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ABSTRACT

ABSTRACT

BACKGROUND AND OBJECTIVES

Thrombin is a multifunctional protease, which has a central role in the development and
progression of coronary atherosclerotic lesions and is a possible mediator of myocardial
ischemia-reperfusion injury. Its generation and procoagulant activity are greatly upregulated
during cardiopulmonary bypass (CPB). On the other hand, activated protein C (APC), a
physiologic anticoagulant that is activated by thrombomodulin-bound thrombin, has been
beneficial in various models of ischemia-reperfusion. Therefore our aim in this study was to
test whether thrombin generation or protein C activation during coronary artery bypass
grafting (CABG) associate with postoperative myocardial damage or hemodynamic changes.
Because we postulated that thrombin generation during reperfusion would associate with
clinically significant sequelae, we wanted to further investigate the regulation of thrombin
during CABG. Specifically, we tested whether preoperative thrombophilic factors associate
with increased CPB-related generation of thrombin or its procoagulant activity. Also, we
measured the anticoagulant effects of heparin during CPB with a novel coagulation test,
prothrombinase-induced clotting time (PICT), and compared the performance of this test with
the present standard of laboratory-based anticoagulation monitoring.

METHODS

One hundred patients undergoing elective on-pump CABG were studied prospectively.
Comprehensive thrombophilia screening was performed preoperatively to identify patients with
thrombophilic variables. Activation of coagulation was assessed with serial measurements of
markers of thrombin generation [prothrombin fragment F1+2 (F1+2)] and its procoagulant
activity [soluble fibrin complexes (SFC)], a marker of fibrin degradation (D-dimer), and APC
before, during, and after CABG. Anticoagulation during CPB was assessed with serial
measurements of heparin effects with a novel coagulation test, PICT and two chromogenic
anti-factor Xa activity (anti-Xa) assays, which are the present standard of laboratory-based
anticoagulation monitoring. Antithrombin and protein C activities were measured to evaluate
their association with heparin activity. Clinical outcome was evaluated with measurements of
hemodynamic parameters and cardiac biomarkers, mass of the Mb fraction of creatine kinase
(Ck-Mbm) and troponin T (TnT).

RESULTS

A progressive increase in markers of thrombin generation (F1+2), fibrinolysis (D-dimer), and
fibrin formation (SFC) was observed during CPB, which was further distinctly propagated by
reperfusion after myocardial ischemia, and continued to peak after the neutralization of heparin
with protamine. APC levels increased only dlightly during CPB before the release of the aortic
clamp, but reperfusion and more significantly heparin neutralization caused a massive increase
in APC levels. Protein C activation was clearly delayed in relation to both thrombin generation
and fibrin formation.



ABSTRACT

We demonstrated a correlation between F1+2, a marker of thrombin generation, measured
during reperfusion and postoperative levels of biochemical markers of myocardial necross.
Multivariable logistic regression analyses identified thrombin generation during reperfusion to
be independently associated with myocardial damage. Enhanced thrombin generation during
reperfusion also associated with an adverse hemodynamic change, i.e. increased post-operative
pulmonary vascular resistance. Thrombin and fibrin formation both preceded and dominated
over protein C activation. When an early response of APC to thrombin generation was
observed, i.e. a the end of ischemia and during early reperfusion, the postoperative
hemodynamic profile was favorable. Conversely, high preoperative APC level and high peak
APC level, which coincided with peak thrombin generation, associated with unfavorable
postoperative hemodynamic performance. Despite the dynamic association of APC with
postoperative hemodynamic recovery, there was no association between protein C activation
and evidence of postoperative myocardial damage. A preoperative thrombophilic state did not
associate with perioperative generation of thrombin or the procoagulant activity of thrombin in
patients undergoing CABG.

We showed that there was poor agreement between PICT and anti-Xa measurements and
between two chromogenic anti-Xa assays in the setting of CPB. Basal antithrombin and protein
C activity associated with PICT and anti-Xa levels measured with one of the two anti-Xa
assays. Also, in our cohort of patients with extensive heparinization, lower heparin levels
(either PICT or anti-Xa) during CPB associated with inferior thrombin control during late
reperfusion after heparin neutralization and high heparin activities during CPB associated with
fewer perioperative transfusions of blood products.

CONCLUSIONS

In conclusion, we showed that thrombin generation during reperfusion after CABG associated
with postoperative myocardial damage and pulmonary vascular resistance. Protein C activation
during CPB was clearly delayed in relation to both thrombin generation and fibrin formation.
Even though APC associated dynamically with postoperative hemodynamic performance, it did
not associate with postoperative myocardial damage. Overall, our results suggest that
hypercoagulation after CABG, especialy during reperfusion, might be clinically important.
Preoperative thrombophilic variables did not associate with perioperative thrombin generation
or its procoagulant activity in patients undergoing CABG. Our results do not favor routine
thrombophilia screening before CABG. There was poor agreement between PICT and anti-Xa
assays and between two chromogenic anti-Xa assays in monitoring heparin levels in the
challenging setting of CPB. Further studies are needed to establish optimal |aboratory-based
methods for monitoring high heparin levels during CPB, but our results suggest that PICT
could be an alternative to the chromogenic anti-Xa assays. We also demonstrated that patients
with high heparin levels during CPB received fewer transfusions than other patients did.
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INTRODUCTION

INTRODUCTION

Open heart surgery became possible after the pioneering work of John Gibbon who performed
the first successful clinical open heart surgical operation using CPB in 1953 (Stammers 1997).
Thereafter many others perfected this technology which made the repair of complex cardiac
lesions possible. To date, millions of patients have been treated successfully using CPB.
Cardiac surgery with CPB remains fundamental in the treatment of cardiac diseases despite the
advent of off pump-coronary artery bypass surgery and interventional cardiology.

While often irreplaceable, CPB has significant limitations. Apart from €liciting a systemic
inflammatory reaction and profoundly disturbing hemostasis, CPB causes a significant increase
in thrombin generation and its procoagulant activity. Thrombin is a multifunctional protease
that has been shown to contribute to myocardial ischemia-reperfusion injury in animal studies.
While thrombin is procoagulant, proinflammatory, and proapoptotic, the physiologic
anticoagulant, APC, is anticoagulant, anti-inflammatory, and antiapoptotic. When levels of
both thrombin and APC are propagated their biological net effects are incompletely
understood. A central goal of this study was to achieve a better understanding of the
sgnificance of the complex interplay between thrombin and APC in the setting of CPB for
CABG.

11



REVIEW OF THE LITERATURE

REVIEW OF THE LITERATURE

1. Thrombin and its functions
“Can’t live without it; probably die fromit” (Mann 2003b)

Thrombin is a multifunctional protease with functions extending from coagulation activation
and inhibition to many aspects of cellular regulation (Figure 1). The central importance of
thrombin is evident from studies of homogenous transgenic mice that are deficient in several
components of the coagulation pathway essential to thrombin generation and its regulation.
Transgenic mice deficient in tissue factor, factor VI, tissue factor pathway inhibitor, factor X,
factor V, prothrombin, or protein C are incompatible with life (Mann 2003b). In humans,
probably due to genetic heterogeneity that provides aternative pathways, deficiencies in
coagulation components that are letha in mice produce pathology that ranges from mild to
severe (Mann 2003b). Even more importantly, unregulated and inappropriate production of
thrombin promotes atherosclerosis and can lead to thrombosis, embolism, and, ultimately,
death.

1.1. Role of thrombin in coagulation

Thrombin is a serine protease that has multiple coagulation-related natural substrates and
cofactors (Table 1). Thrombin is the most potent known stimulator of platelet aggregation and
degranulation, it is the final enzyme in the coagulation pathway leading to fibrin formation, and
it has important anticoagulant functions. Depending on how thrombin activity is directed its net
effect is either procoagulant or anticoagulant. The multiple functions of thrombin in hemostasis
are directed by substrate-specificity largely controlled by cofactors (Lane et al. 2005). The
thrombin molecule has an active site cleft and two exosites on its surface (anion-binding
exosites ABEI and ABEII) that are crucial for substrate and cofactor recognition (Huntington
2005). The competitive binding of cofactors plays a crucia role in redirecting thrombin activity
from procoagulant to anticoagulant in areas of intact endothelium. The cofactors fibrin and
thrombomodulin compete for binding to exosite ABEI and the cofactors heparan sulfate (a
glycosaminoglycan) and platelet glycoprotein Ibo. compete for binding to exosite ABEII. In
areas of damaged vessd procoagulant fibrin and platelets (glycoprotein Iba) are abundant and
will be favored in binding to thrombin while in areas of intact endothelium thrombomodulin
and heparan sulfate are more abundant and will dominate exosite binding favoring the
anticoagulant function of thrombin. Thrombomodulin also has a much higher affinity for
thrombin than fibrin does. (Lane et al. 2005)

1.1.1. Thrombin formation

The initiating event leading to thrombin generation is the complexing of tissue factor with
factor Vlla, which is incapable of proteolytic activity unlessit is bound to tissue factor (Figure
2). Tissue factor is congtitutively expressed on subendothelia cells, such as vascular smooth
muscle cells, but endothelia cells, monocytes, and platelets express tissue factor only after
stimulation (Mackman et al. 2007, Steffel et al. 2006). Circulating microparticles originating
from platelets, leukocytes, endothelial cells, or vascular smooth muscle cells aso express tissue
factor (Furie and Furie 2005, Steffel et al. 2006). Another form of circulating tissue factor,

12
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Figure 1. Functions of thrombin. See reviews by Croce and Libby 2007, Esmon 2005, Lane et
al. 2005, Nierodzik and Karpatkin 2006, and text for further references.
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Substrate/ effector Effect of cleavage/ binding by Known cofactor Fold
thrombin activation
Procoagulant or
prohemostatic
Fibrinogen Cleavage of fibrinopeptide A to form Na’ 7-20
fibrin monomer (fibrin 1) and cleavage
of fibrinopeptide B generating fibrin 11
Factor V Activation to factor Va None -
Factor V111 Activation to factor Vllla None -
Factor X| Activation to factor Xla Gplbo 5 x10°
ADAMTS13 Inactivation of ADAMTS13 None -
(leads to reduced processing of VWF)
Factor X111 Activation to factor Xllla Fibrin 80
(cross-links fibrin)
TAF Activation of TAFI Thrombomodulin 1.25 x10°
(inhibits fibrinolysis)
PAR-1 Platelet activation Gplba 5-7
PAR-4 Platelet activation None -
GpV Possibly facilitates cleavage of PARs Gplba 6-10
Anticoagulant
Protein C Activationto APC Thrombomodulin 1-10 x10°
(inhibits factors Vaand VI113)
Antithrombin Inhibition of thrombin Heparin, GAGs 1-20 x10°
Heparin cofactor 11 Inhibition of thrombin Heparin, GAGs 1-70 x10°

Table 1. Natural coagulation-related substrates effectors of thrombin, their cofactors, and
magnitude of activation by the cofactor (Fold activation) as presented in reviews by Adams
and Huntington (2006), Brass (2003), Huntington (2005), and Lane et al. (2005).
ADAMTSI3 = a disintegrin and metaloprotease with thrombospondin type 1 motif, APC
=activated protein C, GAGs = glycosaminoglycans, Gp = (platelet) glycoprotein, PARs =
protease-activated receptors, TAF = thrombin-activatable fibrinolysis inhibitor, VWF = von

Willebrand factor

14
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soluble tissue factor, has been recently discovered. It is also procoagulant, but it is not bound
to microparticles (Steffel et al. 2006). The relative contribution of each form of tissue factor,
i.e. soluble, microparticle-bound, cellular and vessel wall-associated tissue factor, to the
initiation and propagation of coagulation is still unclear (Steffel et al. 2006).

When vessal wall injury occurs tissue factor and factor VIlacomplex on the negatively charged
phospholipid membrane surfaces of tissue factor-presenting cells in the presence of calcium
ions to form the extrinsic tenase complex (Mann et al. 2003) (Figure 2). The factor Vlla-tissue
factor complex (extrinsic tenase complex) both activates factor X directly to produce factor Xa
and it also activates factor 1X to produce factor Xa by the intrinsic tenase complex. Factor Xa
in turn complexes with factor Va to form the prothrombinase complex, which cleaves
prothrombin into thrombin (Figure 2). When prothrombin is cleaved the active protease
thrombin and F1+2 are generated. (Lane et al. 2005, Mann 2003a) A platform of negatively
charged phospholipids, which are brought to the surface of cells such as platelets following
their activation, and the presence of calcium ions are required for the proteolytic action of
coagulation enzymes to occur with the exception of the procoagulant reactions catalyzed by
thrombin (Gomez et al. 2005).

The thrombin-generating coagulation pathway was previously considered to include the
extringc and contact, or intrinsic, pathways. Current knowledge of the process leading to
thrombin formation has been compiled to form the “revised pathway of coagulation” (Mann
2003a) (Figure 2). Factors VIl and IX were included in the tissue-factor-initiated pathway of
coagulation when Osterud and Rapaport (1977) showed that factor 1X can be activated by the
tissue factor - factor Vlla complex. Further understanding came from the knowledge that
factor Xl is activated directly by thrombin (Gailani and Broze 1991). The components of the
former intrinsic pathway: factor XlI, prekallikrein, and high-molecular-weight kininogen, do
not appear to be fundamental for coagulation, but the significance of their contribution to
hemostasis remains an open question (Mann 2003a).

Tissue factor-induced thrombin generation can be divided into two phases based on whole
blood experiments, the initiation phase and the propagation phase. At first, during the initiation
phase very small, nanomolar, amounts of thrombin are generated. The major bolus of thrombin
(>96%) is produced secondarily during the propagation phase. During the initiation phase sub-
picomolar amounts of factor Xa and factor 1Xa are formed. The very smal amount of
thrombin that is subsequently formed activates the extrinsc and intrinsic tenase complexes in
an autocatalytic process leading to more formation of the catalyst (thrombin). In this process
the intrinsic tenase complex is 50 times more efficient in activating factor X to Xa than the
extringc tenase complex. The transition from dow to very rapid thrombin generation that
occurs represents the transition from the initiation phase to the propagation phase. Clot
formation in whole blood experiments occurs close to the end of the initiation phase, when
only approximately 3-5% of the tota amount of thrombin is formed. Therefore, the
propagation phase is undetected by clot-based assays. (Mann et al. 2003, Mann 2003a)

1.1.2. Procoagulant functions of thrombin and the formation of a stable platelet plug

The principle procoagulant functions of thrombin are the activation of platelets mainly through
proteolytic cleavage of protease-activated receptors (PARS) 1 and 4 and the cleavage of

15
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fibrinogen to fibrin to produce the fibrin meshwork of platelet plugs (Brass 2003) (Figure 1).
Thrombin converts fibrinogen to fibrin by first cleaving fibrinopeptide A (FPA) to generate
fibrin monomer (fibrin I) which spontaneously polymerizes to protofibrils. Fibrinopeptide B is
next cleaved from fibrin | to produce fibrin Il protofibrils that undergo lateral aggregation to
form the scaffold for the fibrin clot. Factor XI11, which is also activated by thrombin, in turn,
stabilizes fibrin by covalent cross-linking. (Lane et al. 2005)

Injury to the vessel wall causes collagen, von Willebrand factor (VWF), and tissue factor to be
exposed. Thisleadsto a series of events that ultimately leads to the formation of a stable fibrin-
anchored platelet plug. The formation of the platelet plug is initiated with tethering, rolling,
and arrest of platelets on exposed collagen with VWF supporting platelet-collagen and platelet-
platelet interactions to form a platelet monolayer. Local tissue factor-induced thrombin
generation on activated platelets aids in the initiation of platelet plug formation. The extension
of the platelet plug occurs when platelet agonists thrombin, adenosine diphosphate, and
thromboxane A, further activate platelets and cause the recruitment of additional platelets
which accumulate on the platelet monolayer to from a fibrin-anchored platelet plug in which
platelet-platelet interactions are supported by the binding of fibrinogen, fibrin, and VWF to
platelets. (Brass 2003) Contrary to classical models of thrombus formation in which the
platelet plug first forms and is then stabilized by formation of a fibrin clot, intravita
microscopy of the microcirculation of living mice has reveaed that platelet plug and fibrin clot
formation occur nearly simultaneously (Furie and Furie 2005).

1.1.3. Anticoagulant function of thrombin and physiological inhibition of thrombin

Thrombomodulin has a central role in directing thrombin activity from procoagulant to
anticoagulant. It is an integral membrane protein that is expressed on the surface of endothelial
cells and thrombin binds to it with high affinity. Once thrombin binds to thrombomodulin it is
no longer capable of cleaving its procoagulant substrates. Thrombomodulin also acts as a
cofactor of thrombin in the activation of the anticoagulant protein C pathway.
Thrombomodulin-bound thrombin activates protein C, which is docked on its receptor,
endothelial protein C receptor, on the endothelial surface. The proteolytic cleavage of protein
C by thrombin is enhanced over 1000-fold by thrombomodulin alone and approximately 10
000-fold by thrombomodulin in the presence of a phospholipid membrane. APC binds to its
cofactor, protein S, and proteolytically inactivates factors Va and Vllla, which leads to down-
regulation of thrombin generation. (Gomez et al. 2005, Huntington 2005, Lane et al. 2005)

The major physiologic anticoagulants are APC, tissue factor pathway inhibitor (TFPI),
antithrombin, and heparin cofactor 11 (HCIl). While APC is the anticoagulant product of
proteolytic cleavage of protein C by thrombin and TFPI is the mgor inhibitor of the tissue
factor-factor Vlla complex, antithrombin and HCII inhibit thrombin directly (Table 1).
Antithrombin and HCII are serpins (serine protease inhibitors). Antithrombin is the main
circulating inhibitor of coagulation proteases and physiologically HCIl has at best only a
secondary role in the inhibition of thrombin (Huntington 2005, Lane et al. 2005). In addition to
thrombin, antithrombin inhibits coagulation factors Xa, 1Xa, Xla, and Xllain a process termed
“suicide substrate inhibition”, in which the interaction between the protease and antithrombin
causes a conformational change in both molecules leading to geometric distortion of the active
gte of the protease (Kottke-Marchant and Duncan 2002). Glycosaminoglycans (heparin,
heparan sulfate, and dermatan sulfate) accelerate the inhibition of thrombin by antithrombin up
to 20 000-fold and the inhibition of thrombin by HCII up to 70 000-fold (Lane et al. 2005).
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1.1.4. Fibrinolysisand thrombin

Plasmin is the mgjor fibrinolytic protease responsible for the cleavage of fibrin. The zymogen,
plasminogen, is converted to the active enzyme, plasmin, by tissue-type plasminogen activator
(t-PA) or urokinase. Plasmin aso transforms both t-PA and urokinase form single-chain to
more active two-chain polypeptides. t-PA is synthesized and secreted primarily by endothelial
cells and is the major intravascular activator of plasminogen. Fibrin acts as a cofactor for
plasmin generation by increasing the efficiency of plasminogen cleavage by t-PA. Fragments
known as D-dimers are released when cross-linked fibrin is degraded by plasmin. (Cesarman-
Maus and Hajjar 2005)

There are three maor physiological inhibitors of fibrinolysis: a,-antiplasmin, plasminogen
activator inhibitor-1 (PAI-1), and thrombin-activatable fibrinolysis inhibitor (TAF). a,-
antiplasmin is a serpin that inhibits plasmin directly. PAI-1 is the most important and rapidly
acting inhibitor of both t-PA and urokinase and its activity leads to reduced plasmin formation.
TAF is a carboxypeptidase that circulates in plasma as a zymogen. It is activated by thrombin
and therefore acts as an intermediate between coagulation and fibrinolysis. TAFl efficiently
inhibits fibrinolysis by removing carboxy-terminal lysine residues from partially degraded fibrin.
These lysine residues are binding sites for both plasminogen and t-PA on fibrin and TAFI
therefore abrogates the cofactor function of fibrin in plasmin formation. The endothelial cell
receptor thrombomodulin stimulates the activation of TAF by thrombin approximately 1250-
fold. Activation of TAFI by thrombin down-regulates plasmin formation and stabilizes the
fibrin clot. (Cesarman-Maus and Hajjar 2005, Mosnier and Bouma 2006) TAFI may also have
important functions in the regulation of inflammation as it inactivates bradykinin and the
anaphylatoxins C3a and C5a (Bouma and Mosnier 2006).

1.2. Thrombin and inflammation

Thrombin is an important link between coagulation and inflammation. The proinflammatory
effects of thrombin are mediated through activation of endothelial cells, smooth muscle cells,
and platelets as well as release of cellular mediators and its anti-inflammatory effects are
mediated through activation of natural anticoagulant mechanisms. Interestingly many of the
proinflammatory effects of thrombin have implications for the promotion of atherosclerosis
(Croce and Libby 2007) (Figure 1). On the other hand, inflammation shifts the hemostatic
balance toward coagulation by elevating platelet count and platelet reactivity, by
downregulating natural anticoagulant mechanisms, by initiating and propagating thrombin
generation, and by impairing fibrinolysis (Esmon 2005).

Thrombin activates endothelia cells by cleaving PARs-1 and -2 resulting in the expression of
several leukocyte adheson molecules (VCAM-1, ICAM-1, and E-selectin) and in the secretion
of inflammatory chemokines [interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-
1), platelet-derived growth factor (PDGF), and macrophage migration inhibitory factor (MIF)].
IL-6, on the other hand, is also prothrombotic by increasing the levels of circulating fibrinogen
and PAI-1. (Croce and Libby 2007, Esmon 2005) Thrombin stimulates the proliferation and
migration of vascular smooth muscle cells and the synthesis of collagen, generation of reactive
oxygen species, and secretion of chemokines (IL-6 and MCP-1) by smooth muscle cells
(Patterson et al. 2001). Thrombin-mediated activation of platelets also results in the secretion
of chemokines (PDGF among others) and the expression of CD40 ligand which also induces
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the secretion of chemokines and the expression of adhesion molecules by endothelial cells,
smooth muscle cells, and macrophages (Croce and Libby 2007, Esmon 2005).

1.3. Thrombin and apoptosis

Moderate concentrations of thrombin protect neurons from toxic insults while high
concentrations or prolonged exposure to thrombin induce apoptosis and cell death (Donovan
and Cunningham 1998). A similar dual effect of thrombin has been observed on human tumor
cells. Lower concentrations of thrombin (1-5 nmol/ L) enhanced tumor cell growth while high
concentrations (5-10 nmol/ L) induced apoptotic cell death in cultures of several human tumor
cell lines (Ahmad et al. 2000, Zain et al. 2000). High concentrations of thrombin have aso
been shown to have proapoptotic effects on cultured vascular smooth muscle cells (Rossignol
et al. 2004). In addition to its apoptotic effects on nucleated cells, the platelet activator
thrombin has aso been shown to trigger apoptosis in platelets (Leytin et al. 2006).
Interestingly, both the antiapoptotic and proapoptotic effects of thrombin in these experiments
have been shown to be PAR-1-mediated.

While thrombin is proapoptotic in high concentrations, APC has been shown to have both in
vitro antigpoptotic effects on hypoxic cultured brain endothelia cells and in vivo
neuroprotective effects in murine stroke models (Cheng et al. 2003, Liu et al. 2004).

1.4. Thrombin in tumor angiogenesis, tumor growth, and metastasis

The association of venous thrombosis and cancer is well recognized and was first reported
over 140 years ago by Armand Trousseau. However, more recent research has revealed an
independent role for thrombin in inducing tumor cell adhesion to platelets, in stimulating tumor
angiogenesis, in enhancing tumor cell growth, and in increasing tumor cell seeding and
spontaneous metastasis. Thrombin induces the secretion of vascular growth factors and it hasa
ggnificant stimulatory effect on angiogenesis. Platelets are required for the hematogenous
dissemination of tumor cells as tumor cell-platelet aggregates are protected from natural-killer
cell-mediated elimination. Thrombin increases tumor cell-platelet adhesion by activating
platelets and by inducing the expression of fibronectin and VWF on the platelet surface.
Thrombin-treated tumor cells aso express glycoprotein Ilb-111a that aids in their adhesion to
platelets and endothelial cells. The development of experimental pulmonary metastases is
enhanced up to over 150-fold by thrombin treatment of injected tumor cells and 5-fold by
overexpression of the thrombin receptor PAR-1 by tumor cells. (Nierodzik and Karpatkin
2006) Also, the thrombin inhibitor hirudin inhibits tumor growth and metastasis in mice with
spontaneously metastasizing breast tumor (Hu et al. 2004).

Of particular interest are clinical observations that support the role of thrombin in cancer
progression. Improved survival in patients with small-cell lung cancer has been reported with
ora anticoagulant, heparin, and low molecular weight heparin treatment (Nierodzik and
Karpatkin 2006). Moreover, treatment of a first episode of venous thromboembolism with
warfarin for 6 months versus 6 weeks associated with a reduction in the incidence of urogenita
cancers in the ensuing 6 years of follow-up (Schulman and Lindmarker 2000). Finally, a recent
analysis of the Second Northwick Park Heart Study reveadled an increase in digestive tract
cancer incidence and mortality during eleven years of follow-up of subjects who had evidence
of persistent activation of coagulation a baseline defined as two consecutive yearly
measurements of F1+2 and FPA in the highest quartile (Miller et al. 2004).
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2. Thrombin, coagulation, and ather osclerosis
2.1. Experimental evidence

Many of the cellular responses elicited by thrombin can promote the development of
proliferative vascular lesions. Thrombin has powerful proinflammatory effects on endothelial
cells, smooth muscle cells, and platelets including the secretion of many chemokines and the
PAR-1-mediated induction of proliferation and migration of vascular smooth muscle cells and
synthesis of collagen by vascular smooth muscle cells (see 1.2. Thrombin and inflammation
above) (Croce and Libby 2007). Thrombin aso induces the proliferation of endothelial cells
(Herbert et al. 1994) and the proliferation and migration of fibroblasts (Chen and Buchanan
1975).

In addition, several lines of experimental evidence suggest that thrombin has an important role
in the development of vascular disease by promoting the formation of neointimal hyperplasia
and atherosclerotic lesons. In rat and baboon models thrombin receptor PAR-1 expression is
upregulated in vascular smooth muscle cells of the media and neointima in response to vascular
injury (Wilcox et al. 1994). Mice deficient in PAR-1 (PAR-1 -/-) displayed a trend toward less
neointimal formation after mechanical carotid artery injury than wild type mice did (Cheung et
al. 1999). Also, in arat model of restenosis after carotid artery balloon angioplasty a synthetic
PAR-1 antagonist significantly reduced neointimal thickness (Andrade-Gordon et al. 2001) and
an antibody against PAR-1 reduced neointimal smooth muscle accumulation and expression of
PAR-1 messenger RNA (Takada et al. 1998). In contrast to human platelets, PAR-1 is not
expressed in rodent and rabbit platelets (Cheung et al. 1999) and in mice thrombin activates
platelets by cleaving PAR-4 with PAR-3 serving to facilitate this cleavage (Brass 2003).
Because PAR-1 does not mediate thrombin-induced platelet activation in rodents or rabbits
these experimental results suggest that non-platelet effects of thrombin have a role in the
development of neointimal hyperplasia in response to vascular injury. Contrary to these
findings the local application of an antisense PAR-1 oligonucleotide in a rabbit model of
vascular injury inhibited PAR-1 expression, but did not decrease neointimal hyperplasa even
though the direct thrombin inhibitor hirudin did. This suggests that thrombin plays a role in
neointima formation in response to vascular injury, but the effects of thrombin are not
necessarily PAR-1 mediated in rabbits (Herbert et al. 1997). Also, in rabbit models of catheter
balloon angioplasty of atherosclerotic arterial lesions, recombinant hirudin reduced both
angiographic and histopathological restenosis more efficiently than heparin (Sarembock et al.
1991) and another thrombin inhibitor, hirulog-like peptide, reduced both neointimal hyperplasia
and tissue factor expression of the neointima (Chen et al. 2003).

Important evidence that supports arole for thrombin in the development of atherosclerosis has
come from experiments in which transgenic mice with mutations that promote thrombin
generation were crossbred with atherosclerosis-prone apolipoprotein E-deficient mice. Mice
with combined heterozygous TFPI deficiency and apolipoprotein E deficiency developed more
aortic atherosclerosis than wild-type mice cross-bred with apolipoprotein E-deficient mice did
(Westrick et al. 2001). Similarly, mice homozygous for factor V Leiden with APC resistance
and deficient in apolipoprotein E developed more atherosclerosis than wild-type mice cross-
bred with apolipoprotein E-deficient mice did (Eitzman et al. 2005). Mice heterozygous for
factor V Leiden had an intermediate extent of atherosclerosis suggesting that even low-grade
thrombin generation promotes atherosclerosis (Eitzman et al. 2005).
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2.2. Histopathological evidence

The most common mechanism leading to coronary thrombosis in acute coronary syndromes is
the rupture of the protective fibrous cap of an atherosclerotic plague. Plague rupture provokes
thrombosis through thrombin generation initiated by the exposure of tissue factor, which is
abundant in atherosclerotic plagues, and through platelet activation. (Libby and Theroux 2005)
However, autopsy studies have shown that recurrent episodes of subclinical plague disruption
and minor thrombosis without arterial occlusion contribute also to the progression of stable
coronary artery disease (CAD) (Burke et al. 2001, Mann and Davies 1999). In these studies
multiple healed plague rupture sites with layering causing stenosis have been identified in the
majority of coronary lesions of subjects who died of sudden coronary death.

Other histopathological studies of human chronic atherosclerotic lesions also suggest that
thrombin plays a role in the development of these lesions. While the thrombin receptor PAR-1
is expressed amost solely in the endothelial layer in normal human arteries it is expressed
widely in the neointima of human atherosclerotic lesions (Nelken et al. 1992) and thrombin
activity has been detected in the neointima of these lesions (Stoop et al. 2000).

2.3. Epidemiological evidence linking coagulation and coronary atherosclerosis

The strongest epidemiological evidence linking coagulation markers with the risk of CAD has
been obtained from large-scale long-term prospective population-based studies and meta
analyses of published studies. Of various coagulation-related markers studied, fibrinogen
shows the strongest association with CAD risk in prospective studies (Fibrinogen Studies
Collaboration 2005). The association between CAD risk and fibrinogen is only dightly weaker
than that between CAD and classical risk factors such as smoking, blood pressure, and
cholesterol and fibrinogen may add to their predictive value (Lowe 2005). Level of D-dimer, a
marker of fibrin turnover and a surrogate measure of thrombin activity (Lassila et al. 1993),
aso associates with the future risk of cardiovascular events and mortality from CAD in
prospective studies and may add to the predictive value of conventional risk factors (Danesh et
al. 2001, Smith et al. 2005). Other coagulation markers that have been shown to associate
with increased risk of cardiovascular events in prospective studies include t-PA antigen (Lowe
et al. 2004, Smith et al. 2005), PAI-1 (Smith et al. 2005), VWF (Rumley et al. 1999, Whincup
et al. 2002), factor VIII (Rumley et al. 1999), and both low and high antithrombin levels
(Meade et al. 1991).

F1+2, a commonly used marker of thrombin generation, has not been shown to be a risk
marker for CAD in prospective population based studies of healthy subjects (Cooper et al.
2000, Smith et al. 2005). However, epidemiological evidence directly linking thrombin
generation and CAD has come from studies evaluating the association between CAD and gene
polymorphisms, which lead to increased thrombin generation. A recent meta-analysis of mostly
cross-sectional studies showed that factor V polymorphism G1691A (factor V Leiden) (60
studies evaluated) and the G20210A polymorphism of the prothrombin gene (40 studies
evaluated) associate moderately but significantly with the risk of CAD (Ye et al. 2006).
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3. Thrombin and ischemia-r eper fusion
3.1. Experimental evidence

Inhibition of thrombin has been shown to have beneficia effectsin severa experimental models
of myocardial ischemiarreperfuson injury. Thrombin increased cell death of cultured
cardiomyocytes subjected to simulated ischemia-reperfusion dose-dependently and this effect
was reversed by the direct thrombin inhibitor lepirudin (Mirabet et al. 2005). In arabbit model
of myocardial ischemia-reperfusion, direct thrombin inhibition with hirudin reduced myocardial
infarction size and polymorphonuclear leukocyte infiltration in the endothelium and
subendothelium of reperfused myocardium (Erlich et al. 2000). In a porcine model of CPB,
thrombin inhibition with hirudin, added to standard heparin anticoagulation, improved
immediate hemodynamic recovery after ischemiareperfusion and reduced cardiomyocyte
apoptosis (Jormalainen et al. 2004, Jormalainen et al. 2007). Snow et al. (1991) showed that
APC, the physiologic anticoagulant that is activated by thrombin, aso attenuated myocardial
ischemia-reperfusion in a porcine model. Infusion of a monoclona antibody that prevents
protein C activation led to slower and incomplete recovery of left ventricular function after |eft
anterior descending coronary artery occlusion, while infusion of APC led to almost immediate
recovery of left ventricular function.

Substances that inhibit thrombin or thrombin generation have attenuated ischemia-reperfusion
injury also in other animal models of ischemia-reperfusion. In experimental models of intestinal
ischemia-reperfusion, antithrombin reduced neutrophil rolling and adhesion during reperfusion
(Ostrovsky et al. 1997) and antithrombin and APC reduced intestinal histological injury and
dysfunction and inhibited systemic inflammation (Schoots et al. 2004). In rat models of liver
ischemia-reperfusion, pretreatment with either a selective factor Xa inhibitor or APC reduced
neutrophil sequestration (Yamaguchi et al. 2000) and treatment with TFPI reduced liver
necrosis and tissue factor expression (Yoshimura et al. 1999). TFPI also protected from
ischemia-reperfusion injury of the spinal cord (Koudsi et al. 1996).

APC has exerted protective effects also in models of ischemia-reperfusion of the brain (Cheng
et al. 2003, Shibata et al. 2001), spinal cord (Hirose et al. 2000), and kidney (Mizutani et al.
2000). The protective effects of APC in ischemia-reperfusion injury seem to be distinct from its
anticoagulant effects and are either anti-inflammatory (Hirose et al. 2000, Mizutani et al. 2000,
Shibata et al. 2001) or directly anti-apoptotic as is the case after ischemia-reperfusion of the
brain (Cheng et al. 2003).

3.2. Thrombin and outcomes of acute coronary syndromes and interventions for cardiac
disease

A marker of thrombin generation (F1+2) has associated with clinical outcomes in acute
coronary syndromes. In a substudy of the Global Use of Strategies To Open occluded
coronary arteries (GUSTO)-1 trial comparing thrombolytic treatment strategies for ST-
elevation myocardial infarct, levels of F1+2 at baseline and 12 hours after thrombolysis
associated with the risk of death or reinfarction (Granger et al. 1998). Ardissino et al. (2003)
found a U-shaped association between F1+2 and the risk of myocardial reinfarction or cardiac
death as both low and high levels of F1+2 associated with higher risk in a substudy of a trial
comparing recombinant hirudin to heparin in the treatment of acute coronary syndrome
(GUSTO l1b). A similar U-shaped association between baseline F1+2 and the risk of death,
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myocardial infarction, or refractory angina was observed in a substudy of the Thrombin
Inhibition in Myocardial Ischemia (TRIM) study assessing the efficacy of heparin vs. inogatran,
adirect thrombin inhibitor, in unstable CAD (Oldgren et al. 2001). Patients with increasing vs.
decreasing thrombin markers [F1+2 and thrombin-antithrombin complexes (TAT)] despite
anticoagulation also had a higher event rate (Oldgren et al. 2001).

Low levels of thrombin are thought to generate markedly increased levels of the endogenous
circulating anticoagulant, APC, exerting, therefore, a net anticoagulant effect (Griffin 1995).
This “thrombin paradox” has been characterized in a primate model in which systemic infusions
of low doses of thrombin were antithrombotic and increased APC levels (Hanson et al. 1993).
Even though it can be postulated that the findings of a U-shaped association between markers
of thrombin generation and outcomes after acute coronary syndromes might be evidence
supporting the “thrombin paradox”, this hypothesis has not been tested clinicaly.

Thrombin markers have been shown to associate aso with clinical outcomes after
percutaneous coronary intervention and cardiac surgery. In a series of patients undergoing
percutaneous transluminal coronary angioplasty and serial FPA measurements, patients with
late angiographic restenosis had higher FPA levels measured soon after the procedure than
those without restenosis (Salvioni et al. 1998). After cardiac surgery with CPB, levels of F1+2
correlated with measures of postoperative organ function including left ventricular stroke work
index, Pa0,/ fraction of inspired oxygen ratio, and serum creatinine (Dixon et al. 2005) and
after off-pump CABG, F1+2 and D-dimer levels associated with early postoperative cognitive
decline (Lo et al. 2005).

4. Coagulation and CPB

CPB disturbs hemostasis profoundly. The hemostatic changes induced by CPB are associated
with the exposure of blood to the non-biological surfaces of the oxygenator, reservoir, and
tubing of the extracorporea circuit, with marked hemodilution caused by CPB, with surgical
trauma, and with the high doses of unfractionated heparin that are administered (Bevan 1999).
CPB-induced hemostatic changes include a significant decrease in platelet counts, a platelet
function defect related to release of platelet alpha-granule contents and down-regulation of
surface receptors for VWF and fibrinogen (Bevan 1999), increase in circulating platelet-derived
procoagulant microparticles (Abrams et al. 1990), consumption and dilution of coagulation
factors, and increased thrombin generation and fibrinolyss (Bevan 1999). The following
review will focus on thrombin generation and fibrinolysis during CPB.

4.1. Thrombin generation during CPB

Thrombin generation and activity during CPB has been well characterized with measurements
of markers of thrombin generation (F1+2), inhibition of free thrombin by antithrombin (TAT),
and the fibrinogen-cleaving activity of thrombin (FPA) (Boisclair et al. 19933, Boisclair et al.
1993b, Brister et al. 1993, Davies et al. 1980, Hunt et al. 1998, Knudsen et al. 1996,
Slaughter et al. 1994, Tanaka et al. 1989). These studies have demonstrated that CPB causes a
progressive increase in thrombin generation. However, reperfusion after cardiac ischemia has
been shown to induce a distinct more rapid increase in thrombin generation during CPB
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that accounted for marker clearance, hemodilution, and blood loss, Chandler and Velan (2003)
showed that instead of steady continuous increase in thrombin generation, CPB results in the
generation of bursts of non-hemostatic thrombin and soluble fibrin especially soon after the
initiation of CPB and during early reperfusion after cardiac ischemia. Studies which have
1999) and of F1+2 levels after cardiac ischemia (Kaweit et al. 2005) suggest that the
generation of thrombin across the coronary circulation during ischemia and reperfusion
contributes to but does not fully explain the reperfusion-related increase of systemic levels of
thrombin markers. Rewarming during CPB causes systemic vasodilation which occurs partly
after the release of the aortic clamp. Speculatively, vasodilation might cause hypoperfused
areas of the circulation to be reperfused and increase systemic thrombin generation. Also, a
possible contribution of the pulmonary circulation to the reperfusion-associated generation of
thrombin is unknown.

4.2. Fibrinolyssduring CPB

Severa studies have demonstrated activation of the fibrinolytic system during CPB with
elevated levels of t-PA, fibrin degradation products, and plasmin-antiplasmin complexes
(Chandler et al. 1995, Hunt et al. 1998, Stibbe et al. 1984, Tanaka et al. 1989, Teufelsbauer et
al. 1992, Whitten et al. 1999). Mainly increased levels of t-PA rather than urokinase cause
enhanced blood fibrinolytic activity during CPB (Stibbe et al. 1984). Elevated t-PA levels
return to baseline soon postoperatively while PAI-1 levels which diminish during CPB increase
significantly above baseline values on the first and second post-operative days suggesting a
shift toward hypercoagulability in the fibrinolytic balance (Chandler et al. 1995, Hunt et al.
1998, Mannucci et al. 1995).

Follow-up data of patients who underwent CABG with CBP have shown that markers of
coagulation (F1+2 and TAT) and fibrinolysis (D-dimer) are elevated up to 30 and 60 days after
CABG, respectively (Mannucci et al. 1995, Parolari et al. 2003).

4.3. M echanisms of activation of coagulation during CPB

Although tempting as an explanation for coagulation activation during CPB, the intrinsic or
contact activation pathway of coagulation is no longer thought to contribute significantly to
coagulation in vivo (Bevan 1999, Mann 2003a). Studies performed in patients during CPB
have suggested that the tissue factor/ factor Vlla pathway, previously known as the extrinsic
coagulation pathway, is the initiator of also CPB-related activation of coagulation rather than
the contact activation pathway. Boisclair et al. (1993a) showed that there was no association
between factor Xlla levels and thrombin generation measured with F1+2 during CPB and that
factor IX activation did not occur before near maximal F1+2 increase. Factor X activation
occurred ahead of factor IX activation also suggesting that contact activation could not be
responsible for the observed thrombin generation (Philippou et al. 1995). Burman et al. (1994)
observed dignificant thrombin generation demonstrated by F1+2 and TAT equalling that
generally observed during CPB in a 12-year old girl with severe factor XII deficiency who
underwent cardiac surgery. Therefore, a factor Xll-dependent pathway (contact activation)
could not have been directly responsible for the increased thrombin generation.

Soluble plasma tissue factor levels in the systemic circulation increase during cardiac surgery
with CPB (Hattori et al. 2005, Philippou et al. 2000). Tissue factor requires monocytes,
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platelets, or microparticles to provide a phospholipid surface for activating factor VII
(Edmunds and Colman 2006). Monocytes, which can be stimulated to express tissue factor
(Furie and Furie 2005), have been implicated in the initiation of thrombin generation during
CPB. In a modd of prolonged simulated extracorporeal circulation, circulating monocytes
were induced to express tissue factor after two hours of extracorporeal circulation and tissue
factor expression was highest in cells recovered from the surface of the circuit and the
oxygenator (Kappelmayer et al. 1993). Also during clinical CPB, Chung and coworkers
(Chung et al. 1996) have demonstrated increased tissue factor expression of circulating
monocytes, but other investigators have shown either no increase in circulating monocyte
tissue factor expression during CPB (Barstad et al. 1996, Parratt and Hunt 1998) or delayed
tissue factor expression after CPB (Ernofsson et al. 1997). However, both circulating
monocytes and more distinctly monocytes retrieved from the oxygenator of the extracorporeal
circuit exhibited an increase in monocyte procoagulant activity (Barstad et al. 1996, Parratt
and Hunt 1998). One possible explanation is the direct activation of factor X by circulating
monocytes, which is mediated by the monocyte surface receptor CD 11b without evidence of
tissue factor expression (Parratt and Hunt 1998). However, since cellular upregulation of
tissue factor expression is sow compared to the rapid increase in thrombin generation
observed during CPB (Philippou et al. 2000), other mechanisms must be involved.

Procoagulant microparticles are another possible platform for activation of the tissue factor/
factor Vlla pathway and therefore a potentialy important source of thrombin generation
during CPB. CPB increases the amount of circulating platelet-derived microparticles (Abrams
et al. 1990), which stimulate thrombin formation in vitro (Nieuwland et al. 1997).

The surgical wound is an important source of tissue factor-mediated thrombin generation
during CPB. Thrombin generation in pericardial blood during CABG is fulminant compared to
systemic blood (Chung et al. 1996, Tabuchi et al. 1993, Weerwind et al. 2003) with over 30-
fold concentrations of F1+2 and up to 50-fold concentrations of TAT in the pericardial blood
in comparison to systemic blood reported (Sturk-Maguelin et al. 2003). Also fibrinolytic
activity (levels of t-PA and fibrin and fibrinogen degradation products) is higher in blood
00zing into the pericardia cavity during the operation than in systemic blood (Tabuchi et al.
1993). Furthermore, monocyte tissue factor expression is higher in pericardia blood than in
systemic blood (Chung et al. 1996) and plasma levels of soluble tissue factor (Philippou et al.
2000, Sturk-Maguelin et al. 2003) and factor Vlla are significantly more pronounced in
pericardia cavity blood than systemic blood (Chung et al. 1996, Philippou et al. 1999). During
cardiac surgery pericardia blood also contains procoagulant platelet-derived microparticles at
nearly ten times the concentration found in systemic blood and in contrast to systemic blood
pericardial blood contains also microparticles derived from other cellular sources such as
erythrocytes, monocytes, and granulocytes (Nieuwland et al. 1997). Even though
microparticle-bound tissue factor obtained from pericardia blood during CPB stimulates
thrombin formation (Sturk-Maguelin et al. 2003), recent studies have shown that
microparticle-free soluble plasma tissue factor from pericardia blood is capable of activating
factors VII and X in the presence of either wound monocytes or activated monocytes (Hattori
et al. 2005). Furthermore, in this setting, monocytes are a more efficient platform for factor
VI activation than microparticles or platelets (Hattori et al. 2005, Khan et al. 2006).
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4.4. Effect of eliminating cardiotomy suction

Blood collecting into the surgical field (the mediastinum and pericardial and thoracic cavities)
during cardiac surgery has routinely been suctioned during heparinization (cardiotomy suction)
and returned into the extracorporeal circuit in most cardiac surgical centers. Since blood in the
surgical wound has been shown to be procoagulant, studies have been performed to determine
the effect of eliminating cardiotomy suction on activation of coagulation and blood loss.
Tabuchi et al. (1993) retained suctioned mediastinal blood during CABG until the distal
anastomoses were sutured and observed increases in systemic levels of TAT, fibrinogen
degradation products, and fibrin degradation products after the suctioned blood was returned
into the extracorporeal circuit. Thereafter, several small prospective randomized trials of
CABG patients have addressed the same issue and all suggest that the elimination of
cardiotomy suction may be beneficial in attenuating the activation of coagulation during CPB.
De Haan and coworkers (de Haan et al. 1995) randomized patients into two groups: suctioned
blood was either reinfused at the end of the operation or retained. A subgroup was analyzed
for hemostatic parameters. Levels of TAT, t-PA, and fibrin degradation increased significantly
more in the retransfusion group and the increased concentrations of these markers were higher
than expected by the mere infusion of the suctioned blood. Also postoperative blood loss was
higher in the retransfusion group. In a similar more recent study, discarding of suctioned blood
prevented increased thrombin generation (F1+2 and TAT) during CPB and greatly attenuated
thrombin generation after CPB (De Somer et al. 2002). Another randomized study showed
that elimination of cardiotomy suction blunted the elevation of F1+2 levels after CPB (Aldea et
al. 2002). When aspirated blood is processed with a cell saver, the aspirated plasma is
discarded and the resulting packed red blood cells are reinfused (Albes et al. 2003). This
approach aso reduces CPB-induced thrombin generation (Albes et al. 2003).

4.5. Heparin-coated circuitsfor CPB

Extracorporeal circuits have been coated with heparin in an attempt to increase their
biocompatibility. Several studies have shown that heparin-coated circuits reduce the
inflammatory response associated with CPB as evidenced by reduced complement and
granulocyte activation (Despotis et al. 1999). The effect of heparin coating of the
extracorporeal circuit on activation of coagulation has been less consistent. Most studies have
not demonstrated an effect on levels of markers of activation of coagulation (Boonstra et al.
1994, Gorman et al. 1996, Muehrcke et al. 1996, Ovrum et al. 1995, Wagner et al. 1994, te
Vethuis et al. 1997) while others have shown reduced thrombin formation (Aldea et al. 2002,
Gu et al. 1991). Maintaining reduced systemic levels of heparin when heparin-coated circuits
are used has been advocated, because some investigators have observed reduced blood loss
with this strategy while, again, others have shown no benefit (Despotis et al. 1999). When
using closed heparin-coated circuits, Aldea and coworkers found similar levels of markers of
thrombin generation in patients who were treated with full and reduced heparin doses (Aldea et
al. 1998). However, reports of increases in markers of coagulation activation with this
approach (Kuitunen et al. 1997, Ovrum et al. 1996) have led to recommendations that
systemic heparin doses should not be reduced (Despotis et al. 1999, Edmunds 1994).

4.6. Antifibrinolytic agentsand CPB

Hyperfibrinolysis has been implicated as an important contributor to the CPB-related
coagulopathy that can result in increased perioperative hemorrhage. Gram and coworkers
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(Gram et al. 1990) showed that increased fibrinolytic activity after heparin neutralization
associated with increased post-CPB hemorrhage. Several studies have shown the efficacy of
administering the antifibrinolytic agents aprotinin, tranexamic acid, and s-aminocaproic acid in
preventing blood loss during CPB (Fremes et al. 1994, Laupacis and Fergusson 1997). All of
these agents inhibit fibrinolysis effectively, but only the serpin, aprotinin, neutralizes plasmin
activity directly as evidenced by reduced levels of plasmin-antiplasmin complexes during CPB,
while both tranexamic acid and e-aminocaproic acid inhibit fibrinolysis by displacing
plasminogen from the fibrin surface and increase the levels of plasmin-antiplasmin complexes
(Eberle et al. 1998, Kuitunen et al. 2005). Interestingly, aprotinin also reduces thrombin
generation during CPB (Dietrich et al. 1995, Feindt et al. 1994, Kuitunen et al. 2005, Marx et
al. 1991) and inhibits thrombin-mediated platelet activation (Poullis et al. 2000).

Safety concerns were raised after reports of increased rates of myocardia infarction and
saphenous vein graft thrombosis with aprotinin use (Alderman et al. 1998, Cosgrove et al.
1992). Y et, meta-analyses of randomized trials have not shown aprotinin treatment to associate
with an increased risk of mortality, myocardial infarction (Levi et al. 1999, Sedrakyan et al.
2004), or rend failure (Sedrakyan et al. 2004). On the contrary these studies found aprotinin
treatment to associate with a decreased risk of perioperative mortality (Levi et al. 1999) and
stroke (Sedrakyan et al. 2004). However, recent non-randomized observational studies
utilizing propensity score matching have found aprotinin treatment to be associated with renal
dysfunction (Karkouti et al. 2006, Mangano et al. 2006) and late mortality (Mangano et al.
2007).

4.7. Off-pump coronary artery bypasssurgery and activation of coagulation

Studies examining patients undergoing off-pump CABG surgery have demonstrated that, in
contrast to on-pump CABG, markers of thrombin generation and fibrin degradation are not
increased immediately postoperatively after off-pump CABG, but 24 hours after surgery they
increase to levels comparable with levels observed during on-pump CABG (Casati et al. 2001,
Lo et al. 2004, Mariani et al. 1999). Furthermore, the increases in F1+2 and D-dimer levels
persist at least until the fourth postoperative day (Lo et al. 2004). There are also reports on
increased VWIf concentrations after off-pump CABG surgery (Casati et al. 2001, Lo et al.
2004). A hypercoagulable state is therefore present also after off-pump CABG surgery
(Kurlansky 2003).

5. Natural anticoagulants and heparin anticoagulation during CPB

5.1. Natural anticoagulants

The role of the natural anticoagulants APC, TFPI, antithrombin, and HCIl during CPB is
incompletely understood. During CPB plasma APC levels increase rapidly during reperfusion

during reperfusion after CABG had an inverse correlation with neutrophil sequestration in the
human myocardium and with L-selectin expression of circulating neutrophils, implicating APC
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Heparin causes the release of TFPI from endothelial cells (Sandset et al. 1988). There is
sgnificant variability in the TFPI response to heparinization in patients undergoing CPB and
evidently some patients do not respond to heparin with an increase in TFPI levels (Adams et
al. 2002). On average, CPB with heparin anticoagulation causes a very significant increase in
both total and free TFPI levels (Donahue et al. 2006, Fischer et al. 2004, Kojima et al. 2001)
with over 10-fold increases in the levels of free TFPI reported (Donahue et al. 2006, Fischer et
al. 2004). When heparin is neutralized with protamine after CPB TFPI levels decrease but
remain higher than preoperatively (Donahue et al. 2006, Sun et al. 2000). Donahue and
coworkers (Donahue et al. 2006) showed that TFPI undergoes proteolytic degradation during
CPB and this degraded form of TFPI remains circulating in plasma after heparin neutralization,
which may result in a decrease in endothelium-associated TFPI after CPB.

Effective heparin anticoagulation requires sufficient levels of plasma antithrombin.
Antithrombin levels decrease during CPB as a result of hemodilution and consumption of
antithrombin (Cullmann et al. 1980, Hashimoto et al. 1994, Ranucci et al. 2004), which might
lead to ineffective anticoagulation. Furthermore, preoperative heparin treatment decreases
antithrombin levels in cardiac surgical patients (Dietrich et al. 1991), but reduced systemic
heparinization during CPB with the use of heparin-coated circuits associates with better
preserved antithrombin levels during CPB (Ranucci et al. 2002).

HCII levels decrease immediately after the initiation of CPB as a result of hemodilution
(Cardigan et al. 1996, Chan et al. 1997, Turner-Gomes et al. 1994). The role of HCII is
thought to be less important clinically (Hirsh and Raschke 2004). However, experimental CPB
has been performed in pigs with dermatan sulfate anticoagulation, which is based on the
potentiating effect of dermatan sulfate on the inhibition of thrombin by HCII (Brister and
Buchanan 1995).

5.2. Heparin anticoagulation
5.2.1. Mode of action of unfractionated heparin

Heparin is a heterogeneous mixture of branched glycosaminoglycans with molecular weights
ranging from 3000 to 30 000. Heparin binds to antithrombin and the heparin/antithrombin
complex inactivates the procoagulant serine proteases, factors Ila (thrombin), Xa, IXa, Xla,
and Xlla. The anticoagulant effect of heparin is mainly achieved by antithrombin-dependent
inactivation of thrombin and factor Xa. Heparin aso activates HCII, which inhibits thrombin.
The HCII-mediated anticoagulant effect of heparin requires higher heparin concentrations than
the antithrombin-mediated one and might therefore play a role during CPB (Hirsh and Raschke
2004). Heparin also has a third anticoagulant effect, which is antithrombin- and HCII-
independent. It is mediated by heparin binding to factor 1Xa, requires very high heparin
concentrations, and results in inhibition of factor X activation. In all, unfractionated heparin
has a relative anti-factor Ila (thrombin)/ anti-factor Xaactivity ratio of 1:1. (Hirsh and Raschke
2004) Also, heparin-releasable TFPI is thought to contribute significantly to the anticoagulant
effects of heparins (Sandset et al. 1988). The release of TFPI is more efficient after
unfractionated heparin administration than after low molecular weight heparin administration
(Brodin et al. 2004). In addition, heparin has been shown to enhance the anticoagulant activity
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5.2.2. Monitoring of heparin anticoagulation for CPB

Anti-Xa measurements are considered the golden standard of laboratory-based monitoring of
heparin anticoagulation (Hirsh and Raschke 2004) even though various studies have reported
clinicaly significant variability in the results of different anti-Xa assays (Kitchen et a. 1999,
Kitchen et a. 2000, Kovacs et al. 1999). As laboratory-based assays can not be used to guide
heparin dosage during CPB, activated clotting time (ACT) has become a widely accepted
point-of-care test for monitoring heparin during CPB (Despotis et a. 1999). However, the
effect of ACT-based protocols guiding heparin and protamine dosage vs. fixed dosage
protocols on transfusion requirements and post-operative blood loss in various studies has
been inconsistent (Despotis et al. 1999). There are inherent problems related to ACT-based
monitoring of heparin during CPB. ACT may be prolonged by factors other than heparin, such
as hemodilution, hypothermia, quantitative and qualitative platelet abnormalities, and drugs
such as aprotinin, which prolongs celite-based ACT but not kaolin-activated ACT (Despotis et
al. 1999). Indeed, ACT levels reflect plasma heparin levels poorly (Culliford et al. 1981,
Despotis et al. 1994). Whole blood heparin concentration measurements during CPB with an
on-site automated protamine sulfate titration assay have been reported to correlate well with
laboratory-based anti-Xa measurements in one study (Despotis et a. 1994). However, others
have reported poor agreement between these measurements (Gruenwald et a. 2000, Hardy et
al. 1996).

5.2.3. Heparin dosage during CPB

Early heparin dosage protocols were empiric, but Bull and coworkers (Bull et a. 1975b)
showed that they resulted in significant variability in dose response and duration of heparin
effects. Bull et a. (1975a) introduced ACT-guided heparin dosage and suggested that ACT
levels should be maintained above 300 seconds. Determining the minimum safe ACT for CPB
has proved difficult. Young et a. (1978) suggested 400 seconds as the minimum safe ACT
based on the appearance of fibrin monomer in plasma of monkeys with ACT values below 400
seconds during CPB. In subsequent studies evaluating coagulation during CPB ACT has
usually been maintained at levels greater than either 400 or 480 seconds (Boisclair et al. 1993b,
Brister et al. 1993, Chandler and Velan 2003, Davies et a. 1980, Hunt et a. 1998, Knudsen et

suggesting that maintaining even higher heparin concentrations during CPB may be beneficial.
Plasma FPA correlated inversely with heparin levels during CPB (Gravliee et al. 1990,
Hashimoto et a. 1994). High-dose heparin anticoagulation for patients undergoing aortic
surgery under deep hypothermic circulatory arrest resulted in reduced levels of TAT and D-
dimer (Okita et a. 1997). Also, in randomized settings higher heparin doses during CPB
associated with reduced F1+2 and D-dimer levels (Koster et a. 2002), reduced FPA and D-
dimer levels and reduced consumption of coagulation factors (Despotis et a. 1996), and fewer
transfusions (Despotis et al. 1995).
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AIMSOF THE PRESENT STUDY

In order to further elucidate the significance of thrombin generation and its functions in
patients undergoing CABG the ams of this study were

1. to test whether post-ischemic activation of coagulation during reperfusion after CABG
associates with postoperative myocardial damage or hemodynamic compromise.

2. to measure protein C activation during CABG in relation to thrombin generation and to the
procoagulant activity of thrombin and to investigate the associations of protein C activation
with postoperative hemodynamic recovery and myocardial damage.

3. toinvestigate the effect of preoperative thrombophilic variables on perioperative thrombin
generation, the procoagulant activity of thrombin, and fibrin turnover.

4. to compare the performance of a novel coagulation test, PICT, and two chromogenic anti-

Xa assays in measuring heparin effects in the setting of high-dose heparinization during
CPB.
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1. Study setting and patient population (1-1V)

This study was a prospective, single center study performed in the Department of
Cardiothoracic Surgery, Helsinki University Central Hospital, Helsinki, Finland between
October 2002 and June 2004. Ingtitutional ethical committee approval was obtained.
Anesthesia, CPB, transfusions, fluid therapy, and postoperative medication followed a strict
clinical protocol.

The study population consisted of 100 consecutive patients who were scheduled for primary,
elective on-pump CABG. Written informed consent was obtained. Apart from patients with
exclusion criteria patients were excluded only if it was necessary for logistical reasons related
to patient recruitment and blood sampling (i.e. weekends, holidays etc.). Exclusion criteria
were as follows: concomitant valve or other cardiac surgery; use of warfarin, unfractionated or
low-molecular weight heparin, or aspirin less than five days prior to surgery; rena failure
(serum creatinine >120 umol/ L before the preoperative angiogram); abnormal preoperative
international normalized ratio; anemia (preoperative hemoglobin <130 g/ L for males and <120
g/ L for females); and thrombocytopenia (preoperative platelet count <150 x 10% L). All
patients were interviewed preoperatively and medication, history of smoking, family history of
venous and arterial thrombosis, history of diabetes mellitus, stroke, transient ischemic attack,
myocardial infarction, percutaneous coronary intervention, peripheral arterial disease, deep
venous thrombosis, pulmonary embolism, other mgjor concomitant diseases, New Y ork Heart
Association functional class, and left ventricular gection fraction were recorded. Operative risk
was evauated according to the European System for Cardiac Operative Risk Evaluation
(EuroSCORE) (Nilsson et al. 2004), which takes into account severa patient-related, cardiac,
and operation-related preoperative risk factors including age, sex, the presence of pulmonary,
neurologic, and renal comorbidity, the presence of extracardiac arterial disease, previous
cardiac surgery, active endocarditis, unstable angina, left ventricle dysfunction, recent
myocardial infarct, pulmonary hypertension, urgency, and the type of surgery performed. The
demographic and clinical data are summarized in |, Table 1.

2. Clinical study protocal (1-1V)
2.1. Anesthesia

The patients were premedicated with oral lorazepam (0.04-0.06 mg/kg) two hours prior to the
induction of anesthesia. The patients” regular oral cardiovascular medications were given at the
same time as the premedication. Anesthesia was induced with sufentanil (1-2 pg/kg), propofol
(1-2 mg/kg), and pancuronium (0.1 mg/kg) and maintained with sufentanil (0.5-1.0 pg/kg/h)
and isoflurane (inspiratory concentration of at least 0.2 volume %). After CPB isoflurane was
replaced with a propofol infusion (4-10 mg/kg/h). Propofol (1-4 mg/kg/h) was used for
postoperative sedation in the cardiac surgica intensive care unit (ICU). Sedation was
continued until the patient’s core temperature had reached 36 © C. Sufentanil (0.1 pg/kg/h) or
oxycodone (0.05 mg/kg intravenously or 0.1 mg/kg intramuscularly) was used for
postoperative analgesiain the ICU.
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2.2. Anticoagulation protocol

The patients received an initial intravenous dose of 400 1U/kg of porcine mucosal heparin
(Heparin Leoa , LEO Pharma, Ballerup, Denmark) and 5000 IU of heparin was added to the
priming solution of the CPB circuit. Heparinization was monitored with kaolin-ACT
measurements (Automated Coagulation Timer |1, Medtronic, Minneapolis, MN, USA) every
20 minutes during CPB and additional heparin doses of 5000 1U were administered, as needed,
to maintain an ACT above 600 s. After CPB heparinization was neutralized with 1 mg of
protamine sulfate per 100 U of the initial dose of heparin. In case of increased postoperative
blood loss (continuous chest tube output > 3 mL/ kg/ 30 minutes) in the ICU, ACT was
measured and if it was prolonged more than 50 seconds compared with the preoperative value
an additional 25 mg dose of protamine sulfate was administered. When no increased
postoperative blood loss was present, low molecular weight heparin treatment with dalteparin
was started six hours postoperatively and continued twice daily thereafter (2500 1U
subcutaneously twice daily for patients who weighed under 60 kg and 5000 |U subcutaneously
twice daily for patients who weighed over 60 kg).

2.3.CPB

CPB was ingtituted with a non-coated circuit, a membrane oxygenator (Trilllum®Affinity®,
Medtronic), and a roller pump (Stockert SlII, Stockert Instrumente GmbH, Munich,
Germany), and non-pulsatile pump flow of 2.4 L/min/m? was maintained. The CPB circuit was
primed with 2000 mL of Ringer’s acetate and 100 mL of mannitol. Antifibrinolytic agents were
not administered. Hematocrit was maintained above 0.20 during CPB. Blood suctioned from
the operative field was returned to the systemic circulation through a filtered cardiotomy
reservoir throughout the operation until protamine administration. The patients were alowed
to cool passively and were rewarmed to a core temperature of 36 °C before weaning from
CPB. After CPB the content of the extracorporeal circuit was collected into non-
anticoagulated blood bags and returned to the patient.

2.4. Surgery

After median sternotomy the left internal mammary artery (LIMA), right interna mammary
artery (RIMA), saphenous vein, or radial artery grafts were harvested. The ascending aorta and
the right atrial appendage were cannulated and CPB was initiated. Intermittent antegrade cold
(+10-12°C) blood cardioplegia was used for myocardia protection. The aorta was cross-
clamped during suturing of all anastomoses. LIMA was anastomosed to the left anterior
descending coronary artery in all cases except one. Four patients received also a RIMA graft.
Additional aortocoronary anastomoses were performed using saphenous vein or radia artery
grafts. Intraoperative volume flow measurements of all grafts were performed with a transit
time flow meter (Medi-Stim Butterfly Flowmeter®, Medi-Stim AS, Oso, Norway) to ascertain
immediate graft patency. The operative dataare summarized in |, Table 2.

2.5. Blood component transfusion triggers
The cut-off hemoglobin value for postoperative packed red blood cell transfusions was 80 g/L
throughout the study. In case of increased postoperative bleeding (continuous chest tube

output > 3 mL/kg/30 minutes) platelet count, APTT, and INR were measured. If bleeding
continued and APTT was prolonged more than 1.5 -fold compared to the preoperative value,
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or INR was >1.8, fresh frozen plasma was transfused (15 mL/kg) and platelet counts below
100 x 10%/L indicated a transfusion of one unit of platelets /10 kg of body weight.

2.6. Hemodynamic management and fluid therapy

When the postoperative cardiac index was under 2.0 L/min/m?, pulmonary capillary wedge
pressure was first adjusted to 12-15 mmHg by optimizing preload with an infusion of Ringer’s
acetate, 6% hydroxyethyl starch, or 4% human abumin. If the cardiac index remained below
2.0 L/min/m?, epinephrine (0.02-0.2 ug/kg/minute) was infused. If the cardiac index still
remained below 2.0 L/min/m?, a milrinone infusion (0.5 pg/kg/minute) was added. When the
mean arteria pressure was under 70 mmHg, preload was first optimized (see above), and when
necessary, norepinephrine (0.01-0.1 pg/kg/minute) was infused.

2.7. Postoperative medication

100 mg of aspirin was administered orally on the morning of the first postoperative day and
once dally thereafter. Non-steroidal anti-inflammatory drugs, dypyridamole, clopidogre,
warfarin, aprotinin, or tranexamic acid were not allowed during the study.

3. Outcome measur es
3.1. Clinical outcome measures

Reoperations, neurological complications, acute renal failure, respiratory complications, and
infections were registered prospectively. Two observers, who were blinded to the Ck-Mbm
and TnT values of the patients, analyzed the preoperative and postoperative
electrocardiograms of al patients. New pathological Q waves were identified according to the
criteria of a recent consensus document (Anonymous 2000). Blood component transfusions
during the perioperative period and chest tube drainage up to 16 h postoperatively were
recorded.

3.2. Hemodynamic measurements (1-11)

A radid artery cannula and a pulmonary artery catheter were inserted and heart rate, arteria
pressure, central venous pressure, pulmonary artery pressure, and pulmonary capillary wedge
pressure were measured. Cardiac output measurements were performed with thermodilution.
Mean arterial pressure, mean pulmonary artery pressure, stroke volume, stroke volume index,
cardiac index, systemic vascular resistance index, and pulmonary vascular resistance index
were calculated with standard formulae at five time points. preoperatively (coinciding with
time point A for blood sampling, see below and Figure 3), after termination of CPB (time point
E), on arrival in the ICU, sx hours after protamine (time point F), and on the first
postoperative day (time point G).
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HEPARIN PROTAMINE

U U

AORTIC OCCLUSION

CARDIOPULMONARY BYPASS

OPERATION POSTOPERATIVE
TIME POINT A B C D E F G H
BLOOD SAMPLES X X X X X X X X
HEMODYNAMIC X X X X
MEASUREMENTS

Figure 3. Blood sampling protocol. The time points measured were preoperatively (A), 15
minutes of CPB (B), immediately before the release of the aortic clamp (C), 15 minutes after
the release of the aortic clamp (D), 30 minutes (E) and 6 hours after protamine administration
(F), and on the first (G) and fifth (H) postoperative days. Blood sampling and hemodynamic
measurements were performed as shown. The time points are not in scale.

4. Blood sampling and labor atory analyses
4.1. Preanalytical testing

The handling of blood samples was performed bedside next to the operating theater to avoid
delays in the processing of the samples. To ascertain the effect of various blood sampling
techniques and to test the stability of the samples, a pilot study of altogether 10 patients was
performed. There were no significant differences between F1+2 values in samples collected
through either radia arterial lines of two different lengths or directly from the CPB circuit
(Table 2). The samples also remained stable for up to two hoursonice (Table 2). Based on the
pilot study samples A through G (see “Blood sampling” below) were collected through a radial
artery line and sample H was collected either through an atraumatic venipuncture or through a
radial artery line. We also performed testing of the plasma samples (n=12) to rule out
significant platelet contamination as the centrifugation speed of our local centrifuge was
somewhat low (1500 g). Under these conditions platelet counts in plasmaremained on average
below 10 x 10% I, which is acceptable but might not rule out minor platelet contamination.
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Preoperative 40 min of CPB

Onice20 min Onice2h RT 2h Onice 20 min
Arterid line (30 cm) 0.90 (0.55) 0.97 (0.53) 1.15(0.57) -
Arterial line (180 cm) 0.93 (0.49) - - 2.47 (1.40)
Extracorpored circuit - - - 2.43 (1.36)

Table 2. The effect of the blood sampling technique on F1+2 measurements [nmol/ L, mean
(SD), n=5]. Samples were taken from arteria lines of two different lengths or directly from the
extracorporea circuit and were incubated on ice or in room temperature (RT) for up to 2 h.

4.2. Blood sampling

Blood samples were collected at eight time points (A-H): preoperatively (A), at 15 minutes of
CPB (B), immediately before the release of the aortic clamp (C), 15 minutes after the release
of the aortic clamp (D), 30 minutes (E) and six hours (F) after protamine administration, and
on the first (G) and fifth (H) postoperative days (Figure 3). Samples A through G were
collected through a radial artery catheter and sample H was collected either through an
atraumatic venipuncture or through a radial artery catheter. The radia artery line was flushed
with only physiological saline without heparin. The first 5 or 10 mL of each sample were
discarded depending on the length of the arteria line. For measurements of F1+2, SFC, D-
dimer, anti-Xa, and PICT, nine volumes of blood were collected into vacuum test tubes with
one volume of 3.8% sodiumcitrate (VVenoject®, Terumo Europe N.V., Leuven, Belgium) (I-
V). For measurement of APC, a citrate benzamidine anticoagulant mixture was used
according to Gruber and Griffin (1992) (I1). The samples were cooled on ice and centrifuged
(1500 g/ 10 minutes) at +4°C. Plasma was separated and stored at -80°C. For other
coagulation measurements, nine volumes of blood were collected into vacuum test tubes with
one volume of either 3.8% or 3.2% sodiumcitrate and for measurement of homocysteine three
volumes of blood were collected on five volumes of K3-EDTA on ice (111). These samples
were centrifuged (2000 g/ 10 minutes) at +20°C before separation of plasma(l11).

4.3. Laboratory analyses

F1+2 was analyzed with an enzyme-linked immunoassay (Enzygnost F1+2microO, Dade
Behring, Marburg, Germany) (I-1V). SFC and D-dimer were analyzed with
immunoturbidimetric assays (STA-Liatest OFM, Diagnostica Stago, Asnieres, France and Tina-
quant D-DimerO, Roche Diagnostics, Mannheim, Germany) (1-1V). APC and protein C were
analyzed with an enzyme capture assay, as previously described (Gruber and Griffin 1992) (I1).
The levels of the cardiac biomarkers, Ck-Mbm and TnT, were determined with
electrochemiluminescence  immunoassays  (Elecsys Ck-MbSTATO  and  Elecsys
TroponinTSTATO, Roche Diagnostics GmbH, Mannheim, Germany) (1-11, 1V).

The preoperative thrombophilia screen included the following analyses (111): Antithrombin and
protein C activities were determined with chromogenic assays [BerichromOAntithrombin 111
(A), BerichromOProtein C, Dade Behring, Marburg, Germany] and expressed as percentage
after calibration against reference plasma (HemoslL Cadlibration Plasma, Instrumentation
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Laboratory, Lexington, MA, USA and Standard Human Plasma, Dade Behring, respectively)
(111-1V). Free protein S was determined with an automated latex ligand immunoassay
(Instrumentation Laboratory, Lexington, MA, USA). Factor VIII was anadyzed with a
coagulometric method (Dade Behring, Marburg, Germany). APC resistance was determined
with a functional activated partial thromboplastin time (APTT)-based test with predilution of
patient plasma with factor V-depleted plasma (CoatestOAPC Resistance V, Chromogenix,
Lexington, MA, USA). Factor V Leden (FVR506Q) and the prothrombin G20210A gene
mutations were identified with cyclic minisequencing. Cardiolipin 1gG antibodies were
determined with an enzyme immunoassay (Pharmacia Deutschland, Freiburg, Germany). Lupus
anticoagulant was screened with a simplified dilute Russell’s Viper Venom Time test and
confirmed with a high phospholipid-containing coagulation assay (DVVtestO, DVV confirmO,
American Diagnostica, Stamford, CT, USA). Homocysteine was determined with a
fluorescence polarization immunoassay (AxSY MOHomocysteine, Axis-Shield, Dundee, UK).

Heparin levels were measured with PICT (Pefakita PICTa , Pentapharm, Basel, Switzerland)
(Cdatzis et al. 2000) (detailed description in 1V) and with two chromogenic anti-Xa assays
[Berichroma Heparin, Dade Behring, Marburg, Germany (anti-Xa A) (I, 1V) and STA& -
Rotachroma Heparin, Diagnostica Stago, Asnieres, France (anti-Xa B) (V)] according to the
manufacturers” instructions (detailed description in 1V). For anti-Xa A dextran sulfate (0.02
g/L) was added to the sample to dissociate heparin from plasma proteins and antithrombin (1
IU/mL) was added in excess. For anti-Xa B neither dextran sulfate nor antithrombin were
added.

F1+2, D-dimer, and APC were measured from all patients at all time points (see blood
sampling above). SFC were measured from all patients at time point A and from patients 1-80
at time points B-F. Ck-Mbm and TnT were measured from all patients at time point G (18
hours postoperatively). The measurements included in the preoperative thrombophilia screen
were measured from all patients at time point A. Additionally, antithrombin was measured at
time point D from patients 1-80. PICT was measured from all patients at time points A, B, D,
and E. Anti-Xa assay A was measured from patients 1-80 at time points A-F and anti-Xa assay
B was measured from al patients at time points A-F.

5. Statistical analysis

Based on a power calculation (I11) it was estimated that a population of 100 patients was
needed to yield the minimum number of patients with thrombophilia needed to demonstrate a
30 % increase in maximal F1+2 levels during CPB at 80 % power and p=0.05.

The data were analyzed with the SPSS for Windows 11.5.1 software (SPSS Inc., Chicago,
lllinois, USA) and the NCSS 2000 software (NCSS, Kaysville, Utah, USA). Analysis of
normality of the distribution of continuous variables was performed with the Kolmogorov-
Smirnov test (11-1V). For clarity data in figures are expressed as mean and standard deviation
or standard error of the mean (1-1V). Other data are presented as mean and standard deviation
or standard error of the mean or as median and interquartile range (IQR), as appropriate (111).
For univariate analysis of the association between variables Pearson’s (1) or Pearson’s and
Spearman’s rank correlation coefficients were calculated, as appropriate (11-1V). Differences
between repeated measurements were analyzed with repeated measures analysis of variance
(ANOVA) and post hoc comparisons were made with Fisher's LSD Multiple-Comparison Test
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(I-1V). Variables with skewed distributions were natural logarithmicaly transformed before
these analyses (11-1V). Student’s t-test or Mann-Whitney U test was used for comparisons
between two groups, as appropriate (I11-1V), and associations between two dichotomous
variables were tested with Chi-squared test (I11) or Fisher's exact test because of smal
expected cell counts (1V). Bland-Altman plots were used to examine the agreement between
PICT and anti-Xa assays (1V). Multivariable logistic regression analysis with block entry of
variables was used to identify variables associated with postoperative myocardial damage and
thrombin generation (1) and multivariable logistic regression analysis with a forward stepwise
method was used to identify variables associated with protein C activation (11). Two-tailed p-
values <0.05 were considered significant.
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1. Kinetics of thrombin generation, fibrin formation and turnover, and protein C
activation during CPB

A progressive increase in markers of thrombin generation (F1+2), fibrinolysis (D-dimer), and
fibrin formation (SFC) was observed during CPB (I, Figure 1 and |1, Figure 1, panels A and
B). This increase was further distinctly propagated by reperfusion after myocardial ischemia
and continued to peak after the neutralization of heparin with protamine. APC levels increased
only dslightly during CPB before the release of the aortic clamp, but reperfusion and more
significantly heparin neutralization caused a massive increase in APC levels, which peaked after
heparin neutralization (I1, Figure 1, panel A). Importantly, protein C activation was clearly
delayed in relation to both thrombin generation and fibrin formation (11, Figure 1, panels A and
B). Throughout the study thrombin generation dominated over protein C activation (11, Figure
1, panel C).

2. Thrombin generation and APC vs. myocardial damage

To test the hypothess that thrombin generation during reperfusion associates with
postoperative myocardia damage, correlations between levels of F1+2 and postoperative
cardiac biomarkers were calculated. F1+2 levels during reperfusion at 30 minutes and 6 hours
after protamine administration correlated with levels of Ck-Mbm (r=0.30, p=0.003, and
r=0.40, p<0.001, respectively) and TnT (r=0.24, p=0.014, and r=0.44, p<0.001, respectively)
measured on the first postoperative day (I). Patients with evidence of myocardial damage on
the first postoperative day (highest deciles or quintiles of Ck-Mbm and TnT) had higher levels
of F1+2 immediately before reperfusion (time point C) and during early (time point D) and
later reperfusion (time points E-F) (I, Figure 2). Also patients with new pathological Q-waves
had higher F1+2 than others during reperfusion (time points E-F) (1). Multivariable logistic
regression analysis identified F1+2 during reperfusion to independently associate with
postoperative myocardial damage (odds ratios for F1+2 were 2.5-4.4, 95% confidence
intervals 1.04-15.7 when the highest deciles of Ck-Mbm and TnT were the dependent variable)
(1. APC levels did not associate with markers of postoperative myocardial damage (11).

3. Association of thrombin generation and APC with hemodynamic performance

Because thrombin generation was shown to associate with postoperative myocardial damage,
we separately analyzed the association of thrombin generation and APC with postoperative
hemodynamic performance. Thrombin generation associated with unfavorable postoperative
hemodynamics, as patients with F1+2 levels in the highest decile during reperfusion (time point
E) had a higher postoperative pulmonary vascular resistance index than others (I, Figure 3).
APC levels associated dynamically with postoperative hemodynamic performance. High
preoperative APC associated with an unfavorable postoperative hemodynamic profile. Patients
with preoperative APC/protein C ratio in the highest decile had a lower postoperative cardiac
index than others (11, Figure 2). At the end of myocardial ischemia (time point C), and during
early reperfusion (time point D), protein C activation associated with an opposite, favorable
hemodynamic response. Patients with APC in the highest quintile before the release of the
aortic clamp (time point C) had higher a cardiac index postoperatively than others (11, Figure
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3) and those with APC/protein C in the highest quintile during early reperfusion (time point D)
had a lower systemic vascular resistance index postoperatively (I1). After heparin
neutraization with protamine (time point E) APC associated again with an inferior
hemodynamic profile. Those with APC level in the highest decile after heparin neutralization
had a lower stroke volume index postoperatively (11, Figure 4) and those with APC/protein C
in the highest decile or quintile after heparin neutralization had a higher postoperative
pulmonary vascular resistance index than others (11).

4. Impact of thrombophilic variables on the generation and procoagulant activity of
thrombin during CPB (111)

Since several thrombophilic factors have been shown to associate with basal thrombin
generation, we hypothesized that patients with thrombophilic variables (see |11 for definition)
would have enhanced CPB-related activation of coagulation. Even though patients with
thrombophilic variables had dightly higher preoperative F1+2 than others [median
(interquartile range) 0.55 (0.34) vs. 0.45 (0.21) nmol/L, p=0.009] they did not have higher
F1+2, D-dimer, or SFC levels during CPB or postoperatively than patients without
thrombophilic variables (111, Figure 1, panels A-C). Also, the patients with more than one
thrombophilic factor did not have higher F1+2, D-dimer, or SFC levels than others did (111,
Figure 2, panel A). Similar analyses were made separately for each thrombophilic variable
tested. In these analyses none of the thrombophilic variables associated with higher
perioperative levels of F1+2, D-dimer, or SFC (111, Figure 2, panels B and C).

5. Heparin levelsduring CPB

Mean ACT during CPB was constantly well above 600 s with the high total heparin doses
administered (mean 575 1U/kg, SD 83 IU/kg) (1V, Figure 1). Heparin activity measured with
PICT [mean (SD)] ranged from 5.0 to 5.2 lU/mL (0.7-0.9 1U/mL) during CPB (1V, Figure 1,
panel 1). Anti-Xa heparin levels were dightly higher when measured with antithrombin
supplementation to the sample (anti-Xa A) than under patient-specific plasma antithrombin
levels (anti-Xa B) [4.7-5.0 (0.9-1.6) vs. 4.5-4.9 (0.9) IU/mL] (IV, Figure 1, panel Il). Heparin
levels during CPB were therefore high in the present study. In study | we reported mean anti-
Xa levels during CPB to range from 9.0 to 9.5 IU/mL, which are 4.3-4.5 [U/mL higher levels
than reported in study V. This discrepancy is explained by the previous erroneous use of a
reference curve with enoxaparin instead of unfractionated heparin.

6. Agreement between PiCT and anti-Xa

Because PICT is a novel coagulation test that is senstive for heparin and has potential
advantages in monitoring heparin levels during CPB, its performance in this setting was
compared with chromogenic anti-Xa assays, the present standard of monitoring heparin
treatment. There was poor agreement between PICT and anti-Xa and between the two anti-Xa
assays. Heparin levels measured with PICT levels correlated only modestly with the
corresponding levels measured with anti-Xa (correlation coefficients ranging from r=0.32 to
r=0.65) (1V, Table 1). Also, the limits of agreement in Bland-Altman plots (mean difference +-
2 SD) (Bland and Altman 1986) were unacceptably broad. The limits of agreement between
PICT and anti-Xa were between —1.0 to 2.2 IU/mL and —2.4 to 2.4 IU/mL and the limits of
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agreement between the two anti-Xa assays were between —1.8 to 1.8 IlU/mL and -2.5 to 3.1
lU/mL (1V, Figure 2).

7. Association of antithrombin and protein C with heparin levels

Preoperative antithrombin level correlated weakly with PICT during CPB but not with anti-Xa
(Table 2.). Antithrombin measured close to the end of CPB (time point D) correlated with
simultaneously measured PICT and anti-Xa. Preoperative protein C levels correlated with PICT
measured during CPB and weakly with anti-Xa levels measured at 15 min of CPB (time point
B). (IV, Table 2).

Patients with low preoperative antithrombin [either in the lowest decile (£66%) or subnormal
(<84%)] had lower anti-Xa A and PICT levels, respectively during CPB than others (p<0.001
and p=0.028, respectively) (IV, Figure 3, panels | and I1). Also, patients with low preoperative
protein C activity [in the lowest decile (E76%)] had lower PiICT levels and anti-Xa B levels
(IV, Figure 4, panels | and 11) but not anti-Xa A levels than others.

8. Impact of heparinization on activation of coagulation and myocardial damage

There was an inverse correlation between the cumulative heparin dose (heparin dose/ minutes
of CPB) and the peak value of F1+2 measured 30 minutes after protamine administration (r=-
0.39, p<0.001) (1). Weaker inverse correlations were observed between the cumulative heparin
dose and F1+2 measured immediately before the release of the aortic clamp and at two other
time points during reperfuson. However, in multivariable logistic regression analysis, the
cumulative heparin dose did not associate with thrombin generation (I). Anti-Xa A levels
during CPB (time points C and D) correlated inversely with subsequent F1+2 levels after CPB
(r=-0.34, p=0.002 and r=-0.30, p=0.007, respectively) (1V). Also, patients with low anti-Xa A
or PICT (in the lowest decile) had higher subsequent F1+2 after CPB than others (1V).
Heparin activities (anti-Xa A, anti-Xa B, or PICT) did not associate with levels of D-dimer or
SFC (1V).

Interestingly, there was an inverse correlation between the cumulative heparin dose and
postoperative Ck-Mbm (r=-0.37, p<0.001) and TnT (r=-0.31, p=0.002) (1). However, PiCT or
anti-Xa heparin levels did not associate with Ck-Mbm or TnT (1V).

9. Association of anti-Xa and PiCT with transfusion requirements (1V)

Patients with high heparin levels during CPB (highest deciles of anti-Xa A, anti-Xa B, and
PICT) required fewer transfusions of packed red blood cells than others [mean (SD) 0.9 (1.0)
vs. 2.5 (2.4) units, p=0.014, 1.0 (1.2) vs. 2.5 (2.3) units, p=0.034; and 0.6 (0.9) vs. 2.6 (2.3)
units, p=0.014; respectively]. Conversely, patients with low PiICT during CPB (in the lowest
decile) received transfusions of fresh frozen plasma more often than others (30% vs. 3%,
p=0.013) and patients with either low PICT or low anti-XaB during CPB (in the lowest decile)
received transfusions of platelets more often than others (both 40% vs. 7%, p=0.008).
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DISCUSSION

1. Thrombin and myocardial damage after CABG

The present study (I) showed that thrombin generation during reperfusion after CABG
associated with postoperative myocardial damage and postoperative pulmonary vascular
resistance. This finding is novel. Even though we demonstrated an association and not a causal
relationship between thrombin and myocardial damage, previous experimental studies have
established that thrombin is a possible mediator of myocardial ischemia-reperfusion injury.
Thrombin has been shown to increase cell death of cultured cardiomyocytes subjected to
simulated ischemia-reperfusion dose-dependently (Mirabet et al. 2005) and other experimental
studies have shown that either direct or indirect inhibition of thrombin in myocardial ischemia-
reperfusion injury is beneficial (Erlich et al. 2000, Jormalainen et al. 2004, Jormalainen et al.
2007, Snow et al. 1991). Previous clinical studies also support the notion that the observed
thrombin burst may be harmful after CABG. Dixon and coworkers (Dixon et al. 2005)
demonstrated that a marker of thrombin generation (F1+2) correlated with measurements of
organ dysfunction after CABG, including left ventricular stroke work index, Pa0,/ fraction of
inspired oxygen ratio, and serum creatinine. Interestingly, other investigators showed that
levels of F1+2 and a marker of fibrin turn over (D-dimer) after off-pump CABG aso
associated with early postoperative cognitive decline (Lo et al. 2005).

2. Impact of different kinetics of thrombin and APC

al. 1999), we demonstrated a burst in thrombin generation during early reperfusion (1). This
massively upregulated systemic generation of thrombin is explained only partly by local tissue
factor expression in the reperfused post-ischemic myocardium, as transcoronary gradients of
possible contribution of the pulmonary and splanchnic circulations to reperfusion-induced
thrombin generation is unknown. Also, release of prothrombotic microparticles into the
circulation from the myocardium during reperfuson might explain the observed systemic burst
in thrombin generation but remains to be investigated.

APC is activated on the endothelial surface by thrombin, which is bound to thrombomodulin
(Gomez et al. 2005). Therefore our finding of clearly delayed protein C activation in relation
to thrombin generation during CABG was unexpected, but the underlying mechanism is
beyond the scope of our study (I1). However, in the setting of CPB and cardiac surgery our
results do not support the hypothesis that low levels of thrombin generate increased levels of
APC (Griffin 1995). In fact, throughout the study a dominance of thrombin generation over
protein C activation was indicated by the APC/ F1+2 ratio, which was below the preoperative
level. It can be speculated that the dynamic association of APC levels with postoperative
hemodynamics might reflect an insufficient and delayed APC response to an underlying
thrombin challenge. Overal, our results (I and I1) suggest that hypercoagulation after CABG,
especialy during reperfusion, may be clinically important.
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3. Regulation of thrombin during CPB

Since efficient control of thrombin during CPB and especialy during reperfusion after CABG
would probably be of benefit we undertook studies that addressed the regulation of thrombin
during CABG (I11 and 1V). Several thrombophilic factors associate with increased basal
thrombin generation (Bauer et al. 1988, Mannucci et al. 1992, Regnault et al. 2004, Zoller et
al. 1996) and therefore we hypothesized that thrombophilic factors might enhance CPB-related
activation of coagulation. Our study (I11) showed that a preoperative thrombophilic state did
not associate with perioperative generation of thrombin or its procoagulant activity suggesting
that other mechanisms that enhance thrombin generation during CPB overwhelm any possible
effect of thrombophilia on the activation of coagulation during CPB.

Because reperfusion during CABG and the initiation of CPB cause bursts of thrombin
generation rather than a continuous progressive increase in thrombin levels (Chandler and
Velan 2003) accurate knowledge of the extent of anticoagulation during the various phases of
surgery could be of importance. Therefore, we measured heparin effects during various
relevant time points during CPB and found that the lowest heparin levels during CPB
associated with higher subsequent F1+2 levels after heparin reversal (1V). This suggests that
more accurate monitoring of heparin anticoagulation might aid in controlling thrombin during
CPB. However, point-of-care methods to achieve this goa are lacking. Indeed, we showed
that there is poor agreement even between laboratory-based methods of anticoagulation
monitoring in the challenging setting of CPB. We adso demonstrated that patients with high
heparin levels during CPB recelved fewer transfusions than other patients did (1V). This
potentialy practically important finding is in agreement with a previous randomized study by
Despotis and coworkers (Despotis et al. 1995).

4. M ethodological aspects

Accurate quantification of thrombin generation became possible with the introduction of a
radioimmunoassay for F1+2 (Teitel et al. 1982). We used a subsequently developed
commercialy available enzyme-linked immunoassay for F1+2 to measure thrombin generation
(Pelzer et al. 1991)(I1-1V). Because of the multiple interactions of thrombin, we aso used
commercialy available immunoturbidimetric analyses to measure markers of the procoagulant
activity of thrombin (SFC) and a marker of fibrin turnover (D-dimer), which is a surrogate
marker of both thrombin and plasmin function (Mustonen et al. 1998). Importantly, we also
utilized an enzyme-capture assay, which is not widely available, for the measurement of free
circulating APC (Gruber and Griffin 1992)(11). We were therefore able to diversely quantify
thrombin and its interactions.

PICT is arecently introduced coagulation test that uses the entire prothrombinase complex to
trigger coagulation (Calatzis et a. 2000). It is a final-stage coagulation test that has better
reproducibility and linearity than coagulation tests that activate the coagulation cascade at an
early stage (Fenyvesi et al. 2002). It has also been suggested to be less sensitive to coagulation
factor levels, which are altered during CPB (Fenyvesi et al. 2002). Because PiCT is sendtiveto
heparin and has potential advantages in monitoring heparin levels during CPB, we compared its
performance in this setting with two chromogenic anti-Xa assays, the present standard of
laboratory-based monitoring of heparin treatment (IV). There was poor agreement between
PICT, ACT, and anti-Xa. Possible reasons for the poor agreement between these assays are
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discussed in detall in study 1V and can be partly explained by limitations of each assay in the
challenging setting of CPB. However, the correlation between PICT and one chromogenic
assay (anti-Xa A) was at least as good as the correlation between the two chromogenic assays
and much better than the correlation between ACT and any of the other assays. Therefore, our
results suggest that PICT could be an aternative to the chromogenic anti-Xa assays.

PICT is sengtive to both the anti-l1la and anti-Xa activities of heparin (Calatzis et al. 2000)
while the chromogenic anti-Xa assays are sensitive only to the anti-Xa activity of heparin. It
was therefore of interest also to specifically test whether there are differences between assays
measuring either the anti-Xa activity or both the anti-Xa activity and the anti-factor 11a activity
of heparin in detecting thrombin-controlling effects of heparin or the effects of heparin on
blood loss or transfusion requirements. However, our study could not show that either PICT or
anti-Xa measurements were superior in this respect (1V).

5. Study limitations

There are some limitations to the present study. The study setting was observational and
therefore conclusions about causal relationships can not be made. The study does not reved
possible mechanisms by which thrombin could mediate myocardial damage or by which APC
associates with hemodynamic performance. The outcome measures of the study were limited
to measurements of laboratory parameters and hemodynamic performance. There was no
angiographic evaluation of graft patency or long-term follow-up of patients. However,
postoperative elevation of the cardiac biomarkers, Ck-Mbm and TnT, after CABG has been
shown to associate with both early and late mortality (Costa et al. 2001, Januzzi et al. 2002,
Kathiresan et al. 2004, Klatte et al. 2001). Therefore, cardiac biomarker levels can be
considered highly relevant endpoints.
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CONCLUSIONS

In this study we showed that the generation of thrombin and its procoagulant and
anticoagulant activities associated with clinically important sequelae after CABG. Furthermore,
we presented novel findings on the regulation of thrombin in patients undergoing CABG.
Specifically we demonstrated that

1. Thrombin generation during reperfusion after CABG associated with postoperative
myocardial damage and increased pulmonary vascular resistance.

2. Protein C activation during CPB was clearly delayed in relation to both thrombin
generation and fibrin formation. APC associated dynamically with postoperative
hemodynamic performance but did not associate with postoperative myocardial damage.

Overadll, these results suggest that hypercoagulation after CABG, especialy during
reperfusion, might be clinically important.

3. Preoperative thrombophilic variables did not associate with perioperative thrombin
generation or its procoagulant activity in patients undergoing CABG. Our results do not
support routine thrombophilia screening before CABG.

4. There was poor agreement between a novel coagulation assay (PICT) and two
chromogenic anti-Xa assays and between the two anti-Xa assays in monitoring heparin
levels in the challenging setting of CPB. Further studies are needed to establish optimal
laboratory-based methods for monitoring high heparin levels during CPB, but our results
suggest that PICT could be an alternative to the chromogenic anti-Xa assays. However,
heparin levels evaluated both with the chromogenic anti-Xa assays and with PICT during
CABG correlated postively with the thrombin-controlling effects of heparin and inversely
with transfusion requirements.
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