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“Fatti non foste a viver come bruti ma per seguir virtute e canoscenza”  
Your fate is not to rummage in the mud, yet to progress in moral value and knowledge 

 

Dante Alighieri, Divina Commedia, Inferno canto XXVI 116-20 

 

 

 

Life is what happens to you while you’re busy making other plans 

 
John Lennon in Beautiful Boy 

 

 
 

Destroy the altar whose boundaries tides will never exceed,  

ignite the pyres underneath a sedated mythology 

 
Circle Takes The Square in In The Nervous Light of Sunday 

 

 

 

And I knew the echo that is love 

and I knew the secrets in your spires 

and I knew the emptiness of youth 

and I knew the solitude of heart 

and I knew the murmurs of the soul 

 
Billy Corgan in Muzzle 

 

 

 

The definition of stupidity is doing the same thing  

over and over again and expecting different results 

 
Albert Einstein 
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ABSTRACT 

 
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous 

system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to 

be a multifactorial disease, both environment and genetics play a role in its pathogenesis. 

Despite several decades of intense research, the etiological and pathogenic mechanisms 

underlying MS remain still largely unknown and no curative treatment exists. 

 

The genetic architecture underlying MS is complex with multiple genes involved. The strongest 

and the best characterized predisposing genetic factors for MS are located, as in other immune-

mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In 

humans MHC is called human leukocyte antigen (HLA).  Alleles  of  the  HLA locus have been 

found to associate strongly with MS and remained for many years the only consistently 

replicable genetic associations. However, recently other genes located outside the MHC region 

have been proposed as strong candidates for susceptibility to MS in several studies. 

 

In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 

(IRF5), was identified in the susceptibility to MS. In particular, we found that common variation 

of the gene was associated with the disease in three different populations, Spanish, Swedish and 

Finnish. We also suggested a possible functional role for one of the risk alleles with impact on 

the expression of the IRF5 locus.  

 

Previous studies have pointed out a possible role played by chromosome 2q33 in the 

susceptibility to MS and other autoimmune disorders. The work described here also investigated 

the involvement of this chromosomal region in MS predisposition. After the detection of genetic 

association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide 

polymorphism (SNP) mapping to define further the contribution of this genomic area to disease 

pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP 

located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-

stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, 

previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is 

needed for ligand binding. The stability of the newly-identified transcript variant and its 

subcellular localization were analyzed. These studies indicated that the novel isoform is stable 
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and shows different subcellular localization as compared to full-length ICOS. The novel isoform 

might have a regulatory function, but further studies are required to elucidate its function.  

 

Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS 

predisposition. In several populations, suggestive linkage signals between MS predisposition and 

19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family 

based association analysis in 782 MS families collected from Finland. In this dataset, we were 

not able to detect any statistically significant associations, although several previously suggested 

markers were included to the analysis. Replication of the previous findings on the basis of 

linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult 

because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be 

required for elucidating the role of chromosome 19q13 with MS. 

 

This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously 

associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the 

mediators of interferons biological function. In addition to providing new insight in the possible 

pathogenetic pathway of the disease, this finding suggests that there might be common 

mechanisms between different immune-mediated disorders. Furthermore the work presented 

here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms 

of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover 

its functions and possible involvement of the ICOS locus in MS susceptibility. 
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INTRODUCTION  

 
Multiple sclerosis (MS) is a chronic, demyelinating condition of the central nervous system with 

putative autoimmune pathogenesis and unknown etiology. With a prevalence of about 1 in 1000 

individuals of Northern European descent, MS is the most common disorder of neurological 

disability in young adults. The disease has a highly variable clinical course. Both environmental 

and genetic factors are thought to be involved in its pathogenesis. Although it has been 

intensively studied in the last decades, the molecular mechanisms underlying MS are still largely 

unknown. 

 

The complex nature of MS complicates the study of individual genes and their contribution in 

the disease process. However, in recent years molecular genetic tools have provided scientists 

with new means for identifying genetic factors involved in susceptibility to complex disorders. 

The aim of this thesis work was to dissect other possible MS predisposing loci by integrating 

both genetic and molecular biology approaches. Recently it has become evident that the genetic 

mapping of common disorders greatly benefits from the integration of different methods and 

techniques. 

 

Previous studies performed in several populations have pointed out a possible role played by 

2q33 and 19q13 chromosomal regions in the predisposition to MS and other autoimmune 

disorders. Interferon response factor-5 (IRF5) gene was analysed based on previous evidence 

suggesting that allelic variation of IRF5 contributes to the archetypal autoimmune disease, 

systemic lupus. In this thesis we tested whether these loci would be involved in the genetic 

predisposition of MS. A better understanding of MS susceptibility might shed new light into the 

pathogenesis and treatment of the disease and even provide new tools to identify individuals at 

higher risk for possible preventive strategies. 
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REVIEW OF THE LITERATURE 
 

1. MULTIPLE SCLEROSIS 
 

1.1 CLINICAL ASPECTS 

Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS) 

resulting in loss of myelin sheath (demyelination) and axonal damage. It typically begins 

between  the  ages  of  20  and  40  and  manifests  with  different  clinical  symptoms.  It  can  be  

clinically categorized as either relapsing-remitting MS (RRMS, observed in 85-90% of patients) 

or primary progressive MS (PPMS). Despite intense research the etiology remains unknown, the 

pathogenesis is still unclear and at the moment no curative treatment is available. 

 

The credit for the clinico-pathological characterization of MS belongs the French pathologist 

Jean-Martin Charcot in 1868. He coined the term “multiple sclerosis” (in French “sclèrose en 

plaques”) referring to the scars (scleroses, also known as plaques or lesions) in the white matter 

of patients’ brain and spinal cord. 

 

MS is slightly more common in females than in males with a female:male ratio of approximately 

2:1. MS symptoms normally occur in episodic acute periods of worsening (relapses), in the 

gradually progressive loss of neurological functions, sometimes in combination of both. MS 

patients can suffer from a wide spectrum of neurological symptoms. The initial signs vary 

greatly between patients and even from one attack to another in the same person. The most 

common symptoms are changes in sensation (numbness and paresthesiae), impaired vision, 

difficulties with coordination and balance (ataxia), pareses, fatigue and incontinence.  

 

MS can be difficult to diagnose since its symptoms and signs may overlap with other medical 

conditions. As there is no specific single laboratory test, the diagnosis of MS is mostly done by 

combining clinical and “paraclinical” information, such as magnetic resonance imaging (MRI) 

and analysis of the cerebrospinal fluid (CSF). This has lead to the establishment of diagnostic 

criteria for the needs of clinicians. Historically Schumacher’s criteria (1965) have initially been 

applied in clinical practice and later replaced by the newer guidelines suggested by Poser and 

colleagues  (1983)  with  different  degrees  of  diagnostic  certainty  (clinically  possible  MS,  

clinically probable MS, laboratory-supported definite MS, and finally the most certain diagnostic 
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level clinically definite MS). More recently other criteria combining clinical, laboratory and 

especially MRI data have been introduced to facilitate the early diagnosis of MS in patients who 

presents symptoms that might be suggestive of the disease (McDonald et al 2001). 

 

1.2 BASIC FEATURES OF THE MS LESIONS 

One of the hallmarks of MS is the presence of large, multifocal, sharp-edged, demyelinated 

plaques with reactive glial scar formation (Compston et al 2006). These characteristic lesions are 

accompanied by the infiltration of inflammatory mediators, mainly T-cells and macrophages. 

Active lesions, defined by the ongoing destruction of myelin, are populated by macrophages and 

activated microglial cells, whereas in advanced inactive plaques the centre of the lesion is 

characterized by gliotic astrocytic fibers. Although myelin sheaths are the primary target of the 

inflammatory process, the axons beneath the myelin, cortical neurons and astrocytes are also 

affected. In fact demyelination can be partially repaired by remyelination but axonal destruction 

is irreversible and responsible for the accumulation of the neurological deficits. 

 

Lucchinetti et al (2000) analyzed the pathology of archival material consisting of 51 biopsies and 

32 autopsies "with histologically proven active MS". Four different patterns of demyelination 

were found using immunological and neurological markers (Table 1). 

 

The analysis of Lucchinetti et al (2000) revealed heterogeneity in patterns of demyelination 

between different patients, whereas multiple active lesions from the same patient were very 

similar.  In the first  pattern,  demyelination is induced by the release of cytokines,  enzymes and 

reactive oxygen intermediates from activated macrophages. The second pattern is caused by 

myelin-reactive antibodies and activated complement. In the third pattern white matter ischemia 

or viral infection induces apoptosis of oligodendrocytes. The last pattern is caused by deficiency 

in oligodendrocytes metabolism and a subsequent higher vulnerability to the toxic action of 

inflammatory mediators. All these patterns may result in axonal injury that follows the acute 

destruction of myelin sheaths with permanent neurological dysfunction. It should be noted that 

many of the samples were biopsies taken for diagnostic purpose. Biopsy, per se, is an indication 

of atypical features of demyelinating disease, biopsy is not typically used in the normal 

diagnostic work-up of MS. Therefore, this study has been criticized for the possible inclusion of 

non-MS cases, especially disseminated encephalomyelitis cases (Poser 2000). 
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PATTERNS OF 

DEMYELINATION 

PATHOLOGY PUTATIVE MECHANISMS 

(I) Macrophage 
mediated 

 
 

Inflammatory infiltrates composed 
of T-cells and macrophages; 
activated macrophages and 

microglia. Signs of remyelination. 

T-cell mediated activation of 
macrophages and microglia, 
which secret meylinotoxic 

substances. 

(II) Antibody mediated Similar lesions as in (I) with 
additional deposition of antibodies 
and activated complement. Signs of 

remyelination. 

T- and B-cell mediated 
inflammation with 

demyelination mediated by 
antibody-targeted complement. 

(III) Distal 
oligodendropathy 

Inflammatory infiltrates composed 
of T-cells and macrophages with 

small vessel vasculitis and 
degenerating apoptotic 

oligodendrocytes. 

T-cell mediated vasculitis with 
secondary ischemic damage of 

the white matter. 

(IV) Primary 
oligodendrocyte 

damage with secondary 
demyelination 

Similar lesions as in (I) with 
prominent oligodendrocyte 

degeneration, no remyelination.  

Oligodendrocytes are 
metabolically impaired. 

Secondary T-cell mediated 
inflammation with activation of 

macrophage and microglia.  
Table 1. Different patterns of demyelination in active MS plaques observed in the series of 
Lucchinetti et al (2000). 
 

 

In  another  study  of  39  patients,  diagnosed  (antemortem)  as  clinically  definite  MS  and  

subsequently neuropathologically analysed, similar heterogeneity of MS lesions was not found 

(Breij et al, 2008). In these subjects the dominant pattern of active demyelination was similar to 

the type II pattern above. Active complement, immunoglobulin G (IgG) and activated 

macrophages/microglia were consistently found. Signs of ischemia (type III) or oligodendrocyte 

apoptosis (type III and IV) were not found. Hence, it is still debatable, whether all four patterns 

of demyelination occur in MS. 

 

1.3 DIAGNOSTIC LABORATORY TESTS 

MS patients are characterized by the occurrence of several immunological abnormalities 

involving  both  humoral  and  cell-mediated  immune  systems.  One  of  the  laboratory  parameters  

that best correlates with MS is the presence of oligoclonal bands (OBs). OBs are clusters of 

immunoglobulins that are detected from CSF and serum with the help of isoelectric focusing. 

Visually OBs appear as discrete bands that stand out from the background in the gel.  OBs 

present  in  the  CSF,  but  not  in  the  serum,  indicate  the  presence  of  antibody  producing  plasma  
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cells in the CNS. CSF specific OBs are found in 90% MS patients. However, such Obs are found 

in other conditions as well (e.g. neurosarcoidosis, neuroborreliosis, stiff-person syndrome, 

chronic meningitis). Another measure of immunoactivation is the increased CSF/serum IgG ratio 

(IgG-index) that  indicates increased overall production of antibodies within the CNS. In terms 

of banding patterns, post-mortem samples  from  the  CNS  of  an  MS  patient  have  revealed  that  

distinct OB-patterns are found in individual plaques, a finding in contrast to the notion of an 

immune reaction against a common epitope (Mattson et al 1990).  

 

So far no clear picture has emerged from the analysis of the specificity of the OBs. Quite 

commonly IgG recognizing common viruses such as measles and varicella are found but these 

antibodies constitute only a minor fraction of OBs. Cortese and co-workers (1996) have utilized 

a strategy based on phage-displayed random peptide libraries to identify ligands for OBs from 

MS patients. The purified epitopes were recognized with equal frequency by the sera of normal 

individuals  and  MS  patients.  Furthermore  the  repertoire  of  CSF  antibodies  appeared  to  be  

individual-specific, suggesting a nonspecific immunedysregulative phenomenon rather than the 

result of an immune reaction towards a common antigen. 

 

Magnetic resonance imaging (MRI) is very sensitive for detecting lesions in the brains of MS 

patients. In MRI using T2-weighted and FLAIR sequences MS plaques appear as brighter areas 

surrounded by normal-appearing white matter which looks darker; the rationale for this is the 

increased water content of the lesions which may be secondary to inflammation or gliosis 

(Figure 1).  

 

For detection of very young lesions paramagnetic substances such as gadolinium can be used to 

demonstrate blood-brain barrier (BBB) leakage. The extent of the plaques as visualized with 

MRI  does  not  always  correlate  with  the  clinical  picture  of  the  patient.  Many  plaques  are  

clinically silent. Even large lesions may be symptomless, while a small plaques in a critical 

anatomical site (e.g. brain stem, spinal cord) may have a strong impact on the neurological 

functions.  Also in the case of MRI diagnostics the lesions are not 100% specific for MS, with 

other conditions (e.g. cerebral vasculitis, sarcoidosis) having sometimes a similar pattern (Miller 

et al 1988). The MRI criteria by Barkhof et al (1997) are recommended in the contemporary 

McDondald's criteria of MS. These MRI criteria pay special attention to the anatomical 

dissemination of lesions. They were originally designed for the prediction of future MS in 
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patients with first clinical symptom suggesting demyelinative disease (so called clinically 

isolated syndrome). 

 

   A                                                                              B 

 
 

 

 

                                                                          

 

 

 

Figure 1. A. Typical sharp-edged leukocyte extravasation around a small calibre vein. B.  MRI 
scans of brains of MS patients (FLAIR sequence) showing multiple periventricular and 
juxtracortical  plaques.  Many  of  the  early  plaques  are  composed  of  the  infiltrating  perivenular  
leukocytes indicated by arrows (Pictures from Pentti Tienari, University of Helsinki). 
 

 

 
 
1.4 THERAPY 

Relapses are often treated with high-dose corticosteroids for a few days. This treatment speeds 

up patients' recovery from the relapse but it is presumed that treatment of corticosteroids at 

relapses does not have impact on the long-term prognosis. Several drugs have been developed to 

improve long-term prognosis of MS. Current MS therapies are immunomodulatory strategies to 

partially protect against relapses and MRI burden, but their effect on long-term prognosis is still 

somewhat unclear. These drugs are ineffective against purely progressive forms of MS. The 

inflammatory nature of MS has been instrumental in leading to the drug treatments presently 

used, but the lack of a detailed understanding of the disease’s pathophysiology has prevented the 

design of more effective therapies. Currently two classes of immunomodulating first-line 

strategies are used to impact the early course of MS: -interferons (IFN- s) and glatiramer 

acetate.  

 

The  rationale  for  using  beta-interferon  (IFN- )  in  MS  came  partly  from  a  treatment  trial  with  

gamma-interferon (IFN- ), which dramatically increased the relapse-rate of MS patients (Panitch 
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et al, 1987) (the trial was discontinued).  Since IFN-  is partially antagonising the effects of 

IFN- , it turned out to be a natural candidate for MS treatment. IFN-  is an anti-inflammatory 

regulatory cytokine with antiviral, antineoplastic and immunomodulatory effects. It decreases 

cell migration into CNS, inhibits T-cells proliferation and expression of cell activation markers 

and increases the synthesis of the anti-inflammatory cytokine interleukin 10 (IL-10) and nerve 

growth factor, possibly inducing remyelination and axonal repair (Rudick 1999). The results of 

different clinical trials with RRMS patients have shown a beneficial effect of IFN-  for the 

attack rates and disease activity measured clinically or by MRI (The IFNB study group 1995, 

Rudick  et  al  1997),  whereas  for  the  treatment  of  PPMS  patients  IFN-  has  shown  to  be  not  

effective (Miller et al 2007).  

 

The alternate drug in first-line treatment is the use of glatiramer acetate (GA), a synthetic peptide 

that mimics the epitopes of  myelin basic protein (MBP) and other myelin proteins. GA is a 

random polymer of the four amino acids Glutamate, Lysine,  Alanine and Tyrosine (hence the 

name GLATiramer).  The  rationale  for  using  GA  in  MS  therapy  stems  from  the  idea  that  

autoimmunity against myelin protein, especially MBP, plays an essential role in MS 

pathogenesis (Lisak et al., 1977). GA is designed to act as a decoy for MBP, diverting the 

inflammatory  response  against  myelin.  Recently  it  has  been  shown  that  GA  increases  the  

circulating  levels  of  the  secreted  form of  IL-1  receptor  antagonist  and  therefore  triggers  a  less  

inflammatory profile (Burger et al 2009). In clinical trials GA has been shown to be as effective 

as  interferon to reduce the number and severity of exacerbations in RRMS (Mikol et al 2008) 

but failed to demonstrate a treatment effect in PPMS (Wolinsky et al 2007).  

Natalizumab is indicated for patients with very aggressive relapsing-remitting MS, who do not 

respond to IFN-  or GA. In the pivotal clinical trial it showed the strongest drug effect thus far 

obtained in reducing relapse rate and MRI activity (Polman et al. 2006). The rationale is to 

prevent circulating leukocytes from migrating to the CNS. Natalizumab is a humanized 

monoclonal antibody directed against the 1 integrin very late antigen 4 (VLA-4). VLA-4 is 

expressed particularly on T-cells where it has a crucial role in the BBB transmigration 

(Ransohoff 2007): the blockade of VLA-4 inhibits the entrance of immune cells in the CNS and 

ameliorates the disease course. After a successful Phase III study, two cases of progressive 

multifocal leukencephalopathy (PML) occurred with the subsequent withdrawal of the drug 

from the market (Langer-Gould et al 2005, Kleinschmidt-DeMasters et al 2005). A probable 

explanation for the occurrence of PML is CNS immunodeficiency, because of reduced levels of 
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T- and B-cells in the CSF of natalizumab-treated patients (Stuve et al 2006), highlighting the 

complex network of regulation involved in the pathophysiology of MS. 

Immunosuppressive drugs are considered as second-line strategy. Mitoxantrone interferes with 

DNA  synthesis  and  repair,  suppressing  a  variety  of  cells  of  the  immune  system.  The  major  

drawbacks about the long-term treatment with mitoxantrone are its cardiotoxicity and a small 

risk of developing leukaemia, limiting thus the use of such drugs only for a few years. 

Mitoxantrone appears to reduce the number of relapses and burden of disease on MRI (Neuhaus 

et al, 2007). Azathioprine, a purine analogue, is a less potent immunosupressant that has also 

been shown to reduce relapses in meta-analysis (Yudkin et al., 1991) but since it is an old drug 

large-scale modern trials have not been conducted. 
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2. EPIDEMIOLOGY 
 

2.1 INCIDENCE AND PREVALENCE 

MS has an uneven geographical distribution which is seen on a regional and world scale. The 

cause for such peculiar distribution has been debated for long time, invoking both genetic and 

environmental factors. Genetic predisposition cannot explain alone the remarkable differences 

observed in the geographical variations but the search for putative environmental culprits has not 

produced definitive results. The current view is that, although there might be independent 

additive risk factors, susceptibility is mediated by direct interactions between the environment 

and genes. 

 

MS is rare in Asia and, on a world scale, it is rare in the tropical and subtropical belts. Within 

regions of temperate climate, MS incidence and prevalence increase with the latitude, both north 

and south of the equator (Kurtzke, 1995). MS is most common in populations of Northern 

European descent with a prevalence of approximately 100 per 100,000 (Compston 1997). The 

highest prevalence has been observed in Northeast Scotland and Orkney Island (population ca 

17,000), where a rate of over 200/100,000 has been described in the 1970s (Poskanzer et al 

1980). These figures included also clinically probable cases. The prevalence figures in Orkneys 

appear  to  be  even  higher  today  (James  Wilson,  personal  communication).  In  Kyrönmaa  in  

western Finland (population 100,000) a prevalence of 219/100,000 has been found for clinically 

definite  MS  (Tienari  et  al,  2004).  In  Mediterranean  countries  the  prevalence  rate  significantly  

decreases with the notable exception of Sardinia (Rosati et al 1987). The European north-south 

gradient is observed also in the United States where an additional east-west gradient is present, 

reflecting the possible role of Scandinavian immigration (Bulman and Ebers 1992). In Australia 

the region of high prevalence correlates with the presence of Caucasian population (Hammond et 

al 1988) even though theories explaining the geographical distribution of MS on a world scale 

by genetic clines seem unlikely (Poser 1994). In other ethnic groups MS is much rarer when 

compared to the prevalence in Caucasoids (Kurtzke 1983b). 

 

In Finland the prevalence of MS follows an uneven geographical distribution with a high-risk 

area situated in the Southern Ostrobothnia region Kyrönmaa (Figure 2) where a steady increase 

in incidence and a prevalence rate of over 200/100,000 have been reported (Sumelahti 2001; 

Tienari et al, 2004). The exceptional familial clustering of cases observed in this region 
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(Wikstöm 1975) together with specific predisposing haplotype signatures suggest the 

contribution of a genetic founder effect to the high frequency of MS (Pihlaja et al, 2003; Tienari 

et al, 2004; Kallio et al, 2009).  

 

 

 
Figure  2 – The uneven geographical distribution of MS prevalence in Finland. Vaasa region 
(depicted in black): 107/105 (CI 90-124). Seinäjoki north (depicted in white with dots): 136/105 
(CI 108-164). Seinäjoki south (depicted in with vertical lines): 219/105 (CI 190-247). Picture 
modified Tienari et al (2004). 
 

 

 

2.2 MIGRATION STUDIES 

Migration  studies  have  given  important  insight  for  the  role  of  environment  in  the  risk  of  

developing MS. The incidence of the disease in migrants seems to be intermediate between that 

of their birthplace and that of their new residence. If the migration occurs early in childhood 

(before the age 15) then the risk tends to be closer to that of the final residence (Gale 1995). In 

the UK the risk of MS in migrants from India increases in the second generation, mirroring the 

possibility of early exposure to environmental risk factors even though selection processes 

affecting the migrant population cannot be excluded (Elian 1990). 
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3. ENVIRONMENT AND MS 
 

MS is considered to be a multifactorial disease where both environment and genetics play an 

important role in its pathogenesis. Previous studies have provided good evidence that 

environmental factors play a role in the uneven geographical distribution of MS. The search for 

the environmental trigger has focused mainly on two aspects, possible infectious agents or the 

latitude-related photobiology (i.e. sunlight exposure and vitamin D deficiency) as determinants 

of the MS risk. 

 
3.1 INFECTIOUS AGENTS 

Some viruses are known to induce demyelinating disease in humans and experimental animals. 

In humans acute viral infections such as measles, chicken pox and rubella may cause post-

infectious complications like encephalomyelitis. One example is subacute sclerosing 

panencephalitis, a rare chronic, progressive encephalitis caused by a persistent infection of 

immune resistant measles virus. There are disorders such as tropical spastic paraparesis and 

Human T-cell Lymphotropic Virus (HTLV)-associated myelopathy that have an MS-like disease 

course and both are caused by the retrovirus HTLV-1. In animals Visna-Maedi virus and 

Theiler’s murine encephalomyelitis virus can mediate demyelinating diseases in sheep and mice 

respectively. Many viruses and other microbial agents have been suspected as etiological agents but 

their role in MS pathogenesis is not yet completely understood. 

 

3.1.1 VIRUSES 

In order to link the association of viral infection with the etiology and pathogenesis of MS, three 

main hypotheses have been formulated explaining the mechanism of the possible interaction.  

1. The first hypothesis postulates that molecular mimicry between viral antigen and MBP or 

other myelin antigens induces autoimmunity in genetically susceptible individuals (Fujinami and 

Oldstone 1985, Wucherpfennig et al 1995).  

2. The second hypothesis is that infection of a virus during childhood could establish a 

latent infection in the central nervous system (CNS) and reactivation of the latent virus could 

lead to the damage of the oligodendrocytes (Challoner et al 1995).  

3. The last hypothesis presupposes that viral infection may be an epiphenomenon that 

indirectly exacerbates the disease course and lesion development (Panitch 1994). 

Since 1960s a number of viral candidates has been proposed but the majority of them has failed to 

stand the test of time. The most promising etiological candidate is the Epstein-Barr virus (EBV), 
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a very common infectious agent in humans. Proposed as possible causative agent almost thirty 

years ago (Warner and Carp 1981), EBV has been strongly associated with MS since nearly all 

MS cases have been infected by the virus compared with 90% of healthy people (Ascherio and 

Munger 2007). In a prospective case-control study performed on two cohorts of US nurses, 

Ascherio and co-workers (2001) examined the association between serum anti-EBV antibody 

titers and risk of developing MS. Before disease onset, cases who subsequently developed MS 

had significantly higher anti-EBV antibody levels when compared to their matched controls. 

Furthermore, based on recent meta-analysis there is a 2.3-fold risk in developing MS if the 

subject has been infected with EBV in late childhood or adulthood (Ascherio and Munger 2007) 

and MS patients showed a significant increase in antibodies directed against EBV in the CSF 

(Bray et al 1992). Quite recently Serafini and colleagues (2007) provided the first pieces of 

evidence that a proportion of B-cells infiltrating the CNS are infected with EBV. 

 

Another interesting candidate is human herpes virus 6 (HHV-6), a neurotropic virus present in 

post-mortem MS lesions (Challoner et al 1995). Because of its ubiquitous prevalence and 

uniform early age of infection it has been impossible to compare the MS risk for infected versus 

non-infected individuals, but immunological and molecular studies have showed an increase in 

markers  of  HHV-6 infection  in  blood  cells  or  CSF of  MS cases  (Sola  et  al  1993,  Soldan  et  al  

1997). A possible gene-environmental interaction has been reported between active replication 

of HHV-6A and Major Histocompatibility Complex Trans-Activator 2A (MHC2TA) gene 

(Alvarez-Lafuente et al 2009). 

 

In late 1990s Perron and colleagues partially characterized from blood and CSF of MS patients a 

novel retrovirus, MS-associated retrovirus (MSRV), previously known as LM7 (Perron et al, 

1997). Complete MSRV sequence revealed a related new family of human endogenous 

retroviruses (HERVs), retroviral agents derived from past infections in human evolutionary 

history (Komurian-Pradel et al, 1999). The family was named HERV-W from tryptophan t-RNA 

binding site. Recently HERV-W has been shown to be expressed in the brain and activated in 

MS patients (Mameli et al 2007). However further evidence is needed to elucidate the role 

played by HHV-6 and MSRV in MS pathogenesis.  
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3.1.2 BACTERIA 

Even though common microbial infections are associated with the relapses, bacteria have been 

overlooked as etiological agents of MS. Wucherpfennig and Strominger (1995) have shown that 

both viruses and bacteria contain homologous peptide epitopes that are able to activate MBP 

primed T-lymphocytes. In the past Chlamydia pneumoniae nucleic acid has been found in the 

CSF of MS patients (Sriram et al 1998) but, after initial enthusiasm, other researchers failed to 

confirm the original results (Kaufman et al, 2002). Intriguingly non-pathogenic gut bacterial 

proteins possess the potential to act as autoimmune immunogen mimics (Westall 2006) and a 

microbial peptide, common to several bacterial classes, can induce MS-like disease in transgenic 

mice with a human leukocyte antigen (HLA) DRB1*1501 and a human T-cell receptor (TCR) 

recognizing MBP (Harkiolaki et al 2009). It is of interest that, at least in mice, the MHC alleles 

(that modulate the risk to multiple autoimmune or immune-mediated disorders) also seem to 

modulate the composition of gut bacterial flora (Toivanen et al, 2001). However, there has not 

been much research activity studying these connections. 

 
3.2 SUNLIGHT AND VITAMIN D 

There is a well-known association between MS and latitude, which intuitively correlates with 

duration and intensity of sunlight. Nearly fifty years ago Acheson and colleagues (1960) pointed 

to the role of sun exposure in MS and later vitamin D and calcium were suggested as possible 

environmental determinants of the prevalence for MS (Goldberg 1974). In a study conducted in 

the United States it has been shown that both outdoor work and residence in high sunlight area 

were protecting from the MS risk (Freedman et al 2000); a report involving 81 monozygotic 

twin pairs discordant for MS revealed that the affected twins had lower levels of sun exposure 

during childhood (Islam et al 2006). One of the first observations linking vitamin D intake to MS 

risk comes from a Norwegian study that reported lower MS prevalence in coastal villages with 

greater consumption of oily fishes, an excellent source of vitamin D (Westlund 1970).  The case-

control study of Van der Mei (2003) demonstrated low childhood sun exposure in 

Australian/Tasmanian MS patients as compared to age, sex, race and geographically matched 

controls. Multiple measures were used to estimate the magnitude of sun exposure including also 

measurement of actinic skin damage of the hands, which is an objective cumulative measure of 

sun exposure.  

 

 The beneficial role of vitamin D in MS protection has been further confirmed by longitudinal 

studies among American nurses and military personnel (Munger et al 2004, 2006). In an animal 
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model of MS, experimental autoimmune encephalomyelitis (EAE), the injection of vitamin D 

completely prevented the clinical and pathological signs of disease (Lemire et al 1991) although 

the molecular mechanisms responsible for these effects are still not clear. Recently a direct 

functional interaction between vitamin D and major histocompatibility complex (MHC) class II 

has been suggested (Ramagopalan et al 2009). Sequence analysis revealed a putative vitamin D 

regulatory element (VDRE) located in the promoter of the HLA DRB1*1501, the main 

susceptibility allele for MS. The VDRE was able to bind vitamin D and to induce increased 

expression upon stimulation with 1,25-dihydroxyvitamin D3. The authors hypothesized that a 

lack of vitamin D in utero or early in childhood could affect central deletion of autoreactive T-

cells due to less effective thymic presentation of self-antigens on HLA class II molecules. This 

finding represents thus far one the few experimental  clues for environment-gene interaction in 

determining MS risk. 

 

There is evidence for seasonal variation in the determination of MS risk. In Canadian families an 

increased MS prevalence among people born in May has been observed, whereas a reduced risk 

of developing MS is found for people born in November (Willer et al, 2005). A similar pattern 

has been observed also in Finland (Saastamoinen, manuscript in preparation). One speculative 

explanation for the seasonality would be linked with vitamin D:  the higher risk for newborns in 

May could reflect low maternal and fetal vitamin D levels during the winter (Willer et al, 2005). 

It is, however, clear that there are many other possible explanations for the observed seasonality.  

 

3.3 OTHER PROPOSED ENVIRONMENTAL RISK FACTORS 

Other environmental risk factors have been proposed for MS although the evidence is quite 

weak. The role of cigarette smoking in MS has recently gained increasing interest. Smoking has 

been associated with a faster transition from RRMS to SPMS (Hernan et al 2005), whereas 

significantly increased risk for developing MS was found in female smokers before age of 

disease onset (Hernan et al 2001). A possible rationale for smoking and MS risk might involve 

neurotoxic or immunomodulatory effects of components found in cigarettes (Smith et al 1963, 

Sopori et al 1998). Physical trauma and psychological stress have been proposed as risk factors 

of MS, but the evidence has been regarded as inconclusive. A vivid debate on this issue was 

recently witnessed on the pages of Neurology (Poser 2000; Chaudhuri et al, 2000; Lehrer 2000, 

Goodin 2000). 
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4. MS PATHOGENESIS 
 

Despite many years of intense research we still do not have a definitive model for the initiation 

and progression of MS. The extensive amount of work performed in the past has provided 

important insights about the molecular and cellular events that take place in the disease course, 

although the mechanisms underlying the pathophysiology of MS are not yet completely 

understood. 

 

In 1948 Elvin Kabat provided the first evidence for the inflammatory nature of the disease with 

the observation that MS patients have abnormally high titres of oligoclonal immunoglobulin in 

the CSF (Kabat et al 1948). Before this finding an animal model for MS, EAE, was established 

with repeated injections of rabbit brain and spinal chord extracts into primates (Rivers et al 

1933). At this time, it was not understood that these extracts elicited an autoimmune reaction 

against myelin, only in late 1940s it was discovered that EAE was an induced autoimmune 

disease (Morgan, 1947). Later, using a transgenic mouse model (with a T-cell receptor specific 

for MBP), it has been shown that peripheral activation of myelin-reactive T-cells is required in 

order to induce CNS inflammation; mice housed in a sterile environment did not develop 

demyelination (Goverman et al 1993). This finding provides a compelling link between 

environmental microbes and autoimmunity.  

 

The most established model to date for the pathogenesis of MS suggests that autoreactive T-cell 

clones specific for myelin antigen become activated in the periphery via molecular mimicry by 

viral or bacterial proteins (Figure 3). Underlying immunoregulatory defects, such as functional 

impairment of regulatory T-cells (Tregs), allow further activation of autoreactive T-cells. 

Increased  permeability  of  the  BBB leads  to  lymphoid  cell  infiltration  into  the  CNS where  the  

activated myelin-reactive T-cell clones recognize antigen presented by microglia and an 

inflammatory cascade is initiated. The disease process results in gradual loss of myelin sheath, 

although spontaneous remyelination occurs in the relapsing-remitting phase, corresponding to 

the period of the amelioration of the clinical symptoms (remitting phase) in MS patients. 

However, recurrent inflammatory attacks undermine the myelin repair system leading to reactive 

gliosis and axonal damage in the later progressive phase of the disease. 
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Figure 3. Supposed pathogenesis model for MS for type-I lesion. In Type-II lesion the effector 
cell  penetrating  BBB would  be  B-cell.  In  Type-III  lesion  the  inflammation  would  occur  at  the  
BBB or vascular wall. In Type-IV lesion the lymphocyte migration does not play such an 
important role any more, but the myelin-oligodendrocyte unit has become metabolically 
compromised. 
 

 

4.1 IMMUNOPATHOPHYSIOLOGY OF MS 

Both cell-mediated and humoral immune systems present abnormalities in MS patients, although 

it has been not trivial to distinguish between phenomena and epiphenomena. 

 

4.1.1 CELL-MEDIATED IMMUNE SYSTEM 

Autoreactive T-cells recognizing myelin epitopes are present in the peripheral blood of both MS 

patients and healthy individuals. Almost twenty years ago it was shown that among T-cells 

isolated from the blood of MS patients many clones exhibited specificity for MBP p85-99 

epitope (Ota et al 1990). More particularly, the T-cell receptor (TCR) for these clones was found 

to bind the MHC-epitope in an unconventional fashion, with the TCR making primarily contact 

with the MHC backbone rather than the antigen itself (Hahn et al 2005). Therefore autoreactive 

BLOOD-BRAIN BARRIER

blood-brain barrier

PERIPHERY CENTRAL NERVOUS SYSTEM

T cell or its 
precursor

antigen presenting
cell

TCR

myelin 
cross-reactive
antigen

MHC II

CD28

B7

Activated T
cell

(anti-myelin)

microglia

myelin 
antigen

myelinated
neuron

oligodendrocyte
IFN-

Inflammation

TNF-
enzymes

TCR

MHC II

BLOOD-BRAIN BARRIER

blood-brain barrier

PERIPHERY CENTRAL NERVOUS SYSTEM

T cell or its 
precursor

antigen presenting
cell

TCR

myelin 
cross-reactive
antigen

MHC II

CD28

B7

Activated T
cell

(anti-myelin)

microglia

myelin 
antigen

myelinated
neuron

oligodendrocyte
IFN-

Inflammation

TNF-
enzymes

TCR

MHC II



 
 

30

T-cells would have a higher degree of functional degeneracy, as observed in the case of cross-

reactivity against other myelin epitopes with MBP-reactive T-cell clones (Ausubel et al 1996). 

This observation supports the hypothesis that molecular mimicry by viral or bacterial peptides 

could prime the myelin-reactive T-cells (Wucherpfennig et al 1995). Another challenge to the 

determination of the immunodominant epitope that initiates MS is a phenomenon known as 

“epitope spreading”. When injected with a single MBP epitope, genetically susceptible mice 

develop EAE, generating T-cells directed against the administered peptide (Lehmann et al 1992). 

During the course of the disease a T-cell population became activated also against other MBP 

epitopes and when isolated then adoptively transferred into naïve mice, these T-cells specific for 

cryptic MBP epitopes were sufficient to initiate the disease. This phenomenon seems to happen 

also in humans since most MS patients exhibit T-cell reactivity to many myelin antigens (Ota et 

al 1990). 

 

4.1.2 ROLE OF REGULATORY T-CELLS 

The presence of potentially autoreactive T-cells in the circulation of healthy individuals indicates 

that there are additional regulatory mechanisms to clonal deletion in the thymus and anergy in 

the periphery for the maintenance of immunologic self-tolerance. An important role played by 

Tregs is in preventing the development of autoimmune disorders by their inhibition of self-

antigen-reactive T-cells (Sakaguchi 2000). Often phenotypically classified as CD4+CD25high, 

human Tregs are characterized by a very heterogeneous cell population where the most specific 

marker is the nuclear transcription factor FoxP3, whose expression correlates with their 

suppressive activity (Wang et al 2007). In patients with autoimmune disorders the autoreactive 

T-cells have a lower threshold for the activation when compared to healthy controls (Reijonen et 

al 2002). In MS patients Tregs have lower levels of FoxP3 and this decrease correlated with the 

Treg loss of function (Huan et al 2005). Furthermore Astier and co-workers (2006) showed that 

CD4+CD25high Tregs isolated from MS cases are normal in frequency but poorly suppress the 

activation of autoreactive T-cells. Even though the role of functional dysfunction of Tregs in the 

pathophysiology of MS might be relevant, recently it has been shown in mice that myelin-

specific CD4+CD25high cells accumulate in the CNS but fail to control autoimmune 

inflammation (Korn et al 2007). 

 

4.1.3 HUMORAL IMMUNE SYSTEM 

Although MS has often been considered predominantly a T-cell mediated disease, the role of B-

cells in the pathogenesis has recently been reconsidered. Traditionally B-cells have been 
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implicated in MS for the production of autoantibodies against myelin and non-myelin antigens. 

These immunoglobulins can trigger the destruction of the tissue by recruiting macrophages and 

activating the complement pathway, although their relevance in MS pathogenesis has not yet 

been clarified. Among the possible pathogenic antigens, the role played by the anti-inflammatory 

heat-shock protein -crystallin has gained recent attention (Ousman et al 2007). In fact the 

production of antibodies directed against -crystallin could exacerbate the inflammation by the 

blockage of its immunosuppressive function.  

 

In other autoimmune disorders (rheumatoid arthritis, myasthenia gravis), B-cells aggregate into 

lymphoid-like structures in the target, similarly to what happens in the meninges of MS patients 

(Serafini et al 2004). Although restricted to late disease phases, the formation of ectopic 

immunological follicles in MS patients brains could provide the microenvironment for B-cells 

maturation and proliferation. Furthermore it has been demonstrated that CXCL13, a chemokine 

involved in B-cells homing to lymphoid tissues, expression was detected in the intrameningeal 

follicles and was high in the CSF of MS patients (Serafini et al 2004, Krumbholz et al 2006).  

 

4.2 ROLE OF CNS RESIDENT CELLS 

ASTROCYTES. Astrocytes have been referred to as the backbone of the CNS which provide the 

support for neuronal transmission. In addition, astrocytes foot processes are central in 

maintenance of the BBB. Moreover, they can act as non professional antigen-presenting cells 

(APC)  and  at  least  in  mouse  they  are  able  to  activate  encephalitogenic  T-cells  through  MHC  

class II (Stuve et al 2002). 

MICROGLIA. Microglia are the immune-sentinels of the CNS. They are considered resident 

macrophages of the brain and spinal chord and act as first and main form of active immune 

defence. Infiltrating macrophages and activated microglia are the key players in the initiation of 

tissue damage during the inflammatory events taking place in the CNS. In active MS plaques 

osteopontin, a protein produced by macrophages and activated microglial cells, is highly 

expressed and induces a cascade of pro-inflammatory events such as the recruitment of 

monocytes and the inhibition of T-cells apoptosis in the lesions (Chabas et al 2001, Hur et al 

2007). Microglia are important antigen presenting cells that are primed by CD4+ T lymphocytes; 

once activated they are able to secrete several molecules, such as proteases and cytokines, that 

may destroy the myelin sheath. However, the activation of microglia and macrophages with 

subsequent demyelination and tissue damage does not require the induction of the adaptive 

immune system. Various Toll-like receptors (TLRs) are expressed on both cell populations and 
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several endogenous ligands for TLRs are locally present. Injection of bacterial 

lipopolysaccharide (LPS), a ligand for TLRs and important activator of innate immunity, into the 

white matter results in demyelinating plaques (Felts et al 2005), whereas precipitated fibrin, a 

ligand for TLR4, has been found on the surface of microglial cells and macrophages in active 

MS lesions and LPS-induced inflammation (Marik et al 2007).  

 

4.3 MYELIN AND MYELINATION 

Myelin wrapped around the axons enables rapid saltatory conduction of action potentials and 

contributes to the maintenance of axonal integrity (Nave et al, 2008). In the CNS myelination is 

carried out by oligodendrocytes. In MS, demyelination is the pathological process in which 

myelin sheaths are lost as a consequence of insults targeted at oligodendrocytes. Until recently it 

was believed that the remyelination process took place only in the active lesions and was 

practically absent in chronically established plaques. The failure of myelin repair has been 

attributed to the impairment of mature oligodendrocytes generation or their inability to myelinate 

the lesions. Lately two studies have showed that in a subset of MS patients there is evidence of 

ongoing remyelination at late phases (Patrikios et al 2006, Patani et al 2007). The reason for 

such  heterogeneity  in  MS  patients  population  is  not  clear  but  it  seems  that  the  amount  of  

remyelination  correlates  positively  either  with  the  older  age  at  death  of  patients  or  longer  

duration of the disease.  

 

Another recent study has described a new molecular mechanism regulating myelination and 

remyelination in mouse (Mi et al 2007). Inhibiting the function of leucine-rich repeat and Ig-

domain-containing, Nogo receptor-interacting protein (LINGO-1) stimulates myelin formation 

and prevents progressive axonal damage in chronic EAE. This finding revealed a new pathway 

involved in the remyelination process and a potentially interesting target for human therapeutic 

applications. 

 

Finally, there has been recent interest about the possible role played by steroid hormones, 

especially sex hormones, in the remyelination process. The rational for it is that remission of MS 

symptoms is seen during pregnancy, in particular during the last trimester when estrogens and 

progesterone plasma levels are at their maximum (Confavreux et al, 1998; Houtchens 2007). 

When estriol and progesterone pellets were implanted in mice during the effector phase of 

adoptive EAE, only estriol treatment reduced the severity of EAE significantly compared with 

placebo, whereas progesterone treatment had no effect (Kim et al, 1999). However, progesterone 
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given prior to EAE induction showed a clinical benefit and produced myelinating and 

neuroprotective effects (Garay et al, 2008). Furthermore combined estradiol plus progesterone 

therapy more effectively prevented neurological deficits. 
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5. GENETICS OF MS 
 

MS is defined as complex genetic disorder where several genes are thought to play a role in the 

susceptibility to the disease. A number of loci each contribute a relatively small effect, with no 

one locus being either necessary or sufficient, and interactions with environment further increase 

complexity. Unlike Mendelian traits, where a single gene causes the disease, complex traits are 

characterized by a weaker correspondence between the presence of a predisposing genotype at a 

single genetic locus and the phenotypic outcome. This is explained by the concept of 

predisposition,  for  which  a  gene  does  not  directly  cause  the  disease  but  rather  confers  

susceptibility to it. A consequence of this phenomenon is that not all the carriers of the disease 

gene will develop the disease because of the low penetrance of the variant. Evidences for genetic 

contribution  to  MS  have  arisen  during  the  last  thirty  years  from  several  studies  such  as  racial  

differences in the recurrence risk, familial clustering of MS cases, twin and other genetic 

analyses. 

 

5.1 FAMILY AND TWIN STUDIES 

Approximately 10% of MS cases have a family history of MS, but large extended pedigrees are 

uncommon, with most of MS families having no more than two or three affected individuals 

(Willer at al 2007). Even though no clear mode of inheritance can be inferred from segregation 

analysis (Compston et al 2006), several population-based studies of familial recurrence risk have 

provided an estimate of the increased risk for MS in the relatives of patients (Sadovnick et al 

1998; Robertson et al 1996; Carton et al 1997). This familial clustering can be quantified with s, 

the ratio of the risk of disease in siblings of an affected individual compared with the general 

population; in the case of MS the ratio equals to approximately 15 (Sawcer 2006), a relatively 

high value when compared to more common disorders such as asthma and hypertension (for 

these conditions the sibling recurrence risk ratio is around 3 and 4, respectively). Other family-

based  analyses  such  as  adoptees  (Ebers  et  al  1995),  conjugal  pairs  (Robertson  et  al  1997)  and  

half-siblings (Ebers et al 2004) studies have highlighted the crucial role of genetic relatedness in 

the risk of developing the disease. 

 

Twin studies have been fundamental in separating genetic and environmental effects on MS 

susceptibility. A significantly higher concordance rate in monozygotic (MZ) twins as compared 

to dizygotic (DZ) twins has been replicated in several cohorts (Ebers et al 1986, Kinnunen et al 
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1987, Sadovnick et al 1993, Mumford et al 1994, Thorpe et al 1994, Willer et al 2003, Hansen et 

al 2004, Kuusisto et al, 2008) with the exception of one study (French Research Group on 

Multiple Sclerosis 1992). When previous studies are pooled together, the concordance in MZ 

twins is on average 16% while in DZ twins the value reaches 4%, suggesting evidence for 

genetic factors in MS (table 2). More particularly a MZ:DZ ratio of 4 would imply a single 

recessive gene underlying MS genetics although we know from segregational analysis this is not 

the case. Recent observations have indicated the possibility that the concordance rate for MZ 

twins might be elevated in high prevalence areas, partially explaining the lack of replication of 

the French study (Ristori et al 2006, Islam et al 2006). This implies penetrance in MZ twins 

living in Mediterranean areas is influenced by non-genetic factors, highlighting the importance 

of environmental variables at those latitudes (Ristori et al 2006). Although discordance in 

monozygotic twins is considered as proof of environmental influence, the observed differences 

in concordance between genetically identical individuals might reflect other phenomena such as 

microchimerism  (Willer  CJ  et  al  2006),  stochastic  or  epigenetic  effects  (Fraga  et  al  2005,  

Kaminsky et al 2009). 

* Only the largest study of a population was included here (to avoid overlap between studies). 

Table 2. Previously published MS twin concordance studies. 

 

REFERENCE 

 

POPULATION 
MZ 

Number of 
concordant/total 
(%) 

DZ 
Number of 

concordant/total 
(%) 

 

MZ:DZ 

RATIO 

Ebers et al., 1986 Canada 7/27 (25.9%) 1/43 (2.3%) 11.3 

Kinnunen et al., 1987 Finland 1/11 (9.1%) 0/10 (0%) n.a. 

FRGoMS, 1992 France 1/17 /(5.9%) 1/37 (2.7%) 2.2 

Sadovnick et al., 1993 Canada 8/26 (30.8%) 2/43 (4.7%) 6.7 

Mumford et al., 1994 United Kingdom 11/44 (25%) 2/61 (3%) 8.3 

Thorpe et al., 1994 United Kingdom 8/23 (34.7%) 1/41 (2.4%) 14.5 

Willer et al., 2003 Canada 37/146 (25.3%) 12/224 (5.4%) 4.7 

Hansen et al., 2004 Denmark 5/37 (13.5%) 1/171 (0.6%) 22.5 

Ristori et al., 2006 Continental Italy 4/51 (7.8%) 3/147 (2%) 3.9 

Ristori et al., 2006 Sardinia 1/8 (12.5%) 0/10 (0%) n.a. 

Islam et al., 2006 North America 56/418 (13.4%) 20/380 (5.3%) 2.5 

Kuusisto et al., 2008 Finland 3/10 (30%) 2/14 (14.3%) 2.1 

Total*  118/724 (16.3%) 41/1044 (3.9%) 4.2 
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5.2 STRATEGIES TO IDENTIFY DISEASE GENES 

In the last two decades two principal approaches have been used for localizing and subsequently 

identifying disease genes. 1. Linkage analysis in families with multiple cases. Linkage detection 

is based on co-segregation of chromosomal marker and the disease, taking advantage of the 

meiotic events in the pedigrees. 2. Assessment of allelic association, based on linkage 

disequilibrium between marker allele and disease allele, using either case-control or family-

based settings. This approach exploits the historical recombination that took place in the 

ascertained population.  

 

5.2.1 LINKAGE ANALYSIS 

Linkage analysis investigates the co-inheritance of a marker locus and a disease locus, 

identifying discrete segments of chromosomes that deviate from independent segregation and 

therefore co-segregate with the disease in extended pedigrees. Linkage studies take advantage of 

the fact that during meiosis each chromosome pairs with its partner (homologous chromosome) 

and exchange genetic material: this exchange is termed recombination and is the basis for 

detecting linkage. If two loci are in close proximity on a chromosome then the chance for 

recombination would be small. If they are far apart on the chromosome then the chance that they 

would recombine is greater. The frequency of recombination is measured in centiMorgans 

(cMs), with 1 cM equivalent to the frequency of 1% recombination. During few generations 

there is very little recombination, thus chromosomal segments of several cMs are shared 

between parents and offspring (and between siblings as well). Since linkage studies analyze the 

co-segregation of a marker locus with the disease or trait of interest, in case of linkage the 

distance between the linked markers and disease locus may be typically quite large (10-20 cMs). 

 

In standard linkage analysis the statistical significance is measured in terms of a lod score that is 

the logarithm to the base 10 of the odds for or against linkage (free recombination between 

marker and disease locus). In other words the lod score calculates the overall likelihood of the 

data by comparing the two alternative hypotheses: a lod score of 3 is considered as statistically 

significant and indicates that the observed data is 1000 times more likely if there is a disease-

linked gene in the region than if there is no disease gene in the region. This method requires the 

collection of pedigrees with more than one affected member. Traditionally, a few large pedigrees 

are considered more powerful in mapping the disease locus than several small pedigrees (Ott 

1991). 
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The linkage analysis has proven to be very successful in identifying genes responsible for 

monogenic disorders but not so effective for complex diseases with the exception of some early 

encouraging finding such as the involvement of a locus on chromosome 16 in Crohn’s disease 

susceptibility (Hugot et al, 1996; Cavanaugh et al, 2001), which led to the identification of 

NOD2-mutations (Ogura et al, 2001). 

 

In MS more than 30 datasets have been screened for linkage with different levels of resolution 

and genome coverage (Fernald et al 2005). Every study has suggested the involvement of 

different chromosomal regions with MS susceptibility but only the MHC region on chromosome 

6p21.3 has repeatedly reached and robustly exceeded the threshold for statistical significance. 

Other regions have reached the threshold for suggestive linkage (LOD between 2 and 3): 1q, 9q 

and 16p (Kenealy et al 2004), 2q27 and 5p15 (Dyment et al 2004), 5p (Dyment et al 2004, 

Kuokkanen et al 1997), 5q33 (Sawcer et al 2005), 17q22-24 (Sawcer et al 2005, Kuokkanen et al 

1997)and 19p13 after HLA-conditioned analysis (Sawcer et al 2005). The reason for such 

limited success lies probably in the design of linkage studies which are underpowered in case of 

common variants with small relative risk (i.e. relative risk <2) as susceptibility factors for 

complex disorders (Risch and Merikangas 1996). Another factor affecting the success of linkage 

is the genetic heterogeneity of the analysed disorder. Particularly locus heterogeneity, i.e. the 

involvement of different loci in the causation of a disease/phenotype, reduces the power of the 

lod score test (Morton 1955). Overall, the major utility of the linkage approach has been in 

setting an upper limit on the expected effect sizes and ruling out the presence of strong effects by 

individual loci other than the MHC region. 

 

5.2.2 ASSOCIATION STUDIES 

Compared to linkage, association studies are more powerful in detecting weak effects exerted by 

relatively common polymorphisms. Association studies determine whether specific genetic 

variants (allelic variants) predispose to disease at the population level by comparing the 

frequency of marker locus alleles in patients and matched controls. If a disorder is found to be 

associated with a particular marker allele, this may suggest a causal relationship between the 

marker allele and the disease (i.e. marker allele is the disease predisposing variant, e.g. APOE 4 

and Alzheimer's disease, Corder 1993). More often the marker allele "marks" a neighbouring 

disease allele, a phenomenon termed linkage disequilibrium (LD). LD represents the non-

random association between alleles at two linked loci that reflects their vicinity and the 
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correspondingly low probability of recombination breaking the haplotype on which they are 

found (Bodmer, 1972). The strength of LD depends, in a given population, on several factors, 

the most important ones being the number of founding individuals (number of founding 

haplotypes) and the time since founding (Shifman et al, 2001). With each generation 

recombination tends to reduce LD, erasing the association between alleles except for markers 

located in the close proximity of the susceptibility locus. Just as linkage exploits recombination 

within current families, linkage disequilibrium (i.e. association) studies take advantage of the 

many recombination events that occurred historically in a population. As a result, association 

due to linkage disequilibrium occurs over short distances, typically much less than 1 Mb, and 

therefore association studies are often used to fine-map the disease locus identified from a 

previous linkage peak. 

 

The major paradigm for case-control association studies in the last years has been the common-

disease common-variant (CDCV) hypothesis which assumes that much of the genetic variation 

of complex common disorder is due to relatively few common variants. The proposed rationale 

for genotyping common polymorphisms (i.e. variants with a population allele frequency  5%) 

is  that  common SNPs can  significantly  contribute  to  disease  prevalence  even  if  their  effect  on  

disease risk is  modest (Reich et  al,  2001).  At the same time an alternative view on the genetic 

architecture of complex disorders, the rare variant hypothesis, has been proposed. The rare 

variant hypothesis assumes that susceptibility to common disorders is due to numerous low 

frequency polymorphisms, each conferring a moderate but detectable increase in relative risk 

(Bodmer et al, 2008). A comparison of both hypotheses is given in table 3 with emphasis on the 

main differences between them. Probably both models are correct and not necessarily mutually 

exclusive as there is evidence for both. It is worth noting that if the rare variant hypothesis is 

true, association studies have inadequate power to detect causative variants since the multitude 

of rare alleles (whose overall frequency would be high enough to be responsible for the 

susceptibility of a common disease) would not be tagged by any marker or haplotype. 

 

Following the recent progress in laboratory techniques, association studies covering the whole 

genome (genome-wide association studies, GWASs) have become readily available for testing 

common variation without any assumption about the nature of the genes that influence the 

disease. In the last two years GWASs have been successful in identifying loci responsible for the 

susceptibility to complex disorders (Rioux et al 2007, Saxena et al 2007). To date, four GWASs 

have been performed in MS, (IMSGC 2007, WTCCC 2007, Baranzini et al 2009, ANZgene, 
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2009) yielding interesting findings. The IMSGC study published a family-based approach using 

500,000 SNPs genotype on Affymetrix/Illumina arrays in 931 trios. The most significantly 

associated SNPs were analyzed in a second dataset of 2931 cases and 4205 controls as well as in 

pooled material (using a total of 12360 individuals). 

 

The WTCCC used a case-control approach scanning for 14,500 non-synonymous SNPs in 975 

MS patients. Although lacking replication this study has partially confirmed some leads from the 

IMSGC and proposed new susceptibility loci whose role has to be confirmed in other studies. A 

study from Baranzini et al (2009) has reported the results from a GWAS performed in 1000 

well-characterized  MS  and  an  equal  amount  of  matched  controls.  They  have  compared  allele  

frequencies of over 500000 SNPs in the two cohorts and their influences on several disease-

related variables. Recently a GWAS from the Australia and New Zealand MS Genetic 

Consortium (ANZgene, 2009) has been published. Two independent datasets for a total of 3874 

cases and 5723 controls were analysed and several known MS associations were replicated. The 

results from these studies and their relevance in MS predisposition are discussed in more details 

in the section 5.4. 

 

                             CDCV                       RARE VARIANTS 

Usually detectable with population-based case-
control association studies (genome-wide 
association studies, candidate gene studies) 

Usually detectable with DNA sequencing of 
candidate genes in selected patients 

Usually risk allele frequency > 10%* Risk allele frequency < 5%* 
Variants are shared by most human populations Population-specific variants 
OR < 2* OR  2* 
The impact of the variant on the function is not 
often obvious 
 
 
Examples: 
APOE 4 in Atherosclerosis1 and Alzheimer’s 
disease2 
PPARG in type-2 diabetes mellitus3 
 

Variants more often have structural effect on 
protein function, help in understanding disease 
etiology 
 
Examples: 
NOD2 in Crohn’s disease4 
ABCA1 in atherosclerosis5 

* These are estimates, the exact values cannot be defined. 
1 van Bockxmeer and Mamotte 1992. 2 Corder et al 1993. 3 Altshuler et al 2000. 4 Lesage et al 2002. 5 Cohen et al 
2004. 
 
Table 3. Comparison of the two main hypotheses regarding the genetic architecture of common 
disorders. 
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5.2.3 ROLE OF GENETIC ISOLATES 

Genetic isolates have significantly contributed in the identification of genes for rare Mendelian 

disorders. The peculiarities of such populations have appealed to geneticists over time and in 

recent years there has been some discussion about their role in mapping complex diseases 

(Peltonen et al, 2000). Population isolates, like the Finns, exhibit significantly less genetic 

diversity at chromosomal and mitochondrial DNA level (Sajantila et al,1996; Kittles et al, 1998). 

A consequence of that is the increased signal-to-noise ratio: etiologic homogeneity of common 

diseases (i.e. allelic and locus heterogeneity) increases the chances of detecting a significant 

signal. In genetic isolates the genetically homogenous population allows the detection of novel 

associations with a relatively small amount of patients. Furthermore cultural and environmental 

homogeneity in such genetically homogenous populations decreases the effect of penetrance and 

phenocopies in the manifestation of complex diseases. 

 

One example has been the discovery of the role of MBP in MS susceptibility in the Southern 

Ostrobothnian isolate (Pihlaja et al, 2003). Furthermore LD of markers with rare disease alleles 

extends over greater distances in young population isolates and enables one to use fewer markers 

in an association study. Recently Sabatti and colleagues have identified a rare variant (minor 

allele frequency = 0.017) of the gene on chromosome X in part responsible for sex-specific 

dyslipidaemias. The study was carried out in a selected sample material (Northern Finnish Birth 

Cohort 1966), pointing out the possible importance of GWAS in the discovery of infrequent 

variants when carried out in individuals sharing distant ancestors.  

 

5.3 ROLE OF HLA GENES 

Several linkage and association studies have pinpointed the role of chromosomal region 6p21.3 

as  the  major  player  in  MS  susceptibility.  More  particularly  the  genetic  signal  maps  to  a  wide  

area spanning the HLA gene complex which includes many proteins associated with immune 

functions (Figure 4). There are two major classes of HLA genes encoding for highly 

polymorphic heterodimeric glycoproteins involved in the immune recognition of self from non-

self. The telomeric distal region contains class I genes (HLA-A,-B,-C) whereas in the proximal 

centromeric segments are present the class II genes (HLA-DR,-DQ,-DP). While both  and  

chains of the class II proteins are encoded by the MHC region, only the  chain of the class I is 

encoded by HLA, with the non-polymorphic 2-microglobulin (the  chain of the class I protein) 

being encoded on chromosome 15. A third group of genes, generally known as class III and 

positioned  between  the  class  I  and  II  region,  encodes  for  e.g.  complement  proteins,  tumor  
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necrosis factor and heat shock proteins. The HLA complex is characterized for its high levels of 

polymorphic variation and the extent of non-random association between alleles in the region 

(Horton et al 2004). 

 

Initially the association between HLA and MS was reported with the class I region (Naito et al 

1972, Jersild et al 1972) and subsequently also with class II (Jersild et al 1973); rather quickly it 

was established that these observations were not independent associations but the result of the 

strength  of  the  LD  present  among  alleles  of  different  loci  on  the  same  haplotype,  with  the  

association primarily deriving from the class II region (Compston et al 1976, Terasaki et al 

1976). 

 

Using the modern nomenclature, it was clear that the association signal was segregating with the 

extended haplotype HLA-DQB1*0602, HLA-DQA1*0102, HLA-DRB1*1501 but the fine-

mapping of the susceptibility locus has been complicated by the extensive LD between DRB1 

and DQB1. Using a MS cohort of African-American ancestry where the LD pattern is less 

intense, a selective association with HLA-DRB1 independent of DQB1 was reported (Oksenberg 

et al 2004), providing evidence for a primary role of this locus in MS predisposition. 

Subsequently, Yeo et al (2007) have replicated this finding in a large dataset of European 

patients but the functional role of HLA-DRB1 gene regarding MS susceptibility still remains 

elusive. Structural studies have indicated that HLA-DRB1*1501 can bind with high-affinity a 

peptide deriving from MBP, one of the most studied putative autoantigens (Smith et al 1998). 

 

In the study of Oksenberg and colleagues (2004) HLA-DRB1*1501 was not the only allele that 

associated with the disease. Since this variant has low frequency in Africa the analysis provided 

also a role for HLA-DRB1*1503 and HLA-DRB1*0301 alleles. It is now clear that the risk 

carried by HLA-DRB1*1501 allele may be modified depending on which MHC haplotype is 

present in the heterozygous state (Dyment et al 2005, Barcellos et al 2006, Ramagopalan et al 

2007). Also a role for the existence of an independent signal from class I region has been 

proposed in several studies but the extent of LD in the region has complicated its dissection 

(Marrosu et al 2001, Rubio et al 2002, Yeo et al 2007). A modifier gene has been suggested to 

be  located  in  the  class  I  region  (Friese  et  al  2008)  and  in  the  HLA-DRB5 (Etzensperger  et  al  

2008). 
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Figure 4. Genomic organization of the HLA complex. The arrow indicates the primary role 
played by HLA-DRB1 gene in MS susceptibility. 
 

 

 

5.4 ROLE OF NON-HLA GENES 

The MHC region alone explains only a portion, approximately less than half, of the heritability 

of MS. In the last few years the GWAS and other studies have shed some light into the genetic 

architecture that lies behind the susceptibility to MS, producing of list of genes whose 

association with the disease has been replicated in more than one dataset (Table 4). Below I 

discuss in more detail the most significant loci associated with MS and their possible 

involvement in the disease pathogenesis.   

 

 

 

DP DQ DR

Class IIIClass II Class I

B1 A1 B1 A1 B1 B5 A

B C A

400 kb 50 kb
400 kb

4 Mb

Modifiers



 
 

43

 

LOCUS 

 

CHROMOSOME ASSOCIATED 

COHORTS 

FUNCTION 

IL-7R 5p13 UK, US, multiple  Immunological 

IL-2RA 10p15-14 UK, US, Canadian, multiple Immunological 

PRKCA 17q22-24 UK, Finnish, Canadian Immunological 

TYK2 19p13 meta-analysis Immunological 

CD58 1p13 meta-analysis Immunological 

EVI5/RPL5 1p22 Dutch inbred, Canadian Immunological? 

KIF1B 1p36 Dutch inbred and outbred, 

Canadian 

Neurological (axonal 

transport) 

CLEC16A 16p13 IMSGC, Sardinia Immunological 

IRF5 7q32 Spanish, Swedish, Finnish Immunological 

CD226 18q22 UK, US, IMSGC Immunological 

MBP 18q23 Finnish, Russian, Italian, 

multiple 

Myelination 

IRF8 16q24 meta-analysis Immunological 

CD6 11q13 meta-analysis Immunological 

C7-FLJ40243 5p13 Finnish isolate, Finnish, 

Sweden and others 

Immunological 

TNFRSR1A 12p13 meta-analysis Immunological 

Table 4. Non-HLA genes implicated in MS susceptibility on the basis of genetic analysis in 
more than one population. Multiple = the locus has been associated with MS in three or more 
populations. Meta-analysis = genome-wide significant evidence of association in a meta-analysis 
of several populations. 
 
 
5.4.1 IL-7R 

Already studied as a candidate gene (Teutsch et al 2003, Zhang et al 2005), the role of the 

interleukin-7 receptor (IL-7R) in MS susceptibility has been unequivocally confirmed by two 

simultaneous independent analyses (Gregory at al 2007, Lundmark et al 2007) which have 

shown an association with the SNP rs6897932. The associated polymorphism (a non-

synonymous variation, T244I) is situated in the alternatively spliced exon 6 of the gene that 

encodes for the transmembrane domain. If exon 6 is included then the transcript encodes for a 

membrane receptor whereas if it is skipped then the mature protein will be a soluble receptor 
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(Gregory et al 2007). The associated variant increases the proportion of soluble receptor in the 

bloodstream and therefore is predicted to affect the IL-7R signalling. It is worth noticing that the 

risk allele is very common, found in 76 % of patients and 72% of controls (IMSGC 2008): 

carriers of the associated variant have only a 20% increased risk of developing MS (OR = 1.2).  

 

5.4.2 IL-2RA 

The IMSGC study has indicated a role for the interleukin-2 receptor alpha subunit (IL-2RA) 

with two SNPs in moderate LD with each other associating with MS. This finding has been 

replicated in an independent Canadian cohort (Ramagopalan et al 2007) and it strongly points 

toward the importance of the IL-2 pathway in MS susceptibility. It is important to notice that 

these findings are in line with earlier results obtained in type-1 diabetes, rheumatoid arthritis and 

Graves disease, suggesting a possible common pathogenetic mechanism underlying 

autoimmunity. Furthermore the relative risk attributable to variation in both IL7R and IL-2RA 

(OR = 1.2; IMSGC 2008) is very low and explains only a little part of the variance in the risk of 

MS.  

 

5.4.3 OTHER GENES 

Protein kinase C alpha (PRKCA) gene is located on chromosome 17q22-24, a region that has 

revealed indicative linkage in Finnish MS pedigrees (Kuokkanen et al 1997). A role for PRKCA 

in MS susceptibility has been further suggested by association study in a UK patient population 

(Barton et al 2004). Subsequently a LD-mapping study in both Finnish and Canadian MS 

families confirmed the presence of multiple signals within the PRKCA locus (Saarela et al 

2006).  Although  the  SNPs  associated  with  MS  were  different  in  the  two  populations,  the  risk  

haplotypes covered the same genomic region, stretching from intron 3 to intron 8. Expression 

analysis revealed a weak genotype-phenotype correlation in CD4- cells,  with  lower  levels  of  

PRKCA in individual possessing two copies of the risk haplotype. PRKCA has been implicated 

in T-cell activation for its involvement in the regulation of the IL-2 pathway, suggesting a 

possible disregulation of the signal transduction in MS. 

 

Hoppenbrouwers and colleagues (2008) have verified the risk contribution of the best associated 

SNPs  from  the  IMSGC  study  (2007)  in  MS  patients  from  a  Dutch  genetically  isolated  

population. Apart from a HLA-DRB1 SNP, two polymorphisms in the EVI5 (ecotropic viral 

integration site 5) gene were confirmed as risk variants and were also replicated in an 

independent Canadian cohort of MS patients. EVI5 is a common site for retroviral integration 
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and it could possibly link the involvement of retroviral elements to MS pathogenesis; it is not 

clear though if the causative variant lies within EVI5 or its neighbouring genes, such as RPL5 

(ribosomal protein L5). 

 

Kinesin family member 1B (KIF1B) has been initially associated in a GWAS performed on the 

same genetically isolated Dutch population and subsequently replicated in an outbred Dutch and 

Canadian trio families (Aulchenko et al 2008). The locus encodes for a member of the kinesin 

superfamily and is believed to be involved in the axonal transport of mitochondria and synaptic 

vescicle (Nangaku et al 1994, Boldogh et al 2007). The most strongly associated SNP (p-

values<2.5*10-10) with MS is located in intron 5, although the causative variant is not known. 

Nevertheless this finding represents a non-immunologically related gene in MS predisposition. 

Its possible association with MS has not yet been reported in other populations than Dutch and 

Canadian materials. 

 

The WTCCC study uncovered the possible involvement of tyrosine kinase 2 (TYK2) gene in MS 

pathogenesis.  In  a  replication  study,  Ban  et  al  (2009)  found  an  association  signal  of  the  same  

marker located in the exon 21 of the gene. The associated SNP encodes for an amino acid 

change (proline to alanine) in the kinase domain which is predicted to affect the phosphoryation 

and hence the activity of the protein. 

 

A GWAS suggested a role for CD58 in MS predisposition (IMSGC, 2007). Following this 

finding De Jager and co-workers (2009) re-sequenced and fine-mapped the CD58 locus in case-

control approach. The results revealed a SNP significantly associated with protection from MS. 

 

Already associated with type I diabetes, the polymorphism Gly307Ser CD226 has been found to 

be associated also with MS (Hafler et al, 2009). The functional impact of the variant on the 

protein is not clear yet. 

 

A variant located in CLEC16A (c-type lectin domain family 16, member A) locus showed 

suggestive evidence of association with MS in a GWAS (IMSGC 2007). Zoledziewska and 

colleagues (2009) genotyped another SNP (rs725613) in the same gene but not in LD with the 

variant  in  a  case-control  cohort  of  MS and  type  1  diabetes  (T1D)  patients.  The  polymorphism 

associated at a significant level with both MS and T1D, bringing the evidence for a possibly 

shared disease pathway. 
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In a meta-analysis of GWASs for MS three new susceptibility loci were identified with genome-

wide significance, p < 5 x 10-8 (De Jager et al, 2009). Two polymorphisms within the tumor 

necrosis factor receptor superfamily, member 1A (TNFRSF1A) genomic region  associated with 

the disease. One of them (rs1800693) is located in the fourth intron and it is relatively common 

(allele frequency of 57%) whereas the other polymorphism encodes for an amino acid change, 

R92Q, and it is found in only 2% of the population. These results link both a common 

polymorphism of modest effect and a rare variant of stronger effect to MS susceptibility. 

 

Interferon responsive factor 8 (IRF8)  locus  was  also  associated  with  MS  although  the  

significantly associated variant lies 60 kb from the gene (De Jager et al, 2009). An expression 

analysis showed no correlation between the SNP and IRF8 transcript levels and therefore the 

role of the variant remains unknown. 

 

The other genomic region associated with MS was the CD6 locus which encodes for a molecule 

involved  in  T-cell  differentiation  and  in  the  regulation  of  tumor  necrosis  alpha  (TNF )  serum  

levels (De Jager et al, 2009). The SNPs showing evidence for association with MS locates in the 

first intron of the gene and might have functional effects together with the variants present in 

TNFRSF1A locus. 

 

Using the genetic isolate of Southern Ostrobothnia Kallio et al (2009) have analysed the 

previously associated chromosomal region 5p. The haplotype analysis excluded a major role for 

IL7R in MS susceptibility in the sample material, with most of the association signal covering 

the C7 locus  (complement  component  7).  The  result  was  replicated  in  another  independent  

dataset from the isolate and a suggestive association was seen also in other more heterogeneous 

populations. Furthermore the complement activity significantly correlated with the identified 

risk haplotype. 

 

MBP is an obvious candidate gene for its potential role as target for immune-mediated 

mechanisms involved in MS pathogenesis. Evidence for association between the disorder and a 

short tandem repeat located in the promoter of the gene has been found in linkage and 

association studies (Tienari et al 1992; Tienari et al 1998). Further association has been reported 

in Italian, Danish and Italian-Russian studies although the analyses were performed with 

different markers (Ibsen and Clausen 1996, Guerini et al 2000, Guerini et al 2003). The reason in 
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the lack of replication among different populations might be due to the geographical restriction 

of the association between MS and the microsatellite marker utilized in the Finnish study. 

Pihlaja and colleagues (2003) indeed confirmed the previously reported association only in the 

high incidence region of Southern Ostrobothnia.   

 

However  it  is  important  to  stress  that  case-control  studies  are  prone  to  false  results  as  a  

consequence of population stratification. Although different algorithms have been developed to 

assess the presence of genetic subgroups in mixed populations, the combination of case-control 

and family-based analyses is the best option to avoid spurious associations. It is also worth 

noting that several GWAS hits mentioned above (De Jager et al 2008, Hafler 2009, 

Zoledziewska 2009) have been found only in case-control datasets and hence these findings need 

further replication also in family-based material. 
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AIMS OF THE PRESENT STUDY 
 

 

MS is a complex disorder where both genetic and environmental factors have been implicated 

but its etiology and pathogenesis still remain poorly understood. The purpose of this study was 

to investigate the role of chromosomes 2q33, 19q13 and IRF5 in MS. 

 

Three chromosomal regions previously associated with other autoimmune disorders have been 

analyzed in MS datasets to evaluate their role in the susceptibility to the disease.  

(i) The 2q33 region has been extensively studied in respect with its possible role in other 

autoimmune diseases. In MS the results have been conflicting and primarily focusing on the 

costimulatory immune regulator CTLA-4. The goal was to perform a two-stage association 

analysis to investigate the role of this chromosomal region in the pathogenesis of MS. 

(ii) The 7q32 region and more particularly the IRF5 gene have been already associated with 

systemic lupus erythematosus, rheumatoid arthritis and inflammatory bowel disorder. The goal 

was to investigate whether variation in the IRF5 locus would be associated with another putative 

autoimmune disorder such as MS.  

(iii) The 19q13 region has exhibited clustering of putative predisposing loci in several 

autoimmune disorders. In MS the situation is presently ambiguous with several reports providing 

weak evidence for a susceptibility gene. The goal here was to perform an allelic association 

study in order to obtain evidence of an MS susceptibility locus. 

(iv) As a follow-up of (i) we focused on the expression of the inducible T-cell co-stimulator 

(ICOS)  gene.  The  goal  was  to  characterize  the  transcriptional  regulation  of  the  locus  with  

attention to alternatively spliced isoforms. 

 

Since MS is a genetically heterogeneous disease, this study takes advantage of the relative 

genetic homogeneity of the Finnish population to find some of the MS predisposing genes. The 

objective of this approach will shed a new light into the pathogenesis of the disease and provide 

new tools to identify individuals at higher risk for possible preventive strategies. 
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MATERIALS AND METHODS 
 

1. SUBJECTS AND FAMILIES (I-IV) 

All patients had clinically definite or laboratory-supported definite MS according to the Poser 

criteria. No selection was made as to the disease course, hence there were patients with 

relapsing-remitting, primarily progressive and secondary progressive course. All samples were 

taken with oral or written informed consent. The studies were approved by ethical committees of 

Helsinki University Central Hospital (Decision 46/2002, Dnro 192/E9/02) and collaboratory 

institutes.  The study material included: 

Study I: 134 and 186 Finnish MS trio families in stage-1 and stage-2 respectively. Linkage 

analysis was performed in 27 multiplex families MS families. Samples were collected from the 

University  Central  Hospitals  in  Helsinki,  Tampere,  Kuopio,  Oulu  and  the  Central  Hospital  of  

Seinäjoki. 

Study II: 660 Spanish MS cases and 833 controls (samples were collected from hospitals 

located in Granada, Malaga and Sevilla), 1166 Swedish MS cases and 1235 controls (samples 

were collected from Danderyd’s Hospital or Karolinska University Hospital in Huddinge or in 

Solna, all located in the Stockholm County of Sweden), 511 Finnish MS trio families (samples 

were collected from the University Central Hospitals in Helsinki, Tampere, Kuopio, Oulu and 

the Central Hospital of Seinäjoki). 

Study III: 459 and 323 Finnish MS trio families in dataset-1 and dataset-2 respectively. 

Samples were collected from the University Central Hospitals in Helsinki, Turku, Tampere, 

Kuopio, Oulu and the Central Hospital of Seinäjoki. 

Study IV: 505  Finnish  MS  trio  families.  Samples  were  collected  from  the  University  Central  

Hospitals in Helsinki, Tampere, Kuopio, Oulu and the Central Hospital of Seinäjoki. 

The overlaps between different Finnish study materials in this thesis study are shown in table 5. 
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Study Dataset Cohort-1 

(N=136) 

Cohort-2 

(N=124) 

Cohort-3 

(N=201) 

Cohort-4 

(N=323) 

I 1 134/1361    

I 2   186/2011  

II    201/201 310/3231 

III 1 134/1361 124/124 201/201  

III 2    323/323 

IV    188/2011 317/3231 

Table 5. Overlap between different study populations in the Finnish datasets. 1 The analysis was 
performed on samples with enough material left. There was no bias in sample selection. 
 

 

2. DNA ANALYSIS (I-IV) 

DNA was extracted from blood peripheral leukocytes using standard procedures. The 

genotyping of the samples was performed as illustrated below. 

Study I: Two methods were employed in microsatellite genotyping in the association analysis: 

ABI Prism system with fluorescently labeled primers or autoradiography of the polyacrylamide 

gels using 33P- -dATP in the PCR mixtures. The SNPs were amplified by PCR and genotyped 

by restriction enzyme digestion followed by agarose gel electrophoresis. 

Study II: The SNPs were genotyped using multiplex fluorescent minisequencing (single-base 

extension) with the SNPstream system (Beckman Coulter). The CGGGG indel was amplified by 

PCR using fluorescent primers with subsequent fragment analysis on an ABI PRISM® 3730 

DNA Analyzer. 

Study III: Microsatellites were genotyped by autoradiography of the polyacrylamide gels using 

33P- -dATP in the PCR mixtures. The SNPs were amplified by PCR and genotyped by restriction 

enzyme digestion followed by agarose gel electrophoresis or by solid-phase minisequencing. 

Study IV: Genotyping for 17 SNPs was performed using  Sequenom MALDI-TOF mass 

spectrometry (MassArray Compact Analyzer; Sequenom Inc, San Diego, CA, USA) based on 

matrix-assisted laser desorption/ionization–time of flight technology and primer extension 

chemistry. The remaining SNPs were amplified by PCR and genotyped by restriction enzyme 

digestion followed by agarose gel electrophoresis or by solid-phase minisequencing. 
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3. STATISTICAL ANALYSES (I-IV) 

The statistical analyses were performed as follows: 

Study I: Transmission disequilibrium test (TDT) was used to perform allelic association 

analysis. The genotype data was tested using the TRANSMIT 2.5.2 computer program package. 

Two-point linkage analysis was performed with the MLINK program of the LINKAGE package. 

Study II: The PLINK software was used to compare the allele counts in cases and controls by 

Fisher’s exact test, to calculate odds ratios and also to perform the sliding window haplotype 

association analysis. The Haploview v.3.3. software was used to determine linkage 

disequilibrium (LD) between the polymorphisms. In the family cohort, the genotype data was 

analyzed using the TRANSMIT 2.5.2. computer program package. 

Study III: TDT was performed on family material as illustrated in study I. In case-control 

association analysis the haplotype frequency estimation was performed using the expectation-

maximisation algorithm as implemented in the HAPLO program. 

Study IV: TDT was performed as illustrated in study I. 

 

4. ELECTROPHORETIC MOBILITY SHIFT ASSAY (II) 

Biotinylated and unlabelled double stranded DNA probes were generated for each allele of the 

polymorphism. The labelled probe was incubated for 20 minutes with a nuclear extract prepared 

from blood cells. Competition assays were performed with a 100-fold molar excess of unlabelled 

probe. The binding reactions were run on 6% polyacrylamide gel electrophoresis and transferred 

to nylon membranes. The biotinylated bands were detected using a chemiluminescent procedure.  

 

5. PROXIMITY LIGATION ASSAY (II) 

Polyclonal antibody against SP1 was biotinilated, diluted in a saline buffer and then combined 

with a streptavidin-oligonucleotide conjugate. Partially double stranded DNA probes were 

incubated with Jurkat nuclear extract for 30 minutes at room temperature. Anti-SP1-DNA 

conjugate was added to the mixture and incubated for 2 hours at 20ºC. After the incubations 

ligation and PCR detection were performed. 

 

6. CELL CULTURE AND T-CELL ACTIVATION (IV) 

African green monkey kidney Cos-7 cells were grown in Dulbecco's modified Eagle's medium 

(DMEM; BioWhittaker) supplemented with 10% FCS. Human primary lymphocytes and Jurkat 

E6-1 were cultured in RPMI 1640 with 2mM glutamine supplemented with 10% FCS. 
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In order to purify CD4+ T-cells, blood samples (40 ml) were obtained from healthy donors and 

placed into BD Vacutainer CPT tubes (Becton Dickinson, Franklin Lakes, NJ, USA). Peripheral 

blood cells were pelleted at 1800 xg for 30 minutes. The supernatant representing the 

mononuclear fraction was washed twice in phosphate-buffered saline solution (PBS) 

subsequently used for lymphocytes isolation. 

CD4+ T-cell purification was performed utilizing a magnetic cell separation strategy. Untouched 

T-cells were isolated from peripheral leukocytes fraction with Pan T-cell Isolation Kit II 

(Miltenyi Biotech) according to manufacturer’s instructions. CD4+ T-cell were then further 

purified by depleting the CD8+ fraction with CD8 MicroBeads (Miltenyi Biotech). 

For the activation of lymphocytes, 106 cells were incubated for 6 h with phorbol myristyl acetate 
(PMA) 30ng/ml and ionomycin 300ng/ml and subsequently harvested for the suitable assay. 

 

 

7. RNA EXTRACTION AND REVERSE TRANSCRIPTASE POLYMERASE CHAIN 

REACTION (RT PCR) (IV) 

Total RNA was purified from peripheral leukocytes with the Rneasy Mini Kit (Qiagen) 

according to the manufacturer’s instructions. cDNA was synthesized from total RNA using M-

MLV polymerase according to the manufacturer’s instructions, with random RNA hexamer 

primers  (Promega).  Subsequently  cDNA  was  used  as  template  for  PCR  reaction  and  PCR  

products were resolved with 2% agarose gel. 

 

8. EXPRESSION VECTORS (IV) 

The ex2-ICOS and the ICOS expression vectors were obtained by respectively amplifying  

ex2-ICOS and ICOS coding regions from mRNA of healthy donors’ peripheral leukocytes. 

PCR products were gel-purified and subcloned into pCMV plasmid. The green fluorescent 

protein (GFP)- ex2-ICOS and GFP-ICOS expression vectors were obtained by subcloning 

respectively ex2-ICOS and ICOS coding regions into pEGFP-N1 (Clontech). All clones were 

verified by sequence analysis. 

 

9. TRANSFECTION AND CELL LOCALIZATION (IV) 

A round glass coverslip was placed in each well of a 6-well plate. COS-7 cells were then seeded 

at 45% cell confluency on the coveslips in 1 ml of culture medium. After 24 h 4 µg of green 

fluorescent protein (GFP)-expressing vectors were mixed with Lipofectamine 2000 (Invitrogen, 
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Carlsbad, CA, USA) according to the manufacturer’s instructions. After 24 h the cells were 

stained with ER-tracker Red (Molecular Probes), Hoechst (Molecular Probes) and subsequently 

fixed for 10 minutes with 4% paraformaldehyde.  

 

10. GEL ELECTROPHORESIS AND WESTERN BLOTTING (IV) 

In order to obtain whole cell extracts, human primary lymphocytes and Jurkat E6-1 were 

pelleted at 800 xg for 5minutes. The cell pellets were suspended and washed once in PBS. The 

cell pellet was subsequently resuspended in CHAPS 1% in PBS, supplemented with protease 

inhibitors (Complete Protease inhibitor, Roche, Basel, Switzerland), incubated at 4 ºC for 30 

minutes and centrifuges at 16,600 xg for 20 minutes at 4 ºC. The supernatant (“whole cell 

extracts”) was used immediately for protein quantification and protein detection or stored at –80 

ºC. 

Whole  cell  extracts  were  resolved  by  SDS-PAGE  on  12%  Tris-glycine  gels.  Proteins  were  

blotted to nitrocellulose with a semi-dry transfer apparatus with 25mM Tris, 190mM glycine and 

20% methanol. Membranes were blocked for 1 h at room temperature in 5% milk in TBST 

(20mM Tris, 140mM NaCl, 0,1% Tween) and incubated with primary antibody (sc-25585, Santa 

Cruz Biotechnology, Santa Cruz, CA; 1:200 dilution) overnight at 4 C. After washing in TBST, 

membranes were incubated with horseradish-peroxidase-conjugated secondary antibodies 

(1:10,000 dilution) for 1h at room temperature. Chemiluminescent detection was performed 

using ECL Plus on X-Omat AR films. 
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RESULTS AND DISCUSSION 
1. CHROMOSOME 2q33 AND MS

Chromosome 2q33 has been implicated in the predisposition of several immune-mediated 

disorders. Most studies have focused on the role of Cytotoxic T Lymphocyte Associated 4 

(CTLA4) gene, which encodes for a protein involved in co-stimulatory down-regulation of 

immune responses. 

A two-stage study was performed to analyse the association of polymorphisms of chromosome 

2q33 with MS. Stage-1 served for setting the hypothesis to be tested in stage-2. In all 17 

markers, both SNPs and microsatellites, were genotyped (figure 5). Two independent association 

signals were detected, one with the SNP marker rs3977 and the other with the microsatellite 

d2s1271. Both signals were obtained outside of the CTLA-4 locus and therefore we could not 

find any support for its candidacy in MS susceptibility.  

Figure 5. Genomic organization of the markers used in stage-1. 

We  went  on  to  fin e-map  the  obtained  association  signals.  The  association  with  rs3 9 7 7 was  

origin ally  found  in  a  two  ind epend ent  d atasets  (consisting  of  1 3 4 and  1 8 6 trio  families)  after  

HLA-DR15 stratification in the non-DR15 stratum (p=0.02 in both datasets). In order to further 

verify the above association signal, we analysed four additional markers flanking rs3977 (two 

microsatellites and two SNPs) and rs3977 as well within a 250 kb region in a new set of 309 

Finnish MS trio families. No association with MS was found and we concluded that the initial 

finding with rs3977 was a false positive obtained by chance. 
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Initially we found an association  with a 186bp allele of marker D2S1271 in two independent 

Southern Ostrobothnian set of families (stage-1 p=0.01 and stage-2 p=0.008). The candidate 

region defined by the marker D2S1271 is relatively large (approximately 300kb) based on 

linkage disequilibrium analyses, including two putative genes and two previously known genes 

(figure 6). 

 

 

 

 

 

 

 

Figure 6. Genomic organization of the LD block centered around d2s1271. The vertical arrows 
indicate the genotyped markers. 
 

 

In this genomic context the inducible T-cell co-stimulator (ICOS) gene is an obvious candidate 

for a role played in MS pathogenesis. It encodes a protein belonging to the family of Ig-like 

costimulatory receptors on the surface of T-cells. It delivers positive signals upon binding to its 

ligand, ICOS-L, and it is sequentially induced following T-cell activation. Previous studies have 

uncovered a heterogeneous role of ICOS in autoimmune disorders. ICOS-deficient mice are 

more vulnerable to EAE but are relatively resistant to experimental autoimmune myasthenia 

gravis and collagen-induced arthritis (Rottman et al, 2001; Scott et al, 2004; Nurieva, 2005). 

Furthermore in wild type mice, neutralizing antibodies against ICOS exacerbate EAE in the 

priming phase but inhibits it in the efferent phase (Rottman et al, 2001).  

 

Sanroque mice carry a homozygous mutation in ROQ domain of Roquin, a ubiquitin ligase 

family member, that acts as a repressor of ICOS (Vinuesa et al, 2005). Such mutation disrupts 

the function of the protein, causing increased ICOS expression on T-cells and a systemic lupus 

erythematosus (SLE)-like syndrome. More recently Yu and colleagues (2007) have uncovered 

the underlying molecular pathway. ICOS expression is normally tightly regulated post-

transcriptionally by a mechanism that involves a complementary conserved microRNA 

(miRNA) binding site for miR-101 located to the 3’ untraslated region (UTR) of ICOS. Roquin 

usually inhibits ICOS expression by promoting the degradation of ICOS mRNA into the stress 
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granules, specialized cell structures involved in mRNA degradation (Newbury et al, 2007). It is 

not clear though whether Roquin mediates ICOS degradation by binding directly to its target 

mRNA or to the complementary miRNA.  

 

Moreover  the  ICOS  locus  forms  a  gene  complex  with  HERV-H,  a  member  of  the  human  

endogenous retroviruses. HERV-H is located distally and in antisense orientation compared to 

ICOS (Figure 7).  

 

 

 

 

 

 

 

 

 

Figure 7. Schematic representation of the ICOS/HERV-H gene complex and its distance from 
the marker d2s1271. 
 

 

HERV-H nucleic acid was detected in the serum in 40% of Danish MS patients vs. in 10% of 

controls (Christensen et al, 2003), indicating increased activation of HERV-H in MS patients. 

Additionally, increased antibody titers against HERV-H env protein were found in Danish MS 

patients (Christensen et al, 2003). Furthermore several cytokines utilizing the NF-KB cascade 

(e.g. TNF , IFN ) activate HERV-H with a concomitant downregulation of ICOS (Ling V et al, 

2001). 

 

Against this background, variation in ICOS genomic region was analysed by sequencing and 

selected polymorphisms were tested for association with MS. We therefore aimed at extending 

our previous results by genotyping 27 SNPs spanning 100 kb across the ICOS gene region with 

respect to MS susceptibility (table 6).  
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SNP Position Gene MAF p-value 

1. rs231770 204,437,398  0,46 0,17 

2. rs16840252 204,439,764  0,13 0,35 

3. rs5742909 204,440,592 150bp proximal of CTLA4 0,08 0,12 

4. rs231775 204,440,959 CTLA4 0,46 0,47 

5. rs3087243 204,447,164 300bp distal of CTLA4 0,32 0,74 

6. rs960792 204,457,495  0,35 0,67 

7. rs231755 204,461,814  0,14 0,3 

8. rs2882974 204,468,309  0,37 0,76 

9. rs10497873 204,470,572  0,15 0,71 

10. rs11571311 204,481,924  0,21 0,82 

11. rs3116505 204,487,426  0,48 0,79 

12. rs11571306* 204,507,337  0,19 0,47 

13. rs11889031* 204,507,639  0,06 0,7 

14. rs4452124* 204,507,942  0,07 0,12 

15. rs11571305* 204,508,371 1.5kb proximal of ICOS 0,18 0,55 

16. rs10932029 204,510,013 ICOS / intron1 0,12 0,74 

17. rs4355090 204,524,627 ICOS /intron1 0,20 0,23 

18. rs4521021 204,524,820 ICOS / intron1 0,32 0,038 

19. rs4270326* 204,529,859 ICOS / intron3 0,08 0,65 

20. ICOSivs4+1070 204,531,932 ICOS / intron4 0,08 0,6 

21. rs10172036 204,532,528 ICOS / intron4 0,39 0,95 

22. rs10183087* 204,532,569 ICOS / 3’ UTR 0,23 0,84 

23. rs4404254* 204,533,531 ICOS / 3’ UTR 0,22 0,75 

24. rs10932037 204,533,591 ICOS / 3’ UTR 0,11 0,69 

25. rs1559931* 204,533,974 ICOS / 3’ UTR 0,22 0,9 

26. rs10199135* 204,536,856 2.3kb distal of ICOS 0,04 0,72 

27. rs3116534* 204,542,014 HERV-H 0,23 0,67 

Table 6. Results  of  the  association  analysis  performed  on  chromosome  2q33.  Asterisk  (*)  
indicates SNPs genotyped only in 186 MS trio families.  
 

 

 

One polymorphism, located in the first intron of the ICOS locus (rs4521021), showed a 

nominally significant trend for association. However when correction for multiple comparisons 

was applied the association was not significant. The LD analysis showed that the weakly 
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associated polymorphism lies in an interblock region, exhibiting low LD with neighbouring 

markers (figure 8). The presence of low LD in the genomic region where SNP rs4521021 lies 

was also confirmed in a recent study performed on celiac disease, IgA deficiency and common 

variable immunodeficiency patients by Haimila and colleagues (2009). Previously Lorentzen 

and colleagues (2005) have analyzed the role of variation in the ICOS gene in Norwegian MS 

patients. No association with the disease was found although the coverage of the region was poor 

(only  two  microsatellites  were  genotyped)  with  subsequent  limited  power.  One  of  the  two  

microsatellites included in the study was also genotyped in 186 Finnish MS trio families but it 

did not show association with the disease. Another study has investigated variations in 3’ UTR 

of the ICOS gene in MS (Castelli et al, 2007). A correlation between a three SNPs haplotype and 

reduced ICOS expression was found. Homozygotes for such haplotype were underrepresented in 

MS patients when compared to controls and exhibited lower expression of ICOS and higher 

levels of circulating interleukin 10. Our study included five SNPs located in the 3’ UTR of ICOS 

(we included also one SNP of the associated three markers haplotype) but no association could 

be detected. A recent GWAS performed in American and British patients did not find an 

association with the ICOS locus although only four SNPs (none of which was included in our 

study) were included (IMSGC, 2007). 

 

Figure 8. LD plot of chromosome 2q33. Darker color denotes higher LD (D’). Filled boxes 
indicates the genes. Numbers refer to the markers shown in Table 6. 
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Due  to  the  close  proximity  of  the  weakly  (non-significantly)  associated  SNP  to  the  exon  2  

boundary, we further characterized the expression of the ICOS gene, searching for possible 

alternative splicing. By reverse transcriptase-polymerase chain reaction (RT-PCR) two different 

isoforms were detected in inactivated and activated human CD4+ T-cells. A full length form of 

ICOS (fl-ICOS) and a splice variant lacking 450 nucleotides were identified (Figure 1B in Study 

IV). Sequence analysis revealed an alternatively spliced variant ( ex2-ICOS) that lacked exon 2 

encoding most of the extracellular domain of fl-ICOS (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Schematic showing comparative protein domains of fl-ICOS and ex2-ICOS. 
Numbers refer to amino acid positions in the nascent polypeptide. Arrows indicate the potential 
N-linked glycosilation sites. 
 

 

The ex2-ICOS is predicted to consist of just 86 residues, including signal sequence, ten amino 

acids of the extracellular domain, transmembrane domain and the cytoplasmatic tail identical to 

fl-ICOS. ex2-ICOS lacks thus most of the extracellular domain where the the binding domain 

for its ligand, ICOS-L, lies. It has been showed that upon T-cell stimulation the expression of fl-

ICOS is rapidly induced (Beier et al, 2000). We found that the expression kinetics of ex2-ICOS 

was similar to fl-ICOS (Figure 1B in Study IV). We found that when CD4+ T-cells were 

stimulated with PMA and ionomycin, ex2-ICOS mRNA levels increased accordingly. 

 

To determine whether ex2-ICOS transcript could direct protein production, the expression of 

ex2-ICOS protein was studied in transfected cells and human-derived cell lines (Figure 2A and 
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2B in Study IV). Our results showed that ex2-ICOS protein is expressed in non-activated 

Jurkat cells and that activation with PMA and ionomycin further increases the protein synthesis 

as expected from the RT-PCR experiment. 

 

We made a further effort to study the subcellular localizations of fl-ICOS and ex2-ICOS in 

transfected cells (Figure 3A and 3B in Study IV). As expected fl-ICOS was localized mostly at 

the cell membrane whereas ex2-ICOS was found to be distributed mainly intracellularly with 

exclusion of the nuclei. Staining of the cells with an endoplasmatic reticulum (ER) marker 

showed that fl-ICOS only partially colocalize with ER with most of the signal distributed at the 

cell membrane. ex2-ICOS signal instead overlapped with the organelle marker labeled area, 

with most of the protein accumulated in the perinuclear region of ER. 

 

We have reported a novel, possibly regulatory, transcriptional variant of ICOS. Alternative 

splicing of membrane receptors is a common strategy to increase the repertoire of receptors 

available to the cell. Other immune mediators such as CTLA4 and CD28 have shown a similar 

regulative mechanism. CTLA4 is known to have three splicing variants encoding for different 

proteins, a full length membrane bound (fl-CTLA4), a soluble (sCTLA4) and a ligand 

independent (liCTLA4) (Ueda et al., 2003; Vijayakrishnan et al., 2004). Also CD28 has been 

reported to undergo alternative splicing resulting in two different variants encoding for different 

proteins, a full-length (CD28) and a shorter variant (CD28i), both localized at the cell membrane 

(Hanawa et al, 2002). The mRNA of ex2-ICOS lacks exon 2, which encodes for most of the 

extracellular domain of fl-ICOS, essential for interactions with its ligand, ICOS-L. Interestingly, 

both liCTLA4 and CD28i lack exon 2 as well and as a consequence they lack most of the ligand 

binding domain. However, both proteins are able to translocate to the cell surface in mammalian 

cells. Our results show instead that ex2-ICOS protein is localized mainly intracellularly, with 

most  of  the  signal  present  in  ER.  The  differential  subcellular  localization  of  ex2-ICOS when 

compared to fl-ICOS suggests that ex2-ICOS might exert its function mostly in the ER. What 

could be its role in this subcellular compartment is still an open question. It is known that lectins 

(like calreticulin and calnexin) control retention of incorrectly glycosylated or folded proteins in 

the  ER  (Helenius,  1994).  fl-ICOS  bears  two  potential  N-linked  glycosylation  sites,  whereas  

ex2-ICOS transcript lacks both sites. Loss of these glycosylation sites in ex2-ICOS molecule 

might thus promote endoplasmic retention, preventing effective translocation of the receptor to 

the cell membrane. Future experiments are needed to uncover the function of ex2-ICOS protein 

and its role in regulation of the overall ICOS expression.  
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2. IRF5 GENE AND MS 

 

Nine SNPs and one pentanucleotide (CGGGG) insertion-deletion in the interferon regulatory 

factor 5 gene (IRF5) were selected for genotyping in three independent MS populations from 

Spain, Sweden and Finland. The markers included in the study were selected because of 

previous association with immune-mediated disorders or for their role in regulating IRF5 

transcriptional levels. Two of the SNPs and the pentanucleotide insertion-deletion polymorphism 

revealed association with MS (Table 7). The two SNPs are located 5 kb upstream of the alternate 

promoter 1A and in the first intron respectively, whereas the pentanucleotide CGGGG is situated 

64 bp upstream the alternate promoter 1A (Figure 9). 

 

POLYMORPHISM SPANISH 
case (N=660) controls 

(N=833) 

p-value 

SWEDISH 
cases (N=1166) 

controls (N=1235) 
p-value 

FINNISH 
trios (n=511) 

p-value 

COMBINED 

p-value 

rs4728142 0.003 0.02 0.035 0.0002 

CGGGG indel 0.005 0.009 0.056 0.0005 

rs3807306 0.004 0.049 0.012 0.0002 

Table 7. SNPs associating with MS in the three different cohorts. 

 

 

IRF5 consists of nine exons with three alternative non-coding 5’ exons named 1A, 1B and 1C 

respectively (Figure 10). The majority of IRF5 transcripts starts with exon 1A which generates 

the most efficient 5’UTR in protein synthesis, whereas mRNA starting with exon 1C has 

inhibitory effect (Kozyrev et al 2007). The expression pattern of IRF5 is complex, involving 

nine at least splicing variants whose functional roles are still not well understood (Mancl et al 

2005). 

 

IRF5 belongs to the family of regulatory factors activated by type I interferon (IFN) pathway, a 

group of proteins involved in the regulation of immune responses (Taniguchi et al 2001). It is 

expressed mainly in dendritic and B-cells and its transcription is further enhanced by the 

activation of the IFN pathway (Mancl et al 2005). IRF5 is a cytoplasmatic protein anchored on 

endosomes by binding with MyD88 where it regulates toll-like receptors (TLR) signalling 

pathway. In the endosomal compartment TLRs 7/8 and 9 represent the internal sentinels of the 
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cell sensing infections (Honda and Taniguchi 2006). Upon activation of TLRs 7/8 and 9, IRF5 is 

phosphorylated and subsequently able to dimerize and translocate to the nucleus where it binds 

IFN-stimulated responsive elements (ISREs), DNA sequences that tune the expression of target 

genes. 

 

 

 

 

 

 

 

 

 

 
Figure 10. Genomic structure of IRF5 gene and polymorphisms included in the study. The 
markers  associated  with  MS are  shown in  bold.  UTR regions  are  indicated  with  empty  boxes,  
coding exons are shown as shaded boxes.  
 

 

IRF5 gene has already been associated with other autoimmune disorders such as SLE, 

rheumatoid arthritis (RA) and inflammatory bowel disorder (IBD) (Sigurdsson et al 2005, 

Sigurdsson et al 2007, Dideberg et al 2007). These studies  suggest that a proximal and a distal 

region play a relevant role in the susceptibility to these diseases (Table 8). 

 

DISEASE BEST ASSOCIATED 

POLYMORHISM 

LOCATION 

IBD CGGGG indel promoter/first intron 

Sjögren’s syndrome rs10488631 5 kb downstream of IRF5 

Sjögren’s syndrome CGGGG indel promoter/first intron 

SLE CGGGG indel promoter/first intron 

SLE rs10954213 3’ UTR 

RA rs3807306 promoter/first intron 

Table 8. Summary of the IRF5 SNPs associated with autoimmune disorders. 
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This scenario is particularly relevant for SLE and Sjögren’s syndrome, where the two gene 

regions are independently associated with the disease (Ferreiro-Neira et al 2007, Nordmark et al 

2009) whereas in IBD, MS and RA the association is detected only from the proximal portion of 

IRF5.  Our  study  is  the  first  to  address  to  the  role  of  IRF5  in  MS  susceptibility.  In  the  three  

independent cohorts from Sweden, Spain and Finland we found association with three markers 

located in the proximal part of the gene. These polymorphisms are in relatively high LD with 

each other and within the power of the analysis we cannot distinguish which one of them would 

be the primarily associated variant (Figure 2 in Study II).  Furthermore the risk alleles were all  

present on the most common haplotype, whose association signal was comparable to the ones 

obtained in the single marker analysis. However, in a study on IBD patients the same three 

markers were associated with the disorder and, due to the effect size of the polymorphisms, it 

was possible to show that the pentanucleotide indel variation was the most significantly 

associated marker (Dideberg et al 2007). 

 

Case-control association studies are affected by problems concerning population stratification, 

resulting in contradictory results among different studies. This lack of reproducibility is often 

attributed to marked variation of disease prevalence and marker allele frequency within 

subpopulations, yielding false evidence for an association (Cardon et al, 2003). Our study avoids 

these pitfalls by analysing the role of IRF5 gene in MS susceptibility in three different Caucasian 

populations. Furthermore the utilization of family-based in addition to case-control materials 

strengthens the results shown here.  

 

In recent years data on genetic regulation of IRF5 has been accumulated (Figure 10). Graham 

and colleagues (2006) have described a functional SNP (rs2004640) that creates a donor splice 

site in the first intron, resulting in the inclusion of the alternative untranslated exon 1B. A second 

polymorphism (rs10954213) that alters the polyadenylation of the gene has been identified as 

modulator of the transcripts half-life (Graham et al 2007). Finally an insertion/deletion located in 

exon 6 encodes for a repetitive sequence in the PEST domain, a proline-rich region presumably 

involved in protein-protein interaction (Kozyrev et al 2007).  

 

Our study has suggested a possible functional role for the polymorphisms associated with MS. 

We used electrophoretic mobility shift assay (EMSA) to test whether the alleles of the three 

variants associating with MS had differential protein binding. We detected stronger protein 

affinities for the risk alleles of the SNP rs4728142 and the indel variation, whereas both alleles 
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of the SNP rs3807306 seem to bind equal amounts of protein extract (Figure 3 in Study II). 

Sequence analysis of the insertion polymorphism revealed an additional binding site for SP1 and 

we further characterized the in silico prediction with the proximity ligation assay, a novel variant 

of  immunoPCR  (Gustafsdottir  et  al  2007).  Indeed  we  were  able  to  show  that  SP1  binds  both  

alleles of the CGGGG repeat and increased amounts of SP1 bind to the risk allele (the 

4xCGGGG allele). Interestingly the proximal region of IRF5 has a high content of CpG islands 

and several binding sites for SP1, two features that are very common in housekeeping genes 

because they ensure high expression. The increased binding affinity for SP1 in the case of the 

CGGGG insertion can drive higher expression of IRF5, with the carriers of the risk variant being 

more susceptible to higher levels of circulating type I IFN. It is worth noting that IRF5-deficient 

mice are vulnerable to viral infections and have a reduced level of type I IFN in their sera (Yanai 

et al 2007). 

 

Ronnblom and co-workers (1991) reported an increased incidence of autoantibodies production 

and autoimmune disorders among cancer patients treated with alpha-interferon, suggesting 

almost  twenty  years  ago  that  type  I  IFN  could  play  a  central  role  in  autoimmune  disorders  

pathogenesis. Recently increasing evidence has been accumulated in SLE, RA and Sjögren’s 

syndrome (Baechler et al 2003, van der Pouw Kraan et al 2007, Bave et al 2005). In MS a 

subgroup of patients is characterized by increased expression of IFN-induced genes (van 

Baarsen et al 2006). Furthermore administration of IFN-  is one of the most common first-line 

strategies used to impact the early course of MS because of the IFN-  antagonizing effects. 

However, IFN-  knockout (KO) mice are more susceptible to EAE compared to their wild-type 

littermates  (Teige  et  al  2003).  They  develop  also  a  more  severe  disease  phenotype  with  more  

extensive CNS inflammation and demyelination. Although compensatory mechanisms induced 

by the lack of IFN-  cannot be ruled out, these findings suggest an important role played by type 

I IFN pathway in the pathogenesis of autoimmune disorders. 

 

 

 

 

 

 

 



 
 

65

3. CHROMOSOME 19q13 AND MS  

 

Sixteen markers located in the chromosomal region 19q13 were tested in 459 MS trio families 

for allelic association using the transmission disequilibrium test (TDT) (Figure 11); nominally 

significant associations were tested in an independent cohort of 323 families as well as in the 

pooled dataset of 782 families. No statistically significant association with MS was found. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Genomic location of the marker included in chromosome 19q13 study. 

 

 

Chromosome 19q13 is one of those genomic regions that have has repeatedly provided linkage or 

association signals in MS although there is lack of replication in the published studies and no clear 

signal emerging from the region (Table 9). The results from linkage screens appear to be more 

consistent when compared to the association studies, although the statistical significance of most of 

the analyses is only modest (Table 9). Nevertheless, Wise et al (1999) have identified this 

chromosomal area as one of the most interesting non-HLA loci in a meta-analysis of linkage 

screens.
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Table 9.  Previous studied on the role of chromosome 19q13 in MS susceptibility. 
 

Reference Type of study Best marker/subregion Country Subjects Significance 
Sawcer et al., 1996 Linkage d19s246/19q13.4 UK 227 multiplex families                 LOD=1 
Haines et a., 1996 Linkage d19s219/19q13.2 USA 52 multiplex families LOD=1.13 
Ebers et al., 1996 Linkage d19s47/19q13.2 Canada 100 sibling pairs LOD=0.73 

Kuokkanen et al., 1997 Linkage d19s246/19q13.4 Finland 16 multiples families LOD=1 
D´Alfonso et al., 1999 Linkage 19q13.3 Italy 69 families LOD<0.7 
Coraddu et al., 2001 Linkage 19q13 Italy/Sardinia 49 multiplex families LOD<0.7 
Broadley et a., 2001 Linkage 19q13 Italy 40 multiplex families LOD<0.7 
Green et al., 2001 Linkage CEA/19q13.2 USA 161 multiplex LOD=1.25 

Xu et al., 2001 Linkage D19S246/19q13.4 Sweden 46 multiplex families NPL score -0.46 
Reunanen et al., 2002 Linkage d19s1175/19q13.1 Finland 27 multiplex families LOD=1.8 (DR15-) 

Haines et al., 2002 Linkage d19s879/19q13.4 USA 98 multiplex families LOD=3.01 
Lucotte et al., 2002 Linkage 19q13.3 France 18 multiplex families LOD=2.1 

Pericak-Vance et al. 2004 Linkage D19S217/19q13.2 USA 98 multiplex families LOD=2.17 
Pericak-Vance et al. 2004 Linkage D19S217/19q13.2 USA 53 families, HLA-DR15+ LOD=2.37 
Pericak-Vance et al. 2004 Linkage D19S217/19q13.2 France 90 families LOD<0.7 

Haghighi et al., 2006 Linkage with OCBa D2S219/19q13.2 Sweden 2 extended families LOD=1.8 
Schmidt et al., 2002 Association APOE 2-haplotype USA 328 families p=0.005 

Yeo et al., 2003 Association d19s585/19q13.4 UK 961 patients p=0.12 
Ban et al., 2003 Association d19s219/19q13.2 Australia 217 patients p=0.009 
Koch et al., 2005 Association ILT6/ 19q13.4 Germany, France 751 patients p=0.009 

Burwick RM et al., 2006 Association APOE/19q13.2 meta-analysis 3200 patients p>0.05 
Burton et al., 2007 Association ZNF45 and GIPR/19q13.2 UK 1000 patients p=0.00005 and p=0.0008 
Hafler et al., 2007 Associationb MAG, CD22, TYROBP/19q13.1c UK, USA 931 trios/2431 controls p>0.05 
Hafler et al., 2007 Associationb APOE, ZNF45, GIPR/19q13.2c UK, USA 931 trios/2431 controls p>0.05 
Hafler et al., 2007 Associationb synaptogyrin4/13q13.3d UK, USA 931 trios/2431 controls p=0.02/0.0003 
Hafler et al., 2007 Associationb ZNF577/19q13.4d UK, USA 931 trios/2431 controls p=0.04/0.001 

a OCB= oligoclonal bands in cerebrospinal fluid. 
b We search for association on chromosome 19q13 between positions 40Mb and 60Mb for the following criteria: TDT statistics have a p-value<0.05 or CMH statistics have a 
p-value<0.001 (https://imsgc.org/php/results.php). 
c The 19q13.1 region  harbouring MAG, CD22, TYROBP (40-42 Mb) and the 19q13.2 region harbouring APOE, ZNF45 AND GIPR (49-51 Mb) were analysed with 128 and 
177 markers, respectively, all of which failed to show any association (in both TDT and CMH statistics). 
d These markers fulfilled the association criteria. 
 

 

https://webmail.helsinki.fi/bin/horde/util/go.php?url=https%3A%2F%2Fimsgc.org%2Fphp%2Fresults.php&Horde2=25a87727d7bb46124194de98f412cd52
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Koch and colleagues (2005) reported increased frequency of ILT6 deficiency in German MS 

patients compared to healthy controls (7.1% vs. 3.8%). The gene maps to the leukocyte receptor 

complex on 19q13.4, a genomic region which encodes for several immunological receptor proteins. 

We tested the role of ILT6 deficiency in Finnish MS patients with TDT and case-control settings. In 

the family-based approach we could not detect any transmission distortion for the null allele and the 

frequency of the null genotype was only slightly increased in MS cases (14% vs. 11.6%), revealing 

no statistically significant association between ILT6 deficiency and MS susceptibility. Recently 

Ordoñez et al (2009) have analyzed whether ILT6 deletion associated with Spanish MS patients in a 

case-control study. ILT6 deficiency in at least one chromosome was more common for MS cases 

(p-value = 0.006) although the increase of null-allele homozygotes was only marginally significant 

and not replicated in another independent dataset, questioning the primary role of ILT6 in MS 

predisposition.  

 

Located in 19q13.2 subregion, APOE has been the object of several studies using both linkage and 

allelic association approaches with conflicting results (Table 9). Already identified as a genomic 

region harbouring a putative predisposing MS gene in several screens (Multiple Sclerosis Genetic 

Group 1996, Sawcer et al 1996, Ebers et al 1996, Kuokkanen et al 1997), this area of chromosome 

19 has been the focus of extensive research. A study combining linkage and association analysis in 

98 families (Pericak-Vance et al 2001) suggested that a locus near APOE could affect the risk of 

developing MS; furthermore a HLA stratification analysis indicated that most of the positive LOD 

scores arose from DR-2 positive families. In an attempt to investigate a number of potentially 

interesting genomic regions with a linkage study, Pericak-Vance et al (2004) also tested subregion 

19q13.2 in 98 American and 90 French multiplex families. Although no significant association with 

MS was found, stratification analysis revealed a maximum LOD of 1.07 in DR-15 negative families 

with a marker located in the vicinity of APOE locus. In a case-control study a marginal association 

of  allele  4  of  APOE  with  protection  to  MS  was  found  in  a  cohort  of  Chinese  MS  patients  

(Barcellos et al 1997). The functional APOE polymorphisms (alleles 2, 3 and 4) and other SNPs 

in close vicinity were tested in a family-based association analysis (Schmidt et 2002). Single-

marker analysis did not show any significant association whereas a four-marker haplotype including 

allele 2 was associated with MS. When disease progression was included, the analysis showed that 

MS patients carrying allele 4 are more likely to develop a severe clinical course. In a meta-analysis 

of 3200 MS cases and 2500 controls and 1200 family-based material, Burwick and colleagues 

(2006) were not able to detect any significant association of APOE epsilon allelic and genotypic 
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variation with MS susceptibility. Furthermore in a pooled analysis of over 4000 MS patients no 

evidence for an APOE epsilon influence on disease severity was found.  

In our study we have genotyped three markers located near or within the gene locus and performed 

a single marker as well three-points haplotype analyses. We found a negative association with the -

219T/+113C/ 3 haplotype which was underrepresented in MS patients with p=0.007. Curiously, 

this APOE haplotype has been showed to protect against Alzheimer disease in Finnish population 

(Myllykangas et al 2002). When tested in another independent dataset the initial association was not 

replicated as well as when association was analyzed in the two pooled datasets. Using the total 

cohort of MS patients in our possession, APOE haplotype analysis was performed also in a case-

control  setting  but,  again,  no  association  was  detected.  Using  the  dataset-1  with  459  MS  trio  

families we have approximately 80% power to detect a dominant predisposing variant with an odds 

ratio of 1.5 (marker and disease allele frequencies set to 0.20, D' value 1.0).With lower disease 

allele  frequencies  the  power  decreases.  We  concluded  that,  given  the  power  of  our  study,  allelic  

variation in APOE is unlikely to have a major role in genetic susceptibility to MS.  

 

The other marker that showed initially negative association with MS in our study was D19S876, a 

microsatellite located in 19q13.1 subregion; when tested in a second independent dataset the allelic 

association with the microsatellite was not replicated. When the two datasets were pooled, p-value 

reached borderline nominal significance but it cannot be regarded as statistically significant since 

multiple comparisons were made. The same marker has been previously associated in continental 

Italian patients although the associated allele was different than in our study (D’Alfonso et al 2000). 

From these results we can conclude that the effect of the disease gene in LD with D19S876 might 

be modest and hence larger studies are needed to determine whether allelic variation in this 

genomic area significantly associates with MS.  

 

In a previous study, Reunanen and co-workers (2002) obtained a LOD score of 1.8 in DR15-

negative multiplex families peaking with D19S1175, a microsatellite located as well in the 19q13.1 

subregion. In our dataset we could not find any statically significant association neither with 

D19S1175 nor with two candidate genes located in the close proximity, TYROBP and DAP10. 

TYROBP is of some interest since mutations in this locus are known to cause polycystic 

lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL) disease, a 

multisystemic degenerative disorder characterized by demyelination of white matter. We also 

sequenced both genes in the proband of the multiplex family that mostly contributed to the LOD 

score but we could not detect any insertion/deletion or non-synonymous amino acid changes. Three 
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SNPs were found in the proximal end of TYROBP gene and two were included in the study but 

none of them revealed association with MS. These results have been strengthened in a recent study 

by Sulonen et al (2009) which revealed no association between TYROBP mutations implicated in 

PLOSL and MS in a linkage and association study. 

 

The failure of identifying MS-associated variants highlights the limits of an indirect approach such 

as  the  allelic  association  study  when  common  variants  are  not  involved  in  the  susceptibility  of  

complex disorders. In the case of a more complex scenario where genetic and locus heterogeneity 

play a role then linkage studies still remain the best option. With the recent progress of technologies 

more direct tools like large-scale sequencing are becoming readily available and could complement 

linkage and association studies. 

 

The previous linkage study in the DR15-negative multiplex families revealed a relatively sharp 

peak with D19S1175 marker (Reunanen et al 2002). Linkage analysis suggest recombination 

between the putative predisposing gene and markers D19S425 and D19S610, defining a candidate 

region of just 850 kb. This genomic area includes 48 genes of which some are of relevant interest in 

the context of MS. Two of the most obvious candidate genes that might be involved in disease 

susceptibility, myelin associated glycoprotein (MAG) and -crystallin-related B6 (HSPB6), have 

been sequenced in families that mostly contributed to the LOD score, but no obvious mutations in 

exons were found (unpublished). Nevertheless this genomic region harbours other interesting 

candidate genes and a re-sequencing-based approach in selected patients might reveal new insights 

for the role of the 19q13.1 subregion in MS predisposition. 
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CONCLUSIONS AND FUTURE PROSPECTS 
 

The work presented in this thesis has lead to the identification of IRF5 as new MS susceptibility 

gene and has uncovered the presence of an alternative variant of ICOS, a member of co-stimulatory 

receptors on the surface of T-cells. Moreover the role of chromosomal region 19q13 in MS 

predisposition has been further analysed.  

 

IRF5 gene has been already shown to be associated with other inflammatory or autoimmune 

disorders such as SLE, RA and IBD. We found evidence for a role of a common IRF5 allele in MS 

susceptibility in analyses of three different populations. Three polymorphisms reached nominal 

significance for association with the disease and one of the risk alleles was functionally 

characterized, showing increased binding affinity for the transcriptional factor SP1. The findings 

presented here add to the evidence that there might be genes or pathways that are common between 

multiple immune-mediated diseases, and that type I IFN signalling, in which IRF5 participates, is 

possibly one of these pathways. However, future studies are required to unequivocally identify the 

causative variants and to uncover the intricate expression profile of IRF5 in MS patients. 

 

The genomic scan for the role of chromosome 2q33 in MS predisposition excluded the candidacy of 

CTLA4, revealing a trend for association around ICOS gene. Although not statistically significant 

upon correction for multiple comparisons, the association signal suggests the need for a more 

thorough analysis of this locus and its involvement in MS pathogenesis. Focused analyses on 

geographical clusters with founder effect such as the Southern Ostrobothnian isolate, would 

minimize genetic and environmental heterogeneity and be informative in elucidating the role of this 

chromosomal region in MS susceptibility.  

 

The work presented here open new views on a more general immunological process such as the co-

stimulatory pathway of immune responses and also expanded the knowledge about the expression 

of the ICOS gene. We discovered and further characterized a novel transcript isoform named ex2-

ICOS. The stability of the translated protein and its subcellular localization were investigated. This 

finding underlines the importance of alternative splicing as regulator of immunological processes. 

The differential subcellular localization of ex2-ICOS when compared to the full-length protein 

raises questions about the function of such protein in the co-stimulatory pathway. Future studies are 

needed to unravel the importance of this isoform in ICOS regulation. A better understanding of the 
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functional role of ex2-ICOS with respect to the subcellular environment and different T-cell 

subpopulations might shed more light on the mechanism underlying ICOS regulation. 

 

Here we present also a follow-up analysis on chromosome 19q13 and MS. Although suggestive 

evidence for linkage had been reported in several studies, we were not able to detect any allelic 

association with MS. However a trend for association in subregion 19q13.1 might warrant further 

future investigation to dissect the role of allelic variation in our patients material. This analysis 

suggests that approaches based on linkage disequilibrium (allelic association) between marker 

alleles and MS susceptibility alleles may not be the method of choice to unravel predisposing genes 

risk alleles on this genomic region in case of genetic heterogeneity or variants with small risk. The 

putative susceptibility locus on this genomic area remains still elusive, suggesting a scenario that is 

more complex than previously assumed. Recently we have observed a shift in the field of complex 

genetics which is moving from LD-mapping of disease loci at population level to sequencing 

genomic DNA at individual level. The findings from GWASs to date have explained only a small 

fraction of the heritability for common diseases. This suggests that there are other genetic factors 

contributing to complex disorders but not yet discovered that are simply not detectable by this 

indirect approach. Nevertheless the use of high-throughput sequencing might also help to pinpoint 

disease genes in the associated loci found by case-control or family-based studies. Allelic and even 

locus heterogeneity within 19q13 might render the search for the causative variants quite 

demanding: a more direct, sequencing-based approach may be needed to solve the role of this 

genomic region in MS. The linkage analysis has suggested a possible role for a chromosomal area 

of approximately 850 kb that includes 48 genes. Some of the best candidate loci have been already 

sequenced in selected individuals with no obvious mutations detected in the coding region. Further 

sequence analysis might uncover allelic variation involved in MS genetic susceptibility. 

 

Despite intense research we still do not have a clear knowledge about the pathogenic mechanisms 

underlying MS. Rather than a homogeneous and unitary disorder, MS is a phenotypically 

heterogeneous disease, representing most likely an overlapping spectrum of related conditions, such 

as opticospinal MS, PPMS and RRMS. This heterogeneity probably reflects different molecular 

backgrounds only partially shared among different forms of MS that in turn masks possible 

association signals. A more documented classification of the MS patients in future might help to 

develop more targeted approaches for deciphering the genetic bases of this disease. 
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The  complex  nature  of  the  disease  with  several  genes  involved,  each  adding  a  small  risk  to  the  

predisposition, has proven to be difficult to unravel. Nevertheless the results presented in this thesis 

work help to improve the understanding of the molecular background of this disorder. A better 

knowledge of disease pathogenesis could translate into targeted preventive strategies and possible 

future therapies.  
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