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ABSTRACT 

 

Lung and heart-lung transplantation are the treatments of choice for many end-stage 

pulmonary diseases. Although short-term survival has increased along with advances in the 

field of transplantation, the incidence of bronchiolitis obliterans syndrome (BOS) has not 

decreased and BOS remains the leading cause of late graft loss. The two most important risk 

factors for the development of BOS are acute rejection and cytomegalovirus (CMV) infection. 

No specific treatment for BOS is available at the present. This study was set out to identify 

potential targets of intervention in the development of obliterative bronchiolitis (OB), the 

pathological manifestation of BOS, using an experimental rat tracheal transplantation model. 

 

In this model, the donor trachea is excised and transplanted into the greater omentum of the 

recipient. In syngeneic grafts, the epithelium undergoes minor damage but recovers thereafter. 

The tracheal lumen remains completely open and the trachea is lined with normal, mucus-

secreting epithelium 30 days after transplantation. On the other hand, in untreated allografts, 

the epithelium sustains progressive damage leading to nearly total epithelial necrosis 10 days 

after transplantation. Allografts develop a strong alloimmune response, which is associated 

with increased expression of cytokines, chemokines, and growth factors, culminating in the 

development of a fibroproliferative lesion obliterating the tracheal lumen. This lesion closely 

resembles obliterative changes seen in small bronchioles in man. 

 

This study underlines the importance of the early intragraft alloimmune response. Inhibition 

of T cell activation by a single dose of human CTLA4Ig, that blocks CD28/B7-mediated T 

cell costimulation, resulted in attenuation of alloimmune activation and a shift from the Th1- 

to Th2-like immune response. The decreased alloimmune response led to marked inhibition of 

epithelial damage and OB development. The results suggest that interfering in the very 

proximal steps of alloimmune activation with hCTLA4Ig may have a therapeutic role in 

clinical lung transplantation (I).  

 

Endothelin-1 (ET-1) ligand and receptor expression was upregulated four-fold after tracheal 

transplantation in allografts compared to syngeneic grafts. Blockade of ET-1 receptor with 

bosentan resulted in a decrease in alloimmune activation and epithelial necrosis and led to 

inhibition of smooth muscle cell proliferation and OB development. The results indicate a 
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biologically significant role for ET-1 in the development of OB and that bosentan, a drug 

already in clinical use, could be utilized in treating lung transplant recipients (II). 

 

We modified the tracheal allograft model to investigate the pathogenesis of rat CMV (RCMV) 

infection-enhanced OB. RCMV infection enhanced the early alloimmune response and 

accelerated OB development. RCMV infection-enhanced OB was associated with increased 

Th1-dominated immune activation, epithelial necrosis, platelet-derived growth factor (PDGF) 

expression, and smooth muscle cell proliferation. These effects were not related to viral load 

as only few RCMV-positive mononuclear cells could be detected in the allografts at any time 

point. Antiviral prophylaxis with ganciclovir or hyperimmune serum negated the deleterious 

effects of RCMV infection but treatment initiated 5 days after infection failed to do so. High 

dose cyclosporine A treatment resulted in a similar inhibition of RCMV infection-enhanced 

OB. CGP 53716, a selective PDGF receptor tyrosine kinase inhibitor, also completely 

abolished OB in tracheal allografts of RCMV-infected recipients. The results indicate that 

RCMV infection enhances OB development indirectly by inducing proximal alloimmune 

activation and that CMV prophylaxis is needed to avert the deleterious effects of CMV 

infection. 

 

The results of this study suggest that rigorous immunosuppression and CMV prophylaxis are 

called for in the treatment of lung transplant recipients. If BOS develops despite these 

measures, antiproliferative agents such as bosentan and imatinib, a newer derivative of CGP 

53716 already in clinical use in cancer management, may have beneficial effects on lung 

transplant recipient outcome. 
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INTRODUCTION 

 

James Hardy with his surgical team performed the first clinical lung transplantation in 1963 

(Hardy et al. 1963). Early results were poor with high postoperative mortality due to surgical 

complications and acute rejection because of lack of efficient immunosuppressants. It was not 

until the early 1980’s that the advent of cyclosporine A (CsA) together with improvement of 

surgical techniques, postoperative care, and antimicrobial treatment established lung 

transplantation as the treatment of choice for many end-stage pulmonary diseases 

(Higenbottam et al. 1990). 

 

Today, short-term survival after lung transplantation is approximately 73% at one year and 

45% at five years (Trulock et al. 2003). After the first postoperative year, bronchiolitis 

obliterans syndrome (BOS) has emerged as the leading cause of death and 30% of all deaths 

after one year are attributed to BOS. After eight years, half of the surviving lung transplant 

recipients have developed BOS (Hertz et al. 2002). BOS is defined clinically as lung allograft 

deterioration secondary to persistent airflow obstruction in the absence of other conditions 

that may alter graft function, such as acute rejection, infection, disease recurrence, or 

anastomotic complication (Estenne et al. 2002). There is no specific treatment for BOS, and 

prevention of this disorder is the leading challenge in lung transplantation. 

 

Pathologically BOS presents as obliterative bronchiolitis (OB). OB is characterized by 

peribronchial inflammation, epithelial damage, and obliteration of small and medium-sized 

bronchioli by fibrous plaques (Yousem et al. 1985, 1996). The aim of this study was to 

investigate and target specific pathways leading to OB using a rat tracheal allograft model. 
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REVIEW OF THE LITERATURE 

 

1. Clinical lung transplantation 

 

1.1. Indications 

 

The number of lung transplantations performed per year has reached a plateau because of 

worldwide shortage of suitable donors and today approximately 1600 transplantations are 

reported annually (Trulock et al. 2003). Due to shortage of organs, careful allocation of lung 

grafts is essential. For patients who are considered for lung or heart-lung transplantation, end-

stage lung disease despite optimal medical and other organ preserving therapy is mandatory. 

Also, recipient candidates are evaluated for contraindications for lung transplantation, such as 

lifetime-limiting multisystemic disorders, active malignancies, significant coronary artery 

disease or ventricular dysfunction, active extrapulmonary infection, active connective tissue 

diseases, complicated diabetes mellitus, end-stage renal disease, and smoking during the last 6 

months (Harringer and Haverich 2002). Indications for lung transplantation are listed below 

(Table 1).  

 

Table 1. Indications for lung and heart-lung transplantation 

Diagnosis Single lung Bilateral lung Heart-lung 
   COPD 54.0% 22.0% 4.0% 
   Idiopathic pulmonary fibrosis 24.0% 9.0% 2.7% 
   Cystic fibrosis 1.0% 32.0% 15.6% 
   1-antitrypsin deficiency 8.6% 9.7% 2.6% 
   Primary pulmonary hypertension 1.3% 8.0% 24.0% 
   Sarcoidosis 2.5% 2.5% 1.2% 
   Bronchiectasis 0.2% 4.3% 0.6% 
   Congenital heart disease 0.2% 2.2% 32.2% 
   Lymphangiomyomatosis 0.9% 1.3% - 
   Retransplantation 1.6% 1.8% 2.5% 
   Connective tissue disorder 0.4% 0.5% - 
   Cancer 0.1% 0.6% - 
   Histiocytosis X 0.2% 0.2% - 
   Acquired heart disease - - 4.2% 
   Other 4.6% 4.2% 10.0% 

Data from the Registry of the International Society for Heart and Lung Transplantation (ISHLT) (Trulock et 
al. 2003). COPD, chronic obstructive pulmonary disease 
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1.2. Survival 

 

Actuarial survival after lung transplantation between 1990 and 2000 is shown in Figure 1. In 

general, patients with primary pulmonary hypertension, idiopathic pulmonary fibrosis (IPF), 

and sarcoidosis as their pre-transplant diagnosis show an increase in perioperative mortality. 

In the long run, recipients with IPF have the poorest outcome while recipients with cystic 

fibrosis fare better (Trulock et al. 2003). Survival after bilateral transplantation for COPD or 

1-antitrypsin deficiency, but not IPF, is increased in comparison to single lung 

transplantation (Hertz et al. 2002). 

 

 
Figure 1. Actuarial survival after lung transplantation. Data from the ISHLT Registry 

(Trulock et al. 2003). 

 

1.3. Complications and comorbidity 

 

The leading cause of death during the first month after transplantation is non-cytomegalovirus 

(CMV) infection followed by graft failure. Infection remains the leading cause of death 

during the first postoperative year but after one year BOS emerges as the most prominent 

reason for death (Trulock et al. 2003). Problems related to immunosuppression are also 

important and are summarized in Table 2. Despite all the burdens lung transplant recipients 

must endure, >80% of survivors at 1, 3, or 5 years have no activity limitations (Trulock et al. 

2003). 
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Table 2. Prevalence of comorbidity in lung transplant recipients at 1 and 5 years 

Outcome Within 1 year Within 5 years 
Hypertension 49.4% 86.5% 
Renal dysfunction 25.0% 38.3% 
Hyperlipidemia 15.2% 43.4% 
Diabetes 18.6% 27.8% 
Malignancy 3.9% 13.1% 
Data from the ISHLT registry report 2003 (Trulock et al. 2003). 
 

1.4. Immunosuppressive treatment 

 

Triple drug immunosuppression with a calcineurin inhibitor, purine synthesis inhibitor, and 

corticosteroids forms the cornerstone of immunosuppressive therapy after lung transplantation 

(Hertz et al. 2002). In addition, half of the patients receive induction therapy before 

transplantation in the form of anti-lymphocyte/thymocyte globulin or IL-2 receptor 

antibodies. Table 3 summarizes the most commonly used immunosuppressive drugs and their 

mechanisms of action. 

 

Table 3. Immunosuppressive drugs used in clinical lung transplantation 

Drug Action Clinical use 
Calcineurin inhibitors:   
   Cyclosporine A (CsA) Inhibition of IL-2 transcription and T cell 

activation and proliferation 
Used together with AZA or 
MMF in 40% of lung 
transplant recipients 

   Tacrolimus (FK506) Inhibition of IL-2 transcription and T cell 
activation and proliferation 

Used together with AZA or 
MMF in 40% of lung 
transplant recipients 

Sirolimus Inhibition of IL-2 receptor signalling and 
T cell activation and proliferation 

Used mainly as rescue 
therapy if CsA or FK506 
treatment fails (5% use) 

Purine synthesis inhibitors   
   Azathioprine (AZA) Inhibition of cell proliferation Used with CsA or FK506 in 

40% of lung transplant 
recipients 

   Mycophenolate mofetil 
   (MMF) 

Inhibition of T and B cell proliferation Used with CsA or FK506 in 
40% of lung transplant 
recipients 

Corticosteroids A wide range of anti-inflammatory effects 
by inhibition of RNA, DNA, and protein 
synthesis 

Used by nearly all of lung 
transplant recipients (only 
5% are steroid free at 5 
years) 

Induction therapies  36% of lung transplant 
recipients receive any 
induction therapy 

   Anti-lymphocyte and 
   anti-thymocyte globulin 

Depletion of lymphocytes 13% of lung transplant 
recipients 

   IL-2 receptor antibody Inhibition of T cell activation, T cell 
depletion 

23% of lung transplant 
recipients 

Data modified from the ISHLT registry report 2003 (Trulock et al. 2003). 
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2. Bronchiolitis obliterans syndrome 

 

2.1. Clinical manifestation and definition 

 

The development of BOS is insidious and it is often diagnosed during routine surveillance. 

The first symptom of BOS is usually shortness of breath due to narrowing of airways. BOS is 

defined as lung allograft deterioration secondary to persistent airflow obstruction in the 

absence of other conditions that may alter graft function. It can be diagnosed without 

histologic evidence of OB on purely clinical grounds as the patchy distribution of OB makes 

transbronchial biopsy (TBB) rather insensitive for diagnosis of OB (Kramer et al. 1993). 

After transplantation, spirometric measurements are performed to assess a baseline that later 

values can be compared against. The baseline value is the average of the two highest 

measurements obtained at least three weeks apart. The diagnosis of BOS can be made if there 

is a persistent >20% decrease in forced expiratory volume in 1 second (FEV1) without other 

explaining factors (Cooper et al. 1993). The refined classification for BOS is shown below 

(Table 4). If histological proof of OB is available, the letter b should be added to the 

classification (i.e. BOS1a, no histological evidence; BOS1b, biopsy proven OB) (Estenne et 

al. 2002). 

 

Table 4. Classification of BOS 

BOS 0 (no BOS) FEV1>90% and FEF25-75>75% of baseline 
BOS 0-p (potential BOS) FEV1 81-90% and/or FEF25-75<75% of baseline 
BOS 1 FEV1 66-80% of baseline 
BOS 2 FEV1 51-65% of baseline 
BOS3 FEV1 <50% of baseline 
FEV1, forced expiratory volume in 1 second; FEF25-75, mid-expiratory flow rate, data from BOS update (Estenne 
et al. 2002) 
 

In addition to the classification above, surrogate markers for BOS have been studied. 

Bronchoalveolar lavage fluid (BALF) neutrophilia (DiGiovine et al. 1996, Riise et al. 1999), 

exhaled nitric oxide (NO) (Fisher et al. 1998), and air trapping on expiratory computed 

tomography (Worthy et al. 1997, Leung et al. 1998, Lee et al. 2000, Bankier et al. 2001) have 

been proposed as markers for BOS. Bronchial hyperresponsiveness may precede the onset of 

BOS (Stanbrook and Kesten 1999). However, these surrogate markers have not been 

validated well enough to be used as general guidelines for the assessment of BOS and may be 

too unspecific for BOS (Estenne et al. 2002).  
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2.2. Risk factors 

 

Very few prospective studies investigating risk factors for BOS have been published and data 

available result from retrospective analyses or the ISHLT registry. In Table 5, suggested risk 

factors for BOS are listed. 

 

Table 5. Risk factors for BOS 

Risk factor Comments References 
Immunologic   
  Acute rejection Repeatedly shown to be an 

independent and strong risk 
factor for BOS 

Scott et al. 1991, Yousem et al. 1991, 
Bando et al. 1995, Keller et al. 1995, 
Baudet et al. 1996, Reichenspurner et al. 
1996, Kroshus et al. 1997 

  Histoincompatibility HLA-mismatches correlate 
with BOS development  

Sundaresan et al. 1998, Chalermskulrat 
et al. 2003 

  Panel reactive 
  antibodies 

Development of anti-HLA 
antibodies is associated with 
BOS 

Smith et al. 1998, Jaramillo et al. 1999, 
Palmer et al. 2002 

Non-immunologic   
  CMV infection CMV pneumonia is a risk 

factor for BOS, CMV 
seropositivity correlates with 
BOS, absence of ganciclovir 
prophylaxis is also a risk 
factor 

Keenan et al. 1991, Bando et al. 1995, 
1995b, Keller et al. 1995, Baudet et al. 
1996, Reichenspurner et al. 1996, 
Soghikian et al. 1996, Kroshus et al. 
1997, Valantine et al. 2001, Westall et 
al. 2003 

  Other infection Bacterial and fungal 
infections increase acute 
rejection and thereby BOS 

Duncan et al. 1991, Reichenspurner et 
al. 1996 

  Ischemic time Linear correlation with BOS 
development 

Hosenpud et al. 2001 

  Recipient weight Linear correlation with body 
mass index and BOS 
development 

Hosenpud et al. 2001 

  Donor age  Linear correlation with BOS 
development 

Hosenpud et al. 2000 

  Retransplantation Associated with accelerated 
development of BOS 

Hosenpud et al. 2001 

 

Acute rejection is the best-documented risk factor for the development of BOS. Especially 

patients with multiple severe acute rejection episodes are prone to develop BOS (Bando et al. 

1995, Kroshus et al. 1997, Kanasky et al. 2002). CMV pneumonia is regarded as a risk factor 

for BOS (Bando et al. 1995, Kroshus et al. 1997) but the role of CMV infection is more 

controversial. Although there are numerous studies arguing for CMV infection as a risk factor 

for BOS, reports not linking CMV and BOS also exist (Scott et al. 1991, Ettinger et al. 1993). 

On the other hand, ganciclovir treatment has been associated with decreased incidence of 

BOS (Duncan et al. 1994, Soghikian et al. 1996, Speich et al. 1999) and combined ganciclovir 

and CMV hyperimmune globulin prophylaxis reduced BOS development (Valantine et al. 
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2001). Another probable risk factor for OB development is lack of medication compliance. 

Non-compliance has not been studied in lung transplant patients, but it is a major reason for 

graft loss due to acute rejection after kidney, heart, and liver transplantation and may 

therefore also be regarded a probable risk factor for BOS in lung transplant recipients 

(Schweizer et al. 1990). There is considerable variance between different studies 

concentrating on risk factors of BOS. For instance, the 2001 ISHLT registry identified older 

donor age and graft ischemia as risk factors for BOS but another study found no association 

between BOS and donor age or ischemic time (Heng et al. 1998, Hosenpud et al. 2001). 

Therefore, more studies addressing the subject are required in the future to identify true risk 

factors of BOS. 

 

2.3. Pathology 

 

Obliterative bronchiolitis is the histopathological manifestation of BOS. The diagnosis of OB 

requires histological proof by lung biopsy. OB is restricted to membranous and respiratory 

bronchioles and refers to dense eosinophilic hyaline fibrous plaques in the submucosa of the 

small airways that partially or totally occlude the airway lumen. The scar tissue may be 

concentric or eccentric, may be associated with fragmentation and destruction of the smooth 

muscle wall, and may extend to the peribronchiolar interstitium (Yousem et al. 1996). OB is 

classified as either active or inactive according to the intensity of mononuclear cell infiltrates 

in the obliterative lesion. In addition to fibrosis, active OB is associated with epithelial 

damage and intrabronchiolar and/or peribronchiolar submucosal mononuclear cell infiltrates, 

while inactive OB is characterized by dense fibrous scarring without cellular infiltrates. The 

fibrosis of larger airways seems to be an unspecific finding and does not by itself warrant the 

diagnosis of OB (Yousem et al. 1996) (Figure 2). 
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Figure 2. Histological findings seen in acute rejection and OB. (A) Acute lung rejection. A 
marked inflammatory infiltrate cuffs the pulmonary veins and interlobular septa (arrow). (B) 
Later in acute rejection, the intense infiltrate envelops bronchioles and arteries, and spills into 
the alveolar septa resulting in diffuse alveolar damage with necrosis of pneumocytes and their 
shedding, along with macrophages, into air spaces. (C, D) OB. After epithelial necrosis, 
fibroblasts, histiocytes, and endothelial cells infiltrate the lumenal debris and form an 
intralumenal plug of granulation tissue along with disruption of bronchiolar elastica (arrows). 
Photomicrographs from The transplantation and replacement of thoracic organs by Cooper 
DKC and Novitzky D, Kluwer Publishing, 1990. Permission for reproduction was received 
from both publisher and authors. 

 

3. Pathogenesis of OB 

3.1. Lung allograft injury and fibroproliferative response 

 

Although the obliterative lesion develops in the time span of months and years, the 

mechanisms behind the fibroproliferative lesion are initiated already before transplantation. In 

the donor, brain death leads to increased cytokine expression and the allograft loses its blood 

supply depriving the lung from oxygen and nutrients (Bittner et al. 1995, Kusaka et al. 2000, 

Wilhelm et al. 2000). After transplantation, ischemia-reperfusion injury and lytic induction 

therapy induce release of a variety of proinflammatory cytokines such as TNF- , IFN- , IL-2, 

IL-8, IL-10, IL-12, and IL-18 both in lung allografts and peripheral blood and cause injury to 

the epithelial and endothelial structures of the transplanted lung (Serrick et al. 1994, Moore et 

al. 1995, DiGiovine et al. 1996, Mal et al. 1998, de Perrot et al. 2002, de Perrot et al. 2003). 
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Prolonged allograft ischemia may therefore play an important role in the development of BOS 

(Fiser et al. 2002, Hertz et al. 2002). However, experimental studies have shown that OB does 

not generally develop in the absence of alloimmune activation, suggesting that alloimmune-

mediated injury is needed for the development of OB (Koskinen et al. 1997, Neuringer et al. 

2002). 

 

Alloimmune activation together with non-alloimmune factors cause epithelial and endothelial 

cell damage and increase infiltration of the lung allograft by inflammatory cells (Boehler and 

Estenne 2003). Acute lung injury is followed by a desperate attempt to repair the damaged 

lung. This reparative process is characterized by expression of factors promoting smooth 

muscle cell (SMC) growth, mesenchymal cell proliferation, and tissue deposition of 

extracellular matrix (Martinet et al. 1987, Myers and Katzenstein 1988, Snyder et al. 1991, 

Aubert et al. 1997). Epithelial damage seems to be the key initiating event in the development 

of OB as few obliterative changes are observed in experimental models of OB when the 

allograft lumen is lined with epithelium (Ikonen et al. 2000, King et al. 2002, Neuringer et al. 

2002). After the epithelium has succumbed due to alloimmune injury, rapid proliferation and 

expansion of the fibroproliferative lesion is observed (Neuringer et al. 2002). 

 

3.2. Allograft recognition 

 

After transplantation, immune cells of the recipient recognize donor major histocompatibility 

complex (MHC) antigens. MHC class I antigens are expressed by most nucleated cells, while 

MHC class II antigens are expressed mainly by antigen-presenting cells (APC) (Daar et al. 

1984, 1984b). Allorecognition is traditionally divided into direct and indirect pathways. In 

direct allorecognition, recipient T cells recognize foreign MHC antigens on the surface of 

donor APC (Lechler et al. 1990). Direct allorecognition induces an early strong alloimmune 

response and is an important mediator of early acute rejection (Gould and Auchincloss 1999). 

Later on, however, its importance is reduced as donor-derived APC are depleted and direct 

allorecognition may even inhibit rejection in some cases (Markmann et al. 1992, Campos et 

al. 1995). In indirect allorecognition, donor antigen is taken up by recipient APC and 

presented in normal fashion to recipient CD4+ T cells and largely accounts for the 

alloimmune activation leading to OB. In the transplant setting, indirect allorecognition 

predominantly leads to a Th1-like cellular immune response that is characterized by IL-2 and 
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IFN-  expression in contrast to the Th2-like humoral response associated with IL-4 and IL-10 

expression (Boehler et al. 1999). 

 

3.3. T cell activation 

 

Naïve T cells require three distinct signals for activation. The first signal is provided by 

interaction of the T cell receptor (TCR) with the MHC molecule/antigen complex on the APC. 

In addition, a second costimulatory signal is required for full T cell activation. Signalling 

through the TCR leads to prolonged state of T cell anergy in the absence of costimulatory 

stimulus (Schwartz 1992). The most important costimulatory stimulus results from 

engagement of CD28 on the T cell surface to its ligands B7-1 and B7-2 on APC (Lesslauer et 

al. 1986, June et al. 1987, Linsley and Ledbetter 1993). Binding of CD28 to its ligands is 

blocked by human CTLA4Ig (hCTLA4Ig), a recombinant fusion protein that contains the 

extracellular domain of hCTLA4 (a gene highly homologous to CD28) fused to a human IgG1 

heavy chain (Linsley and Ledbetter 1993, Sayegh et al. 1995). CD40/CD40L interaction 

forms another means of costimulation and may additionally enhance the expression of B7-1 

and B7-2 on APC thus strengthening CD28/B7-mediated costimulation (Barrett et al. 1991, 

Sayegh and Turka 1998). It has been suggested that CD40/CD40L interaction predominantly 

induces humoral responses while engagement of CD28 and B7 leads to primarily cellular 

responses (McArthur and Raulet 1993, Sayegh et al. 1995, Niimi et al. 1998), although 

opposite findings also exist (Corry et al. 1994). The third signal is mediated by 

proinflammatory cytokines that stimulate proliferation of immune cells in an autocrine and 

paracrine fashion and is reviewed in the following chapter (Suthanthiran and Strom 1994). 

 

3.4. Alloimmune response 

 

T cell activation leads to the production of IL-2, a cytokine central for the development of 

allograft rejection (Kirkman et al. 1985, Diamantstein and Osawa 1986, Kupiec-Weglinski et 

al. 1987, Sakagami et al. 1989). IL-2 induces T cell growth and differentiation and is required 

for the differentiation of CD4+ T cells to either Th1- or Th2-type cytokine production 

(Mosmann et al. 1986, McDyer et al. 2002). Although Th2-mediated humoral responses have 

been linked to accelerated and vascular rejection (Magro et al. 2002), and overexpression of 
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IL-10 can cause chronic allograft rejection in the absence of Th1 responses (Furukawa et al. 

1999), Th1-like alloimmune activation is thought to play the major role in the pathogenesis of 

BOS (Kallio et al. 1997, Okada et al. 1998). Th1 cells activate CD8+ T cells to become 

cytotoxic T lymphocytes that can induce lysis and apoptosis of target cells (Mason 1988). 

More importantly, Th1 cells secrete TNF-  and IL-12 that activate macrophages. 

Macrophages are capable of eliminating foreign antigens by phagocytosis and can act as APC 

(Rosen et al. 1995). In addition, macrophages produce proinflammatory cytokines and 

chemoattractants such as IL-1, TNF-  IL-8, and other inflammatory mediators, including 

leukotrienes, prostaglandins, and free radicals, thus mediating allograft injury (Farver et al. 

2000). Macrophages are also the primary source of growth factors promoting SMC 

proliferation and fibrosis (Mosmann et al. 1986, Martinet et al. 1987).  

 

4. Treatment of OB/BOS 

 

In spite of experimental studies showing that immunosuppression with CsA, tacrolimus or 

rapamycin successfully inhibits OB development (Fahrni et al. 1997, Koskinen et al. 1997, 

Adams et al. 2000, Hashimoto et al. 2000), there is no specific treatment for the prevention or 

inhibition of clinical BOS. Enhanced immunosuppression resulted mainly in slowing down 

the development of BOS and only in some patients (Iacono et al. 1996, Kesten et al. 1997, 

Speich et al. 1997). Additionally, anti-lymphocyte antibodies (Date et al. 1998), total body 

irradiation (Diamond et al. 1998), aerosolised cyclosporine (Iacono et al. 1996), and 

methotrexate (Dusmet et al. 1996) have been tried with modest success. The latest results of 

the ISHLT show a slight reduction in the incidence of BOS, which is probably due to 

improved perioperative care and better immunosuppressive drugs (Hertz et al. 2002). Also, 

the introduction of newer antiproliferative agents, such as sirolimus, everolimus, and 

mycophenolate mofetil (MMF) may inhibit OB development (Eisen et al. 2003). However, 

BOS remains the leading challenge in the field of lung transplantation. Uncovering the 

pathobiology of OB and BOS is needed for the invention of new specific drugs aiming at the 

prevention and treatment of BOS.  

 

5. Regulatory molecules in OB 

 

During OB development, a variety of cytokines and growth factors are secreted by epithelial, 

endothelial, inflammatory, and smooth muscle cells. Data from clinical and experimental 
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studies facilitate the understanding of the mechanisms surrounding the pathogenesis of OB. 

Some of the molecular factors associated with OB/BOS are shown in Table 6.  

 

Table 6. Molecular factors associated with OB 

Molecule Observations References 
Cytokines   
   IL-1  IL-1 upregulated during OB, IL-1 

inhibition decreases OB 
Smith et al. 2001, Belperio et al. 2002 

   IL-2 Blockade of action decreases OB and 
administration increases OB 

Koskinen et al. 1997, Gu et al. 2000, Neuringer et 
al. 2000 

   IL-4 Slightly upregulated during OB 
development 

Neuringer et al. 2000 

   IL-6 IL-6 is increased in BALF of patients 
with OB 

Yoshida et al. 1993, Scholma et al. 2000 

   IL-8 IL-8 is increased in BALF of patients 
with OB 

DiGiovine et al. 1996, Zheng et al. 2000, Elssner 
and Vogelmeier 2001 

   IL-10 Decreases or increases OB 
development 

Boehler et al. 1998, Naidu et al. 2002 

   IFN-  Gene polymorphism associates with 
OB, inhibition had no effect on OB 
development 

Smith et al. 2001, Lu et al. 2002 

   TNF- Inhibition decreases OB Smith et al. 2001 
Chemokines   
   MCP-1 Expressed in OB, inhibition 

decreases OB 
Belperio et al. 2001 

   RANTES Expressed in OB, inhibition 
decreases OB 

Suga et al. 2000 

   CXCR3 Increased in BALF during OB Belperio et al. 2002b 
Growth factors   
   PDGF Upregulated during OB, inhibition 

prevents OB 
Hertz et al. 1992, al-Dossari et al. 1995, Kallio et 
al. 1999 

   TGF- Upregulated during OB Magnan et al. 1996, El-Gamel et al. 1999, Elssner 
et al. 2000 

   bFGF Upregulated during OB al-Dossari et al. 1995, Aris et al. 2002 
   ET-1 Upregulated during OB Aris et al. 2002 
   VEGF Upregulated during OB, over-

expression accelerates and inhibition 
slows OB development 

Tikkanen et al. 2003 

   IGF-1 Upregulated during OB Charpin et al. 2000, Aris et al. 2002 
iNOS Either inhibits or enhances OB 

development 
Kallio et al. 1997, Minamoto and Pinsky 2002 

Complement Blocking complement receptor-1 
prevented OB 

Kallio et al. 2000 

Abbreviations: RANTES, regulated on activation, normally T cell-expressed and -secreted; CXCR3, chemokine 
receptor-3. Experimental studies are in italics. 
 

5.1. Endothelin-1 

 

Endothelin was first identified in 1988 by Yanasigawa and coworkers and was quickly 

recognized as an important factor in the pathophysiology of lung and other tissues 

(Yanagisawa et al. 1988, Boscoe et al. 2000). The family of endothelins is divided into ET-1, 

-2, and –3 of which ET-1 is the most common and the only one produced by endothelial cells. 
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In the human lung, ET-1 immunoreactivity is detectable from several cell types, including 

airway epithelial cells, submucosal glands, endothelial cells, and type II pneumocytes (Barnes 

1994). In the rat lung, ET-1 immunoreactivity is localized mainly to the epithelium with 

intense staining of goblet and Clara cells (Rozengurt et al. 1990). In man, the effects of ET-1 

are relayed through two different receptor subtypes, the ET-A and ET-B receptors (ET-RA, 

ET-RB). The action and molecular biology of ET-1 in the lung are illustrated in Figure 3.  

 

 
Figure 3. Schematic representation of regulators of endothelin-1 (ET-1) production, cellular source, and 
biological effects. LDL, low-density lipoprotein; ANP, atrial natriuretic peptide; ECE, endothelin-converting 
enzyme; PAF, platelet-activating factor. Data from Teder and Noble 2000. The figure is reproduced with 
permission form publisher and author. 
 

After transplantation, upregulation of ET-1 expression is induced by allograft ischemia 

(Schersten et al. 1994, Aarnio et al. 1996, Jeppsson et al. 1998). Acute rejection also increases 

ET-1 levels in bronchoalveloar lavage fluid of pig lung allograft recipients (Aarnio et al. 

1998). Furthermore, ET-1 mRNA expression is increased during the development of 
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experimental OB in the rat (Aris et al. 2002). However, very little is known of the biological 

role and significance of ET-1 and its receptors in OB development. 

 

5.2. Platelet-derived growth factor 

 

PDGF is a polypeptide growth factor originally purified from platelets (Antoniades et al. 

1979). Four different PDGF genes have been identified so far: the PDGF-A, -B, -C, and -D. 

PDGF-A and -B form disulfide-bonded hetero- or homodimers (PDGF-AA, -AB, and –BB) 

while PDGF-C and -D genes form only homodimers PDGF-CC and –DD (Heldin et al. 2002). 

PDGF ligands act through two protein tyrosine kinase receptors, the PDGFR-  (PDGF-A, -B, 

-C) and -R  (PDGF-B and -D) (Heldin et al. 2002)  The action and molecular biology of 

PDGF in the lung is summarized in Figure 4. 

 

 
Figure 4. Schematic representation of regulators of PDGF ligand production, cellular source, 
and biological effects in the lung. Data based on Heldin and Westermark 1999, Heldin et al. 
2002. 
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PDGF is one of the most important mitogens for mesenchymal cells such as SMC and 

fibroblasts (Ross et al. 1986). It has been linked to a variety of fibroproliferative disorders of 

the lung, such as idiopathic pulmonary fibrosis, adult respiratory distress syndrome, and 

bronchiolitis obliterans organizing pneumonia (Antoniades et al. 1990, Snyder et al. 1991, 

Aubert et al. 1997). Increased levels of PDGF have been reported in BAL fluid of lung 

transplant recipients with OB (Hertz et al. 1992). Our previous observations in rat tracheal 

allografts show that PDGF ligand and receptor expression are upregulated in allografts in 

comparison to syngeneic grafts, and that inhibition of PDGF action by CGP 53716, a selective 

inhibitor of PDGF receptor tyrosine kinase (Buchdunger et al. 1995), effectively prevented 

the development of experimental OB (Kallio et al. 1999). 

 

6. CMV infection in lung transplantion 

6.1. Human CMV 

CMV is the largest member of the human herpes virus family. It has a linear double-stranded 

DNA genome of 250 kb encoding over 200 proteins. CMV is widely prevalent in the general 

population with 50-100% of the adult population being CMV seropositive (Sissons et al. 

2002). Upon infection of permissive cells, immediate-early (IE) gene expression is activated 

followed by early (E) and late (L) genes, which ultimately leads to virus assembly and release. 

CMV may turn latent and reactivate at a later time point. Current evidence suggests that 

human CMV is carried in myeloid lineage progenitor cells in the bone marrow and 

maintained in the cells as they divide down the myeloid lineage into peripheral blood 

mononuclear cells (Sissons et al. 2002). According to a recent report, CMV uses the EGF 

receptor to enter permissive cells (Wang et al. 2003). 

 

Following lung transplantation, the incidence of CMV infection in the era of ganciclovir is 

reported as 35-86% with an associated mortality of 2-12% (Fishman and Rubin 1998). The 

wide variance in reported incidence and mortality is mainly due to differences in the 

definition of CMV infection and disease (Zamora 2002). Currently, CMV infection is defined 

by isolation of virus or demonstration of its presence by immunologic or molecular 

techniques or demonstration of characteristic intracellular inclusion bodies. Currently 

available techniques include the rapid shell vial assay, pp65 antigenemia, polymerase chain 

reaction or hybrid capture assays for CMV DNAemia. CMV pneumonia is defined by the 
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presence of signs and/or symptoms of pulmonary disease combined with the detection of 

CMV in BALF or lung tissue samples. Detection of CMV should be performed by virus 

isolation, histopathologic testing, immunohistochemical analysis, or in situ hybridisation. 

Detection of CMV by PCR alone may be too sensitive for the diagnosis of CMV pneumonia 

(Ljungman et al. 2002). In other organs, CMV disease is defined by the presence of 

compatible symptoms and documentation of CMV by biopsy with other relevant causes 

excluded (Ljungman et al. 2002). Symptoms and clinical manifestations caused by CMV 

disease include fever, leukopenia, thrombosytopenia, pneumonia, hepatitis, encephalitis, 

retinitis, myocarditis, colitis, and gastroenteritis (Rubin 2001). After transplantation, CMV 

infection may occur as a primary infection in seronegative recipients that receive organs from 

seropositive donors. In seropositive recipients, reactivation of latent CMV is common and 

reinfection by a different CMV strain is also possible. 

 

6.2. Rat CMV 

 

The length of the RCMV genome is 230 kb and the whole sequence of its genome is known 

(Vink et al. 2000). The genome of RCMV shares many characteristics with human CMV and 

the pathogenesis of RCMV infection is similar to that of its human counterpart making 

RCMV an attractive model for studying the role of CMV infection in context of 

transplantation (Bruggeman et al. 1985, Vink et al. 2000). When native rats are exposed to 105 

PFU of RCMV, acute infection with systemic virus dissemination occurs within 3 to 7 days. 

Shortly thereafter, the infection progresses to chronic phase, and the virus can be recovered 

only from the salivary glands of the host. Approximately 3-4 months after inoculation of the 

virus, infectious virions are no longer present in any tissue or organ, and the rat is considered 

latently infected (Bruggeman et al. 1985, Lemstrom et al. 1994).  

 

6.3. Role of CMV infection in alloimmune activation 

 

The role of CMV on host immune responses is complex. CMV possesses some anti-

inflammatory properties to evade the host immune response but these are mainly direct effects 

on infected cells. In the transplantation setting, the early alloimmune activation together with 
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cytokines released during donor death, ischemia-reperfusion, and as a result of lymphocyte-

depleting induction therapy may activate latent CMV. On the other hand, CMV infection 

promotes alloimmune activation by inducing the production of a variety of inflammatory 

mediators. These observations suggest a bi-directional relationship between CMV infection 

and alloimmune activation where one can enhance/activate the other and vice versa 

(Lemstrom et al. 1994, Koskinen et al. 1999, Rubin 2001). The immunomodulatory properties 

of CMV are summarized in Table 7.  

 

Table 7. Immunomodulatory properties of CMV 

Effect of CMV Comment Reference 
Proinflammatory effects:   
   MHC class I and II Increases expression either directly or indirectly Waldman et al. 1993, 

van Dorp et al. 1993 
   ICAM-1 Increased expression on CMV-infected endothelial 

cells, increased macrophage chemotaxis 
Sedmak et al. 1994, 
Steinhoff et al. 1995 

   IL-2 HCMV-IE plasmid construct upregulated 
expression 

Geist et al. 1991 

   TNF-  Increased production by CMV-infected 
macrophages 

Smith et al. 1992 

   IFN-  Increased expression in infected macrophage cell 
culture, upregulated expression in CMV-infected 
rats 

Yamaguchi et al. 1988, 
Zhou et al. 1999 

   IL-6 NF- B-mediated expression in CMV-infected lung 
fibroblasts 

Carlquist et al. 1999 

   RANTES HCMV-IE induces expression Michelson et al. 1997 
   IP-10 CMV increases expression in heart allografts Streblow et al. 2003 
Anti-inflammatory effects:   
   MHC class I and II Direct degradation in infected cells Chevalier and Johnson 

2003 
   IL-10 CMV genome encodes viral homologue Kotenko et al. 2000 
Other effects:   
   PDGF Upregulates PDGF ligand and receptor expression 

in tracheal, aortic, and heart allografts 
Lemstrom et al. 1994, 
Koskinen et al. 1997b, 
Zhou et al. 1999b 

   p53 tumour 
   suppressor gene 

Inhibits action in SMC Speir et al. 1994 

   eNOS CMV infection impairs eNOS function Valantine 2003 
   TGF-  Increases expression in CMV-infected splenocytes Haagmans et al. 1997, 

Inkinen et al. 2003 
Abbreviation: IP-10, IL-8, interferon- -induced protein-10, HCMV-IE, human cytomegalovirus-immediate early 
gene; eNOS, endothelial nitric oxide synthase. Experimental studies are in italics. 
 

The rate of CMV infection also varies according to type of the transplanted organ. 

Interestingly, it seems that CMV infection is most prevalent in patients receiving transplants 

that are highly immunogenic, such as bone marrow and lung (Roitt et al. 1985, Appelbaum 

2003). The correlation between immunogenicity of the transplant and the incidence of CMV 

disease is shown in Table 8. 
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Table 8. Incidence of CMV disease and immunogenicity of the transplanted tissue 

Tissue Immunogenicity Incidence of CMV disease Incidence of chronic rejection 
at five years 

Lung high 50% 50-60% 
Heart moderate 25% 40-50% 
Kidney moderate 8% 20-30% 
Liver low 29% 5-10% 

      Data modified from Bowden et al. 1998 and Roitt et al. 1985. 

 

6.4. Treatment of CMV infection 

 

Strategies to prevent CMV infection after lung transplantation include using leukocyte-

depleted blood products (Ettinger et al. 1993) and antiviral therapy. The advent of newer and 

CMV-specific antiviral drugs has reduced the importance of CMV seromatching before 

transplantation (Sissons et al. 2002). Because of the considerable variance between antiviral 

treatment protocols in different transplant centres, no universal guidelines for CMV 

prophylaxis and treatment are available. However, ganciclovir has emerged as the drug of 

choice for the treatment of CMV infection in solid organ transplant recipients. Ganciclovir is 

a synthetic analogue of 2’-deoxy-guanosine that must first be phosphorylated to a 

deoxyguanosine triphosphate (dGTP) analogue. The resulting dGTP analogue competitively 

inhibits the incorporation of dGTP by viral DNA polymerase resulting in termination of viral 

DNA elongation. The phosphorylation of ganciclovir is initiated by a kinase coded by the 

UL97 gene and completed by cellular kinases (Faulds and Heel 1990). Ganciclovir is 10-50 

times more potent against CMV than acyclovir. The mechanisms of action of antiviral drugs 

used against CMV are summarized in Table 9. 
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Table 9. Anti-CMV drugs and their mechanism of action 

Drug Target Clinical use in transplantation 
(Val)acyclovir UL97 protein kinase, UL54 DNA 

polymerase 
used for herpes simplex virus-
prophylaxis, also used as CMV 
prophylaxis 

(Val)ganciclovir UL97 protein kinase, UL54 DNA 
polymerase 

mainstay for CMV treatment and 
prophylaxis, valganciclovir emerging 
as bioactive oral form 

Foscarnet UL54 DNA polymerase mainly used if ganciclovir treatment 
fails to control CMV infection 

Cidofovir UL54 DNA polymerase mainly used if ganciclovir treatment 
fails to control CMV infection 

Fomivirsen UL122 transactivation used locally in CMV retinitis 
CMV hyperimmune 
globulin 

antibody-mediated inhibition of 
viral replication and immuno-
modulation 

used either alone or in combination 
with ganciclovir for prophylaxis and 
treatment of CMV infection 

AG1478 blocks EGFR-mediated 
internalization of CMV into 
permissive cells 

experimental drug, no data on 
clinical applicability 

Data based on the 2001 Garrod Lecture by P.D.Griffiths (Griffiths 2002) and Wang et al. 2003. EGFR, 
epidermal growth factor receptor. 
 

A host of studies report ganciclovir prophylaxis to prevent early episodes of CMV infection 

and disease but in most studies this effect seems to be limited to the time of prophylaxis and 

CMV activation occurs after discontinuing antiviral prophylaxis. Thus, ganciclovir 

monotherapy seems to delay but not prevent the onset of CMV infection (Bailey et al. 1992, 

Maurer et al. 1993, Kelly et al. 1995, Soghikian et al. 1996, Hertz et al. 1998). However, 

high-risk patients, such as seronegative recipients receiving seropositive allografts benefit 

from CMV prophylaxis with ganciclovir and CMV hyperimmune globulin and this effect 

persists for at least three years (Valantine et al. 2001). Another approach to treat CMV 

infection is pre-emptive therapy based on the detection of CMV antigenemia or DNAemia 

from routinely collected blood samples. Two studies suggested that pre-emptive therapy is 

equally effective compared to ganciclovir prophylaxis in preventing CMV disease but the 

onset of CMV disease was earlier in the pre-emptively treated groups, and in some cases 

antigenemia monitoring failed to identify CMV activation resulting in CMV disease (Egan et 

al. 1998, Kelly et al. 2000). The new orally bioactive form of ganciclovir, valganciclovir, has 

been shown to be effective in preventing CMV disease (Akalin et al. 2003). Prospective 

studies to address the need for and the length of CMV prophylaxis are needed (Zamora 2002). 
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7. Heterotopic tracheal transplantation as a model for OB 

 

When OB became a widely acknowledged problem in the 1980’s, one lacked simple and 

reproducible models for investigation of OB. Most studies concentrated on surgical and 

operative issues and treatment of acute rejection. Orthotopic rat lung transplantation is a 

technically demanding procedure with great variation in histopathological findings, and 

lesions characteristic to OB are not always observed (Uyama et al. 1992, Hirt et al. 1999, 

1999b).  

 

In 1993, Hertz and coworkers described the heterotopic mouse tracheal allograft model, 

where the donor trachea is inserted into a subcutaneous pouch in the recipient (Hertz et al. 

1993). These tracheal allografts developed similar histological changes to those seen in OB in 

man. This model was then introduced to the rat by our group and later by Dr. Morris’ group 

(Koskinen et al. 1995, Fahrni et al. 1997, Koskinen et al. 1997). The picture of OB 

development is very similar in all tracheal allograft models: in syngeneic grafts, epithelium 

undergoes minor damage but recovers thereafter. The tracheal lumen remains completely 

open and the trachea is lined with normal, mucus-secreting epithelium 28 days after 

transplantation. In untreated allografts, epithelium undergoes progressive damage leading to 

near total necrosis 10 days after transplantation. By 28 days, allografts develop a 

fibroproliferative lesion obliterating the tracheal lumen that closely resembles obliterative 

changes detected in small bronchioles in man. The lack of obliteration in syngeneic grafts 

indicates that OB development is an alloimmune-driven phenomenon in this model. Lately, 

more and more publications utilising this model have been published and the heterotopic 

tracheal allograft model is a well-accepted model for studying OB development (Hele et al. 

2001). 
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AIMS OF THE STUDY 

 

The aim of this study was to investigate and target specific pathways leading to OB using the 

rat tracheal allograft model. A special emphasis was placed on the role of CMV infection.  

 

The specific aims of the study were: 

1) to dissect the roles of CD28/B7-1 and CD28/B7-2 costimulatory pathways in the 

pathogenesis of OB and prevention of OB development by interfering with CD28/B7-

costimulation 

2) to characterize the kinetics and the functional role of ET-1 in the development of OB  

3) to develop a modified tracheal allograft model for the investigation of the 

pathophysiology of RCMV infection-enhanced OB 

4) to investigate the efficacy of antiviral treatment and prophylaxis and 

immunosuppression in RCMV infection-enhanced OB 

5) to characterize the role of PDGF in RCMV infection-enhanced OB 
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METHODS 

 

1. Heterotopic tracheal transplantations 

 

Specific pathogen-free inbred male DA (AG-B4, RT1a) and WF (AG-B2, RT1u) rats 

weighing 200-300 g and of 2-3 mo of age (Harlan, The Netherlands) were used. Permission 

for animal experimentation was obtained from the Provincial State Office of Southern 

Finland. Rats received care in compliance with the “Guide for the Care and Use of Laboratory 

Animals” prepared by the National Academy of Sciences and published by the National 

Institutes of Health (NIH Pub. No. 80-23, revised 1978). 

 

A 3 cm long segment of the donor trachea was excised just above the bifurcation, perfused 

with PBS containing 10 000 IU/ml penicillin and 1 000 g/ml streptomycin, and stored in the 

same solution at +4ºC until transplantation. In the recipient, the trachea was wrapped into the 

greater omentum and the abdomen was closed using absorbable continuous 3-0 sutures. Both 

donor and recipient operations were performed under ether anaesthesia. The recipients 

received buprenorphine 0.25 mg/kg s.c. for postoperative pain relief. Syngeneic 

transplantations were performed from DA to DA rats and allogeneic transplantations from DA 

to WF rats. Nontransplanted DA trachea were used as normal controls. At sacrifice, the 

grafted trachea were excised, embedded in Tissue-Tek (Miles Inc., Elkhart, IN), snap-frozen 

in liquid nitrogen, and stored at -70 °C until used. 

 

2. Rat CMV infection 

 

Stocks of Maastricht strain rat cytomegalovirus (RCMV) salivary gland extracts kindly 

provided by Professor Cathrien Bruggeman were used. Acute RCMV infection was initiated 

intraperitoneally 3 h after transplantation with 5 x 105 plaque-forming units (PFU) of RCMV 

in saline. Chronic RCMV infection was established by inoculating RCMV 8 weeks before 

transplantation.  
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At graft removal, tissue biopsies from salivary glands, liver, and spleen were obtained 

aseptically in modified Eagle’s medium supplemented with 200mM L-glutamine, penicillin-

streptomycin, and 2% FCS. The specimens were stored in –70ºC until used. For plaque 

assays, the specimens were homogenized in a tissue grinder and suspended in BME 

supplemented with 2% NCS, L-glutamine, and penicillin-streptomycin in Potter’s tube, and 

10-fold dilutions of 10% homogenates (wt/vol) were inoculated on confluent rat embryo 

fibroblast monolayers. After an incubation period of 7 days, the number of plaques was 

counted microscopically. The expression of the major immediate early DNA of RCMV from 

samples of tracheal allografts was determined by a sensitive, single-tube, nested PCR reaction 

(Beisser et al. 1998). 

 

3. Drug regimens 

 

Cyclosporine A. CsA was used for base immunosuppression. CsA (Novartis, Basle, 

Switzerland) was dissolved in Intralipid (KabiVitrum, Stockholm, Sweden) to a final 

concentration of 1-2 mg/ml and administered daily at doses of 1-2 mg/kg s.c. from the day of 

transplantation until sacrifice. Whole blood CsA 24-hour trough levels were measured weekly 

using radioimmunoassay (Sandimmun-Kit; Novartis) to ensure equal CsA 

immunosuppression between different treatment groups. 

 

Ganciclovir. Ganciclovir (DHPG, Cymevene, Roche, Palo Alto, CA) was diluted into saline 

and given 20 mg/kg/d i.p. in two doses. Treatment was initiated 12 h before transplantation or 

5 days after transplantation and continued until sacrifice. Controls received an equal volume 

saline. 

 

Hyperimmune serum. HIS with a neutralization titer of 160 was diluted at 1:4 in PBS and 1 

ml of this solution was administered i.v. as a single dose 12 h before transplantation or 5 days 

after transplantation. Controls received an equal volume of control serum. 

 

Costimulatory blockade. Both human and murine CTLA4Ig, its mutant counterpart 

CTLA4IgY100F, and control IgG were generously provided by Dr. Robert Peach (Bristol-

Myers Squibb, Seattle, WA). CTLA4Ig effectively inhibits both CD28/B7-1 and CD28/B7-2 

costimulatory signalling. Either human or murine CTLA4Ig was administered 2 d after 
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transplantation as a single dose of 0.5 mg i.p. Controls received an equal amount of respective 

IgG. CTLA4IgY100F is a mutant form of CTLA4Ig and blocks only CD28/B7-1 interaction, 

but not CD28/B7-1 interaction, and was given as CTLA4Ig. 

 

Bosentan. Bosentan, a nonselective ET-1 receptor antagonist (a kind gift from Dr. Martine 

Clozel, Actelion Ltd, Allschwil, Switzerland), was used to inhibit ET-1 activity. Bosentan 

was suspended in 5 % gummi arabicum to a concentration of 25 mg/ml and administered at 

the dose of 100 mg/kg/d by oral gavage. Vehicle solution consisted of 5 % gummi arabicum. 

 

CGP 53716. CGP 53716 (Novartis Pharma, Basle, Switzerland) is a potent protein tyrosine 

kinase inhibitor both in vitro and in vivo (Buchdunger et al. 1995). The compound is also a 

selective inhibitor of PDGF-mediated events such as PDGF-R autophosphorylation, cellular 

tyrosine phosphorylation, and c-fos mRNA induction in response to PDGF stimulation of 

intact cells. In contrast, ligand-induced autophosphorylation of epidermal growth factor 

receptor (EGF), insulin receptors, and the insulin-like growth factor-1 (IGF-1) receptor, as 

well as c-fos mRNA expression induced by EGF, basic fibroblast growth factor (bFGF), and 

phorbol ester are insensitive to inhibition by CGP 53716 (Buchdunger et al. 1995). CGP 

53716 was dissolved in dimethylsulfoxide to a concentration of 200 mg/kg, diluted at 1:20 

with 1% Tween in 0.9% NaCl, and sonicated. Rats received CGP 53716 or vehicle solution as 

a daily dose of 50 mg/kg i.p. 

 

4. Histological and immunohistological evaluation 

 

Morphometry. For histological evaluation, frozen sections were stained with Mayer’s 

hematoxylin and eosin. Luminal occlusion was evaluated by determining the reduction in 

luminal area using the public domain NIH Image program version 1.59 (National Technical 

Information Service, Springfield, VI). Epithelial necrosis was evaluated as percentage of the 

tracheal circumference not lined by epithelium. 

 

Immunohistochemistry. Immunohistochemistry was performed using the standard 

Vectastain ABC kit (Vector Laboratories, Burlingame, CA). Briefly, frozen tracheal sections 

(4-6 µm) were air-dried on silane-coated slides, and fixed in acetone for 20 min. After 

incubation with appropriate 1.5% nonimmune serum, frozen sections were incubated with 
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mouse, rabbit, or goat mono- or polyclonal antibodies at room temperature for 30 min or at 

+4°C for 12 h depending on the staining in question. With intervening washes in Tris-

buffered saline, the following steps were performed: appropriate biotinylated antibodies at 

room temperature for 30 min; avidin-biotinylated horse-radish complex in PBS at room 

temperature for 30 min; the reaction was revealed by 3-amino-9-ethylcarbazole (AEC) 

containing 0.1% hydrogen peroxidase, yielding a brown-red reaction product. The specimens 

were counterstained with hematoxylin and cover slips were aquamounted (Aquamount; BDH 

Ltd., Poole, UK). Specificity controls were performed using the same immunoglobulin 

concentration of species- and isotype-matched antibodies. The antibodies used in the study are 

listed in Table 10. 

 

Table 10. Antibodies used for immunohistochemistry 

Clone/code Specificity Source Species Dilution 
M 744 BrdU DAKO, Glostrup, Denmark mouse monoclonal 15 g/ml 
W3/25 CD4 Sera Lab, Sussex, UK mouse monoclonal 30 g/ml 
OX8 CD8 Sera Lab mouse monoclonal 29 g/ml 
sc-1624 CD28 Santa Cruz Biotechnology, Santa 

Cruz, CA 
goat polyclonal 1 g/ml 

22661D CD80 BD Pharmingen, San Diego, CA mouse monoclonal 5 g/ml 
22671D CD86 BD Pharmingen mouse monoclonal 5 g/ml 
MCA 341 ED1 Sera Lab mouse monoclonal 5 g/ml 
IHC 6901 ET-1 Peninsula Laboratories Inc, San 

Carlos, CA 
rabbit polyclonal 5 g/ml 

E 3100 ET-RA US Biological, Swampscott, MA rabbit polyclonal 10 g/ml 
E 3110 ET-RB US Biological rabbit polyclonal 10 g/ml 
sc-9344 IFN-  Santa Cruz  goat polyclonal 2 g/ml 
sc-1252 IL-1 Genzyme Diagnostics, Cambridge, 

MA 
goat polyclonal 2 g/ml 

sc-17896 IL-2 Santa Cruz Biotechnology rabbit polyclonal 2 g/ml 
MCA 1200 IL-4 Serotec mouse monoclonal 10 g/ml 
24072D IL-10 BD Pharmingen mouse monoclonal 5 g/ml 
OX6 MHC class II Sera Lab mouse monoclonal 6 g/ml 
sc-7958 PDGF-A Santa Cruz  rabbit polyclonal 1 g/ml 
sc-7878 PDGF-B Santa Cruz  rabbit polyclonal 1 g/ml 
sc-338 PDGF-R Santa Cruz  rabbit polyclonal 1 g/ml 
sc-339 PDGF-R  Santa Cruz  rabbit polyclonal 1 g/ml 
CY-051 TNF-  Innogenetics, Zwijndrecht, Belgium goat polyclonal 5 g/ml 
 

Quantification of immunoreactivity. Immunohistochemical analyses were performed in 

blinded review by two independent observers. The intensity of staining was scored from 0 to 

3: 0, no visible expression; 1, few cells with faint expression; 2, moderate intensity with 

multifocal expression; and 3, intense expression throughout the tracheal allografts or as 

positive staining cells / cross section, depending on the staining in question.  
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In vivo labelling for cell proliferation. Tracheal allograft recipients were given 300 l of a 

concentrated solution of bromodeoxyuridine (BrdU; 5-bromo-2’-deoxyuridine 3 mg/ml and 5-

fluoro-2’deoxyuridine 0.3 mg/ml) 4 hours before sacrifice. Cell proliferation from frozen 

sections was revealed by the Vectastain Elite ABC kit and quantitated by counting positive 

staining cells / cross section. 

 

5. In situ hybridisation 

 

A 480 bp fragment of rat PDGF-A cDNA, a 380 bp fragment of rat PDGF-B cDNA, a 564 bp 

fragment of rat PDGF-R cDNA, and a 411 bp fragment of rat PDGF- R  cDNA were each 

cloned into pBluescript II KS (Stratagene, La Jolla, CA) and used to generate corresponding 

antisense and sense cRNA probes. Radiolabelled RNA was synthesized using T3 and T7 

RNA polymerase (Promega, Madison WI) and [35S]UTP (Amersham Pharmacia Biotech, 

Piscataway, NJ). Briefly, cryostat rat tracheal sections (4-6 µm) were fixed with 4% PFA, 

dehydrated and stored at –70ºC until needed. Upon use, the sections were proteinase K 

treated, re-fixed in 4% PFA, treated with 50% formamide in 2x SSC, followed by acetylation 

with acetic anhydride in 0.1 M TEA buffer. Hybridization was performed o/n at +52ºC. After 

RNAse treatment and high stringency washes to remove unspecifically bound probe, the 

sections were dehydrated, air-dried, dipped into NTB-2 emulsion (Eastman Kodak, Rochester, 

NY), and exposed at +4ºC in the dark for 4 to 6 weeks. The sections were developed in D19 

developer (Eastman Kodak), fixed in sodium fixative (Eastman Kodak), and counterstained in 

hematoxylin (Shandon, Pittsburgh, PA). 

6. Statistical methods 

 

All data are expressed as mean ± SEM and analysed using the Statview 512+ software (Brain 

Power Inc., Calabasas, CA). The non-parametric Mann-Whitney test was used for two group 

comparisons and Kruskal-Wallis test with Dunn correction was used for multiple group 

comparisons. For parametric comparisons, ANOVA-test was used. P<0.05 was considered 

statistically significant. 
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RESULTS 

 

1. The rat tracheal allograft model (I-IV) 

 

Altogether 384 tracheal transplantations were performed in this study. The histology of 

normal trachea, and syngeneic and allogeneic grafts is summarized in Figure 5.  

 
 

The progressing epithelial destruction observed in allografts is associated with an intense 

infiltration of the allograft by ED1, CD4, and CD8 positive cells that is not seen in syngeneic 

grafts. After the epithelium has undergone total necrosis, allograft inflammation subsides but 
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luminal occlusion progresses and leads to total occlusion of the tracheal airway at one month 

(I-IV). The temporal kinetics of allograft inflammation, epithelial necrosis, and luminal 

occlusion are presented below in Figure 6. 

 

 
Figure 6. Kinetics of intragraft inflammation, epithelial necrosis, and luminal occlusion in untreated tracheal 
allografts 
 

2. Role of the CD28/B7 costimulatory pathway in the development of experimental OB 

(I) 

 

The expression of costimulatory molecules B7-1 (CD80) and B7-2 (CD86) were investigated 

in normal trachea, syngeneic grafts, and allografts after transplantation. B7-1 expression was 

very low at all time points and was detected from few scattered graft-infiltrating mononuclear 

cells. B7-2 expression, on the other hand, was constitutive and localized to mononuclear cells 

underlying the epithelium. Syngeneic transplantation had no influence on B7-2 expression. In 

allografts, B7-2 expression peaked at 10 days and was observed mainly in mononuclear cells 

of the allograft airway wall. 

 

Murine and human CTLA4Ig (mCTLA4Ig, hCTLA4Ig) that block both CD28/B7-1 and B7-2 

interaction and CTLA4IgY100F (mCTLA4IgY100F, hCTLA4IgY100F) that block only 

CD28/B7-1, but not CD28/B7-2, interaction were used to investigate the role of CD28/B7 

costimulation in the development of OB. The murine forms failed to influence the 
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development of tracheal occlusion and they were left out of further analyses. Treatment by 

hCTLA4Ig significantly reduced epithelial necrosis at 10 days and tracheal occlusion 30 days 

after transplantation and induced a shift from the Th1- to Th2-like immune response as it 

reduced intragraft expression of IL-2 and IFN-  compared to controls. The mutant form 

hCTLA4IgY100f had no significant effect on the cytokine levels or histological profile. 

 

3. Role of endothelin-1 in the development of experimental OB (II) 

 

The airway wall expression of ET-1 and its receptors was investigated at the time of peak 

inflammatory response 10 days after transplantation. In normal DA trachea and syngeneic 

grafts, ET-1 expression was observed only in ciliated epithelial cells. In allografts, the 

epithelium had undergone nearly total necrosis but widespread airway wall cell expression of 

ET-1 concentrating into the proliferative lesion was detected. No ET-RA expression was 

observed in normal DA trachea, while in syngeneic grafts, few ET-RA positive epithelial and 

airway wall cells were recorded. Allografts showed induced ET-RA expression in the 

proliferative lesion mononuclear and SMC-like cells. In normal DA trachea and syngeneic 

grafts, ET-RB expression was recorded only from few epithelial cells. In allografts, there was 

moderately elevated expression of ET-RB observed in the airway wall with strongest 

expression localizing to the proliferating lesion. 

 

Inhibition of ET-1 activity by bosentan lead to reduced tracheal allograft epithelial necrosis at 

10 days and attenuated tracheal occlusion at 30 days after transplantation compared to 

vehicle-treated controls. Bosentan treatment also decreased BrdU incorporation in both 

inflammatory cells of the airway wall and myofibroblasts of the myofibroproliferative lesion 

and downregulated tracheal allograft expression of IL-1  and IL-2 by 75% in comparison to 

vehicle-treated controls. 

 

4. Effect of CMV infection on experimental OB (III,IV) 

 

The effect of RCMV infection on the development of experimental OB was investigated in 

tracheal allograft recipients receiving base immunosuppression of CsA 1.5 mg/kg/d. Both 
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acute and chronic RCMV infection significantly enhanced epithelial necrosis and tracheal 

airway wall cell proliferation at 10 days and tracheal occlusion at 30 days after transplantation 

compared to non-infected controls. RCMV infection was associated with increased expression 

of proinflammatory cytokine TNF- , IL-2 and decreased expression of IL-10 at 10 days 

compared to non-infected controls, suggesting a shift towards Th1-type immune responses. 

Furthermore, increased expression of PDGF-A and –B as well as PDGF-R  and –R  was 

noted in allografts of RCMV-infected recipients. 

 

5. Inhibition of RCMV infection-enhanced experimental OB (I, III) 

 

The different treatment regimens and their efficacy on the development of RCMV infection-

enhanced OB are shown in Figure 7. 

 
Figure 7. Effect of different treatment regimens on the degree of luminal occlusion in rat tracheal allograft 
recipients with acute RCMV infection. Acute RCMV infection was initiated 3 hours after transplantation with 5 
x 105 PFU of Maastricht strain RCMV. All allograft recipients received cyclosporine 1.5 mg/kg/d s.c., except for 
one group which was given CsA 2 mg/kg/d. The CGP53716 group received additionally CGP 53716 50 mg/kg 
daily. Data are given as mean +/- SEM. *P<0.01 compared to non-infected controls, **P<0.05 and §P<0.01 
compared to respective saline- or normal rat sera-treated controls by Mann-Whitney for two group comparison 
and Kruskal-Wallis and Dunn tests for multiple comparison. n = 10/group, CsA 2 mg/kg/d n = 5. Nil indicates 
non-infected allograft recipients (III,IV). 
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Antiviral therapy. Antiviral prophylaxis was initiated 12 h before transplantation while 

antiviral treatment was commenced 5 days after transplantation. Both ganciclovir and HIS 

prophylaxis prevented RCMV-induced tracheal occlusion whereas treatment with the same 

agents did not significantly reduce obliterative changes. Ganciclovir prophylaxis was equally 

beneficial during both acute and chronic RCMV infection in preventing epithelial necrosis 

and airway obliteration. Antiviral prophylaxis by ganciclovir was also associated with 

reduced BrdU incorporation both in cells of the myofibroproliferative lesion and the airway 

wall, and decreased airway wall expression of IFN- , while HIS prophylaxis lead to a 

reduction in graft-infiltrating ED1-positive cells and decreased airway wall expression of 

IFN-  Regardless of the antiviral treatment regimen, viable RCMV could be recovered from 

the salivary glands of nearly all tracheal allograft recipients, indicating that antiviral treatment 

did not prevent RCMV infection. 

 

Immunosuppression. Augmented CsA immunosuppression at the dose of 2.0 mg/kg/d was 

used to evaluate the effect of immunosuppression on RCMV infection-enhanced OB. This 

dose results in 24-h whole blood trough levels of 450-550 g/L compared to 250-350 g/L in 

the 1.5 mg/kg/d group. Augmented CsA immunosuppression lead to a clear reduction in 

epithelial necrosis and tracheal obliteration compared to base immunosuppressed tracheal 

allograft recipients and was associated with decreased expression of IL-2 and TNF-  in 

tracheal allografts. 

 

PDGF pathway. CGP53716 was used to inhibit PDGF receptor protein tyrosine kinase 

activity. CGP53716 does not affect PDGF ligand or receptor expression (data not shown) nor 

does it affect epithelial necrosis at 10 days. However, CGP53716 treatment totally abolished 

the deleterious effect of RCMV infection on the development of experimental OB. 
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DISCUSSION 

 

1. Early alloimmune activation is central for the development of OB 

 

Except for the transient ischemic damage, the histological picture of untreated tracheal 

syngeneic grafts is similar to that of normal trachea. No fibroproliferation is seen and 

infiltration of the syngeneic graft by inflammatory cells is modest at most. Therefore, it is 

apparent that the changes seen in this model are alloimmune-dependent and it seems that the 

epithelium has a central role in the process. First of all, epithelial cells are an important source 

of antigen for host immune cells and may express both MHC class I and II molecules in an 

alloimmune setting (Ibrahim et al. 1993, Koskinen et al. 1997). Secondly, loss of epithelium 

in most cases precedes and is required for the development of the fibroproliferative lesion, 

suggesting that intact epithelium inhibits obliteration of the tracheal lumen (Ikonen et al. 

2000). In one study, complete destruction of the epithelium by protease digestion induced a 

fibroproliferative lesion in syngeneic grafts (Adams et al. 2000b).  

 

The major factor leading to epithelial loss is the alloimmune-driven inflammatory response 

characterized by intense migration of recipient inflammatory cells and the following 

production of a myriad of different proinflammatory cytokines. T cell activation and 

proliferation are central for the development of the alloimmune response leading to OB. The 

activation of T cells requires a secondary signal in addition to the signal mediated by binding 

of MHC molecule/antigen complex on the APC to the TCR. The most important 

costimulatory pathway is the CD28/B7 pathway. The CD28/B7 costimulatory pathway can be 

blocked using CTLAIg, and several studies have shown CTLA4Ig treatment to effectively 

inhibit the development of allograft rejection and have raised hopes of ultimately achieving 

true tolerance towards the transplant (Lin et al. 1993, Azuma et al. 1996, Larsen et al. 1996, 

Russell et al. 1996, Yamada et al. 2000). However, the efficacy of costimulatory blockade 

seems to be greatest when initiated right after transplantation at the time of peak alloimmune 

activation together with donor-specific transfusion and myelosuppressive recipient 

conditioning (Wekerle et al. 1998, Shirasugi et al. 2002).  
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In our study, B7-2 but not B7-1 expression was upregulated in allografts at 10 days (I). A 

similar pattern of expression was reported by Israel-Assayag and coworkers in mice with 

hypersensitivity pneumonitis, suggesting a specific role for B7-2 in the initiation and 

sustenance of the alloimmune response (Israel-Assayag et al. 1999). The central role of B7-2 

is further supported by the notion that selective inhibition of CD28/B7-2 but not of CD28/B7-

1 costimulation by monoclonal antibodies resulted in equal attenuation of ovalbumin-induced 

airway hyperresponsiveness as did CTLA4Ig treatment (Tsuyuki et al. 1997, Larche et al. 

1998). However, the results do not exclude a complementary role for CD28/B7-1 

costimulation as in a few studies CD28/B7-2 inhibition alone failed to increase allogeneic 

pancreatic islet survival (Lenschow et al. 1995, Zheng et al. 1997).  

 

Thus, if early T cell activation is prevented by costimulatory blockade (I), (Shiraishi et al. 

2002) or immunosuppressive drugs aimed at the IL-2 pathway (i.e. CsA, tacrolimus, 

sirolimus), the alloimmune response remains weak and the epithelial structures intact 

resulting in the prevention of OB (Fahrni et al. 1997, Koskinen et al. 1997, Adams et al. 2000, 

Yamada et al. 2000). However, immunosuppression with MMF or 15-deoxyspergualin (DSG) 

did not affect OB development, suggesting that inhibition of distal steps of lymphocyte 

activation in the absence of IL-2 inhibition is not sufficient to inhibit the alloimmune injury 

leading to growth factor production and fibroproliferation (Koskinen et al. 1997, Adams et al. 

2000). The effects of different immunosuppressive drug regimens on tracheal allograft OB 

development are summarized in Figure 8. 

  
Figure 8. The effect of different immunosuppressive regimens on development of OB. While inhibition of 
proximal steps of T cell activation with either costimulatory blockade (CTLA4Ig) or cyclosporine A treatment 
resulted in significant inhibition of OB, interruption of later steps of the lymphocyte activation with 
mycophenolate mofetil (MMF) and deoxyspergualin (DSG) failed to have impact on OB development. Data 
from II, Koskinen et al, 1997. *P<0.05 compared to untreated control (None). 
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2. The dualistic role of the epithelium 

When untreated, the alloimmune response leads to total epithelial necrosis 10-14 days after 

transplantation in allografts (Davreux et al. 1993, Kallio et al. 1997, Kallio et al. 2000). 

Coinciding with the strong Th1-dominated alloimmune response and increasing epithelial 

loss, prominent expression of SMC growth factors, such as PDGF, ET-1, EGF, and FGF is 

observed together with intense SMC proliferation (Koskinen et al. 1997, Kallio et al. 1999, 

Aris et al. 2002). At this stage, initiation of conventional immunosuppressive therapy does not 

influence the development of OB (Adams et al. 2000). Furthermore, if untreated allografts are 

removed at 14 days and retransplanted into syngeneic recipients, OB develops in the absence 

of alloimmune responses. However, if the same procedure is performed on day 7 before the 

loss of epithelium, OB does not develop (King et al. 2002). 

 

As stated, epithelial cells are a major source of antigen and may present both MHC class I and 

II molecules to recipient lymphocytes. In addition, unlike donor-derived leukocytes, epithelial 

cells have the ability to regenerate and form a replenishing source of antigen that continuously 

fuels the alloimmune response. Therefore, in the presence of a strong alloimmune response, 

such as in our model, donor-derived epithelium is an important factor driving the alloimmune 

response and rejection.  

 

The mechanism by which epithelium may confer protection against airway obliteration is 

unclear. It is possible that the injured epithelium itself produces and secretes cytokines and 

growth factors that then induce SMC migration and proliferation. However, it is also possible 

that the intact epithelium actively produces a negative inhibitory signal and, upon epithelial 

injury, this negative feedback loop is interrupted. In an innovative study, Tsurumi and 

coworkers describe a reciprocal relationship between tissue injury and endothelial cells 

(Tsurumi et al. 1997). When the arterial endothelium is damaged by balloon injury, there is a 

notable increase in vascular endothelial growth factor (VEGF) production. VEGF is known to 

actively promote re-endothelialization and to induce the production of NO (Asahara et al. 

1995, van der Zee et al. 1997). They also showed that intact endothelium produces NO that in 

turn negatively regulates VEGF production via the protein kinase C pathway thereby 

providing a negative feedback signal and controlling the response to injury (Tsurumi et al. 

1997). Should the damage to the endothelium be continuous and excessive, the amount of NO 

production would not be increased to the level necessary to inhibit VEGF and other growth 
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factor production as in an alloimmune setting. Such a reciprocal pathway has not been 

reported in the lung, but the lung epithelium is able to produce NO and supplementation of L-

arginine, a precursor of NO, reduced SMC proliferation and OB in tracheal allografts, 

suggesting that NO may have a similar regulatory role in tracheal allografts (Kallio et al. 

1997). 

 

3. ET-1 has both proinflammatory and proproliferative properties in the pathogenesis of 

OB 

 

After lung transplantation, there is a surge in ET-1 expression due to alloimmune activation 

and ischemic injury (Schersten et al. 1994, Aarnio et al. 1996, Jeppsson et al. 1998). ET-1 

protein and mRNA expression are also upregulated during OB development (IV) (Aris et al. 

2002). The overexpression of ET-1 after transplantation is probably induced by cytokines 

produced by activated macrophages such as IL-1  and TNF-  which are known to upregulate 

ET-1 production (Barnes 1994). Also, PDGF and TGF-  are capable of stimulating vascular 

SMC to produce ET-1, and the expression of ET-RA and –RB on vascular SMC is 

upregulated by PDGF (Hahn et al. 1990). In addition, activated macrophages themselves are 

capable of producing ET-1 (Ehrenreich et al. 1990), and ET-1 alone has the ability to 

stimulate ET-1 production by vascular SMC (Hahn et al. 1990).  

 

There are several mechanisms by which ET-1 may promote SMC proliferation and thereby 

the development of OB. ET-1 has direct proproliferative effects in vitro both on vascular 

(Hirata et al. 1989) and airway SMC (Glassberg et al. 1994). However, the majority of studies 

support an indirect proproliferative effect through synergistic action with other growth 

factors, namely PDGF-BB (Weissberg et al. 1990) and TGF-  (Yeh et al. 1991), suggesting 

significant cross-talk between PDGF and ET-1 in promoting the fibroproliferative response. 

Blockade of both pathways might have resulted in a more prominent effect. 

 

Bosentan has been accepted for clinical use for the treatment of primary pulmonary 

hypertension where it improves exercise ability and slows the rate of clinical worsening 

(Channick et al. 2001, Rubin et al. 2002). In addition, bosentan has been shown to decrease 

inflammatory reactions, vascular permeability and remodeling, and to prevent development of 

fibrosis (Chen et al. 1995, Filep et al. 1995, Park et al. 1997). Therefore, the results of this 
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study suggest a novel therapeutic strategy for the prevention of BOS by a drug that has 

already been successfully introduced to clinical practice in patients with pulmonary disease. 

 

4. RCMV infection enhances alloimmune activation and SMC growth factor production 

 

We have previously shown that RCMV infection enhances the development of OB compared 

to non-infected allograft recipients. RCMV infection enhanced OB is alloimmune-related, as 

RCMV-infected recipients of tracheal syngeneic grafts had no evidence of obliterative 

changes. Furthermore, RCMV infection was associated with an increased number of allograft-

infiltrating CD4+ T cells and macrophages and upregulation of MHC class II expression 

(Koskinen et al. 1997b). 

 

The findings of this study underline the importance of efficient early inhibition of CMV 

infection as antiviral treatment initiated 5 days after infection did not prevent RCMV 

infection-enhanced OB but prophylaxis initiated before infection totally prevented RCMV-

induced OB (I). Several clinical studies have implicated CMV infection as a risk factor for 

OB but, more often than not, CMV infection is a univariate but not multivariate risk factor 

(Keenan et al. 1991, Bando et al. 1995, Keller et al. 1995, Baudet et al. 1996, Reichenspurner 

et al. 1996, Soghikian et al. 1996, Kroshus et al. 1997). Our results suggest that early CMV 

infection promotes the acute alloimmune response and may mediate OB development via 

increased acute rejection. In support of this, Reichenspurner and his coworkers showed that 

CMV infection increased the number and severity of acute rejection episodes and that CMV 

infection and acute rejection together formed a marked risk factor for the development of OB 

(Reichenspurner et al. 1996). In a recent study, CMV DNAaemia during the first six months 

after transplantation correlated strongly with the development of BOS despite 2-3 month 

ganciclovir prophylaxis and none of the patients negative for CMV DNAaemia developed 

BOS during the study period (Westall et al. 2003).  

 

Absence of ganciclovir prophylaxis has been implicated as a risk factor for OB (Bando et al. 

1995, Speich et al. 1999). Ganciclovir prophylaxis delays the onset of CMV infection but 

does not prevent it completely (Duncan et al. 1994). However, as our results underline the 

importance of early CMV infection, it is possible that delaying CMV infection episodes is 

enough to reduce the risk of later development of OB. Lately, the ISHLT Registry reported a 
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decrease in OB prevalence (Hertz et al. 2002) which could, in part, result from decreased 

early episodes of CMV infection due the widespread use of ganciclovir prophylaxis in lung 

transplant recipients. However, although the evidence supporting the need for adequate anti-

CMV prophylaxis after solid organ transplantation to prevent chronic allograft rejection is 

mounting (Valantine et al. 1999, Valantine et al. 2001), the field of lung transplantation still 

lacks a randomised prospective study addressing the need for and duration of antiviral 

prophylaxis in the prevention of CMV infection-enhanced BOS. 

 

Finally, this study suggests that RCMV infection-enhanced alloimmune activation culminates 

in increased PDGF ligand and receptor expression in the fibroproliferative lesion and that 

selective inhibition of PDGF receptor tyrosine kinase activity negates tracheal allograft 

occlusion without having any effect on alloimmune activation or epithelial injury (III). 

CGP53716, the drug used to block PDGF receptor activity, is a predecessor of imatinib 

(CGP57148B), that has been introduced to the clinic in the treatment of Philadelphia 

chromosome negative CML and gastrointestinal tumours (Druker et al. 2001, Cohen et al. 

2002). The results suggest that blockade of PDGF activity by imatinib may be of therapeutic 

value in the prevention of OB in the clinic. 

 

On the basis of the findings of this and previous studies, it is likely that there is a bi-

directional relationship between CMV and the alloimmune response. Acute rejection activates 

latent or chronic CMV infection and early RCMV infection promotes acute rejection leading 

to increased PDGF expression and the development of OB (Figure 9). 
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5. Limitations of the tracheal allograft model 

 

In the attempt to extrapolate the findings of this study to the clinical situation, one has to take 

into account the limitations of the tracheal allograft model. First of all, the anatomy of the 

trachea is considerably different from that of bronchioli. Trachea is surrounded by cartilage 

not seen in bronchioli. Furthermore, the obliterative changes affecting bronchioles do not 
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extend to large airways in man. Additionally, the tracheal allograft is not vascularized which 

makes the interpretation of findings related to ischemia difficult. The tracheal allograft has no 

airflow and is not in contact with foreign pathogens. The trachea contains less lymphoid 

tissue than lung allografts and may reduce the impact of direct allorecognition in this model. 

Finally, in our model, the obliterative lesion develops in one month compared to years in lung 

transplant patients. However, the obliterative lesion seen in tracheal allografts is similar to 

that seen in bronchioles in man and forms a reproducible and simple model for investigation 

of the pathogenesis of OB. 

 

6. Conclusions of the study 

 

The findings of this study show that B7-2, but not B7-1, is upregulated during the 

development of experimental OB in the rat. Selective blockade of the CD28/B7 costimulatory 

pathway leads to a shift from the Th1- to Th2-dominated immune response and reduces 

tracheal allograft epithelial necrosis and markedly inhibits tracheal luminal occlusion. 

Selective blockade of CD28/B7-1 costimulation failed to affect OB development, suggesting 

an important role for CD28/B7-2-mediated T cell costimulation in the development of OB. (I) 

 

ET-1 ligand and receptor expression are upregulated during OB development. ET-1 

expression is associated with increased alloimmune activation and SMC proliferation, leading 

to enhanced epithelial injury and obliteration of tracheal allograft lumen. Selective ET-

receptor antagonism with bosentan resulted in reversal of the deleterious effects of ET-1 and 

the results imply that blockade of ET-1 action with bosentan may be useful for the prevention 

of clinical OB (II). 

 

We modified the base immunosuppression of tracheal allograft recipients infected with 

RCMV resulting in an improved and more sensitive model for the investigation of RCMV 

infection-enhanced OB. This study confirms the role of RCMV infection as a significant risk 

factor for experimental OB. Although RCMV was detected from only a few inflammatory 

cells in tracheal allografts, RCMV infection enhanced the Th1-like alloimmune response and 

led to increased expression of PDGF ligands and receptors. Allografts of RCMV-infected 

recipients showed markedly increased epithelial necrosis and a three-fold increase in tracheal 

allograft occlusion compared to non-infected controls. Both acute and chronic RCMV 
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infection were equally detrimental. Antiviral prophylaxis with ganciclovir or RCMV 

hyperimmune serum negated the deleterious effect of RCMV infection but treatment initiated 

five days after transplantation failed to do so. The findings underline the importance of early 

and prophylactic treatment of RCMV infection in the prevention of OB. Additionally, our 

results support the indirect role of RCMV infection as a promoter of alloimmune activation as 

increased immunosuppression with CsA inhibited the development of RCMV infection-

enhanced OB. 

 

Finally, CGP53716-mediated PDGF-receptor blockade inhibited OB development in RCMV-

infected recipients, suggesting that the final pathway in the development of the 

fibroproliferative lesion is mediated through PDGF receptor activation and that specific 

inhibition of this pathway almost totally abolishes OB development. 
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7. Summary 

 

In the tracheal allograft model, the early alloimmune response causes allograft injury that is 

mediated by graft-infiltrating T cells and macrophages. The following epithelial damage leads 

to a reparative process that is characterized by SMC growth factor production. If the early 

alloimmune response is attenuated by immunosuppressive treatment aimed at T cell activation 

and proliferation, such as calcineurin inhibition or costimulatory blockade, the development 

of OB can be prevented. However, after sufficient alloimmune injury, immunosuppressive 

treatment does not suffice any more but instead, the obliterative process is alloimmune-

independent and may only be affected by specific anti-SMC proliferative mechanisms. 

RCMV infection may be activated by the alloimmune response and, in turn, early RCMV 

infection promotes the alloimmune response causing increased allograft injury and production 

of SMC growth factors, such as PDGF. Effective antiviral prophylaxis, high dose 

immunosuppression, and inhibition of PDGF receptor activity result in attenuation of 

obliterative changes associated with RCMV infection. The results of this study suggest that 

rigorous immunosuppression and anti-CMV prophylaxis are called for in the treatment of 

lung transplant recipients but if BOS develops despite of these measures, antiproliferative 

agents such as bosentan and imatinib may result in a better outcome than augmentation of 

immunosuppression alone (Figure 10). 
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Figure 10. Potential targets of medical intervention in preventing OB. In addition to alloimmune-mediated graft 
injury, non-alloimmune factors such as ischemia and RCMV infection promote the alloimmune response and 
cause direct allograft injury. Epithelial cells serve as an important antigen-presenting cell type and fuel the 
alloimmune response. Prevention of the alloimmune response with immunosuppressive drugs attenuates 
epithelial cell injury and prevents the development of OB. After sufficient graft injury, the damaged epithelium 
either fails to inhibit or promotes growth factor production leading to SMC migration and proliferation into the 
airway lumen. At this time, the process is no longer sensitive to enhanced immunosuppression. Antiproliferative 
agents such as bosentan and imatinib may provide a novel approach to treatment and prevention of OB by 
targeting the “response-to-injury” phase. The dashed line depicts an inhibory effect. Abbreviations: APC, 
antigen-presenting cell; TCR, T cell receptor; CsA, cyclosporine A, CTLA4Ig, cytotoxic T lymphocyte-
associated antigen immunoglobulin, Th, helper T cell; CTL, cytotoxic T lymphocyte; MP, macrophage; SMC, 
smooth muscle cell. 
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YHTEENVETO (FINNISH SUMMARY) 

 

Keuhkonsiirto on ainoa parantava hoitomuoto loppuvaiheen keuhkotautia sairastavalle 

potilaalle. Vaikka lyhytaikaisennuste on kohentunut huomattavasti ja 70% 

keuhkonsiirtopotilaista on elossa vuoden kuluttua siirrosta, keuhkosiirrännäisen kroonisen 

hyljinnän eli bronkiolitis obliterans-syndrooman (BOS) esiintyvyys ei ole laskenut. BOS on 

keuhkonsiirtopotilaiden johtava kuolinsyy ensimmäisen vuoden jälkeen, ja valtaosa potilaista 

sairastuu siihen. BOS ilmenee keuhkoputkien etenevänä ahtautumisena, eikä siihen ole 

toimivaa hoitoa. BOS:n kaksi tärkeintä riskitekijää ovat akuutti hyljintäreaktio sekä 

sytomegalovirus (CMV)-infektio. Tässä tutkimuksessa pyrittiin rotan trakeansiirtomallin 

avulla tunnistamaan BOS:n kehittymiselle tärkeitä molekyyliteitä ja katkaisemaan niitä 

kokeellisilla täsmälääkkeillä. 

 

Trakeansiirron koe-eläinmallissa luovuttajarotan henkitorvi poistetaan ja siirretään 

vastaanottajarotan vatsaonteloon. Syngeenisissä (samaperimäinen) siirrännäisissä henkitorven 

epiteeli vaurioituu ensin lievästi hapenpuutteen vuoksi, mutta toipuu siitä pian. Kuukauden 

kuluttua siirrosta henkitorvi on täysin avoin, ja sitä verhoaa normaali limaa tuottava 

hengitystie-epiteeli. Sen sijaan lääkitsemättömissä allogeenisissä (eriperimäinen) 

siirrännäisissä epiteelin tuhoutuminen jatkuu ja kymmenen päivää siirrosta lähes koko epiteeli 

on tuhoutunut. Samanaikaisesti siirrännäiseen kehittyy voimakas alloimmuunivaste, johon 

liittyy tulehdusvälittäjäaineiden, kemokiinien ja kasvutekijöiden tuotanto, mikä puolestaan 

johtaa sileälihassolujen liikkumiseen henkitorven sisään, niiden jakautumiseen siellä ja 

lopulta henkitorven tukkeutumiseen. Histologisesti tämä fibroproliferatiivinen leesio 

muistuttaa ihmisellä BOS:ssa nähtävää löydöstä. 

 

Tämä tutkimus painottaa varhaisen alloimmuunivasteen merkitystä BOS:n kehittymisessä. T-

soluaktivaation esto hCTLA4Ig:lla, joka katkaisee T-solujen kostimulaation, johti 

tulehdusreaktion lievittymiseen ja siirtymään Th1-painotteisesta Th2-painotteiseen 

immuunivasteeseen. hCTLA4Ig-hoito vähensi myös epiteelivauriota sekä lopulta henkitorven 

tukkeutumista. Tulokset antavat viitettä siitä, että varhaisen alloimmuunivasteen 

heikentäminen hCTLA4Ig-hoidolla voisi olla tehokas myös kliinisessä käytössä BOS:n 

ehkäisyssä (I). 
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Endoteliini-1 ja sen reseptorien ilmentyminen oli neljä kertaa voimakkaampaa allogeenisissä 

henkitorvisiirteissä kuin syngeenisissä kontrolleissa. Endoteliini-1 reseptorien salpaus 

bosentaanilla heikensi alloimmuunivastetta, lievitti epiteelivauriota sekä vähensi 

sileälihassolukasvua ja johti näin hidastuneeseen BOS:n kehittymiseen henkitorvisiirteissä. 

Tulokset osoittavat, että endoteliinillä on biologisesti merkittävä rooli BOS:n kehittymisessä 

ja että bosentaani, joka on jo kliinisessä käytössä, voisi olla hyödyksi myös 

keuhkonsiirtopotilailla (II). 

 

Kehitimme trakeansiirtomallin, jonka avulla tutkimme rotan sytomegalovirus (RCMV) –

infektion ja BOS:n välistä yhteyttä. Tutkimus osoittaa, että RCMV-infektio voimistaa 

varhaista Th1-painotteista alloimmuunivastetta ja kiihdyttää BOS:n kehittymistä. RCMV-

infektio pahensi epiteelivauriota, nopeutti sileälihassolujen jakautumista ja lisäsi PDGF-

kasvutekijän tuotantoa. Nämä vaikutukset eivät olleet riippuvaisia virusmääristä, sillä 

siirrännäisistä pystyttiin tunnistamaan vain muutamia RCMV-infektoituneita soluja. 

Profylaktinen viruslääkitys joko gansikloviirilla tai RCMV hyperimmuuniseerumilla ehkäisi 

RCMV-infektion haitalliset vaikutukset, mutta viisi päivää siirron jälkeen näillä lääkkeillä 

aloitettu hoito ei vaikuttanut BOS:n kehittymiseen. Myös korkea-annoksinen 

siklosporiinihoito sekä PDGF-reseptorityrosiinikinaasin salpaus CGP53716:lla ehkäisivät 

RCMV-infektion BOS:n kehittymistä lisäävän vaikutuksen. Tulokset näyttävät, että RCMV-

infektio lisää BOS:n kehittymistä epäsuorasti voimistamalla varhaista alloimmuunivastetta ja 

että vain ennaltaehkäisevä RCMV-infektion hoito estää sen haitalliset vaikutukset (III, IV). 

 

Tutkimuksen tulokset tukevat voimakkaan immunosuppression ja antiviraalisen lääkityksen 

merkitystä keuhkosiirtopotilaiden hoidossa. Mikäli BOS kehittyy parhaasta mahdollisesta 

lääkehoidosta huolimatta, sileälihassolujen kasvutekijäreseptorien täsmäsalpaus bosentaanilla 

ja imatinibilla, CGP53716 uudemmalla johdannaisella, voi parantaa keuhkonsiirtopotilaiden 

ennustetta. 
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SAMMANFATTNING (SWEDISH SUMMARY) 

 

Den viktigaste faktorn som försämrar lungtransplantationpatientens långtidsprognos är 

bronchiolitis obliterans-syndrom (BOS) eller kronisk rejektion. BOS leder till förträngning av 

luftrör. Det finns ingen effektiv terapi för prevention av BOS. Akuta rejektionsepisoder och 

cytomegalovirus (CMV) infektion är viktiga riskfaktorer för BOS, för både akut rejektion och 

CMV infektion förstärker Th1-dominerad immunrespons, som har anknytits till BOS. 

Avsikten med denna doktorsavhandling var klarläggning av vad som sker på cellulär och 

molekylär nivå efter trakeatransplantation hos råttor, så väl som nedbrytning av cytokin-

växtfaktornätverket med hjälp av specifika och selektiva läkemedel.  

 

I trakeatransplantationsmodellen transplanteras en trakea av DA-råttan till DA- (syngen 

transplantation) eller till WF-råttan (allogen transplantation). Trakean placeras in i omentum 

majus av mottagaren. Syrebristen efter syngen transplantation skadar epitelcellerna i trakean 

till en mild grad. En månad efter transplantationen liknar den histologiska bilden en normal 

trakea. Epitelcellerna i en allogen trakeatransplant blir totalt nekrotiserade under de första tio 

dagarna efter transplantationen. Samtidigt ser man en kraftig immunrespons i transplanten, 

som karakteriseras av produktion av cytokiner, kemokiner och växtfaktorer. Överekspression 

av sytokiner och växtfaktorer leder till migration av glattmuskelceller från luftrörsväggen till 

trakeans lumen. Förträngning av luftröret i vår modell liknar den histologiska bilden som 

observeras vid BOS hos människan.  

 

Vi undersökte rollen av T-cell kostimulering vid utvecklingen av BOS. Behandlingen av 

råttor efter allogen trakeatransplantation med hCTLA4Ig, som inhiberar CD28/B7 

kostimulering, försvagade inflammationen i trakean och förändrade Th1/Th2 kvoten i rikting 

av Th2-accentuerad immunrespons. Behandling med hCTLA4Ig minskade också 

epitelcellnekros och utveckling av BOS. Våra resultat poängterar den avgörande vikten av den 

tidiga alloimmunaktivationen efter lungtransplantation (I). 

 

Vi påvisar, att ekspression av endotelin-1 (ET-1) och dess receptorer var fyra gånger högre i 

allogena jämfört med syngena trakeatransplanter. Selektiv ET-1 inhibition med bosentan 

dämpade alloimmunresponsen, epitelnekrosen och proliferationen av glattmuskelceller, vilket 

ledde till saktad utveckling av BOS. De här resultaten påvisar, att ET-1 spelar en betydlig 
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biologisk roll vid utvecklingen av BOS. Detta betyder att bosentan, som redan är i klinisk 

användning, kunde vara av nytta till lungtransplantationspatienter (II). 

 

Vi undersökte betydelsen av råttans cytomegalovirus (RCMV) infektion vid utvecklingen av 

eksperimentell BOS. Vi påvisade, att RCMV infektion förstärkte Th1-dominerad 

immunrespons och accelererade BOS. RCMV-infektionen förvärrade epitelskadan, 

accelererade glattmuskelcellernas proliferation och ökade PDGF-faktorns ekspression. De här 

effekterna var oberoende av virusmängderna därför att man kunde identifiera bara några få 

RCMV-infekterade celler i transplanterna. Profylax med antingen gansiklovir eller RCMV-

hyperimmunserum inhiberade RCMV-infektionen skadliga konsekvenser, men om 

behandlingen med dessa läkemedel startade fem dagar efter transplantationen hade den ingen 

effekt på BOS. Högdoserad siklosporinbehandling och hämning av PDGF-reseptorer med 

CGP53716 inhiberade utvecklingen av BOS. Våra resultat påvisar, att RCMV-infektionen 

accelererar utvecklingen av BOS indirekt genom att förstärka den tidiga alloimmunresponsen 

och att bara RCMV-profylax hindrar dess skadliga påföljder  (III,IV). 

 

Resultaten stöder vikten av effektiv immunosuppresiv och antiviral behandling efter 

lungtransplantation. Om BOS ändå utveklas, kan nedbrytning av växfaktornätverket med 

specifika läkemedel som bosentan och imatinib förbättra patienternas långtidsprognos. 
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