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Ulla Impola, Matrix metalloproteinases in human wounds and cancer in the skin and oral 
mucosa. Department of Dermatology, Helsinki University Hospital and University of Helsinki 
 
ABSTRACT 
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that are 
collectively able to degrade all components of the extracellular matrix (ECM). MMPs influence 
cell dissociation, death and division, angiogenesis, and the bioavailability of growth factors and 
cytokines, events needed in wound healing and tumor invasion. Normal cutaneous re-
epithelialization involves many MMPs, including MMP-1, -9, and -10 in migratory 
keratinocytes and MMP-3, -19 and -28 in the proliferating zone. However, many of these same 
MMPs as well as various others, such as MMPs-1, -2, -7, -9, -13, -14 and -26, have been 
implicated for various cancers.  
 
I investigated the role of MMPs, especially MMP-9 and MMP-19, in wound healing and in 
epithelial cancers. I studied the possible mechanisms for delayed epithelialization as well as 
malignant transformation in chronic wounds. I investigated the expression profile of MMPs in 
the biology and tumorigenesis of pre-malignant lesions in the skin and oral mucosa, and 
whether the expression patterns of certain MMPs could serve as molecular markers to predict 
carcinogenesis. Principal methods used were in situ hybridisation, immunohistochemistry, 
Taqman RT-PCR, Northern, Western and enzyme activity analysis and zymography.  
 
My results show that in acute wounds epithelial cells expressed MMP-9, whereas in chronic 
wounds, it is expressed by inflammatory stromal cells. The absence of intact ECM molecules 
due to degradation by inflammatory cell-derived MMP-9 in chronic non-healing wounds may 
deprive wound edge keratinocytes of proper cell-matrix interactions needed for induction of 
migration. MMP-2 and MMP-14 are expressed only by stromal cells in all wound types in vivo. 
Inhibition of MMPs with BB-3103 blocked epithelialization completely in an ex vivo model, 
whereas aprotinin did not affect it significantly, indicating the requirement for one or more 
MMPs in epidermal wound healing. This is the first study to show keratinocyte expression of 
MMP-19. In wounds it is expressed by non-migrating keratinocytes at the hyperproliferating 
areas but the expression totally dissappeared with malignant transformation. MMP-19 mRNA 
expression was induced by TNF-α and phorbol myristate acetate (PMA) in primary 
keratinocytes. MMP-7 is expressed by malignantly transformed epithelium of the skin while it 
is absent from chronic wounds and keratoacanthomas (KA). Epithelial MMP-13 expression is 
strong in squamous cell carcinoma (SCC), absent in chronic wounds, but present in KAs. Oral 
verrucous carcinomas (VC) were devoid of epithelial MMP-3, -7, -9, -12 and -13 expression 
compared to oral SCCs. 
 
Based on my results I suggest that the epithelial expression of MMPs-7, -12, and –13 and  the 
loss of MMP-19 could aid in making the differential diagnosis between well-differentiated SCC 
and non-malignant chronic wound or KAs. The invasiveness of oral cancers may be dependent 
on their MMP expression profile. This phenomenon may thus serve as a prognostic marker in 
oral SCC. MMP-7, -9, -12, and -13 may be good targets for intervention therapy at the early 
stages of oral cancer.  
 
I conclude, that several MMPs are needed in wound re-epithelialization, and their expression 
pattern may promote chronic phenotype as well as malignant transformation. In skin and oral 
cancers, MMPs might be used as prognostic markers in diagnosing pre-malignant changes from 
aggressive tumors. 
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1. INTRODUCTION 
 

Matrix metalloproteinases (MMPs) constitute a family of 23 human zinc-dependent proteolytic 

enzymes. They take part in the degradation of extracellular matrix (ECM) and basement 

membranes (BM) during cell migration, angiogenesis and proteolytic activation of growth 

factors. All these  events are needed in fetal development and in normal tissue remodelling as 

well as in epidermal wound healing, inflammation and tumor invasion. According to their 

substrate specifity and structure, MMPs can be divided into six subgroups: interstitial 

collagenases, stromelysins, matrilysins, type IV collagenases, membrane-type MMPs and other 

MMPs. In normal cell environment, specific tissue inhibitors of metalloproteinases, TIMPs, 

strictly regulate MMP activity. Under some circumstances MMP activation is also regulated by 

integrins, cell adhesion receptors mediating migration and invasion. 

 

In human skin, MMPs are mainly produced by keratinocytes, fibroblasts, macrophages and 

endothelial cells. Normal cutaneous re-epithelialization involves many MMPs, including MMP-

1,  -9, and -10 in migratory keratinocytes and MMP-3, -19 and –28 in the proliferating zone of 

the wound area. In chronic wounds, the MMP expression pattern deviates from acute wound 

repair. How exactly the MMP expression profile changes during tumorigenesis of chronic 

wounds is poorly understood.  

 

Tumor growth depends critically on the ability of the tumor cells and the surrounding stromal 

cells to produce these same proteolytic enzymes, receptors mediating cell adhesion, cytokines 

and certain ECM proteins. Many MMPs such as MMP-1, -2, -7, -9, -13, and -14 have been 

implicated in cancer invasion. The role of the novel MMPs (from –19 upwards) in skin biology 

has not been well elucidated. 

 

The aim of the present work was to examine the role of matrix metalloproteinases, especially 

MMP-9 and MMP-19, in wound healing and in epithelial cancers. We wanted to study the 

mechanisms associated with delayed epithelialization as well as the malignant transformation of 

chronic wounds. We also wanted to investigate the possible role of MMPs in the biology and 

tumorigenesis of pre-malignant lesions, and if the expression patterns of certain MMPs could 

serve as molecular markers to predict carcinogenesis.  

 10



2.REVIEW OF THE LITERATURE 
 
2.1. Structure of the skin and oral mucosa 

Skin is the largest human organ. Its primary function is to produce a semi-permeable outer layer 

of the body that protects from microbes, dehydration, and radiation and also from mechanical, 

chemical and thermal forces. Skin can be divided into the upper epithelial layer, epidermis, the 

underlying connective tissue, dermis, and a subcutaneous layer (see Alberts, 1994). Like skin, 

the oral mucosa acts as an important mechanical barrier that prevents local or systemic invasion 

by microorganisms. 

 

Epidermis and dermis 

The upper layer of the skin, the epidermis, consists of stratified squamous epithelium. In 

addition to keratinocyte layers, the epidermis contains pigment-producing melanocytes, antigen 

producing Langerhans cells and Merkel cells which function as mechanoreceptors. During 

normal epidermal differentiation, four different types of keratinocytes can be distinguished in 

the epithelium: the basal, squamous, granular, and cornified (see Tomic-Canic, 1998). Basal 

cells are characterized by their contact with the intact basement membrane, mitotic activity and 

their undifferentiated phenotype.  Basal cells are responsible for epidermal regeneration. During 

differentiation basal cells move from the basal zone upwards through the spinous and granular 

layers to the cornified layer of the skin. During their differentiation, keratinocytes change their 

shape, loose their nuclei, and get filled with keratin filaments and keratohyalin. Terminally 

differentiated keratinocytes, corneocytes, contain mostly keratin, but remnants of organelles, 

melanin and membrane profiles are found (Eckert et al., 1989). Keratin proteins comprise the 

predominant cytoskeletal component of the epidermis. If the cells of stratum corneum contain 

remnants of nuclei, the epithelium is said to be parakeratinized. 

 

The dermis is the connective tissue of the skin and protects the body from mechanical injury. 

The dermis is divided into subepithelial papillary dermis of loose connective tissue and 

reticular layer, which lie on an adipose tissue. In the dermis, fibroblasts, endothelial cells, 

macrophages and mast cells are all embedded in the ECM. Also cells derived from blood 

vessels: neutrophils, eosinophils, monocytes and lymphocytes are present as well as in other 

types of ECM (see Alberts et al., 1994). In the skin the dermis also contains hair follicles, 

sebaceous and sweat glands as well as sensory nerves and blood vessels. The dermis consists 
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mostly of collagens type I and III, but also thin elastic fibers are found throughout the dermis 

between collagen bundles.  

 

Oral mucosa 

The morphology of oral mucosa is not appreciably different from that of skin. Oral mucosa 

differs from skin in that it has superficial mucus, which acts as a lubricant as well as a 

protective coating. Oral mucosa is mostly composed of stratified squamous epithelium. 

Keratinized epithelium is found in the hard palate, dorsum of the tongue, and gingiva. Non-

keratinized epithelium is found on the lining mucosa (floor of the mouth, ventrolateral surface 

of the tongue, soft palate complex, labial vestibule, and buccal mucosa). In oral mucosa, the 

surface layer is keratinized stratum corneum with no remnants of the nuclei 

(orthokeratinization). If the cells in this surface layer contain remnants of  nuclei, the 

epithelium is called parakeratinized. 

 

2.1.1. Extracellular matrix of the connective tissue 

Extracellular matrix determines the tissue’s physical properties and has an essential role in 

cellular communication. ECM provides support for the surrounding cells but it also has a role in 

regulating cell shape, proliferation, adhesion, migration and differentiation (Engvall 1995, 

Timpl, 1996). ECM of the dermal connective tissue is composed of fibrous proteins, embedded 

in a gel-like matrix composed of glycosaminoglycans (hyaluronan, chondroitin and dermatan 

sulfate, heparan sulfate, and keratan sulfate) and of two types of fibrous proteins: structural 

(collagens and elastin) and adhesive (laminins, fibronectin, nidogens etc.). Proteoglycans 

(syndecan, versican, aggrecan, decorin) and glycosaminoglycans, which are secreted locally 

mainly by fibroblasts, form a well-designed protein network and a hydrated environment where 

rapid diffusion of nutrients, metabolites and hormones is possible.  Connective tissue 

component of oral mucosa consists of two layers: papillary layer and dense fibrous layer. 

Between the oral mucosa and the underlying tissues there may be an intermediate layer of 

connective tissue, a so-called submucosa (Moss-Sajentijn and Klyvert, 1980). In the connective 

tissue of oral mucosa fibroblasts provide the collagen network for lamina propria and 

submucosa. ECM of oral mucosa is composed of same proteins as that of dermal connective 

tissue.  
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Fibronectin 

Fibronectin, which is one of the ECM glycoproteins synthesized by many types of cells, like 

keratinocytes, fibroblasts and macrophages, participates in cell-matrix adhesion by its affinity to 

collagens and glycosaminoglycans. It also interacts with cell surface integrins. The attachment 

of cells to fibronectin plays an important role during developmental processes as embryonic 

cells migrate on or through this protein. During wound healing keratinocytes use the same kind 

of migration pattern for re-epithelialization. Migrating keratinocytes in human wounds express 

two major receptors that are able to bind fibronectin, namely α5β1 and αvβ6.  Wounding 

induces expression of these receptors. Malignantly transformed cells tend to lack fibronectin 

production (Yamada, 1991; Ruoslahti, 1999; Amstrong et al., 2000). 

 

Collagens 

Collagens are the main ECM components and also the most abundant proteins in the human 

body. Collagens are synthesized and secreted as procollagens, with large N- and C-terminal 

propeptides, which are later proteolytically processed to their mature forms. Collagens are 

triple-helical molecules composed of three α-chains with series of Gly-X-Y triplet sequences. 

The family of collagens is divided into subclasses on the basis of their structure. The main 

collagens found in connective tissue are fibrillar collagens (types I, II, III, V and XI), of which 

the types I and III are the main collagens in skin. Type I collagen gives strength and type III 

flexibility to the tissues (Mauch and Krieg, 1993). Non-fibrillar collagens form sheet-like 

structures and connect ECM components to collagen fibrils (Prockop and Kivirikko, 1995; 

Aumailley and Gayraud, 1998). These non-fibrillar collagens include groups of network-

forming collagens (type IV, VIII and X), fibril associated collagens (types IX, XII, XIV, XVI 

and XIX), collagens that have a transmembrane domain (types XIII and XVII), multiplexins 

(types XV and XVIII), which have multiple triple- helical domains and interruptions and 

orphans (types VI and VII), (Prockop and Kivirikko, 1995; Pihlajaniemi and Rehn, 1995).  

 

2.1.2. Basement membrane 

Epidermis, as well as all other epithelial sheets and tubes, is separated from the underlying or 

surrounding tissue by a basal lamina, which is composed of three different layers: lamina 

lucida, lamina densa and lamina fibroreticularis (Yurchenco and Schittny, 1990). This 

composition of three layers, also called basement membrane (BM), is a special structure of 

ECM. BM provides tissue compartmentalization by acting as a barrier to cell penetration and 

filtration (Timpl, 1996). BM supports the epidermis and by its ligands, it interacts with cellular 
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receptors and modulates cell shape, gene expression, cell migration and proliferation as well as 

the programmed cell death, apoptosis. Typical constituents of BM are highly cross-linked type 

IV collagen and laminins, perlecan, entactin, calcium-binding and adhesive proteins (fibulins, 

agrin, cadherins, etc.). Type IV collagen and laminin-1 form a network connected by nidogen 

(Dziadek et al., 1995), which also binds several other components, like proteoglycans and 

glycoproteins (see Figure 1.). 

 

Epithelial cells in stratified epithelia attach to the BM via hemidesmosomes, which are a 

multiprotein junctional complexes in the BM. Hemidesmosomes consist of three classes of 

proteins: cytoplasmic plaque proteins, transmembrane proteins and BM associated proteins. 

Plaque proteins, plectin (McLean et al., 1996), bullous pemphigoid antigen 1 (BPAG) (Stanley 

et al., 1988) and intermediate filament associated protein act as linkers of the cytoskeleton. The 

transmembrane proteins, α6β4 integrin and type XVII collagen (BPAG 2) (Stepp et al., 1990; 

Sonnenberg et al., 1991; Giudice et al., 1992) connect the cell interior to the ECM.  Finally, 

BM associated protein laminin-5 is linked to the type VII collagen (Rousselle et al., 1991 and 

1997) as well as to the α6β4 integrin forming the HD and maintaining the stable adhesion 

(Borradori and Sonnenberg 1999). 

 

 
Figure 1. Some of the BM network proteins and the structure of hemidesmosome (modified 

from Burgeson and Christiano, 1997).   
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Laminins 

Laminins (Ln) are cross- or T-shaped heterotrimeric proteins consisting of α, β and γ chains. 

Laminin-5 (also called kalinin, epiligrin and nicein), a member of this family, is composed of 

genetically distinct polypeptides, the α3, β3 and  γ2 chains, which are assembled in a coiled 

coil structure. Ln-5 is mainly deposited in BM promoting static adhesion and hemidesmosome 

formation in the BM structure (Giannelli and Antonaci, 2001). It mediates cell proliferation, 

wound healing and homeostasis of skin. It also stimulates cell migration and invasion after 

having been specifically cleaved by MMPs such as MMP-2 or MT1-MMP (Koshikawa et al., 

2000; Giannelli et al., 1997). The γ2 chain of laminin-5 is expressed in the cytoplasm of 

epithelial human cancer cells at the advancing edge of tumors (Giannelli and Antonaci, 2001) 

and has been shown to be a good marker for cancer invasion in various tumor types (Lohi, 

2001). Laminin-5 binds to integrins α6β4, α3β1 and α6β1 (Carter et al., 1991). Together with 

α6β4, Ln-5 interacts with intermediate filaments and forms a hemidesmosome adhesion 

complex, which plays a crucial role in the keratinocyte-BM structure. 

 

2.1.3. Cell-cell and cell-matrix interactions and principles of cell migration 

The cell, as a living organism,  needs signals from the environment as well as attachment to a 

certain matrix to survive. Cell adhesion molecules glue cells together forming multicellular 

organisms and tissues and giving cell the ability to communicate with the surroundings. Cell 

adhesion molecules are situated on the surfaces of cells and bind to ECM molecules, receptors 

or on to the other cells. Integrins and E-cadherin are the most important cell adhesion molecules 

expressed by stratified squamous epithelium. Altered expression of these molecules is 

characteristic for tumor cells as has been found in skin and oral carcinomas (Thomas and 

Speight, 2001a).  

 

Cadherins 

Cell-cell contacts are made with specific adherens junctions and desmosomes, mediated by 

transmembrane glycoproteins, cadherins. These are a large family of calcium-dependent,  "cell 

adhesion molecules". In addition to their structural role, cadherins have a number of important 

functions in the control of cell growth and differentiation. Desmosomes are composed of two 

types of cadherins, desmocollins and desmogleins (Huber, 2003), whereas epithelial adherens 

junctions contain usually only E-cadherin, which is linked to actin filaments by catenins. The 
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desmosomal cadherins are linked to the keratin cytoskeleton via several cytoplasmic plaque 

proteins, including desmoplakin and plakoglobin (gamma-catenin).  

 

Integrins 

Integrins form a large family of heterodimeric cell surface receptors involved in cell-cell and 

cell-matrix adhesion and communication. Their participation in normal tissue remodelling, 

development, immune response and maintenance of tissue integrity, is well elucidated. They 

also play a significant role in pathological conditions, especially in chronic inflammation, 

cancer invasion and metastasis (see Ivaska and Heino, 2000). Integrins are known to have a 

essential role in cell migration, during wound healing and cancer invasion (Heino, 1996), not 

only by mediating the cell movement but also by regulating the expression of MMPs (see 

Ivaska and Heino, 2000).  It has been shown that α1 integrin knock out mice have defects in 

collagen synthesis as well as in matrix metalloproteinase expression. α1β1 and α2β1 are the 

most important collagen receptors. α2β1 is an important collagen receptor of platelets and 

epithelial cells (Zutter and Santoro, 1990). Keratinocyte migration requires α2β1 integrin-

mediated interaction with Ln-5 chain (Decline and Rousselle, 2001).  Up-regulation of another 

epithelial integrin, αvβ6, which binds fibronectin and tenascin (Sheppard et al., 1990), has been 

found in oral cancer, suggesting that it may play an active role in disease progression (Thomas 

and Speight, 2001b and 2002). 

 

Cell migration 

Cell migration is an essential phenomenon during embryonic development (Zagris, 2001). The 

capacity of cell movement may be activated by wounding, inflammation or by malignant 

transformation. Cell migration requires cell adhesion and rearrangement of the adhesion 

molecule complexes.  When a cell starts to migrate, it forms a filopod/ lamellipod like structure 

at the leading edge of the cell and uses these spikes to attach to the underlying substrate. At the 

same time, integrins cluster to the cell membrane at the ligand binding sites inducing 

intracellular cell signalling and assembly of focal adhesion complexes (Friedl and Brocker, 

2000). Cell movement results from the adhesive traction by focal contacts and actin filament 

contraction. The direction of cell migration may be affected by chemo (soluble) or hapto (solid) 

attractants, like cytokines and growth factors, matrix fragments or cryptic sites. Proteolytic 

enzymes and their inhibitors modulate cell migration by degrading the restricting ECM and thus 

clearing the way for cell movement. They also remodel ECM components better suitable for 
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migration. MMPs regulate the bioavailability of growth factors, cytokines and chemokines that 

participate in the guidance of cell motility. During tumor cell invasion, the cell migration 

proceeds via penetration of the BM to the underlying stromal tissue.   

 

2.2. PROTEOLYTIC REMODELLING OF THE EXTRACELLULAR MATRIX 

Precise degradation of the connective tissue is essential in many developmental and reparative 

processes, such as reproduction, fetal development, wound healing and angiogenesis. The 

proteinases comprise both exopeptidases and endopeptidases (proteinases). These are divided 

into groups based on their catalytic group at their active site: serine/threonine, cysteine, aspartic 

or metallo (Woessner,1998). Metalloproteinases are further divided into several superfamilies, 

one of which is metzincins. They bind zinc at the catalytic site and have a conserved “Met-turn” 

motif and conserved structural topology. Metzincins consists of four groups: serralysins, 

matrixins, astacins and adamalysins (see Stöcker et al., 1995; Bergers and Coussens, 2000).  

Serine proteinases contain a serine residue in their catalytic site. The group of serine 

proteinases include chymotrypsin, chymase, trypsin, plasminogen activators (PAs), plasmin, 

enteropeptidase, neutrophil elastase, cathepsin G and furin proteinases. Tissue-type PA as well 

as the urokinase type PA both convert the plasma protein, plasminogen to active plasmin, 

which has wide substrate specificity and is able to activate several latent metalloproteinases. 

Serine proteinases are inhibited by serpins (Silverman et al., 2001). 

 

2.2.1. Matrix Metalloproteinases 

Matrix metalloproteinases (MMP) are zinc-dependent proteolytic enzymes, which take part in 

proteolytic degradation of the ECM and BM during morphogenesis, cell migration and 

angiogenesis. Together they are able to degrade practically all ECM proteins (see Table 1., page 

23). The basic structure of MMPs consists of a catalytic domain and additional amount of 

variable inserts depending on the specific MMP (see Figure 2.). These variable inserts include 

the signal peptide, propeptide, furin-cleavage site insert, fibronectin like repeats, hinge region, 

hemopexin domain, and membrane insertion extension. MMPs are generally divided into six 

subgroups: interstitial collagenases (MMP-1,  -8 and MMP-13), stromelysins (MMP-3, -10, -11 

and MMP-12), matrilysins (MMP-7 and MMP-26), type IV collagenases (MMP-2 and MMP-9), 

membrane-type MMPs (MMP-14, -15, -16, -17, -24 and MMP-25) and others (MMP-19, -23 

and MMP-28) (Nagase and Woessner, 1999; Uria et al., 2000; Lohi et al., 2001). At least eight 

of the known human MMP genes (MMP-1, MMP-3, MMP-7, MMP-8, MMP-10, MMP-12, 
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MMP-13, and MMP-20) are clustered in chromosome 11 at 11q21–23 (Shapiro, 1998). Other 

known MMP genes are scattered along chromosomes 1, 8, 12, 14, 16, 20, and 22. 

 

 
Figure 2. Structure and subclasses of vertebrate MMPs. (Modified from Overall and Lopéz-
Otín, 2002). Abbreviations TM, transmembrane domain; CA, cysteine array; GPI, glycosyl 
phosphatidylinositol-anchor; Ig, immunoglobulin like 
 

2.2.1.1. Collagenases 

Collagenases are able to degrade native fibrillar interstitial collagen, which otherwise is very 

resistant to proteolytic degradation. Collagen is cleaved at a specific site producing ¾ N- 

terminal and ¼ C-terminal fragments, which denature spontaneously to gelatin at 37o C. These 

fragments are further degraded by other MMPs, e.g. gelatinases. Three collagenases are known: 
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collagenase-1 (interstitial collagenase-1, MMP-1) (Goldberg et al., 1986), collagenase –2 

(neutrophil collagenase, MMP-8) (Hasty et al., 1990), and collagenase-3 (MMP-13) (Freije et 

al., 1994).  

 

Collagenase-1 (MMP-1) was the first MMP found from the metamorphosing tadpole (Gross 

and Lapière, 1962). It was also the first vertebrate collagenase purified and determined by 

cDNA cloning (Stricklin et al., 1977; Goldberg, 1986). MMP-1 is expressed in vivo in various 

physiological and pathological situations, such as in embryonic development, in wound repair 

and in malignant tumors (McGowan et al., 1994; Saarialho-Kere, 1998; Stetler-Stevenson et al., 

1993). In cultured cells, expression of MMP-1 is detected in keratinocytes, fibroblasts, 

endothelial cells, macrophages, monocytes, hepatocytes, chondrocytes and osteoblasts 

(Birkedal-Hansen et al., 1993; Stetler-Stevenson et al., 1993). Proteolytic activation of human 

skin MMP-1 procollagenase results in removal of 81 amino acid residues from the amino-

terminal portion of the proenzyme (Goldberg at al., 1986). Active MMP-1 is able to cleave 

collagen types I-III, VII, VIII and X, agrecan, serpins and α2macroglobulin.  

 

Collagenase-2 (MMP-8) was first described in 1960s and later purified and cloned (Hasty et al., 

1987 and 1990).  MMP-8 is synthesized in polymorphonuclear leukocytes during their 

maturation in bone marrow and stored in specific intracellular granules, out of which it is 

secreted to the cell environment in response to an external stimuli (Hasty et al., 1986, 1987 and 

1990). MMP-8 is also detected in chondrocytes as well as in mononuclear fibroblast-like cells 

in rheumatoid synovial membrane, in gingival fibroblasts, and bronchial epithelial cells (Cole et 

al., 1996; Hanemaaijer et al., 1997; Abe et al., 2001; Prikk et al., 2001).  As active collagenase -

1 is specialized to degrade type III collagen, MMP-8 prefers types I and II (Welgus et al., 1981), 

and in fact, MMP-8 is believed to be the initiator for type I collagen degradation. It is also able 

to degrade aggrecan (Fosang et al., 1996). 

 

Collagenase –3 (MMP-13) was originally cloned from human breast tumor cDNA library. It has 

a 86% homology with a rodent collagenase and only 50% with human MMP-1 (Freije et al., 

1994). MMP-13 has a key role in the MMP activation cascade and appears to be critical in bone 

metabolism and homeostasis. MMP-13 is predicted to have an important role in tumor invasion 

and metastasis due to its wide substrate specificity and its upregulated expression in cancer cells 

(Leeman et al., 2002). MMP-13 expression is seen in skin cancers (Airola et al., 1997; Airola et 

al., 1999) and adenovirus-mediated gene delivery of its inhibitor, TIMP-3, inhibits invasion and 
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induces apoptosis in melanoma cells (Ahonen et al., 1998). The latent form of MMP-13 is 

activated by stromelysin-1 and -2, MMP-2, MT1-MMP and MT2-MMP, trypsin and plasmin. 

MMP-13 has a large variety of substrates  (types I-IV, IX, X, XIV collagens, fibronectin, 

aggrecan, gelatin, large tenascin C, fibrillin, osteonectin, and serine proteinase inhibitor) 

(Knäuper et al., 1996 and 1997; Mitchell et al., 1996; Ashworth et al., 1999) (see also  Table 1 

on page 23). 

 

2.2.1.2. Stromelysins and stromelysin-like MMPs 

The stromelysin subfamily consists of stromelysin-1 (MMP-3) and –2 (MMP-10), which are 

structurally related. Stromelysin-3 (MMP-11) and human macrophage metalloelastase (MMP-

12) are often included in a group of stromelysin-like MMPs.   

 

Stromelysins-1 and  –2 are expressed by keratinocytes in culture and in vivo and in fibroblasts 

in culture (Birkedal-Hansen et al., 1993, Windsor et al., 1993; Saarialho-Kere, 1998). MMP-10 

is upregulated by cytokines during normal wound repair (Rechardt et al., 2000). It is also able to 

activate other MMPs, such as MMP-1, MMP-8 and MMP-9 (Nagase, 1998; Nakamura et al., 

1998). Stromelysins -1 and -2 digest type IV, IX and XI collagens, tenascin, vitronectin, 

perlecan, versican, laminin, elastin and IL-1β (Nagase, 1998). 

 

Stromelysin -3 (MMP-11) was cloned from invasive breast cancer tissue (Basset et al., 1990). In 

the skin, MMP-11 is expressed by fibroblasts in BCCs and SCCs (Thewes et al., 1999) and its 

high expression level correlates with increased tumor aggressiveness in breast cancer (Basset et 

al., 1993). MMP-11 diverges from MMP-3 and -10 in amino acid sequence and in enzymatic 

activity. MMP-11 can degrade serine proteinase inhibitors and α1-proteinase inhibitor, but not 

any ECM components (Pei et al., 1994).  

 

Human macrophage metalloelastase (HME, MMP-12) is often included in a group of 

stromelysin-like MMPs. It was initially found in alveolar macrophages of cigarette smokers 

(Shapiro et al., 1993). The expression of MMP-12 is also found in vivo in macrophages in 

granulomatous skin diseases, solar elastosis, in intestinal ulcerations and inflammation 

(Vaalamo et al., 1998; Salmela et al., 2001; Chung et al., 2002) as well as in tumor cells in SCC 

of vulva (Kerkelä et al., 2000) and in skin cancers (Kerkelä et al., 2000). MMP-12 is the most 

efficient degrader of elastin, but it is also able to cleave type IV collagen, fibronectin, laminin-1, 

gelatin, vitronectin, entactin and  a variety of ECM proteoglycans and glycosaminoglycans 
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(Chandler et al., 1996; Gronski et al., 1997; Hiller et al., 2000). MMP-12 is able to cleave 

plasminogen into angiostatin thus preventing tumor growth by inhibiting angiogenesis (Dong et 

al., 1997; Cornelius et al., 1998).  

 

2.2.1.3. Matrilysins 

Matrilysin-1 (MMP-7) and endometase (MMP-26) are the smallest MMPs. They lack the hinge 

region and hemopexin domains, which  restricts their substrate specificity (Park et al., 2000). 

MMP-7 was originally identified as the small putative uterine metalloproteinase (PUMP) 

(Mueller et al., 1988). It is produced by sweat and salivary glands, airway ciliated cells, and by 

the ductal or glandular epithelium of breast, liver, pancreas and urogenital tissues (Rodgers et 

al., 1994; Saarialho-Kere et al., 1995; Wilson et al., 1995). MMP-7 is upregulated in injured 

epithelium in the intestine (Saarialho-Kere et al., 1996) and airways (Dunsmore et al., 1998), 

and has thus been implicated in epithelial repair. Also in tumors of epithelial origin, like breast, 

skin, stomach and colon carcinomas, MMP-7 is overexpressed (Basset et al., 1990, Karelina et 

al., 1994; Newell et al., 1994; McDonnell et al., 1991). MMP-7 is able to inhibit tumor 

angiogenesis by generating angiostatin (Patterson and Sang, 1997); this was is proven in vivo 

(Pozzi et al., 2000). Furthermore, MMP-7 functions in mucosal immunity by regulating the 

level of antimicrobial peptides (Parks et al., 2001). 

 

Matrilysin-2 (Endometase, MMP-26) is a fairly recently discovered MMP. It was cloned from 

fetal (de Coignac et al., 2000), placenta (Uria and Lopez-Otin, 2000), and human endometrium 

cDNA libraries (Isaka et al., 2003). It is expressed in uterus and in placenta and also various 

tumor cell lines as well as in carcinomas of the lung, prostate and breast by RT-PCR 

(Marchenko et al., 2001). MMP-26 is able to degrade fibrinogen, fibronectin, type IV collagen, 

gelatin, vitronectin and α1-proteinase inhibitor (Park et al., 2000; Uria and Lopez-Otin, 2000; 

Marchenko et al., 2001).  

 

2.2.1.4. Type IV collagenases 

Type IV collagenases, also called gelatinases, consist of two enzymes, MMP-2 (72-kDa 

gelatinase or gelatinase A) and MMP-9 (92-kDa gelatinase or gelatinase B). MMP-2 is 

expressed by various cell types e.g. dermal fibroblasts, keratinocytes, and endothelial cells 

(Birkedal-Hansen, 1993). MMP-9 is produced by polymorphonuclear leukocytes, macrophages 

and cultured keratinocytes, osteoclasts, invading trophoblasts and by many types of transformed 

cells (Hibbs et al, 1987; Birkedal-Hansen, 1993; Zeigler et al., 1996). MMP-9 expression is 
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enhanced by TGF-β, TNF-α or IL-1β in cultured mucosal keratinocytes (Salo et al., 1994). 

TNF-α mediated activation of pro-MMP-9 is associated with down-regulation of TIMP-1 in 

human skin (Han et al., 2002). In addition to gelatin, MMP-2 and MMP-9 degrade type IV, V, 

VII and X collagens, laminins, elastin, fibronectin and vitronectin (for review see Ravanti and 

Kähäri, 2000). MMP-2 and MT1-MMP (MMP-14) are capable of cleavaging Ln-5, resulting in 

a fragment that promotes cell migration of normal breast epithelial cells and tumor cells 

(Giannelli et al., 1997; Koshikawa et al., 2000).  

 

2.2.1.5. Membrane-type MMPs 

Membrane-type MMPs (MT-MMPs) constitute a subclass of recently identified matrix 

metalloproteinases. In addition to the highly conserved MMP functional domains, the MT-

MMPs have additional insertion sequences. MT-MMPs are membrane associated and a number 

of these have cytoplasmic domains which may be important in cellular signaling. The first 

MT1-MMP (MMP-14) was found on the surface of invasive tumor cells in 1994 (Sato et al., 

1994) and nowdays six members are reported (MMP-14, MMP-15, MMP-16, MMP-17, MMP-

24 and MMP-25) (Takino et al., 1995; Will and Hintzman, 1995; Puente et al., 1996; Llano et 

al., 1999; Pei, 1999). MT-MMPs are localized at the cell surface. Their localization facilitates 

their role in cell-matrix interactions and activation of other MMPs.  For instance active MMP-

14 is auxiliary to TIMP-2 for the full activation of MMP-2 (Kinoshita et al., 1998). The 

expression of MT1-MMP is not detected in normal epithelial cells, but can be seen in 

transformed epithelial carcinoma cells. In addition it is shown that MT1-, MT2- and MT3-

MMPs are able to degrade cell surface tissue transglutaminase at the leading edge of invasive 

cancer cells (Belkin et al., 2001). Based on these findings, it is believed that MT-MMPs are 

central mediators of surface proteolytic events that regulate cancer cell adhesion, motility, 

metastasis and angiogenesis.  

 

2.2.1.6. Other MMPs 

MMP-19 is one of the recently cloned members of the MMP family. It differs from the others 

by its unique chromosomal location (12q14) (Pendas et al., 1997). MMP-19 lacks several 

structural features known to be present in other MMP subclasses, including Asp, Tyr, and Gly 

residues close to the zinc-binding site, the fibronectin-like and the transmembrane domains as 

well as the furin-activation sequence, based on which it cannot be included into any of the 

known subclasses (Pendas et al., 1997). In vitro MMP-19 is able to degrade many important 
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BM components such as type IV collagen, laminin-1, nidogen and fibronectin as well as 

tenascin-C isoform, aggrecan, type I gelatin and cartilage oligomeric matrix protein COMP 

(Stracke et al., 2000a) but does not activate any other latent MMPs (Stracke et al., 2000b).  

MMP-19 was originally detected in placenta, lung, pancreas, liver, ovary, spleen and intestine 

by Northern Analysis (Pendas et al., 1997). Independently, it was isolated as an autoantigen 

from the inflamed synovium of a patient suffering from rheumatoid arthritis (Sedlacek et al., 

1998).  MMP-19 has been described in smooth muscle cells of the tunica media of large blood 

vessels and those of normal skin and uterine ligaments as well as in endothelial cells of acutely 

inflamed synovial capillaries (Kolb et al., 1999). It is also detected on the surface of activated 

peripheral blood mononuclear cells, TH1 lymphocytes and Jurkat T lymphoma cells (Sedlacek 

et al., 1998). MMP-19 has been suggested to play a role in matrix remodeling processes and in 

the pathogenesis of rheumatoid arthritis (Sedlacek et al., 1998; Konttinen et al.,1999). Because 

of its expression in normal tissues it is possible that MMP-19 is important in normal tissue 

remodelling or activation of secreted and membrane bound proteins, like growth factors.  

 

Enamelysin (MMP-20) expression is restricted to ameloblasts and odontoblasts of developing 

teeth (Llano et al., 1997). Its´ substrates include the major component of the enamel matrix, 

amelogenin, and aggrecan and COMP (Stracke et al., 2000a). MMP-20 is apparently important 

in tooth enamel formation and is expressed by human tongue carcinoma cells (Väänänen et al., 

2001). 

 

MMP-21 was found from human placenta cDNA (Ahokas et al., 2002). A 2.5 kb messenger 

RNA was observed in fetal liver by Northern analysis and by RT-PCR, MMP-21 is expressed in 

various human fetal and adult tissues as well as in cancer cell lines. MMP-21 protein can also be 

detected in several cancer types, such as ovarian and colon carcinomas by 

immunohistochemical staining. It has been suggested that MMP-21 functions in embryogenesis 

and tumor progression (Marchenko et al., 2003; Ahokas et al., 2003).  

 

MMP-23 was cloned from an ovary cDNA library (Velasco et al., 1999) and it is mainly 

expressed in ovary, testis and prostate, indicating its possible role in reproductive processes. 

MMP-23 has a unique structure and its biological function is not known (Pei et al., 2000). 

 

MMP-27 has been identified on the basis of EST sequences. The function of this enzyme is not 

known (Yang and Kurkinen, 1998).  
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MMP-28 (epilysin), is another novel MMP, recently cloned from the testis and keratinocyte 

cDNA libraries (Lohi et al., 2001). It is a 59 kDa protein and is structurally mostly related to 

MMP-19. It is found in lung and in a variety of carcinomas (Marchenko and Strongin, 2001). 

Epilysin expression is also associated with cell proliferation during epithelial repair, while 

migrating keratinocytes do not express MMP-28 (Saarialho-Kere et al., 2002). 

 

Table 1. MMPs and their substrates. 

Enzyme Substrates 
Collagenase-1 (MMP-1) 
 
Collagenase-2 (MMP-8) 
Collagenase-3 (MMP-13) 

Col I, II, III, VII, VIII, X, aggrecan, entactin/nidogen, MBP, serpins, α2M, 
perlecan, vitronectin, tenascin, fibrinogen, TNF precursor, IGFBP 
Col I, II, III, aggrecan, serpins, α2M, fibrinogen 
Col I, II, III, IV, IX, X, XIV, aggrecan, fibrillin, fibronectin, gelatin, Ln-1, large 
tenascin C, osteonectin, serpins, PAI, fibrinogen 

Gelatinase-A 
(MMP-2)  
 
Gelatinase-B 
(MMP-9) 
 

Col, I, IV, V, VII, X, gelatin, fibronectin, tenascin, fibrillin, osteonectin, entactin, 
aggrecan, vitronectin, decorin, MBP, decorin, plasminogen, α2M, Ln-5, IGFBP, 
TNF precursor, pro-TGF-β, α1PI 
Col I, IV, V, VII, XI, XIV, gelatin, elastin, fibrillin, osteonectin, aggrecan, 
fibronectin, vitronectin, decorin, MBP, α2M, TNF precursor, IGFBP, 
plasminogen, pro-TGF-β, α1PI 

Stromelysin-1 (MMP-3) 
 
 
Stromelysin-2 (MMP-10) 
Stromelysin-3 (MMP-11) 

Col III, IV, V, VII, IX, X, elastin, fibronectin, fibrillin, fibrinogen, gelatin, 
aggrecan, Ln-1, nidogen, vitronectin, osteonectin, decorin, tenascin, α1PI, TNF 
precursor, MBP, E-cadherin, IGFBP, plasminogen, osteopontin 
Col III; IV, V, IX, X, elastin, fibronectin, gelatin, aggrecan, Ln-1, nidogen 
α1PI, IGFBP 

Metalloelastase (MMP-12) Elastin, col IV, fibronectin, Ln-1, gelatin, vitronectin, entactin, proteoglycan, 
heparan and chondroitin sulfates, TNF precursor, plasminogen, fibrillin, 
fibrinogen, α1PI 

Matrilysin  (MMP-7) Col IV, elastin, fibronectin, Ln-1, entactin, tenascin, osteonectin, aggrecan, 
vitronectin, MBP, decorin, versican, α1PI, osteopontin, E-cadherin, plasminogen, 
β4 integrin, α-prodefensin, Fas ligand, pro-TNF-α 

Matrilysin-2  (MMP-26) Col IV, gelatin, fibronectin, fibrin, α1PI, β-casein, TACE-substrate 
MT1-MMP (MMP-14) Col I, II, III, gelatin, fibronectin, Ln-1, vitronectin, aggrecan, tenascin, nidogen, 

perlecan, fibrinogen/fibrin, fibrillin, α1PI, α2M, LN-5, CD44, tTG 
MT2-MMP (MMP-15) Fibronectin, LN-1, gelatin, aggrecan, tenascin, nidogen, perlecan, vitronectin, 

tTG 
MT3-MMP (MMP-16) Col III, fibronectin, gelatin, laminin, aggrecan, casein, vitronectin, α2M, α1PI, 

tTG 
MT4-MMP (MMP-17) Gelatin, TNF-α precursor, fibrillin, fibronectin 
MT5-MMP (MMP-24) ND 
MMP-19 Col IV, gelatin, LN-1, nidogen, tenascin, fibronectin, aggrecan, fibrinogen, 

COMP 
Enamelysin (MMP-20) 
MMP-21 

Amelogenin, aggrecan, COMP 
ND 

MMP-23  
MMP-27 
MMP-28 

gelatin 
ND 
casein 

ND = not determined (Modified from Kerkelä and Saarialho-Kere, 2003; Lohi et al., 2001) 
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2.2.2. Regulation of MMPs 

In normal tissue the secretion and activity of MMPs is very low, but their production and 

release are rapidly induced when tissue remodelling is needed (Nagase and Woessner, 1999). 

Generally MMPs are not expressed in normal skin but are upregulated in inflamed or diseased 

skin. Regulation of MMPs occurs at many levels, including transcription, modulation of mRNA 

half-life, secretion, localization, zymogen activation and inhibition of the proteolytic activity.  

 

2.2.2.1. Transcriptional regulation of MMP genes 

Control at the level of transcription is the major level of MMP regulation (Fini et al., 1998). 

Various effectors including growth factors and cytokines (EGF, TNF-α, IL-1β, bFGF, PDGF, 

IL-6 and TGF-β), chemical agents, physical stress, oncogenic cellular transformation as well as 

cell-cell and cell matrix interactions regulate MMP gene expression (see Nagase and Woessner, 

1999). Extracellular stimuli affect MMP expression via signal transduction pathways that lead 

to AP-1 (activator protein-1) binding site activation. AP-1 site is in the genes of MMPs-1, -3, -7, 

-8, -9, -10, -12 and MMP-13. MMP-1, -3 and MMP-9 have also another AP-1 site, but the role 

of this site is not clear. The expression of AP-1 transcription factors are induced by mitogen 

activated proteine kinase (MAPK) pathways, i.e. extracellular signal-regulated kinase (ERK1, 

2), stress activated proteinase kinase/Jun N-terminal kinase (SAPK/ JNK) and p38. ERK 1, 2 

pathway plays a crucial role in growth factor induced mitogenesis, differentiation and cellular 

transformation, but it can also be induced by stress stimuli.  SAPK/JNK and p38 are merely 

activated by cytokines and stress such as UV-light (Karin et al., 1997). MMP-2, MMP-11, 

MMP-28 and MT1-MMP genes do not have AP-1 site.  

 

TGF-β inhibitory elements (TIE) are described in some MMP gene promoters (MMPs-1, -7 and 

-13), but their role is not clear. TGF-β and TNF-α might stimulate MMP-1 expression as shown 

in cultured keratinocytes (Clark et al., 1995; Mauviel et al., 1996; Johansson et al., 1997). 

MMP-7 can be both up- and downregulated by TGF-β  (Wilson and Matrisian, 1998). In rats, 

TGF-β downregulates gene expression of MMP-3 (Kerr et al., 1990). MMP-10 is responsive for 

EGF, KGF, TNF-α, TGF-β1 and TGF-α, as well as for phorbol ester in keratinocytes (Windsor 

et al., 1993; Madlener et al., 1996). MMP-12 is upregulated by IL-1, TNF-α, M-CSF, VEGF 

and PDGF-BB and inhibited by TGF-β (Feinberg et al., 2000).  MMP-13 is induced by TPA, 

IL-1β and TGF-β in human fibroblasts (Uria et al., 1997, 1998). 
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2.2.2.2. Activation of proMMPs 

Most proMMPs are secreted from cells and activated extracellularly, but some of them are 

stored in and released from intracellular granules (MMP-8, MMP-9). ProMMPs secreted as 

inactive zymogens can be activated by proteinases or by nonproteolytic agents (Nagase, 1997).  

In vitro the activation can occur by plasmin, trypsin, furin, kallikrein, chymase, mast cell 

tryptase as well as by other, such as bacterial proteinases. Activation of proMMPs by plasmin is 

a relevant pathway in vivo. Plasmin is generated from plasminogen by tissue plasminogen 

activator (tPA) and urokinase plasminogen activator (uPA). Plasmin has been reported to 

activate proMMP-1, proMMP-3, proMMP-7, proMMP-9, proMMP-10, and proMMP-13 

(Lijnen, 2001). ProMMP-1 can also be activated by MMP-3, MMP-7 or by MMP-10 (Imai et 

al., 1995; Suzuki et al., 1990). 

 

Many MMPS are activated by other MMPs (see Figure 3.). ProMMP-2 is activated by MT-

MMPs (Strongin et al, 1995), including MT1-MMP, MT2-MMP, MT3-MMP, MT5-MMP and 

MT6-MMP (see Visse and Nagase, 2003). MT4-MMP does not activate proMMP-2 (English et 

al., 2000). MMP-2 activation with active MT1-MMP needs TIMP-2, but MT2-MMP is 

independent of it (Morrison et al., 2001). During MMP-2 activation, MT1-MMP forms dimers 

or multimers on the cell surface through interaction of the hemopexin domains and then binds 

TIMP-2. ProMMP-2 binds to the C-terminal domain of TIMP-2 through its hemopexin domain. 

The second, active, MT1-MMP then cleaves proMMP-2, thereby partly activating it. The MMP-

2 dissociates from the membrane and is fully activated by intermolecular processing. Thus 

TIMP-2 enhances the activation of MMP-2 at low levels, but inhibits it at high levels. ProMMP-

11 possesses a furin recognition sequence and it is activated intracellularly by furin (Pei and 

Weiss, 1995). MT-MMPs (Sternlicht and Werb, 2001; Woessner and Nagase, 2000), MMP-21, 

MMP-23, and MMP-28 (Marchenko and Strongin, 2001; Lohi et al., 2001; Ahokas et al., 2002) 

have a similar basic motif in the propeptide. ProMMP-13 can be activated by MMP-3, MMP-

10, MT2-MMP as well as by MT1-MMP (Knäuper et al., 1996; d´Ortho et al., 1997; Murphy et 

al., 1999) and MMP-13 itself is able to activate gelatinases (Knäuper et al., 1997). MMP-26 is 

an exception, because it is auto- activated (Marchenko et al., 2003). 
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Figure 3.  Summary of the activation cascades of MMPs. Arrows indicate the activation (see 
text for details) (see Ravanti and Kähäri, 2000). 
 

2.2.2.3. Inhibition of MMPs  

Tissue inhibitors of metalloproteinases (TIMPs)  

TIMPs are a family of secretory proteins that are able to inhibit MMP activity through non-

covalent binding of active forms of MMPs in the extracellular space in 1:1 molar stoichiometry. 

Four TIMPs have been identified in vertebrates, namely TIMP-1, -2, -3 and -4 (Edwards et al., 

1996; Gomez et al., 1997). Their expression is regulated during development and tissue 

remodelling (Brew et al., 2000). TIMPs are expressed in various tissues and by many cell types 

(Gomez et al., 1997). TIMP-1, TIMP-2 and TIMP-4 stay in secreted form in ECM whereas 

TIMP-3 is associated with it (Leco et al., 1994). All TIMPs are capable of inhibiting all MMPs, 

with the following exceptions: TIMP-1, which is not able to inhibit MT1-MMP and TIMP-3 , 

which is a better inhibitor for ADAM-17 (TACE) and aggrecaases (ADAMTS-4 and -5) than 

for MMPs (see Visse and Nagase, 2003). TIMPs have N- and C-terminal domains and the MMP 

inhibition occurs through folding the N-domain and binding it to the active site of MMP. TIMPs 

play an important role in many biological processes, including fetal development, angiogenesis 

and cancer. An imbalance between TIMP and MMP activities is believed to result in excessive 

degradation of matrix components in tumor invasion, but the balance between various TIMPs 

may also be a critical factor in determining the degradative potential of cells in normal and 

pathological conditions.  
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Overexpression of different TIMPs can inhibit invasion of malignant cells in vivo and in vitro. 

Therefore, adenovirus-mediated gene delivery of TIMP-1, -2 and -3 into malignant cells may be 

a potent way of inhibiting tumor invasion (Ahonen et al., 1998). However, the lack of effective 

methods for gene delivery has limited the clinical utility of this approach. 

 

Other MMP inhibitors  

Non-specific plasma α-macroglobulins are expressed in many human tissues and are an 

example of endopeptidase inhibitors that are able to inhibit MMPs as well as most other 

proteinases (serine, cysteine-, and aspartate proteinases). In addition, serine proteinase 

inhibitors (plasminogen activator inhibitor and α1-antitrypsin) are able to regulate proteinase 

activity in tissue. Chelating compounds, like biphosphonates and tetracyclins are able to inhibit 

MMP activity (Woessner, 1999; Hidalgo and Eckhardt 2001a) by binding to the zinc ion at the 

catalytic site. Tetracyclin derivatives are able to block both synthesis and activation of MMPs, 

whereas biphosphonates inhibit only the enzymatic activity of MMPs. TGF-β, glucocorticoid 

hormones and retinoids are common downregulators of the transcription of MMPs (Egeblad 

and Werb, 2002). Also the inhibition of the activity of different protein kinases (MAPKs) may 

serve as a potent way of inhibiting MMP expression (see Overall and Lopez-Otin, 2002). 

Reversion-indicing cysteine -rich protein with kazal motifs (RECK), is  a membrane-anchored 

inhibitor of MMPs. It was recently characterized for its role in development, tissue 

homeostasis, and tumor angiogenesis.The RECK gene is widely expressed in normal human 

tissues but it is downregulated in tumor cell lines and oncogenically transformed fibroblasts. 

RECK suppresses tumor invasion and angiogenesis by regulating matrix-metalloproteinases 

(MMP-2, MMP-9 and MT1-MMP). Restored RECK expression in cancer cell lines results in a 

strong suppression of invasion, metastasis, and tumor angiogenesis (Weaver, 2002; Noda et al., 

2003).  

 

Synthetic MMP inhibitors 

In recent years, many chemical inhibitors for MMPs, like broad-spectrum MMP inhibitors GM 

6001 and its hydrophilic form BB-3103, have been synthesized in order to use them as 

therapeutic agents in the treatment for various cancers or in evaluating the biological 

significance of MMPs in normal processes such as wound repair. MMP inhibition may occur in 

several ways; 1) directly by transfecting cells with antisense oligonucleotides or by targeting 

cells with mRNA ribozymes, 2) by inhibiting interaction between MMPs and other proteins, 3) 
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by developing cytotoxic agents that are activated by MMPs, or by 4) blocking MMP activity 

with peptidomimetic or non-peptidomimetic inhibitors, tetracyclins or biphosphonates or with 

some other chemical compounds such as shark cartilage extract or acetylsalicylic acid (Egeblad 

and Werb, 2002). Results are not very promising, as many of the trials have been ended 

because of serious side effects or the lack of efficacy. Some inhibitors have even shown to 

stimulate disease progression (see Coussens and Werb, 2002). Based on all results, it is learned 

that MMPs are part of so complex biological cascades with cytokines and growth factors, that 

the role of individual MMPs should be very carefully studied in vivo before trials with wide 

spectrum MMP inhibitors are started (Overall and Lopez-Otin, 2003; Matrisian et al., 2003). 

This is specially warranted so that we do not disturb wound epithelialization mediated by 

MMPs. 

 

The hydroxyamate inhibitor Batimastat and its analogue Marimastat were the first inhibitors 

studied in detail. Batimastat is able to inhibit MMPs-1, -2, -3, -7, -8, -9, -13 and -14. It has been 

studied in animal models and its possible role in inhibition of tumor growth, metastasis as well 

as in tumor associated angiogenesis has been reported (Rasmussen and McCann, 1997; 

Coussens et al., 2002). Marimastat inhibits MMPs-1, -2, -3, -7, -8, -9, -13 and –14 (Rasmussen 

and McCann, 1997; Whittaker et al., 1999; Coussens and Werb, 2002). Phase III clinical trials 

using Marimastat, Batimastat alone or in combination with chemotherapy in patients with 

advanced cancers have been disappointing and have been terminated. The non-peptidomimetic  

MMP inhibitors, such as BAY 12-9566 and AG3340, were synthesized on the basis of the 

conformation of the MMP active site in an attempt to improve the oral bioavailability, 

pharmaceutical properties and specificity. Clinical trials are still ongoing with several other 

MMPIs, including Prinomastat (halted), shark cartilage extract Neovastat (Phase III), Metastat 

(Phase II), BMS-275291 (Phase II/III) and MMI270 (Phase II)  (Hidalgo and Echardt, 2001b; 

Vihinen and Kähäri, 2002; Coussens and Werb, 2002; Egeblad and Werb, 2002).  

 

2.3. CUTANEOUS WOUND HEALING 

2.3.1. General 

Wound healing is a complex process where several controlled events, like inflammation, 

formulation of granulation tissue, angiogenesis, matrix formation and remodelling, partly 

overlap in time. During wound healing, several molecules that are not normally present in adult 

tissue are found in the wound site. Clot formation takes place right after the injury. Fibrin clot is 

composed of thrombocytes, neutrophils and monocytes, which are embedded in a provisional 
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matrix. Clot functions as a reservoir of cytokines and growth factors (Martin 1997). Many 

growth factors and cytokines, which are mainly produced by platelets and injured cells, attract 

inflammatory cells to the wound area. Compared to adult wounds, fetal wounds are 

characterized by the absence of clot formation and inflammatory response (Larjava et al., 1993). 

During re-epithelialization keratinocytes start migrating into the defect within 3-6 h. Migration 

is presumably initiated by exposure to various growth factors and cytokines, which are released 

by the damage. Epithelial cells from the edges of the defected epithelium change their 

hemidesmosomal connections, detach from the BM, contact type I collagen in the wound bed, 

change their expression of BM components and start migration. Attachment to type I collagen is 

mediated by integrin α2β1. Migrating keratinocytes deposit Ln-5 and synthesize Ln-1, type IV 

and VII collagens, fibronectin as well as several integrins, e.g. α5β1 and α6β4, into the 

provisional matrix, which is mainly composed of fibronectin, fibrin and vitronectin (Larjava et 

al., 1993). Cutaneous keratinocytes move quickly underneath this provisional matrix across the 

injured epidermis. Few hours later, the keratinocyte proliferation is increased distal from the 

migrating edge. At the same time, neutrophils invade to the wound site being responsible for the 

inflammatory response (Martin 1997; Yamaguchi and Yoshikawa, 2001). Mature BM is re-

established by keratinocytes after the completion of re-epithelialization (Martin 1997; Jacinto, 

2001). Cross-talk between keratinocytes and fibroblasts is crucial during the re-organization of 

BM as wound fibroblasts synthesize a significant portion of BM components. Granulation 

tissue formation is characterized by neovascularization and fibroplasia. Fibroblasts are also 

responsible for the wound contraction, which is carried out by specialized myofibroblasts that 

contain α-smooth muscle actin. Granulation tissue, which is composed of HA, fibrin, 

fibronectin, type I and III collagens, is remodelled into a new connective tissue. In mature 

connective tissue, majority of type III collagen is replaced with type I collagen, and HA. Fibrin 

and plasma fibronectin are degraded and proteoglycans deposited (Clark 1995; Gailit and Clark, 

1994).  

  

2.3.2. Wound healing in oral mucosa 

In general, wound healing in oral mucosa is similar to cutaneous wound repair (Larjava et al., 

1993). The difference is, that in dermal wounds keratinocytes are believed to migrate under the 

clot in contact with the dermal matrix and type I collagen, whereas in small gingival wounds, 

keratinocytes migrate through the fibrin-fibronectin matrix, without collagen contact (Larjava et 

al., 1993; Häkkinen et al. 2000). Based on animal studies it seems that wounds in oral mucosa 
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heal faster and with less scarring than in skin (see Häkkinen et al., 2000). In fact, oral wound 

healing resembles fetal wound healing. Adult gingival fibroblasts, located in the papillary 

connective tissue, share many properties with fetal fibroblasts and therefore differ from those of 

dermal origin.  There are several factors in saliva, like growth factors, ions such as magnesium 

and calcium as well as redox activity reducing agents, that favor gingival wound healing 

(Häkkinen et al., 2000), but also considerable amounts of bacteria reducing the healing capacity 

(see Häkkinen et al., 2000). Lubrication of oral mucosa by saliva is by itself beneficial for 

wound closure.  

 

2.3.3. Chronic wounds  

In chronic wounds highly controlled co-operation of various growth factors, cytokines and 

proteolytic enzymes and their inhibitors is disturbed and healing does not proceed and the re-

epithelialization does not occur within the normal biological time range of 2-3 weeks. Decubitus 

ulcers, venous leg ulcers, rheumatic, and diabetic ulcers are common examples of these poorly 

healing wounds. The prevalence of  chronic leg ulcer patients in Sweden is 2% (Nelzen et al., 

1996) and in Finland there are ca 45000-10000 venous leg ulcer patients (Malanin et al., 1990). 

The usual cause of these types of ulcers is chronic venous insuffiency (80-90%) followed by 

arterial disease and diabetic neuropathy (Baker et al., 1992).  

 

Chronic ulcers are characterized by chronic inflammation with elevated numbers of 

macrophages, plasma cells, PMNs and B-lymphocytes (Loots et al., 1998). Chronic wounds 

have high number of tryptase-positive mast cells and they are associated with delayed wound 

healing and epithelialization (Huttunen et al. 2000). Although the underlying pathogenesis is 

well-defined, the molecular mechanisms for impaired epithelialization are still unknown. 

Several factors causing poor healing have been proposed: 1) Failure of wound margin 

keratinocytes to move over the chronic wound bed although they proliferate normally (Adair, 

1977; Falanga et al., 1994; Andriessen et al., 1995) indicating the possible lack of proper matrix 

components for adhesion or improper signals to the cell. 2) Excessive proteolysis may interfere 

with proper wound healing by degrading provisional matrix components that are needed for the 

cell migration or by inactivating growth factors (Grinnell et al., 1992). 3) Hypoxia in the wound 

area may interfere with normal healing by causing fibrosis (Ferguson and Leigh, 1998). 4) 

Fibrin deposition surrounding the numerous dermal blood vessels may inhibit normal 

transportation of growth factors, oxygen and proteins to the wound area (Herrick et al., 1992; 

Hickley et al., 1995). It has been shown that wound fibroblasts proliferate at a slower rate and 
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are morphologically distinct from normal fibroblasts. This can be stimulated by growth factors 

bFGF, EGF, and IL-1β. Trengove et al. (2000) showed significantly higher concentrations of 

pro-inflammatory cytokines IL-1, IL-6 and TNF-α  in wound fluid from nonhealing compared 

to healing leg ulcers. It has been shown that the balance between MMPs and their inhibitors 

TIMPs is disturbed in chronic wounds versus acute wounds (Falanga et al., 1994; Vaalamo et 

al., 1996;  Ferguson and Leigh, 1998). 

 

2.3.4. The role of proteinases in epithelial wound repair 

Proteinases are involved in several processes during wound healing. Serine proteinases, such as 

urokinase-plasminogen activator (uPA) and plasmin, and matrix metalloproteinases (MMPs) are 

the main proteinases implicated in epidermal repair (Rømer et al., 1996; Ravanti and Kähäri, 

2000). Proteinases primarily 1) facilitate keratinocyte and fibroblast migration by remodeling 

ECM proteins, especially by fibrin and fibronectin degradation. In addition, proteinases 2) 

modulate intracellular signaling, secretion and bioactivation of cytokines and growth factors 

important for epidermal healing (Gak et al, 1992; Ito et al., 1996; Gallea-Robache et al., 1997; 

Imai et al., 1997; Wakita et al, 1997). Proteinases are also needed in 3) the removal of 

devitalized tissue, 4) in angiogenesis, 5) in remodelling of the BM zone as well as 6) in control 

of the cell proliferation and inflammation in the wound area.  

 

Plasmin degrades fibrin matrices in the provisional normal matrix and also activates latent 

MMPs. Plasminogen activation has been shown to be essential in wound healing (Lund et al., 

1999). Migrating keratinocytes express uPA in an in vitro wound model (Morioka et al., 1987). 

Analogously, uPa mRNA expression is found both in chronic and in acute wounds at the wound 

edge (Vaalamo et al., 1996). 

 

In wounds, various MMPs are expressed by keratinocytes, fibroblasts, endothelial cells and by 

inflammatory cells; neutrophils and macrophages, in particular. Migrating keratinocytes, in 

early wounds, express MMP-1, MMP-9, MMP-10 (Saarialho-Kere, 1993; Salo et al., 1994; 

Vaalamo et al., 1996), as well as TIMP-1. However, the non-migratory proliferating cells at the 

wound margin express MMP-3 and  TIMP-1 and -3. Difference in the MMP expression is 

probably due to different roles of these keratinocytes; migrating keratinocytes degrade 

provisional matrix forming a pathway for migration, whereas keratinocytes distal to the wound 

edge detach from the BM in order to permit motility. In the wound area MMPs-1, -2, -3, -13 and 

MMP-14 are produced by dermal cells (Ravanti and Kähäri 2000). 
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MMP-1 is induced in basal epidermal cells (keratinocytes), in response to injury, as the cells 

remove  the BM and contact type I collagen in the underlying dermis (Saarialho-Kere, 1993). 

Only basal keratinocytes in contact with dermal type I collagen express MMP-1, and this 

inductive response is specifically controlled by the collagen-binding integrin α2β1, which also 

directs secretion of the enzyme to the points of cell–matrix contact (Pilcher et al., 1997). MMP-

1 is also abundantly expressed by various types of stromal cells (macrophages, fibroblasts and 

endothelial cells) in the granulation tissue (Stricklin et al., 1993). MMP-1 mRNA and protein is 

also detected at the epithelial edge of chronic venous and decubitus ulcers (Saarialho-Kere et 

al., 1992, 1993). MMP-13  is expressed only in chronic wounds by stromal fibroblasts at the 

bottom of dermal granulation tissue (Vaalamo et al., 1997), whereas acute dermal wounds lack 

this enzyme. MMP-13 is expressed by fibroblasts in acute gingival wounds, suggesting a role as 

an effective remodulator of collagenous granulation tissue resulting in scarless wound healing 

(Ravanti et al., 1999). 

 

Gelatinases have previously been shown to be differentially expressed and regulated during 

wound healing. MMP-2 is expressed by fibroblasts in both resting and healing human oral 

mucosa and skin (Oikarinen et al., 1993; Salo et al., 1994), but it is absent from the wounded 

epithelium, nor it is expressed by the dermal cells of the wound margin (Saarialho-Kere et al., 

1993; Salo et al., 1994). MMP-2 is believed to participate in the long-term remodelling of the 

dermis. MMP-9 is detected in basal and suprabasal keratinocytes in nonwounded oral mucosa 

(Salo et al., 1994), however, it is not found in normal skin (Pyke et al., 1992). MMP-9 

expression by basal keratinocytes is induced in human suction blisters (Oikarinen et al., 1993) 

as well as in granulation tissue of oral wounds (Salo et al., 1994). Induction of MMP-9 after 

injury is rapid, reaching the highest activity at 4-5 d after injury, but is later declined (Tarlton et 

al., 1997). Based on this finding, MMP-9 is thought to play a role in re-epithelialization. 

Eleveted amounts of gelatinases are found in chronic wound fluids, indicating that excess of 

these enzymes may disturb wound healing (Wysocki et al., 1993; Bullen et al., 1995). 

Especially, elevated MMP-1 and MMP-8 activity, possibly derived from inflammatory cells, is 

often associated with the non-healing state of chronic wounds (Nwomeh et al., 1999; Trengove 

et al., 1999; Ågren et al., 2000).  

 

MMP-3 mRNA is expressed in chronic and in 2 d samples of normally re-epithelializing 

wounds by basal keratinocytes adjacent to, but distal from the migrating front as well as by the 

stromal cells (Saarialho-Kere et al., 1994; Vaalamo et al.,1996). MMP-10 is produced only by 
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keratinocytes at the migrating front and seems to co-localize with MMP-1 and uPA expressing 

cells (Vaalamo et al., 1996). Thus, MMP-10 appears to be critical for the migration, whereas 

MMP-3 could play a role in the remodelling of newly formed BM and wound matrix.  MMP-11 

expression has been shown in late stages of cutaneous wound healing in areas of inflammatory 

fibrosis (Wolf et al., 1992).  

 

MMP-12 is expressed by stromal macrophages in acute dermal wounds and in chronic ulcers 

(Vaalamo et al., 1999). MT1-MMP expression is induced in dermal wounds and its role as an 

activator of cell surface proMMP-2 is assumed (Okada et al., 1997; Madlener et al., 1998). Of 

the MMPs expressed in human dermal wounds in vivo, MMP-3, -9 and MMP-12 may play a 

role in controlling the new blood vessel formation as they all are able to convert plasminogen to 

angiostatin, which is a potent anti-angiogenic factor (Patterson and Sang, 1997; Dong et al., 

1997; Lijnen et al., 1998). 

 

2.3.5. MMP inhibition in wound healing 

Inhibition of MMPs has generally been shown to delay acute wound re-epithelialization in most 

experimental studies. However, Batimastat and Marimastat seemed to have no effect on acute 

wound healing, but only in sutured surgigal wounds (Pilcher et al., 1999). GM6001 (Ilomastat) 

treatment, was shown to increase wound strenght without affecting collagen content in rats 

(Witte et al., 1998). GM6001 has been shown to reduce inflammatory response, decrease type I 

collagen gene expression and upregulate MMP activity. It also reduced TNF-α, but induced 

TGF-β wound fluid levels in a sponge granulomas model (Witte et al., 1998). In human suction 

blisters and in acute cutaneous wounds, re-epithelialization was delayed with GM 6001 

treatment (Ågren et al., 2001; Lund et al., 1999). In human suction blisters, GM6001 

upregulated stromal MMP-1 and MMP-2 expression and epithelial MMP-9 expression. In 

plasminogen deficient mice, GM6001 treatment re-localized the MMP-2 expression from 

wound stroma into the leading edge of migrating keratinocytes (Lund et al., 1999) and overall 

MMP expression was upregulated. 

 

2.3.6. Growth factors and cytokines and their regulation by MMPs in wound healing  

Platelet derived growth factor (PDGF) is released from the degranulating platelets, and was the 

first growth factor shown to be chemotactic for cells migrating into wound, such as neutrophils, 

monocytes and fibroblasts. PDGF enhances fibroblast proliferation as well as their ECM 

production. PDGF stimulates fibroblasts to contract collagen matrices, affecting wound 
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contraction, and induces myofibroblast transformation (see Werner and Grose, 2003). Also 

several other growth factors and cytokines participate in wound healing (Table 2). They do that 

by inducing macrophage (e.g. TGF-β, IL-6, IL-8, IL-10) and neutrophil infiltration (e.g.TGF-β, 

IL-10), re-epithelialization (e.g. FGFs, TGF-α, EGF, IGFs, IL-6, GM-CSF), angiogenesis (e.g. 

VEGFs, FGF, HGF, GM-CSF), matrix deposition (e.g. FGF, IGF, TGF- β), fibroblasia (PDGF, 

TGF- β, IGFs) and scarring (e.g. TGF-β, IGF-1, IL-6 and IL-10) ( see Werner and Grose 2003). 

Various growth factors and cytokines (EGF, TNF-α, IL-1β, bFGF, PDGF, IL-6 and TGF-β), 

which participate in wound healing, affect also MMP expression and activation or are substrates 

for them (see also chapter Transcriptional regulation of MMPs).  

 

Table 2. Cytokines and growth factors which are substrates for MMPs and their role in wound 
repair. 

 

Cytokine/Growth factor 
targeted 

MMP Source of the 
growth factor 

Major effects in wound 

Epidermal growth factors 
EGFs  
Epidermal growth factor EGF
and Heparin binding EGF-like 
growth factor  

MMP-3 and  
MMP -7 

Platelets  
Macrophages 

Epidermal and mesenchymal regeneration 
Pleiotrophic cell motility and proliferation 
 
 
 

Fibroblast growth factors 
(FGFS)  
Basic FGF (b-FGF) 

MMP-1 and  
MMP-3 
 

Macrophages, 
endothelial cells  
 

Wound vascularization and fibroblast 
proliferation  
 

Transforming growth 
factors TGF-β 

MMPs-2, -3, 
-7 and  
MMP-9 
 

Platelets and 
macrophages 

Fibrosis and increased tensile strength 
Epidermal cell motility, chemotaxis of 
macrophages and fibroblasts, ECM synthesis 
and remodelling 

Other cytokines  
Vascular endothelial growth 
factor (VEGF) 
Tumor necrosis factor alpha 
(TNF-α)  
 
 
 Interleukin-1 (IL-1) 
 
Insulin like growth factor-1 
(IGF-1) 

MMP-9 
 
 
MMPs -1, -
2, -3, -7, -9, 
-12,  -14 and 
-17 
MMP-2, -3, 
and - 9 
MMP-1, -2,-
3, -9 and -11 

Epidermal cells, 
macrophages 
 
Neutrophils, 
keratinocytes, 
Langerhans cells, 
mast cells  
Neutrophils, 
Fibroblasts 
epidermal cells 

Angiogenesis and increased vascular 
permeability 
 
Pleiotropic expression of growth factors, 
inflammatory phase in wound healing 
 
 
As TNF-α 
Re-epithelialization and granulation tissue 
formation 

 (Modified from Ravanti and Kähäri, 2000; Boss and Kapsenberg, 1993; Feiken et al., 1995; Hojilla et al., 2003) 
2003). 

 

 

 

 

 35



2.4. CANCER 

2.4.1. Tumorigenesis and invasion 

Cancer may be thought as a disease where abnormalities in genes result in gain-of- function 

oncogenes or loss-of-function tumor-suppressor genes. Together with other inducers these 

mutations cause failure to regulate proliferation, differentiation, cell death, and expression of 

many cell-type-specific functions properly, and result in an altered phenotype of cell and 

eventually cancer. Cell adhesion provides a physical restriction that inhibits cell division 

when cell is in contact to the neighbouring cell, a process known as cell contact inhibition. 

The loss of cell adhesion is a key feature of transformation. Even if abnormal cell 

proliferation is necessary for tumorigenesis, proliferation of cells is not a cause of tumor 

development in itself. In fact,  tumor-stroma interactions, namely communication between 

matrix components, fibroblasts, endothelial and inflammatory cells (Iozzo, 1995) are in 

central role for tumorigenesis. In a way, tumors may be viewed as wounds that do not heal 

(Wernert, 1997), because as in wound healing, inflammation may arise in malignancies as 

part of the normal host response. Inflammatory cells, like macrophages, neutrophils and mast 

cells, of a developing neoplasm facilitate genomic instability, promote angiogenesis and 

produce chemokines and cytokines that induce or inhibit MMP transcription or activation and 

can influence tumor development and its microenvironment (Coussens and Werb, 2001, 

2002).  

 

In order to metastasize, cancer cell must be able to detach from the primary tumor, penetrate 

BM and degrade its way through ECM. Invasion of malignant epithelial cells requires altered 

interaction between cells and the surrounding matrix. Integrins are known to be essential in 

cell migration during wound healing and cancer invasion (Heino, 1996), not only by 

mediating the cell movement but also by regulating the expression of MMPs (see Ivaska and 

Heino, 2000). MMPs are typically present at the invasive front promoting metastases, but 

MMP levels can be elevated already in the early stages, mediating the ECM and BM 

degradation and establishing the microenvironment that promotes tumor growth (Overal and 

Lopez-Otin, 2002). Metastasis may occur via lymphatic vessels and then malignant cell must 

survive the circulation and be able to extravasate, and proliferate as a secondary colony in a 

new environment, respond to growth factors, induce angiogenesis and evade host defences 

(Ellis and Fidler, 1996; McCawley and Matrisian, 2000).  
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2.4.2. Pre-malignant and malignant lesions of the skin and oral mucosa 

Keratoacanthoma (KA) is a common benign squamous neoplasm most likely derived from 

hair follicle cells on sun exposed skin (Schwartz, 1994). They have a rapid growth phase for 

the first 4-8 weeks and a possible spontaneous self-induced regression after 3-6 months 

(Strieth et al., 2002). Although KAs are benign, fully developed tumors have a capacity to 

proliferate that overlaps considerably with that of conventional, well-differentiated squamous 

cell carcinoma (SCC) (LeBoit, 2002). Differential diagnosis between KAs and well-

differentiated SCCs, based on clinical and histomorphological data, is problematic and there 

are many reports on lesions classified as KAs that have metastasized (Clausen et al., 2002). 

One malignancy-associated criterion is enhanced angiogenesis with increased microvessel 

density (Strieth et al., 2002). Furthermore, differential expression of adhesion molecules, such 

as E-cadherin, VCAM, ICAM and syndecan-1, has recently been reported to distinguish KA 

from SCC (Papadavid et al., 2001; Mukunyadzi et al., 2002; Melendez et al., 2003). Staining 

pattern for p53 resembles that of grade I SCCs, but they frequently show chromosomal 

aberrations that differ from those found in SCC (Clausen et al., 2002). Due to the lack of clear 

diagnostic and prognostic criteria to distinguish between KA and SCC, all KAs are currently 

surgically excised (see Strieth et al., 2002).  

 

Basal cell carcinoma (BCC) is the most common malignancy in Caucasian people. The BCC 

incidence of Europe, USA and Australia increases by 3-6 % each year (Armstrong and Kricker, 

1995). Exposure to ultraviolet radiation is the main causative factor in the pathogenesis of BCC 

(Kricker et al., 1994).  Also ionizing radiation, chemical carcinogens (e.g. arsenic), and 

possibly infection with human papillomaviruses, have been associated with BCC development. 

BCCs are typically locally destructive but have a very limited potential to metastasize. 

However, people who have this condition are at high risk of developing further BCC and other 

malignancies (Ramsey, 2001). BCC is considered to arise from multipotential cells within the 

basal layer of the epidermis or follicular structures and can develop in both a hereditary and 

sporadic fashion. The histological features of BCC include normal basal keratinocyte 

resembling cells forming tumor islands, which are surrounded by fibrous stroma and 

peritumoral cystic space. Different kinds of growth patterns divide BCCs into subtypes such as 

superficial, nodular, and sclerosing types (Ramsey, 2001).  

 

Squamous cell carcinoma (SCC) is a malignant tumor of keratinocytes of the spinous layer of 

the epidermis. SCC of the skin is the second most common type of skin cancer (Bernstain et al., 
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1996), accounting for twenty percent of all cutaneous malignancies and frequently arising on 

the sun-exposed skin of the middle-aged and elderly (Johnson et al., 1992). The primary cause 

of cutaneous SCC is cumulative lifetime sun exposure (especially UVB). Five to ten percent of 

SCCs arise from sun induced precancerous lesions, actinic keratoses. Immune suppression, 

chronic inflammation, ionizing radiation and human papillomavirus (HPV) infection may lead 

to the development of SCC. SCC is highly invasive and invasion occurs through degradation of 

BM and ECM. There are currently no reliable prognostic tissue or serum markers in routine use 

to predict whether SCC has metastasized at the time of diagnosis (Helliwell et al., 2001) The 

tendency to metastasize lymphatically seems to be independent of the primary tumor size, 

pathological grading or other parameters (Werner et al., 2002). The prognostic risk factors 

include, diameter, depth of invasion, histologic differentiation, rapid growth, anatomic site, 

immune suppression, and etiology, so that tumors arising from scars and chronic ulcers tend to 

be aggressive (Johnson  et al., 1992).  

 

Squamous cell carcinoma of the oral cavity (SCC), a tumor of oral stratified squamous 

epithelium, is the sixth most common cancer worldwide (Silverman et al., 1998) and is similar 

to SCC of other organs. It occurs most commonly in middle aged and older individuals. Oral 

cancer can be divided into three categories: carcinomas of oral cavity, carcinomas of lip 

vermillion and carcinomas arising in oropharynx (Neville and Day, 2002). The common 

carcinogens causing oral SCC are tobacco and alcohol, but lip tumors are also associated with 

chronic sun exposure. Patient who are both heavy drinkers and heavy smokers have hundred 

times greater risk for developing an oral malignancy (see Neville and Day, 2002). The five-year 

survival rate is still about 50 %, although advances in surgery, chemotherapy and radiation as 

well as in diagnostics have taken place (Silverman 2001). 

 

Verrucous carcinoma (VC) of the oral cavity (also called oral florid papillomatosis), is a rare 

low grade variant of oral SCC. This type of tumor invades the underlying connective tissue, and 

is associated with destruction of collagenous matrix. VC is slow-growing, well-differentiated 

and causes metastases very late (Neville and Day, 2002). However, some lesions that arise from 

proliferative verrucous leukoplakia may undergo dedifferentiation into an aggressive oral SCC 

(Hansen et al. 1985). Verrucous hyperplasia (VH) often preceeds VC in smokers. Clinical 

appearances of VC and VH are the same and thus the diagnosis practically requires recurrent 

biopsies. VH, however, does not histologically extend below the BM level of the surrounding 

normal epithelium (Neville and Day, 2002). 
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2.4.3. Malignant transformation of chronic wounds 

In chronic leg ulcers, the risk of squamous cell cancer (SCC) is increased (Baldursson et al., 

1993, 1995, 1999). Wound carcinogenesis is unpredictable and often undiagnosed for long 

periods of time, so that the duration of ulcer before the diagnosis of cancer can be 25 years 

(Baldursson et al., 1995). The molecular inducers of this type of tumorigenesis are not known, 

but the long duration of increased cell division in and around the ulcer is thought to be one 

possibility (Mekkes et al., 2003). Proliferation in chronically inflamed tissue, predisposes 

humans to carcinoma of the skin and other organs (Coussens and Werb, 2002). The common 

cause of cutaneous SCC, ultraviolet radiation seems to be an unlikely explanation, because of 

the assumed limited exposure of ulcer sites to UV (see Baldursson et al., 2000a). Furthermore, 

human papilloma virus seems not to be the cause of SCC in venous leg ulcers (Baldursson et 

al., 2000a).  

 

2.4.4. MMPs in tumors 

MMPs can regulate the tumor microenvironment and their expression and activation is 

increased in almost all human cancers compared with normal tissue. MMPs are expressed in 

tumors by tumor cells but even more often by surrounding stromal cells and inflammatory 

cells. There is no single MMP consistently overexpressed in every tumor type, or a consistent 

pattern of MMP expression across a variety of human cancers. At least MMP-1, -2, -3, -7, -9, 

-10, -11, -13 and -14 are frequently overexpressed in many human tumors (see Kerkelä and 

Saarialho-Kere, 2003).  

The increased MMP expression in tumors is most likely due to transcriptional changes which 

result from activation of oncogenes or loss of tumor-suppressors (see Egeblad and Werb, 

2002). The initial observation of the importance of MMPs in cancer biology was that the 

ability of tumor cells to invade the surrounding tissue correlated with increased MMP levels 

and many MMP family members have been isolated from tumor cell lines (Liotta et al., 

1980). In addition to MMPs´ ability to degrade ECM, initiating the development of 

metastasis, their role in tumorigenesis is much more complex. MMPs promote both primary 

tumor growth and metastatis by activating growth factors, by inactivating growth-factor 

binding proteins, by cleaving receptors involved in cell adhesion, unmasking cryptic sites of 

interaction, and by acting on ECM components or other proteins to uncover hidden biologic 

activities, which can affect cell proliferation, migration and angiogenesis. MMPs are thereby 

involved in creating an environment suitable for tumor progression or by releasing mitogenic 
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molecules from matrix that are important in peritumoral ECM (Stetler-Stevenson and Yu, 

2001; Overall and Lopez-Otin, 2002).  

 

MMPs regulate proliferation and apoptosis 

MMPs generate growth-promoting signals by different ways. First, MMPs promote cancer cell 

proliferation by releasing cell-membrane bound precursors of some growth-factors, like TGF-

α. Then, peptide growth-factors that are sequestered by ECM proteins, like IGF, become 

bioavailable after MMP degradation. In addition, MMPs regulate proliferative signals indirectly 

through integrins but may also reduce cancer cell growth by activating TGF-β (see Egeblad and 

Werb, 2002).  MMPs regulate apoptosis e.g. by generating pro-apoptotic molecules like FAS 

ligand, a trans-membrane stimulator of the death receptor FAS or TNF-α. MMP-3 regulates 

apoptosis possibly by degrading laminin. MMP-7 releases membrane bound FAS ligand (see 

Egeblad and Werb, 2002). MMP-7 can also inhibit apoptosis by cleaving pro-heparin-binding 

epidermal growth factor –like growth factor (HB-EGF) to generate its mature form. This 

mature HB-EGF promotes cell survival by stimulating ERBB4 receptor tyrosine kinase. MMP-

11 inhibits cancer-cell apoptosis by releasing IGF (see Egeblad and Werb, 2002).  

 

MMPs regulate angiogenesis 

Angiogenesis is important for tumorigenesis, because for continuous growth, tumors require 

nutrient and oxygen supply. Blood vessel growth is stimulated by e.g. VEGF or bFGF and 

inhibited by e.g. thrombospondin-1, angiostatin and endostatin. Tumor´s ability to promote 

angiogenesis is one of the early events in the transition of a tumor from the pre-neoplastic stage 

to neoplastic phenotype (Hanahan et al., 1996). Studies of various human cancers have also 

shown a correlation between an increased number of tumor blood vessels and poor prognosis 

(Weidner, 1995). MMPs participate in tumor angiogenesis by allowing endothelial cell 

invasion through BMs to form new blood vessels by cleaving type I collagen (Seandel et al., 

2001). They also regulate endothelial cell attachment, proliferation, migration and growth, 

either directly or by the release of growth factors (Foda and Zucker, 2001). The direct role of 

some MMPs in angiogenesis is known. MMP-2 participates in angiogenesis by cleaving type 

IV collagen. MMP-9 acts by increasing the bioavailability of VEGF and MMP-14 might have a 

role in fibrin degradation around the new vessels. Synthetic and endogenous MMP inhibitors 

reduce angiogenic responses in animal models, indicating the essential role of MMPs (Stetler-

Stevenson, 1999). Paradoxically, MMPs are also responsible for generating the potent 
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angiogenesis inhibitors like angiostatin and endostatin. Angiostatin is an NH2-terminal 

fragment of plasminogen and it effectively inhibits endothelial cell proliferation. MMPs-2, -3, -

7, -9 and -12 are all capable of cleaving plasminogen to angiostatin, but MMP-12 is the most 

potent one (Patterson et al., 1997; Cornelius et al., 1998; Egeblad and Werb,  2002). Endostatin, 

which is a C-terminal fragment of the basement membrane collagen XVIII, is probably 

produced by MMP-3, -9, -12, -13 and -20 (Hanahan et al., 1996; see Hojilla et al., 2003). 

Endothelial cells can produce at least MMP-1, -2, -9, -19 and MT1-MMP, but then again, 

inflammatory cells and fibroblasts express many MMPs and also contribute to angiogenic 

phenotype.  

 

MMPs regulate invasion and metastasizing 

Invasion of malignant epithelial cells requires altered interaction between cells and the 

surrounding matrix. During metastasis cells have to pass through the BM and other ECM 

components in order to invade the surrounding stroma and then enter the blood vessels or 

lymphatics, extravasate and eventually establish new colonies. A direct correlation between 

MMP expression and the invasive phenotype of human tumors has been detected in many 

tissues including oral squamous cell cancers (see Stetler-Stevenson, 2001; Nelson et al., 2000). 

Generally, the expression of high levels of multiple MMP family members correlates positively 

with tumor aggressiveness, including increased invasive capacity, metastasis and poor patient 

survival. Invasion is facilitated by inducing cell migration. Ln-5 cleavage by MMP-2 and 

MMP-14 reveals a cryptic site of this molecule and induces cell motility (Giannelli et al., 1997, 

Koshikawa et al., 2000). The ability of MMPs to process cell adhesion molecules, e.g., 

cadherins contributes to the initiation of epithelial-to-mesenchymal transition (EMT), which is a 

key differentiation event during cancer progression (Birchmeier et al., 1996).  MMP-3 and 

MMP-7 trigger EMT by cleaving E-cadherin (Noe et al., 2001). The released fragment of E-

cadherin promotes tumor cell invasion. During invasion MMP-2, -9 and -14 are localized to 

specialized cell membrane invadopodia on migrating cells. From there, they communicate with 

the surrounding tissue, MMP-2 by binding to integrins or other MMPs and  MMP-9 by binding 

to CD44 (see Egeblad and Werb, 2002). 

 

2.4.5. MMP gene targeting in mice showing effects on wound healing and skin cancer  

Evidence for the critical role of MMPs are provided with transgenic and knock-out mice. 

Knock-out mice for MMPs-2, -3, -7, -8, -9, -11, -12 and -14 as well as for TIMPs-1, -2 and -3 

have been introduced (Egeblad and Werb, 2002). In plasminogen-deficient mice, Rømer et al. 
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(1996) demonstrated impaired healing of wounds although epithelialization was not totally 

blocked. Using the same animal wound model, Lund et al. (1999) were able to completely 

block healing by systemic administration of the synthetic MMP inhibitor GM 6001. MMP-9 -

deficient mice have defects in remodeling of ECM at the epithelial BM zone, in particular, 

due to failure to effectively remove the fibrin(ogen) provisional matrix (Mohan et al., 2002).  

Evidence for the critical role of MMPs also in tumorigenesis has been provided with 

transgenic and knock-out mice. Mice overexpressing MMP-1 or MMP-7 are characterized by  

hyperproliferative skin disease and increased cancer susceptibility (see Egeblad and Werb, 

2002). Overexpression of MMP-3 and MMP-7 in transgenic mice results in enhanced 

tumorigenesis in a breast cancer model (Sternlicht, 1999; Rudolph-Owen et al., 1998)  

Furthermore, MMP-deficient mice (MMP-2, -9 and -14) demonstrate defective angiogenesis 

(Itoh et al., 1998; Vu et al., 1998). However, there are very few studies on transgenic mice 

models indicating effects on skin carcinogenesis (see Table 3).  

 

Table 3. MMP gene targeting in mice showing effects on skin carcinogenesis or wound 

healing. 

MMP gene  Phenotype Reference  

Overexpression  
of  MMP-1 
 
Lack of  MMP-8 

Enhanced tumor formation in skin with chemical inducers 
 
 
Increased incidence of skin tumors in male mice 

D´Armiento et al., 1995 
 
 
Balbin et al., 2003 

Lack of MMP-2  Reduced tumor progression Wilson et al., 1997 
 

Lack of MMP-7 
 
 
Lack of MMP-9 
 

Reduced tumor progression 
Inability to repair mucosal epithelial wounds 
 
Reduced keratinocyte proliferation, decreased incidence 
of invasive tumors 

Itoh et al., 1998 
Dunsmore et al., 1998 
 
Coussens et al., 2000 
 

Lack of MMP-3 
(stromelysin-1) 

Impaired wound contraction 
Less chemically induced tumors and reduced tumor  
cell implantation 

Bullard et al., 1999 
Masson et al., 1998 

Overexpression 
of  TIMP-1 

Delayed wound healing, retarded migration of epithelial cells Salonurmi et al., 2003 
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3. AIMS OF THE STUDY 

 

The principal aim of this study was to examine the role of matrix metalloproteinases in wound 

healing and in epithelial cancers as well as in malignant transformation of chronic wounds. We 

aimed to study the underlying mechanisms for delayed epithelialization in chronic wounds. We 

wanted to investigate if the expression patterns of certain MMPs could serve as molecular 

markers to predict tumorigenesis of pre-malignant lesions, and on the other hand, the 

invasiveness of tumors. 

In order to develop targeted MMP inhibitors for therapy, the MMPs been expressed in various 

types and stages of cancer or in chronic wound must be carefully identified. The specific aims 

of the study were as follows: 

 

I) To investigate the role of MMPs on acute and chronic wound healing by combining enzyme 

activity assays, immunohistochemistry and in situ hybridization techniques.  

 

II) To study the influence of MMPs and serine proteinases in epidermal wound healing ex vivo 

using a synthetic broad-spectrum MMP inhibitor (BB3103) or a serine proteinase antagonist 

(aprotinin). 

 

III) To investigate whether the pattern of epithelial MMP expression is associated with  

development of SCC from pseudoepitheliomatous hyperplasia of chronic wounds. 

Keratoacanthomas were studied in parallel as a model of rapidly growing, but still benign 

hyperproliferative tumors, resembling SCCs. 

 

IV) To study whether the recently discovered MMP-19 is induced in the epithelium during 

remodeling associated with either wound repair or cancer invasion. 

 

V) To investigate whether the pattern of MMP, αvβ6 integrin or laminin-5 expression 

contributes to the differences in the biological behavior of oral SCC and VC. Particular 

emphasis was on the newly discovered MMP-19 and -26 that have not previously been studied 

in oral cancer. 
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4. MATERIALS AND METHODS 

 

4.1. Tissue samples 

All studies were approved by the Ethics Committees (KF 01-072/94; TIA 4014; LU 508-99). 

Informed consent was obtained from participating individuals for all procedures. 

 

Chronic wounds (I-IV) 

 Formalin-fixed, paraffin-embedded archival specimens were obtained from the Departments of 

Dermatopathology and Plastic Surgery, Helsinki University Central Hospital and University of 

Turku. For publications I and III all together 64 different chronic ulcers (venous, decubitus, 

rheumathoid arthritis or diabetic origin) were included. Biopsies from chronic ulcers included 

ulcer edge and base and surrounding intact skin. 

 

Acute wounds (I-IV) 

For adequate comparison of acute and chronic wound healing, 3 standardized wound types in 

humans were studied: 1) partial-thickness wounds (n=6), 0.4 mm in depth, 2) full-thickness 

wounds (n=12), 8-mm in depth and  3) suction blisters with intact roofs (n=4) (Vaalamo et al., 

1999). In addition, clinically well-granulating ulcers (n=6) obtained from the Department of 

Plastic Surgery, Helsinki University Central Hospital, were used in the study.  

Full thicknes wounds were made on the anterior thigh of  venous leg ulcer patients undergoing a 

pinch graftting procedure (Vaalamo et al., 1996). The pinch graft donor area were excised with 

a knife daily on ds 1 to 6 and on d 9  and fixed in 10% formalin (Vaalamo et al., 1999). Suction 

blisters were induced on the abdominal skin using Dermovac® blistering device (Kiistala, 1968).  

Biopsies from excised skin on the d-0 dermatome wounds and 6- mm punch biopsies of wound 

margin on post-wounding day 1 to 7 included surrounding intact skin. Each biopsy was cut into 

half, one half was fixed in 10% formalin for 24 h and the other half was frozen at -80°C. 

Variations over the time were also investigated by taking wound margin biopsy specimens after 

the first and the last sampling of wound fluid. 

 

Ex vivo human skin wound models  (I-II)  

In  publication I,  5- mm biopsies (n=23) of normal skin from different parts of the body, were 

cultured in 35-mm dishes in DMEM (Gibco BRL, Life Technologies, Paisley, Scotland) 

supplemented with 5 % fetal bovine serum and 1% penicillin/streptomycin (Rechardt et al, 

2000). At 24, 48 and 72 h the tissue samples were fixed in 10% formalin and prosessed for 
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paraffin embedding. 

The ex vivo human skin wound model used in publication II, was originally developed by Kratz 

et al. (1994). Skin was donated by healthy female patients under 30 y old, undergoing elective 

mammary reduction plasty. Circular wounds were made using a sterile 3-mm trephine within 4 

h after removal. The individual wounds (0,5 mm in depth) were excised using a sterile 6-mm 

trephine with the wound in the center. Each specimen was incubated submerged in 1 ml of 

complete culture medium (DMEM, 4.5 mg glucose/ml, 2 mM L-glutamine, 100 µg 

penicillin/ml, 100 U streptomycin/ml and 10% heat-inactivated mycoplasma-screened fetal calf 

serum (FCS, Gibco)) in a 24-well plate at 37°C in a humidified atmosphere of 5% CO2/air. The 

calcium concentration was determined to 1.8 mM and the medium was exchanged every other 

day. To study cell proliferation, 5-bromo-2’-deoxyuridine (BrdU; Sigma) was added at 10 µM 

24 h prior to termination d 7, at which time medium was replaced with 1 ml 10% buffered 

formalin per well.  

 

Conditioning of skin specimens with the wound site  (II) 

Separate skin explants, excised from the same donor, were conditioned in parallel to the ones 

described above. At days 0 and 7, the explants were conditioned for 10 h in serum-free DMEM 

alone, or serum-free DMEM supplemented with 10 µM BB-3103, 10 or 100 µg/ml  aprotinin. 

The water-soluble, broad spectrum and hydroxamic acid-based synthetic peptide MMP inhibitor 

BB-3103 (Mr 475.6 Da; British Biotech Pharmaceuticals Ltd., Oxford, UK) was used at 10 µM. 

IC50-values indicating the MMP inhibitory profile of BB-3103 were 2 nM for MMP-1, 10 nM 

for MMP-2, 30 nM for MMP-3, 20 nM for MMP-7, 7 nM for MMP-9, 4 nM for MMP-13 and 

the IC50 for TACE (TNF-α converting enzyme) was 800 nM as provided by the manufacturer. 

The complete culture medium served as controls in the BB-3103 series. Cytotoxicity of BB-

3103 on human epidermal keratinocytes was assessed using the MTT assay essentially as 

described by Newby et al. (2000) using a kit from Roche (Cat. no. 1465007).One part of 1.4 mg 

aprotinin per ml saline or 0.14 mg aprotinin per ml saline was mixed with 13 parts of complete 

culture medium and complete culture medium diluted with corresponding volume of saline 

served as control to the aprotinin-treated groups.  

After conditioning, the media were collected and skin samples were incubated for a further 30 

min at ambient temperature with CompleteTM (1697498; Boehringer Mannheim GmbH, 

Mannheim, Germany) proteinase inhibitor cocktail containing 1 mM ethylenediaminetetraacetic 

acid and supplemented with 1 µM pepstatin (253286; Boehringer Mannheim) to inhibit serine, 
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cysteine, aspartic and metalloproteinases present in the tissue. The conditioned media and 

explants were stored at -70°C until analyzed. 

 

Pre-malignant lesions and skin cancers (III-IV) 

Skin samples included benign lesions of KAs (n=12) and premalignant tumors of solar keratosis 

(n=3). Biopsies from the following malignant epidermal were collected: BCC (n = 16), Bowen´s 

disease (n=4), SCCs (n=24, grades I-IV) and SCCs arisen in chronic wounds (n=9) (Baldursson 

et al., 1999). All samples were obtained from the Universities of Helsinki and Turku. Diagnoses 

were made by two experienced pathologists (LJ and SS). 

 

Oral tissues (V) 

Formalin-fixed, paraffin embedded samples of oral SCC (n=15), VC (n=15), gingival 

hyperplasia (n=13), and VH (n= 16) were obtained from the University of Helsinki, Faculty of 

Dentistry and from the University of British Columbia, Department of Oral Biological and 

Medical Sciences, Vancouver, Canada. The diagnoses were made by two experienced oral 

pathologists (JH and LZ). 

 

4.2. Immunohistochemistry (I-V) 

Immunostaining of the sections was performed by the avidin-biotin-peroxidase complex 

technique using Vectastain ABC Kit (Vector Laboratories, Inc., Burlingame, CA), Zymed Kit 

(Zymed Laboratories Inc., San Francisco, CA) or DAKO Kit (DAKO, A/S, Glostrup, Denmark 

). Samples were deparaffinized, dehydrated and endogenous peroxidase was blocked with 0,3-

0,6% hydrogen peroxidase. Normal serum was used to block non-specific staining. Sections 

were pre-treated with trypsin (10 mg/ml) or micro-waving in citrate buffer (pH 6.0). Primary 

antibodies (see Table 4.) were incubated in humidified atmosphere for 1-3 h at 37oC or 

overnight at 4oC. Diaminobenzidine was used as chromogen and Harris hematoxylin as the 

counterstain, as described in detail (Saarialho-Kere et al, 1993). Controls were performed with 

mouse immunoglobulins or with rabbit preimmune serum. The Apoptaq in situ apoptosis 

detection kit (Oncor Inc., Gaithersburg, MD), a TUNEL technique, was used to detect 

fragmented DNA of apoptotic cells as described elsewhere (Airola et al., 1997). 
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Table 4. Antibodies used in immunohistochemistry.  

Antibody Source Dilution /pre-treatment 
MMP-2  IM33L,Calbiochem, Cambridge,MA 1:200 /trypsin 
MMP-7 IM40L, Calbiochem 1:50  
MMP-8 
MMP-9  
MMP-13  
MMP-14  
MMP-19 (IV) 
MMP-19 (III-V) 
MMP-26 (V) 

IM38L, Oncogene, Cambridge, MA 
GE-213, Diabor, Oulu, Finland 
IM64L, Oncogene  
IM42L,Oncogene 
RDI-MMP-19abR,  Flanders, NJ and   
PC374, Oncogene 
A gift from Prof. Keichi Isaka (Isaka et al., 2003)  

1:10 / trypsin 
1:300 /trypsin 
1:40  
1:40 
1:70 
1:40 
1:200 

γ2 chain of LN-5 A gift from Prof. Karl Tryggvason (Pyke et al, 
1994).  

1:600 

p16INK4  G175-405; BD Biosciences 1:350 
E-cadherin HECD-1, Zymed, San Francisco, CA 1:60-1:100  
Selectin-1 CD138, Clone B-B4, Oxford Biotechnology, JE 1:400 
Col IV 
TNF-α 
Ki67 

M785, Dako, Glostrup, Denmark 
Rockland, Gilbertsville, PA 
A047, Dako  

1:75 /trypsin 
1:100 
1:200 

p63 Clone 4A4, Neomarkers, Fermont, CA 1:200 
CD31  PECAM-1, Clone JC/70A; Dako 1:10 
BrdU M 744; Dako 1:100  

 

4.3. RNA probes (I, III-V) 

The production and specificity of the antisense and sense human MMP-1, -3, -10, -12, –13, and 

14 probes have been described previously (Rechardt et al, 2000; Kerkelä et al.,2001; Saarialho-

Kere et al., 1993; Vaalamo et al., 1998; Pender et al, 2000). As a control for nonspecific 

hybridization, sections were hybridized with 35S-labeled sense RNA from a bovine tropoelastin 

cDNA. The validity of this probe as a negative control has been confirmed by Northern (Prosser 

et al, 1989) and by in situ hybridization (Saarialho-Kere et al, 1992). A 2.6 kb cDNA containing 

the entire coding region for human β6 integrin was subcloned into pCDNAIneo plasmid 

(Weinacker et al., 1994). The construct was linearized with PvuII and a 450 bp antisense probe 

was obtained using sp6 polymerase. Linearization was done with SspI and transcription with T7 

gave a sense probe of equal length. The probe was sequenced.  

 

4.4. In situ hybridisation (I, III-V) 

 In situ hybridization was performed on 5-µm sections as described in detail (Prosser et al., 

1989). Sections were pre-treated with 1 µg/ml of proteinase K and washed in 0,1 M 

triethanolamine containing 0,24 % acetic acid. Sections were hybridized with 35S-labeled probes 

(3 x 104 cpm/ µl of hybridization buffer) at 50-55°C for at least 18 h in a humidified chamber. 

Slides were then washed under stringent conditions. RNAse A treatment was used to wash out 

the unhybridised probe. After 20-50 d of autoradiography, the photographic emulsion was 
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developed, and the slides were stained with hematoxylin and eosin. Samples previously positive 

for the studied mRNAs were used as positive controls. No signal was detected with the sense 

probes. The slides were analysed independently by two investigators. 

 

4.5. Cell cultures (IV) 

Primary human keratinocytes were isolated from normal adult skin obtained from reductive 

mammoplasties (Rechardt et al., 2000). Subcutaneous fat and deep dermis were removed, and 

the remaining tissuewas incubated overnight at 0.25% trypsin in solution A (Gibco BRL, Life 

Technologies). Following the incubation, keratinocytes were scraped off from the epidermis 

with a scalpel and suspended in Keratinocyte Growth Medium (KGM, Gibco), supplemented 

with 5 ng/ml epidermal growth factor (EGF) and 50 µg/ml bovine pituitary extract (BPE) 

(supplied by the vendor), and containing 2% decalcified fetal calf serum (FCS). Keratinocytes 

were maintained in KGM supplemented with EGF and BPE, and passages 1 to 5 were used in 

the experiments. For immunostaining, primary keratinocytes (in both low and high Ca+2 KGM) 

were also cultured on Laboratory-Tek chamber slides (plastic or type I collagen coated) and 

immunostained using MMP-19 and Ki-67 antibodies as described for tissue samples. 

 

HaCaT cells, an immortalized non-tumorigenic human adult epidermal keratinocyte cell line 

(Boukamp et al., 1988) and A5 cells, a ras-transformed tumorigenic HaCaT- derived cell line 

(Boukamp et al., 1990) were kindly provided by Prof. Norbert Fusenig (Deutsche 

Krebsforschungszentrum, Heidelberg, Germany). HaCaT and A5 cells were cultured in DMEM 

containing 10% FCS. UT-SCC-7 cell line, which forms squamous cell carcinomas in SCID mice 

(Ahonen et al., 2002) was established from metastasis of a cutaneous SCC at the time of 

operation in the Turku University Central Hospital (Servomaa et al., 1996) Cell lines were 

cultured in DMEM supplemented with 6 mM glutamine, non-essential amino acids and 10% 

fetal calf serum (FCS). The SCC cells were examined in subcultures 5 to 10 and were 

homogenous by visual inspection 

 

4.6. Cytokines and growth factors (IV) 

To study the regulation of MMP-19 expression primary keratinocytes were plated on 24-well 

tissue culture plates. 70-80% confluent cells were repeatedly washed with PBS and incubated 

overnight in KGM without supplements or FCS. After this, keratinocytes were treated with 

different cytokines or growth factors for 24 h (see Table 5.). All treatments were done in KGM 
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and in KGM with 1.8mM Ca2+, without supplements or FCS. After 24 h total RNA was 

extracted from the cells. Untreated cells were used as a control.  
 
Table 5. Cytokines and growth factors used in the study 

Cytokine/ Growth factor Source Concentration  

TNF-α Sigma, St Louis, MO 10 ng/ml 
IL-1β Roche Molecular Biochemicals, Mannheim, 

Germany 
5 ng/ml 

TGF-β1 Sigma 1-5 ng/ml 
EGF  
KGF  

Sigma 
Sigma 

10 ng/ml 
10 ng/ml 

HGF Sigma 10 ng/ml 
VEGF R&D Systems, Minneapolis, MN 10 ng/ml 
IGF-1 R&D Systems 100 ng/ml 
IL-10  
IFN-γ 

R&D Systems  
Promega, WI, USA 

10 ng/ml 
1 ng/ml 

bFGF Sigma 10 ng/ml 
PMA Sigma 10 ng/ml 

 

4.7. Quantitative reverse transcription (RT)-polymerase chain reaction (PCR) (IV) 

Total cellular RNA from the keratinocytes was extracted by using RNeasy miniprep-kit 

(Qiagen, Chatsworth, CA) according to the manufacturers´s instructions. RNA was then reverse 

transcribed to cDNA with TaqMan Reverse Transcription Reagents (Applied Biosystems) and 

used as a template in PCR reaction. Real time quantitative PCR reactions were performed with 

the ABI PRISM 7700 Sequence Detector System (Applied Biosystems) (Rechard et al., 

2000). PCR primers and MGB probe for MMP-19 were designed using the computer program 

Primer Express (Applied Biosystems). Primers used for amplification were: forward 5´-

GCTTCCTACTCCCCATGACAGT-3´, and reverse 5´-GGCTTCTGTAGGTACCCATATTGT 

-3´. The fluorogenic MGB probe (CCCGTGGACTACCTG) contained a reporter dye (FAM) 

covalently attached at the 5’end and a quencher dye (TAMRA) covalently attached at the 3’end.  

PCR amplifications were performed in a total volume of 20 µl, containing 5µl cDNA sample, 

10 µl TaqMan Universal PCR Master Mix (Applied Biosystems), 200 nM of each primer and 

200 nM of fluorogenic probe. Pre-developed TaqMan assay reagents for endogenous control 

human GAPDH labeled with VIC reporter dye (Applied Biosystems) were used for 

amplification of control gene. PCR was started with 2 min at 50°C and the initial 10 min 

denaturing temperature was 94°C, followed by a total of 40 cycles of 15 s of denaturing and 1 

min of annealing and elongation at 60°C. The same reactions were done by conventional PCR 

with primers without fluorogenic probes. PCR products were analysed in 1% low melting point 

agarose gel in the presence of 5 ng/ml ethidium bromide under UV light. 
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4.8. Northern analysis (IV) 

Total cellular RNA was isolated from cell cultures using the single step method. Aliquots of 

total RNA (6-20 µg) were fractionated on a 0.8 % agarose gel containing 2.2 M formaldehyde, 

transferred to a nylon membrane (Zeta-Probe, Bio-Rad Laboratories, Richmond CA) and 

analyzed by Northern blot hybridization using cDNA probes. The probes were labeled with [α-

32P] dCTP by random priming using the RediprimeTM II Random Prime Labelling System kit 

(Amersham, UK). For hybridizations, a 1.5 kb MMP-19 cDNA (Pendas et al., 1997), a 2.0 kb 

human MMP-1 cDNA (Goldberg et al., 1986) and a 1.3 kb rat GAPDH cDNA  were used as 

probes. [32P]-cDNA/mRNA hybrids were visualized by autoradiography and quantitated by 

scanning densitometry. 

 

4.9. Western  analysis (II, IV) 

Western analysis was used to assay the presence of MMP- 1, -2 and -14 protein in tissue 

extracts and the production of MMP-19 protein by primary epidermal keratinocytes.  Tissue 

extracts were mixed with equal volume of 2 × sample buffer containing 50 mM 2-

mercaptoethanol. The mixture was boiled for 5 min, fractioned by a 7.5% SDS-PAGE, and 

electroblotted onto nitrocellulose membranes (Bio-Rad). The cell culture medium was collected 

after 24 h of incubation, concentrated 15-fold with Amicon Ultra Centricon (30,000 MWCO; 

Millipore Corporation, MA), separated on 8.5% SDS-PAGE and transferred to a Hybond ECL 

filter (Amersham). After blocking all membranes in PBS containing 5% milk and 0.1% Tween-

20, membranes were incubated overnight with mouse monoclonal antibodies against MMP-1 

(1:5000; MAB1346; Chemicon), MMP-2  (1:1000; MAB3308; Chemicon), or against MMP-14 

(1:1000; AB815; Chemicon) or with a monoclonal antibody against human MMP-19 protein (a 

kind gift from Dr. Carlos López-Otín, University of Oviedo, Oviedo, Spain ) in a final 

concentration of 2 µg/ml for 1h at room temperature. The specific binding of primary antibodies 

was detected with peroxidase-conjugated secondary antibody diluted 1:1000 and visualized with 

ECLTM (Amersham Pharmacia Biotech, Buckinghamshire, UK). Antibody against MMP-1 

(AB806, Chemicon) was used as a control for MMP-19 . 
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4.10. Samples of wound fluids (I) 

Wound fluids were collected from the dermatome wounds and from venous leg ulcers. Sterile 

hydrophobic polyurethane foam disks were applied to the wound and covered by a polyurethane 

film dressing (Tegaderm®, 3M). 2h after application, the collecting system was removed, wound 

cleansed with sterile saline (0.9% NaCl) and a new collecting system was applied and left on 

the wound for another 24 h at 1, 2, 3, 4, 5, 6 and 7 days postoperatively. In the case of the 

venous leg ulcer, compression bandages were applied during the whole collection period. 

Collection of wound fluid was performed at inclusion and then after 1, 2 and 3 weeks. The ulcer 

was treated locally with an inert, non-adhesive and absorbing dressing between the sampling 

periods. Wound fluids were filtered (0.45 µm) and kept at -80°C until analyzed by zymography. 

 

4.11. Extraction of MMPs (I, II) 

Skin samples (n=34) were thawed, weighed and shaken in 20/40 volumes of buffer containing 

10 mM cacodylate-HCl pH 6.0, 1 M NaCl, 0.01% (vol/vol) Triton X-100, 1 µM ZnCl2, 0.2 mg 

NaN3 per ml and 1 µl of proteinase inhibitor cocktail (539134; Calbiochem®) per ml for 18 h at 

4°C (Eeckhout et al., 1986). In a complementary experiment, extraction was carried out in the 

buffer devoid of the proteinase inhibitor cocktail. Wound tissue extracts were centrifuged, 

sterile filtered, and kept in supernatant at 4°C until analyzed by zymography within 24 h. 

Freezing of extracts was avoided due to activation of MMPs by freeze-thaw-cycles 

(unpublished data). Because the extraction method of Eeckhout et al. (1986) was originally 

optimized for bone tissues, the MMP levels of the extracts were compared with those extracted 

by a standard method on some wounded skin samples (Ågren et al., 1998). Tissues were 

homogenized in 20 volumes of 0.25% Triton X-100 and 10 mM CaCl2 for 1 min on ice with 

Polytron® PT 1200 Cl (4962300; Buch & Holm, Herlev, Denmark) tissue grinder and 

centrifuged (Ågren et al., 1998). Protein contents were determined according to a modified 

Lowry assay (DC Protein Assay, 500 0112; Bio-Rad Laboratories, Hercules, CA). Standard 

curves were run with bovine serum albumin (Bio-Rad) (0.008-1.0 mg/ml) and absorbances read 

at 650 nm. 

 

4.12. MMP activity analyses (I) 

For quantitative analyses of MMP activities in tissue extracts, ELISA-type assay kits from 

Amersham Pharmacia Biotech were used for MMP-2 (RPN2631) and for MMP-9 (RPN2630). 

Specific antibodies were pre-coated onto a microtitre plate capture MMPs. Active MMP present 

activates the pro-detection enzyme, enabling it to cleave a chromogenic peptide 
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substrateresulting in p-nitroanilide detection molecule. Endogenous tissue MMP activities were 

measured without prior activation, total MMP activities were measured for MMP-2 after 

activation with 0.5 mM aminophenylmercuric acetate (APMA) for 1.5 h and for MMP-9 with 1 

mM APMA for 2.5 h according to manufacturer’s instructions. Standard curves with human 

MMP-2 (0.19-12 ng/ml) and MMP-9 (0.125-16 ng/ml) were run simultaneously. Absorbances 

were read at 405 nm. 

 

4.13. Zymographic analyses of wound fluids, conditioned media and tissue extracts (I, II) 

Latent and active forms of MMP-2 and MMP-9 were determined using 0.5 mg/ml gelatin (G-

8150; Sigma) of a 7.5% or 10% SDS-PAGE. Thirty µl of tissue extracts, wound fluids or 

conditioned media were mixed with 10 µl of 4 × sample buffer (0.0625 M Tris-HCl pH 7.4, 2% 

(w/v) SDS, 10% (v/v) glycerol and 0.04 % (w/v) bromophenol blue. Aliquots of 25 µl were 

applied to each lane. A human MMP-2 (50 ng/µl)/MMP-9 (50 ng/µl) standard (19101670; 

Chemicon International Inc.,) was run in a parallel lane. After electrophoresis at 25 mA constant 

current, the gels were washed 3 times in 2.5% Triton X-100 and incubated in a buffer composed 

of 5 mM CaCl2, 1 µM ZnCl2, 50 mM Tris-HCl pH 7.4, 0.1% Triton X-100 and 0.003 M NaN3 

for 18 h at 37°C in a closed container with continuous shaking. Zymograms were stained in 

0.25% Coomassie Brilliant Blue R-250, 10% acetic acid and 45% methanol for 30 min and 

destained for 30 min in 20% acetic acid, 20% methanol, 17% ethanol and 0.6% diethylether 

(Kleiner and Stetler-Stevenson, 1994). Gels were mounted, dried and scanned. The intensity of 

the gelatin degradation bands was determined with a densitometer (Eagle Eye 2, Strategene 

Eagle Sight, Strategene Ltd., Cambridge, UK) and expressed in kpixels/inch2. 

 

To study if residual BB-3103 in samples per se interfered with detection of MMP activity by 

zymography, BB-3103 at 10 µM was added to d-7 conditioned media from control-treated 

wounds. Conditioned media with or without BB-3103 were then incubated for 30 min at room 

temperature followed by zymographic analysis. To visualize MMP activation by APMA 

treatment in activity assays, tissue extracts were incubated either with 1% DMSO alone or with 

0.5 mM APMA in 1% DMSO for 1.5 h (MMP-2) and 1 mM APMA for 2.5 h (MMP-9) at 37°C 

and zymography was performed. 

 

4.14. Cytokine and growth factor analyses of conditioned media (II) 

Sandwich enzyme-linked immunosorbent (ELISA) assays were used to determine human tumor 

necrosis factor-α (TNF-α), interleukin-1β (IL-1ß), epidermal growth factor (EGF), hepatocyte 
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growth factor (HGF), keratinocyte growth factor (KGF) and tumor growth factor-β1 (TGF-ß1) 

in incubation or conditioned media. The high sensitivity TNF-α kit (RPN 2788) from 

Amersham Pharmacia Biotech employed an amplification reagent for enhancement of binding 

of TNF-α in incubation media. Quantikine ELISA kits from R&D Systems Inc. (Minneapolis) 

were used to determine human EGF (DEG00), human KGF (DKG00), human HGF (DHG00), 

human IL-1β (DLB50) and human TGF-β1 (DB100) in conditioned media according to the 

manufacturer’s instructions. Prior to assaying TGF-β1, the samples were treated with 0.17 N 

HCl for 10 min at room temperature and then neutralized with 0.17 NaOH/0.07 N Hepes. To 

check for interference with the different ELISA assay kits, representative conditioned media 

from all groups and the proteinase inhibitors BB-3103 at 10 µM and aprotinin at 100 µg/ml 

alone were added to standard antigens diluted appropriately in separate wells and run in parallel 

to the samples. 
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5. RESULTS AND DISCUSSION 

 

Controlled spatial and temporal expression of MMPs is crucial for normal wound healing. 

MMPs have also been implicated at all stages of tumorigenesis. In order to further understand 

their role in normal and aberrant wound healing as well as in human epithelial cancers, we 

concentrated on studying the MMP expression in vivo. In situ hybridisation and 

immunohistochemistry were used to investigate localizations of MMPs in tissues. In order to 

discover novel prognostic markers for carcinogenesis of chronic wounds, we compared the 

MMP profile of SCCs arisen in chronic wounds to that of non-malignant chronic venous ulcers. 

KAs were studied in parallel as a model of rapidly growing, but benign hyperproliferative 

tumors, resembling SCCs. We investigated the markers that could predict tumorigenesis in 

cutaneous and oral premalignant lesions, like actinic keratoses and verrucous hyperplasias. 

Therefore MMP expression pattern in BCCs and SCCs as well as in VCs and SCCs of oral 

tissues were studied. Transcriptional studies (Northern blot, Taqman PCR), and enzyme activity 

analysess (zymography, ELISA, Western blot analysis) were used to measure the expression 

levels and activities of MMPs in tissues and ulcer fluids and in cell extracts.  

 

5.1. MMP-9 is differentially expressed in human acute and chronic wounds in vivo (I, II) 

The localization of MMP-9 protein was quite different between acute and chronic wounds, 

although no differencies in the overall enzyme activity was observed in the two wound types. In 

acute wounds, MMP-9 was predominantly expressed by migrating keratinocytes in the 

advancing epithelium, whereas in chronic ulcers, MMP-9 expression was abundant in 

macrophages and neutrophils of the wound bed (I, Fig. 3. and 4.). The epithelial edge bordering 

chronic wounds was only rarely positive. Interestingly, this contrasts the findings with MMP-1, 

and stromelysins (MMP-3 and MMP-10), which are usually detected at the epithelial edges of 

chronic wounds (Saarialho-Kere, 1998) (see summary in Figure 4, p 54.). Expression of MMP-9 

in keratinocytes bordering acute wound is in agreement with data obtained in oral mucosal 

wounds and rat and mouse wound models (Salo et al., 1994; Okada et al., 1997; Madlener et al., 

1998; Lund et al., 1999). Lack of MMP-9 in keratinocytes bordering chronic wounds could 

indicate their non-migratory phenotype, although MMP-9 knock-out mice do not demonstrate 

any delay in wound healing, possibly due to compensation by other MMPs or serine proteinases 

(Lund et al., 1999). Results with mice are not necessarily directly adjustable to humans as there 

are differencies in MMP expression when comparing mice to men, different animal species to 

each other and also wounds of different tissues in the same species as well as gender 
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differencies in mice (Fini et al., 1996; Okada et al., 1997; Madlener et al., 1998; Balbin et al., 

2003). In wounded HaCaT keratinocyte cultures MMP-9 expression does not correlate with 

migration (Mäkelä et al., 1999) and indeed it could play a role in cleaving type IV collagen 

during BM remodelling associated with wound healing. This is further substantiated by the fact 

that MMP-9 is upregulated during maturation of the epidermis in suction blister models 

(Oikarinen et al., 1993), in which BM remains essentially intact during epithelialization.  

Thomas et al., (2001b) found that MMP-9 is upregulated through cell contact with fibronectin 

via the αvβ6 integrin, which is abundantly expressed in the chronic wound epithelium 

(Häkkinen et al., 2004). Fibronectin, however, seems to be deficient in chronic wounds (Herrick 

et al.,1992) so it can not be an MMP-9 inducing ligand in this context. We hypothesize that 

ECM degradation by inflammatory cell-derived MMP-9 in chronic ulcers deprives wound edge 

keratinocytes of stimulatory cell-matrix protein interactions that are a prerequisite for epithelial 

MMP expression and migration (Ågren et al., 2000). Alternatively, MMP-9 in wound edge 

keratinocytes could remodel the deposited BM components in healing wounds (Yi et al., 2001; 

Daniels et al., 2003). Fini et al. (1996) attributed the failure of epithelium to cover corneal 

defects due to excessive degradation of BM molecules by MMP-9. MMP-9 -deficient mice 

reveal defects in remodeling of ECM at the epithelial BM zone and in particular, a failure to 

effectively remove the fibrin(ogen) provisional matrix (Mohan et al., 2002). They also indicated 

that MMP-9 acts to inhibit the rate of wound closure due to control of cell proliferation and 

delay of the inflammatory response. 

 

In this study, the overall MMP-9 enzyme activities did not differ between acute and chronic 

wounds, although latent MMP-9 increased in chronic wound tissues and fluids (I, Fig. 1. and 

2.), confirming results of other previous studies on wound fluids of chronic ulcers (Wysocki et 

al, 1993; Yager et al, 1996; Bullen et al, 1995; Trengove et al, 1999). MMP-9 upregulated 

already 24 h post-wounding in epithelial cells in normally healing wounds and it was found up 

till 9 d in the epidermis of wounds that were epithelialized. This is in accordance with previous 

studies, which have shown that well healing wounds express maximal levels of MMP-9 at 24 h, 

followed by a significant decline by 48 h (Tarlton et al., 1997; Ågren et al., 1998). As a 

conclusion, chronic non-healing wounds are not caused by excessive MMP-9 activity in the 

ulcer.  
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5.2. MMP-2 and MMP-14 are expressed by stromal cells in acute and chronic wounds (I, 

II) 

MMP-2 was expressed in stromal fibroblasts, endothelial cells and under the BM zone in 

stromal connective tissue. Protein was detected both in acute and chronic wounds. No MMP-2 

protein was found in the epithelium of wounds (see summary in Figure 4, p 54.). Mäkelä et al. 

(1999) presented in vitro evidence that keratinocyte-derived MMP-2 has a crucial role in 

keratinocyte migration and mobility at least in gingival keratinocytes. Although no epithelial 

MMP-2 was found here, epithelial cells could express MMP-2 earlier than 24 h post-wounding 

as there was occasionally a band-like immunostaining at the BM zone under the epithelium of 

the wound edge (I, Fig.5.). Ln-5 was detected in the same area, so the active MMP-2 might 

funtion in the cleavage of Ln-5. 

 

Endogenous activity of MMP-2 enzyme was determined in normal skin, and in wound margin 

biopsies of acute dermatome wounds on postwounding days 1 and 7 as well as in biobsies of 

chronic wounds. Activity increased from d 1 to d 7 in acute wounds and was higher than in 

normal skin, but MMP-2 levels in chronic wounds did not differ significantly from those of 

acute wounds (I, Fig. 1. and 2.). Our findings are in contrast with the report by Ashcroft et al. 

(1997) localizing MMP-2 in epithelium, particularly in older subjects. The qualities of 

antibodies used or the use of paraffin versus frozen tissue may explain this discrepancy. 

In acute wounds and in ex vivo explants MMP-14 (MT1-MMP) expression was detected in 

fibroblasts, but epithelial cells were negative. The same pattern was observed in chronic 

wounds and well-granulating ulcers, where abundant expression of MMP-14 protein was 

detected in fibroblasts of the wound bed by immunohistochemistry and mRNA by in situ 

hybridization. Epithelial cells were always negative. In vitro studies have related migration of 

breast epithelial cells to MMP-14 expression (Gianelli et al., 1997; Koshikawa et al., 2000), 

whereas other groups have not detected MMP-14 in normal epithelial cells. However it has 

been shown in transformed epithelial carcinoma cells (Seiki, 1999). Migration of some 

epithelial cell lines was attributed to the expression of MMP-14 (Koshikawa et al., 2000). Here, 

I could not detect MMP-14 protein in epithelium of acute or chronic wounds, nor in our ex vivo 

model. Moreover, MMP-14 levels were similar in BB-3103-treated wounds and controls. These 

findings suggest that MMP-14 is not important for epithelialization, verifying earlier in vivo 

results (Okada et al., 1997). However, stromal MMP-14 co-localized with MMP-2 in 

fibroblasts, a phenomenon also found in rodent wounds (Okada et al., 1997). 
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5.3. Matrix metalloproteinase inhibitor BB-3103 blocks epithelialization in human skin ex 

vivo wound model indicating the need for MMP activity in wound healing (II) 

Several MMPs have been shown to be upregulated in migrating epithelial cells (Saarialho-

Kere, 2002). Their importance in wound repair is further substantiated by the fact that MMP 

inhibitors, such as GM 6001 and chemically modified tetracyclines, retard epithelialization 

(Lund et al., 1999). We investigated the epithelial migration with or without treatment with 

proteinase inhibitor BB-3103 in an ex vivo skin wound model. Because of the previously 

reported importance of the plasminogen system on epithelialization (Rømer et al., 1996; Lund 

et al., 1999), skin explants containing a wounded site were also incubated with the serine 

proteinase inhibitor aprotinin.  
 
Inhibition of MMPs with BB-3103 blocked epithelialization completely, whereas aprotinin did 

not have any significant effect, indicating the requirement for one or more MMPs in epidermal 

wound healing (II, Fig. 1.and 2.). As expected, the broad-spectrum MMP inhibitor prevented 

activation of both MMP-2 and MMP-9 as probably many other MMPs. Aprotinin blocked 

enzyme activation of MMP-9, but not MMP-2 (II, Fig.6.), a result which might be explained by 

the fact that the majority of MMPs, except for MMP-2, are directly activated by plasmin in vitro 

(Carmeliet et al., 1997; Creemers et al., 1998; Murphy et al., 1999). 

 

Different experimental models could explain the discrepancy between our findings and the in 

vivo results in mice of Lund et al. (1999). Our interest was to elucidate the effect of serine 

proteinases specifically in the epithelialization of wounded sites in skin explants free from 

influences of fibrin and inflammatory cells. For example, the effect of aprotinin on clot 

formation would make interpretation difficult. In our ex vivo excisional wound model, 

keratinocytes move over a collagenous matrix to cover the epidermal defect, whereas in vivo 

migration occurs mainly over a fibrin-rich provisional matrix in full-thickness incisional 

wounds. Supporting our findings, Ando and Jensen (1996), demonstrated that movement of 

human keratinocytes was unrelated to the proteolytic activities of the uPA/plasminogen system. 

In addition, aprotinin at 100 µg/ml did not influence the random motility or dispersion of single 

human keratinocytes (Ando and Jansen., 1996; McCawley et al., 1998). No difference between 

uPA expression at the leading edge of keratinocytes in well-healing wounds and chronic leg 

ulcers has been detected (Vaalamo et al., 1996). In earlier in vitro wound healing studies, 

aprotinin has been described to inhibit contraction of collagen type I lattices populated with 

human fibroblasts or endothelial cells  (Pins et al., 2000; Davis et al., 2001).  
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Our immunohistochemical studies on these ex vivo samples showed that MMP-9, but not MMP-

2, was found in migrating keratinocytes (II, Fig.4). In another human ex vivo study, migrating 

bronchial epithelial cells were shown to be MMP-9 immunopositive (Legrand et al., 1999). 

Keratinocyte-derived MMP-9 is preferentially bound to the cell surface, but not to the ECM 

molecules deposited by human mucosal keratinocytes in vitro, implying that there is no 

functional role for MMP-9 (Mäkelä et al., 1998). Migration of human bronchial epithelium was 

associated with degradation of type IV collagen by active MMP-9 (Legrand et al., 1999). In the 

skin explants studied here, keratinocytes at the wounded site synthesized new matrix molecules 

including laminins, but not type IV collagen (Jansson et al., 1996). Specific cleavage of Ln-5 by 

active MMP-2 has been found to induce migration of normal human breast epithelial cells, 

while active MMP-9 did not infer a migratory phenotype in a transmembrane assay.  

 

In summary, the presence of active MMP-2 in ex vivo wound healing model and its absence in 

the “non-healing” ex vivo wounds as well as the wounds treated with the MMP inhibitor BB-

3103 indicate that MMP-2 is important for epithelialization. Aprotinin, which inhibits plasmin 

and many other serine proteinases and MMP-9 activation, influenced neither keratinocyte 

migration nor MMP-2 activation in fibrin-deficient skin wound healing, suggesting that serine 

proteinases and MMP-9 per se may not be crucial for epithelialization of skin wounds. 

However, aprotinin does not inhibit mast cell serine proteinases, tryptase and chymase 

(Harvima et al., 1988; Lohi et al., 1992; Kivinen et al., 2001 and 2003), enzymes which are 

released during skin organ cultures and which can activate MMPs.  

 

MMP inhibitors are cytostatic (cells are viable, but do not proliferate), not cytotoxic, and we 

confirmed that the abolished epithelialization was not due to cytotoxicity of BB-3101, nor was 

there differencies in apoptosis between BB-3103 and control treated groups. As growth factors 

regulate both MMPs and wound healing (Sato et al., 1995; Zeigler et al., 1996; McCawley et 

al., 1998), we examined possible secondary effects of the proteinase inhibitors on important 

cytokines and growth factors. An issue was that the effects of the MMP inhibitor on the 

epithelialization in the wound healing model were secondary to decreased release of pro-

inflammatory cytokines, because hydroxamate inhibitors like BB-3103 decrease shedding of 

membrane-anchored cytokines like TNF-α but not of interleukins (Barker et al., 1991; Gallea-

Robache et al., 1997). BB-3103 and aprotinin reduced TNF-α secretion, but did not appreciably 

influence the levels of the immunodetectivity of other regulators of MMPs and 
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epithelialization, such as IL-1β, HGF, KGF or TGF-β1. These results suggest that TNF-α was 

not a decisive factor for epidermal healing in our model. Later it has been shown that TNF-α 

mediated activation of pro-MMP-9 is associated with down-regulation of TIMP-1 in human 

skin (Han et al., 2002).  

 

The levels of immunoreactive HGF, KGF and TGF-β1 in conditioned media were similar in the 

different treatment groups. However, the ELISA analyses did not discriminate between inactive 

and bioactive growth factors. For example, aprotinin inhibits bioactivation of HGF and its 

mitogenic effect on epithelial cells (Gak et al., 1992). Aprotinin treatment at 100 µg/ml also 

attenuated epithelial proliferation. It is unclear whether the reduced proliferation was due to 

reduced level of bioactive HGF or to a direct inhibitory effect of aprotinin on keratinocyte 

proliferation. In contrast, proliferation tended to increase in BB-3103-treated explants. This 

could be explained by displacement of TIMPs by the synthetic inhibitor resulting in more 

unbound, mitogenic TIMPs (Buisson-Legendre et al., 2000). Our observations suggest that 

epithelial migration rather than proliferation is the major closure mechanism of the ex vivo 

wound models.  

 

Use of MMP inhibitors in the treatment of chronic wounds is not well studied. GM6001 is able 

to increase wound strenght in rat incisions (Witte et al., 1998), and in porcrine acute wounds it 

impairs re-epithelialization, indicating the substantial role of MMPs in normal wound repair 

(Ågren, 1999). Therapeutic trials for non-healing ulcers, based on growth-factors, e.g., methods 

using injection of GM-CSF or adenoviral-mediated overexpression of  PDGF in the wound 

area, have not been promising (see Ravanti and Kähäri, 2000).  

 

5.4. MMP-19 is expressed by hyperproliferative epithelium but disappears with neoplastic 

dedifferentiation (III, IV, V) 

Unlike several other MMPs, such as MMP-1, -9 and –10 (Parks et al., 1999; Rechardt et al., 

2000), MMP-19 protein is not expressed by migrating keratinocytes in acute and chronic 

wounds. However, expression was detected in keratinocytes distal to the migrating edge in areas 

immunopositive for the proliferation marker Ki67 (IV, Fig.1.). In human chronic wounds, 

regions that seemed to be acanthotic or hyperproliferative, had abundant expression of MMP-19 

protein (see summary in Figure 4.). Epithelial MMP-19 protein colocalized with abnormally 

faint or absent staining of type IV collagen (IV, Fig.1.). MMP-19 was also induced in the 
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hyperplastic epithelium bordering malignant wounds and it was widely expressed by 

keratinocytes at the basal epidermal layer of KAs (III, Fig. 3.). MMP-19 was induced in actinic 

keratoses and Bowen's disease as well as in hyperplastic epithelium bordering SCC and BCC, 

when the polarity and density of keratinocytes was disturbed, as assessed histologically and by 

abnormal E-cadherin staining (IV, Fig 2.). However, MMP-19 was downregulated in vivo when 

keratinocytes become malignant and it disappears during neoplastic transformation (III, IV,V). 

While this study was in progress MMP-19 was shown to be expressed in the epithelium of 

normal mammary glands and benign mammary tumours (Djonov et al., 2002). In agreement 

with our data, Djonov et al. concluded that MMP-19 expression may act in a “protective” 

manner.  These findings suggest that MMP-19 does not take part in the degradation of BM and 

ECM to induce tumor spread, but rather in normal remodeling or restructuring of the BM 

induced after microchanges in the BM proteins, such as those detected in wounds and Bowen's 

disease. This is reasonable, as physiological substrates of MMP-19 are type IV collagen, 

laminin-1 and nidogen.  

 

MMP-19 has been shown to be coexpressed with type IV collagen in tunica media and with 

integrin αvβ3 and VEGF-R2 in endothelial cells (Kolb et al., 1999). In my study it located in 

the area, where BM was at least partly destructed when stained with type IV collagen antibodies 

(IV, Fig.1.,2.). The presence of MMP-19 in p63-positive epithelium suggests that it is restricted 

in vivo to areas of keratinocytes with high proliferative potential and is absent from cells 

undergoing terminal differentiation (Parsa et al., 1999). Quite recently, Sadowski et al., (2003a) 

also showed that MMP-19 expression correlates with cytokeratin-14, which represents a marker 

for undifferentiated basal keratinocytes. 

 

The expression of different MMPs in keratinocytes is generally regulated by extracellular 

signals, such as growth factors or cytokines and by signal transduction pathways, including 

those activated by phorbol myristate acetate (PMA). We wanted to investigate MMP-19 

mRNA expression in primary keratinocytes as MMP-19 mRNA expression is upregulated by 

phorbol ester (TPA=PMA), EGF and bFGF (Kolb et al., 1999) in endothelial and smooth 

muscle cells. When we investigated MMP-19 mRNA expression in epidermal keratinocyte-

derived cell lines representing different phases of carcinogenesis and varying tumorigenic 

potentials, our in vivo results were further substantiated. MMP-19 mRNA was detected by 

Northern analysis only in primary keratinocytes after stimulation with PMA, but was not 

evident in non-tumorigenic HaCaT cells (Boukamp et al., 1988), in ras-transformed A5 cells, 
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or in cutaneous SCC metastasis-derived UT-SCC-7 cells (Ahonen et al., 2002) (see Materials 

and Methods, Cell cultures). Although immortalized HaCaT cells are non-tumorigenic, their 

MMP expression profile differs from primary keratinocytes,,e.g. MMP-12 and –13 that are 

upregulated in the course of epithelial transformation, are expressed by HaCaT cells but not by 

primary keratinocytes (Johansson et al., 1997; Kerkelä et al., 2000).  

 

When detected with real time quantitative PCR, basal MMP-19 mRNA levels in unstimulated 

keratinocytes were quite low and only PMA and TNF-α were able to stimulate it in primary 

keratinocytes (IV, Fig.5,A). TNF-α  was shown to induce MMP-19 expression also in 

fibroblsts (Hieta et al., 2003). Treatment with TNF-α, inhibits proliferation and promotes 

differentiation, cytostasis or cell cycle arrest in cultured keratinocytes (Vieira et al., 1996; Pillai 

et al., 1989; Symington et al.,1989). TNF-α  also induces adhesion molecules and apoptosis of 

keratinocytes (Uchi et al., 2000). In our samples the localization of MMP-19 did not 

histologically correlate with apoptosis, but TNF-α protein was expressed in the 

keratinocytes adjacent to MMP-19 positive cells. The fact that TNF-α induces adhesion 

molecules and that it stimulates MMP-19 could suggest that MMP-19 is a reconstructive 

enzyme trying to repair destructed BM. Caution is needed when extrapolating results from cell 

culture to tissue in vivo, since based on transgenic mouse studies many cytokines have 

different effects on keratinocytes in vivo and in culture (Turksen et al., 1992). 

 

MMP-19 expression shown in wound bed macrophages (Hieta et al., 2003) and blood 

mononuclear cells and myeloid cells (Mauch et al., 2002) suggests that MMP-19 might have an 

effect on cell adhesion or it might contribute to the distinct migration capabilities of blood-

derived cells (Mauch, 2003). Recently, MMP-19 was also associated with the regulation of 

IGF-mediated proliferation, migration and adhesion. Sadowski et al., (2003b) showed that 

MMP-19 degrades insulin growth factor binding protein -3 (IGFBP-3) in HaCaT cell lines 

inducing the release of IGF, which then exerts mitogenic effects through IGF-IR, thereby 

maintaining the proliferation of basal keratinocytes. They concluded that MMP-19 expression 

is down-regulated by E-cadherin mediated cell-cell contacts. These findings are in accordance 

with ours as we detected low levels of E-cadherin staining in MMP-19 positive areas. 
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Figure 4. Summary of MMP expression in wound repair. 

 

5.5. Expression profile of MMPs associates with malignant transformation of chronic 

wounds and KAs  as well as invasiveness of oral cancers (III, V) 

Tumor growth and cell invasion critically depend on the neoplastic proliferation together with 

the ability of the tumor cells to produce proteolytic enzymes, receptors mediating cell adhesion, 

and certain ECM proteins (Egeblad and Werb, 2002; Mueller and Fusenig, 2002). The presence 

of specific MMPs in cancer tissue can be used as a prognostic marker to predict tumor 

invasiveness (Vihinen and Kähäri, 2002). Therefore, we wanted to investigate the expression 

pattern of MMPs and their possible role as diagnostic indicators in development of SCC from 

pseudoepitheliomatous hyperplasia of chronic wounds. KAs were studied as a model of rapidly 

growing, benign hyperproliferative tumors, resembling SCCs. In order to discover novel 

prognostic markers for invasiveness of oral cancers, we analyzed oral SCC, VC and verrucous 

hyperplasias for several MMPs that have been rarely or never investigated in oral cancer, 

namely MMP-7, -10, -12, -13, –19, and -26 (Werner et al., 2002). MMP-3  and –9 expression 

was also studied as they both have been implicated in the invasiveness of oral SCCs 

(Kusukawa et al., 1995; O-Charoenrat et al., 2001).   

 

MMP-7 is expressed only by invasive keratinocytes both in skin and oral mucosa, but is 

absent from chronic wound epithelium 

MMP-7 is required for healing of airway wounds, but it is not expressed during skin wound 

repair (Parks et al., 2001). In all wound SCC samples, MMP-7 protein and mRNA were 

expressed by the invasive epithelial keratinocytes, whereas the epithelium was negative in all 

acute and chronic wounds (III; Fig.1.). All KA samples were negative for MMP-7 mRNA 
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supporting their non-malignant behavior. The same pattern of expression was seen in oral 

tissue, as MMP-7 expression was common in oral SCC, but absent in VC (V, Fig. 1.). All these 

findings are in agreement with previous reports, that MMP-7 expression correlates with 

aggressive phenotype of many cancers (Nelson et al., 2000). Furthermore, Van Kempen et al. 

(2002) also showed in a transgenic mouse model that MMP-7 is only derived from carcinoma. 

Because MMP-7 is able to degrade fibronectin, tenascin and β4 integrin, proteins that have 

crucial roles in cell adhesion and migration during tumorigenesis, MMP-7 plays apparently an 

important part in tumor development (see Kerkelä and Saarialho-Kere, 2003). Mature MMP-7 

is also believed to be involved in early tumor development, as it is able to positively or 

negatively regulate apoptosis via shedding of FasL (see Hojilla et al., 2003). Furthermore, both 

MMP-7 and -3 contribute to the initiation of epithelial-to-mesenchymal transition by cleavage 

of E-cadherin (Noe et al., 2001). 

 

Epithelial expression of MMP-12 may predict cancer in epithelial tissue  

MMP-12 is expressed both by macrophages and transformed keratinocytes in cutaneous SCC 

(Kerkelä et al, 2000) and it has been implicated in matrix degradation and macrophage 

migration in many pathological conditions (Kerkelä et al., 2003). MMP-12 mRNA expression 

in tumor cells correlates with aggressive histology of skin cancer and poor prognosis in vulvar 

SCC, while MMP-12 positive macrophages may function in host-response and inhibit tumor 

growth (Kerkelä et al., 2002). MMP-12 also generates angiostatin, thus having a potential to 

inhibit tumor angiogenesis. In this study, MMP-12 mRNA was seen in macrophages but also in 

cancer cells in a subset of epithelial SCCs. In KA samples and in non-malignant chronic 

wounds, it was expressed only by macrophages (III, Fig.1). Similarly, in VH samples, MMP-12 

mRNA was expressed by macrophages and this may indicate normal host-response effect. VC 

samples were negative for MMP-12 (V, Fig.3.). As MMP-12 mRNA expression in tumor cells 

correlates with aggressive histology, and while MMP-12 positive macrophages may function in 

host-response and inhibit tumor growth in some cancer types (Kerkelä et al., 2002), epithelial 

expression of MMP-12 in chronic wounds and in VHs should raise cancer suspicion. The level 

of MMP-12 is higher in histologically more aggressive and poorly differentiated tumor types 

(grades II and III), suggesting a possible role in invasion process (Kerkelä et al., 2000). In 

vulvar SCCs, cancer cell-derived MMP-12 correlates with aggressiveness and dedifferentiation 

of the tumors, while macrophage-derived MMP-12 is shown to be most abundant in grade I 

tumors, thus predicting less aggressive behaviour of the tumors (Kerkelä et al., 2002). Larger 
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cohorts of patients with KAs and VHs are needed to predict whether macrophage-derived 

MMP-12 would serve as a marker of good prognosis. 

 

MMP-13 expression is upregulated in cancer  

MMP-13 expression correlates with tumor invasion and grade of carcinomas of the larynx 

(Cazorla et al, 1998), skin (Ala-Aho et al, 2002) and head and neck (Johansson, et al, 1997; 

Kusukawa et al, 1996). MMP-13 expression has been shown to be a good marker for 

malignant transformation in cutaneous keratinocytes (Airola et al., 1997; Ala-aho et al., 

2002). In oral mucosal epithelium, MMP-13 can also be induced during chronic inflammation 

(Uitto et al., 1998). Epithelial cells of VH and VC were negative for MMP-13 by 

immunohistochemistry. MMP-13 was expressed by malignant keratinocytes in SCCs, and the 

amount of positive cells increased as the tumor became more invasive (V, Fig.1.). Our results 

also showed that epithelial MMP-13 expression was strong in malignant wounds, absent in 

chronic wounds, but seen in the epithelium of KAs (III, Fig.2.). This expression pattern 

indicates, that MMP-13 might be turned on by inflammation as seen in oral mucosal 

epithelium during chronic inflammation (Uitto et al, 1998). Thus, in SCCs arisen from 

chronic wounds, it aids in obtaining the correct diagnosis, but does not assist in distinguishing 

KAs from grade I SCCs. 

 

MMP-8 is not detected in epithelial cells of chronic ulcers or cancers arisen in them 

MMP-8, which was originally thought to be expressed only by PMNs has been detected in 

benign and malignant keratinocytes in vitro (Prikk, et al., 2001). By ELISA analysis, it is 

detected in wound tissue and its overexpression and activation might have a role in the 

development of nonhealing chronic ulcers (Nwomeh et al., 1999). However, my results show 

that its role is not associated with the keratinocyte migration, but that it localizes to stromal 

neutrophils. In contrast to the results of Pirilä et al. (2001) obtained in mice, we were not able 

to detect MMP-8 in migrating cells of seven acute human wounds (Impola and Saarialho-

Kere, unpublished observations). This discrepancy may be explained by differencies in MMP 

expression in different species. While this study was in progress, Balbin et al (2003) showed 

in a transgenic mouse model that MMP-8 might have protective functions in cancer due to 

processing of inflammatory mediators which contribute to the host antitumor defense system. 

Our SCC samples arisen from chronic wounds, did not show epithelial MMP-8 expression, 

nor was it detected in KAs (III, Fig.2.). This slightly deviates from the findings of Moilanen et 

al. (2003), who found relatively low MMP-8 expression sporadically in cancer cell islands of 
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oral SCCs. We must, however, bear in mind that our collection of wound SCCs was limited 

and represented well-differentiated tumors. Thus, we can not exclude the presence of MMP-8 

in more dedifferentiated (grade III-V SCCs), Generally, MMP-8 expression is not useful for 

distinguishing chronic wounds or KAs from SCCs at early stage.  

 

MMP-9 has an important role in cancer, but is not a marker of malignancy in chronic ulcers 

MMP-9 protein was present in the epithelium of both malignant and non-malignant chronic 

wounds (III, Fig.2.). This indicates that MMP-9 operates normally in cell migration and BM 

remodeling, and its epithelial expression cannot be used as a marker of malignancy in chronic 

ulcers. MMP-9 positive epithelial cells were found also in KAs, although the number of 

positive cells was much smaller than in invading cancers (III, Fig. 2.). Gelatinases (MMP-2 

and MMP-9) are expressed at elevated level in oral SCCs (Sutinen et al., 1998). In VCs, 

MMP-2 was expressed only by few stromal fibroblasts, but the tumor itself was negative (V, 

Fig.1.). In SCCs, invasive cancer cell nests were surrounded by a great number of MMP-2 

positive stromal cells. MMP-9 was detected in stroma already in VC and, in addition to 

neutrophils and macrophages, it was expressed by invasive SCC cells. It has previously been 

shown that MMP-9 is overexpressed in human cancers (see Kerkelä and Saarialho-Kere, 

2003) and its expression correlates with invasion and poor prognosis in SCC (Kupferman et 

al., 2000; Van Kempen et al., 2002). MMP-9 decreases cancer cell apoptosis, regulates 

angiogenesis, and influences immune response to cancer (Egeblad and Werb, 2002). For 

instance, infiltration by mast cells and activation of MMP-9 coincides with the ’angiogenic 

switch’ in premalignant lesions during squamous epithelial carcinogenesis (Coussens et al., 

1999). MMP-9 promotes tumor angiogenesis in other mouse tumor models as well (Bergers et 

al., 2000; Yu and Stamenkovic, 2000). MMP-9 -null mice develop fewer and less 

differentiated cancers than wild-type mice. The number of cancer colonies formed in the 

lungs is reduced by the downregulation of MMP-9 and in MMP-9 -null mice (see Egeblad and 

Werb, 2002).    

 

MMP-3 epithelial expression is detected both in wounds and in cancer  

MMP-3 (stromelysin-1) is not expressed by keratinocytes in normal skin, but MMP-3 

expression is associated with oncogenesis of keratinocytes (De Angelis et al., 2002) and is 

detected in SCC and in keratinocytes after wounding (Saarialho-Kere et al., 1994). Expression 

of MMP-3 in tumors takes place at invasive tumor margins and correlates with tumor size, 

thickness and mode of invasion (Prosser et al., 1989) as well as with metastasis (Kusukawa et 
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al., 1996). In our study of chronic wounds, MMP-3 was expressed by proliferating keratinocytes 

distal to the wound edge. In oral and skin SCCs, MMP-3 was expressed mostly by stromal 

fibroblasts but occasionally also by invasive cells (V, Fig.2.). However, the enzyme was 

detected in some VCs and KAs, in which it was produced only by fibroblasts. It is typical for 

many MMPs, that their stromal signal is evident surrounding low-grade tumors, whereas 

aggressive tumors show epithelial MMP expression.  

 

MMP-10 is probably induced by inflammation 

The role of stromelysin-2 (MMP-10) in cancer progression is unclear. Recent data suggest 

that malignant transformation per se is not enough to induce MMP-10 (Kerkelä et al., 2001; 

De Angelis et al., 2002). At least in skin cancer, MMP-10 is probably not involved in the 

invasion of malignant cells, but may be induced by cytokines and growth factors functioning 

in ulcerative phenomena and inflammatory matrix remodeling associated with skin tumors 

(Saarialho-Kere, 1994; Kerkelä et al., 2001). In accordance with this hypothesis, MMP-10 

mRNA was detected in the epithelial cells of 3/12 KAs, which were all characterized by 

prominent inflammation (III, Fig. 2.). In oral samples, MMP-10 was expressed by epithelial 

cancer cells both in VCs and SCCs (V, Fig. 2.). The number of positive cells was, however, 

much higher in SCCs, in which the subepithelial inflammation was usually more severe. One 

of the two VC samples that expressed MMP-10 was strongly infected by yeast. Thus, it is 

possible that microbes modify MMP-10 expression also in oral cancer.  

 

Role of MMP-26 in SCCs is not yet known 

MMP-26 is a fairly novel member of the MMP family, the role of which in SCCs is not 

known. Previously it was reported to be downregulated in endometrial carcinomas (Isaka et 

al., 2003). Our current results show that, since MMP-26 is expressed by basal keratinocytes of 

hyperproliferative epithelium in VC, but also at the invasive front of well-differentiated oral 

SCCs, it does not seem to be a specific marker of invasion for oral SCCs (V, Fig.3).  

 

5.6. Loss of p16 from KAs or chronic wounds could be a marker for carcinogenesis (III) 

p16INK4a is a tumor-suppressor gene, the loss of which may facilitate activation of cyclin 

D1/CDK4 or 6, which is likely to affect regulation of the G0/S checkpoint. Mutational loss of 

p16 and p53 has been found to be a frequent early event in the development of SCC, endowing 

keratinocytes with extended replicative potential and increasing the probability of neoplastic 

progression (Rheinwald et al., 2002). As it is previously shown that positivity of p53 and p21 
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might be useful for the early detection of wound malignancy (Baldursson et al., 2000b), we 

studied only p16. In our SCC and KA samples, p16 was strongly expressed by keratinocytes in 

the superficial areas (III, Fig.3.). It was, however, absent from invasive cancer tissue. In 

accordance with the recent in vitro findings of Natarajan et al., (2003), p16 was detected in this 

study in migrating keratinocytes in normally healing wounds as well as at the wound edge 

keratinocytes of a subset of chronic venous ulcers in vivo. Therefore, the loss of p16 from KAs 

or chronic wounds could be a marker for carcinogenesis. Based on our previous data on wound 

repair, p16 seems to be coordinately expressed with laminin-5 γ2 on tissues, since the epithelial 

edge of both acute and chronic wounds demonstrates cytoplasmic staining for laminin-5 γ2 

(Rechardt et al, 2000; Saarialho-Kere et al, 2002).  

 

5.7. Laminin-5 is expressed by migrating keratinocytes both in wounds and cancer but 

can´t be considered as a good marker for invasiveness (I, V) 

Ln-5 immunohistochemistry was performed to investigate the migratory phenotype of epithelial 

cells (Larjava et al, 1993). Intracellular staining for Ln-5 reflects active synthesis of this protein 

needed for deposition of normal BM and is usually encountered in migrating cells of suction 

blisters and acute wound edge (Rechardt et al, 2000; Kainulainen et al, 1998). In full-thickness 

wounds, its deposition occurs before that of type IV and VII collagens or laminin-1 

(Kainulainen et al, 1998). In this study, Ln-5 expression was qualitatively similar in both acute 

and chronic wounds, suggesting that the migratory capability of wound edge keratinocytes is 

not different in normally healing and chronic wounds. Cleavage of the precursor molecule to 

mature Ln-5, needed for hemidesmosome assembly, may signal the epithelial cells to become 

quiescent and form integrated tissue (Häkkinen et al, 2000). Unfortunately, the antibody used in 

this study, did not distinguish between the mature and precursor protein. Ln-5 is an in vitro 

substrate for MMP-14 and MMP-2, but not for MMP-9 (Giannelli et al, 1997; Koshikawa et al, 

2000). We did not detect correlation between MMP-14 and Ln-5 in tissues. In chronic ulcers 

intracellular Ln-5 staining confined to the BM zone was surrounded by positive staining for 

MMP-2, suggesting that MMP-2 participates in Ln-5 processing also in the wound environment.  

Laminin-5 γ2 expression is a predictor of invasiveness in cancer of the larynx (Nordemar et al., 

2001) and it is associated with budding cancer cells at the tip of invading malignant epithelium 

but not in the cancer cells inside the tumor. Laminin-5 γ2 is thought to be useful as a prognostic 

marker for oral cancer and malignant cells (Kainulainen et al., 1997). In our samples Ln-5 was 

detected already in verrucous hyperplasia and carcinoma, even though they are not invasive. 
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This indicates that although in SCCs the number of positive cells was much higher and the 

staining was more intense, Ln-5 can not solely explain the different behavior of VC versus 

SCCs, nor can it be considered as a marker for invasiveness. 

 

5.8. αvβ6 integrin was present in verrucous hyperplasia and in SCC (V) 

αvβ6 is an epithelial integrin that binds fibronectin and tenascin (Sheppard et al., 1990). 

Normal basal keratinocytes do not express αvβ6, but its expression is induced during wound 

healing and in SCCs (Breuss et al., 1995; Haapasalmi et al., 1995). Leukoplakia specimens 

positive for αvβ6 integrin show a tendency for malignant transformation (Hamidi et al., 2000) 

and αvβ6 enhances invasive behavior in oral SCC (Ramos et al., 2002). It is not known at 

which stage of transformation the expression of αvβ6 is switched on in oral epithelial cells 

(Breuss et al., 1995). Previously, epithelial cells of hyperplasia or chronic inflammation were 

not found to express αvβ6 (Hamidi et al., 2000). In this study, αvβ6 was detected already in 

verrucous hyperplasia. In VC, the expression was limited into a narrow area in the epithelium 

compared to SCC, where it was expressed widely in the marginal epithelium and also inside 

invasive cancer cell nests. 

In vitro, αvβ6 modulates keratinocyte migration on fibronectin, vitronectin and towards the 

latency-associated peptide of TGF-β1 and is also associated with fibronectin-dependent 

upregulation of MMP-9 (Thomas et al., 2002). We did not detect co-localization of αv mRNA 

with MMP-9 protein in vivo, but caution should be exercised when interpreting these results, 

since a discrepancy between the protein and mRNA localization has been reported for several 

MMPs (see Kerkelä and Saarialho-Kere, 2003). However, in high grade SCCs there was 

partial colocalization of αvβ6 and MMP-3 mRNAs, although there was much more epithelial 

signal for αvβ6. Similar expression patterns of αvβ6, MMP-9 and MMP-3 are also detected 

in microinvasive cutaneous SCCs (Saarialho-Kere and Impola, unpublished observations). 
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6. SUMMARY AND CONCLUSIONS 

 

Cutaneous wound healing is a multistage process during which the disrupted epithelium is 

restored by cell migration and proliferation and the injured BM and ECM proteins are replaced 

by the newly deposited matrix. MMPs have various functions during wound healing and are 

mainly responsible for the degradation of the dermal matrix and migration of epithelial cells. 

MMP expression is controlled by different growth factors and cytokines, and by many receptors 

and matrix molecules: actually all changes in cell-cell or cell-matrix interactions may induce 

MMP expression. Several MMPs have been shown to participate in wound healing and their 

cellular expression is generally qualititatively similar in acute and chronic wounds. However, 

differencies in the balance between MMPs and their inhibitors have been demonstrated. The 

tissue changes in cancer and chronic wounds resemble each other; they are both characterized 

by cell migration, neoangiogenesis, remodelling of the ECM and inflammatory reaction. 

Patients suffering from chronic wounds are at increased risk of developing SCCs. Wound 

carcinogenesis is unpredictable and often undiagnosed for long periods of time. Several MMPs, 

such as MMPs-1, -2, -7, -9, -13, and -14, have been implicated to be present in various cancers. 

The presence of specific MMPs in cancer tissue may be used as a prognostic marker to predict 

tumor invasiveness. 

This study shows that MMP-9 expression localized in migrating epithelial cells during normal 

human wound healing, but is detected in stromal inflammatory cells in chronic wounds. This 

suggests that the absence of intact ECM molecules due to degradation by inflammatory cell-

derived MMP-9 in chronic non-healing wounds may deprive wound edge keratinocytes of 

proper cell-matrix interactions needed for induction of migration. Equal gelatinase activity 

levels found in acute and chronic wounds contradict former hypotheses that chronic ulcers are 

caused by excessive gelatinase expression.  

Furthermore, in an ex vivo fibrin-deficient skin wound healing model a broad spectrum 

MMP-inhibitor abrogated epithelialization, whereas serine proteinase inhibitor, aporotinin, 

did not. Active MMP-9 may have an important role in BM remodeling rather than in 

keratinocyte migration in wound repair which is accompanied by active MMP-1 and MMP-2. 

Like in chronic wounds, MMP-2 and MMP-14 were detected in stromal cells only and their 

expression partially colocalized in fibroblasts, suggesting that MMP-2 can be activated by 

MMP-14 in vivo.  

My study was the first to show MMP-19 expression in keratinocytes. In all wounds, MMP-19 

expression was detected in hyperproliferating and acanthotic areas of the epithelium, but not by 
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the migrating cells. Unlike most other MMPs, this protein was absent from the invasive skin 

cancer cell nests in vivo. Furthermore, MMP-19 was expressed in oral verrucous hyperplasias 

and VCs, but was absent from the invasive cancer cell nests of oral SCC. Basal expression 

levels of MMP-19 were low in primary keratinocytes and MMP-19 was not expressed by 

transformed epithelial cells (HaCaT, A5) in culture, suggesting that it is upregulated in the 

epithelium already early during oncogenesis in a host-response type manner to reconstitute 

normal cell adhesion. TNF-α  induced MMP-19 mRNA expression in primary keratinocytes.  

 

This study indicates that the epithelial expression of MMPs-7, -12, and –13, but not that of 

MMP-1, -3, -8, -9, -10, in a chronic wound sample provides a possible diagnostic clue for 

distinguishing SCCs from non-malignant chronic wounds. We also studied keratoacanthomas, 

which are benign rapidly growing tumors with keratinocyte proliferation and inflammation, and 

histologically often indistinguishable from SCCs. Epithelial expression of MMPs-7, -8, -9 and -

12 was generally absent from wounds and KAs, while MMP-3, -10, -13 and -19 were present. 

The loss of immunohistochemical staining for MMP-19 as well as the cell cycle inhibitor p16 

could aid in making the differential diagnosis between well-differentiated SCC and non-

malignant chronic wound or KA. 

My results showed that the invasiveness of oral cancers may also be dependent on their MMP 

expression profile. Typically VCs are devoid of epithelial MMP-7, -9 and -12 expression 

compared to oral SCCs. This phenomenon may thus serve as a prognostic marker in oral SCC. 

In vitro, αvβ6 is associated with fibronectin-dependent upregulation of MMP-9. We did not 

detect co-localization of αv mRNA with MMP-9 protein in vivo. However, in high grade SCCs 

there was partial colocalization of αvβ6 and MMP-3 mRNAs.  MMP-13 was expressed in VCs, 

although the number of MMP-13 positive cells was much higher in SCCs. MMP-13 expression 

in VCs is most likely associated with inflammation, but as inflammation and MMP 

overexpression may cause malignant transformation, and because MMP-13 upregulation is 

detected in many types of tumors, it might have a role in oral tumorigenesis, expecially when 

the duration of its expression is prolonged. This study was the first to show MMP-26 

expression in oral keratinocytes in vivo. MMP-26 is expressed by basal keratinocytes of 

hyperproliferative epithelium in VC, but also at the invasive front of well-differentiated oral 

SCCs. Therefore it does not seem to be a specific marker for invasion in oral SCCs. 

Eventhough laminin-5 γ2 is thought to be useful as a prognostic marker for oral cancer and 

malignant cells, in our samples it was detected already in VH and VC, indicating that Ln-5 
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cannot solely explain the different behavior of VC versus SCCs, nor can it be considered as a 

marker for invasiveness. In conclusion, we suggest that MMP-7, -9, -12, and -13 as well as 

αvβ6 integrin may be good targets for intervention therapy at the early stages of oral cancer. 

 

I conclude that several MMPs are needed in wound re-epithelialization, and that aberrations in 

their expression pattern may contribute to chronic wound phenotype as well as malignant 

transformation. In order to produce drugs and MMP inhibitors for chronic wounds, we need 

more in vivo studies and migration assays where different MMPs, cytokines and other factors 

involved in the process, are tested together. In skin and oral cancers, MMPs might be useful as 

prognostic markes in diagnosing pre-malignant tumours from more aggressive ones. However, 

as tumors at their onset have been more sensitive to MMP inhibition than the advanced ones, 

early diagnosis is essential and therefore results that aid in diagnosis as well as prognosis are 

important. Several MMPs are produced by the inflammatory cells and have a dual role in 

cancer; in addition to tissue infiltration and destruction, they stimulate protective and adaptive 

immune functions and inhibition of some MMPs may end up causing harmful effects on the 

patient. Both in vivo and in vitro studies are needed in an attempt to understand the mechanisms 

of tumor cell invasion through the ECM in order to produce therapeutic invasion blocking 

anticancer treatments. 
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