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ABSTRACT 

Background and aims. Since 1999, hospitals in the Finnish Hospital Infection 
Program (SIRO) have reported data on surgical site infections (SSI) following major 
hip and knee surgery. SSI rates have tended to be higher than in other national 
surveillance systems. The purpose of this study was to obtain detailed information to 
support prevention efforts by analyzing SIRO data on SSIs, and to evaluate possible 
factors affecting the surveillance results, and to assess the disease burden of 
postoperative prosthetic joint infections in Finland. 

Methods. Procedures under surveillance included total hip (THA) and total knee 
arthroplasties (TKA), and the open reduction and internal fixation (ORIF) of femur 
fractures. Hospitals prospectively collected data using common definitions and 
written protocol, and also performed postdischarge surveillance. In the validation 
study, a blinded retrospective chart review was performed and infection control 
nurses were interviewed. Patient charts of deep incisional and organ/space SSIs were 
reviewed, and data from three sources (SIRO, the Finnish Arthroplasty Register, and 
the Finnish Patient Insurance Centre) were linked for capture-recapture analyses.  

Results. During 1999-2002, the overall SSI rate was 3.3% after 11,812 orthopedic 
procedures (median length of stay, eight days). Of all SSIs, 56% were detected after 
discharge. The majority of deep incisional and organ/space SSIs were detected on 
readmission. Positive and negative predictive values, sensitivity, and specificity for 
SIRO surveillance were 94% (95% CI, 89-99%), 99% (99-100%), 75% (56-93%), 
and 100% (97-100%), respectively. In orthopedic wards, the wound culture rate 
ranged from 9 to 67 per 1,000 patient-days. Of the 9,831 total joint replacements 
performed during 2001-2004, 7.2% (THA 5.2% and TKA 9.9%) of the implants 
were inserted in a simultaneous bilateral operation. Patients who underwent bilateral 
operations were younger, healthier, and more often males than those who underwent 
unilateral procedures. The rates of deep SSIs or mortality did not differ between bi- 
and unilateral THAs or TKAs. Four deep SSIs were reported following bilateral 
operations (antimicrobial prophylaxis administered 48-218 minutes before incision). 
In the three registers, altogether 129 prosthetic joint infections were identified after 
13,482 THA and TKA during 1999-2004. After correction with the positive 
predictive value of SIRO (91%), a log-linear model provided an estimated overall 



 

 

prosthetic joint infection rate of 1.6% after THA and 1.3% after TKA. The 
sensitivity of the SIRO surveillance ranged from 36% to 57%. The annual disease 
burden estimate of prosthetic joint infections was 2.1 cases per 100,000 population 
after THA and 1.5 after TKA, i.e. on average nearly 200 prosthetic joint infections 
would have occurred in Finland annually during 1999-2004 after THA and TKA. 

Conclusions. Postdischarge surveillance had a major impact on SSI rates after major 
hip and knee surgery. A minority of deep incisional and organ/space SSIs would be 
missed, however, if postdischarge surveillance by questionnaire was not performed. 
According to the validation study, most SSIs reported to SIRO were true infections. 
Some SSIs were missed, revealing some weakness in case finding. Variation in 
diagnostic practices may also affect SSI rates. No differences were found in deep SSI 
rates or mortality between bi- and unilateral THA and TKA. However, patient 
materials between these two groups differed. Bilateral operations require specific 
attention paid to their antimicrobial prophylaxis as well as to data management in the 
surveillance database. The true disease burden of prosthetic joint infections may be 
heavier than the rates from national nosocomial surveillance systems usually suggest.  
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1 INTRODUCTION 

Joint replacement surgery is successful in restoring function and relieving pain to 
disabled arthritic patients. More than a million hip and knee joint replacements are 
performed each year worldwide (1, 2). The advantages of joint replacement surgery 
for a patient’s quality of life are often evident (3-7). Since the introduction of joint 
replacement surgery (8), infective complications have declined significantly. 
Nowadays, a minority of joint replacement operations still leads to postoperative 
surgical site infections (SSI) (9). The most severe SSIs after orthopedic surgery are 
prosthetic joint infections: they are difficult to treat and lead to reoperations, long-
term antimicrobial treatment, prolonged hospital stays, and increased health care 
costs (10-17). Both morbidity and mortality rates increase, and the patient’s quality 
of life declines (18, 19).  

Surveillance of health care-associated infections (HAI) is an essential part of HAI 
prevention. Studies have found that SSI surveillance and feedback to surgeons can 
reduce SSIs considerably (20). The SENIC study (the Study on the Efficacy of 
Nosocomial Infection Control) demonstrated that a nosocomial infection 
surveillance system that reports SSIs to surgeons can reduce SSIs by 32% (20). 
Several other studies have also shown that active surveillance, including feedback to 
surgeons, can reduce SSIs by up to 50% (21-26). National surveillance systems play 
also an important role in providing an essential benchmark for HAI rates in single 
hospitals (27, 28). 

Measuring and improving the quality of care and patient safety in hospitals have 
recently caught the public’s attention and interest (29, 30). In orthopedic surgery, 
SSI rates have been detected as a tempting quality indicator, and even mandatory 
reporting of these rates has been obliged in some countries (31, 32). Comparisons of 
SSI rates between surgeons, hospitals, or countries should, however, be made with 
special caution (33-36). Unless 1) the case definitions, case finding and 
ascertainment are standardized, 2) data are equally valid, and 3) confounding factors 
are detected and taken into account, there is a risk of misleading conclusions of 
surveillance results (37).  

In Finland, more than 15,000 hip or knee arthroplasties are performed annually, and 
the number is increasing (38). A total of 50,000 HAIs have been estimated to occur 
each year in Finnish hospitals, but the total amount of orthopedic SSIs has not yet been 
evaluated separately (39). In a Finnish prevalence study, SSIs were the most common 
HAIs detected (29%) (40). Of the 88 organ/space SSIs detected, 33% were bone or 
joint infections. Since 1999, information on SSIs after orthopedic surgery has been 
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reported to the Finnish Hospital Infection Program (SIRO) at the National Public 
Health Institute from voluntary participating hospitals. By the end of 2005, 15 
hospitals participated, and data on 28,314 hip and knee joint replacement operations 
and open reductions and internal fixations (ORIF) of femur fracture were recorded. 

The severity of prosthetic joint infections and increasing attention paid to the quality 
of care and patient safety highlighted the need for an in-depth analysis of SIRO 
surveillance data on orthopedic SSIs. The purpose of this study was to analyze 
possible factors affecting the surveillance results and to obtain detailed information 
to support SSI prevention. SIRO data were analyzed to estimate the impact of 
postdischarge surveillance on the surveillance results. A validation study was 
performed to evaluate the sensitivity and specificity of the SIRO surveillance. 
Simultaneous bilateral arthroplasties and their outcomes were examined in SIRO 
data. Finally, the total disease burden of postoperative prosthetic joint infections in 
Finland was estimated by a register linkage study.  
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2 REVIEW OF THE LITERATURE 

2.1 Surgical site infections in orthopedic surgery 

2.1.1 Epidemiology and public health perspective 

Morbidity 
 
Surgical site infections are among the most common of HAIs (40, 41). In orthopedic 
surgery, the most severe SSIs � postoperative prosthetic joint infections � are very 
unwanted complications because of their severe consequences. The risk of prosthetic 
joint infection acquired intraoperatively is considered to be less than one percent 
after total hip arthroplasties (THA) and less than two percent after total knee 
arthroplasties (TKA) (42-45). Recent results from Dutch and German national HAI 
surveillance systems showed deep SSI rates of 0.9% and 0.8% during a one-year 
follow-up after THA, respectively (46, 47). From single hospitals, lower 
postoperative prosthetic joint infection rates have also been reported: for example, 
0.4% after primary THA in a Swiss hospital (48).  

European surveillance systems and their SSI rates and proportions of postdischarge 
SSIs after hip arthroplasty in the European network for HAI surveillance systems, 
Hospital in Europe Link for Infection Control through Surveillance (HELICS; 
nowadays also called IPSE, Improving Patient Safety in Europe), appear in Table 1. 
Finnish SSI rates were relatively high, but variation in postoperative length of 
hospital stay and postdischarge surveillance within European surveillance systems 
was also considerable (34, 49).   

Prosthetic joint infections are difficult to treat; they often require reoperations, 
prolong hospital stays, and increase health care costs (10, 50, 51). The basic 
principle of treatment for foreign body infections is to remove, if it is possible, the 
infected foreign body. In joint replacement surgery, this can be performed either as a 
two-stage (52-54) or one-stage prosthesis exchange (55-58). In a two-stage 
exchange, various time intervals between removal and insertion of a new prosthesis 
have been recommended (2-4 weeks, if no difficult-to-treat microorganism is 
present, by Zimmerli et.al. (42) and 6 weeks by Brause (59)), but sufficiently 
powered comparative trials are lacking. In a meta-analysis, two-stage and one-stage 
exchanges with antibiotic-loaded cement led to cure rates of 93% and 86%, 
respectively (60). In carefully selected patient populations, early debridement
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Table 1. Hospital in Europe Link for Infection Control through Surveillance results 
of surgical site infection surveillance after hip arthroplasty in 2004 by country*  

Country Number of 
procedures 

Median 
postoperative 
length of 
hospital stay 
(days) 

Surgical 
site 
infection 
rate (%) 

Percentage of 
surgical site 
infections 
detected after 
discharge (%) 

In-hospital 
surgical site 
infection rate 
(%) 

Austria 93 12 4.3 75 1.1 

Belgium 191 9 12.6 25 9.4 

Finland 2,854 7 4.6 38 2.1 

France 2,759 12 2.1 64 0.8 

Germany 13,429 NA 1.5 NA NA 

Hungary 235 11 3.4 13 3.0 

Lithuania 206 12 0.5 100 0 

Netherlands 4,079 8 2.9 50 1.5 

Poland 1,325 NA 3.4 NA NA 

Spain 379 8 3.7 0 3.7 

UK England 18,443 9 2.1 0 2.1 

UK North 
Ireland 

2,001 6 1.6 19 1.3 

UK Scotland 3,010 8 2.1 31 1.3 

UK Wales 472 8 2.1 22 1.5 

Total 49,476 9 2.2 20 1.4 

*Modified from (34, 49) 
NA, not available 
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(within two to three weeks postoperatively) with prosthesis retention has been quite 
successful (61-63). Debridement performed later results in much lower cure rates 
(64-68). 

 

Alongside surgical procedures, carefully-selected antimicrobial treatment is 
fundamental for the successful treatment of prosthetic joint infections (42, 59, 63, 69). 
Comparative trials are scarce, but in staphylococcal infections, combinations 
containing rifampin have shown positive results (61, 63, 70, 71). In some cases, long-
term suppressive antimicrobial treatment without prosthesis exchange is used (72-74).   

 
Mortality 
 
Prosthetic joint infections have also been associated with increased mortality. When 
patients with or without SSI after THA were compared, not only the patients with 
deep incisional or organ/space SSI, but also patients with any SSI exhibited a 
significantly higher mortality rate than did patients without SSI (75). Increased risk 
of death remained after controlling confounding factors. SSI after orthopedic 
surgery was also shown to be an independent risk factor for mortality among elderly 
people (76). In a large study comparing different surgical specialties, the case-
fatality proportion related to SSI was the second highest in orthopedic surgery (after 
thoracic surgery) (19). The case-fatality proportion of SSI cases after THA or TKA 
was 17%. In a Finnish study, an excess mortality rate of 10% was related to 
postoperative deep infection after hip fracture operations (77).  

 
Cost  
 
SSIs incur considerable extra costs to health care systems all over the world (78). In 
Europe, the total cost of all SSIs has been estimated to range between 1.5 and 19 
billion euros (79). In the United Kingdom, the burden of HAIs in orthopedics at 
National Health Service (NHS) hospitals was assessed at 119 million pounds (80). 
In US studies, each orthopedic SSI was reported to increase health care costs by 
300% (50), and a single infected arthroplasty reportedly cost about 50,000 US 
dollars (81, 82). Based on patient insurance data in Finland in the late 1980s, an 
orthopedic SSI was determined to cost 30,800 euros (183,399 Finnish marks) (83). 
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2.1.2 Development of surgical site infection and postoperative prosthetic 
joint infection 

Microbial contamination of the surgical site is a necessary precursor of SSI (84). 
The source of microorganisms is usually the patient’s skin, but may also include 
exogenous sources (instruments, surgical personnel, operating room environment, 
etc.) as well as distant foci of infection in the patient (84-86).  

The minimum dose of contaminating microbes is much lower, and less virulent 
microbes are also capable of causing infection, with the presence of foreign material. 
The key elements involved in the pathogenesis of foreign body infections and in 
biofilm formation include host proteins promoting bacterial adhesion to biomaterials 
and intrinsic properties of colonizing microorganisms that produce extracellular 
substances and show markedly-reduced susceptibility to antimicrobial killing (87-91).  

The most common microbes causing surgical site infections and postoperative 
prosthetic joint infections after THA and TKA are Staphylococcus aureus and 
Staphylococcus epidermidis (34, 92-96). In prosthetic joint infections caused by 
hematogenous spread from distant foci, the causative microbes are slightly different 
(e.g. streptococci are more common) (97).   

2.1.3 Prevention  

Many patient and operation characteristics may influence the risk of SSI 
development (Table 2). Knowledge of these characteristics can be utilized to stratify 
risk of SSI (see 2.2.6.). Some of them are modifiable and may allow targeted 
preventive measures. 

The Centers for Disease Control and Prevention (CDC) guideline provides detailed 
recommendations aiming to reduce SSI risk, and covers preoperative measures: 
preparation of the patient, hand and forearm antisepsis for surgical team members, 
antimicrobial prophylaxis, intraoperative measures such as ventilation, sterilization 
of surgical instruments, surgical attire and drapes, asepsis and surgical technique, 
postoperative incision care, and surveillance (84). Prevention of hyperglycemia and 
preoperative smoking intervention have also lowered SSI risk (98-101). Different 
combinations of these preventive measures have been the focus of quality 
improvement interventions and studies (29, 102-104). 
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Table 2. Patient and operation characteristics that may influence the risk of surgical 
site infection development according to the Centers for Disease Control and 
Prevention guideline*  

Patient 

 Age 
Nutritional status 
Diabetes 
Smoking 
Obesity 
Coexistent infections at a remote body site 
Colonization with microorganisms 
Altered immune response 
Length of preoperative stay 

Operation 

 Duration of surgical scrub 
Skin antisepsis 
Preoperative shaving 
Preoperative skin preparation 
Duration of operation 
Antimicrobial prophylaxis 
Operating room ventilation 
Inadequate sterilization of instruments 
Foreign material in the surgical site 
Surgical techniques 
Surgical drains 

* Modified from (84) 

 

Antimicrobial prophylaxis is an important method to reduce the incidence of SSI 
after joint replacement operations (30, 105-107). The effect of prophylaxis has also 
been demonstrated in ORIF of femur fracture (108, 109). One recent study (110) 
supported the results of previous studies (111) also stressing the timing of 
antimicrobial prophylaxis: infection rates after THA correlating with the time of 
prophylaxis administration showed a pronounced U-shaped curve with the lowest 
infection rates for administration between 0 and 60 minutes before incision.  
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According to US guidelines, 1) the recommended antimicrobial agents in joint 
replacement surgery are cefazolin or cefuroxime, 2) the first antimicrobial dose 
should begin within 60 minutes before surgical incision, and 3) the dosage should be 
discontinued within 24 hours after the end of surgery (112). In Scotland and in the 
Netherlands, guidelines recommend the administration of prophylaxis 30 minutes 
before incision (113, 114). US guidelines recommend that, if an operation is 
prolonged, a dose of cefazolin should be re-administered intra-operatively at an 
interval of two to five hours and cefuroxime at an interval of three to four hours to 
ensure adequate antimicrobial levels until wound closure (112). 

In many hospitals, accurate compliance with these guidelines could be even more 
focused (115-117). In studies examining prophylaxis for THA, compliance with 
certain criteria ranged from 53% to 67% (118, 119). Improvements in antimicrobial 
prophylaxis performance have led to successful reductions in SSI rates (120-122). In 
United States, for example, a multidisciplinary computerized process for 
prophylactic antibiotic administration decreased the SSI rate by 48% (123).  

2.2 Surveillance of surgical site infections 

2.2.1 Purpose and objectives of surveillance 

Surveillance is defined as “the continuous and systematic process of collection, 
analysis, interpretation, and dissemination of descriptive information for monitoring 
health problems” (124). The history of surveillance in nosocomial infection control 
began in 1847 when Ignaz Semmelweis, after detecting an excessively high 
mortality rate among mothers delivering babies in a certain division of the Vienna 
Lying-In Hospital, ordered all doctors and students to disinfect their hands carefully 
before each vaginal examination; as a result, the mortality fell from 18% to less than 
3% (125, 126). Nowadays, the surveillance of HAIs is essential to any infection 
control program to obtain useful information for improving the quality of care (31, 
127-130) and to monitor the impact of infection control interventions (131). 

In many developed countries, national nosocomial infection surveillance systems 
have already been established. In the United States in 1970, the CDC established a 
voluntary, confidential reporting system to monitor HAIs: the National Nosocomial 
Infections Surveillance (NNIS) (132, 133). During the 1990s, several European 
countries such as Germany, Belgium, the Netherlands, France, and Finland began to 
establish national or regional networks for the surveillance of HAIs (36, 134-138). 
Most of these surveillance systems were based on the NNIS model, and nowadays 
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comprehensive surveillance methods based on the NNIS methodology are standard 
(127). Due to the considerable clinical relevance and high costs associated with 
orthopedic SSIs, SSIs after THA and TKA are under surveillance in most 
surveillance systems (34). 

Studies have shown the importance of surveillance in the prevention of SSIs. The 
SENIC study demonstrated that a surveillance system reporting SSIs to surgeons can 
reduce SSIs (20). This landmark study pointed out that to be effective, a nosocomial 
infection control program must include organized control activities, an adequate 
number of trained infection control staff, and a system for reporting SSI rates to 
surgeons in addition to organized surveillance system. Many other studies have also 
demonstrated that active surveillance, including feedback to surgeons, can reduce SSIs 
by up to 50% (21, 22, 24, 25, 139-143). Such a reduction has also been demonstrated 
specifically in orthopedic surgery (Table 3). Studies have also demonstrated the cost 
effectiveness of SSI surveillance: after four years of surgical wound surveillance in an 
NHS environment in the UK with a dedicated team and postdischarge follow-up of up 
to three months, the proportion of infections fell significantly in orthopedic, cardiac, 
and thoracic surgery (130). The cost reduction due to reduced infections was 
calculated to exceed the cost of surveillance after two years.  

2.2.2 Definitions of surgical site infections 

For surveillance systems, the use of uniform definitions is critical (31, 147). The 
definition of an SSI for surveillance and epidemiologic purposes should be easy to 
use, but also unambiguous so that different observers can obtain the same results 
(148). Consequently, such definitions always involve some compromises. For 
example, the time limit for a postoperative SSI is artificial: the symptoms of 
postoperative joint infection may also appear more than one year after surgery. The 
requirements for a definition of an SSI in clinical studies differ (42, 149, 150). In 
several clinical studies, the definition of prosthetic joint infection has required at 
least one of the following criteria: purulence of synovial fluid, growth of the same 
microorganism in two or more deep samples, acute inflammation in 
histopathological examination, or the presence of a sinus tract communicating with 
the prosthesis (62, 67, 68, 82).      
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The CDC definitions (Table 4) are widely used and recommended for surveillance 
purposes (79, 84, 151). CDC definitions in Finnish translation have been used in 
SIRO. The microbiological criteria (criteria b) of superficial incisional SSI have been 
slightly modified to require clinical signs or symptoms (pain or tenderness, localized 
swelling, redness, heat, or prolonged serose discharge) because the expression 
“aseptically-obtained culture” may not have been clear, and to avoid the acceptance of 
asymptomatic colonization or surveillance cultures as a case. The definitions for deep 
incisional and organ/space SSIs are identical to those of the CDC.  

In some other national surveillance systems, minor local modifications have also 
been made to CDC definitions. These modifications are small but may, however, 
affect reported SSI rates (153). For example, within the European network for HAI 
surveillance systems, some countries accept wound swabs, but other countries 
require an organism to be cultured from fluid or tissue (153). In the English 
surveillance system (the Nosocomial Infection National Surveillance Scheme, 
NINSS), microbiological samples can be either aspirates or swabs, but the presence 
of pus cells is required (35, 154, 155). When the NINSS and CDC definitions were 
compared, the NINSS definition captured 25% less SSIs than did the CDC definition 
(156). In the NINSS definition, another difference is that a diagnosis of an SSI by a 
surgeon or attending physician is alone unaccepted (151, 153). The Dutch national 
surveillance system, PREZIES, uses the CDC definitions, but additionally requires 
that there must always be clinical symptoms and that diagnosis by only a physician 
is indecisive (157). Other authors have also stated that a clinician’s diagnosis may 
impact SSI rates (147, 152, 158), and if used, a clinician’s diagnosis should be 
categorized as either “presumptive” or “possible” SSI (147). Detailed published 
information of possible local variations in the CDC’s SSI definition was unavailable 
from all national surveillance systems.  

Despite the fact that in HELICS all national surveillance networks use the same 
definitions, with above described minor variations, major differences between 
countries were detected in the distribution of different types of SSIs reported after 
THA. The proportion of superficial SSIs was around 80% in Finland, Belgium, 
England, Scotland, and Wales, but around 30% in Germany, Spain, France, and 
Poland. The actual reason for this variation remains unknown, but further evaluation 
is planned (34).    
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Table 4. The Centers for Disease Control and Prevention definition of surgical site 
infections (152) 

Superficial incisional SSI 

  A superficial SSI must meet the following criteria: 
Infection occurs within 30 days after the operative procedure 
  and 
involves only skin and subcutaneous tissue of the incision 
  and 
patient has at least one of the following: 
a.  Purulent drainage from the superficial incision 
b. Organisms isolated from an aseptically-obtained culture of fluid or tissue   

from the superficial incision 
c. At least one of the following signs or symptoms of infection: pain or 

tenderness, localized swelling, redness, or heat, and superficial incision is 
deliberately opened by surgeon, unless incision is culture-negative 

d. Diagnosis of superficial incisional SSI by the surgeon or attending physician 

Deep incisional SSI 

 A deep incisional SSI must meet the following criteria: 
Infection occurs within 30 days after the operative procedure if no implant* is 
left in place or within one year if implant is in place and the infection appears 
to be related to the operative procedure 
  and 
involves deep soft tissues (e.g., fascial and muscle layers) of the incision 
  and 
patient has at least one of the following: 
a. Purulent drainage from the deep incision, but not from the organ/space 

component of the surgical site 
b. A deep incision spontaneously dehisces or is deliberately opened by a 

surgeon when the patient has at least one of the following signs or 
symptoms: fever (>38oC) or localized pain or tenderness, unless incision is 
culture-negative 

c. An abscess or other evidence of infection involving the deep incision is 
found on direct examination, during reoperation, or by histopathologic or 
radiologic examination 

d. Diagnosis of a deep incisional SSI by a surgeon or attending physician 
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Organ/space SSI 

 An organ/space SSI must meet the following criteria: 
Infection occurs within 30 days after the operative procedure if no implant* is 
left in place or within one year if implant is in place and the infection appears 
to be related to the operative procedure 
  and 
infection involves any part of the body, excluding the skin incision, fascia, or 
muscle layers, that is opened or manipulated during the operative procedure 
  and 
patient has at least one of the following: 
a. Purulent drainage from a drain that is placed through a stab wound into the 

organ/space 
b. Organisms isolated from an aseptically-obtained culture of fluid or tissue in 

the organ/space 
c. An abscess or other evidence of infection involving the organ/space that is 

found on direct examination, during reoperation, or by histopathologic or 
radiologic examination 

d. Diagnosis of an organ/space SSI by a surgeon or attending physician 

*A nonhuman-derived implantable foreign body that is permanently placed in a 
patient during surgery. 

 

2.2.3 Case finding and ascertainment 

The sensitivities (Table 5) and specificities of different case finding methods in HAI 
surveillance vary (125, 159). Ideally the methods for case finding and ascertainment 
should be clearly defined and uniform among participating hospitals, and local 
surveyors should be continuously trained (35, 37, 127). If different case finding 
methods with varying sensitivities and specificities are used, the differences in SSI 
rates may not reflect real differences in SSI incidence (160). 

The time used for data collection depends largely on case finding methods: time 
estimates for an infection control professional to perform surveillance in a 500-bed 
hospital varies from 8 to 54 hours per week (125, 159). Direct, prospective 
observation of all postoperative patients for SSIs by trained personnel is generally 
viewed as the gold standard to identify SSIs, but is unfeasible in everyday use (127, 
171). In practice, infection control nurses (ICN) usually seek out SSIs in a hospital 
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by using various data sources (patient records, temperature and treatment charts, 
ward staff, microbiology reports) (35, 129) and decide whether an SSI fulfilling the 
definition criteria has occurred (31, 172). Research has shown that the ICN’s 
experience matters: ICNs with four or more years of experience were significantly 
more accurate at case ascertainment than less experienced ICNs (173).  

Electronic patient records are used in an increasing number of hospitals; information 
technology will significantly impact HAI surveillance in the future (174-176). With 
computerized data, ICNs can identify certain signals (antimicrobial use, 
microbiological culture results, etc.) that suggest the presence of an SSI (168, 170, 
177, 178). The ICN can then focus on the chart review and save considerable time 
(178, 179). Despite the growing importance of computerized data in surveillance, 
frequent visits to wards remain crucial in communicating with the ward staff and 
providing them on-the-spot infection control training (172).  

 

 

Table 5. Case finding methods and their sensitivities for health care-associated 
infection surveillance  

Method Sensitivity Reference 

Gold standard*   94-100% 125 

Chart review 74-94% 161-163 

Selective chart review   

- Selected by ward liaison surveillance  62% 164 

- Selected by ward liaison and review of laboratory reports 76-89% 164 

Antibiotic use  81-95% 165-167 

Review of health plan administrative data  78% 168 

Electronic screening of discharge diagnoses  60-65% 165, 169 

Electronic analysis of microbiology reports, antibiotic 
administration data, and discharge diagnoses  

94% 170 

*The gold standard for health care-associated infection surveillance is determined by 
a trained physician who examines every patient, every medical record, and other 
relevant information available. 
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2.2.4 Postdischarge surveillance 

 
Rationale for postdischarge surveillance 
 
While the length of postoperative hospital stays decreases, the proportion of SSIs 
appearing after a patient’s discharge from the hospital increases; this presents 
challenges to the accurate monitoring of SSI rates (180-184). In orthopedic surgery, 
postdischarge SSIs warrant special attention, because infections associated with joint 
replacements can occur a considerable time after surgery (42, 48, 185). Thus in joint 
replacement surgery, the role of postdischarge surveillance is critical. Without 
proper postdischarge surveillance, a surveillance system would greatly 
underestimate the SSI rates (186-190). 

In NNIS, 54% of all SSIs after surgery were detected after the postoperative hospital 
stay (191). In HELICS, the proportion of SSIs following hip arthroplasties reported 
after discharge ranged from 0% in England to 75% in Austria (Table 1) (34). Within 
European national surveillance systems, the methods and intensity of postdischarge 
surveillance vary markedly (34-36, 192, 193). In the HELICS report, the variable 
intensity of postdischarge surveillance in different countries was noted, and certain 
new metrics for SSI incidence (in-hospital cumulative incidence and the incidence 
density of in-hospital SSI per 1,000 in-hospital postoperative patient-days at risk) 
were issued to somehow combat this postdischarge surveillance variability (34). The 
limitation of the last mentioned metric is that it may be biased because SSI risk 
varies over time: incidence is the highest during the first seven postoperative days 
and then drops.  

 

Methods for postdischarge surveillance  
 
Several different methods for case finding, questionnaires (194-196), telephone 
interviews (189, 197, 198), electronic patient charts (199), diagnostic codes, 
pharmacy records, and observations by health care personnel (200), have been used 
alone or in combination (188, 201-207). No universally agreed and accepted 
method, however, exists for postdischarge surveillance (208-210).  

The reporter of an SSI after hospital discharge has been either a health care 
professional or a patient. In most studies, patients have been unable to reliably 
recognize postoperative infection in their own wounds: either high false positive and 
high false negative rates were reported (211, 212). In two studies, however, patients 
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were reportedly able to detect SSI with a reasonable level of accuracy, but these 
results cannot be generalized to all patient populations (213, 214). 

As more information during routine health care activities is recorded electronically, 
less labor-intensive surveillance methods may also reduce the burden of 
postdischarge surveillance efforts (179). Comprehensive and integrated electronic 
health records systems, which cross primary and secondary health care, may offer a 
useful tool for postdischarge surveillance (210). In a US orthopedic tertiary center, 
for example, text-searching electronic patient records with specific search terms 
indicative of SSI was tested and discussed as a simple and inexpensive method to 
improve detection of postdischarge SSIs (215). Analysis of International 
Classification of Diseases (ICD) codes alone offers insufficient high-quality data for 
postdischarge surveillance (216), but full-text electronic medical records and other 
electronic databases can be utilized to enhance detection of postdischarge cases 
(180, 199, 201, 202, 209, 217). In the United States, health insurance administrative 
data was found to detect more SSIs than hospital based surveillance, although 
misclassifications in either system were unevaluated (168, 201, 204). Electronic 
data, where available, may also increase opportunities for standardization (217): 
access to electronic outpatient medical records allows an ICN to confirm whether a 
postdischarge SSI reported meets the standard criteria.  

 

Validity of postdischarge surveillance methods  
 
As in in-hospital surveillance, high validity of the case finding methods in 
postdischarge surveillance is also important in order to obtain reliable and 
comparable results. Ideally, the coverage, sensitivity, specificity, and positive (PPV) 
and negative predictive values (NPV) of the method used should be known. 
Reported coverages of postdischarge surveillance have often been quite low, as in a 
study from France which reported the loss of 59% of patients to follow-up between 
discharge and 30 days (218). Response rates to questionnaires mailed to patients 
have ranged from 15% to 33% (197, 204), and response rates to telephone 
interviews, from 38% to 85% (197, 198, 219). The sensitivity, specificity, and 
predictive values of postdischarge surveillance methods have seldom been 
evaluated. A systematic literature review concluded that thus far, no feasible and 
robust method for case finding of postdischarge SSIs has been identified; the 
research undertaken is either scarce or methodologically weak (210). 

In the United Kingdom, a national audit of postdischarge surveillance practices was 
performed in 2004. Of those trusts that responded to the audit, 29% performed some 
form of postdischarge surveillance: the most common methods included routine 
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clinical follow-up (45%) and the direct observation of wounds (41%). Of the 
different specialties, postdischarge surveillance was most often performed after 
orthopedic surgery (33%) (210). In orthopedic surgery, the proportions of 
postdischarge SSIs to all SSIs after joint replacements in published studies have 
been associated with the method used: 25% with a questionnaire mailed to each 
patient (220), 38% by telephone screening and direct observation by health care 
personnel (214), 43% to 69% by combination of several methods (186), and 72% by 
electronic chart review (199). 

2.2.5 Validation studies of surgical site infection surveillance  

 

Because of the expanding demands for SSI rates to serve as a measure of the quality 
of patient care and as a tool for interhospital comparisons, data in SSI surveillance 
should be collected on accuracy and consistency (191, 221). In many surveillance 
networks, validation studies are essential to ensure the credibility and validity of 
data (222, 223). In the Dutch national surveillance system, PREZIES, participation 
in regular validation visits has been compulsory since 2002 (157). 

Validation studies concerning SSI surveillance have been published in international 
journals from NNIS (138), PREZIES (157), Surgical Site Infection Surveillance in 
Scotland (224), and from KISS (223), and single hospitals (Table 6) (225). In the 
first validation study of the NNIS system, PPV, sensitivity, and specificity for SSI 
surveillance were 72%, 67%, and 98%, respectively (138). In this study, the gold 
standard was the experts’ retrospective chart review.  

In the Dutch national surveillance system, PREZIES, ongoing validation of SSI 
surveillance began in 1999 (157); regular and compulsory validation visits to 
hospitals are performed there. After each validation visit, a written validation report 
is sent to a particular hospital. As needed, the validation team can advise on 
improvements in surveillance, correct the data retrospectively, or even remove 
inferior data from the national database. As of this writing, data have been removed 
on only two occasions. After 859 charts reviewed during 1999-2004, PPV and NPV 
were 97% and 99%, respectively. In this study, sensitivity and specificity were 
unreported.  
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In Germany, two methods were compared to validate a HAI prevalence survey (SSI, 
urinary tract infection, lower respiratory tract infection, and sepsis) (223). In the 
bedside validation, sensitivity was 89% and specificity, 99.5%, and in validation by 
case studies, sensitivity was 96% and specificity, 93%. The authors concluded that 
because the bedside validation is very time-consuming, they favor validation by case 
studies. However, the retrospective study design always has the limitation that 
observers are dependent on the quality of data documented in patient records. One 
possible method to validate an SSI surveillance system is to perform a follow-up 
after conducting a prevalence study and to examine the proportion of SSIs detected 
in a prevalence study that are also reported via the routine surveillance system (226). 
In Poulsen’s study, hospital staff reported to the routine surveillance system only 
one third of the SSIs detected by external ICPs during a prevalence study. 

In a single tertiary care hospital validation study with experts’ prospective daily 
wound examination and chart reviews, the accuracy of standard SSI surveillance 
was quite high: during the first study period the sensitivity and specificity of routine 
surveillance were 84% and 99.8%, and during the second period, sensitivity was 
92% (225).  

When assessing the quality indicators (sensitivity, specificity, and predictive values) 
of different validation studies, the study design and analyses used are important to 
consider (Table 6). When the study sample includes all operations during a certain 
time period and the infection prevalence in the sample and in the aggregated 
surveillance data are identical, the results are directly applicable to the aggregated 
surveillance data,  (223, 225). For example, a Scottish validation study reported 
sensitivity, specificity, PPV and NPV for an SSI surveillance of 96.7%, 99.0%, 
94.6%, and 99.4%, respectively (224). However, because the cases were selected in 
a ratio of 15 SSIs/60 non-SSIs, sensitivity and specificity are likely to overestimate 
the real quality of the routine surveillance data. 

 

Capture-recapture method to assess sensitivity 
 
Because in real life no surveillance system is 100% sensitive, they all, to some 
extent, underestimate true rates of disease. In epidemiology, capture-recapture 
analysis is used to adjust the degree of undercount by estimating the number of 
missed cases from two or more data sources. Capture-recapture methods were first 
developed to enumerate wild animal populations (227). More recently, these 
methods have been applied to epidemiology as an important tool to estimate cases 
missed by surveillance systems and to determine true disease burden (227-236). This 
method utilizes information provided by duplicate cases (cases found in more than 
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one source) to calculate the number of unidentified individuals (227, 235). In 
infectious disease epidemiology, use of the capture-recapture method is more 
complicated than in enumerating wild animal populations, but is often quite 
successful (237, 238). To use capture-recapture methods appropriately, several 
conditions should be met: 1) the two (or more) data sources should be independent, 
2) all true matches and only matches should be identified, 3) all cases identified by 
the surveillance systems should be true cases that occurred in the population under 
investigation within a certain time period, and 4) catchability of cases in each data 
source should be equal (239). Even though some conditions in infectious diseases 
epidemiology are not always optimal for the use of the capture-recapture method 
(239-241), it is in many circumstances the only feasible tool to evaluate the 
sensitivity of a surveillance system and to estimate the true picture of the disease 
burden (227, 235). In infectious disease epidemiology, the capture-recapture method 
has been used to estimate, for example, cases of HIV, meningococcal, tuberculosis, 
and Legionnaires’ disease (228, 229, 232, 242). Capture-recapture methods have not 
previously been used to estimate the sensitivity of HAI surveillance systems.  

2.2.6 Stratification of risk factors and case-mix 

An important complicating factor in using SSI rates as a quality indicator is the 
variation in patient material undergoing operations in different hospitals or by 
different surgeons. Unless all important determinants that affect patient infection 
risk are taken into account, comparisons between hospitals or surgeons can be 
potentially misleading (37, 172).  

 

Risk factors for surgical site infections and prosthetic joint infections after 
total hip and knee arthroplasties 
 
Patient and operation characteristics that may influence the risk of SSI development 
appear in Table 2. Several studies have identified possible risk factors for SSIs after 
THA or TKA. High NNIS risk index or components of NNIS risk index (82, 191, 
243, 244) and revision arthroplasty (82, 245-249) have been clearly shown to 
increase SSI risk after THA and TKA. Some studies have also associated diabetes 
mellitus (250-253), advanced age (135, 155), and preoperative hospital stays of 
more than four days (135, 243) with higher SSI risk. In one study of the elderly, an 
additional risk factor for SSI after orthopedic surgery was residence in a health care 
facility prior to surgery (76). In a large case-control study from the Mayo Clinic as 
well as in some other studies, an important risk factor for prosthetic joint infection 
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after THA was a postoperative SSI not involving the prosthesis (74, 82, 254), (246). 
Increased deep infection risk has been detected in patients with rheumatoid arthritis 
(247, 255). 

 

Stratification of risk factors 
 
In the SENIC study, a risk index was developed and validated to stratify patients by 
their risk of developing an SSI (256). The components of the SENIC risk index 
were: an intra-abdominal operation, an operative procedure lasting longer than two 
hours, a wound classified as contaminated or dirty, and three or more discharge 
diagnoses. In 1991, the SENIC risk index was adapted to the NNIS risk index (160), 
which is nowadays a universally accepted and widely used risk index in surveillance 
systems (257). The NNIS risk index stratifies surgical patients according to a 
number of risk factors: an American Society of Anesthesiologists (ASA) score �3, a 
wound contamination classification of contaminated or dirty, and a duration of 
operation longer than the 75th percentile of the duration for each operative procedure 
(37). The basic NNIS risk index has generally performed well in predicting the risk 
of SSI after THA and TKA (34, 75, 191, 243, 258).  

In addition to the fact that the NNIS risk index is performing well and has been 
validated, the NNIS risk index also has practical advantages: its components are 
obtainable by uploading them from operation theatre data systems (84). Other factors 
such as diabetes mellitus, body mass index (BMI), or immunocompromised status 
could be interesting factors in risk stratification, but thus far are not always possible to 
obtain electronically for use in routine surveillance. For research use, a random effect 
model, which adjusts estimates for random variation between hospitals, and 
procedure-specific logistic regression models have been useful in adjusting various 
risk factors (46, 259). For surveillance purposes, however, risk stratification by the 
NNIS risk index has been the best method available thus far (260). 
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2.2.7  Other possible factors affecting surgical site infection surveillance 
results 

Simultaneous bilateral arthroplasties  
 
If a patient with osteoarthritis requires joint replacement surgery for both knees or 
hips, these joint replacements can be performed either staged or simultaneously 
(261). Bilateral osteoarthritis is a common phenomenon; in a study from Scotland, 
for example, 30% of patients who underwent a subsequent unilateral TKA 
underwent a TKA of the opposite knee within five years (262). Bilateral 
osteoarthritis in hips has varied between 30% and 50% (263-265). Bilateral 
arthroplasties performed under one anaesthetic event can be done simultaneously by 
two operative teams or sequentially by one team.  

The proportion of simultaneous bilateral TKAs in large US Health Care Financing 
Administration data (266) and in the Scottish Arthroplasty Project from the 1990s 
was around 4% (262), but in some specialized orthopedic centers, the proportion has 
been much higher (267): in the Mayo Clinic, 12% (268), and in St. Francis Hospital, 
Mooresville, 49% (269). The proportion of simultaneous bilateral THAs in a single 
center in Oxford was around 5% (270). 

 

Simultaneous bilateral arthroplasties: benefits and potential risks 
 
The reasons for the increasing number of hip and knee arthroplasties performed as 
simultaneous bilateral operations include patients’ and health-economical benefits: 
the total length of hospital stay and rehabilitation is shorter (265, 266, 271-273) and 
total costs are lower (266, 271, 274, 275). However, concerns of possible increased 
peri- and postoperative morbidity (cardiac and thromboembolic events and 
gastrointestinal problems such as intestinal ileus and gastrointestinal bleeding) have 
been raised, especially among elderly patients (266, 268, 271, 276-280). 

 

Infection control and simultaneous bilateral arthroplasties  
 
Infection control of bilateral operations under one anaesthetic event has been 
discussed in orthopedic journals. Either the same instruments (276, 281) or two 
different sets of instruments (281, 282) have been used, and the skin preparation has 
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been performed simultaneously in the beginning of the anaesthesia (276) or the 
second side has been prepared later (283). Macaulay et al. have suggested in their 
article, especially for bilateral arthroplasties, that intravenous antibiotics be 
administered 15 minutes before each incision (so that the total dose does not, 
however, represent an overdose for the time period) and continued until 24 hours 
(284). Sufficiently-powered comparative trials or consensus on these issues are, 
however, lacking (281). 

Theoretical issues around antimicrobial prophylaxis, skin preparation practices, and 
pressure directed towards the first operated hip wound also suggest the possibility of 
increased risk of SSI. In previous studies from single hospitals, the rates of SSIs 
after simultaneous bilateral TKAs and THAs were similar to those after unilateral or 
staged TKAs (275, 276, 285, 286) and THAs (270, 283, 287-289). In the routine 
data from the US Medicare system, however, Ritter el al. detected a lower SSI rate 
after simultaneous TKAs than after staged TKAs (266). Also, a tendency towards a 
lower infection rate after a bilateral TKA was found in an Australian study with 
1,867 TKAs performed by its single senior author (290). At least to some extent, 
lower SSI rates may have been associated with a selection of healthier patients for 
bilateral procedures. The limitation of the US Medicare study was that the method 
for case ascertainment was only partially described and the follow-up period after 
the joint operation covered only the postoperative hospital stay (266). Thus far, 
national HAI surveillance systems have not published separately the SSI rates of 
simultaneous bilateral arthroplasties.  

 

Hospital-related factors 
 

In addition to the patient-related risk factors described above, hospital-related 
factors have also been examined. Low surgical volume in a hospital has been 
associated with a higher risk of death related to surgery (291) and to a higher risk of 
complications after THA and TKA (292-294). In the Netherlands, hospitals with a 
low annual volume of THAs experienced an increased risk of SSI, and no other 
hospital-related risk factors, like university-affiliation, were associated with the SSI 
risk (295). In some studies, however, the difference in SSI rates has not been 
statistically significant (296, 297). The limit of a low volume hospital in some of 
these studies has been extremely low: less than 10 to 25 THA or TKA annually.  
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Factors related to health care delivery 
 
Differences in health care systems as well as legal and cultural aspects may also 
influence nationally reported SSI rates, but are difficult to evaluate or control 
scientifically (47). For example, indications for arthroplasties (298) as well as 
operation volumes per hospital vary from country to country. These differences have 
been discussed in many European studies, and researchers have noted that 
international comparisons should be interpreted only with these differences in mind 
(35, 36, 49, 153). 

In many European countries, SSI surveillance is performed continuously in all 
hospitals, but in other countries three-month surveillance periods are common (34). 
However, the question remains: How can SSIs after operations with a one-year 
follow-up period be reliably surveyed between active three-month periods? 

2.2.8  Mandatory and public reporting of health care-associated infection 
rates 

Nowadays, more pressure exists towards the mandatory reporting of HAIs and other 
patient safety issues as well as towards the public disclosure of such information 
(133, 299). Since 2004 in the United Kingdom, it has been mandatory for NHS 
hospitals to publish in-hospital SSI rates after orthopedic surgery (300, 301). Since 
2002 in the United States, several states have enacted legislation that requires 
hospitals to disclose HAI rates publicly (32). While mandatory or public reporting or 
both further heightens the need for comparable high-quality surveillance data on 
HAIs, it may also affect the HAI rates obtained (133). As validation studies have 
shown that low sensitivity (i.e. underreporting of infections) is more common than 
low specificity (138), some experts have suggested that the underreporting of HAIs 
becomes a cause for concern when the pressure for public disclosure is added to a 
process that already has a tendency to miss cases of HAI (133). In fact, the CDC 
recently reviewed published studies and concluded that the effectiveness of public 
reporting systems to improve health care performance is inconclusive (302). In the 
Netherlands, to avoid disproportionately compromising hospitals participating in 
PREZIES, the court has decided that PREZIES data need not be made public. In 
addition to outcome measures such as SSI rates, process measures (such as the 
percentage of patients with recommended antimicrobial prophylaxis given) can also 
be considered for public disclosure (32).  
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3 AIMS OF THE STUDY 

The purpose of this study was to obtain detailed information to support prevention 
efforts by analyzing the Finnish Hospital Infection Program (SIRO) data on SSIs 
after major hip and knee surgery, and to evaluate possible factors affecting the 
surveillance results. 

The specific objectives were:  

1. To study the impact of postdischarge surveillance on SSI rates after hip and 
knee arthroplasties and ORIF of femur fracture, and to examine the 
distribution of SSI types detected in various locations of postdischarge 
surveillance (I). 

2. To validate the process and the indicators of orthopedic SSI surveillance in 
SIRO (II). 

3. To evaluate the accuracy of SIRO surveillance data on bilateral 
arthroplasties under one anaesthetic event and to compare the patient 
population undergoing bi- and unilateral THA and TKA in terms of two 
outcome variables: deep SSIs and mortality (III). 

4. To further validate the indicators of SIRO surveillance and to assess the 
disease burden of prosthetic joint infections after THA and TKA (IV). 
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4 MATERIALS AND METHODS 

4.1  Surveillance methodology in the Finnish hospital infection 
program (I-IV) 

4.1.1 In-hospital surveillance of orthopedic surgical site infections 

Information on SSIs after orthopedic surgery has been reported to SIRO from 
participating hospitals since 1999. Hospital participation is voluntary and 
confidential. Orthopedic procedures under surveillance included hip and knee 
arthroplasties and ORIFs of femur fracture. Hospitals prospectively collected data 
using common definitions and the NNIS methodology (171, 303); a written protocol 
with CDC definitions (208) translated into Finnish was provided. For finding cases, 
ICNs responsible for surveillance were recommended to visit wards once a week 
and to obtain additional information from microbiology laboratory reports, patient 
charts, and medical and nursing staff. The training on surveillance methodology 
organized by SIRO for local ICNs consisted of site visit at the beginning of the 
surveillance, meetings at least once a year, and an opportunity to consult the SIRO 
team by phone when needed.  

For each patient under surveillance, the following data were uploaded from hospital 
databases and sent in electronic form to the national center: the patient’s unique 
national identity code (which indicates age and sex), date of surgery, procedure 
code, uni-/bilateral operation, the consecutive number of the operative side (for 
bilateral operations), ASA score, wound contamination class, duration and urgency 
of the operation, date of admission and discharge, discharge status (discharged 
home, referred to another health care institution, or died), and ICD codes for 
diagnoses. For each infection, local ICNs collected and manually recorded the 
following data on a form: the patient’s national identity code, date of surgery, 
procedure code, date and type of SSI, causative microbe, location of detection, and 
the consecutive number of operative side (for SSIs after bilateral operations).  
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4.1.2 Postdischarge surveillance of orthopedic surgical site infections 

After discharge, all hospitals systematically identified SSIs on readmission and 
during follow-up visits. Follow-up visits usually took place two months and one 
year after THA and TKA. In addition, most hospitals conducted postdischarge 
surveillance with a questionnaire issued to each patient at discharge. If a patient 
showed clinical signs or symptoms in the wound area and contacted the health care 
system, a health care professional (nurse or physician) completed the questionnaire. 
If the SSI was detected after discharge, the location of detection was recorded: on 
readmission to the hospital, during a follow-up visit, or during outpatient follow-up 
upon completion of the postdischarge questionnaire. 

4.1.3 Data linkage and management in the national database 

In the national surveillance database, the infection reports were linked to the 
uploaded data by using the patient’s national identity code and the date and code of 
the procedure. At regular intervals, the infection reports not combined in the 
automatic process were examined. These reports were first checked for possible 
errors in data entering, and the local ICNs were contacted later if needed. The errors 
found were manually corrected. The proportions of missing values in important 
fields (such as ASA score, wound contamination class, and duration of operation) 
were evaluated.  
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4.2 Postdischarge surveillance after orthopedic surgery (I) 

4.2.1 Data sources 

During 1999-2002, 13,063 orthopedic procedures under surveillance were 
performed in SIRO hospitals: annual numbers per hospital varied from 142 to 559 
for hip arthroplasties, 71 to 490 for knee arthroplasties, and 77 to 293 for ORIFs of 
femur fracture. For Study I, data on these operations were included except those 
with no recorded date of discharge (Table 7). The data were checked for data quality 
before analysis. No additional data sources were used.  

4.2.2 Analysis and statistics 

Univariate analyses were calculated with Chi-squared test or Fisher’s exact test, 
when appropriate, for categorical variables and with the Mann-Whitney U test for 
continuous variables. Potential risk factors with a P value of less than 0.2 in 
univariate analysis and some possible confounding factors were included in 
multivariate analysis. Multivariate analysis was performed as a logistic regression 
model with a forward selection process. A P value of less than 0.05 was defined as 
statistically significant. Data were analyzed by SPSS for Windows, version 12.0 
(Chicago, IL, USA). 

4.3 Validation study (II) 

4.3.1 Chart review and structured interview 

Nine hospitals that had participated in orthopedic SSI surveillance for more than one 
year were asked to participate and eight hospitals accepted the invitation to 
participate in the voluntary validation study. In each hospital, the process of 
surveillance was validated by means of a structured interview of the ICN responsible 
for surveillance. The interview covered the process of data collection, interpretation 
of the case definition, and methods for postdischarge surveillance. A retrospective 
chart review was carried out for validation of the surveillance indicators. In each 
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hospital, a validation team reviewed a sample of patient charts, including all clinical 
data and laboratory and radiology reports. The sample of charts contained 10 
orthopedic operations with, and 40 without, SSI. The surveyors were blinded to the 
patient’s infection status as recorded by the hospital ICN. After the review, 
discrepant files were discussed with the ICN to determine sources of discordance. 

4.3.2 Analysis and statistics 

From the sample of charts reviewed, a PPV was determined by calculating the 
proportion of true infections among all infections identified by routine surveillance, 
and an NPV by the proportion of true negative cases among all patients identified by 
routine surveillance as uninfected (Table 8). Because the prevalence of SSI differed 
between the sample of reviewed charts and the aggregated SIRO surveillance data 
(20.7% vs 3.8%, respectively), the results of the chart review were applied to the 
aggregated data by multiplying the number of all SSIs detected in routine 
surveillance during 1999-2003 by the PPV (Table 9). This provided an 
approximation of the number of true infections in the aggregated SIRO surveillance 
data. The same procedure was performed for negative cases with the NPV. These 
procedures allowed sensitivity and specificity for the aggregated surveillance data to 
be determined. Confidence intervals were calculated by the asymptotic normal 
theory with the delta method. 
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Table 8. Calculation of positive and negative predictive values from the sample 

Validation group 
 

Infection + Infection - 

Routine surveillance +  
a 

(true positives) 
b 

(false positives) 

Routine surveillance – 
c 

(false negatives) 
d 

(true negatives) 

Positive predictive value (PPV) = a / (a + b)         
Negative predictive value (NPV) = d / (c + d)      
 

Table 9. Method for applying positive and negative predictive values from the 
sample to aggregated surveillance data and calculating sensitivity and specificity  

 Infection + Infection - 

Routine surveillance +  
(e) 

PPV x e = a 

(true positives) 
 (1-PPV) x e = b 

(false positives) 

Routine surveillance – 
(f) 

(1 – NPV) x f = c 

(false negatives) 
NPV x f = d 

(true negatives) 
e = Number of operations with infection reported in routine surveillance 
f = Number of operations without infection reported in routine surveillance 
Sensitivity = a / (a + c)  
Specificity = d / (b + d)  
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4.4 Simultaneous bilateral hip and knee arthroplasties (III)  

4.4.1 Data sources  

In this thesis, the term “simultaneous bilateral arthroplasty” is used for bilateral 
arthroplasties performed under one anaesthetic event. The reporting of variable 
“bilateral operations” to SIRO began in 2001. Six of twelve hospitals reported data 
on bilateral arthroplasties under one anaesthetic event during 2001-2004. The data 
on all bi- and unilateral THAs and TKAs performed in these hospitals were 
included. First, the data on the bilateral arthroplasties under one anaesthetic event 
were checked for data quality. If necessary, data were corrected so that each bilateral 
arthroplasty was entered as two separate operations with different operation times. 
The patient charts with deep incisional and organ/space SSIs were reviewed for 
information on antimicrobial prophylaxis (antimicrobial agent used, timing, and 
dose). Dates of possible deaths were obtained from the national population registry.  

4.4.2 Analysis and statistics 

Univariate and multivariate analyses were performed similarly as described in 4.2.2. 
When calculating SSI rates and analysing risk factors for SSIs, each of the operated 
joints was taken into account. Deaths at 7, 28, and 365 days were evaluated so that 
each patient was included only once, and the time to death was calculated from the 
last operation during the study period. To estimate the hazard ratio of progression to 
death, the Cox proportional hazard regression model was used. A plot of log minus 
log-transformation of the survival function served to assess the proportional hazards 
assumption. Age was evaluated as a continuous variable. The data were analyzed 
with SPSS version 14.0 for Windows (Chicago, IL, USA). 
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4.5 Register linkage study (IV)  

4.5.1 Data sources  

In Finland, three institutions collect information on prosthetic joint infections after 
THA and TKA: SIRO, the Finnish Arthroplasty Register, and the Finnish Patient 
Insurance Centre (Table 10).  

 

Table 10. Data sources of the register linkage study and case definitions of a 
prosthetic joint infection following total hip and knee arthroplasties 

Data source Coverage Case definition 

Finnish Hospital 
Infection Program 

Sentinel  CDC definitions for deep incisional and 
organ/space SSIs  

Finnish Arthroplasty 
Register 

Nationwide Infection as an indication for a reoperation 

Finnish Patient 
Insurance Centre 

Nationwide Compensated infection injuries  

 

The Finnish Arthroplasty Register has been collecting information on joint 
replacements since 1980 (304-306). Health care authorities, institutions, and 
orthopedic units are obliged to provide information essential for maintenance of the 
register (307). For a primary operation, the patient’s national identity code, 
operating hospital, date, indication for the operation, implant design, method of 
fixation for each component, and primary complications are recorded. For a 
reoperation, date of the index operation, design of the revised prosthesis, indication 
for revision (e.g. infection), and the new prosthesis are also recorded (308).  

The Finnish Patient Insurance Centre handles the compensation procedures for 
patient injuries. Infection injuries are classified as infections caused by various 
microbes that the patient probably contracted in connection with an examination, 
treatment, or other similar action. In practice, ordinary, superficial, fast-healing 
infections fall outside the scope of compensation. Postoperative prosthetic joint 
infections normally merit compensation as a patient injury, if the patient claims 
compensation.  

The chart review of prosthetic joint infections reported to SIRO was performed to 
confirm that the CDC definitions were met. (In this register linkage study, deep 
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incisional and organ/space SSIs were classified together as prosthetic joint 
infections.) The following data were recorded: onset, signs, and symptoms, results 
of laboratory tests and imaging studies, and the treatment of a prosthetic joint 
infection; and of the patients who had undergone a reoperation due to infection: date 
and type of operation and clinical findings in the operation. 

4.5.2 Identification of matches  

THAs and TKAs under SIRO surveillance during 1999-2004 constituted the basic 
dataset for register linkage. Operations with incorrect or missing patient national 
identity codes (n=1,827; one hospital did not send patients’ national identity codes 
to SIRO) and those from one hospital that did not participate in the chart review 
(n=2,060) were excluded. The total number of study operations was 13,482: 7,561 
THAs and 5,921 TKAs. Matches between the three sources were identified with the 
patient’s national identity code, and the dates and codes of the operation. 

4.5.3 Analysis and statistics  

Capture-recapture analysis was used to estimate the total number of prosthetic joint 
infections after THA and TKA. The capture-recapture method estimates the true 
population size based on the number of cases captured by any combination of the 
three data sources. The estimates are highly sensitive to potential dependencies 
between the sources. For evaluation of source dependence, the Wittes method (309) 
and log-linear modeling in Baysian framework (310, 311) were used. With the 
Wittes method, the independence of sources was tested by calculating the odds ratio 
(OR) (and its 95% confidence interval, CI) between the cell counts of two sources 
within a third source. Any dependent sources were merged and the two-source 
estimate by Chapman's modification of the Petersen-Lincoln was used. As an 
alternative method, we fitted the Bayesian hierarchical log-linear model with the 
Gibbs variable selection using the Markov chain Monte Carlo (MCMC) method 
with equal prior model probabilities. This method allowed us to incorporate the 
uncertainty in the model selection to the estimates. The most probable model 
supported by the data a posteriori (as well as posterior average over models) was 
subsequently used to estimate both the dependencies and the total population size 
(number with 95% credible interval, CI). Heterogeneity in catch probabilities is also 
a major concern in capture-recapture analysis. To account for this, we stratified the 
data by operation type. Data were analyzed by SPSS for Windows version 14.0 
(Chicago, IL, USA) and WinBUGS version 1.4.1 (Cambridge, UK). 
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4.6 Ethical aspects 

 

The Ministry of Social Affairs and Health, the National Research and Development 
Center for Welfare and Health, and the Finnish Data Protection Authority have 
authorized the SIRO study plan and the use of data from population-based registries 
for research. The research plan of this thesis was also approved by the ethics group 
of the National Public Health Institute. 
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5 RESULTS 

5.1 Postdischarge surveillance after orthopedic surgery (I) 

5.1.1 Characteristics of study patients and operations 

The 11,812 hip and knee joint replacements and ORIFs of femur fracture with the 
date of patient discharge available during 1999-2002 were included in Study I. The 
median length of hospital stay was eight days (range per hospital, 6-9 days). The 
patient and procedure characteristics appear in Table 11. 

 

 

Table 11. Characteristics of patients and orthopedic procedures by procedure in nine 
Finnish hospitals during 1999-2002 

Characteristic Hip arthroplasty 
(n=6,207) 

Open reduction of 
femur fracture 
(n=1,899) 

Knee arthroplasty 
(n=3,706) 

Males, % 36 35 27 

Median age, years 71* 77 71 

ASA 3, 4, or 5, % 53* 69 52* 

Wound classification 3 or 4, % 1 1 1 

Duration of operation >120 minutes, % 35 17 32 

NNIS risk index � 1, % 66* 75 62* 

Urgent procedures, % 24 95 1 

Rearthroplasty, % 22 - 12 

Preoperative stay >2 days, % 8 8 3* 

Median length of hospital stay, days  8* 5 8 

Referred to other healthcare institution 
after discharge, % 

55 78 40 

ASA, American Society of Anesthesiologists score; NNIS, National Nosocomial 
Infection Surveillance System.                                                                                             
* Risk factor for SSI in univariate analysis (P<0.05). 
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5.1.2 Surgical site infections  

A total of 384 SSIs were identified. The SSI rates for hip arthroplasty, for ORIF of 
femur fracture, and for knee arthroplasty were 3.9%, 2.9%, and 2.3%, respectively. 
Of the SSIs, 72% were superficial incisional, 18% were deep incisional, and 10% 
were organ/space SSIs. The median time from the operation to the date of SSI was 
11 days, with intervals of 8 days for superficial incisional SSIs, 18 days for deep 
incisional SSIs, and 77 days for organ/space SSIs.  

5.1.3 Impact of postdischarge surveillance  

A total of 216 SSIs (56%) were detected after discharge. The proportion of SSIs 
detected after discharge by procedure type appear in Figure 1. Overall, 86% of 
organ/space SSIs, 80% of deep incisional SSIs, and 46% of superficial incisional 
SSIs were detected after discharge. Most of deep incisional and organ/space SSIs 
were identified on readmission, whereas most of the infections found during the 
follow-up visit or on completion of the postdischarge questionnaire were superficial 
incisional (Table 12). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Rates of surgical site infections detected at nine Finnish hospitals during 
1999-2002, according to type of procedure and time of detection 
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Table 12. Distribution of surgical site infections (SSI) among patients who 
underwent major hip and knee surgery at nine Finnish hospitals during 1999-2002, 
according to time or location of detection 

Time or location of detection 
 

Superficial 
incisional SSI 
n (%) 

Deep 
incisional SSI 
n (%) 

Organ/space 
 SSI 
n (%) 

Total 
 
n  

During hospitalization 149 (89) 14 (8) 5 (3) 168 

After discharge 127 (59) 57 (26) 32 (15) 216 

     On readmission 28 (30) 39 (42) 26 (28) 93 

     During follow-up visit 19 (83) 2 (9) 2 (9) 23 

     In outpatient follow-up by 
     postdischarge questionnaire 

64 (88) 7 (10) 2 (3) 73 
 

     Unknown 16 (59) 9 (33) 2 (7) 27 

Overall  276 (72) 71 (18) 37 (10) 384 

 

In 298 (78%) of the 384 SSIs, cultures yielded one or more microbial species. 
Microbial isolates were more commonly reported for SSI detected during a 
postoperative hospital stay than for SSIs found after discharge (93% vs 66%; 
P<0.001). The percentage of SSIs associated with a positive culture result differed 
among hospitals (range, 67-100% for in-hospital SSIs and 45-100% for 
postdischarge SSIs). The microbes most commonly detected were coagulase-
negative staphylococci and Staphylococcus aureus. There was a wide variation 
among hospitals in the percentage of SSIs with coagulase-negative staphylococci as 
a causative agent (range, 30-65% for in-hospital SSI and 20-44% for postdischarge 
SSI). 

5.1.4 Variability of SSI rates between hospitals 

The overall hospital-specific rates varied from 0.8% to 6.4% among hospitals, and 
the rates for severe (deep incisional and organ/space SSIs) infections, from 0.4% to 
2.1%. The proportion of SSIs detected after discharge in different hospitals varied 
from 28% to 90%, and the proportion of postdischarge SSIs detected by the 
postdischarge questionnaire, from 0% to 73%. In the multivariate analysis adjusted 
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for NNIS risk index, patient age and sex, urgency of operation, and procedure group, 
the hospital variable remained a significant risk factor for SSI (data not shown). 
When the model with the same adjustments was performed separately for SSIs 
detected before and after discharge, the range of hospital specific ORs was wider 
before than after discharge (range of OR before discharge: 0.1-5.4; range of OR after 
discharge: 0.4-1.8), suggesting that postdischarge surveillance alone did not explain 
the marked variation in SSI rates between hospitals. 

5.2 Validation study (II) 

5.2.1 Positive and negative predictive values 

A concordance of the SSIs detected in routine SIRO surveillance and in the 
validation study chart review appears in Table 13. Routine surveillance identified 83 
SSIs, 78 of which were also identified as SSIs by the validation team. Thus, the PPV 
was 94.0% (95% CI, 88.9-99.1%). Among the charts reviewed, no infections during 
routine surveillance had been reported after 314 operations, and the validation team 
confirmed 310 of these negative reports, yielding an NPV of 98.7% (95% CI, 97.5-
100%). 

 

Table 13. Validation results for surgical site infection surveillance after orthopedic 
surgery 

 Chart review by validation team 

 Infection + Infection - Total 

Routine surveillance + 78 5 83 

Routine surveillance - 4 310 314 

Total 82 315 397 
   
  Positive predictive value = 78 / 83 = 94.0% (95% CI, 88.9-99.1%) 
  Negative predictive value = 310 / 314 = 98.7% (95% CI, 97.5-100%) 
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5.2.2 Sensitivity and specificity 

Applying the results of the validation study to the aggregated surveillance data 
(during 1999-2003: 592 infections and 14,551 non-infections) yielded a sensitivity 
of 75.0% (95% CI, 56.7-93.4%) and a specificity of 99.8% (95% CI, 99.5-100%) 
(Table 14).  

One hospital was responsible for most of the infections missed (3/4) and for one 
false-positive infection (1/5). When the results of this hospital were excluded, the 
sensitivity for routine surveillance increased to 91.5% (95% CI, 76.4-100%) and the 
specificity, to 99.8% (95% CI, 99.6-100%). 

The reasons for missing four SSIs during routine surveillance were that an ICN had 
received no information about the SSIs from a ward or from an outpatient 
department. Explanations for overreporting SSIs were related to interpretation of the 
case definition. Most false-positive SSIs were superficial incisional lacking 
appropriate clinical signs or symptoms. One organ/space SSI with clinical onset two 
years after the operation was reported. 

 

 
Table 14. Chart review results applied to total SIRO surveillance data 

 All operations under surveillance during 1999-2003 

 Infection + Infection - Total 

Surveillance + 556* 36 592 

Surveillance - 185 14,366** 14,551 

Total 741 14,402 15,143 
   
 Sensitivity = 556 / 741 = 75.0%. Specificity = 14 366 / 14 402 = 99.8%. 
 *PPV x 592 = 556; ** NPV x 14,551 = 14,366   
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5.2.3 Interview results of surveillance methodology 

 

According to the structured interviews, the following case finding methods were 
used: ward visits (7/8 hospitals), microbiology reports (5/8), ward notifications by 
link nurses (8/8) and other nursing (7/8) and medical (5/8) staff. ICN ward visits 
were performed mostly once a week, but extended to once a month. In all hospitals, 
link nurses in wards were trained for case finding. In three hospitals and selectively 
in five hospitals, if ward notifications of link nurses found an SSI case, an ICN 
reviewed the patient charts of every suspected SSI.  

Most of the hospitals conducted postdischarge surveillance during follow-up visits 
(7/8), on readmission (8/8), and in outpatient settings with an additional 
questionnaire (7/8). Five hospitals used the standard questionnaire provided by 
SIRO. Four hospitals requested the return of all questionnaires: the response rate in 
these hospitals varied from 46% to 70%. Three hospitals requested the return of 
questionnaires only, if an SSI was identified. 

The ICNs experienced difficulties in interpreting of SSI case definitions and the date 
of SSI (onset of signs and symptoms vs. date of wound culture). Problems 
mentioned involved distinguishing deep incisional SSIs from organ/space SSIs and 
the interpreting of prolonged serosal drainage with positive microbial culture. Six 
ICNs responded that they had also reported SSIs detected after the time limit 
imposed by the CDC definition.  

The rate of wound cultures was calculable for seven hospitals. The rate in the 
orthopedic wards of participating hospitals varied from 9 to 67 per 1000 patient 
days, but failed to correlate with SSI rates by hospitals (P = 0.38). 
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5.3 Simultaneous bilateral hip and knee arthroplasties (III) 

5.3.1 Characteristics of study patients and operations 

Of the 9,831 joint replacements performed during 2001-2004, 7.2% of the implants 
were inserted in a bilateral procedure (range by hospital: 0.6–19.2%). The bilateral 
procedures were more common in TKA (9.9%) than in THA (5.2%). 

At the time of procedure, patients who underwent bilateral THAs and TKAs were 
younger than those who underwent unilateral procedures, and were more often 
males (Table 15). They were also healthier: ASA scores of �3 or rheumatoid 
arthritis occurred less often. Bilateral procedures were more often primary 
arthroplasties. The duration of operation per operated joint did not differ between bi- 
and unilateral arthroplasties. The median total time from the first incision to the 
second closure for bilateral THA was 270 min (range: 145–462 min) and for 
bilateral TKA, 217 min (range: 112–450 min). 

5.3.2 Deep incisional and organ/space surgical site infections 

The overall rate of deep SSI after THA was 0.4% (24/5,614), and after TKA, 0.9% 
(37/4,217). The rates of deep SSI for bi- and unilateral arthroplasties were 0.6% 
(4/710) and 0.6% (57/9,121), respectively (THA 0% vs. 0.5% and TKA 1.0% vs. 
0.9%). Independent risk factors for deep SSI after THA were an ASA score of �3   
(P = 0.002; adjusted OR, 4.41; 95% CI, 1.47–12.66) and the duration of operation  
(P = 0.015; adjusted OR, 1.01; 95% CI, 1.00–1.01), and after TKA, an ASA score  
of �3 (P = 0.036; adjusted OR 2.20; 95% CI, 1.05–4.58) and the duration of 
operation (P = 0.008; adjusted OR, 1.01; 95% CI, 1.00–1.01). Simultaneous bilateral 
operation was not an independent risk factor for deep SSI after THA or TKA.  
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All four deep SSIs in the bilateral group appeared after TKA: one was located on the 
first operative side and three others on the second operative side. The timing of 
antimicrobial prophylaxis (mostly cefuroxime) in the four bilateral TKA that led to 
deep SSI was 48 min before incision for the first operative side and 115, 155, and 
218 min before incision for the second operative side, respectively. The doses 
(range: 1.5–3.0 g) were not repeated in the operation theatre. In unilateral operations 
that led to deep SSIs, antimicrobial prophylaxis was administered a median of 47 
min (maximum 114 min) before incision. 

5.3.3 Mortality 

Mortality at 7 (0% vs. 0.1%, P = 1.00), 28 (0.3% vs. 0.2%, P = 0.55), and 365 days 
(0.9% vs. 1.9%, P = 0.18) after operation showed no statistical differences between 
bilateral and unilateral THA or TKA. Nor did mortality rates show any statistical 
differences, if THA and TKA were analyzed separately. None of the patients with 
bilateral arthroplasty died during the seven days after the operation or during 
postoperative hospitalization. When overall mortality served as the outcome variable 
in the Cox proportional hazard regression model, age, male sex, an ASA score of �3, 
rheumatoid arthritis, and revision operation were predictors for death after THA, and 
age, male sex, an ASA score of �3, and a revision operation were predictors of death 
after TKA; the bilateral procedure, however, was not. 

5.4 Register linkage study (IV) 

In Study IV, the three sources yielded 129 individual prosthetic joint infections after 
13,482 total joint replacements (THA and TKA). This yields prosthetic joint 
infection rates of 0.9% after THA and 1.0% after TKA. Seven prosthetic joint 
infections were common to all three data sources, 22 were common to two sources, 
and 100 were unique to one source (Figure 2). Of the prosthetic joint infections 
detected in any data source, 98 (76%) were detected by SIRO. This proportion 
showed no difference between THA and TKA (75% vs. 77%). 



 

56 

 

 

 

 

 

 

 

 

 

Figure 2. Number of prosthetic joint infections following 13,482 total hip and knee 
arthroplasties detected in different data sources in Finland during 1999-2004 

SIRO, Finnish Hospital Infection Program; FAR, Finnish Arthroplasty Register; 
FPIC, Finnish Patient Insurance Centre 

 

In the two-source capture-recapture analysis, the estimate of the total number of 
prosthetic joint infections after TKA varied from 51 to 88, and the 95% CIs for the 
estimates overlapped (Table 16). After THA for the Finnish Arthroplasty Register 
(FAR) and the Finnish Patient Insurance Centre (FPIC) pair, however, the estimate 
was three times smaller than the estimates for SIRO-FAR and SIRO-FPIC. This led 
to suspect and test dependence between the two sources: the Finnish Arthroplasty 
Register and the Finnish Patient Insurance Centre (OR, 25.8; 95% CI, 2.2-297.6). 
Because of this strong dependency, two alternative methods were used: the Finnish 
Arthroplasty Register and the Finnish Patient Insurance Centre data were merged for 
two-source analysis, and the log-linear model was performed. The most probable 
model a posteriori included the interaction term between the Finnish Arthroplasty 
Register and the Finnish Patient Insurance Centre. The results of these capture-
recapture analyses appear in Table 17 along with the model-averaged estimates. The 
estimates calculated by all three of these methods were similar: the estimated total 
number of prosthetic joint infections ranged from 138 to 143 after 7,561 THAs, and 
from 80 to 85 after 5,921 TKAs. This yielded a prosthetic joint infection rate of 
1.8% after THA, and 1.4% after TKA. The sensitivity for SIRO surveillance from 
the estimate based on the three-source capture-recapture analysis with interaction 
term was 36.3% (95% CI, 20.2-54.9%) after THA, and 57.1% after TKA (95% CI, 
40.9-72.4%).  
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Table 16. Two-source capture-recapture estimates of numbers of prosthetic joint 
infections after 7,561 total hip and 5,921 total knee arthroplasties, Finland, 1999-
2004 

Two-source analysis Number of prosthetic joint infections Capture-recapture 
estimate 

Procedure 
group 

Source 1 Source 2 nsource 1* nsource 2* nsource 1, source 2*  N** 95% CI 

THA        

 SIRO FAR 52 20   8 123 75-170 

 SIRO FPIC 52 11   4 126 67-181 

 FAR FPIC 20 11   5 41 27-55 

TKA        

 SIRO FAR 46 18   9 88 63-114 

 SIRO FPIC 46 18  11 73 57-95 

 FAR FPIC 18 18   6 51 39-62 
*Number of prosthetic joint infections reported to source 1 or source 2 or both sources 
**Estimate of the total number of prosthetic joint infections 
CI, confidence interval; THA, total hip arthroplasty; TKA, total knee arthroplasty; SIRO, 
Finnish Hospital Infection Program; FAR, Finnish Arthroplasty Register; FPIC, Finnish 
Patient Insurance Centre 

 

Table 17. Estimates of total number of prosthetic joint infections after 7,561 total 
hip and 5,921 total knee arthroplasties based on capture-recapture analyses, Finland, 
1999-2004 

Estimated total number of prosthetic joint 
infections (95% CI) 

Analysis method 

Total hip 
arthroplasty 

Total knee 
arthroplasty 

Two-source analysis by Wittes method (SIRO, FAR 
+ FPIC combined) 

142 (82-203) 85 (63-106) 

Three-source analysis by log-linear model with 
interaction term FAR x FPIC 

143 (103-224) 80 (68-100) 

Three-source analysis accounting for model 
uncertainty: posterior average over models (SIRO, 
FAR, FPIC) 

138 (95-339) 81 (67-109) 

CI, confidence or credible interval; SIRO, Finnish Hospital Infection Program; FAR, 
Finnish Arthroplasty Register; FPIC, Finnish Patient Insurance Centre 
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Of the charts of patients of the 98 prosthetic joint infections, 97 (99%) were 
available for review; 89 met CDC criteria for deep incisional or organ/space SSIs. 
The PPV was 91% (87% for THA and 96% for TKA). Symptoms or signs were 
documented for most prosthetic joint infections (91%), and in more than half (56%), 
microorganisms were found from an aseptically-obtained culture of fluid or tissue 
(data incomplete). Evidence of infection was confirmed in 70 reoperations (79%), 
and radiologic or nuclear medicine imaging showed evidence of an infection in 30 
(34%). In eight deep incisional SSIs (33%), the deep incision spontaneously 
dehisced or was deliberately opened by a surgeon. In five prosthetic joint infections 
(8%), the diagnosis was based solely on the surgeon’s or attending physician’s 
diagnosis. The nine infections that failed to meet the criteria were superficial SSIs, 
located on the wrong joints, or which exceeded the time limit of the CDC definition. 

A total of 73 (82%) patients were reoperated at least once due to the prosthetic joint 
infection: 35 after THA and 38 after TKA. One-stage prosthetic joint exchange was 
performed on five patients, the infected prosthesis was removed from 38, and a new 
prosthesis was inserted into 15 (39%). For some patients, the insertion was planned, 
but not yet performed. The median time from removal to insertion of the new 
prosthesis was 169 days (range, 67-714). Seven patients had undergone plastic 
surgery. All patients received antimicrobial treatment. 

After correction with the PPVs of SIRO and using estimates from the three-source 
capture-recapture analysis by the log-linear model with the interaction term FAR x 
FPIC, the total number of prosthetic joint infections after THA was 121 (95% CI, 88-
184), and after TKA, 77 (95% CI, 66-96); the prosthetic joint infection rate was 1.6% 
(95% CI, 1.2-2.4%) for THA and 1.3% (95% CI, 1.1-1.6%) for TKA. During 1999-
2004, an average of 7,077 THAs (i.e. 134 per 100,000 population) and 6,332 TKAs 
(i.e. 119 per 100,000 population) were annually performed in Finland. Based on that, it 
was estimated that each year (the average from 1999 to 2004), 195 postoperative 
prosthetic joint infections occurred after THA and TKA in Finland [after THA, 113 
(95% CI, 82-172), and after TKA, 82 (95% CI, 71-102)]. 
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6 DISCUSSION 

Among European surveillance systems, Finnish SSI rates after THA and TKA have 
tended to be higher than those of other national surveillance systems (34, 153). 
Altogether, the four original studies (I-IV) provide information about the 
epidemiology of SSIs following major hip and knee surgery in Finland and the 
factors affecting the results of SIRO surveillance. First, the impact of postdischarge 
surveillance was evaluated (Study I). Postdischarge surveillance was found to detect 
a considerable number of SSIs: more than half of all SSIs and approximately 80% of 
deep incisional and organ/space SSIs. The SSIs detected in outpatients by a 
questionnaire were mostly superficial infections, whereas most deep incisional and 
organ/space SSIs were identified on readmission to the hospital. Thus, no need 
exists to strongly recommend use of an additional postdischarge surveillance 
questionnaire after orthopedic surgery. Study I also revealed variation in hospital-
specific SSI incidences unexplained by postdischarge surveillance, and highlighted a 
need for a validation study. The validation study (Study II) suggested that most SSIs 
reported to SIRO by participating hospitals were true infections, some SSIs were 
missed due to weaknesses in case finding, and variation in diagnostic practices may 
affect SSI rates. Simultaneous bilateral THA and TKA were in the interest of 
surgeons in participating hospitals. Patients who underwent bilateral operations were 
younger, healthier, and more often males than were those who underwent unilateral 
procedures (Study III). The rates of deep SSIs or mortality did not differ between bi- 
and unilateral THAs or TKAs. Bilateral arthroplasties under one anaesthetic event 
require specific attention paid to their antimicrobial prophylaxis as well as to data 
management in the surveillance database. The possibility of register linkage with 
unique national identity codes was utilized to obtain more data on postoperative 
prosthetic joint infections (Study IV). Evidence indicated that true disease burden of 
prosthetic joint infections may be heavier than the rates from national nosocomial 
surveillance systems usually suggest. According to the estimation, nearly 200 
prosthetic joint infections could occur in Finland each year (the average from 1999 
to 2004) after THA and TKA. 
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6.1 Postdischarge surveillance after orthopedic surgery 

6.1.1 Impact of postdischarge surveillance 

In Study I, the median time from the operation to the date of SSI onset (11 days) was 
longer than the median postoperative stay (8 days). The median intervals between 
surgery and onset of superficial incisional, deep incisional, and organ/space SSIs 
were 8, 18, and 77 days, respectively. These findings suggest that effective 
postdischarge surveillance is essential to achieve truthful SSI rates after orthopedic 
surgery and especially to detect prosthetic joint infections.  

In the current study, more than half of all SSIs and more than 80% of deep incisional 
and organ/space SSIs were detected after discharge. These figures were similar to 
those of a recent study from a large US integrated healthcare system using standard 
surveillance methodology before and after discharge (33). The study reported that 
52% of all SSIs after THA and TKA were detected after discharge, and their total 
SSI rates exceeded the corresponding NNIS rates due to comprehensive 
postdischarge surveillance. In the European HAI surveillance network, HELICS, the 
proportion of postdischarge SSIs after hip arthroplasties varied from 0% to 75% 
among participating countries (34). Because of this wide variation, in-hospital 
incidences of SSIs were provided to permit comparisons without postdischarge 
surveillance. Similarly, in SIRO feedback reports, separate SSI rates � either 
including or excluding postdischarge SSIs � are always provided. 

SIRO methods for postdischarge case finding included a special questionnaire and 
surveillance on readmission and during follow-up visits. In SIRO, a health care 
professional reported SSIs after hospital discharge, which has been considered more 
reliable than reporting by patients themselves (211, 212). According to the literature, 
a questionnaire is not the most sensitive postdischarge case finding method (186, 
199, 220). However, while no universally accepted and validated method for 
postdischarge surveillance exists (210), the balance between cost and resources 
required for postdischarge surveillance and accuracy of the data obtained must be 
weighed individually in each surveillance system. In the future, the development of 
methods based on information technology, such as searching from outpatient 
electronic patient records and other electronic databases, will enhance the potential 
for effective, cost-saving and more accurate postdischarge surveillance methods as 
well as the opportunities for ICNs to confirm detected cases. 

Limitations in Study I were that the number of patients who actually received a 
questionnaire and the response rate were unknown, and that postdischarge 
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surveillance has not been independently validated. Later, in the validation study 
interviews (Study II) ICNs reported postdischarge questionnaire response rates that 
varied from 46% to 70%. Three hospitals requested that the questionnaires be 
returned only if an SSI was identified. Response rates of 46% to 70% are higher than 
those reported in other studies (15-33%) (197, 204).  

6.1.2 Surgical site infection rate and distribution of infection types 

In Study I, the SSI rates � including postdischarge SSIs � were 3.9% for hip 
arthroplasty (including hemiarthroplasties), 2.9% for ORIF of femur fracture, and 
2.3% for knee arthroplasty. Of all SSIs, more than 70% were superficial incisional. 
The SSIs detected with a postdischarge questionnaire were mostly superficial 
incisional, whereas most deep incisional and organ/space SSIs were identified on 
readmission to the hospital. So in SIRO, one potential weakness in case finding with 
a postdischarge questionnaire mostly affects the detection of superficial incisional 
SSIs, whereas the detection of SSIs during readmission is crucial to recognizing 
most severe SSIs. However, it seems that no need exists to strongly recommend 
surveillance with a postdischarge questionnaire after orthopedic surgery. Only a few 
other studies have reported the proportions of SSI types detected in different 
postdischarge locations. In the NNIS, the percentage of deep incisional and 
organ/space SSIs among SSIs detected on readmission was similar to that reported 
in Study I (70% vs. 60%) (191). A smaller percentage of SSIs detected in outpatients 
in Study I were more severe than those detected in outpatients in NNIS (12% vs. 
22%). The studies are, however, not entirely comparable, because NNIS data 
included all surgical procedures, and the length of hospital stay likely varied 
considerably between procedures.  

6.1.3 Variability of surgical site infection rates between hospitals  

In Study I, as in previous reports from other national surveillance systems (155, 295) 
hospital-specific SSI rates in SIRO varied widely. Most of the rates were near the 
mean value, but some outliers were also detected. This variation may indicate real 
differences in SSI incidence, although other reasons are also possible (37, 221). The 
case mix, reflected by NNIS risk index, and the proportion of urgent surgical 
procedures, failed to explain the differences. Variation in some unmeasured intrinsic 
risks, such as immunocompromised status or obesity (221), cannot be ruled out. In 
SIRO material, extremely low-volume hospitals did not participate: in all 
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participating hospitals, hip joint replacements were performed more than 140 times 
per year and knee joint replacements more than 70 times per year.  

Postdischarge surveillance results showed some variation: the proportion of SSIs 
detected after discharge varied from 28% to 90%, and the proportion of 
postdischarge SSIs detected with a questionnaire, from 0% to 73%. The hospitals 
with the highest SSI rates did not, however, perform the most active surveillance by 
means of the postdischarge questionnaire. Also, multivariate analyses suggested that 
postdischarge surveillance alone failed to explain the marked variation in SSI rates 
between hospitals. Thus, the variation in hospital-specific SSI rates may partly 
reflect differences in other factors, such as diagnostic practices. For example, 
differences in the frequency of culturing wound specimens can be suspect, because 
the proportion of SSIs with positive microbial culture results, and especially with 
coagulase-negative staphylococci differed, widely among hospitals. Thus, Study II 
examined the wound-culturing activity. In addition, variation in physicians’ 
diagnostic practices has been suggested to impact SSI rates (156, 158). This 
variation may also exist in SIRO hospitals, but could not be evaluated in this study.  

As one can already suppose from the issues described above, hospital-specific low 
or high SSI rates are not always easy to interpret. Low rates may reflect either an 
effective infection control program or poor identification of SSIs, and similarly, 
moderately high rates may indicate either a real infection control problem or 
effective case finding (35). However, the wide range in Study I in the hospital-
specific SSI rates did emphasize the need for a validation study. 

6.2 Validation study  

6.2.1 Indicators of surveillance 

The positive and negative predictive values of SIRO orthopedic SSI surveillance 
(PPV, 94%; 95% CI, 89-99%; NPV, 99%; 95% CI, 98-100%), were much higher 
than the results reported from the first NNIS validation study (138) and only slightly 
lower than PREZIES (157) or Scottish validation results (224). SIRO sensitivity 
(75%; 95% CI, 57-93%) and specificity (99.8%; 95% CI, 99.6-100%) were 
favourable compared to those reported from NNIS, but better indicators have been 
published (225). Other surveillance systems have not published sensitivities and 
specificities calculated by the same method used in this current study, even though 
this method has been discussed and accepted in international meetings of HAI 
surveillance experts. 
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In the validation sample, some underreporting of SSIs was detected. Patients with 
missed SSIs had passed through SIRO hospitals, such that an ICN failed to receive 
information about their SSIs. Thus, as in the NNIS validation study, insufficient case 
finding in SIRO also explained the underreporting of SSIs (138). On the whole, the 
overreporting of infections seemed not to be a major problem. When detected, 
overreporting stemmed from slight variations in ways of interpretating the case 
definitions; most false positive infections were superficial incisional SSIs without 
lacking clinical signs or symptoms, at least as documented in patient charts.  

One limitation of this study was the small number of charts reviewed: an optimal 
sample size would have been two to three times larger. The current sample, 
however, was estimated in advance to be the largest that could realistically in each 
hospital be reviewed by two persons in one day. If the SIRO validation study will be 
repeated in a few years, the target number of patient charts per hospital could be 
slightly higher (for example in a ratio of 12 SSIs: 48 non-SSIs). This sample size per 
hospital multiplied by the current number of participating hospitals (15) would 
extend the total sample size to include 900 to 1,100 cases. Consequently, confidence 
intervals for predictive values, sensitivities, and specificities would be narrower. 
Even this larger study material would be insufficient to validate surveillance for 
organ/space SSIs or to evaluate hospital-specific surveillance quality indicators. 
Another limitation was the retrospective study design, although retrospective chart 
review is most often the only possible method for validation of a national 
surveillance system in several hospitals (138, 223). 

6.2.2 Process of surveillance 

In the ICN review, the most common case finding methods were ward notifications 
by link nurses and ICNs’ ward visits. Microbiology reports were screened by ICNs 
in five out of eight hospitals. According to the literature, the sensitivity for ward-
liaison alone was 62% (164), and for ward-liaison combined with the screening of 
microbiology laboratory reports, 76-89% (164). Because combining the screening of 
microbiology laboratory reports with ward-liaison improves sensitivity, it would be 
recommendable also in SIRO for ICNs in all hospitals to routinely screen 
microbiology reports from orthopedic wards.  

Even though some variation in patient materials in this present study may exist (not 
all hospitals do have separate orthopedic wards), a 7-fold variability in wound 
culturing activity in wards treating THA and TKA patients is considerable. Although 
a positive culture is only one of the CDC criteria, SSIs without positive culture are 
often more difficult to find. This supports the opinion that even though the CDC 
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definition offers a reasonable standard for hospitals to follow (312), it still leaves too 
much potential for subjective decisions (152, 156, 158, 223). Subjective decisions 
(whether a physician makes an SSI diagnosis or whether a wound culture is taken) 
are likely to affect SSI rates. Moreover, the assessments made by the validation team 
are not entirely independent of these previous decisions either. Thus, differences in 
diagnostic practices between hospitals and surgeons may influence SSI rates even 
after validation.  

Because the continuous training of surveyors is important to ensure the quality of 
surveillance (35, 37, 127), the results of both the chart review � especially the 
misclassified cases � and the interview have already been utilized in ICN training. 
For example, some clarifications of the SSI definition have been discussed and 
recommended: serose discharge is considered prolonged only after seven days, and 
no SSIs appearing after CDC definition time limits need to be reported.  

6.3 Simultaneous bilateral hip and knee arthroplasties 

6.3.1 Frequency of simultaneous bilateral arthroplasties  

In SIRO hospitals during 2001-2004, the proportion of simultaneous bilateral THA 
and TKA were about 5% and 10%, respectively. These operations require specific 
attention to data management, because if they are not entered into the surveillance 
database as two separate operations, the denominator for calculating SSI rates will 
be insufficient, and the SSI rate will therefore be too high. Recently, the National 
Healthcare Safety Network (NHSN) in the United States started to require in their 
surveillance protocol, two separate procedure records, if a bilateral procedure is 
performed, and for each procedure, a unique duration of operation.  

In Study III, the proportion of simultaneous TKA was higher than in large US 
Health Care Financing Administration data (4%) (266), but lower than in certain 
specialized orthopedic centers (66%) (269).The proportion of simultaneous bilateral 
THA was similar to that of other reports (5.1% vs 4.7%) (270). Data in this present 
study may, however, include a higher proportion of simultaneous bilateral THAs 
and TKAs than is generally performed in Finnish hospitals due to the interest of the 
hospitals that report data on the ‘bilateral’ variable. Before this present study no 
national HAI surveillance system has published results on SSIs after simultaneous 
bilateral arthroplasties. However, these national systems have the great advantage of 
receiving data from large numbers of arthroplasties: if these data were recorded and 
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correctly analyzed, national surveillance systems could play an important role in 
providing information on simultaneous bilateral arthroplasties in the future.  

6.3.2  Deep incisional and organ/space surgical site infections and mortality   

In Study III, an increased risk of deep incisional and organ/space SSI after 
simultaneous bilateral THA and TKA was not detected. The rates of deep SSI after 
TKA were similar to those of previous studies, although different rates have also 
been reported (266, 269, 275, 276, 285, 286). One strength of this present study 
compared to other studies was that the SIRO surveillance system used the CDC 
definition of SSIs with a follow-up period of one year. As discussed previously in 
this thesis, the importance of postdischarge surveillance was highlighted: the median 
time from an arthroplasty to the onset of deep incisional and organ/space SSIs was 
39 days, which was clearly longer than the median hospital stay after hip or knee 
arthroplasties (7–10 days). Mortality at 7, 28, and 365 days showed no difference 
between simultaneous bilateral and unilateral THA and TKA, nor was the bilateral 
operation a predictor for death in the Cox model.  

However, one limitation of this study was its limited power to prove non-difference 
between the two tested groups, when the outcome variables were quite rare. This 
limitation may be outweighed in the SIRO database after additional surveillance 
years, when these analyses could be repeated. Another limitation in interpreting the 
study results was the patient selection, as significantly younger and healthier patients 
were selected for simultaneous bilateral groups. This means that even with 
multivariate analyses, the number of elderly patients in the bilateral group was 
insufficient to conclude that the bilateral procedure is safe for elderly patients. The 
US Medicare study had the opposite limitation: the mean age of patients was 73 
years, and they could not assess the risks for adults below 65 years (266). However, 
as bilateral simultaneous arthroplasties have suggested, to pose a greater risk of 
death among elderly patients, the patient selection for these procedures in SIRO 
hospitals seemed to be successful (286, 288, 313).  

6.3.3 Antimicrobial prophylaxis 

The number of deep SSIs was very low in the bilateral group; however, it may be 
indicative that antimicrobial prophylaxis was administered up to 3.5 hours before 
incision in the bilateral operations that led to deep SSI. In unilateral operations that led to 
deep SSIs, antimicrobial prophylaxis was administered more often in the recommended 
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time frame before incision (a median of 47 minutes), but in unilateral operations, the 
maximum interval detected (114 minutes) was also too long before incision. According 
to the prevailing US consensus in unilateral operations, the infusion of the first 
antimicrobial prophylaxis dose should begin within 60 minutes before surgical incision 
and, if operation prolongs, cefuroxime should be re-administered intra-operatively at an 
interval of 3–4 hours and cefazolin at an interval of 2-5 hours to ensure adequate 
antimicrobial levels until wound closure (112). For simultaneous bilateral arthroplasties, 
specific guidelines and sufficiently powered comparative studies targeting antimicrobial 
prophylaxis are still lacking and needed. However, because interventions focusing on 
antimicrobial prophylaxis have been demonstrated to decrease SSI rates (120-122) and 
this present study found potential for improvement, creation of specific guidelines and 
performance improvement interventions to achieve the best possible dosage of 
antimicrobial prophylaxis, both in bi- and unilateral arthroplasties, is recommended and 
could lead to a reduction in SSI rates.  

6.4 Register linkage study 

6.4.1 Disease burden of prosthetic joint infections  

According to the three-source capture-recapture analysis, the total number of prosthetic 
joint infections estimated to occur after THA and TKA in Finland annually was around 
200. The rate of prosthetic joint infections was 1.6% after THA and 1.3% after TKA. 
The combination of active postdischarge surveillance and the possibility to perform 
accurate register linkage studies by means of unique national identity codes contributed 
to this rather high, but possibly realistic, estimate of the prosthetic joint infection burden 
in Finland. The estimates were higher than the rates usually suggested by national 
nosocomial surveillance systems. The rates, including deep incisional and organ/space 
SSIs, reported from the Dutch nosocomial infection surveillance system were 0.9% after 
THA (46) and, from the German system, 0.8% and 0.6% after THA and TKA, 
respectively (47). A few studies from single specialized centers have shown even lower 
prosthetic joint infection rates (0.4%) (48).  

Prosthetic joint infections cause significant morbidity and increase health care costs 
(10-13). In the chart review, all patients with prosthetic joint infections received 
antimicrobials, and 82% of them were known to have undergone additional surgery. 
Data on some reoperations (i.e. performed in other hospitals) may have been 
unavailable in patient charts.  
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6.4.2 Sensitivity 

In this study, the sensitivity achieved for SIRO surveillance, 36% (95% CI, 20-55%) 
after THA and 57% after TKA (95% CI, 41-72%), was lower than the sensitivity 
detected in the validation study (75%; 95% CI, 56-93%) and the sensitivity reported 
from the US NNIS system (67%) (138). The sensitivity in TKAs achieved by the 
capture-recapture method was closer to that of the validation study, and the 
confidence intervals overlapped, but the sensitivity related to THA was clearly 
lower. The methodology in this present study, however, differed from that of 
previous studies. Without the capture-recapture technique, if the prosthetic joint 
infections found in SIRO were simply divided by the total number of prosthetic joint 
infections found in any study register, the sensitivity would have been 76%, which is 
close to that found in the validation study.  

Several studies have demonstrated the efficacy of surveillance with feedback to 
surgeons in preventing SSIs (20-24). However, some experts have suggested that the 
intensity of surveillance may decrease over time, in which case the reduced SSI rate 
would reflect a reduction in sensitivity rather than a real reduction in the SSI rate 
(47). Because the capture-recapture method can be used repeatedly to evaluate 
changes in disease incidence and surveillance sensitivity (229), repeated capture-
recapture analyses, despite their known limitations, could provide a tool to evaluate 
the time trends in the sensitivity of a surveillance system. 

6.4.3 Conditions and limitations of capture-recapture analysis 

The strengths and weaknesses of the estimates found in Study IV are related to the 
conditions that should be met in order to use capture-recapture methods 
appropriately: 1) two (or more) data sources should be independent, 2) all true 
matches � and only matches � should be identified, 3) all cases identified by the 
surveillance systems should be true cases that occurred in the population under 
investigation within a certain time period, and 4) the catchability of cases in each 
data source should be equal (239).  

 

Independency of data sources 
 

Using three data sources enabled the appropriate investigation of source 
dependencies. A strong dependence was found between two registers (the Finnish 
Arthroplasty Register and the Finnish Patient Insurance Centre), which was taken 
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into account in the analyses by combining the two dependent sources and 
performing the log-linear model.  

 

Reliable matching of cases 
 
Unique personal identifiers enabled the accurate identification of all duplicate cases 
both within and between sources. The situation is much more complicated in 
environments in which unique personal identifiers do not exist (314). 

 
Including only true cases 
 
Although the definitions of the prosthetic joint infection in the three sources 
differed, they were not inconsistent. The experience from the previous validation 
study and the chart review in this present study was that deep incisional and 
organ/space SSIs are sometimes difficult to distinguish. Therefore, both deep 
incisional and organ/space SSIs were considered prosthetic joint infections, which 
may lead to some overestimation of the total number of prosthetic joint infections 
and to some underestimation of the sensitivities. The PPV detected in SIRO was 
slightly lower than that found in the validation study for all SSIs (94%). For the two 
other registers, we assumed that their PPVs were 100%. In the Finnish Arthroplasty 
Register, only patients having undergone a reoperation due to infection were 
recorded. The patients in the Finnish Patient Insurance Centre definitely had true 
prosthetic joint infections, because claims of infection injury are individually 
evaluated and only true infection injuries are eligible for compensation. 

 

Equal catchability 
 

Because of type of operation introduced variable catchability within the Finnish 
Arthroplasty Register and the Finnish Patient Insurance Centre, data were stratified 
and estimates were obtained separately for THA and TKA. Reoperations seemed 
better reported to the Finnish Arthroplasty Register, and claims were more common in 
the Finnish Patient Insurance Centre after TKA than after THA. The reasons for this 
remain unclear. Some treatment strategies, clinical consequences, or patient 
characteristics which differed between these two operations may have influenced 
catchability. Analysis of variable catchability by age, gender, patient’s risk index, 
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hospital or region would be of interest; this was impossible in this study, however, due 
to the small numbers. 

As an additional data source, data (ICD codes) from the National Research and 
Development Center for Welfare and Health could be also used in the future in 
capture-recapture analyses. 

6.5 Unanswered questions and future considerations 

Surveillance of SSIs after orthopedic surgery is important but to perform 
appropriately is challenging. A lot of effort in many countries has been made to 
develop well-functioning surveillance systems to promote prevention. Thus far, the 
surveillance systems and health care environments differ so much that even after this 
in-depth analysis of Finnish orthopedic surveillance data, to assess whether the 
incidence of SSIs after THA and TKA is truly higher in Finland than in, for 
example, the Netherlands remains difficult. Many possible influential factors from 
other countries remain either unstudied or unpublished, and the actual scientific 
evaluation of all possible confounding factors between countries is nearly 
impossible. Nevertheless, international comparisons can be useful in stimulating the 
development of national surveillance systems and the prevention of infective 
complications. Challenges faced by national surveillance systems are often similar, 
and international cooperation and discussions among HAI experts are fruitful and 
can lead to improvements. 

Within SIRO, differences in hospital-specific SSI rates after THA and TKA were 
detected. While these differences may be real, other underlying reasons for these 
differences may exist. Some space for interpretation of CDC definition exists (315), 
but further training seeks to promote their uniform interpretation. Repeated training 
utilizing case studies is also important during forthcoming years (316). The 
responsibility of ICNs to train the link nurses in their hospitals could be helped by 
offering ready training material for their use. It could also be useful to repeat the 
validation study in some years with a higher number of charts reviewed.  

In the future, cooperation is essential to develop information technology systems 
that could detect certain signals such as infection-associated operation codes and 
ICD codes, antimicrobial drug use, and specific words in full-text electronic medical 
records, in order to assure as systematic case finding as possible. With such a 
system, achieving a sensitivity of higher than 90% could be possible (170). After 
receiving the signal of a possible SSI, an ICN could ascertain the SSI diagnosis by 
reviewing the patient’s electronic records and, if needed, visit the ward. Some 
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researchers have suggested that, with a reduced burden of manual data collection, 
ICNs devote to use more time for other prevention activities (217). 

Information technology may also help in assessing the reasons for variation in SSI 
rates by increasing opportunities for risk stratification. Then data on BMI, diabetes 
mellitus, or perioperative blood glucose could be available for risk stratification. 
Blood glucose also provides important data, such as whether glucose optimizing for 
operation has been successful or could be improved.  

Reporting SSIs from hospitals to SIRO is based on confidentiality. At least until 
variation in case finding methods and CDC definition interpretation is minimized, 
the public reporting of SSI rates in Finland would provide misleading information 
on SSI rates in different hospitals. However, the hospitals themselves (their 
management, surgeons, and ICNs) could benefit even more from using their own 
results as well as the benchmark SIRO results in their SSI prevention. In many 
hospitals, special interventions to improve infection control performance (including 
antimicrobial prophylaxis) related to joint replacement operations could be useful to 
prevent further SSIs (317). The achievements of these interventions could be 
monitored with continuous surveillance. Despite the challenges, surveillance and 
infection control activities together can lead to reduced incidence of SSIs.  
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7 CONCLUSIONS 

1. For hip and knee arthroplasties and open reductions of femur fracture, 
postdischarge surveillance detected more than half of all SSIs and approximately 
80% of severe SSIs. The SSIs detected in outpatients by a questionnaire were mostly 
superficial infections, whereas most deep incisional and organ/space SSIs were 
identified on readmission to the hospital. 

2. According to the validation study, most SSIs reported to SIRO by participating 
hospitals were true infections. Thus, when an SSI case was reported, the criteria of 
the case definition were usually correctly interpreted. Some SSIs were missed, 
which may be due to weaknesses in case finding. Variation in diagnostic practices 
may also affect SSI rates. 

3. Patients who underwent bilateral operations were younger, healthier, and more often 
males than were those who underwent unilateral procedures. In this patient material, no 
differences were found in deep SSI rates or mortality between bi- and unilateral THA 
and TKA. Bilateral operations do, however, require specific attention in the timing of 
antimicrobial prophylaxis as well as in the data management of the surveillance 
database, if one seeks to provide surgeons with specific feedback on this issue, 

4. The capture-recapture analysis can be used to analyze the sensitivity of a national 
surveillance system. This method, combined with postdischarge surveillance, 
provided a rather high, but probably realistic, prosthetic joint infection rate estimate. 
The true disease burden of prosthetic joint infections could be heavier than the rates 
from national nosocomial surveillance systems usually indicate. 
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