in both
temporal and frontal generators probably also reflects the impairment of these connections. These
results suggest that patients with opioid dependence have some impairment in processing of novel
sounds at different phases of pre-attentive auditory processing.

5.1.1 Neurochemical modulation of pre-attentive attention

The clearest evidence exists of the role of NMDA receptors involved in MMN generation. It is
shown in animal and human studies that NMDA antagonists block MMN elicitation (Javitt et al.
1996, Kreitschmann-Andermahr et al. 2001, Umbricht et al. 2000, Umbricht et al. 2002). In opioid
dependence evidently some changes also occur in the excitatory system as a NMDA subunit
expression and density is enhanced in NAcc and decreased in the forebrain in opioid dependent
rodents (Murray et al. 2007), but exact role of glutamatergic neurotransmission at the NMDA
receptor dte in opioid dependence is not clear. It might be that the NMDA system has somerolein
the changes found in auditory pre-attentive processing.

Dopamine has a crucial role in development of opioid dependence in humans (Volkow et a. 2002).
Some evidence shows that chronic opioid use changes the D,-receptor binding in the cortical areas,
hippocampus, and midbrain (Elwan & Soliman 1995). Previous studies in healthy individuals
showed MMN and P3a amplitude changes after a single dose of dopamine D,-receptor antagonist
haloperidol (Kahkonen et al. 2001, Kahkdnen et al. 2002), so it can be assumed that dopamineisin
part related to involuntary attention change. I nterestingly, dopamine in the NAcc has been shown to
mediate novelty responding in rats (Saigusa et al. 1999).

Benzodiazepines are known to impair active and passive attention, studied by MMN and P3 in
healthy subjects in single-dose studies (Javitt et al. 1996, Lucches et al. 2005, Rockstroh et al.
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1991, Rosburg et a. 2004), but the effects of chronic benzodiazepine abuse have not been studied
yet. We did not find differences in MMN or P3ain patients with and without benzodiazepine co-
dependence. Even though benzodiazepine co-dependence did not affect these responses, we clearly
had two subgroups, which appeared in the N1 response.

5.1.2 N1 responsein patientswith benzodiazepine co-dependence

Opioid dependents with benzodiazepine co-dependence demonstrated stronger N1m source activity
compared to patients without benzodiazepine co-dependence or healthy controls, suggesting that
auditory processing is changed in opioid dependence when patients also abuse benzodiazepines. It
is not surprising that N1m is changed, since GABAergic system is modulated in both opioid and
benzodiazepine dependence. Increased N1m source activity at the auditory cortex may be related to
reduced inhibition and increased excitability of the cortical neurons reflecting neural adaptation to
chronic simultaneous benzodiazepine and opioid effects.

Previous single dose drug challenge studies in animals have shown controversial results since
administration of a GABAA antagonist enhanced exogenous auditory responses resembling the N1
whereas it was attenuated by several different GABAA agonists (Javitt et a. 1996, Meador 1995)
Also in humans GABA agonist lorazepam, decreased N1m source activity in MEG study (Rosburg
et al. 2004). Asthe N1m has been suggested to reflect the sound detection (Parasuraman and Beztty,
1980), this function may be impaired in these subjects chronically using GABA agonists and
opioids.

5.2 Cognitive function during early withdrawal
5.2.1 Cognition and neural pathways

The auditory pre-attentive response MMN and P3a delay in MEG-EEG measurement indexes
changes in perception and cognition. Also the neuropsychological tests showed that composite
cognitive efficiency was inferior in patients in early abstinence and they especially had problems in
complex working memory, executive function, and fluid intelligence (I1). As mentioned, opioid
dependence modulates the mesolimbic dopamine pathway which projects to the NAcc and
prefrontal cortex (Gerra et a. 2004, Volkow et al. 2002). This same monoamine pathway has a
crucial role in cognitive functions (Buhot et a. 2000, Coull 1998) and it is linked to cognitive
impairments in opioid addicts (Volkow et a. 2002). Transient dysfunction of the prefrontal
dopamine system is also found under chronic stress (Izzo et a. 2005). During early opioid
abstinence the high stress system activation shown as elevated cortisol level is common, but starts
to normalize during the second week of abstinence (Harris & Gewirtz 2005). High cortisol levels
are especially pronounced among individuals with antisocial personality disorder (Gerra et al.
2003), which was also diagnosed in most of our patients. It is also known that high cortisol levels
may associate with a working memory deficit (Elzinga & Roelofs 2005, Roozendaal et al. 2004). It
has been suggested that the stress system induced episodic memory impairment needs a more
chronic stress system abnormality than working memory impairment (McEwen 2007, Wolf et al.
2001). Working memory and fluid intelligence test results seem to be better with longer abstinence
so the stress induced by withdrawal might play a role in cognitive impairment in early abstinence.
On the other hand, the more permanent deficiency in executive function is in line with previous
studies showing deficits even in late abstinence (Lee & Pau 2002, Pau et al. 2002).



5.2.2 Dissociations between the neur opsychological tests

We found that patients had an inferior performance in the PASAT test, which is a complex working
memory task, but an equal or amost equal performance with controls in episodic memory
performance and simple working memory Digit Span tests. This dissociation might be explained by
the need for both storage and central executive components of working memory in the PASAT
(Audoin et al. 2003, Audoin et al. 2005), but the Digit Span task especially demands storage of
several items and the central executive is involved to a lesser degree. Because PASAT test
performance was deficient it is suggested that central executive component of working memory is
impaired during early opioid abstinence while storage is intact. Episodic memory studied with
immediate or delayed free recall tasks on the other hand is dependent on hippocampal function,
which despite the neural dysregulations did not seem to affect the test results significantly. Here
also the elevated stress system activation may be related to the dissociation between complex
working memory and episodic memory functions.

During the early withdrawal patients were inferior to VIQ matched controls in the fluid intelligence
task. According to functional neuroimaging studies this indicates deficiencies in the frontoparietal
networks needed in several demanding cognitive task (Duncan & Owen 2000).

5.2.3 Effect of abstinence duration on neuropsychological function

Some evidence suggest that the complex working memory deficit is a transient phenomena.
Individuals with current opioid use (methadone), or under early opioid abstinence, have shown a
working memory deficit, whereas individuals who have reached late opioid abstinence with nine
months of opioid abstinence did not show a similar deficit (Mintzer et al. 2005). During early opioid
abstinence neural dysregulations are pronounced and probably affect more cognitive performance
than possible neural damage (Mintzer et al. 2005, Robinson & Kolb 2004). If neurocognitive
deficits are considered areflection of the permanent neurotoxicity of opioid abuse test performance
should not depend so much on the duration of abstinence or current abuse. Our results support the
recovery of cognition, at least to some extent by high positive correlations found between fluid
intelligence performance or complex working memory performance and abstinence. Executive
function, studied with the figural fluency test, did not correlate with the days of abstinence, which is
well in line with previous studies (Lee & Pau 2002, Pau et al. 2002). Thus, it is possible that
executive function deficit may be more permanent than complex working memory or fluid
intelligence deficit.

5.2.4 Neurocognitive and structural correlations

The composite cognitive function correlated with gray matter volume in controls but not in patients
(IV). It is known that gray matter volume correlates with intelligence (Frangou et a. 2004), so it
could also be assumed that patient’s composite cognitive function would correlate with their gray
matter volume without some disturbances in their test performance. It is unclear whether each tissue
compartment has unique relationships with various neuropsychological abilities, but myelinated
white matter for example is essential for rapid transfer of information required for novel working
memory and complex attention tasks (PASAT) (Lockwood et a. 2004). The frontotemporal atrophy
seen in these opioid-dependents might in part affect the results of these quite complex global tests,
but the negative influence of withdrawal on test performance was probably more pronounced.
Interestingly Pezawas et al. (1998) has found that the small frontal volume is associated with higher
rates of relapses back to opioid abuse.
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5.3 Changesin brain structurein opioid dependents
5.3.1 Brain atrophy

Opioid dependent patients showed dilatation of lateral ventricles and in cortical CSF spaces the
Sylvian fissures were enlarged. Volumetric analysis confirmed that the relative CSF volume
percentage was larger in opioid dependents than in age and sex matched controls. Thisisindicative
of brain atrophy, usually assessed as enlarged sulci and ventricles. This finding is in line with the
previous CT studies showing significant ventricular enlargement in opioid dependents (Pezawas et
al. 1998, Strang & Gurling 1989).

The dilatation of Sylvian Fissures is probably reflecting the atrophy of frontal and temporal
cortical and subcortical areas (Guo et al. 2001, LeMay 1984). Thisiswell in agreement with Lyoo
et al (2006) as they showed that opioid dependents have diminished gray matter volumes in frontal
and temporal areas. Another MRI study also showed that polysubstance abusers had significantly
smaller gray matter volumes than controls, particularly in the prefrontal lobe (Liu et al. 1998).
Only a few of these patients were opioid dependents though. MRI spectroscopy of long-term
heroin users have shown decreased N-acetylaspartate levels in gray matter in frontal areas, which
is considered a sign of neural damage (Haselhorst et a. 2002). A recent human study showed a
widespread axonal damage in autopsy specimens of the polydrug abusers brain and this change
was more pronounced in young subjects, but only a few patients showed changes in myelin
(Buttner et al. 2006). Also an animal study has shown the decrease of neuronal size in the ventral
tegmental area (VTA) in rats after morphine administration (Sklair-Tavron et al. 1996).Decreased
frontal white matter volumes in chronic substance abusers have also been reported (Schlagpfer et
al. 2006).

Jankovic et a (1991) showed abnormally increased serum autoantibodies to brain antigens, S100
protein (a calcium-binding protein localized to astroglial cells), neuron- spesific enolase (a
glycolytic enzyme that is localized primarily in the neuronal cytoplasm) and myelin basic protein
in the patients with opiate abuse. Furthermore, they found that the incidence of autoantibodies was
positively related to the duration of drug abuse. These markers have been considered to be
associated with neuronal death aswell as with abnormal myelin.

5.3.2 Brain maturation

Very interestingly enlargement of Sylvian fissures had a negative correlation with the age of opioid
abuse onset even though it did not correlate with the duration of opioid abuse. In normal
development, these dorsolateral frontal cortex and superior parts of the temporal lobes are the last to
mature in early adulthood and frontotempora white matter even later (Gogtay et al. 2004, Sowell et
al. 2004, Y akolev et al. 1967). Most of our patients had begun their substance abuse in adolescence
or early adulthood, which might have in part disturbed this late maturation process of brain.

Brain maturation is a complex sequence of development of gray and white matter regulated by
genetic codes. This processis influenced positively or negatively by environmental factors.

Brain maturation starts during fetal life, but the volume of the new born baby’s brain is only a
guarter or athird of the volume of adult brain.

The mature white matter consists of large groups of myelinated axons interconnecting brain areas.
Myelin is an electrically insulating phospholipid fatty sheet around neurons and axons affecting the

-36-



speed of neural transmission between different brain regions and it is essential for proper cognitive,
motor and sensory functions. Myelination of the brain begins during the 5™ fetal month with
myelination of the cranial nerves, and is most rapid during the first 2-3years of life. Historical
histological studies by Y akolev and Lecours showed that myelination continues in association areas
of frontal lobes into the third and maybe even fourth decade of life (Yakolev et al. 1967). This
finding was confirmed later by Benes et a showing that myelination is continuing well into the
third decade (Benes et al. 1994). The maximum volume of white matter in tempora and frontal
lobes is reached in the mid forties (Bartzokis et al. 2001).

The gray matter development consists of the growth of cortical and subcortical gray matter nuclei,
cell proliferation and organized cell migration. Branching dendrites are making synaptic
connections between neurons. First an overproduction of these synapses occurs followed by the
elimination of connections while myelination of neurons and axons proceed. Overproduction of the
synapses is probably a tool for plasticity of the neuronal network in early childhood. Also
stimulation and experiences modulate the dendrite branching of neurons and the numbers of
synaptic connections and these connections are remodeled throughout life (Toga et al. 2006, Toga
& Thompson 2007). The development of the prefrontal cortex; an area of the brain involved in
executive, attentional and regulatory function, peaks at 1-2 years with substantial decline from
preschool age to mid-to-late adolescence (Huttenlocher 1979). Gray matter volume reaches its
maximum at the age of 12 yearsin the frontal lobes and 16 years in the temporal lobes (Gogtay et
al. 2004).

5.3.3 The effects of polysubstance abuse

We could not find changes in gray and white matter volumes, but gray matter and white volumes
were measured in the whole cerebrum and the patient group was relatively small, which both affect
detection of small local differences. The total cerebral volume was smaller in the patient group,
which probably indicates that both white and gray matters are at least some what diminished.
Several factors may contribute to brain atrophy including other abused substances, additional
substances such as adulterants in injected substances, and possible overdoses of drugs.

In cocaine dependent subjects age-related expansion of white matter volume occurring in normal
subjects was absent (Bartzokis et al. 2002). Also the fosfomonoester and fosfodiester concentrations
were lower in the central white matter of cocaine dependent polysubstance abusers compared to
controls most likely reflecting altered synthesis or breakdown of myelin phospholipids (MacKay et
al. 1993). In contrast methamphetamine abusers are reported to have an increase of white matter
volumes which was speculated to be due to altered myelination and adaptive glia changes
(Thompson et al. 2004). To our knowledge no reports correlate the myelination process and opioid
abuse, neither in animals nor patients.

Our patients had a history of long term heavy opioid abuse, thus we were expecting to find more
remarkable alterations on brain MRIs. Although recreational drug abuse is one of the most
important risk factors for stroke in young adults (Sloan et al. 1998), we did not find any signs of
ischemia. Also in polydrug abusers non-specific white matter alterations has been found (Aasly et
al. 1993), but our patients did not show any unspecific focal changes. Only one patient had a
subcortical post traumatic lesion.

We found a tendency to a smaller area of the vermis in the midsagittal image as five of the 17

patients had relatively small vermes and wide vermian sulci, which related to their age could be
considered dlightly atrophic. It iswell known that heavy alcohol consumption may cause cerebellar
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and cerebral atrophy (Hayakawa et al. 1992), which are more severe with increasing age
(Pfefferbaum et al. 1997). On the other hand, after abstinence, some of these changes may be
reversible (Pfefferbaum et al. 1995). In this study those four patients who admitted to heavy alcohol
use in youth, showed no reduction of the area of vermes, but the ones with small vermian areas did
not have a history of alcohol abuse.

5.4 Limitations

A limitation of our study is that most of our patients fulfilled DSM-IV criteria for antisocial
personality disorder. The P3 amplitudes during the active task have been shown to be reduced in
subjects with antisocial personality disorder (Bauer et al. 1994). To our knowledge, it is not known
whether antisocial personality disorder may change pre-attentive auditory processing measured with
MMN and P3a. The previous MRI imaging studies of patients with personality disorders have
shown frontotemporal atrophy and ventricular enlargement (Dolan et al. 2002, Raine et al. 2000).
Some evidence indicates that personality disorders may be associated with lower prefrontal gray
matter, lower posterior hippocampal volume, and higher callosal white matter volume or some
reduction in gray matter volumes (Brambilla et al. 2004, Pridmore et al. 2005).

Previous cannabis abuse was common among our patients as well as benzodiazepine dependence
and long-term abuse was diagnosed in many. Long-term cannabis abuse and benzodiazepine abuse
both have an adverse effect on cognitive function (Barker et al. 2004, Solowij et al. 2002).Also
long-term benzodiazepine use may lead to some minor morphological changes, such as slight
ventricular dilatation, also found in our patients (Lader et al. 1984, Moodley et al. 1993).

Current benzodiazepine medication during withdrawal and at the time of cognitive testing was
common. In the normal population benzodiazepines have adverse affects on several cognitive
functions, but the acute effect on opioid dependents and opioid dependents with benzodiazepine co-
dependence is not known. On the other hand, the ay-adrenergic receptor agonist, lofexidine, which
was given to (Barch 2004) the patients of this study, may improve reduced working memory
performance.

In the neuropsychological test groups patients and controls were verbal intelligence quotient (V1Q)

matched whereas in most other studies the matching is based on education. Since substance abuse
typically onsets at a young age, which results in skipping school and dropping out it is most
probable that these individuals do not achieve the level of education they could. Some other opioid
studies have also matched the groups by VIQ or premorbid IQ (Davis et al. 2002, Orngtein et al.
2000).

5.5 Conclusion

Our results of structural and functional changes in opioid dependents appear in the frontotemporal
areas where higher order cognition such as executive function, working memory, and fluid
intelligence are situated. Thus, higher order cognition disturbance, interruption of anticipation and
establishment of goals, and impulsive behaviour during early opioid abstinence are likely to be
associated. This on the other hand may indicate relapses back to substance abuse.

Changes in auditory perception were found since pre-attentive auditory processing was disturbed in

the opioid dependent individuals and benzodiazepine co-dependence further modulated the auditory
response indicating changes in the frontotemporal neural pathways.
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Opioid dependents also showed the dilatation of cerebrospinal fluid spaces especially in
frontotemporal areas, indicating brain atrophy. The structural changes seen in opioid dependents
correlated with the age of opioid abuse onset, which indicates the vulnerability of adolescents to
drug abuse.
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