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1. ABSTRACT 

Introduction  Ventricular arrhythmias are, in various cardiac diseases, a common cause of 

sudden cardiac death (SCD). Although effective methods to prevent SCD have recently emerged, 

the continuing challenge is to identify the patients at greatest risk. This study investigated 

whether abnormal delayed conduction manifested as late fields and intra-QRS fragmentation in 

magnetocardiography (MCG) can identify postinfarction patients with a propensity to sustained 

ventricular tachycardia (VT) and how these parameters are related to various cardiac variables. 

The study also investigated how late fields and intra-QRS fragmentation parameters are related to 

delayed conduction recorded directly in the area surrounding the infarct scar. The association of 

late fields with abnormal ventricular repolarization and propensity to sustained ventricular 

arrhythmias was investigated both in patients with remote myocardial infarction (MI) and in 

patients with idiopathic dilated cardiomyopathy. This study also compared the ability of late 

fields and late potentials in signal-averaged ECG (SAECG) and body surface potential mapping 

(BSPM) to identify postinfarction VT patients. 

Patients and Methods  A total of 205 patients and 17 healthy controls were studied. Late 

field parameters were compared between postinfarction groups of 38 VT and 62 control patients, 

and both late field and intra-QRS fragmentation parameters were compared in otherwise similar 

but larger postinfarction VT and control groups. The relationships of these parameters to cardiac 

variables, especially left ventricular function, were investigated and the independent 

discriminative abilities of these parameters assessed. The relation of delayed ventricular 

conduction to late fields and intra-QRS fragmentation parameters was investigated in 22 patients, 

each with both a remote MI and a propensity to sustained VT, undergoing surgery to abolish the 

arrhythmia substrate. The association of late fields with repolarization abnormalities was 

investigated in 60 postinfarction patients (32 VT and 28 control patients, matched as groups for 

left ventricular ejection fraction) and in 49 patients with idiopathic dilated cardiomyopathy (18 

with VT or ventricular fibrillation and 31 non-arrhythmia controls). The repolarization 

abnormalities were investigated with both MCG and 12-lead ECG. In 44 postinfarction patients 

with cardiac dysfunction (22 VT and 22 controls, matched as groups for left ventricular ejection 

fraction), MCG, SAECG, and BSPM were recorded, and parameter values for late fields (MCG) 

and late potentials (SAECG and BSPM) were computed and compared in VT identification.  
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Results  In patients with previous MI, both late fields and intra-QRS fragmentation 

parameters in MCG differed significantly between patients with and without propensity to 

sustained VT. Differences between the groups were significant also in patients with extensive 

myocardial damage and low left ventricular ejection fraction. Late field and intra-QRS 

fragmentation parameters identified patients with VT propensity independently of cardiac 

variables and in VT patients correlated only modestly with left ventricular ejection fraction. In 

VT patients undergoing arrhythmia surgery, both late field and intra-QRS fragmentation 

parameters showed a correlation with delayed epicardial conduction in those patients with an 

anterior infarction scar. Abolition of the arrhythmia substrate rendered the parameter values 

almost similar to those of the postinfarction patients without VT propensity. The later part of the 

T wave interval in MCG was prolonged in patients with sustained ventricular arrhythmias both in 

those with remote MI and in those with dilated cardiomyopathy, whereas late fields were 

discriminative only when the arrhythmia propensity was associated with the infarct scar. In ECG, 

the later part of the T wave interval and conventional QTend dispersion were larger in 

postinfarction VT patients, whereas none of the repolarization parameters differed between the 

arrhythmia and control patients in dilated cardiomyopathy. In postinfarction patients with cardiac 

dysfunction, the late fields performed equally well in comparison to late potentials in SAECG 

and BSPM in the identification of VT propensity. 

Conclusions  In conclusion, MCG parameters associated with delayed and inhomogeneous 

conduction in postinfarction ventricles seem significantly to differ between patients with and 

without VT propensity. The overlap in parameter values between the groups was in part due to 

the large infarct scar itself, influencing the parameters towards more abnormal values. Although 

patients with large infarct scars but without documented VTs are at increased risk for ventricular 

arrhythmias, complete discrimination between VT and non-VT patients may be impossible. 

However, combining MCG parameters with other arrhythmia risk indicators such as heart rate 

variability and measures of abnormal repolarization may improve identification of patients at risk 

for sustained ventricular arrhythmias. The results of the present study suggest that abnormalities 

in both depolarization and repolarization periods are important in the genesis of postinfarction 

ventricular arrhythmias. On the other hand, in dilated cardiomyopathy, only measures of 

repolarization abnormalities showed any differences between arrhythmia and control groups, thus 

highlighting their importance in the arrhythmogenesis in this disease.  
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This was apparently the first series of studies to show that a novel MCG technique can 

identify propensity to ventricular arrhythmias in two common heart diseases, coronary artery 

disease and nonischemic dilated cardiomyopathy.  

2. INTRODUCTION 

Although sudden cardiac death (SCD) can complicate practically any cardiac pathology, in 

western civilizations a great majority of the cases are due to coronary artery disease, because of 

its high prevalence. In many of these patients, the cause of SCD is severe transient ischemia or 

acute myocardial infarction (MI) resulting in ventricular fibrillation (VF). If the patient is 

successfully resuscitated, and the ventricular function is spared, treatment of myocardial ischemia 

will usually prevent SCD recurrence (Kehoe et al. 1988). In some of the patients, however, SCD 

is caused by a ventricular arrhythmia associated with a chronic infarct scar in the absence of 

significant ongoing ischemia in the spared myocardium. In this patient group, treatment of 

ischemia will not abolish the propensity to life-threatening ventricular arrhythmias. On the other 

hand, recent evidence shows that in these patients, implantable defibrillators are effective in 

preventing SCD (Buxton et al. 1999, Moss et al. 2002). The continuing challenge is how to 

predict which postinfarction patients will most likely benefit from this treatment.  

Both experimental and clinical studies have revealed in these patients the important role of 

delayed conduction at the border zone of the infarct scar in the genesis of ventricular arrhythmias 

(Klein et al. 1982, Mehra et al. 1983). Delayed and inhomogeneous conduction can be recorded 

noninvasively by high-resolution electrocardiographic (ECG) techniques (signal-averaged ECG, 

SAECG) (Simson 1992). Increased spatial dispersion of ventricular repolarization measured as 

interlead variability of QT interval in 12-lead ECG is associated with postinfarction ventricular 

arrhythmias, as well (Pye et al. 1994). Similarly to other noninvasive risk assessment techniques, 

SAECG and QT dispersion have shown high sensitivity and negative predictive value, while 

their specificity and positive predictive value have remained low. Consequently, risk prediction 

methods showing promise at patient-population level do not yield sufficient discrimination at the 

level of the individual patient. New methods for the assessment of abnormal slow conduction and 

increased dispersion of repolarization may therefore be of value in postinfarction arrhythmia risk 

stratification.  
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Magnetocardiography (MCG) is a noninvasive method which records the magnetic field 

generated by cardiac electrical activity. Although the first MCG was recorded back in 1963 

(Baule and McFee 1963), only the past decade has witnessed the evolution of registering devices 

suitable for larger-scale patient measurements in the hospital environment. MCG has some 

interesting features as regards postinfarction arrhythmia risk assessment. The effect on the MCG 

signal of the tissues lying between the heart and the body surface is smaller than on ECG, which 

may be advantageous in the registrations of very low amplitude electrical activity. In addition, 

preliminary data suggest that MCG may be especially sensitive to abnormalities in the 

repolarization period (Lant et al. 1990). 

The aim of the present study was to investigate MCG in the identification of propensity to 

sustained ventricular arrhythmias among patients with heart disease. The substudies assessed the 

ability of MCG parameters to dicscriminate between VT and non-VT patients, the parameters’ 

electrophysiological basis, and their relations to several cardiac variables.   

3. REVIEW OF THE LITERATURE  

3.1. Ventricular arrhythmias and sudden cardiac death  

3.1.1. In general 

SCD means natural death due to cardiac causes, preceded by sudden loss of consciousness within 

one hour of the onset of acute symptoms (Myerburg and Castellanos 1997). In many studies, 

unexpected death during sleep is included in this category, as well. In a recent population-based 

study, the mean one-year incidence of SCD in the 20- to 75-year age group was approximately 

1/1000 and accounted for 18.5% of all deaths. In the same population, only 6% of the 

resuscitated victims were discharged alive from the hospital, highlighting the importance of risk 

prediction and of the optimization of out-of-hospital resuscitation (Vreede-Swagemakers et al. 

1997). The major cause of SCD is ventricular tachyarrhythmia leading to VF (Kempf and 

Josephson 1984, Bayés de Luna et al. 1988). In severe cardiac dysfunction, other important 

mechanisms of death are bradycardia and electromechanical dissociation (Luu et al. 1989). 
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3.1.2. Mechanisms of ventricular arrhythmias 

During normal cardiac rhythm−sinus rhythm−the electrical impulse is generated in the sinoatrial 

node in the right atrium, from which it spreads to the left atrium. Non-conducting fibrous tissue 

separates the atria and ventricles except for a specialized conduction system consisting of the 

atrioventricular node, the bundle of His, the bundle branches, and the Purkinje fibers. From the 

Purkinje fibers the activation spreads to the ventricular myocardium of the right and left 

ventricles. Besides the sinoatrial node, other parts of the conduction system also have the 

potential to fire independently and thus act as pacemakers in case of marked slowing of the sinus 

rate. 

Ventricular arrhythmias can arise in the specialized conduction system distal to the bifurcation 

of the His bundle, in ventricular myocardium, or in combinations of both tissue types (Shenasa et 

al. 1993). Three mechanisms are recognized in the genesis of ventricular arrhythmias; abnormal 

automaticity, triggered activity, and reentry. 

Abnormal automaticity refers to a situation in which a group of cells not normally acting as 

pacemaker cells generates impulses independently. In comparison to normal automaticity, this 

occurs at markedly less negative resting membrane potentials. This reduction in the potential can 

be caused by several conditions including ischemia and acidosis, as well as by increased 

circulating catecholamine levels encountered in such condition as cardiac failure. 

Triggered activity is generated by afterdepolarizations, which are oscillations in the membrane 

potential initiated (triggered) by one or more preceding action potentials. These oscillations are 

further divided into early and delayed afterdepolarizations. Early afterdepolarizations occur 

during the plateau of the repolarization phase of the action potential, and delayed 

afterdepolarizations after the termination of the repolarization. The amplitudes of early 

afterdepolarizations tend to increase at slower heart rates, resulting in augmented initiation of 

triggered arrhythmias (Damiano and Rosen 1984). Early afterdepolarizations are related to a 

specific type of polymorphic ventricular tachycardia, torsade de pointes, which is a typical 

arrhythmia in the long QT syndrome (Shimizu et al. 1991). Evidence also stems from animal 

studies that, after myocardial infarction, triggered activity from both early and delayed 

afterdepolarizations is a potential VT mechanism (Qin et al. 1996). 
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Reentry is the mechanism most often involved in postinfarction ventricular arrhythmias. The 

term “reentry” implies that part of the myocardium (or the entire heart) is reexcited by a 

circulating impulse. The basic electrophysiologic requirements for reentry are unidirectional 

conduction block, slow conduction, and a pathway for impulse propagation. A simple form of 

reentry circuit consists of a fast conducting component with a longer refractory period and a slow 

conducting component with a shorter refractory period. A properly timed impulse becomes 

blocked in the fast conducting component and propagates through the slow conducting pathway. 

By the time the impulse arrives at the distal ends of the pathways, the refractory period of the fast 

conducting part has expired, allowing the impulse to return to the proximal end of the pathway. 

A reentrant circuit is thus established. A clinically important feature in reentrant arrhythmias is 

inducibility following the properly timed extrastimuli which are utilized in electrophysiologic 

testing (Buxton et al. 2000). 

Tachycardias in Wolff-Parkinson-White syndrome are an example of reentrant arrhythmias in 

which the pathways are fixed anatomical barriers. In contrast to such an anatomical reentry, 

functional reentry lacks confining anatomical structures and can be due to dispersion of 

excitability, refractoriness, and impulse propagation (El Sherif 1995). Several types of functional 

reentry have been described, including the figure-of-eight model, in which the circuit consists of 

clockwise and counterclockwise wavefronts around two functional arcs of block rejoining into a 

central common slowly conducting pathway (El-Sherif, 1988). Another model is the leading 

circle hypothesis by Allessie and coworkers, in which the reentrant circle propagates through 

fibers with shorter refractory periods, constantly blocking in the central area exhibiting longer 

refractory periods (Allessie et al. 1977). Other models include the anisotropic model, featuring 

variations in conduction velocities and the time course of repolarization, and the spiral wave 

model, relating myocardial spiral wave activity to the onset of reentrant arrhythmias (Davidenko 

1994). 

3.2.  Ventricular arrhythmias and sudden cardiac death in coronary artery disease 

and in postinfarction patients  

Although ventricular arrhythmias and SCD may complicate practically any cardiac disease, in the 

majority of these, the background is coronary heart disease (Zipes and Wellens 1998). Due to 

wide application of thrombolytic therapy, improved pharmacological therapy for heart failure, 
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and specialized units for coronary patients, all in the 1990’s, one-year mortality after acute MI 

has fallen to 5 to 7%, and of all deaths in this patient group, the proportion of SCD is 25 to 30% 

(Rouleau et al. 1996, Touboul et al. 1997).  

In patients with coronary artery disease but no prior or acute infarction, severe ischemia can 

provoke ventricular arrhythmias. Severe ischemia results in spatially inhomogeneous metabolic 

and ionic changes leading into dispersion of excitability and repolarization. These changes, in 

turn, favor the occurrence of reentrant arrhythmias. Severe ischemia is also associated with 

acidosis and increased catecholamine levels that may cause arrhythmias by abnormal 

automaticity and triggered activity. The clinical arrhythmias most often seen in the context of 

acute ischemia are polymorphic VT and VF. 

In patients with an infarct scar, ventricular arrhythmias in the absence of significant ischemia 

are often reentrant in origin (DeBakker et al. 1988). In the border zone of myocardial necrosis, 

patchy fibrosis is interspersed with viable myocardial tissue. These structural alterations lead to 

delayed conduction and to local unidirectional conduction blocks serving as substrates for 

reentrant VTs. The clinical arrhythmia most often associated with chronic infarct scars is 

sustained monomorphic VT.  

Although either severe ischemia or chronic arrhythmia substrate can be assumed in many 

instances to be the dominant mechanism, these two mechanisms interact. Using a canine model, 

Furukawa and coworkers (1991) found that even moderate ischemia increased the inducibility of 

sustained VT in a 3-week-old experimental MI. Besides ischemia, several other mechanisms may 

potentially alter the electrical milieu in the stable arrhythmia substrate and precipitate life-

threatening ventricular arrhythmias. These include abrupt changes in neurohormonal, in 

electrolyte, and in acid-base balance, as well as hypoxemia and proarrythmic effects of 

medications. 

3.3. Postmyocardial infarction risk stratification 

At present, accurate identification of postinfarction patients at increased risk for ventricular 

arrhythmias has become increasingly important because implantable defibrillators have proven 

effective in the prevention of SCD (Moss et al. 1996, Buxton et al. 1999). Several techniques are 

commonly used in postinfarction arrhythmia risk stratification. 
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3.3.1.  Left ventricular function and infarct artery patency 

Although the number of patients with large MIs has diminished in the thrombolytic era, left 

ventricular function has remained a significant predictor of both total mortality and arrhythmic 

events. In a study with 68% of 301 MI patients treated with intravenous thrombolysis, left 

ventricular ejection fraction (LVEF) < 40% was the best predictor of arrhythmic events in the 

first year after MI (McClements and Adgey 1993). Accordingly, Andresen and coworkers (1999) 

found that patients with both LVEF > 40% and normal Holter recording had a very low risk for 

ventricular arrhythmias. The opening of infarct-related arteries has been proposed as one 

mechanism associated with the greatly improved outcome of MI patients in the thrombolytic era. 

In fact, in the 1994 study by Hohnloser and coworkers, having patent infarct-related artery was an 

independent negative predictor of arrhythmic complications. Due to thrombolytic therapy and 

interventions, however, the patients in their study had well-preserved left ventricular function, 

and it is not clear whether these findings will apply to patient populations with marked cardiac 

dysfunction. The data from several studies indicate that low LVEF is a noninvasive marker for 

increased risk for arrhythmic death with a cut-point value of 40%. A well-defined left ventricular 

wall aneurysm is an additional indicator for arrhythmia propensity (Meizlish et al. 1984). 

3.3.2.  Ambulatory ECG  

An increased number of ventricular premature complexes (VPC) and runs of nonsustained VTs 

in ambulatory ECG are recognized as markers of electrical instability after MI. They predict 

arrhythmic events, especially in patients who also have low LVEF (Schulze et al. 1977). The 

mechanism explaining the arrhythmogeneity of VPCs is their ability to initiate a reentrant VT by 

entering a potential reentry circle at a critical moment. Thrombolysis reduces the number of 

VPCs (Theroux et al. 1989), but in the thrombolytic period their predictive value has remained 

unchanged. In fact, Statters and coworkers (1996) found VPC frequency more predictive in 

patients who had received thrombolysis than in those who had not, but that the optimal frequency 

for dichotomy was higher in the former suggests that their tolerance of VPCs was better. In a 

large thrombolytic treatment study, VPCs > 10 / hour independently predicted both total 

mortality and SCD, whereas runs of nonsustained VTs did not (Maggioni et al. 1993). On the 

basis of the existing data, it is evident that ventricular extrasystoles and runs are related to 

arrhythmic events, but at present no consensus exists on the critical number of such findings in 
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the ambulatory ECG. In addition, Senges et al. (2002), in their postinfarction study, found that 

nonsustained VTs in ambulatory ECG show poor reproducibility, which reduces their value in 

risk stratification.  

3.3.3.  Heart rate variability 

Heart rate variability (HRV) is widely used as a measure of cardiac autonomic status, and a 

decreased value reflects either sympathetic dominance or decreased vagal tone. In the chronic 

phase of MI, a reduced HRV is a strong predictor of mortality independent of left ventricular 

function and ventricular ectopic activity (Kleiger et al. 1987, Cripps et al. 1991). Both time 

domain and frequency domain analyses of HRV identify patients with a propensity to sustained 

VT (Huikuri et al. 1995), and reduced HRV seems to predict both arrhythmic and nonarrhythmic 

death (Hartikainen et al. 1996). Although the positive predictive accuracy of HRV is not high, it 

can be improved by combining it with other noninvasive arrhythmia risk parameters (Farrell et al. 

1991). 

3.3.4.  Baroreflex sensitivity 

Baroreflex sensitivity evaluates the reflex autonomic responses, in contrast to HRV, which 

reflects the tonic autonomic control. Vagal reflexes are thought to protect the heart from the 

arrhythmias precipitated by sympathetic hyperactivity. Depressed baroreflex sensitivity is thus a 

marker of the reduced cardioprotective effect of the parasympathetic nervous system. The 

method most often used to evaluate baroreflex sensitivity is correlation of the blood pressure rise 

induced by an alphamimetic agent, phenylephrine, with the increase produced in cardiac cycle 

length. Baroreflex sensitivity correlates with the extent of the coronary artery disease but not with 

LVEF (La Rovere et al. 1988). In postinfarction patients, the reduced baroreflex sensitivity 

correlates with the inducibility of sustained VT in electrophysiologic study (Farrell et al. 1991). 

In the ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) study, HRV and 

baroreflex sensitivity were equally predictive of cardiac death, and the risk was higher when both 

showed abnormal values. Mortality in that study was relatively low, with no incidence of sudden 

death reported (La Rovere et al. 1998). 
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3.3.5.  Electrophysiologic study 

Because postinfarction ventricular arrhythmias are most often reentrant in origin, the inducibility 

of a sustained VT in programmed electrical stimulation is considered to indicate the presence of a 

permanent arrhythmia substrate. In such patients, coronary revascularization alone does not 

abolish the potential reentrant circuits (Kelly et al. 1990). In general, the inducibility of sustained 

VT in postinfarction patients has varied between 20% and 40% depending on patient selection 

and on stimulation protocols. Although the positive predictive value of electrophysiologic study 

in unselected postinfarction patients is rather low, it is greatly improved when targeted at patients 

with cardiac dysfunction (Bourke et al. 1991). The negative predictive accuracy in those patient 

series reported has usually been excellent. Although programmed electrical stimulation is at 

present the best predictor of arrhythmic events, poor availability and the invasive nature of the 

study make it unsuitable as a screening method for large patient cohorts. On the other hand, 

combining data from noninvasive studies may help to identify a high-risk subgroup to undergo 

programmed stimulation (Pedretti et al. 1993). 

3.3.6.  Dispersion of ventricular repolarization  

Experimental studies have shown that spatial dispersion of ventricular repolarization facilitates 

induction of ventricular arrhythmias, and the same factors that favor arrhythmia occurrence tend 

to cause increased dispersion (Han and Moe 1964, Kuo et al. 1983). Adjacent myocardial regions 

with different repolarization periods may lead to nonuniform conduction and functional 

conduction blocks, thus giving rise to reentrant arrhythmias. Data from clinical studies suggest 

that the interlead variability of QT interval in body surface leads may reflect the regional 

variability in ventricular recovery time (Mirvis 1985). This variability, termed QT dispersion, is 

usually defined as the difference between the longest and the shortest QT interval. However, 

recent studies have shown that the time interval between the peak and the end of the T wave 

serves as an index of transmural dispersion of repolarization (Shimizu and Antzelevitch 1997). 

Transmural heterogeneities in repolarization are more abrupt than axial ones and may represent a 

more dangerous substrate for ventricular arrhythmias. Experimental studies have shown that 

dispersion of monophasic action potential durations correlates more closely with the T-peak to T-

end interval than with measures of QT dispersion (Zabel et al. 1995). 
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Several studies have assessed the value of repolarization abnormalities in postinfarction risk 

assessment. Pye and coworkers (1994) reported a significantly larger QT dispersion in 

postinfarction patients with than without sustained VT, although substantial overlap existed 

between the groups. Perkiömäki and coworkers (1995) compared QT dispersion in healthy 

controls and postinfarction patients with and without sustained ventricular arrhythmias. QT 

dispersion in the arrhythmia group was significantly larger than in the non-arrhythmia and 

control groups and was associated with arrhythmia propensity independently of left ventricular 

function and other clinical parameters. Notwithstanding these findings, the predictive value of 

the repolarization heterogeneities is not well established. In a prospective postinfarction study, 

several repolarization variables in 12-lead ECG including QT dispersion and T-peak to T-end 

interval failed to predict subsequent arrhythmic events (Zabel et al. 1998). One possible 

explanation for this lack of prediction may have been the inadequate resolution of local 

differences in repolarization in 12-lead ECG. However, data from recent studies suggest that 

novel repolarization descriptors assessing T wave morphology in 12-lead ECG may have value in 

risk stratification (Zabel and Malik 2001, Zabel el al. 2002). 

3.3.7.  Signal-Averaged ECG 

3.3.7.1. Electrophysiologic basis of ventricular late potentials  

Durrer and coworkers in their 1964 postinfarction animal study reported delayed conduction in 

the normal muscle surrounding transmural infarction, which they termed “postinfarction block.” 

Later, in 1973, Boineau and Cox demonstrated that prolonged ischemia resulted in nonuniformly 

distributed delayed and fragmented activity leading to reentrant VPCs. A pioneering study with a 

canine model of chronic MI showed that the delayed and fragmented activity in the infarct zone 

could bridge the entire diastolic period, initiating a reentrant VT (El-Sherif et al. 1977). A 

spontaneous reentrant VT was especially associated with Wenkebach-type conduction in the 

infarct area. The authors suggested that their electrophysiologic findings could be explained by 

electrical activity traveling through islands of viable cells interspersed among areas of myocardial 

necrosis. Viable but partially depressed myocardium could show delayed conduction and 

unidirectional block at certain sites and at certain cycle lengths, thus providing the prerequisites 

for reentry. Later, Gardner and coworkers (1985) provided the anatomic basis for these 

electrophysiologic findings by recording fragmented electrograms in the infarct areas where 
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individual myocardial fibers were separated by ingrowth of connective tissue, all of this leading 

to slow and inhomogeneous conduction. 

Berbari and coworkers in 1978 were the first to show that delayed potentials in epicardial 

electrograms could be recorded from the body surface and suggested this as a noninvasive 

indicator of propensity to VT. Detection of such low-amplitude deflections on a body surface 

ECG is based on signal-averaging and high-pass filtering. Signal-averaging effectively raises the 

signal-to-noise ratio, and high-pass filtering suppresses the low-frequency ST segment and T 

wave while preserving the delayed activity comprising higher frequencies. Later, Simson and 

coworkers introduced bi-directional filtering to improve the analysis of SAECG and showed 

strong correlations between the durations of directly recorded ventricular electrograms and QRS 

in the signal-averaged body surface ECG (Simson et al. 1981). Because abnormal low amplitude 

activity often extends beyond the end of the non-averaged surface ECG, it is therefore called late 

potential (LP).  

3.3.7.2. Ventricular late potentials in post-myocardial infarction risk stratification  

The prevalence of LPs after acute MI ranges from 25 to 45% (Simson 1992). Occluded infarct 

arteries are associated with the appearance of LPs (de Chillou et al. 1991), and thrombolytic 

therapy is associated with a reduction in their incidence (Gang et al. 1989). In addition, some 

studies have associated LPs with the presence of left ventricular aneurysm and reduced LVEF 

(Zimmerman et al. 1985), whereas others have not (Gomes et al. 1987). In postinfarction patients 

with ventricular aneurysm and a propensity to sustained VT, aneurysmectomy is associated with 

the disappearance of LPs and of VT propensity (Rozanski et al. 1981). 

In postinfarction patients, the LPs are related to the propensity to sustained VT independently 

of clinical variables (Kanovsky et al. 1984). The presence of LPs predicts inducibility of 

sustained VT in the electrophysiologic study, indicating association with propensity to reentrant 

ventricular arrhythmias (Denniss et al. 1986).  

Prospective studies have shown LPs to predict ventricular arrhythmias and SCD after MI 

independently of left ventricular function and of arrhythmias in Holter ECG (Kuchar et al. 1986, 

Steinberg et al. 1992). Although the sensitivity and negative predictive accuracy of LPs has 

usually been good, the positive predictive accuracy has reached only 15 to 20%. On the other 

hand, combining LPs with other noninvasive methods such as HRV and measures of left 
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ventricular function has resulted in improved predictability (Farrell et al. 1991, Gomes et al. 

2001). 

The conventional analysis method in SAECG is time domain analysis, in which LPs are 

quantified by the filtered QRS duration, amplitude of the last 40 ms of QRS, and duration of the 

low amplitude signal below 40 µV (Breithardt et al. 1991). Invasive data from VT patients has, 

however, shown that the majority of the myocardium responsible for reentrant VT depolarizes 

before the last 40 ms of QRS, so that methods limited only to this part fail to detect most of the 

delayed conduction (Hood et al. 1992). Thus, on the body surface ECG, the abnormal potentials 

are buried in the QRS complex. Moreover, discrimination between noise and LPs may be 

difficult, and patients with a bundle branch block in 12-lead ECG are usually excluded from 

analysis. Analysis methods have therefore been developed that aim at extracting the abnormal 

fragmented electrical activity from the normal smooth depolarization. Most of these methods are 

based on the assumption of differing frequency content for the delayed conduction and are thus 

termed frequency domain analysis methods. Combining time- and frequency-domain analyses, 

Vázquez and coworkers found prediction of arrhythmic events in postinfarction patients 

improved compared to that of either method used alone (Vázquez et al. 1999). In addition to 

frequency domain analysis, abnormal intra-QRS potentials detected as notches and slurs during 

the entire QRS complex have been able to predict arrhythmic events (Lander et al. 1997). 

3.3.8.  Body surface potential mapping  

In comparison to 12-lead ECG, BSPM allows a more accurate description of the thoracic 

distribution of cardiac potentials. This is attributed to more detailed regional information derived 

from the unipolar electrodes attached to 30 to 120 thoracic sites often covering the back, as well. 

The data registered with BSPM can be represented as wave amplitudes, intervals, or 

morphologies analogous to 12-lead ECG. In addition, the mapping results can be displayed as 

isopotential and isochrone maps, whose shapes and dynamics may yield information not apparent 

in the conventional presentation mode.  

The first BSPM recordings with fewer than 20 electrodes were performed at the very dawn of 

the electrocardiographic-technique era more than one hundred years ago. Later, Taccardi (1963) 

attempted to correlate the body surface potential maxima and minima with the location of 

depolarization wavefronts in the ventricles. The localization capability of BSPM has proven 
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useful in the localization of accessory pathways (Dubuc et al. 1993) as well as in the localization 

of the sites of origin of VTs (Sippensgroenewegen et al. 1994). Studies in patients with transient 

ischemia and acute MI have shown superior detection with the use of BSPM, with the most 

sensitive recording locations often being outside the standard precordial lead positions 

(Kornreich et al. 1993, Hänninen et al. 2001). 

3.3.8.1. Body surface mapping of ventricular late potentials 

A few studies have investigated the detection of ventricular LPs with BSPM, often comparing it 

to conventional three-lead SAECG. An experimental study using a canine postinfarction model 

compared QRS durations in 64-lead BSPM and SAECG to directly recorded epicardial 

electrograms. QRS durations in BSPM were longer and correlated more strongly with epicardial 

electrograms, especially in cases with longer electrogram durations (Freedman et al. 1991). That 

study did not, however, investigate the relation of the QRS durations to spontaneous or inducible 

ventricular arrhythmias. Accordingly, when Sasaki and coworkers (1994) compared BSPM and 

SAECG in a postinfarction patient population, they could report that BSPM was superior in 

identifying patients with fragmented electrograms in ventricular endocardial catheter mapping, 

but they did not investigate the association of their findings with ventricular arrhythmias. A study 

comprising postinfarction patients with and without sustained VT or cardiac arrest found BSPM 

with a 28-lead array able to distinguish between the patient groups with a 70% sensitivity and 

84% specificity. The corresponding figures for SAECG were 59% and 86% (Ho et al. 1993). 

3.4. Nonischemic dilated cardiomyopathy 

3.4.1. In general 

Dilated cardiomyopathy is a myocardial disease characterized by dilatation and impaired 

myocardial contractility of the left ventricle or both ventricles (Richardson et al. 1996). The 

epicardial and intramural coronary arteries are normal or, in cases of stenoses, the ventricular 

dilation and dysfunction are disproportionate to arteriolar changes. Histologic changes are 

generally nonspecific, with replacement of myocardial tissue by fibrosis in the majority of 

patients (Roberts et al. 1987). Intraventricular conduction disturbances, especially left bundle 

branch block, is a common finding in ECG, with chronic atrial fibrillation common, as well. 

Prevalence has been estimated as 5 to 8 cases per 100 000 population, but the true number may 
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be higher due to underreporting of asymptomatic patients (Dec and Fuster 1994). A strong gender 

association exists, with approximately three-quarters of the patients being male. While in the 

majority of the cases the etiology is unknown (idiopathic dilated cardiomyopathy), a number of 

specific causes have been identified, including genetic, viral, and immunological causes, plus 

alcohol and other toxic factors. 

3.4.2. Sudden cardiac death in dilated cardiomyopathy  

Although spontaneous improvement in ventricular function is possible (Figulla et al. 1985), the 

natural course of dilated cardiomyopathy is usually progressive, with increasing left ventricular 

dilatation and worsening pump failure. The mode of cardiac death in dilated cardiomyopathy is 

most commonly circulatory failure due to progressive deterioration of left ventricular function or 

SCD. The proportions of SCD in dilated cardiomyopathy vary widely between different studies. 

Differences in definitions of SCD, inclusion of nonclassifiable deaths in the sudden death 

category, patient selection, and pharmacologic interventions probably explain this variation. In a 

meta-analysis of 14 studies including 1432 patients, the mean mortality rate in a 5-year follow-up 

was 42%, with 28% of the deaths classified as sudden (Tamburro and Wilber 1992). Although 

data concerning the mechanisms of SCD in these patients are sparse, VT degenerating into VF or 

primary VF is considered the most important mechanism.  

3.4.3. Mechanisms of ventricular arrhythmias in dilated cardiomyopathy 

In dilated cardiomyopathy cases, the ventricular arrhythmia more often is VF or polymorphic VT 

(Grimm et al. 1998) than in postinfarction patients, in whom a monomorphic VT is the most 

prevalent form. Irregular myocardial replacement with fibrosis may lead to heterogeneous 

repolarization, rendering the heart vulnerable to ventricular arrhythmias. Using monophasic 

action potential mapping in patients with dilated cardiomyopathy, Dinerman et al. (1977) found 

nonuniformity of total ventricular recovery to be a result of dispersion of both local activation 

and refractory periods. Increased myocardial fiber stretch in a dilated ventricle, leading to 

shortening of refractoriness and load-dependent dispersion of refractoriness, may contribute to 

the occurrence of ventricular arrhythmias (Calkins et al. 1989).  

The findings in the long QT syndrome suggest that increased transmural dispersion is a typical 

finding when the arrhythmia is associated with abnormal repolarization, which results in 
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polymorphic VT (Shimizu and Antzelevitch 1998). Using human cardiac specimens, Koumi and 

coworkers reported in 1995 that the late repolarization phase is prolonged in patients with dilated 

cardiomyopathy compared to this phase in healthy controls and in those with ischemic 

cardiomyopathy. This prolongation was at least partly due to decreased conductance of the 

inwardly rectifying K+ channels. 

In patients with congestive heart failure, the sympathetic nervous system is activated, leading 

to elevated levels of circulating catecholamines (Cohn et al. 1984), which can provoke 

ventricular arrhythmias. Finally, pharmacologic agents used to treat cardiac diseases may be 

arrhythmogenic either indirectly (such as diuretics causing hypokalemia), or directly (such as 

antiarrhythmic agents inducing proarrhythmic electrophysiologic changes).  

3.4.4. Assessment of the risk of ventricular arrhythmias and sudden cardiac death in 

dilated cardiomyopathy 

In dilated cardiomyopathy, the diversity of possible mechanisms makes prediction and 

prevention of sudden death a difficult task. In addition, the progressive nature of the disease, 

leading to increasing fibrosis and dilatation, may diminish the value of risk stratification. Several 

clinical features as well as specific arrhythmia risk markers have, however, been applied in 

attempts at risk stratification. These will be dealt with in more detail in the following chapters. 

3.4.4.1. Clinical parameters, ambulatory ECG, and electrophysiologic study  

Although in dilated cardiomyopathy, many clinical and hemodynamic factors are related to total 

mortality, few of them are valuable in prediction of ventricular arrhythmias and of sudden death. 

The NYHA III-IV functional class is related to total mortality but not necessarily to the risk of 

sudden death (Romeo et al. 1989). In contrast, Brembilla-Perrot and coworkers (1991) found that 

syncope was a significant predictor of sudden death in these patients. A high incidence of 

appropriate shocks was found in those patients with dilated cardiomyopathy and syncope who 

had received an implantable defibrillator despite a negative electrophysiologic study (Knight et 

al. 1999). The same report also indicated that syncope in dilated cardiomyopathy is more often 

due to ventricular arrhythmia than to bradycardia.  

In dilated cardiomyopathy, both increased ventricular ectopy and nonsustained VTs are 

common, with more than 40% of all patients having at least one event of nonsustained VT in a 
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24-hour Holter recording, and most of these episodes are asymptomatic (Tamburro and Wilber 

1992). The prognostic value of spontaneous nonstustained ventricular arrhythmias has been 

under intensive investigation, and the results are controversial. In a study by Meinertz et al 

(1984), 93% of patients had an increased number of VPCs, and 36% had runs of nonsustained 

VTs. The number of VPCs correlated inversely with LVEF. Patients who died suddenly had had 

significantly more episodes of nonsustained VT, ventricular extrasystoles, and couplets than did 

patients who died of heart failure. Similarly, Romeo et al. (1989) found complex ventricular 

arrhythmia to be the only independent predictor of sudden death. Contrary to these findings, von 

Olshausen et al. (1988) did not report ventricular arrhythmias to predict sudden cardiac death; in 

fact, VT appeared more often in patients who died of heart failure than in those with SCD.  

Thus, it seems that although Holter ECG is a sensitive tool in detecting ventricular 

arrhythmias in these patients, the significance of Holter findings in assessment of the risk of 

ventricular arrhythmias and of sudden death remains to be assessed. 

Programmed ventricular stimulation, shown to predict future arrhythmic events after 

myocardial infarction, has not proven useful in dilated cardiomyopathy. Although monomorphic 

VT is frequently inducible in patients who present with this arrhythmia (Poll et al. 1986), 

noninducibility in patients with no clinical VT is common and does not indicate low risk for 

SCD (Meinertz et al. 1985). 

3.4.4.2. Signal-Averaged ECG 

Although LPs in SAECG have shown prognostic value after myocardial infarction, the results in 

dilated cardiomyopathy have been less conclusive. The prevalence of LPs has varied markedly 

between the reported series at least partly due to differing criteria for a positive finding, 

especially in patients with a bundle branch block. In addition, some studies have excluded 

patients with previous VTs, whereas others have not. Middlekauff and coworkers (1990) found 

LPs in only 14% of their dilated cardiomyopathy patients compared to 40% with remote MI. LPs 

predicted sudden death in neither group. On the other hand, their patients had advanced heart 

failure, and other mechanisms than ventricular arrhythmias may have been important in the 

sudden death. Mancini and coworkers reported in 1993 a very low incidence of sustained VT and 

SCD in patients with normal SAECG. In their study, SAECG was not performed in patients with 

bundle branch block. Results of a 2001 study by Goedel-Meinem et al. with its 7-year follow-up 
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showed a high rate of SCD, with the LP as a significant prognostic factor. In 2000 Fauchier and 

coworkers also had found LPs to predict major arrhythmic events and all-cause mortality. Thus, 

the most recent evidence suggests that LPs may be useful in risk stratification, but no agreement 

exists on the criteria for a positive result in dilated cardiomyopathy. 

3.4.4.3. Repolarization abnormalities 

QT interval dispersion as a risk marker in dilated cardiomyopathy has yielded conflicting results. 

Grimm and coworkers (1996) found more QT dispersion in patients with than without 

arrhythmic events but found marked overlap between the groups. In the 1996 study by Fei et al., 

as well QT dispersion failed to predict sudden death; their incidence of sudden death was very 

low, at least partly because patients with bundle branch block were excluded. On the other hand, 

in another prospective study, QT dispersion was the only independent predictor of sudden death 

(Galinier et al. 1998). Recently, microvolt-level T wave alternans in 12-lead ECG (Adachi et al. 

1999) and dispersion of the recovery time (interval from QRS onset to the moment of maximal 

dV/dT in the ST segment) in BSPM have shown promise in the identification of patients with 

dilated cardiomyopathy and VT (Aiba et al. 2000).  

3.5. Biomagnetism 

3.5.1. In general   

The movement of charged ions such as Na+, K+, and Ca2+ across cell membranes generates 

electrical potentials on the body surface which can be detected by electrographic mapping 

methods such as ECG. The same ion fluxes also generate electrical currents, which in turn give 

rise to magnetic fields. These magnetic fields can be registered outside the body, and 

measurement of the biomagnetic fields generated by the electrical activity of the human body is 

termed biomagnetism. The magnetic field strength is quantified with field density, whose unit is 

the Tesla (T). In comparison to body surface potential differences, the magnetic fields seem to be 

less influenced by the conductivity inhomogeneities of body tissues such as skeletal muscle layer 

(Bruder et al. 1994). This is especially advantageous when the electrical activity in question is of 

very low amplitude, or when the registration result is used in localization of the electrical activity 

inside the body that produces the registered external magnetic field (Mäkijärvi et al. 1992). On 

the other hand, the magnetic fields of the body are weak. For example, the magnetic field of the 
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heart is < 100 picotesla (1 pT = 10-12 T) and that of the brain ∼ femtotesla (1 fT = 10-15 T) (the 

earth’s magnetic field is ~ 10-4 T), and therefore some kind of shielding from external magnetic 

fields is usually necessary. Biomagnetic measurements have been performed on several organs 

with electrical activity including the brain (magnetoencephalogram, MEG), eye 

(magnetooculogram, MOG), and peripheral nerves (magnetoneurogram, MNG). 

3.5.2. Magnetocardiography 

3.5.2.1. History 

Magnetocardiography refers to the registering and interpretation of the magnetic fields generated 

by cardiac electrical activity; the registration result plotted versus time is called the 

magnetocardiogram (MCG). Baule and McFee registered in 1963 the first MCG using a set of 

two copper coils and no external shielding. In 1967, Cohen performed MCG measurements in a 

magnetically shielded room to cancel out the effects of external magnetic fields such as the 

earth’s magnetic field and that of urban traffic. A significant step forward was the invention and 

implementation of the SQUID (Superconducting Quantum Interference Device) in liquid helium 

at 4.2 K (-269°C) (Cohen et al. 1970). During the next two decades, MCGs were registered with 

single channel devices, and mappings were performed by placing the registering sensor at several 

locations over the thorax and measuring signals from one location at a time. The first reports 

describing normal MCG patterns were based on such mapping systems (Saarinen et al. 1978). In 

the 1990’s, multichannel devices have emerged, allowing simultaneous recording of the magnetic 

signals over large precordial areas (Van Leeuwen et al. 1999, Montonen et al. 2000). Today, 

MCG measurements can be performed with highly sensitive SQUID sensors in specially 

constructed magnetically shielded rooms, resulting in sensitivities < 5 fT/√Hz at 1-300 Hz. With 

a modern multichannel device, MCG registration can be performed in 10 to 15 minutes, 

rendering the method suitable for clinical patient measurements. 

3.5.2.2. Magnetocardiographic data presentation  

Most groups performing MCG nowadays limit the registration to the component of the magnetic 

field perpendicular to the anterior chest (the z-component). In MCG, the P, QRS, T, and U waves 

can be discerned, although their amplitude relationships and morphological details often differ 

somewhat from those of ECG. For example, the U wave in MCG is often more pronounced than 

in ECG. In addition to the conventional time domain presentation, it is sometimes more 
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informative to display the registration results as an isofield map where the registration points 

with the same field amplitude are connected with lines. These maps can be acquired at specific 

time instants or as isointegral maps (Figure 1) covering selected time periods such as the QRS 

complex or QRST interval.  

+

 

Figure 1. Magnetocardiographic isointegral map (left) over the entire QRS complex (right, shaded 

area). Map points with the same integral value are connected with lines. The solid lines indicate regions 

with a positive integral value (magnetic field directed into the chest) and dotted lines indicate areas with 

a negative value (magnetic field directed outward from the body). A dashed line marks zero integral 

value. 

3.5.2.3. Relationship between MCG and ECG 

Since the same electrical activity generates both ECG and MCG, the question whether MCG 

contains information not obtainable from ECG has been a subject of controversy. On the basis of 

the electromagnetic field theory, ECG is more sensitive to electrical currents radial to the body 

surface, whereas MCG is more sensitive to currents tangential to it. Normally, the radial currents 

predominate, but in cardiac diseases interfering with the spread of activation, the contribution of 

tangential currents may be increased (Siltanen 1989).  

Nousiainen and coworkers (1986) compared vector MCG to Frank lead vector ECG (Frank 

1956) and found MCG to be more sensitive to the terminal phase of the depolarization when the 

activation wavefront occurs in a more tangential direction than at the initial part. Accordingly, 
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Barry et al. (1977) found the angle between magnetic heart vectors of R and T waves to differ 

markedly from the corresponding electrical vector angle, suggesting that the electrical and 

magnetic measurements have different sensitivities to some components of cardiac electrical 

activity. Lant and coworkers in 1990 compared isointegral maps over depolarization and 

repolarization intervals in both MCG and BSPM in postinfarction patients and in healthy 

controls; they found that the isointegral BSPM maps in postinfarction patients show 

abnormalities mainly during the depolarization period, whereas in MCG, better discrimination of 

postinfarction patients result from use of the abnormalities in the repolarization period.  

MCG has shown promise in the localization of sources of cardiac electrical activity such as 

accessory pathways in Wolff-Parkinson-White syndrome (Mäkijärvi et al. 1992). Comparing 

MCG and BSPM in the localization of a pacing catheter in the heart, Pesola et al. (1999) found 

the localization accuracy of MCG to be superior to that of BSPM. 

It seems, therefore, that although the electrophysiologic basis of MCG and of ECG is the 

same, each method produces information that is not readily available from the other one. These 

methods thus act as complementary tools in the assessment of cardiac electrical activity. 

3.5.3. Magnetocardiography in postinfarction arrhythmia risk assessment 

3.5.3.1. High-resolution magnetocardiography and magnetic late fields 

In comparison to ECG, MCG is less influenced by intervening tissues between the heart and the 

registering device (Nenonen et al. 1996). In addition, MCG registering does not require skin-

electrode contact, which is prone to noise. In MCG, noise is mostly instrumental or ambient in 

nature, and thus can be reduced by effective shielding. These features have made MCG an 

interesting tool in the detection of small-amplitude cardiac electrical phenomena such as 

ventricular LPs. Findings at autopsy in patients with postinfarction VT include areas of thin, 

ribbon-like spared subendocardium (Bolick et al. 1986). These kinds of myocardial structures 

could possibly show predominantly tangential currents more readily detectable with MCG than 

with ECG. 

Erné and coworkers first described in 1983 late fields in signal-averaged MCG in three of four 

postinfarction patients who had LPs in SAECG. The presence of late fields after the QRS 

complex was judged by visual inspection, and they did not report whether those three patients 
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had ventricular arrhythmias. The late fields were of the order of 1 pT in amplitude and in two 

patients extended beyond the LPs. A study by Stroink et al. (1989) compared late fields and LPs 

in the identification of postinfarction VT propensity: in a population of 15 VT patients (11 post-

MI), 12 postinfarction non-VT patients, and 14 healthy controls, LPs in SAECG showed better 

discrimination between the groups than did late fields. With the ratio of the maximum amplitude 

of the R wave to the last 40 ms of QRS serving as their criterion of abnormality, they reported 

67% sensitivity and specificity for MCG. Another study with 10 postinfarction VT patients and 

10 postinfarction controls showed a sensitivity and specificity of 80% in VT identification, with 

the QRS duration > 115 ms serving as the criterion of abnormality (Mäkijärvi et al. 1993). In 

comparison to the work of Stroink et al., their registrations had lower noise levels and longer 

recording times together with different criteria for abnormality. Thus far, the studies on late fields 

have included patient populations very limited in numbers, and the VT and control groups have 

not been matched as to clinical parameters such as LVEF. In addition, no criteria exist for a 

positive finding in late fields. 

A few studies have attempted to localize the origins of late fields in the postinfarction 

myocardium (Weismüller et al. 1993, Leder et al. 1998). Although the first results have been 

encouraging, the significance of these findings remains to be confirmed. 

3.5.3.2. Intra-QRS fragmentation analysis in magnetocardiography  

Concurrently with the studies on late ventricular activity in MCG, parameters describing 

abnormal delayed conduction during the entire magnetic QRS have emerged. Intra-QRS 

fragmentation analysis applying binomial filtering to detect polarity changes inside QRS have 

shown promise in the discrimination between VT and non-VT patients after MI (Endt et al. 1998, 

Müller et al. 1999). Using a slightly different fragmentation analysis, Brockmeier and coworkers 

in 1997 reported increased intra-QRS fragmentation values also in patients with type I diabetes, 

and the values correlated with left ventricular mass index. The authors postulated that these 

findings may be due to intraventricular conduction disturbances and may serve as early signs of 

diabetes-associated cardiomyopathy.  

3.5.3.3. Magnetocardiography and postinfarction repolarization abnormalities  

MCG has shown promise in the detection of repolarization abnormalities both in postinfarction 

patients (Lant et al. 1990) and in patients with left ventricular overloading (Fujino et al. 1984). A 
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few studies have investigated repolarization inhomogeneities and postinfarction VT propensity. 

Stroink and coworkers (1992) compared MCG isointegral maps for QRS, QRST, and ST-T 

intervals between 15 VT patients (11 with remote MI) and 15 postinfarction controls. That the 

maps during the repolarization period in VT patients showed significantly more multipolarity 

suggests inhomogeneous repolarization. Trajectory plots investigating the spatial route of the 

map extrema showed even better discrimination between the groups. Another study comparing 

these sophisticated analysis methods suggested that MCG is slightly more sensitive than BSPM 

in the assessment of the repolarization abnormalities associated with VT propensity (Stroink et 

al. 1999). 

Few studies have investigated dispersion of the QT intervals in MCG. Using a 37-channel 

MCG, Van Leeuwen and coworkers compared conventional QT dispersion (the difference 

between the longest and the shortest QT interval) to a newly developed index better describing 

local variations of QT intervals. Their 1996 results showed that the parameter they termed 

smoothness index was superior in discriminating postinfarction patients from healthy controls. 

Unfortunately, their study did not include VT patients, and so the value of the method in 

postinfarction risk stratification remains to be assessed. 

Manual measurements in clinical practice of QT intervals from multichannel registrations are 

tedious. Oikarinen et al. presented in 1998 an automated method for QT interval analysis in 

MCG registrations. In a postinfarction population with 10 VT and 8 control patients, they 

discovered by use of several dispersion parameters increased QT dispersion in the VT patients. 

The differences were significant both in manual and in automated measurements. The automated 

measurements correlated strongly with the manual measurements as regards QT apex dispersion 

and less strongly but yet significantly with QT end dispersion.  

3.5.4. Magnetocardiography and arrhythmia risk in other heart diseases  

Few studies have investigated MCG in arrhythmia risk assessment in other than ischemic heart 

disease, and the populations studied have been small. The relative smoothness score describing 

temporal fluctuation in magnetic field distribution during the ST segment revealed more 

fluctuations in patients with diverse cardiomyopathies associated with ventricular arrhythmias 

than in patients with no severe arrhythmias (Schmitz et al. 1989). In contrast, another study 

showed the sensitivity of the relative smoothness score in identifying cardiomyopathy patients 
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with ventricular arrhythmias to be only 40%, with 50% specificity (Fenici and Melillo 1993). The 

patient groups in both studies were inhomogeneous, comprising various cardiomyopathies and in 

the Fenici and Melillo study the criterion for a severe ventricular arrhythmia was Lown grade 3 

or higher, with only a few patients having sustained VT. 

Repolarization disparities related to idiopathic long QT syndrome seem to be detectable with 

MCG, as well. Rovamo and coworkers (1995) investigated 13 children with long QT syndrome, 

both with and without symptoms. All patients showed beat-to-beat variability in T wave 

morphology. When the isofield maps during the T wave were analyzed with eigenvectors for data 

reduction, the symptomatic patients displayed more disparity in their maps, suggesting more 

heterogeneous repolarization. The relative smoothness score has also shown lower values in this 

patient group (Brockmeier et al. 1989). 
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4. AIMS OF THE STUDY  

This thesis aimed at examining MCG in assessment of ventricular arrhythmia risk in heart    

disease. More specifically, the aims of the six substudies were to investigate: 

1. The ability of MCG late fields to identify patients after MI who show a propensity to 

sustained VT.  

2. Whether fragmentation of the QRS complex in MCG is increased in patients with 

postinfarction VT. 

3. In postinfarction patients, relationships of the MCG arrhythmia risk parameters to other 

cardiac variables, especially left ventricular function and infarct location. 

4. In patients with postinfarction VT undergoing arrhythmia surgery, the relationships of MCG 

arrhythmia risk parameters to delayed conduction recorded in the area surrounding the 

infarct scar. 

5. Both in patients with remote MI and in patients with dilated cardiomyopathy, how MCG 

parameters describing delayed conduction and abnormal repolarization are associated with a 

propensity to sustained ventricular arrhythmias. 

6. The comparison between MCG late fields and LPs in orthogonal three-lead SAECG and 

BSPM in the identification of a propensity to postinfarction sustained VT. 

5. PATIENTS AND METHODS 

5.1. Study patients 

The study population comprised an overall total of 205 patients admitted to the Department of 

Cardiology of Helsinki University Central Hospital during the period between August 1995 and 

January 2001. Of these, 156 had a remote MI, and 49 had nonischemic dilated cardiomyopathy. 

The patients with remote MI were subdivided into those with (62 patients) and without (94) 

documented VT or VF. Postinfarction patients with VT or VF were admitted to undergo 

electrophysiologic studies, and the non-arrhythmia controls had come for diagnostic coronary 

arteriography. Accordingly, the cardiomyopathy patients were divided into those with (18) and 

without (31) documented sustained ventricular arrhythmias. The arrhythmia patients were 

referred to electrophysiologic studies, and most of the controls were hospitalized due to 
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worsening heart failure. In addition, 17 healthy controls with no history or signs of 

cardiovascular disease were studied; each had a normal echocardiogram and performed a bicycle 

exercise test without either chest pain or ischemic ST segment changes.  

The aim in patient selection was consecutive recruitment, but for administrative reasons it was 

not always possible to follow this principle strictly. Furthermore, at the later stage of the study, 

only postinfarction patients with LVEF ≤ 40% were recruited, to furnish a subgroup with 

characteristics comparable to those of arrhythmia patients. The patient population was further 

distributed among six substudies (Table 1). Patients with a permanent pacemaker were excluded 

because the moving pacemaker lead causes significant artifacts in the MCG signal. In addition, 

patients with a complete bundle branch block in 12-lead ECG were excluded from the 

postinfarction population. 

Table 1. Distribution of 205 study patients among 6 substudies 

Substudy Heart disease VT patients Non-VT patients Study recordings 

Study I Postinfarction 38 62 MCG, SAECG 

Study II Postinfarction 53 83 MCG 

Study III Postinfarction 22 - MCG, 

intracardiac 

Study IV Postinfarction 22 22 MCG, BSPM, 

SAECG 

Study V Postinfarction 32 28 MCG, 12-lead 

ECG 

Study VI Dilated 

cardiomyopathy 

18 31 MCG, 12-lead 

ECG 

  

MCG = magnetocardiography, SAECG = signal-averaged ECG, BSPM = body surface 
potential mapping  

Study I 

These study groups comprised patients having suffered a remote MI. The VT group comprised 33 

patients with a history of documented sustained (over 30 seconds) monomorphic VT and 5 with a 

history of VF not related to acute MI and inducible to sustained monomorphic VT. In the 
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electrophysiologic study, sustained monomorphic VT was inducible in 30 (79%) patients. Non-

sustained VT was inducible in three (8%) and VF in two (5%) patients. The control group 

comprised 62 patients who had suffered an MI more than 6 months previously and had no history 

of sustained ventricular arrhythmias. 

Study II 

The VT group comprised 53 patients who had suffered a remote MI: 46 had a history of 

documented sustained (over 30 seconds) monomorphic VT and 7 a history of VF not related to 

acute MI and inducible to sustained monomorphic VT. Such sustained monomorphic VT was 

inducible in 44 (83%) patients, including all who had presented with VF. Polymorphic VT was 

inducible in 3 (6%) patients and non-sustained VT in one (2%).  

Those in the VT group were slightly older than controls (Table 2). They had a significantly 

lower LVEF (31 ± 9 vs. 41 ± 15%, p < 0.001) and more often had a left ventricular aneurysm. 

The control group comprised 83 patients with an MI more than 6 months previously and with no 

history of sustained ventricular arrhythmias. 

There were 94 patients (46 in the VT group and 48 in the control group) who had LVEF ≤ 

40% and thus comprised a subgroup, each with a large infarction and marked left ventricular 

dysfunction (Table 2).  

Study III 

The study population comprised 22 patients with a remote MI who were subjected to arrhythmia 

surgery because of a sustained ventricular arrhythmia late after infarction. The presenting 

arrhythmia was sustained monomorphic VT in 19 and VF in 3 patients. The infarct location was 

anterior in 15 (68%) and inferior in 7 (32%), and 15 (68%) patients had a left ventricular 

aneurysm. In the electrophysiologic study, sustained monomorphic VT was induced in 20 (90%) 

patients including all 3 with VF as their presenting arrhythmia. All patients were in sinus rhythm. 

Study IV 

The study population comprised 44 patients with a history of MI and cardiac dysfunction defined 

as LVEF ≤ 45%. These patients were divided into two groups based on a history of sustained VT. 

The VT group comprised 22 patients with a remote MI and who were referred to 

electrophysiologic study: 17 patients had a history of documented sustained (over 30 seconds) 
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monomorphic VT and 5 had a history of VF. Sustained monomorphic VT was inducible in all 

patients. 

The control group comprised 22 consecutive patients having had an MI more than 6 months 

previously but with no history of sustained ventricular arrhythmias. All had been admitted for 

diagnostic coronary arteriography. In a follow-up of 31 ± 12 months, 20 of 22 (91%) of the 

control patients remained free of sustained ventricular arrhythmias and sudden death. 

Table 2. Characteristics of postinfarction patients in Study II. Characteristics for both the 

whole study population (n=136) and for the subgroup of patients with left ventricular ejection 

fraction ≤ 40% (n=94) are given. 

 VT Group Non-VT Group P-value 

All patients N = 53 N = 83  

Age (years) 62 ± 8 59 ± 9  0.038 

Gender (M/F) 47/6 70/13 0.48 

LVEF (%) 31 ± 9 41 ± 15   < 0.001 

Infarct location: anterior/inferior/both 27/16/9 36/36/9 0.47 

Arteriography: 1/2/3 vessel disease 8/22/23 21/20/41 0.10 

Left ventricular aneurysm 24 (45%) 6 (7%)   < 0.001 

Patients with LVEF ≤≤≤≤ 40% N = 46 N = 48  

Age (years) 62 ± 7 61 ± 8 0.28 

Gender (M/F) 40/6 43/5 0.69 

LVEF (%) 29 ± 7 31 ± 8 0.19 

Infarct location: anterior/inferior/both 25/12/9 23/20/5 0.20 

Arteriography: 1/2/3 vessel disease 5/19/22 3/15/29 0.38 

Left ventricular aneurysm 21 (46%) 5 (10%)   < 0.001 

 

LVEF= left ventricular ejection fraction, VT= ventricular tachycardia  

Study V 

The VT group comprised 32 patients with a remote MI and either a clinical history of 

documented sustained monomorphic VT (n = 26) or a history of cardiac arrest not associated 
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with acute MI and inducible into sustained monomorphic VT in the electrophysiologic study (6). 

The postinfarction control group comprised 28 patients with a history of remote MI, but with no 

history of sustained ventricular arrhythmias. The MI controls were matched as a group with the 

VT group in regard to LVEF. The healthy controls comprised 13 (12 men; mean age 55 ± 7 

years) non-smoking volunteers with no history or signs of cardiovascular disease.  

Study VI 

The study population comprised 49 consecutive patients with nonischemic dilated 

cardiomyopathy hospitalized for life-threatening ventricular arrhythmias or cardiac dysfunction. 

Patients with a history of sustained VT or VF (18) comprised the arrhythmia group, and patients 

without such arrhythmias or syncope (31) comprised the control group. Coronary arteriography 

was performed in 16/18 patients in the arrhythmia group; in 12 patients no stenoses were present. 

Four patients showed ≥ 50% luminal narrowing in one or two main coronary artery branches, but 

the global ventricular dilatation and dysfunction were disproportionate to arteriographic findings. 

In the control group, coronary arteriography was performed in 16/31 patients, and two of them 

had ≥ 50% luminal narrowing.  

In the arrhythmia group, the presenting arrhythmia was VF in 12 patients (67%), with 

sustained VT in 6 (33%). In the electrophysiologic study, sustained monomorphic VT was 

induced in 5 (29%), polymorphic VT in 3 (18%), and VF in one (6%), whereas 8 patients (47%) 

were noninducible.  

Six patients in the arrhythmia group and four in the control group (p = NS) were in atrial 

fibrillation during the study, and six arrhythmia patients and eight controls had a complete bundle 

branch block in 12-lead ECG (p = NS).  

5.2. Magnetocardiographic recording and data processing 

High-resolution MCG recordings were made within a few days before or after the 

electrophysiologic study (arrhythmia patients), and any antiarrhythmic medication was 

discontinued for at least five half lives before the recording. In Study III the postoperative 

registration was performed one to two weeks postoperatively, at the time of hospital discharge. 

The measurements were performed in a magnetically shielded room (Euroshield Ltd., Eura, 

Finland) in the BioMag laboratory of Helsinki University Central Hospital. A 67-channel 
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cardiomagnetometer (Neuromag Ltd., Helsinki, Finland) was employed. This 

cardiomagnetometer is equipped with 7 coaxial and 60 planar dc-SQUID gradiometers, arranged 

on a slightly curved surface with a diameter of 30 cm (Figure 2). The gradiometers record the 

component of the magnetic field perpendicular to the bottom of the instrument. The patient lay 

on a non-magnetic bed, and the center of the gradiometer grid was placed in a position 15 cm 

caudally from the jugular notch and 5 cm left of the midline with a slight tilt towards the left side 

of the anterior chest. The grid was always brought as close to the chest as possible without 

touching it. The MCG signal was recorded at rest for 5 minutes.  

Recordings were band-pass filtered at 0.03-300 Hz, digitized with a sampling frequency of 1 

kHz, and stored on a computer disc. An automatic signal averaging 150 to 250 cardiac cycles was 

performed offline to reduce the noise level. The root mean square noise level was determined 

during a 40-ms time interval in the ST segment of a 40-Hz high-pass filtered signal, and channels 

with a mean noise level ≥ 35 fT were rejected from analysis. 

-

 

Figure 2. Schematic illustration of channel positions in the cardiomagnetometer. Original axial 

channels utilized in late field and intra-QRS fragmentation analyses ( ). Each pair of planar channels 

( ). In repolarization analyses, data from each planar channel pair were transformed to correspond to 

data recorded from a single axial channel in the same position, resulting in 33 axial channels (7 original 

+ 26 transformed). 
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5.2.1. Time domain analysis in magnetocardiography 

Before time domain analysis, the averaged QRS complexes were high-pass filtered to suppress 

the low frequency ST segment and T wave. A bi-directional infinite impulse response filter (type 

Butterworth, fourth order) with a 40 Hz cut-off frequency was utilized. After high-pass filtering, 

an envelope complex was formed, utilizing a Hilbert-transform realized by a finite impulse 

response filter (Montonen et al. 1988). 

The beginning and end of the QRS complex were automatically defined following the 

guidelines published by Simson based on the noise levels of the filtered signal both before and 

after the QRS complex (Simson 1981). The following indexes for MCG late field parameters 

were computed: QRS duration (QRSd), root mean square amplitude (RMS) of the magnetic field 

strength during the last 40 ms of the QRS complex (RMS40), and duration of the low amplitude 

signal (LAS) below 300 and 500 fT (LAS300 and LAS500) at the end of the filtered QRS (Figure 

3). In the final analyses, the average values of the 7 (Studies I-V) or 33 transformed axial 

channels (Study VI, described in section 5.4) were used.  

5.2.2. Intra-QRS fragmentation analysis in magnetocardiography 

The same averaged QRS complexes were used as described for time domain analysis (Studies II, 

III). A binomial high-pass filter of the 90th order with a cut-off frequency of 37 Hz was 

implemented. Next, high-frequency components were removed by application of a binomial low-

pass filter with a 90 Hz cut-off frequency. To quantitate the intra-QRS fragmentation of these 

bandpass-filtered signals, the number of polarity changes or extrema M inside the QRS complex 

was computed. A Fragmentation score of S describes intra-QRS notching by covering the 

number of amplitude extremas and their magnitudes within the QRS complex (Figure 4). The 

computations were performed with custom-made software according to the guidelines of Müller 

(1999). 

5.3. Reproducibility and high-pass filtering cut-off frequency 

In order to find the optimal cut-off frequency for high-pass filtering of the averaged MCG 

signals, a comparison was made between 25 and 40 Hz. Both reproducibility and ability to 

identify postinfarction VT patients were investigated. Previously, Mäkijärvi and coworkers, in a 

1993 report comprising 10 VT and 10 postinfarction controls, found that 25 Hz was superior to 
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40 Hz in separating the groups. They also applied infinite impulse response filters, but these were 

of a high order and of the Chebysev type, in comparison to the fourth order Butterworth type 

filter of the present study. The effects of the cut-off frequencies are therefore not identical 

between these filter types. Butterworth type filters are most frequently applied in SAECG 

analysis, and applying them in MCG may facilitate comparison between the methods. The 

Butterworth, like other infinite impulse response filters, has sharp transitions at the cut-off 

frequencies, but this type of filter may cause a phenomenon known as filter ringing, which can 

distort the analysis of late fields. Therefore, in the analysis of late fields, bi-directional filtering 

by the guidelines of Simson (1981) is advantageous. 

LAS300

QRSd

RMS40

300 fT

20 ms noise interval 40 ms noise interval

fT

1000

2000

ms

500

500

 

Figure 3. Principles of calculating magnetocardiographic late field parameters from the high-pass 

filtered QRS complex. QRSd (dotted line between vertical bars) denotes duration of the QRS complex. 

The beginning and end of the QRS are defined on the basis of noise intervals both before and after the 

QRS complex. LAS300 (dashed line) denotes duration of later part of the QRS with amplitude < 300 fT. 

RMS40 (shaded area) is root mean square amplitude during the last 40 ms of the QRS complex.   
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Figure 4. Principles of intra QRS fragmentation analysis. Number of polarity changes (=fragmentation 

index M, 1-14) is computed. Polarity change refers to the change in the direction of the amplitude 

transformation from growth to reduction or vice versa. Next, the amplitude difference of each adjacent 

extrema is computed, and differences are summed (difference between fourth and fifth extrema is 

indicated with a dashed line). Finally, the difference between first and last extrema is added to this sum 

to yield the fragmentation score S. 

Besides comparing the reproducibility of different filter settings in time domain analysis, the 

reproducibility of intra-QRS fragmentation parameters was investigated in the same patient 

population. Intra-QRS fragmentation analysis was preceded by binomial filtering 37-90 Hz as in 

section 5.2.2.  

Of the 18 subjects (12 male, age 49 ± 16 years) studied, 11 had coronary artery disease (one 

with remote MI) with no documented sustained VTs, 3 suffered from postinfarction sustained 

monomorphic VTs, and 4 were healthy controls. Each subject was registered twice by the 

protocol described in section 5.2. After signal averaging, high-pass filtering was performed with 

both 25 and 40 Hz cut-off frequencies utilizing a bi-directional filter (Butterworth, fourth order). 

Time domain and intra-QRS fragmentation parameters were computed as described in sections 

5.2.1. and 5.2.2.  
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The reproducibility of the numeric results was determined separately for each variable of time 

domain and intra-QRS fragmentation analyses. For each subject and variable studied, the mean 

and SD of the two measurements were computed. Next, the coefficient of variation for each 

parameter was calculated as SD divided by the mean value; higher values indicate lower 

reproducibility. Finally, the average value of the coefficient for each parameter in the test 

population was computed. The coefficients of corresponding time domain parameters in 25 and 

40 Hz cut-off frequencies were compared, and the significance of the differences was tested with 

a two-tailed Wilcoxon signed rank test. 

QRSd was the most reproducible of the time domain parameters at both 25 and 40 Hz cut-off 

frequencies, with a mean coefficient of variation of 3 ± 2% and 4 ± 2%, respectively (p = NS for 

difference) (Figure 5). RMS40 was the least reproducible time domain parameter at both cut-off 

frequencies with a mean coefficient of 18 ± 21% in 25 Hz and 17 ± 28% in 40 Hz high-pass 

filtering (p = NS). The LAS parameters were more reproducible at 40 Hz, although the difference 

was statistically significant only at LAS300 (12 ± 8% at 25 Hz and 8 ± 7% at 40 Hz, p = 0.015).  

The fragmentation index M displayed good reproducibility with a coefficient of variation of 5 

± 3%; the reproducibility of fragmentation score S was also adequate, with a coefficient of 

variation of 10 ± 6%. 

5.3.1. Comparison of 25 and 40 Hz high-pass filtering in identification of VT propensity  

A subset of 44 patients with remote MI was studied, 22 with and 22 without sustained VT. MCG 

recording, signal-averaging, and time domain analyses were performed as described in 5.2. 

QRSd, RMS40, and LAS300 were computed in both groups. To compare 25 and 40 Hz cut-off 

frequencies, receiver operating characteristic (ROC) curves characterizing VT identification were 

created for each parameter at both cut-off frequencies as described in section 5.11. The areas 

under the ROC curves were calculated. 

The area under the curve was 0.72 for QRSd both at 25 and at 40 Hz cut-off frequencies and 

0.74 for RMS40 at both frequencies. In LAS300, the area under the curve was 0.72 at 25 Hz and 

0.77 at 40 Hz cut-off frequency.  

On the basis of the comparisons above, a 40 Hz cut-off frequency was therefore applied in all 

the time domain analyses of this study. 
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Figure 5. Reproducibilities of the magnetocardiographic parameters. Each box shows median, upper 

and lower quartiles, and extreme values of the coefficient of variation of each parameter within the study 

group. Higher value = lower reproducibility 

5.4. Analysis of repolarization parameters in magnetocardiography 

For measurements related to ventricular repolarization (Studies V, VI), the averaged MCG 

signals from 7 axial and 60 planar gradiometers were transformed to correspond to the data of 33 

axial channels (Figure 2). This validated approach makes the MCG channels comparable to each 

other and enables comparison of MCG data recorded with different multisensor systems 

(Numminen et al. 1995, Burghoff et al. 2000). The QT interval analyses were performed 

automatically with a computer-based algorithm (Oikarinen et al. 1998). In brief, in each channel 

the peak of the T wave was determined as the peak of a parabola fitted to the highest amplitude 

deviation from the T-P baseline. The end of the T wave was determined by finding the 

intersection of the steepest tangent fitted to the descending limb of the T wave and the T-P 

baseline (slope-intercept method). Channels with a T wave amplitude < 600 fT were 
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automatically excluded from analysis as were channels with a QTend interval < 200 ms or > 600 

ms and channels with a QTpeak interval < 200 ms or > 550 ms. 

After automatic determination of the T wave time instants, all channels were visually 

inspected on the computer screen, where checkmarks were used to mark the peak and the end of 

the T wave. If the checkmarks were clearly misplaced, the channel was excluded from further 

analysis. The number of accepted channels in Studies V and VI ranged from 27 to 31 in the 

arrhythmia groups and from 26 to 30 in the control groups. Since the QRS-T complex averaged 

in each channel was formed with the same simultaneously recorded beats, a common onset of the 

QRS (Q onset) for QT interval measurements was defined as the median of all the QRS onsets in 

the 33 channels, determined as described above for time domain analysis. 

Finally, in each channel, QTpeak interval was calculated as the time interval between Q onset 

and T wave peak, and QTend interval was calculated as the time interval between Q onset and T 

wave end. The T wave peak to T wave end (TPE) interval was calculated in each channel as the 

time interval from T wave apex to T wave end. From the transformed 33 axial channels, the 

QTpeak dispersion was calculated as the difference between maximal and minimal QTpeak 

intervals, and the SD of all QTpeak intervals. The corresponding variables were computed for 

QTend intervals. QT intervals were rate-corrected by the nomogram method (Karjalainen et al. 

1994) (Study V) or according to the Bazett equation (Bazett 1920) (Study VI). QT dispersion, 

SD, and TPE interval did not show a significant correlation with heart rate and were thus  

calculated from noncorrected data. 

5.5. Analysis of repolarization parameters in ECG  

ECG recordings were performed a few days before or after the electrophysiologic study 

(arrhythmia patients), and any antiarrhythmic medication was discontinued for at least five half 

lives before the recording (Studies V, VI). Standard 12-lead electrocardiograms were recorded at 

a paper speed of 50 mm/s. The ECGs were measured in a blinded fashion on a digitizing board. 

Time from the onset of the QRS complex to the peak and to the end of the T wave was measured 

with calipers from two consecutive complexes. T wave end was defined as the return to the T−P 

baseline. In cases with U waves, the T wave end was measured to the nadir of the curve between 

the T and U waves. Any lead where the T wave could not be reliably identified was excluded. 
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The repolarization parameters were calculated analogous to MCG data. In the final analysis, the 

average of the two measurements in each lead was used. 

5.6. SAECG recordings and data analysis 

SAECG recordings were performed a few days before or after the electrophysiologic study, and 

any antiarrhythmic medication was discontinued for at least five half lives before the recording 

(Studies I, IV). The measurements were performed at rest to record 150 to 250 complexes. In 

Study I, a commercial registering device (MAC 12, Marquette Electronics Inc., Milwaukee, 

WI., USA) with modified Frank leads (Frank 1956) and disposable Ag/AgCl electrodes were 

used for data registration and signal averaging. In Study IV, the SAECG leads were derived from 

the BSPM electrodes at positions corresponding to modified Frank leads, and the registration and 

signal averaging were performed with a custom-made data collection and signal averaging 

system (Simelius et al. 1996).  

Signals were band-pass filtered at 0.03 (Study I) or 0.16 (Study IV) -300 Hz and digitized at a 

sampling frequency of 1 kHz. High-pass filtering of the averaged signal from each bipolar lead 

was performed off-line at the same filtering software and cut-off frequency of 40 Hz as for the 

MCG data. The filtered leads were combined in a vector magnitude (X2+Y2+Z2)1/2. The onset 

and offset of the QRS complex were determined analogous to the MCG data. The root mean 

square noise level was analyzed during a 40 ms time interval in the ST segment, and recordings 

with a mean noise level ≥ 1 µV were rejected. Finally, QRSd, RMS40, and LAS40 were 

computed from the vector magnitude. 

5.7. BSPM recordings and data analysis 

BSPM recordings were performed a few days before or after the electrophysiologic study, and 

any antiarrhythmic medication was discontinued for at least five half lives before the recording 

(Study IV). With Wilson’s central terminal as a reference (Wilson et al. 1934), 63 unipolar leads 

covering the anterior thorax were applied. The Ag/AgCl electrodes were used at a vertical 

interelectrode distance of 5 cm. The electrodes were attached to nine flexible plastic strips, each 

containing seven electrodes. These strips were attached to the anterior torso vertically with the 

highest electrode density on the left (Figure 6). The horizontal distances between the electrode 
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strips were determined individually according to the dimensions of the thorax. BSPM was 

recorded in the supine position at rest for 5 minutes to collect 150 to 250 complexes. Recordings 

were band-pass filtered and digitized analogous to SAECG data (Study IV). Signal averaging, 

time domain analysis, and determination of QRS onset and offset were performed 

correspondingly. QRSd, RMS40, and LAS40 were computed for each lead separately. 

4th
intercostal
space

Center
line  

Figure 6. Body-surface sites of 63 BSPM electrodes. 

5.8. Coronary arteriography, left ventriculography, and electrophysiologic study  

Coronary arteriography was performed and LVEF calculated from cineangiograms in right 

anterior oblique projection by the area-length method (Studies I-VI). In Study VI, LVEF was 

determined in some patients by 2-dimensional echocardiography. A significant coronary artery 

stenosis was defined as ≥ 50% narrowing of the vessel diameter. Left ventricular aneurysm was 

defined as a left ventricular wall region with paradoxical systolic motion. 

Programmed ventricular stimulation was performed by use of 600 and 400 ms drive cycle 

lengths and with up to three extrastimuli in the right ventricular apex and outflow tract. Sustained 

monomorphic VT was defined as monomorphic VT lasting over 30 seconds or requiring 

cardioversion for hemodynamic instability. 
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5.9. Intraoperative cardiac mapping and data analysis 

Local cardiac electrograms were registered in sinus rhythm with commercial hardware and 

software (CardioMap, Prucka Engineering Inc., Houston, TX, USA). The epicardial 

electrograms were registered by means of an epicardial electrode jacket with 102 bipolar 

electrodes arranged in 12 strips each containing 7 or 10 bipolar electrodes with a 4-mm interval 

between the electrodes in each pair. This jacket is stretchable in order to cover even grossly 

dilated ventricles, and the interelectrode distance thus varies slightly depending on heart size. 

Sinus rhythm electrograms were typically registered for 5 to 10 seconds. Next, VT was induced 

by programmed stimulation via epicardial temporary leads. The site of the earliest epicardial 

activation during VT was recognized in the activation sequence maps according to the standard 

procedure. To register endocardial electrograms, left ventriculotomy via the infarct scar was 

performed, and an inflatable endocardial electrode balloon was inserted in the ventricular cavity. 

The balloon consists of 72 bipolar electrodes arranged in 12 strips, each containing six bipolar 

electrodes with a 4-mm interval between each bipole pair. The anatomical distance between the 

electrodes varies by chamber size. Registration of the sinus rhythm electrograms and VT 

mapping were performed as for the epicardial data. 

Although it was impossible to place all the electrodes in contact with the epicardium and 

endocardium, care was taken to ensure adequate contact in the infarct area and in neighboring 

areas. For the final analysis, electrograms with artifactual signals were excluded. Nine surface 

ECG leads were registered simultaneously with local electrograms for time reference. 

The time when the depolarization signal returned to baseline was determined for each local 

electrogram. The onset of the QRS complex on surface leads served as a reference. The latest 

epicardial and endocardial excitations were examined separately and combined for the latest 

overall excitation. The end of ventricular excitation was found to be epicardial in the majority 

(14/22) of cases. 

5.10. Definition of remote myocardial infarction 

The diagnosis of remote myocardial infarction was based on a history of typical chest pain 

together with new q-waves in 12-lead ECG. Alternatively, a significant increase in the plasma 
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creatine kinase cardiac isoenzyme level, or an akinetic or dyskinetic ventricular wall in an area 

supplied by a stenosed coronary artery was required for infarct diagnosis (Studies I-V). 

5.11. Statistical methods 

Continuous variables are presented as mean ± SD values and discrete variables as frequencies 

and percentages. Comparisons between any two groups were made by the Student t-test or Mann-

Whitney U-test for continuous variables and the Chi-square test or Fisher’s exact test for discrete 

variables. Paired-samples t-test was used to compare the MCG parameter values before and after 

the operation (Study III). Comparison of continuous variables between multiple groups was 

performed with the Kruskal-Wallis test.  

Spearman’s rank correlation test or Pearson’s correlation coefficient served to study the 

correlations between various variables.  

Multivariate analyses were performed to evaluate the relative information content of 

individual variables in classifying patients to VT and control groups using stepwise logistic 

regression analysis and a p-value of 0.05 as the limit to entry into the equation and a p-value of 

0.10 as the limit to be removed from the equation. 

Sensitivity was defined as the percentage of abnormal test results in the patient group and 

specificity as the percentage of normal test results in the control group. ROC curves were created 

for various parameters to assess their performances in the identification of patients with a 

propensity to VT. The areas under the curves are given in fractions of the maximum value 1, 

which would be the result of a test yielding a 100% sensitivity and specificity. Cut-off values 

were dichotomized for various parameters by selecting the parameter value resulting in the 

maximum sum of sensitivity and specificity in classification of patients to VT or control groups. 

Positive predictive value was defined as the percentage of patients with abnormal test results who 

were correctly diagnosed as VT patients, and negative predictive value as the percentage of 

patients with normal test results who were correctly diagnosed as non-VT controls. 

A two-tailed p-value < 0.05 was considered statistically significant. SPSS for Windows 

(version 8.0 or 10.0) biostatistic software was used. 
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6. RESULTS  

6.1. MCG late field parameters in patients with postinfarction ventricular 

tachycardia  

Time domain parameter values differed significantly between VT and control patients. QRSd 

was 137 ± 26 ms in the VT group and 110 ± 18 ms in controls (p < 0.001). RMS40 and LAS300 

also differed between the study groups (Table 3) (Study I).  

Table 3. Magnetocardiographic late field parameters in postinfarction VT and non-VT 

patients in Study I. 

Parameter VT Patients Non-VT patients P-value 

 N = 38 N = 62  

QRS duration (ms) 137 ± 26 110 ± 18 < 0.001 

RMS40 (fT) 260 ± 170 510 ± 360 < 0.001 

LAS300 (ms) 42 ± 19 27 ± 11 < 0.001 

 

VT = ventricular tachycardia, fT = femtotesla (10-15 Tesla)  

The dichotomized cut-off values in a larger patient population (n = 136) yielded sensitivities 

between 72% and 87% and the specificities between 70% and 72%, with LAS300 as the most 

strongly discriminating parameter (Table 4). The combination of the dichotomized parameter 

values (at least two of the following: QRSd > 121, RMS40 < 250 fT, LAS300 > 32 ms) did not 

result in any better discrimination than did LAS300 alone (Study II). 

Table 4. Sensitivity and specificity of time-domain late field parameters in classification to 

ventricular tachycardia group among postinfarction patients (Study II). 

Parameter  Cut-off Value Sensitivity Specificity 

QRS duration (ms) ≥ 121  72% 72% 

RMS40 (fT) < 250  81% 72% 

LAS300 (ms) > 32  87% 70% 

  



  

                                                                               52

6.2. MCG intra-QRS fragmentation in postinfarction ventricular tachycardia  

Both fragmentation index M and score S differed significantly between VT and control patients 

(Study II). M was 12 ± 3 in the VT group and 9 ± 2 in the control group (p < 0.001), and the 

corresponding figures for S were 83 ± 42 vs. 56 ± 21 (p < 0.001). The dichotomized cut-off 

values yielded 75% sensitivity and 69% specificity for M in VT identification, and the 

corresponding values for S were 77% and 61%. The combination of the dichotomized values (M 

> 9.5 or S > 57.5 as the criteria for abnormality) resulted in a sensitivity of 87% and specificity 

of 61%. 

The fragmentation parameters correlated with time domain parameters, the strongest 

correlation being between QRSd and fragmentation score S (r = 0.81, p < 0.001). Since a longer 

QRS complex might manifest more polarity changes than a shorter one also in a control patient, 

the discriminative ability of the fragmentation parameters was tested by limiting the analysis to 

the last 40 ms of the QRS. In addition, VT identification was further tested with the indexes M 

and S normalized by dividing them by the corresponding QRSd. Neither approach resulted in any 

better discrimination. 

6.3. Relation of late field and intra-QRS fragmentation parameters to cardiac 

variables  

In the subgroup with a large infarction and LVEF ≤ 40%, parameter values in the arrhythmia-free 

control patients were closer to those of the VT patients than in the entire study group. Yet the 

differences between groups remained significant (Table 5). The infarct location also had an 

impact on parameter values; the parameters showed larger differences between VT and control 

patients in the subgroup with an anterior infarction, although the parameters differed also in the 

inferior MI group (Study II). 

The criteria based on combinations of dichotomized cut-off values yielded sensitivities of 75 

to 89% for both time domain and intra-QRS fragmentation parameters in all subgroups. On the 

other hand, the specificities were lower, especially in the subgroup with LVEF ≤ 40% (56% with 

time domain and 42% with intra-QRS fragmentation criteria). 

QRSd showed moderate inverse correlation with LVEF (r = − 0.60, p < 0.001), whereas 

RMS40 (r = 0.41, p < 0.001) and LAS300 (r = − 0.40, p < 0.001) showed weaker correlations. 
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When the VT group was analyzed separately, however, the correlation between QRSd and LVEF 

was poor (r = − 0.33, p = 0.014), and neither RMS40 nor LAS300 showed any correlation. 

Similarly, the fragmentation parameters M and S showed a correlation with LVEF in the entire 

patient population (r = − 0.53 and − 0.54), whereas in the VT group the correlations were 

negligible (r = − 0.28 and – 0.27). None of the time domain or intra-QRS fragmentation 

parameters showed any correlation with age.  

In stepwise logistic regression analysis, QRSd, RMS40, and the presence of left ventricular 

aneurysm showed independent discriminative value in assessment of the propensity to VT (Study 

II). In univariate analysis, LAS300, M, and S all showed high χ2 values, but due to correlations 

between variables they did not enter the model (Table 6). In the otherwise similar but smaller 

series (Study I), logistic regression analysis was performed with several clinical variables and 

with QRSd as the only MCG parameter. In that study, QRSd, left ventricular aneurysm, and also 

age showed independent discrimination.  

6.3.1. Relation of late field and intra-QRS fragmentation parameters to delayed ventricular 

conduction  

The overall end of ventricular excitation showed moderate correlation with QRSd (r = 0.45, p = 

0.035), but not with RMS40 and LAS300. Fragmentation index M (r  = 0.64, p = 0.001) and score 

S (r = 0.73, p < 0.001) correlated with excitation more strongly. When investigated separately, 

the latest epicardial excitation correlated strongly with QRSd, M, and S (r = 0.74, 0.74, and 0.80, 

p < 0.001 for each) and weakly with LAS300 (r = 0.32, p = 0.005), whereas RMS40 showed no 

correlation. The latest endocardial activation correlated with none of the parameters (Study III). 

The correlations were strong in patients with anterior infarction; r = 0.87, 0.91, and 0.82 for 

QRSd, M, and S, respectively (p < 0.001 in each), and also RMS40  (r = − 0.65, p = 0.008) and 

LAS300 (r = 0.73, p = 0.002) showed correlation in this subgroup. 
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Table 5. Magnetocardiographic time-domain late field and intra-QRS fragmentation   

parameters in postinfarction subgroups with cardiac dysfunction and anterior and inferior 

infarcts. 

 VT Group Non-VT Group P-value 

LVEF≤≤≤≤ 40% N = 46 N = 48  

QRS duration (ms) 148 ± 31 124 ± 18 < 0.001 

RMS40 (fT) 168 ± 106 381 ± 322 < 0.001 

LAS300 (ms) 49 ± 18 32 ± 13 < 0.001 

Fragmentation index M 12 ± 4 10 ± 2 0.002 

Fragmentation Score S 87 ± 43 65 ± 22 0.010 

Anterior infarction N = 27 N = 36  

QRS duration (ms) 148 ± 35 111 ± 17 < 0.001 

RMS40 (fT) 180 ± 131 545 ± 381 < 0.001 

LAS300 (ms) 48 ± 16 26 ± 9 < 0.001 

Fragmentation Index M 12 ± 4 9 ± 2 < 0.001 

Fragmentation Score S 90 ± 51 57 ± 23 0.002 

Inferior infarction N = 16 N = 36  

QRS duration (ms) 142 ± 30 119 ± 22 0.010 

RMS40 (fT) 172 ± 78 365 ± 310 0.001 

LAS300 (ms) 45 ± 16 34 ± 12 0.007 

Fragmentation Index M 12 ± 3 9 ± 2 0.020 

Fragmentation Score S 79 ± 32 57 ± 21 0.020 

 

LVEF = left ventricular ejection fraction  
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Table 6. Results of stepwise logistic regression analysis in postinfarction patients with 

ventricular tachycardia as the dependant variable. 

Parameter χχχχ2    Univariate 

    P-value 

Stepwise Logistic 

Regression Analysis 

QRS duration     33.1 < 0.001 < 0.001 

LAS300     31.0 < 0.001  0.12 

Fragmentation index M     26.0 < 0.001  0.97 

RMS40     26.0    0.001   0.003 

Left ventricular aneurysm     25.7 < 0.001 <0.001 

Fragmentation score S     20.1 < 0.001  0.79 

LVEF     16.0 < 0.001  0.43 

N of diseased vessels      5.0 0.081  0.20 

Age      4.6 0.031  0.13 

Infarct location      4.4 0.353  0.55 

 

LVEF = left ventricular ejection fraction 
 

Of the 21 patients studied postoperatively, only one remained inducible to VT; others were 

noninducible. In the postoperative MCG, the time domain and intra-QRS fragmentation 

parameters were modified significantly (Table 7). The postoperative values resembled those of 

postinfarction patients with large infarctions but with no history of VT, as seen in Table 5.  

Table 7. Effect of arrhythmia surgery on magnetocardiographic arrhythmia risk     

parameters in postinfarction patients with sustained ventricular tachycardia. 

Parameter Preoperative value Postoperative value P-value 

QRS duration (ms) 138 ± 27 120 ± 19 0.003 

RMS40 (fT) 156 ± 126 385 ± 226 0.010 

LAS300 (ms) 50 ± 18 32 ± 12 0.006 

Fragmentation Index M 11.4 ± 2.2 9.3 ± 2.0 < 0.001 

Fragmentation Score S 75 ± 22 58 ± 18 0.004 
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6.4. Relation of MCG late fields to late potentials in BSPM and orthogonal three-

lead SAECG  

In MCG, the average of the three channels with the most abnormal values discriminated between 

the groups better than did the average of all channels. In contrast, in BSPM the average of all 

channels yielded better VT identification in comparison to the average of five or ten channels 

with the most abnormal values. The data are therefore given as averages of the three channels 

with the most abnormal values for MCG, and as the averages of all the channels for BSPM 

(Study IV). 

Between patient groups all parameters in MCG, BSPM, and SAECG differed significantly 

(Table 8). The ROC curves showed that the differences between the three methods were small as 

regards all time domain parameters, with the areas under the curves ranging between 0.72 and 

0.81 (Figure 7). LAS300 in MCG showed the best discrimination with the area under the curve of 

0.81. A dichotomized cut-point for LAS300 yielded sensitivity and specificity of 77% and 82%.  

All the time domain parameters correlated markedly between MCG and BSPM. The 

correlation coefficient was 0.86 for QRSd (p < 0.001), 0.67 for RMS40 (p < 0.001), and 0.69 for 

LAS (p < 0.001). On the other hand, the correlations between MCG and orthogonal SAECG 

parameters were weaker; the correlation coefficient for QRSd was 0.57 (p < 0.001), 0.24 for 

RMS40 (p = 0.114), and 0.28 for LAS (p = 0.065). The correlation coefficient values for BSPM 

and SAECG parameters were intermediate among these. Since the LAS parameters in MCG and 

SAECG showed no mutual correlation, their combination was tested in classification to the VT 

group; the criteria of LAS300 in MCG > 47 ms or LAS40 in SAECG > 42 ms yielded 95% 

sensitivity and 68% specificity. 
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Table 8. Parameter values in signal-averaged MCG, BSPM, and SAECG in postinfarction VT 

and non-VT patients.  

 
VT Group 

N = 22 

Non-VT Group 

N = 22 

P-value 

MCG    
QRS duration (ms) 153 ± 39 124 ± 16 0.003 

RMS40 (fT) 127 ± 144 226 ± 162 0.038 

LAS300 (ms) 59 ± 22 37 ± 13 < 0.001 

BSPM    

QRS duration (ms) 149 ± 22 128 ± 18 0.006 

RMS40 (µV) 9 ± 6 17 ± 10 0.002 

LAS40 (ms) 77 ± 22 56 ± 19 0.002 

SAECG    

QRS duration (ms) 149 ± 27 127 ± 26 0.009 

RMS40 (µV) 11 ± 8 25 ± 19 0.004 

LAS40 (ms) 60 ± 24 39 ± 22 0.005 

MCG = magnetocardiography, BSPM = body surface potential mapping, SAECG = 

signal-averaged ECG  

In the larger series (n=100), MCG late fields were compared to orthogonal SAECG late 

potentials in VT identification. In that study using commercial data acquisition and a signal 

averaging program, the MCG late fields showed superior discrimination, especially in the 

subgroup with marked cardiac dysfunction (Study I). 
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Figure 7. Receiver operating characteristic curves illustrating discriminative powers of time domain 

parameters in signal-averaged MCG ( ), -BSPM ( ), and orthogonal three-lead ECG ( ). 

Areas under the curves with their standard errors appear under each chart. 

6.5. Repolarization abnormalities in magnetocardiography  

6.5.1. Repolarization abnormalities in patients with a propensity to postinfarction 

ventricular tachycardia  

In MCG, the later part of the T wave intervals (TPE) (maximum, average of the six longest, and 

the mean of all channels) in 33 axial channels yielded significantly higher values in the VT group 

than in the MI and control groups (Table 9). On the other hand, conventional QT dispersion 

measures in MCG did not discriminate between VT and MI patients. In contrast, in ECG only the 

mean TPE interval was increased in VT patients in comparison to the MI group (80 ± 11 vs. 74 ± 

9 ms, p < 0.05), but the conventional QTend dispersion values were significantly larger in the VT 

group (Study V).  

Mean QRSd was longer in the VT than in the MI group (Table 9). Mean QRSd correlated with 

the maximum TPE interval in the MI group (r = 0.40, p = 0.037) but showed no correlation with 

any of the TPE measures in the VT group. 
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Table 9. Magnetocardiographic measures of depolarization and repolarization in 

postinfarction ventricular tachycardia (VT), myocardial infarction (MI), and healthy 

control groups. 

 Controls 

(N = 13) 

MI group 

(N =28) 

VT group 

(N = 32) 

P-value 

Mean QRS duration,  

7 axial channels 

  

114 ± 22 

 

135 ± 34# 

 

TPE interval, 7 axial 

channels 

    

Maximum 83 ± 9 86 ± 13 93 ± 16 0.054 

Mean 71 ± 6 71 ± 7 75 ± 10 0.111 

TPE interval, 33 axial 

channels 

    

Maximum 91 ± 12 104 ± 19 117 ± 23¶# 0.001 

6 longest (average) 82 ± 9 88 ± 11 100 ± 16¶** < 0.001 

Mean 72 ± 6 70 ± 6 78 ± 9§†† 0.001 

QTpeak interval, 33 axial 

channels 

    

Maximum (rate corrected) 343 ± 20 366 ± 26† 378 ± 35¶ 0.001 

Dispersion 44 ± 18 74 ± 25† 74 ± 24¶ 0.001 

SD 9 ± 4 17 ± 6‡ 17 ± 7 0.001 

QTend interval, 33 axial 

channels 

    

Maximum, (rate corrected) 417 ± 26 441 ± 28* 467 ± 38¶# < 0.001 

Dispersion 55 ± 22 81 ± 26† 93 ± 32¶ 0.001 

SD 11 ± 4 18 ± 7† 22 ± 10¶ < 0.001 

  

      Values are mean + SD (in ms). P values in the right column are from the Kruskal-Wallis 

test. * p < 0.05, † p < 0.01, ‡ p < 0.001 between Controls and MI group; § p < 0.05, || p < 

0.01, ¶ p < 0.001 between Controls and VT group; # p < 0.05, ** p < 0.01, †† p < 0.001 

between MI and VT groups. 
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A cut-off value > 81 ms for mean TPE interval in MCG distinguished between VT and MI 

groups with a sensitivity of 31% and a specificity of 96%, whereas a cut-off value of > 140 ms 

for QRSd yielded a sensitivity and specificity of 41% and 89%. A combination of these criteria 

(mean TPE interval > 81 ms and / or QRSd > 140 ms) increased sensitivity to 63% with 89% 

specificity. 

6.5.2. Repolarization abnormalities in patients with dilated cardiomyopathy and 

ventricular arrhythmias  

None of the QT dispersion parameters in MCG showed any difference between VT and control 

groups. The TPE interval tended to be longer in VT patients, but the difference lacked statistical 

significance. On the other hand, in the subset of patients in sinus rhythm, the TPE interval was 

larger in the arrhythmia group: 87 ± 15 vs. 73 ± 12 ms, p = 0.005), whereas other dispersion 

parameters failed to show any difference (Table 10). A cut-point value of > 84 ms yielded 67% 

sensitivity and 85% specificity. In the subgroup without bundle branch block, the TPE interval 

discriminated between arrhythmia and control patients. TPE interval did not correlate with LVEF 

(Study VI). 

None of the repolarization parameters in 12-lead ECG differed between the arrhythmia and 

control groups regarding the whole patient population or subgroups in sinus rhythm or without 

bundle branch block. Nor did MCG late field parameters differ between groups; QRSd was 126 ± 

27 ms in the arrhythmia group and 129 ± 43 ms for the controls (p = NS). Nor were late fields 

discriminative in patients without bundle branch block.  
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7. DISCUSSION 

7.1. Main findings 

Magnetocardiographic late field parameters differed between those postinfarction patients 

with a propensity to sustained VT and those who were non-VT patients. In postinfarction 

patients with cardiac dysfunction, the differences between these groups were smaller but 

significant. However, that the parameter values in VT and non-VT groups overlapped turns 

risk assessment for any one individual patient into a difficult task. The performances of 

different late field parameters in VT identification were roughly equal, but the lower 

reproducibility of RMS may reduce its utility in clinical practice. In patients with nonischemic 

dilated cardiomyopathy, late field parameters did not discriminate between patients with and 

without arrhythmia susceptibility, probably because in these patients delayed conduction is not 

as important in arrhythmogenesis.  

In addition to late fields that concentrate at the end of the QRS complex, MCG parameters 

describing abnormal electrical activity during the whole depolarization period also showed 

differences between VT and non-VT patients after MI. These, however, did not outperform 

time domain late field parameters. 

In postmyocardial infarction VT patients, MCG arrhythmia risk parameters did not 

correlate with the extent of left ventricular dysfunction. This implies that fragmented and slow 

conduction in the surviving muscle fibers is a more likely cause of abnormal parameters than 

is the large infarction alone. In classification of patients into VT and non-VT groups, both late 

field and intra-QRS fragmentation parameters showed discriminative ability that was 

independent of clinical parameters.  

Both time domain and intra-QRS fragmentation parameters showed better VT 

identification in patients with anterior infarction, although VT patients with inferior MI also 

showed parameter values different from those of controls. 

MCG arrhythmia risk parameters correlated with delayed ventricular conduction in 

postinfarction patients with anterior infarction and VT propensity. Surgical abolition of the 

arrhythmia substrate reduced the abnormalities in MCG parameters.  
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In patients with postinfarction VT propensity and cardiac dysfunction, MCG late fields, as 

markers of slow and inhomogeneous propagation of conduction, were at least as sensitive as 

LPs in SAECG and BSPM. The combination of LAS parameters in MCG and SAECG may 

yield additive information in postinfarction arrhythmia risk assessment. 

In comparison to non-arrhythmia controls, the later part of the T wave in MCG was 

prolonged in patients with a propensity to ventricular arrhythmias both in those with remote 

MI and those with nonischemic dilated cardiomyopathy. This prolongation was independent 

of delayed conduction. 

7.2. Contribution to previous knowledge  

MCG late field parameters and postinfarction VT propensity  

In a previous study on MCG late fields in postinfarction VT patients, a sensitivity and 

specificity of 80% resulted from use of QRSd > 115 ms as the criterion (Mäkijärvi et al. 

1993). Those results are comparable to the present ones, although the previous study utilized a 

single channel cardiomagnetometer in which each channel was registered sequentially. Stroink 

and coworkers reported in 1989 a sensitivity and specificity of 67% in VT identification using 

as their criterion for abnormality the ratio of R wave maximum over the average signal during 

the last 40 ms of the QRS. Besides different criteria for abnormality, their measurements also 

had higher noise levels and shorter recording times in comparison to those of the present 

study. Their study population of 15 VT patients and 12 postinfarction control patients was 

more heterogeneous, also including VT patients with no previous infarction.  

MCG intra-QRS fragmentation parameters in postinfarction ventricular tachycardia 

Müller and coworkers in their 1999 MCG study found that fragmentation score S adequately 

identified VT propensity, whereas QRSd did not. In contrast to the present study, QRSd was 

measured by visual inspection and VT patients with no previous MI were also included.  

The findings of the present study are also concordant with those in SAECG, in which the 

abnormal notching and altered frequency content of the QRS complex in postinfarction 

patients were associated with ventricular arrhythmias (Lander et al. 1997, Kelen et al. 1991). 

Relation of MCG arrhythmia risk parameters to cardiac variables and delayed 

conduction  
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No previous study seems to have attempted to correlate MCG arrhythmia risk parameters with 

cardiac variables. A few studies have, however, investigated the relationship between LPs in 

SAECG and left ventricular dysfunction. While some studies show a relationship between LPs 

with left ventricular function and wall motion abnormalities (Breithardt et al. 1982, 

Zimmerman et al. 1985), others found no similar associations (Pollak et al. 1985, Gomes et al. 

1987). Different patient populations, recording techniques, and criteria for abnormality in 

SAECG are probably the most important reasons for these discrepancies. The results of the 

present study with MCG late fields resemble those of Kanovsky et al., indicating that the low-

amplitude late QRS activity in SAECG originates from a true arrhythmia substrate and is not 

merely a marker of cardiac dysfunction (Kanovsky et al. 1984). 

This is the first study to investigate the electrophysiologic correlates of MCG arrhythmia 

risk parameters. In 1983, Simson and coworkers reported that the fragmented, delayed 

endocardial activity corresponds in time with LPs in SAECG. Their results with catheter 

endocardial mapping also showed prolonged ventricular activation times in postinfarction 

patients with a propensity to VT. Our findings with late fields resemble theirs, although our 

endocardial registrations failed to show a correlation, probably due to a non-optimal data 

collection method (endocardial electrode ball vs. separately placed endocardial catheter). 

Studies using SAECG have also found that the abolition of the arrhythmia substrate 

normalizes the arrhythmia risk parameters and that this modification seems to predict the 

success of the arrhythmia surgery (Breithardt et al. 1982). Our findings were similar, although 

with only one patient remaining inducible postoperatively, the ability of MCG to predict the 

efficacy of the surgery cannot be assessed. 

Relation of magnetocardiographic late fields to LPs in BSPM and SAECG 

The results of this study showed that in the detection of the late QRS activity associated with 

VT propensity, the new methods in late activity recordings, MCG and BSPM, were at least as 

good as orthogonal SAECG. Sasaki et al. (1994) studying patients with ischemic heart 

disease, showed that LP parameters in multi-lead BSPM more strongly correlates with 

fragmented intracardiac electrograms than does three-lead SAECG. When applied to 

postinfarction risk stratification, however, BSPM does not outperform SAECG in the 

identification of VT propensity, although BSPM could better assess the extent of the body 

surface area positive with LPs (Sasaki et al. 1995). 
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In contrast to the present study, Ho and coworkers showed in 1993 greater sensitivity 

without loss of specificity in a 28-lead BSPM than in SAECG. Their control patients, 

however, had only slightly impaired left ventricular function, which may have reduced the 

number of false-positive findings. Our results indicate that patients with considerably reduced 

left ventricular systolic function display abnormal LP values even without a propensity to 

ventricular arrhythmias.  

Repolarization abnormalities in patients with a propensity to postinfarction ventricular 

tachycardia 

In a previous prospective postinfarction study, a number of repolarization parameters in 12-

lead ECG−including QTend dispersion and TPE interval−failed to predict arrhythmic events. 

The reason for that lack of predictive accuracy may have been the inability of the 12-lead 

ECG to detect regional dispersions in ventricular repolarization (Zabel et al. 1998). The 

present study suggests that multi-channel MCG mapping does detect regional disparities in 

postinfarction patients with a propensity to VT. Since the repolarization data from the 7 

original axial channels only failed to discriminate VT from MI groups, it is probable that the 

detection of repolarization abnormalities was not merely due to MCG’s good sensitivity to 

myocardial currents, but was also a result of detailed multichannel mapping.  

A previous MCG study investigating repolarization heterogeneity in postinfarction patients 

found both QTpeak and QTend dispersion to identify patients with a propensity to sustained VT 

(Oikarinen et al. 1998). However, contrary to the present study, those VT patients had a 

markedly lower LVEF than did the controls; this may have affected results.   

Repolarization abnormalities in MCG in patients with dilated cardiomyopathy and 

ventricular arrhythmias 

Fei and coworkers (1996) found no increased QT dispersion in 12-lead ECG to predict sudden 

death in dilated cardiomyopathy, whereas Galinier et al. (1998) reported QT dispersion to 

predict arrhythmic events. Although the results of these 12-lead ECG studies are conflicting, 

Aiba and coworkers in 2000 reported dispersion of recovery times in BSPM but not in 12-lead 

ECG to identify patients with dilated cardiomyopathy and sustained VT. Thus, mapping a 

larger precordial area may improve the detection of repolarization abnormalities in ECG. 

Interestingly, their study showed neither conventional QT dispersion in BSPM or 12-lead 

ECG to identify VT patients. 
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No previous MCG study has investigated the relation of late fields to arrhythmia propensity 

in dilated cardiomyopathy. MCG late fields revealing delayed conduction showed no 

difference between patients with and without ventricular arrhythmias, even when patients with 

bundle branch block were excluded from analysis. However, a few studies have investigated 

the role of SAECG in risk stratification. In a prospective 2000 study, Yi and coworkers 

applied both time domain and wavelet decomposition analysis of SAECG in risk prediction; 

neither method predicted ventricular arrhythmias or sudden cardiac death. Conversely, both 

Fauchier et al. (2000) and Goedel-Meinem and coworkers (2001) found LPs to associate with 

ventricular arrhythmias in patients with dilated cardiomyopathy.  

7.3. Methodological considerations and study limitations 

Study patients 

Bundle branch block was an exclusion criterion in the postinfarction studies (I-V). Intra-QRS 

fragmentation analysis may be applicable even in this patient group, since some methods 

extracting information from the whole QRS complex in SAECG have shown promise in risk 

stratification, despite conduction blocks (Lindsay et al. 1988, Haberl et al. 1988). On the other 

hand, this study excluded only those patients with a typical bundle branch block; those with 

nonspecific intraventricular conduction diseases were included. 

Electrophysiologic study was not performed in the non-arrhythmia patients. Further, except 

in Study IV, the control group was not followed up after the study registrations. Their 

arrhythmia propensity cannot, therefore, be completely ruled out, although they had been free 

of any sustained ventricular arrhythmias for at least 6 months after the acute MI. On the other 

hand, data from prospective postinfarction studies have shown that a major portion of the 

arrhythmic events occurs during the first 6 months; thereafter, the risk diminishes markedly 

(Newby et al. 1998).  

In arrhythmia patients, the registrations were usually performed within a week after the 

clinical arrhythmia. Since most of the patients received an implantable defibrillator precluding 

MCG registration or underwent arrhythmia surgery, it was impossible to repeat the recordings 

later. The fact cannot, therefore, be ruled out that the acute arrhythmia might have caused 

changes in the MCG signal recorded soon after the acute phase. 

As Study IV included only patients with cardiac dysfunction, the results may not be directly 

transferable to patients with small infarcts and normal left ventricular function. In addition, 
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the low correlation between LAS parameters in MCG and SAECG does not necessarily mean 

that they provide independent predictive information. Other factors, including large 

interindividual variation in parameters, may have reduced correlations between them. 

MCG recordings 

That the MCG registering grid was not positioned according to the site of the infarct scar may 

have limited the detection of late fields. In addition, a recording grid with more channels 

covering an even larger precordial area could have added to the accuracy.  

In Study III, the postoperative registration was performed one to two weeks 

postoperatively. At this early postoperative stage, there may have been local inflammation at 

the resection area to affect local conduction and the registered MCG signal. 

Criteria for abnormality in late fields  

No generally accepted criteria for abnormality exist for late fields nor for intra-QRS 

fragmentation or MCG repolarization parameters. Therefore, in each study the cut-point 

values for individual parameters were created by maximizing the sum of sensitivity and 

specificity. Naturally, these cut-point values may not be optimal in another patient population. 

Moreover, the values found optimal from these case control studies may not be directly 

transferable to prospective risk assessment studies. 

Intracardiac registrations 

In Study III, during the arrhythmia surgery, all the individual epi- and endocardial electrodes 

could not be brought into contact with the epicardium and endocardium. Although the 

electrodes were always placed so that the infarct area and the neighboring areas were covered, 

no information on the exact locations of individual electrodes was collected. However, this 

study aimed to examine the relation of MCG parameters to the latest ventricular activation, 

with the location of the latest activation being less important.  

7.4. Clinical implications 

Since MCG parameters describing both depolarization and repolarization periods yielded 

significantly different values in postinfarction patients with and without VTs, they may be 

considered promising tools in postinfarction risk assessment. Overlap existed in parameter 

values between arrhythmia patients and others. This was especially true for patients with left 

ventricular dysfunction, which is the postinfarction patient subgroup at which risk 
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stratification strategies should be targeted. On the other hand, MCG parameters mainly 

indicate the presence of the arrhythmia substrate, and modifying mechanisms and triggers are 

also important for the manifestation of the clinical arrhythmias. This may in part explain why 

some patients with abnormal late fields had not suffered from sustained ventricular 

arrhythmias. Furthermore, patients with no documented VTs have an increased propensity to 

ventricular arrhythmias when myocardial damage is great, and complete discrimination 

between VT and non-VT patients may thus be impossible. However, combining MCG with 

other noninvasive risk stratification methods such as measures of cardiac autonomic function 

may be of value in the identification of patients at the highest risk for ventricular arrhythmias.  

MCG arrhythmia risk parameters have not been tested in a prospective manner. Although 

this study indicates that several MCG parameters can serve to identify patients with a 

propensity to postinfarction VT, a prospective study in postinfarction patients is warranted to 

assess their predictive value.  

Among patients with nonischemic dilated cardiomyopathy, the later part of the T wave was 

more prolonged in those with ventricular arrhythmias than in those without. However, the 

progressive nature of the disease makes the timing of the risk assessment very difficult in 

practice. The results of this study suggest that in the arrhythmogenesis of these patients 

repolarization abnormalities are important. Whether these findings have clinical value in 

clinical arrhythmia risk assessment remains to be assessed.  

The sensitivity of MCG to changes in the repolarization period suggests that the 

development of analysis methods to extract subtle abnormalities from the magnetic T wave 

may be valuable in arrhythmia risk assessment of both postinfarction and nonischemic 

cardiomyopathy patients. 

Modern multichannel MCG is a promising tool in noninvasive arrhythmia risk assessment. 

It is already evident that good quality MCGs can be quickly registered in a hospital 

environment, making the method suitable for clinical settings. Although at present, 

instrumentation and maintenance are costly, in future, the application of high temperature 

SQUIDs will probably reduce expenses markedly. 
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8. CONCLUSIONS 

In conclusion, the new MCG technique can identify propensity to ventricular arrhythmias in 

heart disease. In arrhythmia patients, abnormalities in both depolarization and repolarization 

periods are detectable with MCG. Although the parameters detect ventricular arrhythmia 

propensity independently of clinical variables, their values overlap between arrhythmia and 

non-arrhythmia patients, reducing their specificity and indicating the need to combine them 

with other arrhythmia risk stratification methods in clinical decision making. More 

specifically, the substudies showed that: 

 

1. In patients with remote MI, MCG late fields significantly differ between patients with and 

without a VT propensity. The difference between VT and non-VT patients exists also 

among patients with marked cardiac dysfunction.  

2. MCG parameters detecting fragmented electrical activity during the entire depolarization 

period distinguish between VT and non-VT patients among postinfarction populations. 

Their performance is almost as good as that of late fields. 

3. Both late fields and intra-QRS fragmentation parameters correlate with LVEF. However, 

when VT patients were analyzed separately, the correlations were weak, indicating that 

abnormal parameter values are more strongly associated with VT propensity than with 

cardiac dysfunction. Both late fields and intra-QRS fragmentation parameters can 

discriminate between VT and non-VT patients independently of left ventricular function 

and infarct location. 

4. In patients with postinfarction VT undergoing arrhythmia surgery, both late fields and 

intra-QRS fragmentation parameters show correlations with the latest epicardial activation 

in patients with an anterior infarct scar. Surgical eradication of the arrhythmia substrate 

reduces the abnormalities in MCG parameters. 

5. Both in patients with previous MI and ones with nonischemic dilated cardiomyopathy, 

the later part of the T wave interval, a marker of transmural repolarization inhomogeneity, 

is longer in those with a propensity to sustained ventricular arrhythmias in comparison to 

those without. In postinfarction patients, the later part of the T wave interval is 

independent of delayed conduction, although both are associated with the arrhythmia 
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propensity. In nonischemic dilated cardiomyopathy, abnormal repolarization rather than 

delayed conduction seems to be the key mechanism in arrhythmogenesis. 

6. In postinfarction patients with cardiac dysfunction, late fields identify propensity to VT 

equally well in comparison to LPs in SAECG and BSPM. Delayed ventricular conduction 

in MCG and SAECG may have additive value in classifying VT and non-VT patients. 



  

 71

9. ACKNOWLEDGEMENTS 

This study was carried out from 1995 to 2002 at the Division of Cardiology and the BioMag 

laboratory of the Helsinki University Central Hospital and at the Laboratory of Biomedical 

Engineering of Helsinki University of Technology. I am very grateful to Professor Markku S. 

Nieminen, M.D., Ph.D., head of the Division of Cardiology, for placing the research facilities 

at my disposal and for his continuous encouraging attitude towards my scientific work. I wish 

to thank Professor Juhani Heikkilä, M.D., Ph.D., the former head of the Cardiovascular 

Laboratory, and Docent Markku Kupari, M.D., Ph.D., its present head, for offering their 

enormous expertise in clinical and experimental cardiology during these years. I also thank 

Professor Vesa Manninen, M.D., Ph.D., my former senior in the First Department of 

Medicine, for giving me the opportunity to work in a department so completely dedicated to 

cardiovascular diseases. 

I have had the great advantage to work under the solid and highly beneficial supervision of 

Docent Lauri Toivonen, M.D., Ph.D., who originally suggested this topic to me and thereafter 

provided me with his expert guidance in each stage of this thesis. I am especially indebted to 

him for his never-ending enthusiasm, optimism, and constructive criticism during this study. I 

am also grateful to Docent Markku Mäkijärvi, M.D., Ph.D., for being my forerunner and 

pathfinder in clinical applications of magnetocardiography and in the collaboration with the 

Technical University. I especially want to thank him for the many valuable discussions on 

clinical and experimental electrophysiology and for pleasant travel company at many 

international congresses. 

I am deeply indebted to Professor Toivo Katila, D.Sc. (Tech.), head of the Laboratory of 

Biomedical Engineering at Helsinki University of Technology for providing me with the 

research facilities and expert knowledge of his laboratory. Without the cooperation of the 

technical researchers I could never have accomplished this project. I therefore express my 

warmest thanks to Juha Montonen, D.Sc. (Tech.), for fruitful collaboration and for many 

valuable discussions and suggestions. I am deeply grateful to Jukka Nenonen, D.Sc. (Tech.), 

for the huge amount of work he has done on behalf of our entire research group. I am 

especially thankful for his invaluable assistance with the MCG analysis programs and for his 

aid in the final preparation of this thesis. I express my deepest gratitude to Kim Simelius, 

Lic.Sc. (Tech.), and Heikki Väänänen, M.Sc. (Tech.), for building up hardware for registration 



  

 72

and computer programs for analysis of the patient data. I extend my gratitude to Katja Pesola, 

D.Sc. (Tech.), Panu Takala, D.Sc. (Tech.), Mika Paavola, M.Sc. (Tech.), and Mats Lindholm, 

M.Sc. (Tech.) for pleasant collaboration during these years. I owe special thanks to Matti 

Stenroos, M.Sc. (Tech.) for helping me with the final preparations of this thesis. 

All the magnetocardiographic recordings were performed at the BioMag Laboratory of the 

Helsinki University Central Hospital. I am therefore indebted to Docent Risto Ilmoniemi, 

D.Sc. (Tech.), head of the BioMag Laboratory, for placing the excellent research facilities 

there at my disposal.  

I express my sincere thanks to my research fellows Lasse Oikarinen, M.D, Ph.D., and Ilkka 

Tierala, M.D., for many valuable discussions and comments. I also thank Terhi Husa, M.D., 

Juha Rantonen, M.D., and Petri Haapalahti, M.D., for cooperation and supportive comments 

during the course of this work. 

I express my gratitude to my colleagues at the Cardiovascular Laboratory for the 

encouraging and friendly atmosphere during all these years. I especially thank Docent Matti 

Viitasalo, M.D., Ph.D., Hannu Parikka, M.D., Ph.D., and Juha-Matti Happonen, M.D., for 

sharing with me their experience and knowledge of clinical electrophysiology. I am also very 

much indebted to our effective and yet so friendly research assistants Rea Katajisto, R.N. and 

Leila Sikanen, R.N. Their compassionate attitude was necessary for both the patients and the 

researcher during the numerous late afternoon registration sessions. 

Because an important part of this work was performed in cooperation with the Department 

of Cardiothoracic Surgery, I am grateful to Docent Antero Järvinen, M.D., Ph.D., and Docent 

Kalervo Werkkala, M.D., Ph.D., for their special skills and dedication in the surgical 

treatment of cardiac arrhythmias. 

Science is international, and I have had the opportunity to work in a research group with 

many international collaborators. I express my special thanks to Lutz Trahms, D.Sc. (Tech.) 

and Peter Endt, D.Sc. (Tech.) from the Physikalisch-Technische Bundesanstalt, Berlin, 

Germany, and Lutz Reinhardt, D.Sc. (Tech.), from Westfälische Wilhelms-Universität, 

Münster, Germany. 

I owe a lot to my colleagues and former coworkers at Kymenlaakso Central Hospital; I 

have often missed our morning sessions and wondered how on earth we managed to fit into 



  

 73

that room not much larger than an old-fashioned telephone booth! I am especially indebted to 

Eero Koskela, M.D., who first introduced me to the fascinating world of clinical cardiology.  

The valuable comments and constructive criticism from the reviewers of this thesis, 

Professor Jari Hyttinen, D.Sc. (Tech.) and Docent Juhani Koistinen, M.D., Ph.D., is gratefully 

acknowledged. I am very grateful to Carol Norris, Ph.D., for author-editing the language of 

this thesis. 

I want to express my deepest gratitude to my parents and other family members for their 

love and life-long support. I dedicate this thesis to my dearest wife Helena, who has tenderly 

and faithfully shared with me the often laborious but also rewarding researcher’s life.  

I have had the opportunity to take part in the interdisciplinary graduate school “Functional 

Research in Medicine,” for which I express my gratitude. This thesis was financially 

supported by the Finnish Foundation for Cardiovascular Research. 

 

Helsinki, September 2002 

 

                                        

                                                     

                                                                   Petri Korhonen 

 



  

 74

10. REFERENCES 

Adachi K, Ohnishi Y, Shima T, Yamashiro K, Takei A, Tamura N, Yokoyama M. 

Determinant of microvolt-level T-wave alternans in patients with dilated cardiomyopathy. J 

Am Coll Cardiol 1999;34:374-380. 

Aiba T, Inagaki M, Shimizu W, Matsuo K, Taguchi A, Suyama K, Kurita T, Aihara N, 

Sunagawa K, Kamakura S. Recovery time dispersion measured from 87-lead body surface 

potential mapping as a predictor of sustained ventricular tachycardia in patients with 

idiopathic dilated cardiomyopathy. J Cardiovasc Electrophysiol 2000;11:968-974. 

Allessie MA, Bonke FIM, Shcopman FJG. Circus movement in rabbit atrial muscle as a 

mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement 

in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 1977;41:9-18. 

Andresen D, Steinbeck G, Brüggeman T, Müller D, Haberl R, Behrens S, Hoffmann E, 

Wegscheider K, Dissmann, Ehlers H-C. Risk stratification following myocardial infarction in 

the thrombolytic era. A two step strategy using noninvasive and invasive methods. J Am Coll 

Cardiol 1999;33:131-138. 

Barry WH, Fairbank WM, Harrison DC, Lehrman KL, Malmivuo JAV, Wikswo JP. 

Measurement of the human magnetic heart vector. Science 1977;198:1159-1162. 

Baule G, McFee R. Detection of the magnetic field of the heart. Am Heart J 1963;66:95-96. 

Bayés de Luna, A, Coumel P, Leclercq JF. Ambulatory sudden cardiac death: mechanisms of 

production of fatal arrhythmia on the basis of data from 157 cases. Am Heart J 1989;117:151-

159.  

Bazett HC. An analysis of the time relations of electrocardiograms. Heart 1920;7:353-370. 

Berbari EJ, Scherlag BJ, Hope RR; Lazzara R. Recording from the body surface of 

arrhythmogenic ventricular activity during the S-T segment. Am J Cardiol 1978;41:697-702. 

Boineau JP, Cox JL. Slow ventricular activation in acute myocardial infarction. A source of 

re-entrant premature ventricular contractions. Circulation 1973;48:702-713. 

Bolick DR, Hackel DB, Reimer KA, Ideker RE. Quantitative analysis of myocardial infarct 

structure in patients with ventricular tachycardia. Circulation 1986;74:1266-1279. 



  

 75

Bourke JP, Richards DAB, Ross DL, Wallace EM, McGuire MA, Uther JB. Routine 

programmed electrical stimulation in survivors of acute myocardial infarction for prediction 

of spontaneous ventricular tachyarrhythmias during follow-up: results, optimal stimulation 

protocol and cost-effective screening. J Am Coll Cardiol 1991;18:780-788. 

Breithardt G, Borggrefe M, Karbenn U, Abendroth R-R, Yeh H-L, Seipel L. Prevalence of late 

potentials in patients with and without ventricular tachycardia: correlation with angiographic 

findings. Am J Cardiol 1982;49:1932-1937.  

Breithardt G, Seipel L, Ostermeyer J, Karbenn U, Abendroth R-R, Borggrefe M, Yeh HL, 

Bircks W. Effects of antiarrhythmic surgery on late ventricular potentials recorded by 

precordial signal averaging in patients with ventricular tachycardia. Am Heart J 

1982;104:996-1003. 

Breithardt G, Cain ME, El-Sherif N, Flowers NC, Hombach V, Janse M, Simson MB, 

Steinbeck G. Standards for analysis of ventricular late potentials using high resolution 

electrocardiography. A statement by a Task Force Committee between the European Society 

of Cardiology, the American Heart Association and the American College of Cardiology. J 

Am Coll Cardiol 1991;17:999-1006. 

Brembilla-Perrot B, Donetti J, Terrier de la Chaise A, Sadoul N, Aliot E, Juillere Y. 

Diagnostic value of ventricular stimulation in patients with idiopathic dilated cardiomyopathy. 

Am Heart J 1991;121:1124-1131. 

Brockmeier K, Schmitz L, Trahms L, Erné SN. Magnetocardiography in patients with the long 

QT syndrome. In: Williamsom SJ, Hoke M, Stroink G, Kotani M, eds. Advances in 

biomagnetism. Plenum Press, New York 1989: 421-424. 

Brockmeier K, Schmitz L, Wiegand S, Raff K, Hirth C, Weber B, Bein G. High-pass-filtered 

magnetocardiogram and cardiomyopathy in patients with type I diabetes mellitus. J 

Electrocardiol 1997;30:293-300. 

Bruder H, Scholz B, Abraham-Fuchs K. The influence of inhomogeneous volume conductor 

models on the ECG and the MCG. Phys Med Biol 1994;39:1949-1968. 

Burghoff M, Nenonen J, Trahms L, Katila T. Conversion of magnetocardiographic recordings 

between two different multichannel SQUID devices. IEEE Trans. Biomed. Eng. 2000;47:869-

875. 



  

 76

Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Hafley G for the Multicenter 

Unsustained Tachycardia Trial investigators. A randomized study of the prevention of sudden 

death in patients with coronary artery disease. N Engl J Med 1999;341:1882-1890. 

Buxton AE, Lee KL, DiCarlo L, Gold MR, Greer GS, Prystowsky EN, O’Toole MF, Tang A, 

Fisher JD, Coromilas J, Talajic M, Hafley G. Electrophysiologic testing to identify patients 

with coronary artery disease who are at risk for sudden death. N Engl J Med 2000;342:1937-

1945. 

Calkins H, Maughan WL, Weisman HF, Sugiura K, Sagawa K, Levine JH. Effect of acute 

volume load on refractoriness and arrhythmia development in isolated, chronically infarcted 

canine hearts. Circulation 1989;79:687-697. 

Cohen D. Magnetic fields around the torso: production by electrical activity of the human 

heart. Science 1967;156:652-654. 

Cohen D, Edelsack EA, Zimmermann JE. Magnetocardiograms taken inside a shielded room 

with a superconducting point-contact magnetometer. Appl Phys Lett 1970;16:278-280. 

Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T. 

Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart 

failure. N Engl J Med 1984;311:819-823. 

Cripps TR, Malik M, Farrell TG, Camm AJ. Prognostic value of reduced heart rate variability 

after myocardial infarction: clinical evaluation of a new analysis method. Br Heart J 

1991;65:14-19. 

Damiano BP, Rosen MR. Effects of pacing on triggered activity induced by early 

afterdepolarizations. Circulation 1984;69:1013-1025. 

Davidenko JM. Spiral waves of the heart: experimental demonstration of a theory. In: Zipes 

DP, Jalife J, eds. Cardiac Electrophysiology. From cell to bedside. Second edition. W.B. 

Saunders Company, Philadelphia, PA 1995:478-488. 

De Chillou C, Sadoul N, Briancon S, Aliot E. Factors determining the occurrence of late 

potentials on the signal-averaged electrocardiogram after a first myocardial infarction: a 

multivariate analysis. J Am Coll Cardiol 1991;18:1638-1642. 

DeBakker JMT, van Capelle FJL, Janse MJ, Wilde AAM, Coronel R, Becker AE, Dingemans 

KP, van Hemel NM, Hauer RNW. Reentry as a cause of ventricular tachycardia in patients 



  

 77

with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 

1988;77:589-606. 

Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med 1994;331:1564-1575. 

Denniss AR, Richards DA, Cody DV, Russell PA, Young AA, Cooper MJ, Ross DL, Uther 

JB. Prognostic significance of ventricular tachycardia and fibrillation induced at programmed 

stimulation and delayed potentials detected on the signal-averaged electrocardiograms of 

survivors of acute myocardial infarction. Circulation 1986;74:731-745. 

Dinerman J, Berger R, Haigney MCP, Lawrence JH, Tomaselli GF, Calkins H. Dispersion of 

ventricular activation and refractoriness in patients with idiopathic dilated cardomyopathy. 

Am J Cardiol 1997;79:970-974. 

Dubuc M, Nadeau R, Tremblay G, Kus T, Molin F, Savard P. Pace mapping using body 

surface potential maps to guide catheter ablation of accessory pathways in patients with 

Wolff-Parkinson-White syndrome. Circulation 1993;87:135-143. 

Durrer, D, Van Lier AAW, Büller J. Epicardial and intramural excitation in chronic 

myocardial infarction. Am Heart J 1964;68:765-776. 

El-Sherif N, Scherlag BJ, Lazzara R, Hope RR. Re-entrant ventricular arrhythmias in the late 

myocardial infarction period. 1. Conduction characteristics in the infarction zone. Circulation 

1977;55:686-702. 

El-Sherif N. Reentry revisited. PACE 1988;11:1358-1368. 

El-Sherif N. Rentrant mechanisms in ventricular arrhythmias. In: Zipes DP, Jalife J, eds. 

Cardiac Electrophysiology. From cell to bedside. Second edition. W.B. Saunders Company, 

Philadelphia, PA 1995:567-582. 

Endt P, Hahlbom HD, Kreiseler D, Oeff M, Steinhoff U, Trahms L. Fragmentation of the 

bandpass filtered QRS complex of patients prone to malignant arrhythmia. Med Biol Eng 

Comput 1998;36:723-728. 

Erné SN, Fenici RR, Hahlbohm H-D, Jaszczuk W, Lehmann HP, Masselli M. High-resolution 

magnetocardiographic recordings of the ST segment in patients with electrical late potentials. 

Il Nuovo Cimento 1983;2 D N 2:340-345. 

Farrell TG, Bashir Y, Cripps T, Malik M, Poloniecki J, Bennett ED, Ward DE, Camm AJ. 

Risk stratification for arrrhythmic events in postinfarction patients based on heart rate 



  

 78

variability, ambulatory electrocardiographic variables and the signal-averaged 

electrocardiogram. J Am Coll Cardiol 1991;18:687-697. 

Farrell TG, Paul V, Cripps TR, Malik M, Bennett ED, Ward D, Camm AJ. Baroreflex 

sensitivity and electrophysiological correlates in patients after acute myocardial infarction. 

Circulation 1991;83:945-952. 

Fauchier L, Babuty D, Cosnay P, Poret P, Rouesnel P, Fauchier JP. Long-term prognostic 

value of time domain analysis of signal-averaged electrocardiography in idiopathic dilated 

cardiomyopathy. Am J Cardiol 2000;85:618-623. 

Fei L, Goldman JH, Prasad K, Keeling PJ, Reardon K, Camm AJ, McKenna WJ. QT 

dispersion and RR variations on 12-lead ECGs in patients with congestive heart failure 

secondary to idiopathic dilated cardiomypathy. Eur Heart J 1996;17:258-263. 

Fenici R, Mellillo G. Magnetocardiography: ventricular arrhythmias. Eur Heart J 1993;14 

(Suppl. E):53-60. 

Figulla HR, Rahlf G, Nieger M, Luig H, Kreuzer H. Spontaneous hemodynamic improvement 

or stabilization and associated biopsy findings in patients with congestive cardiomyopathy. 

Circulation 1985;71:1095-1104. 

Frank E. An accurate clinically practical system for spatial vectorcardiography. Circulation 

1956;13:737-744. 

Freedman RA, Fuller MS, Greenberg GM, Ershler PR, Lux RL, McLaughlin TB, Menlove R, 

Green LS, Moddrelle D, Krall R. Detection and localization of prolonged epicardial 

electrograms with 64-lead body surface signal-averaged electrocardiography. Circulation 

1991;84:871-883. 

Fujino K, Sumi M, Saito K, Murakami M, Higuchi T, Nakaya Y, Mori H. 

Magnetocardiograms of patients with left ventricular overloading recorded with a second-

derivative SQUID gradiometer. J Electrocardiol 1984;17:219-228. 

Furukawa T, Moroe K, Mayrowitz HN, Sampsell R, Furukawa N, Myerburg RJ. 

Arrhythmogenic effects of graded coronary blood flow reductions superimposed on prior 

myocardial infarction in dogs. Circulation 1991;84:368-377. 



  

 79

Galinier M, Vialette J-C, Fourcade J, Cabrol P, Dongay B, Massabuau P, Boveda S, Doazan 

J-P, Fauvel J-M, Bounhoure J-P. QT interval dispersion as a predictor of arrhythmic events in 

congestive heart failure. Importance of etiology. Eur Heart J 1998;19:1054-1062. 

Gang ES, Lew AS, Hong M, Wang FZ, Siebert CA, Peter T. Decreased incidence of 

ventricular late potentials after successful thrombolytic therapy for acute myocardial 

infarction. N Engl J Med 1989;321:712-716. 

Gardner PI, Ursell PC, Fenoglio JJ, Wit AL. Electrophysiologic and anatomic basis for 

fractionated electrograms recorded from healed myocardial infarcts. Circulation 1985;72:596-

611. 

Goedel-Meinem L, Hofmann M, Ryba S, Schömig A. Prognostic value of an abnormal signal-

averaged electrocardiogram in patients with nonischemic dilated cardiomyopathy. Am J 

Cardiol 2001;87:809-812. 

Gomes JA, Horowitz SF, Millner M, Machac J, Winters SL, Barreca P. Relation of late 

potentials to ejection fraction and wall motion abnormalities in acute myocardial infarction. 

Am J Cardiol 1987;59:1071-1074. 

Gomes JA, Cain ME, Buxton AE, Josephson ME, Lee KL, Hafley GE. Prediction of long-

term outcomes by signal-averaged electrocardiography in patients with unsustained 

ventricular tachycardia, coronary artery disease, and left ventricular dysfunction. Circulation 

2001;104:436-441. 

Grimm W, Steder U, Menz V, Hoffmann J, Maisch B. QT dispersion and arrhythmic events in 

idiopathic dilated cardiomyopathy. Am J Cardiol 1996;78:458-461. 

Grimm W, Hoffman J, Menz V, Luck K, Maisch B. Programmed ventricular stimulation for 

arrhythmia risk prediction in patients with idiopathic dilated cardiomyopathy and 

nonsustained ventricular tachycardia. J Am Coll Cardiol 1998;32:739-745. 

Haberl R, Jilge G, Pulter R, Steinbeck G. Comparison of frequency and time domain analysis 

of the signal-averaged electrocardiogram in patients with ventricular tachycardia and coronary 

artery disease: methodologic validation and clinical relevance. J Am Coll Cardiol 

1988;12:150-158. 

Han J, Moe GK. Nonuniform recovery of excitability in ventricular muscle. Circ Res 

1964;14:44-60. 



  

 80

Hartikainen JEK, Malik M, Staunton A, Poloniecki J, Camm AJ. Distinction between 

arrhythmic and nonarrhythmic death after acute myocardial infarction based on heart rate 

variability, signal-averaged electrocardiogram, ventricular arrhythmias and left ventricular 

ejection fraction. J Am Coll Cardiol 1996;28:296-304. 

Ho DSW, Denniss RA, Uther JB, Ross DL, Richards DAB. Signal-averaged 

electrocardiogram. Improved identification of patients with ventricular tachycardia using a 28-

lead optimal array. Circulation 1993;87:857-865. 

Hohnloser SH, Franck P, Klingenheben T, Zabel M, Just H. Open infarct artery, late 

potentials, and other prognostic factors in patients after acute myocardial infarction in the 

thrombolytic era. A prospective trial. Circulation 1994;90:1747-1756. 

Hood MA, Pogwizd SM, Peirick J, Cain ME. Contribution of myocardium responsible for 

ventricular tachycardia to abnormalities detected by analysis of signal-averaged ECGs. 

Circulation 1992;86:1888-1901. 

Huikuri HV, Koistinen J, Yli-Mäyry S, Airaksinen KEJ, Seppänen T, Ikäheimo MJ, Myerburg 

RJ. Impaired low-frequency oscillations of heart rate in patients with prior acute myocardial 

infarction and life-threatening arrhythmias. Am J Cardiol 1995;76:56-60. 

Hänninen H, Takala P, Mäkijärvi M, Montonen J, Korhonen P, Oikarinen L, Simelius K, 

Nenonen J, Katila T, Toivonen L. Recording locations in multichannel magnetocardiography 

and body surface potential mapping sensitive for regional exercise-induced myocardial 

ischemia. Basic Res Cardiol 2001;96:405-414. 

Kanovsky MS, Falcone RA, Dresden CA, Josephson ME, Simson MB. Identification of 

patients with ventricular tachycardia after myocardial infarction: signal-averaged 

electrocardiogram, Holter monitoring, and cardiac catheterization. Circulation 1984;70:264-

270. 

Karjalainen J, Viitasalo M, Mänttäri M, Manninen V. Relation between QT intervals and 

heart rates from 40 to 120 beats/min in rest electrograms of men and a simple method to 

adjust QT interval values. J Am Coll Cardiol 1994;23:1547-1553. 

Kehoe R, Tommaso C, Zheutlin T, Meyers S, Mattioni T, Dunnington C, Lesch M. Factors 

determining programmed stimulation responses and long-term arrhythmic outcome in 



  

 81

survivors of ventricular fibrillation with ischemic heart disease. Am Heart J 1988;116:355-

363. 

Kelen GJ, Henkin R, Starr A-M, Caref EB, Bloomfield D, El-Sherif N. Spectral turbulence 

analysis of the signal-averaged electrocardiogram and its predictive accuracy for inducible 

sustained monomorphic ventricular tachycardia. Am J Cardiol 1991;67:965-975. 

Kelly P, Ruskin JN, Vlahakes GJ, Buckley MJ, Freeman CS, Garan H. Surgical coronary 

revascularization in survivors of prehospital cardiac arrest: its effect on inducible ventricular 

arrhythmias and long-term survival. J Am Coll Cardiol 1990;15:267-273. 

Kempf FC, Josephson ME. Cardiac arrest recorded on ambulatory electrograms. Am J Cardiol 

1984;53:1577-1582. 

Kleiger RE, Miller JP, Bigger JT, Moss AJ, and the Multicenter Post-infarction Research 

Group. Decreased heart rate variability and its association with increased mortality after acute 

myocardial infarction. Am J Cardiol 1987;59:256-262. 

Klein H, Karp RB, Kouchoukos NT, Zorn GL, James TN, Waldo AL. Intraoperative 

electrophysiologic mapping of the ventricles during sinus rhythm in patients with a previous 

myocardial infarction. Identification of the electrophysiologic substrate of ventricular 

arrhythmias. Circulation 1982;66:847-853. 

Knight BP, Goyal R, Pelosi F, Flemming M, Horwood L, Morady F, Strickberger SA. 

Outcome of patients with nonischemic dilated cardiomyopathy and unexplained syncope 

treated with an implantable defibrillator. J Am Coll Cardiol 1999;33:1964-1970. 

Kornreich F, Montague TJ, Rautaharju P. Body surface potential mapping of ST segment 

changes in acute myocardial infarction. Implications for ECG enrollment criteria for 

thrombolytic therapy. Circulation 1993;87:773-782. 

Koumi S, Backer CL, Arentzen CE. Molecular and cellular cardiology: characterization of 

inwardly rectifying K sup + channel in human cardiac myocytes: alterations in channel 

behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. 

Circulation 1995;92:164-174. 

Kuchar DL, Thorburn CW, Sammel NL. Late potentials detected after myocardial infarction: 

natural history and prognostic significance. Circulation 1986;74:1280-1289. 



  

 82

Kuo C-S, Munakata K, Reddy P, Surawicz B. Characteristics and possible mechanism of 

ventricular arrhythmia dependent on the dispersion of action potential durations. Circulation 

1983;67:1356-1367. 

La Rovere MT, Specchia G, Mortara A, Schwartz PJ. Baroreflex sensitivity, clinical 

correlates, and cardiovascular mortality among patients with a first myocardial infarction. 

Circulation 1988;78:816-824. 

La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and 

heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 

1998;351:478-484. 

Lander P, Gomis P, Goyal R, Berbari EJ, Caminal P, Lazzara R, Steinberg J. Analysis of 

abnormal intra-QRS potentials. Improved predictive value for arrhythmic events with the 

signal-averaged electrocardiogram. Circulation 1997;95:1386-1393. 

Lant J, Stroink G, Ten Voorde B, Horacek BM, Montague TJ. Complementary nature of 

electrocardiographic and magnetocardiographic data in patients with ischemic heart disease. J 

Electrocardiol 1990;23:315-322. 

Leder U, Haueisen J, Huck M, Nowak H. Non-invasive imaging of arrhyhmogenic left-

ventricular myocardium after infarction. Lancet 1998;352:1825. 

Lindsay BD, Markham J, Schechtman KB, Ambos HD, Cain ME. Identification of patients 

with sustained ventricular tachycardia by frequency analysis of signal-averaged 

electrocardiograms despite the presence of bundle branch block. Circulation 1988;77:122-130. 

Luu M, Stevenson WG, Stevenson LW, Baron K, Walden J. Diverse mechanisms of 

unexpected cardiac arrest in advanced heart failure. Circulation 1989;80:1675-1680.  

Maggioni AP, Zuanetti G, Franzosi MG, Rovelli F, Santoro E, Staszewsky L, Tavazzi L, 

Tognoni G. Prevalence and prognostic significance of ventricular arrhythmias after acute 

myocardial infarction in the fibrinolytic era: GISSI-2 results. Circulation 1993;87:312-322. 

Mancini DM, Wong KL, Simson MB. Prognostic value of an abnormal signal-averaged 

electrocardiogram in patients with nonischemic congestive cardiomyopathy. Circulation 

1993;87:1083-1092. 

McClements BM, Adgey AAJ. Value of signal-averaged electrocardiography, radionuclide 

ventriculography, Holter monitoring, and clinical variables for prediction of arrhythmic events 



  

 83

in survivors of acute myocardial infarction in the thrombolytic era. J Am Coll Cardiol 

1993;21:1419-1427. 

Mehra R, Zeiler RH, Gough WB, El-Sherif N. Reentrant ventricular arrhythmias in the late 

myocardial infarction period. 9. Electrophysiologic-anatomic correlation of reentrant circuits. 

Circulation 1983;67:11-24. 

Meinertz T, Hofmann T, Kasper W, Treese N, Bechtold H, Stienen U, Pop T, Leitner E-RV, 

Andresen D, Meyer J. Significance of ventricular arrhythmias in idiopathic dilated 

cardiomyopathy. Am J Cardiol 1984;53:902-907. 

Meinertz T, Treese N, Kasper W, Geibel A, Hofmann T, Zehender M, Bohn D, Pop T, Just H. 

Determinants of prognosis in idiopathic dilated cardiomyopathy as determined by 

programmed electrical stimulation. Am J Cardiol 1985;56:337-341. 

Meizlish JL, Berger HJ, Plankey MP, Levy DEW, Zaret BL. Functional left ventricular 

aneurysm formation after acute anterior transmural myocardial infarction. Incidence, natural 

history, and prognostic implications. N Engl J Med 1984;311:1001-1006. 

Middlekauff HR, Stevenson WG, Woo MA, Moser DK, Stevenson LW. Comparison of 

frequency of late potentials in idiopathic dilated cardiomyopathy and ischemic 

cardiomyopathy with advanced congestive heart failure and their usefulness in predicting 

sudden death. Am J Cardiol 1990;66:1113-1117. 

Mirvis DM. Spatial variation of QT intervals in normal persons and patients with acute 

myocardial infarction. J Am Coll Cardiol 1985;3:625-631. 

Montonen J, Katila T, Leiniö M, Madekivi S, Mäkijärvi M, Nenonen J, Siltanen P. Time and 

frequency domain analyses of cardiac micropotentials. In: Atsumi K, Kotani M, Ueno S, 

Katila T, Williamson SJ, eds. Biomagnetism '87. Denki University Press, Tokyo 1988:278-

281. 

Montonen J, Ahonen A, Hämäläinen M, Ilmoniemi R, Laine P, Nenonen J, Paavola M, 

Simelius K, Simola J, Katila T. Magnetocardiographic functional imaging studies in Biomag 

laboratory. In: Aine C, Okada Y, Stroink G, Swithenby S, Wood C, eds. Biomag96, 

Proceedings of the 10th international conference on biomagnetism. Springer, New York 2000: 

494-497. 



  

 84

Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, Levine JH, Saksena S, 

Waldo AL, Wilber D, Brown MW, Heo M. Improved survival with an implanted defibrillator 

in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med 

1996;335:1933-1940. 

Moss AJ, Zareba W, Hall J, Klein H, Wilber DJ, Cannom DS, Daubert JP, Higgins SL, 

Brown M, Andrews ML for the Multicenter Automatic Defibrillation Implantation Trial II 

Investigators. Prophylactic implantation of a defibrillator in patients with myocardial 

infarction and reduced ejection fraction. N Engl J Med 2002;346:887-883. 

Müller H-P, Gödde P, Czerski K, Oeff M, Agrawal R, Endt P, Kruse W, Steinhoff U, Trahms 

L. Magnetocardiographic analysis of the two-dimensional distribution of intra-QRS 

fractionated activation. Phys Med Biol 1999;44:105-120. 

Myerburg RJ, Castellanos A. Cardiac arrest and sudden death. In: Braunwald E, ed. Heart 

Disease. A textbook of cardiovascular medicine. Fifth edition. W.B. Saunders Company; 

Philadelphia, PA 1997:742-779. 

Mäkijärvi M, Nenonen J, Toivonen L, Montonen J, Leiniö M, Nieminen MS, Katila T, 

Siltanen P. Localization of accessory pathways in Wolff-Parkinson-White syndrome by high-

resolution magnetocardiographic mapping. J Electrocardiol 1992;25:143-155. 

Mäkijärvi M, Montonen J, Toivonen L, Siltanen P, Nieminen MS, Leiniö M, Katila T. 

Identification of patients with ventricular tachycardia after myocardial infarction by high-

resolution magnetocardiography and electrocardiography. J Electrocardiol 1993;26:117-124. 

Nenonen J, Horacek BM. Simulation of extracardiac electromagnetic field due to propagated 

excitation in the anisotropic ventricular myocardium. In: Gnista DN ed. Biomedical and life 

physics. Viewer Verlag, Wiesbaden 1996:191-202. 

Newby KH, Thompson T, Stebbins A, Topol EJ, Califf RM, Natale A for the GUSTO 

investigators. Sustained ventricular arrhythmias in patients receiving thrombolytic therapy. 

Incidence and outcomes. Circulation 1998;98:2567-2573.  

Nousiainen JJO, Lekkala JO, Malmivuo JAV. Comparative study of the normal vector 

magnetocardiogram and vector electrocardiogram. J Electrocardiol 1986;19:275-290. 



  

 85

Numminen J, Ahlfors S, Ilmoniemi R, Montonen J, Nenonen J. Transformation of 

multichannel magnetocardiographic signals to standard grid form. IEEE Trans Biomed Eng 

1995;42:72-78. 

Oikarinen L, Paavola M, Montonen J, Viitasalo M, Mäkijärvi M, Toivonen L, Katila T. 

Magnetocardiographic QT interval dispersion in postmyocardial infarction patients with 

sustained ventricular tachycardia: validation of automated QT measurements. PACE 

1998;21:1934-1942.  

Pedretti R, Etro MD, Laporta A, Braga SS, Carù B. Prediction of late arrhythmic events after 

acute myocardial infarction from combined use of noninvasive prognostic variables and 

inducibility of sustained ventricular tachycardia. Am J Cardiol 1993;71:1131-1141. 

Perkiömäki JS, Koistinen MJ, Yli-Mäyry S, Huikuri HV. Dispersion of QT interval in patients 

with and without susceptibility to ventricular tachyarrhythmias after previous myocardial 

infarction. J Am Coll Cardiol 1995;26:174-179. 

Pesola K, Nenonen J, Fenici R, Lötjönen J, Mäkijärvi M, Fenici P, Korhonen P, Lauerma K, 

Valkonen M, Toivonen L, Katila T. Bioelectromagnetic localization of a pacing catheter in the 

heart. Phys Med Biol 1999;44:2565-2578. 

Poll DS, Marchlinski FE, Buxton AE, Josephson ME. Usefulness of programmed stimulation 

in idiopathic dilated cardiomyopathy. Am J Cardiol 1986;58:992-997. 

Pollak SJ, Kertes PJ, Bredlau CE, Walter PF. Influence of left ventricular function on signal 

averaged late potentials in patients with coronary artery disease with and without ventricular 

tachycardia. Am Heart J 1985;110:1747-752. 

Pye M, Quinn AC, Cobbe SM. QT interval dispersion: a non-invasive marker of susceptibility 

to arrhythmia in patients with sustained ventricular arrhythmias? Br Heart J 1994;71:511-514. 

Qin D, Zhang Z-H, Caref EB, Boutjdir M, Jain P, El-Sherif N. Cellular and ionic basis of 

arrhythmias in postinfarction ventricular myocardium. Circ Res 1996;79:461-473. 

Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene 

G, Goodwin J, Gyarfas I, Martin I, Nordet P. Report of the 1995 World Health 

Organization/International Society and Federation of Cardiology Task Force on the Definition 

and Classification of Cardiomyopathies. Circulation 1996;93:841-842. 



  

 86

Roberts WC, Siegel RJ, McManus BM. Idiopathic dilated cardiomyopathy: analysis of 152 

necropsy patients. Am J Cardiol 1987;60:1340-1355. 

Romeo F, Pelliccia F, Cianfrocca C, Cristofani R, Reale A. Predictors of sudden death in 

idiopathic dilated cardiomyopathy. Am J Cardiol 1989;63:138-140. 

Rouleau JL, Talajic M, Sussex B, Potvin L, Warnica W, Davies RF, Gardner M, Stewart D, 

Plante S, Dupuis R, Lauzon C, Ferguson J, Mikes E, Balnozan V, Savard P. Myocardial 

infarction patients in the 1990s - their risk factors, stratification, and survival in Canada: the 

Canadian assessment of myocardial infarction (CAMI) study. J Am Coll Cardiol 

1996;27:1119-1127. 

Rovamo L, Paavola M, Montonen J, Mäkijärvi M, Nenonen J, Katila T. Magnetocardioraphic 

repolarization maps in children with long QT syndrome. In: Baumgartner C, Deecke L, 

Stroink G, Williamso SJ, eds. Biomagnetism: Fundamental research and clinical applications. 

IOS press, Amsterdam Oxford Tokyo 1995: 615-618. 

Rozanski JJ, Mortara D, Myerburg RJ, Castellanos A. Body surface detection of delayed 

depolarizations in patients with recurrent ventricular tachycardia and left ventricular 

aneurysm. Circulation 1981;63:1172-1178. 

Saarinen M, Siltanen P, Karp PJ, Katila TE. The normal magnetocardiogram: I. Morphology. 

Ann Clin Res 1978;10 (Suppl. 21):1-43. 

Sasaki Y, Furihata A, Suyama K. Correlation of the endocardial fragmented electrogram with 

body surface signal-averaged electrocardiographic mapping. PACE 1994;17:1477-1486. 

Sasaki Y, Furihata A, Suyama K. Endocardial fragmented electrogram and prediction of 

ventricular tachycardia by body surface signal-averaged electrocardiographic mapping. PACE 

1995;18:1479-1486. 

Schmitz L, Brockmeier K, Trahms L, Erné SN. Magnetocardiography in patients with 

cardiomyopathy and operated congenital heart disease. In: Williamsom SJ, Hoke M, Stroink 

G, Kotani M, eds. Advances in biomagnetism. Plenum Press, New York 1989: 453-456. 

Schulze RA, Strauss HW, Pitt B. Sudden death in the year following myocardial infarction. 

Relation to ventricular premature contractions in the late hospital phase and left ventricular 

ejection fraction. Am J Med 1977;62:192-199. 



  

 87

Senges JC, Becker R, Schreiner KD, Bauer A, Weretka S, Siegler K, Kuebler W, Schoels W. 

Variability of Holter electrocardiographic findings in patients fulfilling the noninvasive 

MADIT criteria. PACE 2002;25:183-190. 

Shenasa M, Borggrefe M, Haverkamp W, Hindricks G, Breithardt G. Ventricular tachycardia. 

Lancet 1993;341:1512-1519. 

Shimizu W, Ohe T, Kurita T, Takaki H, Aihara N, Kamakura S, Matsuhisa M, Shimomura K. 

Early afterdepolarizations induced by isoproterenol in patients with congenital long QT 

syndrome. Circulation 1991;84:1915-1923. 

Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing 

dispersion of repolarization and preventing torsade de pointes in LQT2 and LQT3 models of 

the long QT syndrome. Circulation 1997;96:2038-2047. 

Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the 

long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel 

blockers on transmural dispersion of repolarization and torsade de pointes. Circulation 

1998;98:2314-2322. 

Siltanen P. Magnetocardiography. In: Macfarlane PW, Lawrie TDW, eds. Comprehensive 

electrocardiology. Oxford, Pergamon Press 1989: 1405-1438. 

Simelius K, Tierala I, Jokiniemi T, Nenonen J, Toivonen L, Katila T. A body surface potential 

mapping system in clinical use. Med Biol Eng Comput 1996;34 (Suppl 1):107-108. 

Simson MB, Euler D, Michelson EL, Falcone RA, Spear JF, Moore EN. Detection of delayed 

ventricular activation on the body surface in dogs. Am J Physiol 1981;241:H363-H369. 

Simson MB. Use of signals in the terminal QRS complex to identify patients with ventricular 

tachycardia after myocardial infarction. Circulation 1981;64:235-242. 

Simson MB, Untereker WJ, Spielman SR, Horowitz LN, Marcus NH, Falcone RA, Harken 

AH, Josephson ME. Relation between late potentials on the body surface and directly 

recorded fragmented electrograms in patients with ventricular tachycardia. Am J Cardiol 

1983;51:105-112. 

Simson MB. Noninvasive identification of patients at high risk for sudden cardiac death. 

Signal-averaged electrocardiography. Circulation 1992;85 (suppl I):I-145-I-151. 



  

 88

Sippensgroenewegen A, Spekhorst H, van Hemel NM, Kingma JH, Hauer RNW, de Bakker 

JMT, Grimbergen CA, Janse MJ, Dunning AJ. Value of body surface mapping in localizing 

the site of origin of ventricular tachycardia in patients with previous myocardial infarction. J 

Am Coll Cardiol 1994;24:1708-1724. 

Statters DJ, Malik M, Redwood S, Hnatkova K, Staunton A, Camm AJ. Use of ventricular 

premature complexes for risk stratification after acute myocardial infarction in the 

thrombolytic era. Am J Cardiol 1996;77:133-138. 

Steinberg JS, Regan A, Sciacca RR, Bigger JT, Fleiss JL, Salvatore DE, Focina M, Rolnitzky 

LM. Predicting arrhythmic events after acute myocardial infarction using the signal-averaged 

electrocardiogram. Am J Cardiol 1992;69:13-21. 

Stroink G, Vardy D, Lamothe R, Gardner M. Magnetocardiographic and electrocardiographic 

recordings of patients with ventricular tachycardia. In: Williamson SJ, Hoke M, Stroink G, 

Kotani M, eds. Advances in biomagnetism. Plenum Press, New York 1989: 437-440. 

Stroink G, Lant J, Elliot P, Charlebois P, Gardner MJ. Discrimination between myocardial 

infarct and ventricular tachycardia patients using magnetocardiographic trajectory plots and 

iso-integral maps. J Electrocardiol 1992;25:129-142. 

Stroink G, Meeder RJJ, Elliott P, Lant J, Gardner MJ. Arrhythmia vulnerability assessment 

using magnetic field maps and body surface potential maps. PACE 1999;22:1718-1728. 

Taccardi B. Distribution of heart potentials on the thoracic surface of normal human subjects. 

Circ Res 1963;12:341-352. 

Tamburro P, Wilber D. Sudden death in idiopathic dilated cardiomyopathy. Am Heart J 

1992;124:1035-1045. 

Theroux P, Morissette D, Juneau M, de Guise P, Pelletier G, Waters DD. Influence of 

fibrinolysis and percutaneous transluminal coronary angioplasty on the frequency of 

ventricular premature complexes. Am J Cardiol 1989;63:797-801. 

Touboul P, Andre-Fouët X, Leizorovicz A, Itti R, Lopez M, Sayegh Y, Milon H, Kirkorian G 

for the Groupe d’etude du prognostic de l’infarctus du myocarde (GREPI). Risk stratification 

after myocardial infarction. A reappraisal in the era of thrombolysis. Eur Heart J 1997;18:99-

107. 



  

 89

Van Leeuwen P, Hailer B, Wehr M. Spatial distribution of QT intervals: an alternative 

approach to QT dispersion. PACE 1996;19 (Pt. II):1894-1899. 

Van Leeuwen P, Haupt C, Hoormann C, Hailer B, Mackert BM, Stroink G. A 67-channel 

biomagnetometer designed for cardiology and other applications. In: Yoshimoto T, Kotani M, 

Kuriki S, Karibe H, Nakasato N, eds. Recent Advances in Biomagnetism. Tohoku University 

Press, Sendai 1999:89-92. 

Vázquez R, Caref EB, Torres F, Reina M, Espina A, El-Sherif N. Improved diagnostic value 

of combined time and frequency domain analysis of the signal-averaged electrocardiogram 

after myocardial infarction. J Am Coll Cardiol 1999;33:385-394. 

Von Olshausen K, Stienen U, Schwarz F, Kübler W, Meyer J. Long-term prognostic 

significance of ventricular arrhythmias in idiopathic dilated cardiomyopathy. Am J Cardiol 

1988;61:146-151. 

Vreede-Swagemakers JJM, Gorgels APM, Dubois-Arbouw WI, Ree JW, Daemen MJAP, 

Houben LGE, Wellens HJJ. Out-of-hospital cardiac arrest in the 1990s: A population-based 

study in the Maastricht area on incidence, characteristics and survival. J Am Coll Cardiol 

1997;30:1500-1505. 

Weismüller P, Abraham-Fuchs K, Killman R, Richter P, Härer W, Höher M, Kochs M, 

Eggeling T, Hombach W. Magnetocardiography: three-dimensional localization of the origin 

of ventricular late fields in the signal averaged magnetocariogram in patients with ventricular 

late potentials. Eur Heart J 1993;14 (Supplement E):61-68. 

Wilson FN, Johnston FD, Macleod AG, Barker PS. Electrocardiograms that represent the 

potential variations of a single electrode. Am Heart J 1934;9:447-458. 

Yi G, Hnatkova K, Mahon NG, Keeling PJ, Reardon M, Camm AJ, Malik M. Predictive value 

of wavelet decomposition of the signal-averaged electrocardiogram in idiopathic dilated 

cardiomyopathy. Eur Heart J 2000;21:1015-1022. 

Zabel M, Portnoy S, Franz MR. Electrocardiographic indexes of dispersion of ventricular 

repolarization: an isolated heart validation study. J Am Coll Cardiol 1995;25:746-752. 

Zabel M, Klingenheben T, Michael FR, Hohnloser SH. Assessment of QT dispersion for 

prediction of mortality or arrhythmic events after myocardial infarction: results of a 

prospective, long-term follow-up study. Circulation 1998;97:2543-2550. 



  

 90

Zabel M, Malik M. Predictive value of T-wave morphology variables and QT dispersion for 

postmyocardial infarction risk assessment. J Electrocardiol 2001;34:27-35. 

Zabel M, Malik M, Hnatkova K, Papademetriou V, Pittaras A, Fletcher RD, Franz MR. 

Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-

term prognosis in male US veterans. Circulation 2002;105:1066-1070. 

Zimmerman M, Adamec R, Simonin P, Richez J. Prognostic significance of ventricular late 

potentials in coronary artery disease. Am Heart J 1985;109:725-732. 

Zipes DP, Wellens HJJ. Sudden cardiac death. Circulation 1998;98:2334-2351.  

 


	CONTENTS
	ABBREVIATIONS
	LIST OF ORIGINAL PUBLICATIONS
	1. ABSTRACT
	2. INTRODUCTION
	3. REVIEW OF THE LITERATURE
	4. AIMS OF THE STUDY
	5. PATIENTS AND METHODS
	6. RESULTS
	7. DISCUSSION
	8. CONCLUSIONS
	9. ACKNOWLEDGEMENTS
	10. REFERENCES

