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Abstract

Human pancreatic juice contains two major 
trypsinogen isoenzymes called trypsinogen-1 
and -2, or cationic and anionic trypsinogen, 
respectively. Trypsinogen isoenzymes are also 
expressed in various normal and malignant 
tissues. We aimed at developing monoclonal 
antibodies (MAbs) and time-resolved 
immunofluorometric assays recognizing 
human trypsinogen-1 and -2, respectively. 
Using these MAbs and assays we purified, 
characterized and quantitated trypsinogen 
isoenzymes in serum samples, ovarian cyst 
fluids and conditioned cell culture media.

In sera from healthy subjects and patients 
with extrapancreatic disease the concentration 
of trypsinogen-1 is higher than that of 
trypsinogen-2. However, in acute pancreatitis 
we found that the concentration of serum 
trypsinogen-2 is 50-fold higher than in controls, 
whereas the difference in trypsinogen-1 
concentration is only 15-fold. This suggested 
that trypsinogen-2 could be used as a diagnostic 
marker for acute pancreatitis.

In human ovarian cyst fluids tumor-associated 
trypsinogen-2 (TAT-2) is the predominant 
isoenzyme. Most notably, in mucinous cyst 
fluids the levels of TAT-2 were higher in 
borderline and malignant than in benign 
cases. The increased levels in association 
with malignancy suggested that TAT could be 
involved in ovarian tumor dissemination and 
breakage of tissue barriers. 

Serum samples from patients who had 
undergone pancreatoduodenectomy contained 
trypsinogen-2. Trypsinogen-1 was detected 
in only one of nine samples. These results 
suggested that the expression of trypsinogen 
is not restricted to the pancreas. 

Determination of the isoenzyme pattern by ion 
exchange chromatography revealed isoelectric 
variants of trypsinogen isoenzymes in serum 
samples. Intact trypsinogen isoenzymes 
and tryptic and chymotryptic trypsinogen 
peptides were purified and characterized by 
mass spectrometry, Western blot analysis and 
N-terminal sequencing. The results showed 
that pancreatic trypsinogen-1 and -2 are 
sulfated at tyrosine 154 (Tyr154), whereas 
TAT-2 from a colon carcinoma cell line is not. 
Tyr154 is located within the primary substrate 
binding pocket of trypsin, thus Tyr154 
sulfation is likely to influence substrate 
binding. The previously known differences 
in charge, substrate specificity and inhibitor 
binding between pancreatic and tumor-
associated trypsinogens are suggested to be 
caused by sulfation of Tyr154 in pancreatic 
trypsinogens. 
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Review of the literature

The terms “enzyme” (from the Greek en - in 
and zume - yeast) and “trypsin” were first 
suggested by a german scientist, Wilhelm 
(Willy) Friedrich Kühne (1837-1900), when 
he found a substance in bovine pancreatic 
juice that degraded other biological 
substances. He proposed the term “enzyme” 
for non-organized ferments and “trypsin” for 
the enzyme that breaks down proteins. Kühne 
presented this paper in the 4th February 1876 
to the Heidelberger Naturhistorischen und 
Medizinische Verein, and was reprinted in 
1976 (Kühne, 1976). 

Trypsinogen was first characterized from cattle 
pancreatic extracts (Kunitz and Northrop, 
1934, Northrop and Kunitz, 1932). In a study 
of Kunitz and Northrop (Kunitz and Northrop, 
1935) bovine trypsinogen was shown to be 
activated either by enteropeptidase or active 
trypsin, indicating that the activation can be 
autocatalytic. Activation was shown to be pH 
dependent and maximal at pH 7.0 to 8.0. The 
molecular masses of purified trypsin, trypsin 
complexed with a polypeptide inhibitor, and 
polypeptide trypsin inhibitor were reported 
to be 36  500 Da, 40  000 Da and 6  000 Da, 
respectively. Trypsin was reversibly inhibited 
by the inhibitor. The activity, general properties 
and inhibition of various preparations of 
crystalline trypsin by the polypeptide inhibitor 
were also reported. 

Before this study was started, tumor-associated 
trypsin inhibitor (TATI) had been isolated 
from urine of an ovarian cancer patient and 
shown to be identical to pancreatic secretory 
trypsin inhibitor (PSTI) (Huhtala et al., 1982). 
Elevated levels of TATI had been observed 
in urine from patients with ovarian, cervical 
and endometrial cancer. In search for a target 
protease for TATI, two trypsinogen isoenzymes 
were shown to be expressed in cyst fluid of 
mucinous ovarian tumors (Koivunen et al., 
1989). The N-terminal amino acid sequences 
of these tumor-associated isoenzymes 

corresponded to those of pancreatic 
trypsinogen-1 and -2, respectively. However, 
the isoenzymes had different specificities for 
p-nitroanilide substrates, responded differently 
to various protease inhibitors and had different 
isoelectric points from those of trypsinogen-1 
and -2. Therefore, they were named tumor-
associated trypsinogen-1 and -2 (TAT-1 and 
TAT-2) (Koivunen et al., 1989).

Properties and biochemical 
characterization of human 
pancreatic trypsinogens 

Trypsinogen (Enzyme Commission (EC) 
number 3.4.21.4) was first reported to occur 
in human pancreatic juice by Haverback et 
al. (Haverback et al., 1960) and was among 
the first human enzymes to be purified 
and characterized (Buck et al., 1962). 
Human pancreatic juice contains two major 
trypsinogen isoenzymes called trypsinogen-1 
and -2, or cationic and anionic trypsinogen, 
respectively (Figarella et al., 1969, Keller 
and Allan, 1967, Rinderknecht and Geokas, 
1972). Trypsinogen-2 is the most anionic 
protein in human pancreatic juice (Figarella et 
al., 1969). The proportion of trypsinogen-1 to 
trypsinogen-2 is about two to one in normal 
pancreatic juice (Figarella et al., 1969, Guy 
et al., 1978, Rinderknecht et al., 1979), and 
these two trypsinogens represent 19% of total 
proteins of pancreatic juice (Guy et al., 1978). 
Total trypsinogen concentration in human 
pancreatic juice is reported to be in the range 
of 4 to 40 µmol/L (Rinderknecht et al., 1979). 
A third, minor trypsinogen isoenzyme, called 
trypsinogen-3 or mesotrypsinogen, also occurs 
in human pancreatic juice (Rinderknecht et 
al., 1979, Rinderknecht et al., 1984, Scheele 
et al., 1981).

In some reports (Nyaruhucha et al., 1997, 
Scheele et al., 1981), but not in this thesis, the 
trypsinogen isoenzymes have been designated 
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according to their isoelectric point, which 
causes confusion about the nomenclature 
of trypsinogens. Table 1 summarizes the 
properties and nomenclature of human 
trypsinogens and genes used throughout this 
study. UniProtKB/SwissProt numbering of 
amino acid residues (http://au.expasy.org/) is 
used unless otherwise stated.

Human trypsin-1 is inhibited completely by the 
Kunitz bovine inhibitor (BPTI), strongly by 
lima bean trypsin inhibitor (LBTI), moderately 
by the Bowman-Birk inhibitor and porcine 
Kazal inhibitor (PSTI) and only weakly by 
soybean trypsin inhibitor (SBTI). Chicken 
ovomucoid shows no inhibition whatsoever. 
Trypsin-2 is totally inhibited by BPTI, 
strongly by SBTI and LBTI, considerably 
more strongly inhibited than trypsin-1 by the 
Bowman-Birk inhibitor and porcine PSTI, 
and weakly by ovomucoid. Furthermore, 
human inter-α-trypsin inhibitor (ITI) inhibits 
trypsin-2 more readily than trypsin-1. Human 
α1-proteinase inhibitor (API) completely 
inhibits both trypsin-1 and -2 (Figarella et al., 
1975, Mallory and Travis, 1975). The optimal 
activity of trypsin isoenzymes is between 7.5 
and 8.5 (Rinderknecht et al., 1984) and the 
proteolytic activities of trypsin-1 and -2 have 
been found to be identical (Colomb et al., 
1978). Generally, trypsin-2 is characterized 
to be less stable and undergo faster autolysis 
than trypsinogen-1 and it is more sensitive to 
inhibition by naturally occuring proteinase 
inhibitors (Colomb et al., 1978, Mallory and 
Travis, 1973, Rinderknecht and Geokas, 
1972). 

Trypsinogen-3 occurs at very low 
concentrations and represents probably <0.5% 
of the proteins and <5% of trypsinogens in 
normal human pancreatic juice (Nyaruhucha 
et al., 1997, Rinderknecht et al., 1984). 
Trypsinogen-3 resembles trypsinogen-1 and 
-2 in many properties, but it is not inhibited 
by either human pancreatic secretory trypsin 
inhibitor (PSTI) or other naturally occuring 
trypsin inhibitors (Nyaruhucha et al., 1997, 
Rinderknecht et al., 1984, Sahin-Tóth, 2005). 
In contrast, active trypsin-3 rapidly hydrolyzes 

and degrades the Kunitz-type trypsin inhibitor 
SBTI and Kazal-type inhibitor PSTI (Szmola 
et al., 2003). Furthermore, trypsin-3 was 
shown to selectively and rapidly cleave the 
Lys10-Thr11 peptide bond of API. Subsequent 
mutagenesis studies revealed that trypsin-3 
exhibits an unusually restricted S’ subsite 
specificity but can efficiently digest Lys/
Arg – Ser/Thr peptide bonds in polypeptide 
substrates (Szepessy and Sahin-Tóth, 2006). 

The stability of trypsin-3 resembles that of 
trypsin-2, its pH optimum is at 8.2 and it 
needs calcium for full enzymatic activity 
(Rinderknecht et al., 1984). In contrast to the 
conserved features of trypsinogen isoenzymes 
in various species, an arginine in stead of glycine 
is present at residue 198 in trypsinogen-3 
(Roach et al., 1997). This residue was shown 
by x-ray chrystallography (Katona et al., 
2002) to be located in the substrate binding 
pocket of trypsinogen and was suggested 
to be the structural basis for the nearly total 
resistance of trypsin-3 to natural trypsin 
inhibitors (Nyaruhucha et al., 1997). This was 
confirmed by studies on trypsinogen-3 mutant 
Arg198Gly (Szmola et al., 2003). Paradoxally, 
the Arg198 substitution also renders trypsin-3 
more resistant to autocatalytic degradation 
(Szmola et al., 2003). 

Pancreatic trypsinogen-1, -2 and -3 cDNAs 
contain 741 bp of coding region, which 
translates to a single polypeptide chain with 
247 amino acids (AA) (Table 2). The three 
preproenzymes share about 87% homology 
and all the typical sequence features of a 
trypsinogen: a fifteen AA signal sequence, 
an eight AA activation peptide, the catalytic 
triad comprising residues His63, Asp107 
and Ser200, the four key pocket specificity 
residues Asp194, Gln197, Gly217 and 
Gly227, and the six cysteine residues needed 
for the conserved disulfide bridges (48-64, 
171-185, and 196-220). In addition to these, 
trypsinogen-2 contains a disulfide bridge 
at 30-160 and trypsinogen-1 and -3 contain 
two additional ones at 30-160 and 139-206. 
Interestingly, all other known trypsinogens 
from higher vertebrates contain six disulfide 
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bonds (Kenesi et al., 2003). The activation 
peptide contains a cluster of anionic residues, 
namely four aspartates preceding a positively 
charged lysine residue, a conserved feature of 
mammalian trypsinogens (Chen and Feréc, 
2000c, Roach et al., 1997). 

Human trypsinogen-1 and trypsin-1 may occur 
in single- and double-chain forms. Single-
chain trypsin is called β-trypsin. The double-
chain form is produced by autocatalytic 
cleavage of the Arg122-Val123 peptide bond 
of β-trypsin, the two chains being held together 
by a disulfide bond. Studies using recombinant 
human trypsinogen-1 reveal these two forms to 
be functionally identical. However, cleavage 
of the Arg122-Val123 bond in trypsinogen-1 
inhibits trypsinogen-1 autoactivation and this 
may be one of the protective mechanisms 
of premature trypsinogen activation in the 
pancreas (Kukor et al., 2002b). 

Both trypsinogen-1 and -2 contain two 
calcium binding sites (Abita et al., 1969, 
Colomb and Figarella, 1979). The so called 
high affinity calcium ion binding loop (Glu75 
– Glu85) common to trypsinogen and active 
trypsin maintains the enzyme in its active 
form and simultaneously protects it from 
autodegradation (Abita et al., 1969, Bode and 
Schwager, 1975a, Bode and Schwager, 1975b, 
Szmola and Sahin-Tóth, 2007). The second 
calcium binding site located in the region of 
four Asp residues of the activation peptide 
is present in the zymogen only. The balance 
between trypsin activation and degradation 
is regulated by Ca2+ concentration. At low 
Ca2+ concentrations chymotrypsin C (denoted 
enzyme Y by Rinderknecht (Rinderknecht et 
al., 1988)) cleaves with high selectivity the 
Leu81-Glu82 bond within the Ca2+ binding 
loop of trypsin-1 resulting in rapid degradation 
and loss of trypsin activity by subsequent 
tryptic cleavage of the autolysis site Arg122-
Val123. Increasing the Ca2+ concentration 
progressively inhibits the degradation of 
trypsin-1 by chymotrypsin C. At 1 mmol/L 
Ca2+ chymotrypsin C mediated cleavage of 
the Leu81-Glu82 is essentially completely 
inhibited by stabilizing the Ca2+ binding loop. 

Thus, at the high Ca2+ concentration in the 
duodenum chymotrypsinogen C facilitates 
trypsinogen autoactivation (see below), 
whereas at low Ca2+ concentration in the lower 
small intestines chymotrypsin C promotes 
trypsin degradation (Szmola and Sahin-Tóth, 
2007). 

Detailed analysis of the evolution of 
trypsinogen activation peptide demonstrated 
that the Asp-Asp-Asp-Asp-Lys sequence 
in mammalian trypsinogens has evolved to 
inhibit autoactivation and enhance cleavage 
by enteropeptidase (Chen et al., 2003a). Under 
physiological conditions in the pancreatic juice 
(pH 8 and 1 mmol/L Ca2+) this calcium site is 
probably saturated in trypsinogen-1 but not in 
trypsinogen-2. This facilitates trypsinogen-1 
autoactivation. The Ca2+ binding site common 
to trypsin and trypsinogen has been reported 
to have pKa (Ca2+) values of 2.8 and 3.4 and 
the Ca2+ binding site present in trypsinogen 
only has pKa(Ca2+) values of 3.3 and 2.7 for 
trypsinogen-1 and -2, respectively (Colomb 
and Figarella, 1979). 

Extrapancreatic trypsinogen 
expression

Extrapancreatic expression of human trypsin 
immunoreactivity or mRNA has been detected 
in the Paneth cells of the gastrointestinal 
mucosa (Bohe et al., 1986, Ghosh et al., 2002), 
in the brain (Wiegand et al., 1993), male genital 
tract (Paju et al., 2000), epithelial cells of the 
skin, esophagus, stomach, small intestine, 
lung, kidney, liver, and extrahepatic bile duct, 
and splenic macrophages, monocytes and 
lymphocytes, the nerve cells of hippocampus 
and cerebral cortex in the brain (Kawano et al., 
1997, Koshikawa et al., 1998), colonic mucosa 
(Cottrell et al., 2004), vascular endothelial 
cells (Koshikawa et al., 1997), cerebrospinal 
fluid (Critchley et al., 2000), synovial cells and 
synovial fluid (Stenman et al., 2005), tracheal 
aspirate fluid and lung tissue (Cederqvist et 
al., 2003), in human bronchoalveolar lavage 
fluid (Prikk et al., 2001), and in human milk 
(Borulf et al., 1987). 



13

Koivunen et al. showed that two trypsinogen 
isoenzymes are expressed in cyst fluid of 
mucinous ovarian tumors (Koivunen et al., 
1989). The N-terminal amino acid sequences 
of these tumor-associated isoenzymes 
corresponded to those of pancreatic 
trypsinogen-1 and -2, respectively. However, 
the isoenzymes had different specificities 
for p-nitroanilide substrates, responded 
differently to various protease inhibitors 
and had isoelectric points different from 
those of pancreatic trypsinogen-1 and -2. 
Therefore, they were named tumor-associated 
trypsinogen-1 and trypsinogen-2 (TAT-1 and 
TAT-2) (Koivunen et al., 1989). TAT-1 and 
TAT-2 were found to be less anionic than 
trypsinogen-1 and -2 when separated by ion 
exchange chromatography (Koivunen et al., 
1991b). However, the nucleotide sequence 
of TAT-2 and pancreatic trypsin-2 is identical 
(Sorsa et al., 1997). Since then, trypsinogen 
immunoreactivity or mRNA has been detected 
in various cancers like stomach, pancreas, 
ovary, lung, bladder, esophagus, bile duct, 
and colon cancers, and carcinoma cell lines 
(Bernard-Perrone et al., 1998, Bjartell et al., 
2005, Hirahara et al., 1995, Hotakainen et al., 
2006, Kato et al., 1998, Kawano et al., 1997, 
Kawano et al., 1997, Koivunen et al., 1991b, 
Koshikawa et al., 1992, Koshikawa et al., 
1994, Miyagi et al., 1995, Miyata et al., 1999, 
Nyberg et al., 2002, Ohta et al., 1998, Oyama 
et al., 2000, Paju et al., 2004, Stenman et al., 
2003, Terada et al., 1995, Terada et al., 1997, 
Williams et al., 2001, Yamashita et al., 2003). 

Tumor-associated trypsins as well as other 
proteinases have been recognized as significant 
factors in cancer progression and metastatic 
processes such as cellular invasion, degradation 
of extra-cellular matrix proteins, angiogenesis 
and tissue remodeling as reviewed in (Nyberg 
et al., 2006). Extracellular proteolysis in cancer 
can be initiated by the urokinase plasminogen 
activator (uPA), uPA receptor (uPAR) and 
plasminogen, which in turn activates latent 
matrix metalloproteinases (MMPs). MMPs 
are secreted or transmembrane proteins that 
are capable of digesting extracellular matrix 
(ECM) and basement membrane components 

under physiological conditions. MMPs are 
associated with metastatic phenotype of 
malignant cells and they are considered to be 
the major functional contributors to metastatic 
processes (Chambers and Matrisian, 1997). 
Trypsin, too, degrades many ECM components 
(Koivunen et al., 1991a, Koshikawa et al., 
1992, Moilanen et al., 2003, Stenman et 
al., 2005) but it is also a potent activator of 
several MMPs (Imai et al., 1995, Koivunen 
et al., 1989, Moilanen et al., 2003, Nyberg 
et al., 2002, Paju et al., 2001b, Sorsa et al., 
1997, Umenishi et al., 1990) and could thus 
initiate proteinase cascades and participate in 
modulation of tumor cell behavior. 

Tumor-associated trypsin expression has been 
shown to correlate with malignancy in various 
cancers and of the four known trypsin isoforms, 
TAT-2 seems to be most common in tumors 
(Hirahara et al., 1998, Ichikawa et al., 2000, 
Kato et al., 1998, Miyata et al., 1999, Nyberg 
et al., 2002, Paju et al., 2004, Yamamoto et al., 
2001, Yamamoto et al., 2003). On the other 
hand, in microarray analysis trypsinogen IVb 
and trypsinogen C (see below) gene expression 
have been shown to be up-regulated in non-
small cell lung cancer metastasis (Diederichs 
et al., 2004). 

Trypsinogen genes

Trypsinogens are encoded by the protease, 
serine (PRSS) genes. Eight trypsinogen genes 
(denoted T1 to T8) divided into two clusters, 
have been located within the β T-cell receptor 
(TCR) locus on chromosome region 7q35 
(Rowen et al., 1996). Of these, five (T4 to 
T8) are tandemly arrayed 10-kb locus-specific 
repeats at the 3’ prime end of the β TCR 
locus. These repeats exhibit 90 to 91% overall 
nucleotide similarity, and embedded within 
each is a trypsinogen gene. Each gene contains 
five exons that span approximately 3.6 kb. In 
addition, there are two pseudo trypsinogen 
genes and one relic trypsinogen gene at the 
5’ prime end of the β TCR locus (T1 to T3), 
all in inverted transcriptional orientation. 
Earlier, T4 and T8, also known as PRSS1 and 
PRSS2, have been identified as the cDNAs for 
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trypsinogen-1 and -2, respectively (Emi et al., 
1986) (Table 1). 

Polymerase chain reaction (PCR) analyses of 
pancreas, thymus and liver suggest that the 
third apparently functional trypsinogen gene 
(T6) in the β TCR locus may be expressed 
in minute amounts in the thymus (Rowen 
et al., 1996). This is further supported by 
expressed sequence tags (ESTs) AA295419 
and AA295738. Comparison of the three-
dimensional structures of T4, T6 and T8 gene 
products suggests that the catalytic triad of 
His63, Asp107 and Ser200 and the nature of 
substrate binding pocket are highly conserved. 
However, the protein product of T6 might 
interact differentially with other proteins, 
as suggested by variations in surface charge 
and shape distributions (Chen and Feréc, 
2000c, Rowen et al., 1996). T6 may represent 
a transition state between a functioning 
duplicated gene and a nonfunctional 
pseudogene (Chen et al., 2001). The protein 
product of T6 (trypsinogen C) has so far not 
been identified.

The T1 gene was described to be a pseudogene 
(Rowen et al., 1996), but it could be a protein-
coding gene according to Entrez database used 
by the National Center for Biotechnology 
Information (www.ncbi.nlm.nih.gov). The 
protein product of T1 gene (trypsin X3) has not 
yet been identified. T2 and T3, T5 and T7 have 
been identified as nonfunctional pseudogenes 
(Rowen et al., 1996). 

A third trypsinogen cDNA and its product has 
independently been identified as trypsinogen-3 
and -4 (Nyaruhucha et al., 1997, Tani et al., 
1990, Wiegand et al., 1993). The chromosomal 
location of the gene encoding this isoenzyme 
was located to chromosome region 9p13 
(Rowen et al., 1996). This gene (T9 or PRSS3) 
is formed by segmental duplications originating 
from chromosomes 7q35 and 11q24 and it 
has two distinct promoters derived from each 
of the originating chromosomes. Thus, the 
transcripts of PRSS3 display two variants of 
exon 1 and share exons 2 to 5 which encode 
the active protease (Rowen et al., 2005). 

The gene coding for functional trypsinogen-3 
spans about 3.6 kb, it is duplicatively 
transferred from chromosome 7 and expressed 
in the pancreas (isoform C). The PRSS3 
variant coding for brain trypsinogen-4 spans 
48.6 kb and it is a hybrid of an exon copied 
from chromosome 11 and four exons copied 
from chromosome 7. Allelic variants of this 
splice form (isoform A) are called a and b. 
Another splice form named isoform B includes 
an additional exon derived from chromosome 
7 after the chromosome 11 derived exon. 
Translation initiation site of the isoform A a/b 
splice forms is thought to be in the first exon 
derived from chromosome 11 starting from 
AUG translation initiation codon and coding 
for a 72-residue leader peptide (Nemeth et 
al., 2007). Translation of the B isoform is 
predicted to start in its second exon coding for 
a 28-residue leader peptide. This leader peptide 
has leucine as an initiator amino acid, and it is 
encoded starting from a CUG initiation codon 
(Nemeth et al., 2007). 

The leading exon determines the pathway of the 
protein. In the pancreas, a secretory pancreatic 
trypsinogen-3 is produced. However, a 
cytosolic trypsinogen-4 missing the typical 
leader peptide of secreted proteins is produced 
in the brain (Wiegand et al., 1993), epithelial 
cells of the colon, prostate, lung (Cottrell et 
al., 2004), several cancer cell lines, uterus, 
heart, hypothalamus and cerebellar cortex 
(Rowen et al., 2005). On the other hand, 
trypsinogen-4 a/b contains four Arg-X-X-
Arg furin cleavage-recognition sites (Molloy 
et al., 1992) and trypsinogen-4 (a-form) has 
been detected in vesicles in transfected cell 
lines and in epithelial cells, supporting the 
possibility of an alternative secretion pathway 
(Cottrell et al., 2004, Wiegand et al., 1993). 

No traces of trypsinogen-4 isoform A were 
found in the human brain by sequencing 
trypsinogen-4 samples isolated from human 
brain following a short post mortem delay 
(Nemeth et al., 2007). Instead, only isoform 
B of trypsinogen-4 was identified. When 
trypsinogen-4 is expressed in the U87 human 
glioblastoma cell line, the relative expression 
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level of isoform A using an AUG initiation 
codon was elevated as compared to the 
expression level of isoform B with the CUG 
initiation codon. These results suggest that 
CUG as the initiation codon may control 
the expression level of the protein. Thus, 
directing the incorporation of N-terminal 
leucine rather than methionine into isoform 
B of trypsinogen-4 is suggested to keep 
trypsinogen-4 expression in the brain at a 
relatively low level (Nemeth et al., 2007). The 
AA sequences of human trypsinogen-1, -2, 
-3 isoform C, -4 isoform A, -4 isoform B and 
trypsinogen C are presented in Table 2.

Regulation of pancreatic trypsinogen 
gene expression and secretion 

Regulation of gene expression 

The PTF1 complex. The exocrine pancreas 
is formed by acinar cells that synthesize and 
secrete digestive enzymes. Pancreas-specific 
expression of the about twenty acinar secretory 
enzymes at very high levels is controlled 
largely by the pancreatic transcription factor 1 
(PTF1) complex (Cockell et al., 1989). PTF1 
is an unusual heterotrimeric transcription 
factor. It contains a class A basic helix-loop-
helix (bHLH) protein (p75), which is required 
for import of the transcription factor into 
the nucleus (Sommer et al., 1991) and two 
DNA-binding subunits previously called p48 
and p64 (Roux et al., 1989). The P48/PTF1a 
subunit is an exocrine pancreas-specific bHLH 
protein (Krapp et al., 1996) that is unable to 
bind to DNA alone and has to oligomerize 
with p64 in order to do so (Krapp et al., 1996, 
Sommer et al., 1991). P64 has been shown to 
be mammalian suppressor of hairless (RBP-J) 
or its paraloque, RBP-L. In the adult pancreas, 
RBP-L provides the strong transcriptional 
activity of the PTF1 complex that drives the 
high-level expression of the digestive enzyme 
genes (Beres et al., 2006). 

PTF1 binds to DNA in the 5’ promoter region 
of acinar digestive enzyme genes (Cockell 
et al., 1989, Rose et al., 2001). The binding 
sites of the PTF1 complex are bipartite with 

an E-box (preferably CACCTG) and a TC-
box (TTTCCCA) spaced one or two helical 
turns apart, center to center (Cockell et al., 
1989, Rose et al., 2001). Whereas an E-box is 
sufficient to bind the P48-bHLH heterodimer 
and a TC-box is sufficient to bind the P48-
RBP heterodimer, the trimeric complex 
requires both binding sites. Moreover, the 
binding of the trimeric complex is highly 
cooperative and can be much greater than the 
sum of the individual bindings, i.e. E-box for 
the bHLH and the TC-box for the RBP. This 
means that the formation of the trimeric PTF1 
complex creates a synergistic dependence 
on the presence of both DNA sites spaced 
appropriately (Beres et al., 2006). 

Cholecystokinin. It is known that acinar cell 
growth, energy production, gene expression 
and protein synthesis are also regulated 
by secretagogues. Cholecystokinin (CCK) 
increases the synthesis of pancreatic proteases 
including trypsinogen-1 by a prolonged 
effect on mRNA levels in the rat (Rosewicz 
et al., 1989). The binding of CCK to its 
cell surface receptor activates the mitogen-
activated protein kinase (MAPK) cascades by 
various pathways like the extracellular signal-
regulated kinases 1 and 2 (ERK1/2) cascade, 
the Jun N-terminal kinase (JNK) cascade and 
the p38 MAPK cascade, resulting in activation 
of gene transcription, protein translation, 
metabolism and functions of the cytoskeleton 
(Duan et al., 1995, Williams, 2001). CCK 
also activates the phosphoinositide 3-kinase 
– mammalian target of rapamycin – 70-kDa 
ribosomal protein S6 kinase (PI3K – mTOR 
- P70S6K) signalling pathway, that primarily 
regulates protein synthesis at mRNA level, but 
is also required for mitogenesis (Crozier et al., 
2006, Williams, 2001). Furthermore, using rat 
pancreatic acinar cells, CCK has been shown 
to activate the transcription factor nuclear 
factor-κB (NF-κB), which is required for 
the production of chemokines and cytokines 
by pancreatic acinar cells (Han et al., 2001). 
Thus, CCK also affects acinar cell gene 
transcription, protein synthesis and growth in 
several ways.
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Dietary components. Dietary components can 
regulate digestive enzyme transcription, as 
with each meal the pancreas must synthesize 
new digestive enzymes to replace those 
secreted. In humans, enteral but not parenteral 
(intravenous) feeding has been demonstrated 
to increase trypsinogen synthesis (O’Keefe 
et al., 2006) and serum trypsinogen-1 
immunoreactivity transiently (Florholmen 
et al., 1984a). Furthermore, dietary amino 
acids, especially branched chain AAs, have 
been shown to regulate pancreatic protein 
synthesis at the translation/initiation level, 
independently of hormonal and neuronal input, 
by phosphorylation of eukaryotic initiation 
factor eIF4E, its binding protein 4E-BP1, the 
ribosomal protein S6 kinase, and the formation 
of the eIF4F complex (Sans et al., 2006). 

Other factors. Chemically modified 
tetracyclines (CMTs) and doxycycline 
(DOXY), which are chemical inhibitors of 
MMPs, have been shown to down-regulate 
the expression of TAT-2 mRNA and TAT-2 
secretion by human COLO-205 cells 
(Lukkonen et al., 2000). Utilizing cDNA 
approach to identify genes differentially 
regulated during pancreatic regeneration after 
partial pancreatectomy in mice, the mitogenic 
Reg3β protein was shown to be induced in 
the acinar pancreas. Under these conditions, 
there was a 1.53-fold change in trypsin-2 gene 
expression (De Leon et al., 2006).

Regulation of secretion

The newly synthesized zymogens are 
segregated into condensing vacuoles, which 
undergo maturation to zymogen granules 
and are stored in the apical pole of the acinar 
cell. The secretion of pancreatic digestive 
enzymes is controlled physiologically by the 
vagal nerve, whose postganglionic neurons 
release acetylcholine, and by gastrointestinal 
hormones such as CCK, serotonin (Owyang 
and Logsdon, 2004), secretin, vasoactive 
intestinal polypeptide (VIP) and neuromedin 
C (Williams, 2001). Meal-stimulated 
CCK release from the intestinal mucosa 
represents the major physiological pathway 

for trypsinogen secretion (Owyang, 1996). 
The action of acetylcholine and CCK is 
mediated by G-protein coupled receptors on 
acinar cells (Williams, 2001). Human acinar 
cells contain mostly CCK2 receptors and 
proteinase-activated receptor-2 (PAR-2). 
Also CCK1 receptors have been detected in 
human pancreatic acinar cells (Galindo et 
al., 2005). CCK2 receptors bind both CCK 
and gastrin with high affinity (Owyang and 
Logsdon, 2004) whereas PAR-2 is activated 
by trypsin (Nguyen et al., 1999). It has also 
been suggested, that CCK stimulation of 
human pancreatic cells is regulated by an 
indirect mechanism of stimulation of afferent 
neurons (Ji et al., 2001). The neurohormonal 
regulation of pancreatic exocrine secretion is 
reviewed in (Nathan and Liddle, 2002).

Intracellular Ca2+ is considered to be the 
primary signaling factor in acinar cells as it 
triggers the fusion of zymogen granules with 
the apical plasma membrane and exocytosis. 
Levels of intracellular Ca2+ are modulated 
by activated G proteins and other signalling 
molecules like phospholipase C β, inositol 
triphosphate (IP3), diacylglycerol, cyclic ADP 
ribose, nicotinic acid adenine dinucleotide 
phosphate, and by intracellular and plasma 
membrane Ca2+ ATPase pumps, and plasma 
membrane Ca2+ channels (Petersen, 2004, 
Turvey et al., 2005, Williams, 2006). The 
endoplasmic reticulum has been established as 
the primary site for Ca2+ release, but the acidic 
lysosomal-like compartment and mitochondria 
are also involved (Williams, 2006). The 
packaging, movement, and fusion of zymogen 
granules to the apical membrane of acinar 
cells is affected by several zymogen granule 
membrane proteins like the SNARE proteins, 
small G proteins of the Rab family, cyclic AMP, 
diacylglycerol, and actin filaments (Wasle and 
Edwardson, 2002, Williams, 2006).
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Activation of trypsinogen to trypsin

Activation by enteropeptidase

The intrinsic catalytic activity of trypsinogen is 
~108-fold lower than that of trypsin (Pasternak 
et al., 1998). Trypsinogens are activated into 
trypsins on cleavage of the eight-AA activation 
peptide by enteropeptidase (EC 3.4.21.9, also 
known as enterokinase) when they enter the 
duodenum. Enteropeptidase is a membrane-
bound serine protease located in the enterocytes 
and goblet cells of the brush-border and 
glycocalyx of the duodenum and the proximal 
15 cm of jejunum (Hermon-Taylor et al., 
1977, Imamura and Kitamoto, 2003). It is an 
N-glycosylated, disulfide-linked heterodimer 
that is derived from a single-chain precursor. 
The heavy chain anchors enteropeptidase in 
the intestinal brush border membrane and the 
light chain is the catalytic subunit, which has 
the same mechanism of action as trypsin and 
chymotrypsin (Kitamoto et al., 1994, Light 
and Janska, 1989). Enteropeptidase itself has 
been proposed to be activated by a trypsin- and 
chymotrypsin-like protease called duodenase 
that cleaves a Lys-Ile bond in the amino 
terminus of the enteropeptidase light chain 
(Zamolodchikova et al., 2000). 

The specificity of enteropeptidase for cleavage 
after Lys has been proposed to be consistent 
with the presence of Asp981 at the base and 
two Gly residues at the sides of the specificity 
pocket that binds the P1 substrate residue. The 
Arg-Arg-Arg-Lys sequence at residues 886 to 
889 may interact directly with the Asp residues 
in positions P2 to P5 of trypsinogen substrates 
(Kitamoto et al., 1994). However, it has been 
shown by site-directed mutagenesis of human 
trypsinogen-1 that the four Asp residues 
in the activation peptide are not required 
for enteropeptidase recognition and they 
confer only a modest catalytic improvement 
of enteropeptidase-mediated trypsinogen 
activation in humans (Nemoda and Sahin-
Tóth, 2005). Human trypsinogen-1 and -2 
are activated by enterokinase at the same rate 
(Colomb and Figarella, 1979). 

Autoactivation

Trypsinogen-1 and -2 can also be autoactivated 
by either human trypsin at the same rate, but 
the affinity of both trypsin-1 and -2 is higher 
for trypsinogen-1 than for trypsinogen-2. 
In presence of 1 mmol/L calcium at pH 
5.6 the autoactivation of trypsinogen-1 
becomes predominant compared to 
enterokinase activation. This suggests 
that under physiological conditions in the 
duodenum, enteropeptidase is the starter of 
trypsinogen activation but the predominant 
subsequent mechanism becomes trypsinogen 
autoactivation (Colomb and Figarella, 1979, 
Nemoda and Sahin-Tóth, 2005). Contrarily to 
trypsinogen-1 and -2, pancreatic trypsinogen-3 
can neither autoactivate nor activate or degrade 
other pancreatic zymogens (Sahin-Tóth, 2005, 
Szilagyi et al., 2001, Szmola et al., 2003).

Activation by cathepsin B

Trypsinogen can be activated by lysosomal 
cysteine protease cathepsin B (CTSB) in vitro 
(Figarella et al., 1988) and in vivo in a mouse 
model (Halangk et al., 2000). There are several 
reports to support this activation mechanism 
in humans, too. Cathepsin B is abundantly 
present also in the human pancreatic secretory 
compartment and it is secreted together with 
trypsinogen into pancreatic juice (Kukor et al., 
2002a). CTSB activates human trypsinogen-1 
with trypsin yield of about 30% of that 
produced by enterokinase in vitro (Lindkvist 
et al., 2006). CTSB has been shown to activate 
recombinant trypsinogen-3 more readily than 
trypsinogen-1 or -2 at pH 4.0 (Szmola et 
al., 2003). This suggests that the premature 
intracellular activation of trypsinogen in 
acute pancreatitis might be initiated by the 
action of CTSB on trypsinogen-3 leading 
to degradation of PSTI, which contributes 
to the development of human pancreatitis. 
Furthermore, the Lys26Val mutation in the 
CTSB propeptide region is associated with 
tropical calcific pancreatitis (TCP) (Mahurkar 
et al., 2006). This mutation could affect CTSB 
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trafficing and sorting to a lysosome or a 
zymogen granule. 

Premature and intracellular activation of 
trypsinogen in experimental pancreatitis has 
been shown to depend on the presence of 
CTSB in CTSB deficient mice (Halangk et al., 
2000), isolated rat pancreatic acini (Halangk 
et al., 2002, Saluja et al., 1997) and pancreatic 
homogenates from mice and rats (Van Acker et 
al., 2002). Asn29Ile mutation in trypsinogen-1 
is associated with HP (Gorry et al., 1997). 
As compared to native human trypsinogen-1, 
the activation rate of recombinant Asn29Ile 
trypsinogen-1 by CTSB is increased threefold 
even in the presence of PSTI. This suggests 
that activation of trypsinogen by CTSB may 
play a role in the development of human 
pancreatitis (Szilagyi et al., 2001). However, 
there are several findings incompatible 
with the so called cathepsin B hypothesis 

(Klonowski-Stumpe et al., 1998, Lerch et al., 
1993, Teich et al., 2002, Tooze et al., 1991), so 
the physiological and the pathophysiological 
role of CTBS as trypsinogen activator remains 
speculative. 

Factors affecting trypsinogen activation

pH and calcium concentration. Autoactivation 
of recombinant human trypsinogens has been 
shown to be pH- and calcium-dependent in 
vitro (Kukor et al., 2003). Acidic pH stimulates 
autoactivation of recombinant human tryp-
sinogen-1, but inhibits that of trypsinogen-2. 
At pH 8 in the presence of calcium at low 
concentration (<1 mmol/L) trypsinogen-2 
exhibits minimal autoactivation due to rapid 
zymogen degradation, whereas trypsinogen-1 
autoactivation is stimulated in a calcium 
concentration-dependent manner. Increasing 

Figure 1. A shematic diagram of human trypsinogen-1. His63, Asp107 and Ser200 form the 
catalytic triad. L1 and L2, concerved loops which control the specificity of trypsin; AL, autolysis 
loop; Ca, calcium binding loop; -S-S-, disulfide bond.
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the calcium concentration progressively 
inhibits trypsinogen-1 autoactivation. A similar 
effect on trypsinogen-1 can be seen at high 
ionic strength (100 mmol/L NaCl). In contrast, 
calcium at 5 mmol/L stimulates autoactivation 
and inhibits autodegradation of trypsinogen-2. 
The effect of high NaCl concentrations on 
trypsinogen-2 was less significant. 

During CCK hyperstimulation, the apical 
pole of isolated mouse acinar cells undergo 
a Ca2+ -dependent change characterized by 
local trypsin activation and replacement of the 
normal zymogen granules by vacuoles (Raraty 
et al., 2000). Sustained increase in cytosolic 
Ca2+ concentration has been demonstrated 
by an ion exchange mechanism to increase 
the free Ca2+ concentration and decrease the 
pH in the zymogen granules of mouse acinar 
cells resulting in premature activation and 
stabilization of trypsin (Yang et al., 2007). 

The N-terminal sequence of four Asp residues 
has a negative effect on the hydrolysis of the 
Lys-Ile bond by trypsin as studied by using 
bovine and porcine trypsin (Abita et al., 1969). 
However, the slow hydrolysis of the Lys-Ile 
bond by trypsin is accelerated by calcium 
binding to the Asp residues of the activation 
peptide by decreasing the Km of the reaction, 
i.e. improving the binding of trypsinogen to 
trypsin. This effect is mediated by neutralizing 
the high concentration of negative charges 
of the activation peptide (Abita et al., 1969, 
Nemoda and Sahin-Tóth, 2005). 

Chymotrypsin C. The trypsinogens liberate 
the eight AA activation peptide Ala-Pro-Phe-
Asp-Asp-Asp-Asp-Lys upon activation. In 
addition, a pentapeptide Asp-Asp-Asp-Asp-
Lys is also formed from trypsinogen-1 (Guy 
et al., 1978, Nemoda and Sahin-Tóth, 2006). 
Chymotrypsin C (or caldecrin) specifically 
cleaves the Phe18-Asp19 peptide bond in the 
trypsinogen activation peptide removing the 
N-terminal tripeptide (Nemoda and Sahin-Tóth, 
2006). Autoactivation of this N-terminally 
truncated trypsinogen-1 is stimulated 3-fold. 
This effect is dependent on the presence of 
Asp218, which forms part of the S3 subsite 

on trypsin. The N-terminal truncation of 
trypsinogen-1 is presumed to result in a 
conformational change within the remainder 
of the activation peptide, which repositions 
Asp21 and thereby mitigates the Asp21-
Asp218 electrostatic repulsion (Nemoda and 
Sahin-Tóth, 2006). As chymotrypsinogen C is 
activated by trypsin, this reaction establishes 
a novel positive feedback mechanism in the 
digestive enzyme cascade of humans. The 
hereditary pancreatitis (HP) -associated 
mutation Ala16Val in trypsinogen-1 increases 
the rate of chymotrypsin C processing of 
the activation peptide four-fold and causes 
accelerated trypsinogen-1 activation in vitro. 
Chymotrypsin C also cleaves off the N-terminal 
tripeptide from human trypsinogen-2, but it 
has no significant effect on the autoactivation 
trypsinogen-2, which contains Tyr in place 
of Asp218 (Nemoda and Sahin-Tóth, 2006). 
The corresponding residue in trypsinogen-3 is 
His218. 

Sulfation. As shown by us (IV) and others 
(Sahin-Tóth et al., 2006, Scheele et al., 
1981), pancreatic trypsinogens are sulfated 
at Tyr154, which together with His46 lines 
the S’2 binding site (Gaboriaud et al., 1996, 
Schellenberger et al., 1994). This negatively 
charged modification has been proposed to 
modify interactions between trypsin and 
various substrates and inhibitors (Gaboriaud et 
al., 1996, Szilagyi et al., 2001). Even though 
the catalytic activity of sulfated pancreatic 
and non-sulfated recombinant trypsin-1 are 
essentially identical, the autoactivation of 
sulfated pancreatic trypsinogen-1 is 1.4-fold 
faster in the presence of 1 mmol/L Ca2+ 
and 2.4-fold faster in the presence of in 10 
mmol/L Ca2+ than that of the non-sulfated 
recombinant form. In contrast, autoactivation 
of trypsinogen-2 is unaffected by Tyr154 
sulfation (Sahin-Tóth et al., 2006). 

Structural features. There are several 
structural features in the trypsinogen molecule 
that regulate its activation. The stability of 
the zymogen and the slow hydrolysis of 
the Lys23-Ile24 bond seem to be important 
mechanisms of protection against accidental 
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activation (Abita et al., 1969). Biochemical 
characterization of pancreatitis-associated 
activation peptide mutations in human 
trypsinogen-1 confirmed the importance of Asp 
residues in the activation peptide for control 
of autoactivation (Chen et al., 2003a, Teich 
et al., 2000). Suppression of autoactivation 
by electrostatic repulsion between the Asp 
residues in the activation peptide and the 
surface of trypsinogen-1 (Asp218 in the 
S3-S4 subsite) is further supported by site-
directed mutagenesis in recombinant human 
trypsinogens (Chen et al., 2003a, Nemoda and 
Sahin-Tóth, 2005). Moreover, trypsin has up 
to eleven-fold preference for Arg over Lys at 
the P1 position of peptide substrates (Craik et 
al., 1985, Hedstrom et al., 1996), so use of Lys 
instead of Arg at the scissile bond also protects 
against autoactivation. The neutralizing effect 
of the high concentration of negative charge 
at the activation peptide by calcium binding 
provides yet another regulatory element 
(Nemoda and Sahin-Tóth, 2005). 

Trypsinogen and trypsin structure 
and mechanism of catalysis

Structure

The crystal structures of human pancreatic 
trypsin-1 (Gaboriaud et al., 1996), brain 
trypsin-4 (Katona et al., 2002), trypsin and 
trypsinogen from bovine (Bode et al., 1976, 
Fehlhammer et al., 1977, Finer-Moore et 
al., 1992, Huber et al., 1974, Kossiakoff 
et al., 1977, Stroud et al., 1974) and from 
other species (Huang et al., 1994, Perona et 
al., 1993) have revealed highly conserved 
structural motifs within the trypsin family, the 
structural basis of substrate specificity as well 
as the mechanism of catalysis. Structurally, 
the trypsinogen molecule consist of two six-
stranded beta barrels and the active site cleft is 
located between the two barrels (Figure 1). 

The trypsinogen molecule consists of different 
functional domains; catalytic, substrate 
recognition and zymogen activation domains. 
However, the functional processes are not 
separate. More detailed domains that can 

be characterized within the mentioned ones 
are the activation peptide (Ala16 to Lys23), 
the calcium binding loop (Glu75 to Glu85), 
autolysis loop (Gly145 to Asp156) and 
oxyanion hole (backbone NHs of Gly198 to 
Ser200). In addition, up to 200 water molecules 
both inside the trypsin(ogen) molecule and on 
its surface are important in serving hydrogen 
bonds to stabilize the three-dimensional 
structure of trypsinogen and trypsin and to 
participate in the catalytic reaction. Internal 
water clusters are well conserved in various 
trypsin(ogen)s, and they are frequently 
shaped as water channels forming extensive 
hydrogen-bonding networks linked to the 
protein backbone (Bartunik et al., 1989, Finer-
Moore et al., 1992, Krem and Di Cera, 1998, 
McDowell and Kossiakoff, 1995).

The eight AA activation peptide of 
trypsinogens and Asp199 stabilize the 
inactive trypsinogen conformation (Pasternak 
et al., 1998). Approximately 85% of the 
structures of trypsinogen and trypsin 
are identical (Fehlhammer et al., 1977, 
Kossiakoff et al., 1977) and trypsinogen (and 
chymotrypsinogen) has weak intrinsic activity 
towards small active site titrants (Kerr et al., 
1975). The oxyanion hole, which is important 
for stabilization of the tetrahedral intermediate 
in the catalysis, and the primary binding site 
of trypsinogen are deformed, which renders 
the zymogen inactive. Upon cleavage of the 
activation peptide, the α-amino group of the 
new N-terminal Ile24 folds into a pocket 
and forms a buried salt bridge between the 
carboxylate group of Asp199 (Robinson et 
al., 1973), a mechanism coined “molecular 
sexuality” (Bode and Huber, 1976). However, 
hydrophobic interactions of the Ile24 side-
chain provide the more stabilization energy 
for the trypsinogen to trypsin conversion that 
the salt bridge (Hedstrom et al., 1996). The 
resulting 170° rotation of the Asp199 side 
chain triggers a conformational change in 
the S1 binding site and oxyanion hole, which 
produces active enzyme (Fehlhammer et al., 
1977). The Ile-Val dipeptide, analogous to 
the N-terminus of active trypsin, can also 
cause activation of trypsinogen without 



21

cleavage of the activation peptide. This data 
indicates that zymogen activation is based on 
a conformational change (Bode and Huber, 
1976). 

Substrate binding

The substrate recognition sites include the 
polypeptide binding site, the binding pockets 
for the side-chains of the peptide substrate 
and surface loops outside the substrate 
binding pocket (Hedstrom et al., 1992). The 
nomenclature of the binding sites is based to 
that proposed by Schechter and Berger, where 
P1-P1’ denotes peptide residues on the acyl 
and leaving group side of the scissile bond, 
respectively (Schechter and Berger, 1967). 
The adjacent peptide residues are numbered 
outward, and the S1, S1’ etc. denote the 
corresponding enzyme binding sites. 

The primary substrate-binding pocket. The 
disulfide bond Cys196 – Cys220, and the 
segments between Asp194 – Asp199, Ser215 
– Cys220 and Pro226 – Tyr229 form the 
primary substrate-binding pocket called S1 
binding site in active trypsin (Fehlhammer et 
al., 1977, Varallyay et al., 1997). The substrate 
specificity towards peptide bonds following 
Arg or Lys is mainly defined by three 
conserved residues; Asp194 at the bottom of 
the substrate binding pocket and Gly217 and 
Gly227 residues, which together create the 
negatively charged S1 site (Huber et al., 1974, 
Perona et al., 1995). The S1-P1 interaction 
dominates over substrate binding in the S2 to 
S4 sites (Sichler et al., 2002). Trypsin prefers 
Arg substrates over Lys substrates because 
Arg and Lys interact with the substrate binding 
pocket in different modes. The cyclic network 
of hydrogen bonds between the guanidinium 
group of P1 Arg and S1 Asp194 is the 
dominant feature of Arg substrate specificity. 
The chemical characteristics of the side-chain 
of Ser195 affects the specificity of trypsin 
towards P1 Lys through a critical hydrogen 
bond triad involving a water molecule, Ser195 
Oδ and the substrate P1 Lys Nζ (Evnin et al., 
1990). Substrate Lys is indirectly hydrogen 
bonded to the S1 site Asp194 via a water 

molecule. 

The oxyanion hole. Gly198 in the oxyanion 
hole also plays a basic role in substrate 
binding by stabilizing the ground state and 
the transition state (Bobofchak et al., 2005). 
Gly198 is highly conserved in serine proteases, 
but in human trypsin-3 and brain trypsin-4 the 
residue at position 198 is Arg (Nyaruhucha et 
al., 1997). The conformation of the Arg198 
side-chain prevents correct positioning of the 
amido hydrogen to form a hydrogen bond with 
the substrate. This feature together with His 
instead of Asp in position 218 is believed to 
provide the structural basis for the enhanced 
inhibitor resistance and binding affinity of 
substrates for human trypsin-3 and -4 (Katona 
et al., 2002). 

The polypeptide binding site. The polypeptide 
binding site refers to the main chain of residues 
Ser215 –Asp218 which form an antiparallel 
beta sheet with the backbone of the P1 – P3 
residues of peptide substrates. The beta sheet 
structure causes the side chains of the peptide 
substrate to point in opposite directions 
(Hedstrom, 2002, Sweet et al., 1974). 

Loop structures. Outside the substrate 
binding pocket near the S1 binding site 
are two conserved loops called L1 and L2, 
respectively, which control the specificity of 
trypsin. These surface loops connect the walls 
of the S1 binding pocket and stabilize the 
transition state for hydrolysis by improving 
the orientation of bound substrates relative to 
the catalytic site (Hedstrom et al., 1994a). In 
addition, Tyr175 in a third surface loop has 
been identified as an additional specificity 
determinant (Hedstrom et al., 1994b, Perona 
et al., 1995). This kind of extended substrate 
binding accelerates catalysis. 

It is thought that substrate discrimination 
occurs during the acylation step rather than 
during substrate binding. The structural basis 
for substrate discrimination in the acylation 
step is the ability of 1) P1-Arg or Lys to make 
favourable electrostatic interactions with 
Asp194 to enhance the accurate positioning of 
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Gly217 and of 2) loop L2 to uniquely specify 
the conformation of the conserved Gly217, 
which forms two main-chain hydrogen 
bonds with the P3 residue of the substrate 
promoting accurate scissile bond positioning 
in a discriminatory way (Hedstrom et al., 
1992, Hedstrom et al., 1994a, Ma et al., 2005, 
Perona et al., 1995). In addition, there are five 
loops designated A to E. Loop C contacts the 
extended substrate on the N-terminal side of 
the scissile bond, whereas loops A, B, D and E 
interact on the leaving group side (Perona and 
Craik, 1997). Thus, S1 binding site contributes 
to substrate specificity for ester hydrolysis, 
whereas specific amide hydrolysis requires 
both the proper S1 binding site and more 
distal interactions such as with the loops next 
to the substrate binding pocket (Hedstrom et 
al., 1992).

The leaving group side interactions. The 
leaving group side interactions S’ – P’ are 
determined by surface loops (see above) (Bode 
and Huber, 1992, Perona and Craik, 1997). 
The role of S’1 to S’3 in substrate binding 
and catalysis in rat trypsin has been studied 
by active site mapping using nucleophile 
mixtures (Schellenberger et al., 1994). The 
most important contact in the S’ subsites 
is a hydrogen bond between main-chain 
carbonyl oxygen S’2 – main-chain NH of the 
P’2 residue, where trypsin prefers positively 
charged residues. The P’1 and P’3 side-chains 
point in one direction and the P’2 side-chain 
in the opposite direction. Large amino acids 
residues in P’1 and P’3 can probably form 
contacts with the same region on the enzyme 
surface and most likely compete for contacts 
on the enzyme surface. In contrast, positive 
cooperativity is observed for specific P’2 and 
P’3 residues, as the P’2 and P’3 side-chains 
point tin opposite directions. 

The P’2 side-chains bind to a region on the 
trypsin surface that is lined by His46 and 
Tyr154. Interestingly, in human pancreatic 
trypsin-1 and trypsin-2 Tyr154 is sulfated 
(Gaboriaud et al., 1996, Sahin-Tóth et al., 
2006, Szilagyi et al., 2001) (IV). This feature, 
together with Asp at residue 218 (S4 site) is 

suggested to influence the selective binding 
of Kazal-type inhibitors to human trypsin-1 
(Gaboriaud et al., 1996). 

Catalysis

The physiological reaction catalyzed by 
trypsin is hydrolysis of peptide bonds on the 
carboxyl-terminal side of either arginine or 
lysine. Chemically the reaction is acyl transfer, 
in which trypsin stabilizes the tetraedral 
transition state typical to this reaction (Kraut, 
1977). The mechanism is a base-catalyzed 
nucleophilic attack of the hydroxyl-O of 
Ser200 to the carbonyl-C of the substrate 
(Craik et al., 1987, Weiner et al., 1986). The 
so called catalytic triad or charge relay system 
– His63, Ser200 and Asp107 – is essential 
for the catalysis. It is part of an extensive 
hydrogen bonding network within the enzyme 
itself and with the substrate during catalysis. 
The strength of the hydrogen bonds changes 
during catalysis (Fodor et al., 2006). 

Formation of a Michaelis complex. A Michaelis 
complex is formed upon substrate side-chain 
binding to the binding pocket: a hydrogen 
bond between the Oγ of Ser200 and Nε2 of 
His63 in the active site becomes sterically 
optimal for hydrogen transfer as the result 
of reorganization in the side-chain of Ser200 
and movement of the imidazole ring of His63 
(Ruhlmann et al., 1973). Then the Ser200 Oγ 
can form a covalent bond with substrate and 
donate a proton to His63. In addition, the side-
chain of the substrate Lys residue becomes 
hydrogen-bonded to Asp194 via a water 
molecule. The longer side-chain of Arg in the 
substrate replaces the water molecule in the 
binding pocket and forms a direct hydrogen 
bond to Asp194 of trypsin (Bode et al., 1984, 
Craik et al., 1985, Weber et al., 1995). 

The acylation step. After formation of the 
non-covalent Michaelis complex catalysis is 
then thought to proceed in two steps, which 
are simplified as follows. First, acylation 
of trypsin occurs by the nucleophilic attack 
of hydroxyl-O of Ser200 to the substrate P1 
carbonyl-C resulting in a covalent bond. At 
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the same time, the hydroxyl-proton of Ser200 
is transferred to the His63 Nε2 base. Hydrogen 
bonds are formed between the oxyanion hole 
and P1 carbonyl-C resulting in polarization 
of the carbonyl bond. All these bonds force 
the substrate to a tetrahedral oxyanion 
intermediate. Then, the imidazole ring of 
His63 can donate a proton to the leaving group 
amine on the substrate and the scissile bond 
is lengthened and broken. Trypsin acylation 
is most likely the rate-limiting step of the 
catalysis (Kossiakoff and Spencer, 1980, 
Kossiakoff and Spencer, 1981, Weiner et al., 
1986). However, the deacylation step is only 
>3-fold faster than acylation (Bobofchak et 
al., 2005). 

The deacylation step. After acylation a water 
molecule located in the catalytic site forms 
a hydrogen bond with His63. The water 
molecule acts as nucleophile by attacking 
the acyl-trypsin P1 carbonyl-C and donates a 
proton to His63. The formed new tetrahedral 
transition state breaks down as a proton is 
transferred from His63 to Ser200 and native 
trypsin is released (Weiner et al., 1986). The 
function of negatively charged Asp107, which 
is located on the opposite side of His63 in the 
active site, is believed by hydrogen bonding to 
force His63 in the proper tautomeric state, so 
that its proton is at Nδ1 and not at Nε2 (Ash 
et al., 1997, Frey et al., 1994, Kossiakoff and 
Spencer, 1981, Sprang et al., 1987). Amide 
bonds are very stable due to electron donation 
from the amide nitrogen to the carbonyl. It 
is estimated, that the rate of peptide bond 
hydrolysis is increased about 1010-fold by 
serine protease catalysis as compared to 
the corresponding uncatalyzed reactions 
(Hedstrom, 2002).

Functions of trypsins 

Digestion of food

Digestion of food is the main physiological 
function of pancreatic trypsin. Indeed, trypsin 
and chymotrypsin are considered the major 
workhorses of digestion. Trypsin-1 and -2 
isoenzymes degrade dietary proteins in the 

duodenum either directly or indirectly by 
activation of other digestive enzymes such 
as chymotrypsinogen, procarboxypeptidase, 
phospholipase and proelastase (Neurath and 
Walsh, 1976, Travis and Roberts, 1969). 
Trypsin-3 does not activate zymogens, and 
thus degradation of dietary trypsin inhibitors 
appears to be the only role of pancreatic 
trypsin-3 (Sahin-Tóth, 2005, Szilagyi et al., 
2001, Szmola et al., 2003) . 

Intestinal alkaline sphingomyelinase 
digests dietary sphingomyelin generating 
multiple lipid messengers such as ceramide 
and sphingosine. Pancreatic trypsin has 
been shown to release intestinal alkaline 
sphingomyelinase from rat intestinal mucosa 
in vivo, thereby increasing the enzyme activity 
about 50 to 70% (Wu et al., 2004). The trypsin-
induced dissociation was rapid and specific. 
By this means pancreatic trypsin would not 
only digest dietary proteins but indirectly also 
sphingomyelin. 

Activation of protease-activated receptors

Protease-activated receptors (PAR-1, PAR-2, 
PAR-3 and PAR-4) are G protein-coupled 
receptors with seven transmembrane-spanning 
domains (Dery et al., 1998). PAR-2 is 
activated by trypsin-like enzymes like trypsin 
itself, acrosin and mast cell tryptase, whereas 
PAR-1, PAR-3 and PAR-4 are activated 
mainly by thrombin (Cottrell et al., 2003, 
Coughlin, 2005, Fox et al., 1997, Molino et 
al., 1997, Nystedt et al., 1994). To a lesser 
extent, human tissue kallikreins, cathepsin 
G, plasmin, granzyme A, and coagulation 
factors VIIa and Xa are able to activate PARs 
(Oikonomopoulou et al., 2006, Vergnolle et 
al., 2003). The PARs are irreversibly activated 
by proteolytic cleavage at the amino-terminal 
exodomain of the receptor. The new, unmasked 
amino terminus functions as a tethered ligand, 
docking intramolecularly with the body of the 
receptor to effect transmembrane signalling. 
Once ligated, PAR can activate intracellular 
G proteins and thus mediate extracellular 
signals to intracellular signalling pathways. 
Like other G protein-coupled receptors, PAR 
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signalling is rapidly attenuated by receptor 
desensitization, endocytosis, and/or receptor 
down-regulation (Grady et al., 1997, Ludeman 
et al., 2004). Trypsin has also been shown to 
affect PAR-2 ubiquitination, which is required 
for lysosomal trafficking of PAR-2 (Cottrell et 
al., 2003).

Protease-activated receptor-2. The gene 
encoding human PAR-2 has been cloned 
(Bohm et al., 1996) and PAR-2 has been found 
to be highly expressed in the pancreatic duct 
cells, kidney, intestine, liver, prostate, ovary, 
testes, heart, lung, skin, bladder, brain, and 
trachea, where it is found in epithelial and 
endothelial cells, and myocytes, fibroblasts, 
immune cells, neurons and glial cells 
(Bohm et al., 1996, D’Andrea et al., 1998, 
D’Andrea et al., 2000, D’Andrea et al., 2001, 
Macfarlane et al., 2001, Nguyen et al., 1999, 
Nystedt et al., 1994, Nystedt et al., 1995). 
Several functions of the PARs are involved in 
regulation of hemostasis, inflammation, pain, 
and tissue repair (Macfarlane et al., 2001). 
Functional PARs including PAR-2 have also 
been described in the central and peripheral 
nervous system suggesting regulative role 
for PARs and their activating proteases in 
various processes of the nervous system such 
as motor, secretory, vascular, nociceptive, 
inflammatory or regenerative processes 
(Vergnolle et al., 2003). PAR-2-mediated 
effects include increase in intracellular Ca2+, 
effects of ion transport, cell proliferation, 
growth and adhesion, apoptosis, secretion, 
immunomodulation and mitogensis. PAR-
signaling involves molecules like Gαi, Gαq, 
phospholipase Cβ (PLCβ), diacylglycerol 
(DAG), inositoltriphosphate (IP3), NFκB, 
c-Fos, c-Jun, p38, and extracellular-signal 
regulated kinases (ERK1/2) (Steinhoff et al., 
2005). 

Pancreatic trypsins and PAR-2. Pancreatic 
trypsin-1 and -2 are potent activators of PAR-2, 
which is present at high densities on the 
luminal surfaces of pancreatic acinar cells, duct 
epithelial cells, and the intestine (Kong et al., 
1997, Nguyen et al., 1999). PAR-2 activation 
stimulates cytokine production and regulates 

pancreatic exocrine function via a negative 
feedback loop (Hirota et al., 2006a, Maeda 
et al., 2005). Physiological concentrations of 
trypsin in the intestinal lumen (100 nmol/L) 
activates PAR-2 at the apical membrane of 
enterocytes and stimulates the generation of 
IP3, arachidonic acid release and prostaglandin 
secretion (Kong et al., 1997). 

In cultured dog pancreatic duct epithelial cells, 
trypsin can activate ion channels by cleaving 
and triggering PAR-2, which results in 
increased intracellular calcium concentration 
and subsequent stimulation of Ca2+-activated 
Cl- and K+ channels (Nguyen et al., 1999). In 
the gastrointestinal track, PAR-2 mediated 
contractile responses have been reported, 
most likely via a mechanism involving Ca2+-
dependent K+ channels (Cocks et al., 1999b). 
Furthermore, PAR-2 has been linked to the 
release of amylase from the acinar cells of the 
pancreas, and exocrine secretion from salivary, 
parotid and sublingual glands (Bohm et al., 
1996, Kawabata et al., 2000, Kawabata et 
al., 2002, Nguyen et al., 1999). Thus, besides 
acting as digestive proteinase and activator of 
other digestive enzymes, pancreatic trypsin 
is also a signalling molecule regulating cells 
of the gastrointestinal track by activation of 
PAR-2.

Extra-pancreatic trypsins and PARs. Trypsin-4 
has been suggested to activate PAR-2 and 
-4 and the inhibitor resistance of trypsin-4 
has been postulated to promote prolonged 
PAR-mediated signaling in extra-pancreatic 
cells (Cottrell et al., 2004). Tumor-derived 
human epithelial cell lines from prostate 
(PC-3), colon (SW480 and Caco2), and 
airway (A549) have been found to express 
PAR-2, trypsinogen-4 and enteropeptidase. 
Expression of trypsinogen-4 and its activation 
by enteropeptidase induces a prompt increase 
in intracellular calcium in KNRK cells (a 
normal rat kidney [NRK] cell line transformed 
by Kirsten murine sarcoma virus) expressing 
human PAR-2, but not in nontransfected cells, 
suggesting that trypsin-4 is an activator of 
PAR-2 (Cottrell et al., 2003, Cottrell et al., 
2004). However, studies with recombinant 
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trypsin isoforms revealed that the activity of 
trypsin-4 was completely unable to activate 
epithelial PAR-1 and-2. Instead, it weakly 
activated brain PAR-1 in human astrocytoma 
1321N1 cells (Grishina et al., 2005). 

Results from another group (Wang et al., 
2006) revealed that trypsin-4 selectively 
induces transient Ca2+ mobilization in both 
rat astrocytes and retinal ganglion RGC-5 
cells via activation of PAR-1. The activating 
cleavage site is Arg–Ser in PAR-1 and PAR-2, 
Lys–Thr in PAR-3, and Arg–Gly in PAR-4. 
Arg-Ser and Lys-Thr peptide bonds are readily 
cleaved by trypsin-3 and -4, so PAR-1, PAR-2, 
and PAR-3 are potential trypsin-4 substrates 
(Szepessy and Sahin-Tóth, 2006).	

Trypsinogens in cancer

Proteolytic processing of ECM. As 
discussed above, trypsin degrades many 
ECM components (Koivunen et al., 1991a, 
Koshikawa et al., 1992, Moilanen et al., 2003, 
Stenman et al., 2005) but it is also a potent 
activator of several MMPs (Imai et al., 1995, 
Koivunen et al., 1989, Moilanen et al., 2003, 
Nyberg et al., 2002, Paju et al., 2001b, Sorsa et 
al., 1997, Umenishi et al., 1990). In addition to 
breakdown of ECM components and activation 
of proteinase cascades tumor-associated 
trypsins can modulate cancer cells by other 
mechanisms, too. Proteolytic processing of 
ECM exposes cryptic binding sites within 
ECM molecules, generates biologically active 
ECM fragments and affects the bioavailability 
and activity of sequestered growth factors and 
receptors (Liotta and Kohn, 2001). 

Tumor-associated trypsin and PAR-2. Recent 
studies suggest a signalling function for tumor-
associated trypsin as well as other proteinases. 
The binding of integrins to ECM proteins 
activates focal adhesion kinases (FAKs). 
These in turn interact with several intracellular 
signalling molecules. Stimulation of cellular 
growth, adhesion to fibronectin and vitronectin, 
and, when transplanted to nude mice, tumor 
production of human gastric carcinoma cells 
overexpressing trypsinogen-1 suggests that 

trypsin-1 contributes to disseminated growth 
of some cancer cells (Miyata et al., 1998). 
Integrin α5β1-dependent cellular adhesion to 
fibronectin and proliferation of MKN-1 human 
gastric carcinoma cells was shown to be 
regulated by PAR-2 and G protein signalling 
induced by tumor-associated trypsin (Miyata 
et al., 2000). 

Trypsin has been shown to be a potent growth 
factor for human colon cancer cells in vitro and 
the action is mediated by activation of PAR-2 
and subsequent increase in intracellular Ca2+ 
concentration (Darmoul et al., 2001, Ducroc 
et al., 2002). The mechanism is dependent 
on MMP-mediated release of transforming 
growth factor-α (TGF-α), transactivation and 
phosphorylation of epidermal growth factor 
receptor (EGF-R) and subsequent activation of 
extracellular signal-regulated protein kinase1/2 
(ERK1/2) and cell proliferation (Darmoul et 
al., 2004). On the other hand, trypsinogen-4 
has been hypothesized to possess a tumor-
suppressive role in cancer progression as it has 
been shown to be silenced at the mRNA level 
by promoter methylation in several gastric 
adenocarcinomas and esophageal squamous 
cell carcinomas (Yamashita et al., 2003).

Trypsin-2 isolated from a colon carcinoma 
cell line has been shown to be more potent 
activator of PAR-2 than two different mast 
cell tryptases and almost equally effective as 
bovine pancreatic trypsin in an in vitro study 
(Alm et al., 2000). Interestingly, the PARs 
are up-regulated in cancer and inflammation 
(Borgono and Diamandis, 2004). Taken 
together, tumor-associated trypsins are 
potential in vivo activators of PAR-2. 

Effects on the surrounding cells. Cells in 
the tumor microenvironment, i.e. mast cells, 
macrophages, endothelial cells, and vascular 
smooth muscle cells have been shown to 
express PAR-1 and PAR-2. These cells may 
act as proteolytic sensors to extracellular 
thrombin and trypsin, respectively, and thus 
enable a permissive environment for tumor 
growth and metastasis via an autocrine and/or 
paracrine cascade. PAR-1 and PAR-2 are also 
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detected on stromal fibroblasts surrounding 
metastatic tumor cells but not on fibroblasts 
surrounding benign, non-metastatic or normal 
epithelial cells (D’Andrea et al., 2001). 

Angiogenesis. Tumor cell-activated endothelial 
cells produce trypsin, which has been 
suggested to contribute to tumor angiogenesis 
and tumor metastasis by activation of matrix 
metalloproteinases (MMPs) or direct matrix 
degradation (Koshikawa et al., 1997). On 
the other hand, many angiogenesis inhibitors 
are stored as cryptic fragments within larger 
precursor matrix molecules, and the regulation 
of proteolytic processing of extracellular matrix 
plays an important role in vascularization of 
tumors (Nyberg et al., 2005). 

Other functions of trypsins

Paneth cells. The selective antibiotic activity 
of Paneth cell human α–defensin 5 and 6 (HD5 
and HD6) is enhanced by tryptic processing. 
Unlike in the pancreas, only trypsin-2 and -3 
are expressed at a 6:1 ratio in the Paneth cells 
of the small intestine, suggesting that Paneth 
cells express a distinct trypsin isoform pattern. 
Paneth cell-derived trypsin is suggested to be 
the processing proteinase of HD5 in vivo and 
trypsin activity seems to be carefully regulated 
by API and PSTI that also are present in the 
Paneth cells (Ghosh et al., 2002). Paneth cell 
trypsin could also be the activator of PAR-2 
expressed on luminal surfaces of enterocytes 
of the human intestinal crypts.

Genital tract. Trypsin is widely distributed 
in the male genital tract and may play a 
physiological role in semen. Trypsin purified 
from human seminal fluid activates the proform 
of prostate specific antigen (PSA) (Paju et 
al., 2000), which cleaves semenogelins I and 
II in the sperm-entrapping gel forming after 
ejaculation (Lilja, 1985).

Central nervous system. Human trypsin-4 has 
recently been shown to selectively process 
two Arg-Thr peptide bonds in human myelin 
basic protein, which is the most abundant 
membrane protein in the central nervous 

system and an autoantigen in multiple sclerosis 
(Medveczky et al., 2006). Trypsin-4 has also 
been implicated in the increased production 
of glial fibrillary acidic protein (GFAP) and 
accumulation of β-amyloid in the brain of 
transgenic mice expressing trypsinogen-4 in 
neurons (Minn et al., 1998). However, the 
possible role of trypsin-4 in neurodegenerative 
diseases remains to be elucidated. 

Ion channels. Acid-sensing ion channels 
(ASICs) are non-voltage-gated Na+ channels 
of the epithelial Na+ channel/degenerin family. 
They are almost ubiquitous in the mammalian 
nervous system and they are transiently 
activated by a rapid drop in extracellular pH 
(Krishtal, 2003). Several putative physiological 
roles of ASICs have been proposed, like pain 
receptor, modulation of synaptic transmission, 
memory and fear conditioning and mediation of 
cell injury in acidosis. Trypsin has been shown 
to cleave ASIC 1a in the N-terminal part of 
an extracellular loop in vitro, thereby shifting 
the pH-dependence of channel activation and 
inactivation to more acidic pH (Vukicevic et 
al., 2006). Trypsin has been demonstrated in 
vitro to cleave C termini of β– and γ–subunits 
of epithelial Na+ channels (ENaC). This is 
believed to increase ENaC activity and be one 
of the physiological mechanisms of sodium 
channel regulation (Jovov et al., 2002).

Leucocyte adhesion. Trypsin has been reported 
to up-regulate the intercellular adhesion 
molecule-1 (ICAM-1), a key vascular 
endothelial adhesion molecule necessary for 
transport of leukocytes from the intravascular 
space into inflamed tissues (Hartwig et al., 
2004). Up-regulation by trypsin occurs both in 
the rat pancreas and lung and it is associated 
with increases in leukocyte infiltration into the 
tissues and decreased perfusion of pancreatic 
microvasculature.

Airways. In preterm infants, the development 
of bronchopulmonary dysplasia (BPD) is 
associated with high pulmonary concentrations 
of trypsinogen-2 during the first two postnatal 
weeks (Cederqvist et al., 2003). In addition, 
infants with higher trypsinogen-2 to TATI 
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ratio subsequently developed BPD. The 
underlying mechanism remains unclear, but it 
has been suggested that trypsin degrades ECM 
directly, activates latent MMPs, or mediates 
inflammatory reactions via activation of 
PAR-2. Bronchial epithelial cells express 
both trypsin(ogen) and PAR-2 (Cocks et al., 
1999a). Indeed, trypsin released from the 
epithelium can initiate brochorelaxation in 
the airways by activation of epithelial PAR-2 
and is thus hypothesized to participate in 
prostanoid-dependent cytoprotection in the 
airways (Cocks et al., 1999a). 

Other functions. Trypsin has been shown to 
participate in cardiovascular events via PAR-2 
in animal models, but the physiological and 
pathophysiological role remains unclear 
(Macfarlane et al., 2001). In the skin, 
activation of PAR-2 by trypsin has been linked 
to pigmentation via action of prostaglandins 
and their receptors (Scott et al., 2004). In rat 
brain, trypsin has been shown to cleave the 
virus envelope fusion glycoprotein precursor 
hemagglutinin (HA0) of human influenza A 
virus and the fusion glycoprotein precursor 
(F0) of Sendai virus (Le et al., 2006). After 
virus infection in rat lungs the levels of 
TNF-α, trypsin-1 and MMP-9 mRNA, 
respectively, were significantly up-regulated 
(Yamada et al., 2006). These results suggest 
that trypsin in the brain might potentiate virus 
multiplication and progression of influenza-
associated encephalopathy or encephalitis. 
Finally, a function as a “pipe-cleaner” has 
been proposed for trypsin produced by various 
types of epithelial cells, like those of the bile 
duct and the nephron of the kidney (Koshikawa 
et al., 1998).

Trypsin inhibitors

Several classes of inhibitors mimic the 
tetrahedral intermediate of the serine protease 
reaction and form stable tetrahedral adducts 
with the protease (Kraut, 1977) in a so called 
“canonical” substrate-like manner, where 
numerous polar and hydrophobic interactions 
between the protease and the inhibitor prevent 
rapid dissociation of the complex. Prolonged 
association of the enzyme and the inhibitor 
leads to an equilibrium between the cleaved 
and uncleaved forms of the inhibitor (Fodor 
et al., 2005, Fodor et al., 2006). However, not 
all inhibitors interact “canonically” (Rydel et 
al., 1990, Rydel et al., 1991), a covalent bond 
between the enzyme and the inhibitor is not 
necessary for inhibition, and the protease-
inhibitor complex is not a fully tetrahedral 
adduct (Baillargeon et al., 1980, Richarz et 
al., 1980). The canonical inhibitors, like PSTI 
and API, are unrelated in structure but have in 
common a “primary binding segment”, a flat-
shaped loop that fits into the active-site cleft 
of cognate proteinase. All protein inhibitors of 
proteinases prevent access of (large) substrates 
to the catalytic site of the enzyme by steric 
hindrance. Endogenous protease inhibitors 
appear to be proteins, small non-protein 
inhibitors are produced by micro-organisms 
(Bode and Huber, 1992).

The first natural protease inhibitors were 
identified by Northrop and Kunitz as part of 
their protease studies in the 1930s with cattle 
pancreas (Kunitz and Northrop, 1935). An 
inhibitor was characterized as a polypeptide 
with a molecular weight of about 6000 Da, and 
that forms a reversible complex with trypsin 
in a molar ratio of 1:1. Today this inhibitor 

Table 3. Trypsin inhibitors in human plasma			 

Inhibitor	 Concentration	 MW 	 Reference
	 (g/L)	 (kDa)	
α2-macroglobulin	  2 - 4 	 720	 (Sottrup-Jensen, 1989)
α1-proteinase inhibitor	  1.3	 51	 (Carrell, 1986)
Inter-α-inhibitors	  0.6 - 1.2	  30 - 250	 (Josic et al., 2006)
PSTI/TATI	  5 - 20 x 10-6	  6.2	 (Stenman et al., 1982)
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is called basic pancreatic trypsin inhibitor 
(BPTI) or aprotinin, and it belongs to the 
Kunitz type inhibitor family. Human pancreas 
does not contain a Kunitz type inhibitor, but 
both human trypsin-1 and -2 are inhibited 
by BPTI in a 1:1 molar ratio (Figarella et al., 
1975). Protease inhibitors are after albumin 
and immunoglobulins the third largest group 
of functional proteins comprising about 10% 
of total plasma proteins in vertebrates (Travis 
and Salvesen, 1983) (Table 3).

α2-macroglobulin

α2-macroglobulin (α2M) and α1-proteinase 
inhibitor (API, also called α1-antitrypsin) are 
the major protease inhibitors in human plasma 
(Laskowski and Kato, 1980) (Table 3). Human 
α2M is a large (MW 720 000 Da) glycoprotein, 
composed of four identical subunits (Sottrup-
Jensen, 1989). It is a non-specific protease 
inhibitor, which controls the activity of 
proteinases not only by active site-directed 
inhibition but also by steric shielding and 
rapid clearance. Specific limited proteolysis 
of α2M at a site called the bait region results 
in a conformational change in α2M leaving the 
protease irreversibely bound to α2M (Barrett 
et al., 1979, Borth, 1992, Bretaudiere et al., 
1988). One α2M molecule can trap one or two 
proteinase molecules (Sottrup-Jensen, 1989). 
Protease-α2M complexes are rapidly eliminated 
from the circulation by LDL-receptor-related 
protein mediated endocytosis (Sottrup-Jensen, 
1989) primarily by hepatocytes (Feldman et 
al., 1985). 

α1-proteinase inhibitor

Apart from α2M, the most abundant human 
plasma proteinase inhibitors are serpins (serine 
proteinase inhibitors). The serpins share a 
conserved structure and employ a unique 
irreversible suicide substrate-like inhibitory 
mechanism. Thirty four human serpins, 
including α1-proteinase inhibitor (API) have 
already been identified (Gettins, 2002). API is 
the serpin present at the highest concentration 
in human plasma and it is mainly produced by 
the liver (Carrell, 1986). API is able to inhibit 

several serine proteases, but the regulation of 
neutrophil elastase is considered to be its main 
physiological function (Beatty et al., 1980, 
Travis and Salvesen, 1983). 

Human API (MW 51 000 Da) forms complex 
with trypsin in a 1:1 molar ratio. The proteinase 
first forms a noncovalent Michaelis complex 
with API. Subsequent peptide bond hydrolysis 
of the reactive center loop results in formation 
of acyl-enzyme intermediate and insertion of 
the reactive center loop into a β–sheet. Upon 
complete loop insertion the proteinase is 
translocated and compressed against the base 
of API, its active site is grossly distorted and 
hence inactivated (Huntington et al., 2000, 
Silverman et al., 2001). 

Proteinases complexed to API can be 
degraded by other proteinases (Kaslik et 
al., 1995, Stavridi et al., 1996). This may 
be a faster way of proteinase elimination 
from the circulation than the SEC (serpin-
enzyme complex) receptor-based uptake and 
intracellular degradation of proteinase-API 
complexes (Perlmutter et al., 1990, Pizzo, 
1989, Pratt et al., 1988). API inhibits trypsin-2 
ten times faster than trypsin-1, and it has been 
suggested to control trypsin-1 activity in vivo 
when α2M is already saturated (Vercaigne-
Marko et al., 1989). In this case API would 
have a significant role in the inhibition of 
trypsin-2 under physiological conditions and 
of trypsin-1 under pathological conditions.

Inter-α-inhibitors

Inter-α-inhibitor proteins comprise a family of 
serine proteinase inhibitors found at relatively 
high concentrations in human plasma, i.e. 0.6 
to 1.2 g/L (Josic et al., 2006). Inter-α-trypsin 
inhibitor (ITI) was first characterized and 
isolated from human plasma in the 1960s 
(Heimburger et al., 1964, Steinbuch and 
Loeb, 1961). It was initially characterized as 
a zinc-containing glycoprotein that inhibits 
trypsin and chymotrypsin by forming 1:1 
complexes (Aubry and Bieth, 1976). ITI was 
shown to be structurally related to the Kunitz 
family of inhibitors and homologous to bovine 
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pancreatic trypsin inhibitor BPTI (Wachter 
and Hochstrasser, 1981), but its antiproteinase 
function is relatively weak. 

The inter-α-inhibitor proteins consist of heavy 
chains, H1, H2, H3 and/or H4 (65, 70, 90 and 
120 kDa, respectively) and/or a 30 kDa light 
chain called bikunin. The genes encoding the 
subunits have been characterized (Nishimura 
et al., 1995, Salier, 1990). Uncomplexed 
bikunin, which has two Kunitz-type inhibitory 
domains, inhibits several serine proteinases 
including trypsin, plasmin, elastase and 
cathepsin B (Josic et al., 2006, Salier et 
al., 1996). The 250 kDa inter-α-inhibitor, 
previously called ITI, contains three subunits, 
two heavy chains H1 and H2 and bikunin. 
The 125 kDa pre-α-inhibitor (PαI), previously 
known as pre-α-trypsin inhibitor, contains 
two subunits, heavy chain H3 and bikunin. 
(Josic et al., 2006). The chains are covalently 
bound via a protein – glycosaminoglycan – 
protein bridge, where chondroitin 4-sulfate is 
the glycosaminoglycan. Bikunin contains an 
N-linked oligosaccharide and a chondroitin 
sulfate chain (Josic et al., 2006, Salier et al., 
1996). 

Studies in mice suggest that ITI acts as a 
shuttle by transferring proteinases to other 
plasma proteinase inhibitors like α2M and 
API for clearance, and that ITI modulates the 
distribution of proteinase among inhibitors 
(Pratt and Pizzo, 1986, Pratt et al., 1987). On 
the other hand, a so-called von Willebrand 
type-A, multicopper oxidase and bradykinin-
like domains have been identified in the heavy 
chains, suggesting several other functions, 
like a role in inflammation and maintenance 
of extracellular matrix stability and integrity 
through hyalyronic acid-binding (Bost et al., 
1998, Salier et al., 1996). 

PSTI or TATI

SPINK1 gene. PSTI is Kazal-type trypsin 
inhibitor originally purified from bovine 
pancreas from a side-fraction in a commercial 
insulin process (Kazal et al., 1948). The 
sequence of human PSTI was identified in 

1977 (Bartelt et al., 1977) and today the single 
human PSTI gene (serine protease inhibitor 
Kazal type 1 or SPINK1 gene) has been 
characterized. It is 7.5 kb long, separated into 
four exons and is located on chromosome 5 
(Horii et al., 1987). 

The genomic PSTI gene has neither the 
mammalian pancreas-specific common cis-
acting regulatory sequence (Walker et al., 
1983) nor the typical promoter sequences 
TATA, CAAT nor GC boxes, but the sequences 
ATAT and CAATCAAT are positioned in 
the promoter region of the gene (Horii et al., 
1987). It has been suggested that the sequence 
CAATCAATAAC that is present in two novel 
5’ cis-acting elements in the promoter region 
of the gene functions as a pancreas-specific 
element (Yasuda et al., 1998). A 40-bp IL-6-
responsive element, that is conserved among 
various acute phase genes, has been identified 
in the PSTI gene in hepatoma cells (Yasuda et 
al., 1993).

Biochemical properties of PSTI/TATI. The 
SPINK1 gene product consists of 79 AAs 
including a 23 AA signal peptide. Mature 
PSTI is a 56 AA polypeptide with a molecular 
weight of 6242 Da containing three intra-chain 
disulphide bridges. PSTI, or tumor-associated 
trypsin inhibitor (TATI), isolated from urine of 
a patient with ovarian cancer (see below) was 
found to be microheterogenous in charge the 
pI of the main component being 5.8 (Huhtala 
et al., 1982). Four forms of PSTI have been 
purified in human pancreatic juice (Kikuchi 
et al., 1985). PSTI/TATI is cleared from 
circulation by excretion into urine with a half-
life of six minutes (Marks and Ohlsson, 1983). 
In fact, serum PSTI/TATI can also be used as 
a marker for renal function (Tramonti et al., 
2003).

PSTI is synthetized and secreted together with 
trypsinogen by pancreatic acinar cells. The 
molar ratio of trypsinogen to PSTI in human 
pancreatic juice is about 5:1 (Hirota et al., 
2006a, Rinderknecht, 1986, Rinderknecht, 
1993) representing an amount equivalent to 
0.1 to 0.8% of the total protein in pancreatic 
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juice (Pubols et al., 1974). The reactive site of 
human PSTI is residue Lys41, that serves as a 
specific target substrate for trypsin (Bartelt et 
al., 1977). 

Serum levels of PSTI/TATI. TATI was first 
isolated from urine of an ovarian cancer 
patient (Stenman et al., 1982) and was later 
shown to be identical to PSTI (Huhtala et al., 
1982). The concentration of TATI in normal 
serum is 5 to 20 µg/L and that in urine 5 to 
50 µg/L as measured by radioimmunoassay. 
Elevated levels have been observed in urine 
from patients with ovarian, cervical and 
endometrial cancer, as well as in the amniotic 
fluid from 14 to 16 weeks of pregnancy 
(Stenman et al., 1982). As measured by 
another radioimmunoassay, serum PSTI level 
in healthy individuals ranged from 5.4 to 16.0 
µg/L (Kitahara et al., 1980). Normal serum 
levels of TATI were found in the serum and 
urine of pancreatectomized patients (Halila 
et al., 1985) suggesting that pancreatic acinar 
cells are not the main source of PSTI/TATI in 
humans.
 
Inhibition. PSTI is a strong, reversible trypsin 
inhibitor, which inhibits both trypsin-1 and -2 
in an equimolar ratio. It is gradually degraded 
and released from trypsin (Figarella et al., 
1975, Laskowski and Wu, 1953) by cleavage 
of the peptide bonds Lys41-Ile42, Arg67-
Gln68, Arg28-Glu29, Arg65-Lys66 and 
Lys75-Ser76 (Kikuchi et al., 1989, Schneider 
and Laskowski, 1974, Schneider et al., 1973). 
Both human and dog PSTI-trypsin complexes 
dissociated rapidly when added into serum 
in vitro (Eddeland and Ohlsson, 1978). The 
released trypsin was mainly bound by serum 
α2M and to a lesser extent to API. 

Intravenous injection of PSTI-trypsin 
complexes into dogs resulted in a similar rapid 
dissociation of the complexes. The major 
part of the injected radioactive trypsin was 
bound by α2M and API. The released PSTI 
disappeared rapidly from the circulation into 
urine and into the whole extracellular fluid 
volume (Eddeland and Ohlsson, 1978). The 
peptide bonds Lys41-Ile42, Arg67- Gln68, 

Arg28-Glu29, and Lys75-Ser76 have also been 
shown to be cleaved by trypsin-3 (Szmola et 
al., 2003). 

The function of PSTI in the mucus-producing 
cells in the gastrointestinal tract is suggested 
to protect the mucus from digestion by luminal 
proteinases within the stomach and colon and 
to stimulate epithelial repair (Freeman et al., 
1990, Marchbank et al., 1998). PSTI/TATI is 
also an efficient inhibitor of acrosin (Huhtala, 
1984) suggesting a role in reproduction.

In PSTI deficient (Spink3-/-) mice, autophagic 
degeneration of acinar cells started from day 
16.5 after coitus, resulting in rapid onset of 
cell death in the pancreas and duodenum, and 
finally death of the test animals 14.5 days 
after birth (Ohmuraya et al., 2005). The same 
researchers reported later (Ohmuraya et al., 
2006) that trypsin activity could be detected 
in pancreatic acinar cells of Spink3-/- mice at 
0.5 and 1.5 days after birth. On the contrary, 
trypsin activity was not detected in pancreatic 
acinar cells of Spink3+/+ and Spink3+/- mice. 
Thus, the loss of PSTI resulted in failure to 
control trypsin activation in acinar cells in 
mice leading to excessive autophagy in the 
acinar cells. 
 
Extrapancreatic expression. The physiological 
role of PSTI was initially thought to solely 
prevent premature activation of pancreatic 
proteases, especially trypsinogen (Pubols et 
al., 1974, Rinderknecht, 1986). However, 
TATI as well as trypsinogen (see above) are 
also expressed in several other normal tissues 
like the gastrointestinal tract (Bohe et al., 1986, 
Bohe et al., 1988, Bohe et al., 1992, Bohe et 
al., 1997, Freeman et al., 1990, Shibata et al., 
1986), gall bladder and biliary tract, breast, 
kidney and urinary tract, spleen, epithelial 
cells of the skin, liver, lung, the brain and 
vascular endothelial cells (Fukayama et al., 
1986, Lukkonen et al., 1999, Marchbank et 
al., 1996) suggesting an important role for 
both TATI and trypsinogen in tissues other 
than the pancreas.
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PSTI/TATI in cancer. The increase of serum 
PSTI/TATI found in connection with malignant 
diseases is probably caused by production in 
the cancer cells, but the acute-phase reaction 
can also contribute. PSTI/TATI has been shown 
to be expressed in several cancers, including 
pancreatic, colorectal, gastric, lung, ovarian, 
renal cell, and bladder cancers (Diggle et al., 
2003, Haglund et al., 1986, Higashiyama et 
al., 1990a, Higashiyama et al., 1990b, Huhtala 
et al., 1982, Huhtala et al., 1983, Jarvisalo et 
al., 1993, Lukkonen et al., 1999, Ohmachi et 
al., 1993, Paju et al., 2004, Paju et al., 2007, 
Pasanen et al., 1995, Piantino and Arosaio, 
1991, Tomita et al., 1987). 

TATI has been shown to be prognostic factor 
in ovarian cancer (Venesmaa et al., 1994), 
bladder cancer (Kelloniemi et al., 2003), 
hepatocellular carcinoma (Lee et al., 2007), 
and renal cell carcinoma (Paju et al., 2001a). 
The function of TATI in cancer is thought 
to be the same as in the pancreas, i.e. the 
inhibition of trypsin produced by the tumor 
cells (Stenman et al., 1991). The finding that 
trypsinogen is expressed in both malignant 
and benign bladder epithelium, whereas TATI 
expression decreases with increasing stage 
and grade, suggests balanced expression of 
trypsinogen and TATI in normal tissue, but 
disruption of this balance in tumor progression 
(Hotakainen et al., 2006). Interestingly, high 
TATI expression in gastric cancer tissue seems 
to correlate with a favourable prognosis for the 
patient (Wiksten et al., 2005), but in prostate 
cancer high TATI expression is associated with 
aggressive disease (Paju et al., 2007).

Acute phase reaction. PSTI has been suggested 
to be an acute-phase protein and to be induced 
by inflammatory cytokines (Yasuda et al., 
1990). The PSTI levels in serum increase in 
connection with severe inflammation, tissue 
destruction and major surgery (Lasson et al., 
1986, Matsuda et al., 1985, Ogawa et al., 
1985, Ogawa et al., 1988). PSTI-production in 
pancreatic acinar cells is not regulated by the 
acute-phase process, as suggested by analyzing 
PSTI, trypsinogen-1 and α1-antichymotrypsin, 
another acute-phase reactant, in plasma 

and pancreatic juice after partial pancreatic 
resection (Jonsson et al., 1996). 

In response to inflammatory cytokines, the 
liver produces several acute-phase proteins 
that are proteinase inhibitors. There is some 
evidence indicating that the liver might also 
be a source of PSTI in acute-phase reactions 
in humans. In cultured human hepatoblastoma 
cells, PSTI production is stimulated by IL-6 
(Yasuda et al., 1990) and an IL-6-responsive 
element has been identified in the PSTI gene 
(Yasuda et al., 1993). Furthermore, PSTI 
is produced by hepatocellular cancer cells 
(Ohmachi et al., 1993) and the secretion of 
PSTI by human hepatocellular cancer cell 
line is substantially increased in the presence 
of cytokine-producing mononuclear white 
blood cells (Jonsson et al., 1996). Acute-phase 
proteins are thought to prevent non-specific 
tissue damage caused by proteinases released 
from activated immune and phagocytic cells 
(Roberts et al., 1995). 

Polyamines

Polyamines, like spermidine and spermine, 
are needed for normal cellular growth and 
differentiation (Nitta et al., 2002). Exocrine 
pancreas has the highest spermidine 
concentration in the mammalian body, and it is 
thought to be related to the high rate of protein 
synthesis in this tissue. Activated polyamine 
catabolism in transgenic rats results in severe 
acute pancreatitis (Alhonen et al., 2000) and 
is associated with intracellular trypsinogen 
activation (Hyvonen et al., 2006). In the 
pancreas, polyamines have been localized in 
zymogen granules. Thus, it is possible that 
polyamines directly inhibit proteinase activity, 
and that their depletion thus would result in 
a direct activation of proteolytic enzymes 
(Hyvonen et al., 2006).

Pancreatitis

In the normal pancreas, the hazardous effects 
of proteinase activity are controlled by 
regulated expression and secretion, storage of 
zymogens within membrane-bound granules, 
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regulated activation of the proenzymes, 
specific degradation and autolysis of the 
active proteinases, inhibition of their 
proteolytic activity, and controlled lysosomal 
degradation and autodegradation of digestive 
enzymes of damaged cells (Logsdon, 2001). 
However, pancreatitis is a necrotic and 
inflammatory process of the pancreas, where, 
with the exception of infectious pancreatitis, 
premature activation of trypsinogen and other 
digesitive pancreatic zymogens within or 
near the pancreas start digesting the pancreas 
itself (Kloppel and Maillet, 1993, Kloppel, 
2007). Pathophysiologically, autodigestion 
and inflammation may be caused by either 
increased proteolytic activity or decreased 
proteinase inhibition. 

Pancreatitis can be acquired or hereditary, 
acute or chronic (Kloppel and Maillet, 1993). 
Ethanol abuse and gallstones account for 
about 80% of acute pancreatitis cases (Le 
Moine et al., 1994, Lee et al., 1992). Chronic 
pancreatitis is usually caused by many years 
of alcohol abuse, ductal obstruction, exposure 
to cigarette smoke or volatile hydrocarbons, 
or can be autoimmune or hereditary (Chari, 
2007, McNamee et al., 1994, Talamini et al., 
1996). 

Especially in acute pancreatitis (I) (Borgström 
and Andren-Sandberg, 1995, Kimland et 
al., 1989, Petersson et al., 1999), but also in 
pancreatic cancer, chronic alcoholism and 
chronic pancreatitis (Borgström and Andren-
Sandberg, 1995, Rinderknecht et al., 1979, 
Rinderknecht et al., 1985) the proportion of 
serum trypsinogen-1 and -2 immunoreactivity 
becomes reversed, suggesting nonparallel 
secretion of the trypsinogen isoforms in 
pancreatic disease. By using recombinantly 
produced trypsinogen-1 and -2, Kukor et al. 
(Kukor et al., 2003) demonstrated that the 
up-regulation of trypsinogen-2 in potential 
pathological conditions significantly limits 
trypsin generation. In conditions modeling 
those of pancreatic juice (1 mmol/L Ca2+, pH 
8), trypsin generation by autoactivation or 
enteropeptidase activation was not affected 
significantly by the ratio of the two isoforms 

due to faster autodegradation of trypsinogen-2 
and trypsin-2. However, trypsin generation 
was markedly diminished under conditions 
that modeled cytoplasm or acidic vesicles (50 
µmol/L Ca2+, pH 5) by an increased ratio of 
trypsinogen-2, because acidic pH inhibited 
activation of trypsinogen-2, whereas it 
stimulated autoactivation of trypsinogen-1. 
This suggests that, as a defensive mechanism, 
acinar cells increase secretion of trypsinogen-2 
in pancreatic diseases, thereby decreasing the 
chance for premature trypsinogen activation 
inside the pancreas, while maintaining 
acceptable trypsin function in the duodenum 
(Kukor et al., 2003). 

Hereditary pancreatitis

Hereditary pancreatitis (HP) is caused by 
mutation(s) inducing premature intracellular 
activation of proteolytic enzymes, especially 
trypsin. The phenotypic features of hereditary 
pancreatitis include autosomal dominant 
inheritance, high penetrance (80%), inter-
mittent attacks of acute pancreatitis usually 
beginning in childhood, and frequent 
progression of the disease to chronic 
pancreatitis (Gorry et al., 1997). Patients with 
hereditary pancreatitis, especially those with a 
paternal inheritance pattern, have a high risk of 
developing pancreatic cancer several decades 
after the onset of pancreatitis (Lowenfels et 
al., 1997).

A relationship between the onset of pancreatitis 
and a mutation in the trypsinogen-1 gene was 
initially reported in 1996 (Whitcomb et al., 
1996). Since then, several mutations in the 
trypsinogen-1 (PRSS1), PSTI (SPINK1), and 
cystic fibrosis transmembrane conductance 
regulator (CFTR) genes have been found 
to be associated with chronic pancreatitis 
(Keiles and Kammesheidt, 2006). An up-to-
date database of published PRSS1, PRSS2 and 
SPINK1 variants can be found at www.uni-
leipzig.de/pancreasmutation. 

Mutations in the PRSS1 gene. The AA 
substitutions in trypsinogen-1 are located in 
the activation peptide, the N-terminal part of 
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trypsin, and in the longest peptide segment 
not stabilized by disulfide bonds between 
Cys64 and Cys139, which also encompasses 
the calcium-binding loop. The mutations 
appear to be associated with enhanced 
activation (Chen et al., 2003a, Feréc et al., 
1999, Gorry et al., 1997, Pfutzer et al., 2002, 
Sahin-Tóth and Tóth, 2000, Sahin-Tóth, 2000, 
Sahin-Tóth, 2001, Simon et al., 2002, Teich 
et al., 2000, Teich et al., 2004, Whitcomb, 
1999), inhibition of autolysis, or enhanced 
stabilization (Le Maréchal et al., 2001, Pfutzer 
et al., 2002, Sahin-Tóth, 2001, Simon et al., 
2002, Whitcomb et al., 1996). 

The most frequent mutation in HP worldwide 
is Arg122His, which eliminates the autolysis 
site of trypsin-1 and alters autoactivation and 
autodegradation of trypsinogen-1 (Simon et al., 
2002). Unlike all other known trypsinogens, 
human trypsinogen-1 contains Asn at position 
29. With the exception of human trypsinogen-2 
that has Ile at position 29, all other mammalian 
trypsinogens contain Thr29 (Rypniewski et 
al., 1994). The second most frequent HP-
associated mutation is Asn29Ile in human 
trypsinogen-1 (Gorry et al., 1997). Other 
mutations of Asn29 have also been shown 
to affect autoactivation (Sahin-Tóth, 2000). 
Chymotrypsin C –mediated processing of the 
trypsinogen-1 activation peptide is increased 
4-fold by the mutation Ala16Val, resulting 
in accelerated trypsinogen activation in vitro 
(Nemoda and Sahin-Tóth, 2006). 

A novel mechanism underlying HP was 
suggested by Teich et al. (Teich et al., 2004). 
The activation of trypsinogen-2 by mutated 
Glu79Lys-trypsin-1 was increased two-fold, 
and HP could thus be caused by increased 
transactivation of trypsinogen-2 by mutated 
trypsin-1. Furthermore, triplication of a ~605 
kb gene segment containing the PRSS1 gene 
on chromosome 7 seems to result in increased 
trypsin expression through a gene dosage 
effect causing HP (Le Maréchal et al., 2006). 

Mutations that protect against pancreatitis are 
very rare but have been reported. Mutations 
Tyr37X and IVS2+1G>A that result in non-

functional product of the PRSS1 gene were 
found in two of 55 alcoholics without chronic 
pancreatitis, respectively (Chen et al., 2003b). 
Furthermore, mutation Gly191Arg results in 
degradation-sensitive trypsinogen-2 (Witt et 
al., 2006). 

It has been suggested that gene conversion is 
a likely cause of PRSS1 missense mutations 
associated with HP (Chen and Feréc, 2000a, 
Chen and Feréc, 2000b). Gene conversion is a 
process where a functional gene is converted 
into a mutant one by unidirectional transfer 
of genetic information from a homologous, 
non-functional donor gene to the functional 
acceptor gene (Baltimore, 1981, Chen et al., 
2007). The genes T4 to T8 are organized in 
tandem repeats and share 91% overall sequence 
homology (Rowen et al., 1996), which render 
them prone to gene conversion events. The 
presence of several donor sequences in genes 
T6, T7, T8 and T9 for Arg122His, Asn29Ile and 
Ala16Val mutations, respectively, is strongly 
suggestive of these mutations being caused 
by gene conversion events. Furthermore, chi-
like and palindromic sequences are frequently 
observed in the vicinity of potentially 
converted gene fragments (Collier et al., 1993, 
Giordano et al., 1997, Patrinos et al., 1998). 
Such sequences are also found in the 3’ and/or 
5’ boundaries of the Arg122His, Asn29Ile and 
Ala16Val mutations (Chen and Feréc, 2000a, 
Chen and Feréc, 2000b). 

Mutations in the SPINK1 gene. Mutations 
and polymorphisms in the SPINK1 gene are 
also associated with HP. These include single-
nucleotide substitutions, microinsertions/
deletions (Chen et al., 2000, Kiraly et al., 
2007, Le Maréchal et al., 2004, Pfutzer et al., 
2000, Witt et al., 2000) and a large 1336 bp 
deletion involving the promoter region and 
exon 1 of SPINK1 (Masson et al., 2006). 

The Asn34Ser mutation (Witt et al., 2000) is 
the most common HP-associated variant in the 
PSTI gene. Asn34 is located close to Lys18, the 
target P1 residue of trypsin, and the mutation 
has been suggested to lead to decreased 
inhibitory capacity of PSTI by affecting the 
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conformation of the active site (Witt et al., 
2000). On the other hand, biochemical and 
surface-plasmon-resonance (SPR) analysis of 
recombinant Asn34Ser mutant and wild type 
PSTI showed no difference in binding (Hirota 
et al., 2003). Thus, the Asn34Ser mutation 
has been suggested to act more like a disease 
susceptibility factor, possibly by lowering 
the threshold for pancreatitis caused by other 
genetic or environmental factors (Masson et 
al., 2006, Pfutzer et al., 2000, Schneider et al., 
2002). Interestingly, the Asn34Ser mutation 
always co-segregates with intronic mutations 
and altered splicing has been suggested to 
underlie the predisposition to HP (Kuwata et 
al., 2002). 

The Met1Thr mutation eliminates the start 
codon of PSTI leading to an overall loss 
of PSTI expression (Witt et al., 2000). The 
Arg67Cys mutation has been suggested to 
cause massive conformational alterations 
in the protein, probably by a novel intra- or 
intermolecular disulfide bond, as the mutant 
recombinant PSTI isoforms lost their reactivity 
with an anti-PSTI (wild type) antibody (Hirota 
et al., 2003). Signal peptide variants that have 
been demonstrated to impair secretion of PSTI 
and destine the inhibitor for rapid intracellular 
degradation are also associated with HP 
(Kiraly et al., 2007).

Cystic fibrosis transmembrane conductance 
regulator gene mutations. Mutations in the 
cystic fibrosis transmembrane conductance 
regulator gene (CFTR), located on chromosome 
7q31 (Riordan et al., 1989), lead to exocrine 
glandular dysfunction and cystic fibrosis, but 
are also associated with chronic pancreatitis 
(Audrezet et al., 2002, Sharer et al., 1998). The 
first organ to be affected in phenotypical severe 
CF is the exocrine pancreas (Schwiebert et al., 
1998). In a cohort of 134 patients with chronic 
pancreatitis Sharer et al. (Sharer et al., 1998) 
found – and the results have been confirmed 
by others (Cohn et al., 1998, Ockenga et al., 
2000) – that the frequency of CFTR mutation 
was higher than expected. Thus, mutations of 
the CFTR gene are a risk factor for chronic 
pancreatitis. 

The CFTR protein is present at high levels in 
intralobular and proximal ductular epithelia 
of the pancreas and at low levels in acinar 
cells. There it maintains the solubility of 
the secreted enzymes by mediation of the 
secretion of bicarbonate-rich alkaline fluid 
(Shumaker et al., 1999). Impaired solubility of 
pancreatic juice may thus be responsible for 
the increased risk of pancreatitis. Decreased 
activity of the mutated CFTR protein has also 
been suggested to interact with mutations in 
PSTI or trypsinogen-1 gene (Hirota et al., 
2006b).

HP and acinar cell viability. The role of 
trypsinogen-1 in pancreatitis has been studied 
by the expression of wild type active trypsin-1, 
trypsinogen-1 and trypsinogen-1 bearing HP-
associated mutations in the pancreatic acinar 
cell line AR4-2J (Gaiser et al., 2005). AR4-2J 
cell viability was reduced dose-dependently by 
transfection with a vector coding for functional 
trypsin-1, trypsinogen mutants Ala16Val, 
Asp22Gly, Lys23Arg and Arg122His. Wild 
type trypsinogen-1 had no effect on cell 
viability. Caspase-3 activity was shown to be 
significantly higher in cells expressing active 
trypsin-1 or the Arg122His trypsinogen-1 than 
in cells expressing wild type trypsinogen-1. 
Furthermore, caspase-3 activity was reduced 
in the presence of trypsin inhibitor. These 
findings suggest that expression of HP-
associated mutations result in a stress strong 
enough to induce apoptosis in AR4-2J cells 
probably due to intracellular occurence of 
active trypsin. Thus, the sensibility of acinar 
cells to intracellular trypsin activity leading to 
apoptosis might have a protective effect in the 
pancreas (Gaiser et al., 2005).

Clinical value of trypsinogen 
determinations

In serum of healthy subjects, the average 
concentration of trypsinogen-1 has been 
reported to be 15 to 26 µg/L (I) (Borgström 
and Ohlsson, 1976, Florholmen et al., 1984b, 
Geokas et al., 1979) and that of trypsinogen-2 
5.5 to 17 µg/L (I) (Largman et al., 1978). 
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Cystic fibrosis. The exocrine pancreas is 
affected in cystic fibrosis (CF), a disease caused 
by mutations in a chloride channel encoded by 
cystic fibrosis transmembrane conductance 
regulator gene (CFTR) (Aleksandrov et 
al., 2007, Riordan et al., 1989). Pancreatic 
damage begins in utero, which can be 
identified in neonates on the basis of elevated 
blood concentrations of pancreatic enzymes, 
especially trypsinogen (Sharer et al., 1998 
and references therein). Transiently elevated 
serum levels of immunoreactive trypsinogen 
(IRT) have been found to be associated with 
the presentation of typical as well as atypical 
CF (Castellani et al., 1997). Determination 
of serum IRT in neonates is used as a test for 
screening for CF in many countries (Rock et 
al., 2005). Another test for CF is the sweat 
chloride test. A positive result with IRT and/
or sweat chloride test is confirmed by gene 
mutation analysis (Spence et al., 1993). 

Acute pancreatitis. Trypsinogen, trypsinogen 
activation peptide (TAP) and trypsin-API 
complexes in body fluids have been found 
to be increased in acute pancreatitis and 
can thus be used as diagnostic markers (I) 
(Borgström and Ohlsson, 1978, Borgström 
et al., 2002, Brodrick et al., 1979, Dubick et 
al., 1987, Elias et al., 1977, Florholmen et 
al., 1984b, Geokas et al., 1979, Gudgeon et 
al., 1990, Hedström et al., 1994, Hedström et 
al., 1996c, Hedström et al., 1996d, Petersson 
and Borgström, 2006, Petersson et al., 1999, 
Sainio et al., 1996, Tenner et al., 1997). 
Commercial radioimmunoassays, enzyme 
immunoassays and immunofluorometric 
assays for trypsinogen as well as TAP 
ELISA assay are available. A rapid dipstick 
screening test for pancreatitis, based on 
immunochromatographic measurement of 
urinary trypsinogen-2, has been developed 
(Hedström et al., 1996b, Kemppainen 
et al., 1997) and shown to detect acute 
pancreatitis more accurately than routinely 
used quantitative serum or urinary amylase 
determinations. However, serum amylase, 
often supplemented with serum lipase has 
remained the cornerstone laboratory test for 
diagnosis of acute pancreatitis in hospitals.

Allograft rejection and malnutrition. 
Serum trypsinogen-2 is shown to be 
accurate and sensitive diagnostic marker 
for rejection and inflammation occurring in 
the pancreatic allograft following pancreas-
kidney transplantation (Douzdjian et al., 
1994, Lieberman et al., 1997, Perkal et al., 
1992). Co-monitoring serum amylase and 
trypsinogen-2 increased the specificity and 
diagnostic accuracy of the biochemical 
tests (Lieberman et al., 1997). Furthermore, 
increased levels of serum trypsinogen-1 have 
been reported in acutely malnourished infants 
and children (Durie et al., 1985). Improvement 
in nutritional status reverted trypsinogen-1 
levels to normal. 

Malignancies. Trypsinogens are associated 
with several malignancies and they could 
be used as diagnostic and prognostic factors 
for some cancers. However, the use of these 
tests is very limited. TAT-2 complexed with 
API has been shown to be a strong prognostic 
marker in advanced epithelial ovarian cancer 
(Paju et al., 2004). Immunohistochemically 
detected trypsin has been shown to correlate 
with disease recurrence and poor prognosis 
in human colorectal cancer (Yamamoto et 
al., 2003) and esophageal squamous cell 
carcinoma (Yamamoto et al., 2001). In non-
small cell lung cancer (NSCLC) up-regulation 
of trypsinogen IVb (PRSS3) and trypsinogen 
C (TRY6) gene expression are predictors of 
distant metastasis and survival as revealed by 
microarray analysis (Diederichs et al., 2004).

Serum trypsinogen-2 has high accuracy in 
differentiating between cholangiocarcinoma 
and primary sclerosing cholangitis (Lempinen 
et al., 2007). Thus, it is a useful marker 
diagnosing patients with cholangiocarcinoma, 
and it is superior to serum tumor markers CA 
19-9 and CEA. 
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Post-translational modification of 
proteins 

The explosion of genetic information has 
increased our knowledge of living systems 
enormously. However, the structure of 
a mature protein is not dependent solely 
upon its gene, but also on post-translational 
modifications (PTMs). Chemical, biochemical, 
and enzymatic PTM of proteins to specific 
amino acid residues are common as over 
200 variant amino acid residues have been 
detected (Creighton, 1984). They include 
disulfide bridge formation, glycosylation, 
proteolysis, phosphorylation, acylation, 
adenylation, farnesylation, ubiquitination, 
sulfation, amidation, oxidation, methylation, 
nitration, citrullination, isoprenylation, 
and palmitoylation, among others. These 
modifications affect the properties of proteins 
in many ways, i.e. activity, lifespan and 
protein-protein interactions (Hochrainer and 
Lipp, 2007, Li and Shang, 2007, Omary et al., 
2006, Vader et al., 2006, Vervoorts et al., 2006, 
van der Horst and Burgering, 2007).

Tyrosine O-sulfation

Tyrosylprotein sulfotransferase. Sulfate 
trioxide (SO3) may be covalently bound 
to the hydroxyl group on the side-chain of 
tyrosine and each sulfate moiety increases the 
molecular mass of the protein by 79.957 Da 
(Kehoe and Bertozzi, 2000). Protein tyrosine 
O-sulfation was first observed by Bettelheim in 
bovine fibrinopeptide B in 1954 (Bettelheim, 
1954). Later, it was shown to be a ubiquitous 
protein modification (Huttner, 1982) mediated 
by tyrosylprotein sulfotransferase (TPST, 
EC 2.8.2.20) (Huttner, 1987, Lee and 
Huttner, 1983). TPST catalyzes the transfer 
of sulfate from the universal sulfate donor 
3’-phosphadenosine 5’phosphosulfate (PAPS) 
to the hydroxyl group of tyrosine residues of 
proteins to form a tyrosine O4-sulfate ester and 
3’,5’-ADP (Lee and Huttner, 1983). TPST is an 
integral membrane glycoprotein present in two 
forms (TPST-1 and TPST-2) in the trans Golgi 
network, and the two forms are coexpressed in 
many species, tissues and cell lines throughout 

the plant and animal kingdom examined so far 
(Baeuerle and Huttner, 1987, Beisswanger 
et al., 1998, Huttner, 1987, Lee and Huttner, 
1985, Moore, 2003, Niehrs and Huttner, 1990, 
Ouyang and Moore, 1998, Ouyang et al., 
1998, Ouyang et al., 2002, Vargas et al., 1985, 
William et al., 1997, William et al., 1997). 

Predicted tyrosine sulfation sites. The Golgi 
localization and the luminal active site 
orientation of TPST-1 and -2 predict that 
tyrosine O-sulfation occurs only on proteins 
that transit through the trans Golgi network 
and there is no evidence of violation of this 
rule (Moore, 2003). Not only secreted proteins 
but also membrane-bound proteins are equally 
likely to be sulfated (Hille and Huttner, 1990, 
Hille et al., 1990). There is no sequon for 
tyrosine O-sulfation per se, but consensus 
features predicting tyrosine sulfation have 
been proposed. 

First, the presence of acidic amino acids like 
aspartic or glutamic acid at position -1 and at 
least two more acidic residues present between 
positions -5 and +5 of the sulfated tyrosine 
occur frequently. Secondly, the presence of 
turn-inducing amino acids within positions -7 
to -2 and +1 to +7 of the tyrosine sulfate residues 
seem to form a favorable secondary structure 
for the recognition of substrate proteins by 
TPST. Finally, no identified tyrosine sulfation 
site contains a PTM causing steric hindrance 
like disulfide bonds or N-glycosylation near 
the tyrosinesulfate residue (Hortin et al., 1986, 
Huttner, 1987, Niehrs and Huttner, 1990, 
Niehrs et al., 1990). Later, data from site-
directed mutagenesis of human progastrin in 
vivo (Bundgaard et al., 1997) show that basic 
residues around sulfation site are allowed, 
though not in position -1. 

Frequency. A software tool called Sulfinator 
for prediction of tyrosine sulfation sites in 
protein sequences is accessible on the ExPASy 
server at the URL http://www.expasy.org/tools/
sulfinator/ (Monigatti et al., 2002). Scanning 
with Sulfinator of proteins from various species 
that according to SWISS-PROT pass through 
the secretory pathway suggest that one third of 
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proteins that enter the secretory pathway may 
contain on average two tyrosine sulfation sites 
per protein (Monigatti et al., 2002). Another 
estimation is that 7% of mammalian proteins 
are tyrosine sulfated (Moore, 2003). According 
to an in vivo labeling study of Drosophila 
melanogaster with inorganic 35SO4 as much 
as 1% of the tyrosine residues of the proteins 
in an organism can be sulfated (Baeuerle and 
Huttner, 1985). 

Regulation of tyrosine O-sulfation. The 
regulation of tyrosine O-sulfation is not 
known. The fact that tyrosine sulfation is 
poorly reversible or even irreversible in vivo 
and in vitro suggests that tyrosine O-sulfation 
is not modulated by the sulfatases (Dodgson 
et al., 1959, Dodgson et al., 1961, Jones et al., 
1963, Tallan et al., 1955). Sardinello and co-
workers determined by a genomic approach 
the complete catalog of human sulfatases, 
which comprises 17 members, but no 
extracellular sulfotyrosylprotein sulfatase was 
identified (Sardiello et al., 2005). Tyrosine 
phosphorylation, which is chemically and 
structurally a close relative PTM to tyrosine 
sulfation, is mediated by a rich array of 
kinases and phosphatases and is involved in 
multiple signaling and regulatory functions 
in the cells (Craven et al., 2003, Wang et 
al., 2003). The small number of TPSTs and 
the apparent absence of sulfotyrosylprotein 
sulfatase suggest that protein TPST isoforms 
are expressed in a cell-specific manner 
(Bundgaard et al., 1997). However, evidence 
for transcriptional regulation of the TPST-1 
and TPST-2 genes is very limited (Moore, 
2003). 

Effects of tyrosine-sulfation

Known human tyrosine-sulfated proteins 
include adhesion molecules, G-protein coupled 
receptors, coagulation factors, serpins, 
extracellular matrix proteins, hormones, 
enzymes and others (Moore, 2003). Post-
translational tyrosine O-sulfation of proteins 
may affect protein-protein interactions 
involved in leukocyte adhesion (Fong et al., 
2002, Kehoe and Bertozzi, 2000), hemostasis 

(Leyte et al., 1991, Michnick et al., 1994, 
Pittman et al., 1994), chemokine signaling 
(Kehoe and Bertozzi, 2000), intracellular 
protein transport and secretion (Friederich et 
al., 1988), prohormone processing (Bundgaard 
et al., 1995, Huttner, 1987), receptor-ligand 
binding (Choe et al., 2005, Costagliola et al., 
2002, Gao et al., 2003, Wilkins et al., 1995) 
and it may influence the biological activity 
(Brand et al., Dorfman et al., 2006, Hortin et 
al., 1989) and half-life of proteins (Huttner, 
1987). 

The HIV-1 envelope glycoprotein has been 
reported to use sulfotyrosines of the chemokine 
receptor CCR5 to enter cells that express this 
obligate coreceptor (Farzan et al., 2002). 
Likewise, the Duffy antigen/receptor for 
chemokines (DARC) is necessary for entry of 
Plasmodium vivax malaria into maturing red 
blood cells, and a sulfotyrosine at the DARC 
amino terminus mediates its association with 
the P. vivax Duffy-binding protein (Choe et al., 
2005). It is suggested that sulfotyrosines may 
be especially adept at binding diverse proteins 
with high affinity since the sulfate group 
distinctively modifies the electronic properties 
of the phenyl ring of the tyrosine, providing 
abundant, highly polarizable electrons. 
Therefore, the sulfate group provides some 
level of specificity but can also accommodate 
subtly different microenvironments (Choe and 
Farzan, 2006). 

To assess the role of tyrosine sulfation in vivo, 
Tpst1 and Tpst2 knock-out mice have been 
generated by targeted disruption of the Tpst1 
and Tpst2 genes (Borghei et al., 2006, Ouyang 
et al., 2002). Disruption of either the Tpst1 
or Tpst2 gene decreased postnatal growth. 
Maternal TPST-1 deficiency also reduced 
the litter size due to fetal loss and increased 
perinatal mortality. TPST-2 deficient male, 
but not female mice, were infertile. It seems 
that protein(s) required for normal male 
reproductive function must undergo tyrosine 
O-sulfation to function normally and that these 
proteins can be sulfated in vivo in the absence 
of TPST-1 but not TPST-2. High affinity and 
specific anti-sulfotyrosine MAbs have recently 
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been generated and this will facilitate further 
investigation and identification of tyrosine-
sulfated proteins (Hoffhines et al., 2006, 
Kehoe et al., 2006).

Post-translational modification of 
pancreatic trypsinogens

The first evidence for sulfation of pancreatic 
trypsinogen-1 and -2 came from two-
dimensional isoelectric focusing/sodium 
dodecyl sulfate gel electrophoresis. 
Incorporation of 35SO4 into trypsinogen of 
pancreatic tissue slices was demonstrated by 
fluorography of tissue homogenates separated 
by the two-dimensional gel procedure. Results 
from acid treatment of the homogenates 
suggested that the sulfate moiety was 
covalently attached to tyrosine residue (Scheele 
et al., 1981). Preliminary ESI MS data from 
Szilagyi and colleagues (Szilagyi et al., 2001) 
suggest that the modifying group at Tyr154 
in trypsinogen-1 is sulfate and not phosphate 
as based on the crystal structure study of 
Gaboriaud and colleagues (Gaboriaud et al., 
1996). Later, sulfated tyrosine residues from 
purified trypsinogen isoenzymes, subjected 

to alkaline hydrolysis, have been identified 
by thin layer chromatography (Sahin-Tóth 
et al., 2006). Furthermore, incorporation of 
35SO4 into human trypsinogen-1 transiently 
expressed by human embryonic kidney 239T 
cells was demonstrated. Mutation of Tyr154 to 
Phe abolished radioactive sulfate incorporation 
confirming that Tyr154 is the site of sulfation 
in trypsinogen-1. 

When comparing the sulfated pancreatic 
trypsinogen-1 and its nonsulfated recombinant 
form, it was found that the sulfated 
trypsinogen-1 underwent faster autoactivation. 
This suggests that tyrosine sulfation might 
enhance intestinal digestive zymogen 
activation in humans (Sahin-Tóth et al., 
2006). The amidolytic and esterolytic activity 
of modified and non-modified trypsin-1 are 
essentially identical, but sulfated trypsin-1 is 
slightly better inhibited by PSTI (Szilagyi et 
al., 2001). The finding that mRNA expression 
of the TPST-2 isoform is drastically higher in 
the pancreas than in any other tissues examined 
(Ouyang and Moore, 1998) is thought to 
explain the high stoichiometry of human 
pancreatic trypsinogen-1 and -2 sulfation.
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Aims of the present study

Tumor-associated trypsin inhibitor (TATI) 
has been isolated from urine of an ovarian 
cancer patient (Stenman et al., 1982) and 
shown to be identical to pancreatic secretory 
trypsin inhibitor (PSTI) (Huhtala et al., 1982). 
In search for a target protease for TATI, two 
trypsinogen isoenzymes were characterized 
in cyst fluid of mucinous ovarian tumors 
(Koivunen et al., 1989). The N-terminal amino 
acid sequences of these tumor-associated 
isoenzymes corresponded to those of pancreatic 
trypsinogen-1 and -2 respectively. However, 
the isoenzymes had different specificities for 
p-nitroanilide substrates, responded differently 
to various protease inhibitors and had different 
isoelectric points from those of trypsinogen-1 
and -2. Therefore, they were named tumor-
associated trypsinogen-1 and trypsinogen-2 
(TAT-1 and TAT-2) (Koivunen et al., 1989).
 
The first aim of the present study was the 
preparation of specific monoclonal antibodies 
to trypsinogen isoenzymes, the development of 
quantitative immunoassays for trypsinogen-1 
and -2, and the purification, identification 
and characterization of pancreatic and 
tumor-associated trypsinogen isoenzymes by 
various chromatographic and immunologic 
techniques. 

There have been contradictory reports about 
post-translational modification of pancreatic 
trypsinogen-1. The molecular weight of 

human pancreatic trypsinogen-1 has been 
determined by mass spectrometry to be 80 
Da higher than the theoretical mass deduced 
from the polypeptide sequence (Gaboriaud et 
al., 1996, Szilagyi et al., 2001). Based on the 
x-ray electron density map, the observed mass 
difference was attributed to phosphorylation 
at tyrosine residue 154 (Gaboriaud et al., 
1996). However, incorporation of 35SO4 to 
trypsinogen-1 and -2 in pancreatic tissue 
culture (Scheele et al., 1981) on one hand, and 
alkaline hydrolysis of purified trypsinogens 
and subsequent separation of modified tyrosine 
residues by thin layer chromatography on the 
other hand, has revealed that both human 
trypsinogen-1 and -2 contain tyrosine sulfate 
(Sahin-Tóth et al., 2006). Furthermore, 
trypsinogen-1 expressed in human embryonic 
kidney 293T cells has been shown to 
incorporate 35SO4 into the secreted trypsinogen 
and mutation of Tyr154 to Phe was shown to 
abolish the incorporation (Sahin-Tóth et al., 
2006).

The second aim of this study was to 
characterize by mass spectrometry the 
chemical modification underlying the observed 
differences in isoelectric point, substrate 
binding and inhibitor specificity between 
pancreatic and tumor-associated trypinogen-1 
and -2, respectively. 
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Materials and methods

The materials and methods are described in 
detail in the original papers (I-IV). 

Samples, patients and cell lines (I- 
IV)

The ethical committee of Helsinki University 
Central Hospital, Finland, has approved the 
use of human samples in this study. Cyst fluid 
of ovarian tumors was obtained in connection 
with surgical removal of the tumors. Pancreatic 
fluid was collected by duodenal catheterization 
of patients who were examined because of 
biliary or pancreatic diseases. Benzamidine 
and aprotinin were added to the pancreatic 
fluid to a final concentration of 10 mmol/L and 
10 µg/L, respectively. Serum samples from 
patients with pancreatitis and patients who 
had undergone total pancreatoduodenectomy 
were kindly provided by Dr. Tom Schröder, 
Helsinki University Central Hospital, Finland. 
Serum samples from healthy individuals 
were collected from the laboratory staff and 
from women with benign cysts, infertility 
or pregnancy, and were used to calculate the 
reference range for trypsinogen-1 and -2. 
Preovulatory follicular fluid was obtained from 
patients participating in an in vitro fertilization. 
All samples were stored aliquoted at -20°C or 
-80°C. The colon adenocarcinoma cell line, 
COLO 205, was from American Type Culture 
Collections, and was cultured according to the 
guidelines provided.

Monoclonal antibodies (I)

Monoclonal antibodies, or MAbs, were 
obtained by immunizing BALB/c mice (from 
the Zentralinstitut für Versuchstiersucht, 
Hannover, Germany) intraperitoneally with 
50 µg of TAT containing both isoenzymes 
emulsified in Freund’s complete (first 
injection) or incomplete adjuvant three times 
at 2-week intervals. A booster of 10 µg TAT in 
saline solution was given intravenously four 

days before fusion. The fusion was performed 
as described by Köhler and Milstein (Köhler 
and Milstein, 1975). Antibodies produced 
by the hybridomas were screened by a 
TR-IFMA. Hybridomas secreting MAb 
to trypsinogen-isoenzymes were selected, 
cloned and expanded. Three MAbs designated 
2F3, 3E8 and 6D11 reacted predominantly 
with trypsinogen-1 and two MAbs, 14D4 and 
14F10, reacted with trypsinogen-2.

For the production of large amounts of MAbs 
in ascites fluid BALB/c mice were primed 
intraperitoneally with 0.5 mL pristane (96% 
2,6,10,14-tetramethylpentadecane, Aldrich-
Chemie) one week before the injection of 0.4 
– 1 x 106 hybridoma cells (Hoogenraad and 
Wraight, 1986). Ascites fluid was centrifuged 
and the immunoglobulin fraction from ascites 
fluid was precipitated with Na2SO4 at final 
concentration of 180 g/L. After washing the 
precipitate twice it was dissolved in Na2CO3 
(100 mmol/L, pH 9.0) and stored frozen at 
-20°C. Alternatively, antibody-producing 
hybridomas were cultured in INTEGRA 
CL 1000 flasks (Integra Biosciences), and 
the MAbs were purified from the culture 
supernatant by protein G or protein A affinity 
chromatography (MAbTrap™ or Protein G 
Sepharose 4 fast flow from GE Healthcare 
Bio-Sciences or PROSEP-A from Millipore) 
and MAbs were eluted according to the 
instructions of the respective manufacturer.

The subclass of the MAbs was determined 
by immunodiffusion (Ouchterlony, 1958) 
with specific antibodies from Nordic 
Immunological Laboratories. All MAbs were 
of the immunoglobulin G1 isotype.

Time-resolved immunofluorometric 
assays (I)

MAb production by hybridoma cells was 
detected by a sandwich TR-IFMA employing 
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polyclonal rabbit antiserum to human 
pancreatic trypsin (Koivunen et al., 1989) 
immobilized onto microtiter wells, to bind 
partially purified trypsinogen-1 or -2 to the 
immobilized antibody. The trypsinogen 
isoenzyme reactive MAbs were detected by 
rabbit anti-mouse immunoglobulins (Dako) 
labeled with europium (Eu).

Two TR-IFMAs were developed to recognize 
trypsinogen-1 and -2, respectively. Each assay 
is based on the combination of two specific 
antibodies, catcher antibody immobilized onto 
microtiter wells and tracer antibody labeled 
with Eu chelate. 

Catcher MAbs were immobilized onto 200 
µL polystyrene microtiter wells by incubating 
200 µl corresponding to 2 µg of MAb in 
Na2CO3 (100 mmol/L, pH 9.0) overnight at 
+4°C. To block non-specific adsorption 1% 
bovine serum albumin in TBS (50 mmol/L 
Tris-HCl buffer, pH 7.4 containing 9 g/L NaCl 
and 0.5 g/L NaN3) was added to the wells and 
left overnight at +4°C. The BSA-solution was 
then discarded and the wells were stored in a 
moist atmosphere at +4°C.

Tracer MAbs were labeled with 
isothiocyanato-phenyldiethylenetriamine-
N1,N2,N3,N4-tetraacetate chelated with 
europium(III) (Hemmilä et al., 1984) with a 
100-fold molar excess of the chelate. After 
incubation overnight at +4°C unbound chelate 
was separated from the labeled MAb by gel 
chromatography on a 1 x 15 cm column of 
Sephacryl S200 HR (Pharmacia Biotech) 
using TBS as eluent. Further purification 
was achieved by hydrophobic interaction 
chromatography on a 2 mL phenyl-Sepharose 
column (Pharmacia, Uppsala, Sweden) 
equilibrated with TBS. After application of 
the labeled MAb, the column was eluted with 
10 mL of TBS at hydrostatic pressure. The 
nonadsorbed fraction was collected, stored 
at +4°C and used as tracer MAb in the TR-
IFMA. 

All possible combinations of MAbs were 
tested as catcher and tracer for the optimal 

assay for trypsinogen-1 and -2. For assay 
of trypsinogen-1, combinations of MAbs 
designated 6D11 as catcher and either 2F3 
or 3E8 as the tracer were selected. For 
trypsinogen-2 MAbs 14F10 and 14D4 have 
been used as either catcher or tracer.

TR-IFMA for trypsinogen-1 and -2 is 
performed as described (I). Briefly, 25 µL of 
standard or sample along with 200 µL buffer 
was incubated in the MAb-coated wells for 
one hour at room temperature with constant 
shaking. The wells were washed and 50 ng 
of Eu-labeled MAb in 200 µL was added 
and incubated for 30 minutes as above. After 
washing the wells 200 µL of enhancement 
solution was added and the mixture was 
shaken for 5 minutes. Fluorescence was then 
measured for one second per well in an LKB 
1230 Arcus Fluorometer.

TR-IFMA for trypsinogen-1 was calibrated 
by using PMSF-inhibited pancreatic trypsin-1 
covering the concentration range 0.24 to 250 
µg/L. Today, TAT-1 recombinant protein is 
used as standard. TR-IFMA for trypsinogen-2 
was calibrated by using the zymogen form of 
TAT-2 purified from culture medium of COLO 
205 cells. The standard curve covered the 
range 0.97 to 495 µg/L. As assay calibrators 
we use secondary standards diluted from 
ovarian cyst fluid.

Sensitivity of the TR-IFMAs for trypsinogen-1 
and -2 assay, respectively, was calculated 
from the mean fluorescence signal of a 
zero sample (assay buffer, n=20) plus two 
standard deviations. The intra- and inter-
assay variation of the assays was calculated 
from the repetitive results of control samples 
(mucinous ovarian cyst fluids diluted in assay 
buffer) stored at -20°C. The cross-reaction 
of each isoenzyme in the assay for the other 
isoenzyme was confirmed by assaying 
trypsinogen-1 and -2 separated by anion 
exchange chromatography.

Radioimmunoassays (I and II)

RIA kits for the determination of trypsin-like 
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immunoreactivity were obtained from CIS 
and were used according to the instructions 
of the manufacturer. The assay employs rabbit 
antiserum to human trypsin-1, 125I labeled 
trypsin-1 as tracer, and is calibrated with 
trypsin-1 purified by Trasylol (aprotinin)-
affinity chromatography. The serum sample 
volume used in the assay was 100 µL. 

RIA of TATI was performed employing a 
polyclonal rabbit antiserum and 125I labeled 
TATI as described (Stenman et al., 1982). 
Concentration of TATI in normal serum was 
reported to be 5 to 20 µg/L.

Characterization of trypsinogens by 
gel filtration chromatography (I and 
II)

Serum samples (0.5 mL) were applied to a 1 
x 35 cm Sephacryl S-200 column and eluted 
with TBS at a flow rate of 20 mL/hr at +4°C. 
One mL fractions were collected and 100 µL 
of a solution that contained 50 g bovine serum 
albumin, 5 g bovine immunoglobulin, 10 
mg aprotinin and 1 g Tween-40 per liter was 
added to each fraction. Immunoreactivity of 
the fractions was determined by TR-IFMA for 
trypsinogen-1 and -2 with a sample volume of 
200 µL. 

Gel filtration of hyperstimulated follicular fluid 
and filtered ovarian cyst fluid was performed 
on Superose 12 column (Pharmacia) in TBS 
at a flow rate of 0.5 mL/minute. The sample 
volume was 200 µL and fraction size 400 µL.

The gel filtration columns were calibrated 
with albumin 67 kDa), ovalbumin (43 kDa), 
soybean trypsin inhibitor (21 kDa) and 
aprotinin (6 kDa).

Purification of trypsinogen (I, II and 
IV)

Trypsinogen from mucinous ovarian cyst fluid 
was purified by a combination of batch-wise 
anion exchange, immunoaffinity, and reverse-
phase (RP) chromatography as described 

elsewhere (Koivunen et al., 1989). Briefly, 
cyst fluid was centrifuged and dialyzed against 
distilled water with a hollow fiber dialyzer. 
The dialyzed cyst fluid was mixed overnight 
with a strong anion exchanger, Q Sepharose 
(Pharmacia Biotech). After washing away 
unbound material, bound proteins were eluted 
with 1 mol/L NaCl and 1% isopropanol. 
Trypsinogen from human pancreatic juice or 
conditioned media from COLO 205 cells was 
purified by immunoaffinity chromatography 
after centrifugation and pH adjustment to 
7.5. Before immunoaffinity chromatography, 
benzamidine, aprotinin and Brij 35 were added 
to final concentration of 10 mmol/L, 10 mg/L 
and 0.1%, respectively, to all preparates. 

Immunoaffinity columns were produced by 
coupling MAbs 3E8 for trypsinogen-1 and MAb 
14F10 for trypsinogen-2 to CNBr-activated 
Sepharose 4B (Pharmacia Biotech) according 
to the manufacturer’s instructions. The starting 
material was pumped at a flow rate of 10 to 
30 mL/h through the two immunoaffinity 
columns connected in tandem. After sample 
application the columns were separated and 
washed. The bound fraction was eluted with 
0.1% TFA containing 1 mmol/L CaCl2, 10 
mmol/L benzamidine and 10 mg/L aprotinin, 
collected in one mL fractions, neutralized and 
assayed for trypsinogen immunoreactivity. 
Fractions containing trypsinogen were further 
purified by ion exchange or reverse-phase 
HPLC. All purification steps except HPLC 
were carried out at +4°C.

Separation of trypsinogen iso-
enzymes by anion exchange and RP 
HPLC (I, III and IV)

Before anion exchange chromatography was 
performed, serum samples and cell culture 
media were diluted fivefold, and cyst fluids 
were diluted 10- to 30-fold with 50 mmol/L 
Tris-HCl buffer, pH 8,0 (buffer A). Five 
hundred µL of diluted sample was applied to a 
Mono Q HR 5/5 or Resource Q anion exchange 
column (Pharmacia Biotech) equilibrated with 
buffer A and eluted with a linear gradient (0 
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to 100% in 40 or 60 minutes, respectively) 
of buffer A containing 1 mmol/L CaCl2, 0.5 
mol/L NaCl, and 0.1% isopropanol. Fractions 
of 0.5 to 2 mL were collected and assayed for 
trypsinogen-1 and -2. Trypsinogen isoenzymes 
isolated by immunoaffinity chromatography 
were chromatographed in the same manner.

Immunoaffinity purified trypsinogen 
preparations were further purified by RP HPLC 
on either 8 x 100 mm µ-Bondapak C18 Radial-
PAK or 3.9 x 75 mm Nova-Pak C18 column 
(Waters), C1 (2.1 x 100 mm) or C4 (3.9 x 20 
mm) column. Trypsinogen was eluted with a 
linear gradient of 0.1% TFA in ACN. A HPLC 
system from LKB, ÄKTA prime or ÄKTA 
purifer (Amersham Biosciences) was used. 

Activation of trypsinogen iso-
enzymes (I and II)

Trypsinogen isoenzymes were purified by ion 
exchange HPLC and divided to three aliquots. 
Aprotinin was added to a concentration of 70 
mg/L to two aliquots to prevent autoactivation. 
One of these was activated by enteropeptidase 
(EC 3.4.21.9, Sigma) by incubation at 23°C 
for 16 hours. The third aliquot was activated 
in the absence of aprotinin and activation was 
confirmed by assay of enzyme activity with the 
synthetic p-nitroanilide substrate S-2222 (Kabi) 
(Koivunen et al., 1989). Immunoreactivity of 
the trypsin-aprotinin complex was compared 
with that of the proenzyme (I). Alternatively, 
trypsinogen was autoactivated in neutral pH at 
37°C for 2 hours (II).

Alkylation and digestion of 
trypsinogens (IV)

Purified trypsinogens were reduced with 
dithiotreitol and alkylated with 4-vinylpyridine 
(Aldrich). The alkylated proteins were 
desalted by RP HPLC. Trypsinogen 
containing fractions were pooled, dried and 
subjected to trypsin digestion using 5% w/w 
sequencing grade trypsin (Promega Ltd). The 
tryptic peptides were separated by RP HPLC, 
collected and analyzed by MALDI-TOF mass 

spectrometry.

For further digestion with chymotrypsin, 
selected peptides were dried and dissolved 
in 50 mmol/L Tris-HCl buffer containing 
0.6 mol/L urea. Five % (w/w) chymotrypsin 
(Sigma) was added and digestion was carried 
out at 37°C overnight. The chymotryptic 
peptides were separated by RP HPLC and 
collected as above. 

Mass spectrometry (IV)

Matrix-assisted laser desorption ionisation 
time of flight (MALDI-TOF) MS was per-
formed with a Biflex MALDI-TOF mass 
spectrometer (Bruker-Daltonics) equipped 
with a nitrogen laser operating at 337 nm. 
Before MALDI-TOF analysis, the protein 
digests were desalted using poros R3 
(PerSeptive Biosystems) material. The peptides 
were eluted directly onto the MALDI sample 
plate with α-cyano-4-hydroxy-cinnamic acid 
matrix in 0,1% TFA, 50% ACN. RP HPLC 
–purified proteolytic peptides were pipetted 
directly onto a MALDI sample plate with 
an equal volume of matrix and dried under 
a gentle stream of warm air. Peptides were 
analyzed either in the positive ion reflector or 
linear mode. 

Electrospray ionization (ESI) MS analyses 
of purified trypsinogens and their digests 
were performed using a Micromass Q-TOF 
quadrupole/time-of-flight hybrid mass 
spectrometer (Q-TOF Micro, Waters). For 
analysis of intact proteins, the trypsinogens 
were injected into the mass spectrometer via 
a nanoflow interface with a Hamilton-syringe 
pump. The digested peptides were injected into 
the mass spectrometer after fractionation by 
nanoscale RP-HPLC on the CapLC (Waters) 
with a 0.075 x 150 mm C18 column (Symmetry 
C18, 300 Å, 3.5 μm, Waters) that was eluted 
with a linear gradient of ACN (5-50% in 30 
min) in 0.1% formic acid. Flow rate was 0.25 
μL/min and the eluent was directly injected 
into the mass spectrometer. The capillary 
voltage was 2000 V and the source block 
temperature 120 ºC. The sampling cone was 
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operated normally at 45 V, but at in-source 
dissociation experiments ramped from 30 to 
70 V. Tandem mass spectrometric (MSMS) 
fragmentation spectra of the peptides were 
acquired by colliding the doubly or triply 
charged precursor ions with argon collision 
gas at accelerating voltages of 30-45 V. As 
sulfotyrosine and phosphotyrosine standard 
peptides we used DsYMGWMDF (1134.442 
Da) from Bachem and YRMKKKDEGSpYT 
(1584.714 Da) synthetized on a 433A automatic 
peptide synthetizer (Applied Biosystems).

Data analysis (IV)

Data analysis of intact protein ESI mass 
spectra was carried out with MassLynx 
software (Waters) and PAWS proteomic 
analysis software (ProteoMetrics). Mass 
spectra collected during the LC-MS separation 
of digested peptides were exported into 
ASCII text files using the DataBridge of the 
MassLynx software (Waters). The text files 
were imported into the DeCyder MS software 
(GE Healthcare), where different elution 
profiles were visualized as two-dimensional 
graphs and different m/z values deconvoluted 
into molecular masses of 700-6000 Da. The 
ion counts of all different charge states of 
the same peptide were taken into account to 
calculate total intensity of the deconvoluted 
masses.

N-terminal sequence analysis (IV)

NH2-terminal sequence analyses were 
performed by the Edman degradation 
using a Procise 494A sequencer (Applied 
Biosystems).

Electrophoresis and immuno-
blotting (II and IV)

SDS-PAGE was performed according to 
Laemmli (Laemmli, 1970) under non-
reducing conditions on 20% polyacrylamide 
Phastgels using the Phastsystem (Pharmacia) 
and stained with silver according the 
manufacturer’s instructions. For Western 
blot analysis the proteins were separated 
on regular 12.5 % acrylamide gels 
and transferred to a PVDF membrane 
(Immobilon-P, Millipore). The membrane was 
incubated with anti-phosphotyrosine antibody 
(clone 4G10, Upstate) and MAb 14F10 
specific for trypsinogen-2. Immunoreactive 
proteins were detected with enhanced 
chemiluminescense (Super Signal West 
Femto Maximum Sensitivity detection kit, 
Pierce Biotechnology).

Statistical analysis (II)

Student’s unpaired t test and Mann-Whitney 
U test were used to estimate the differences 
between the trypsinogen levels in the various 
ovarian cyst fluids and serum samples, 
respectively. 
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Results

Immunoassays for trypsinogens/
trypsin and concentrations in serum 
samples (I, III)

The sensitivity of the TR-IFMAs for 
trypsinogen-1 and -2 was 0.1 and 0.3 
µg/L, respectively. The sensitivity could 
be increased up to eight-fold by increasing 
the sample volume to 200 µL. It is reported 
by the manufacturer that the commercial 
RIA for trypsin determines trypsin-like 
immunoreactivity, eventually trypsinogen-1, 
in serum or plasma. The immunoreactivity 
of trypsin-1 as compared to trypsinogen-1 is 
reported to be 60%. 

For the TR-IRMA for trypsinogen-1 there 
was no effect of proenzyme activation 
on the immunoreactivity as studied by 
activated and aprotinin-inactivated trypsin-1. 
However, in the TR-IRMA for trypsinogen-2 

the immunoreactivity of the activated and 
aprotinin-inhibited trypsin-2 and of highly 
purified PMSF-inhibited trypsin-2 was only 
57% and 10%, respectively. Comparison of 
commercial RIA for trypsin and the developed 
TR-IFMA for trypsinogen-1 revealed good 
correlation at concentrations higher than 30 
µg/L (Figure 2). The correlation was r = 0.83 
for control samples (n = 11) and r = 0.90 for 
pancreatitis samples (n = 20). Despite the 
reported sensitivity (2 µg/L) and standard curve 
range (5 to 400 µg/L) RIA discriminated poorly 
below 30 µg/L. TAT-2 purified from COLO 
205 cell culture media by immunoaffinity 
and ion exchange chromatography was not 
detected by the RIA. For the TR-IFMAs for 
trypsinogen isoenzymes the cross-reaction of 
each isoenzyme in the assay for the other one 
was confirmed to be less than 1% by assaying 
trypsinogen-1 and -2 separated by anion 
exchange chromatography.

The concentration of trypsinogen-1 (median 
21 µg/L) was higher than that of trypsinogen-2 

(median 17 µg/L) in serum of 
healthy subjects and patients 
with extrapancreatic disease. The 
reference range of this control 
group for trypsinogen-1 and -2 
was calculated to be 5.6 to 69 µg/L 
and 5.1 to 53 µg/L, respectively. 
However, in acute pancreatitis the 
ratio of trypsinogen isoenzymes in 
serum is reversed: the concentration 
of trypsinogen-2 is 50-fold higher 
than in control sera, whereas 
the difference in trypsinogen-1 
concentration is 15-fold (Figure 
2). In serum samples from 
patients who have undergone 
total pancreatoduodenectomy one 
of nine contained trypsinogen-1 
immunoreactivity (2 µg/L), 
whereas all samples contained 
trypsinogen-2 (median 3 µg/L), 
the mean level being one fifth of 
that in control sera. The levels of 
trypsinogen isoenzymes, trypsin-
like immunoreactivity and TATI in 
serum samples, ovarian follicular 

Figure 2. Serum concentrations of trypsinogen-1 (Trg-1) 
and -2 (Trg-2) measured by TR-IFMA and of trypsin 
measured by RIA form CIS in sera from healthy subjects 
(☐) and patients with acute pancreatitis (o). Lines indi-
cate median of each group.
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fluids and ovarian cyst fluids are summarized 
in Table 4. 

TAT and TATI concentrations in 
ovarian tumor cyst fluids (II)

In hyperstimulated ovarian follicular fluid the 
median levels of TAT-1 (22 µg/L) and -2 (15 
µg/L) corresponded to those in normal serum, 
TAT-1 being the main isoenzyme. However, in 
ovarian cyst fluids TAT-2 was the predominant 
form and its concentrations were significantly 
higher than those in control sera or ovarian 
follicular fluids. TAT-2 concentration was 
higher in mucinous than in serous cyst 
fluid, and especially in mucinous cyst fluids 
the concentration of TAT-2 was higher in 
borderline or malignant (median 2 640 µg/L) 
than benign cases (median 84 µg/L). Also 
in serous and other types of borderline and 
malignant ovarian carcinomas the TAT-2 
concentration was higher in the benign cases 
(Figure 3). 

Very high concentrations of TATI occurred in 
mucinous ovarian cyst fluids, both in benign 
and malignant ones (Table 4). In contrast, 

TATI concentrations in serous cyst fluids (3 
to 21 µg/L) were similar to those in normal 
serum (Stenman et al., 1982) except for one 
malignant adenocarcinoma. TATI levels were 
not elevated in other benign ovarian tumors, 
but four malignant ones exhibited high levels 
(69 to 240 µg/L).

Characterization of trypsinogen 
immunoreactivity by gel filtration 
(I, II)

Immunoreactive trypsinogen in serum from 
healthy individuals and patients with acute 
pancreatitis, ovarian follicle fluid and ovarian 
cyst fluid was characterized by gel filtration. The 
elution pattern of these samples was identical. 
Trypsinogen-1 and -2 immunoreactivity 
eluted with molecular masses about 25 kDa 
and 28 kDa, respectively, indicating that it 
consisted of the zymogen form, and not of 
trypsin. In addition, a minor peak with higher 
molecular mass could be seen in the assay for 
trypsinogen-2. This peak was later shown to 
represent trypsinogen-2 – α1-protease inhibitor 
complex (Hedström et al., 1994).

Figure 3. Concentrations of TAT-1 (A) and TAT-2 (B) in normal follicular (Follic.) fluid (O) 
and cyst fluid from benign (  ), borderline ( ), and malignant (   ) ovarian tumors. Bars indi-
cate median of each group.
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Trypsinogens in anion exchange 
chromatography (I, III)

Trypsinogen-1 and -2 were separated by anion 
exchange HPLC from serum from healthy 
controls, patients with acute pancreatitis 
and pancreatoduodenectomy, cyst fluid of 
mucinous ovarian cancer and conditioned 
culture medium from COLO 205 cells. 
Under identical elution conditions two 
immunoreactive forms of each isoenzyme 

could be seen in these samples. In the serum 
samples the main trypsinogen-2 peak eluted 
in fractions 53 to 56 (Figure 4AC) and the 
minor peak in fractions 40 to 43. The less 
acidic, earlier eluting form of trypsinogen-2 
comprised 10 to 20% of total immunoreactivity 
in normal serum and less than 10% of total 
immunoreactivity in pancreatitis serum. The 
latter, less acidic one corresponded to the main 
form of trypsinogen-2 in mucinous ovarian 
cyst fluid and conditioned medium of COLO 
205 cells. The more acidic, main form of 

Figure 4. Comparison of elution patterns of 
trypsinogen-2 isoenzymes in (A) serum from 
a patient who had undergone pancreatectomy, 
(B) mucinous ovarian cyst fluid, and (C) se-
rum from a patient with pancreatitis, as mea-
sured after anion exchange chromatography. 

Figure 5. Comparison of elution patterns of 
trypsinogen-1 isoenzymes in (A) serum from 
a patient who had undergone pancreatectomy, 
(B) mucinous ovarian cyst fluid, and (C) se-
rum from a patient with pancreatitis, as mea-
sured after anion exchange chromatography 
under equal conditions as in figure 4.
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trypsinogen-2 in serum could not be detected 
in cyst fluid of ovarian cancer (Figure 4B).

The serum samples contained one main 
trypsinogen-1 peak eluting in fractions 41 to 
47, and a minor, less acidic peak comprising 
less than 5% of the total immunoreactivity in 
fractions 26 to 33 (Figure 5AC). In mucinous 
ovarian cyst fluid and conditioned culture 
medium from COLO 205 cells the latter form 
was predominant, whereas the later eluting, 
more acidic trypsinogen-1 form comprised 
only 5% to 10% of the total immunoreactivity 
in ovarian cyst fluid (Figure 5B). 

Purification of trypsinogen by 
reverse-phase HPLC (II, IV)

Immunoaffinity purified trypsinogen 
isoenzymes from mucinous ovarian cyst fluid, 

pancreatic juice and conditioned medium 
from COLO 205 cells were further purified by 
RP HPLC. To confirm the immunoreactivity 
measured by TR-IFMA, trypsinogen-2 was 
autoactivated and purified by RP HPLC. The 
fractions containing trypsin activity were 
analyzed by SDS-PAGE and revealed a major 
band of 27 kDa corresponding to trypsin-2. 

MS-analysis of trypsin and 
trypsinogen isoenzymes (IV)

Purified trypsin and trypsinogen isoenzymes 
were analyzed by ESI-MS and the intact 
proteins gave clear m/z envelope. The trypsins 
appeared in the mass spectra mainly in charge 
states from [M+11H]11+ to [M+16H]16+. 
Deconvolution of these spectra showed that 
the mass of trypsin-1 was 24185.0 Da, as 
earlier reported (Gaboriaud et al., 1996) and 

Figure 6. Mass spectrometric analyses of trypsin isoenzymes purified from pancreatic juice. ESI 
mass spectra of trypsin-1 (A) and -2 (C) reveal peaks mainly of [M+11H]11+ to [M+16H]16+ of 
the molecule as indicated. The deconvoluted spectra show that the mass of trypsin-1 is 24185.0 
(B) and that of trypsin-2 is 24114.9 (D).
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that of trypsin-2 was 24114.9 Da (Figure 6). 
Both of the masses are 80 Da higher than the 
theoretical masses calculated for trypsin-1 
(24104.2 Da) and -2 (24033.9 Da) with all 
the putative disulfide bridges present and the 
propeptide cleaved as a result of activation. 

Similar results and mass addition of 80 Da 
were obtained with the proenzymes: the 
masses were 25086.0 Da and 25016.0 Da for 
trypsinogen-1 and -2, respectively. However, 
the deconvoluted mass of TAT-2 purified 
from conditioned medium of COLO 205 cells 
was 24937.0 Da, which corresponds to the 
theoretical mass calculated for trypsinogen-2 
(24937.8 Da) with all putative disulfide bridges 
and the propeptide present (Figure 7).

Identification of the tryptic peptide 
with 80 Da mass addition (IV)

Highly purified pancreatic trypsinogen 
isoenzymes were alkylated and digested 
with trypsin. The digests were analyzed by 
MALDI-TOF and LC-MS. Two-dimensional 
visualization of the LC-MS spectra revealed 
a tryptic peptide with the mass of 3598.618 
as [M+4H]4+ with m/z of 900.654 comprising 
trypsinogen-1 amino acids 139 to 170 with an 
80 Da mass addition (Figure 8A). Similarly, 

a peptide with the mass off 5923.850 was 
observed as [M+5H]5+ with m/z of 1185.770 
corresponding trypsinogen-2 amino acids 123 
to 178 with an 80 Da mass addition (Figure 
8B).

Identification of Tyr154 sulfation in 
trypsinogen-1 and -2 (IV)

In-source dissociation. The modification 
in the pancreatic trypsinogen peptides was 
characterized by ESI-MS using increasing cone 
voltages to induce in-source dissociation. The 
peptides comprising amino acids 139 to 170 in 
trypsinogen-1, 123 to 178 in trypsinogen -2, 
respectively, and standard peptides containing 
phosphotyrosine and sulfotyrosine were 
analyzed under equal conditions. No loss of 
80 Da was observed from the phosphotyrosine 
standard peptide at sampling cone voltage 
30 V, 45 V or 70 V. In contrast, 87% of the 
sulfotyrosine containing peptide appeared in 
a non-sulfated form at low cone voltage (30 
V) and the lability of the sulfogroup increased 
at higher cone voltages of 45 V and 70 V 
(Figure 9). The tryptic peptides of pancreatic 
trypsinogen-1 and -2 showed similar loss of 
80 Da as the standard sulfotyrosine peptide 
when the cone voltage was ramped from 30 V 
to 45 V and 70 V. At cone voltage 30 V some 

Figure 7. Mass spectrometric analysis of tumor-associated trypsinogen-2. ESI mass spectra 
of trypsinogen-2 purified from the medium of a colon carcinoma cell line is shown in panel 
A. The deconvoluted spectra indicates the mass of tumor-associated trypsinogen-2 to be 24 
937.0 (B), which corresponds to the theoretical mass of the peptide without post-translational 
modifications.
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loss of 80 Da could be detected and at 70 V 
more than 82% of the peptides lost 80 Da from 
their mass. 

Collision-induced dissociation. The sulfation of 
the trypsinogen peptides was further supported 
by the results obtained from collision-induced 
dissociation (CID) in LC-MSMS. Under CID 
conditions no loss of HPO3 moiety from the 

standard phosphopeptide was observed (Figure 
10) as earlier also reported (Nemeth-Cawley et 
al., 2001). Our CID analysis on mass modified 
trypsinogen-1 peptide (amino acids 139 to 
170) and trypsinogen-2 peptide (amino acids 
147 to 178 produced by in-source dissociation 
from peptide comprising amino acids 123 to 
178) reveal an unmodified tyrosine at position 
154 indicating loss of the SO3 moiety before 

Figure 8. Tryptic peptides of trypsinogen-1 and -2. Panels A and B show LC-MS separation of 
pancreatic trypsinogen-1 and -2 tryptic peptides, respectively. Masses of tryptic peptides derived 
from 4-vinylpyridine-alkylated trypsinogen-1 and -2 are shown in panels C and D, respectively. 
The observed masses are mean values calculated on the basis of the many observed m/z values 
and corresponding charge states. Peptide sequences assigned to each observed mass is indicated 
by amino acid positions and the theoretical mass of the assigned sequence are shown. The 
[M+4H]4+ of trypsinogen-1 peptide and [M+5H]5+ of trypsinogen-2 peptide containing a 80 Da 
mass addition are visualized with upper arrows and the same charge states of the same peptides 
without the mass addition are visualized with lower arrows in panels A and B, respectively.
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Figure 9. In-source dissociation of the sulfate group of the modified trypsinogen-1 and -2 
peptides. Phosphotyrosine (black, pY-pept) and sulfotyrosine (striped, sY-pept) containing 
peptides together with trypsinogen-1 peptide comprising amino acids 139-170 (white, TRG-1 
pept) and trypsinogen-2 peptide of amino acids 123-178 (grey, TRG-2 pept) were analyzed by 
LC-MS using cone voltages of 30 V (A), 45 V (B) and 70 V (C). The proportion of sulfated 
peptide decreases with increasing voltage. At 70 V a peptide bond in the trypsinogen-2 peptide 
is broken resulting in a peptide consisting of amino acids 147-178, which is visualized in panel 
C. Different charge states of the same peptides were detected, their intensities integrated and the 
total intensity of the deconvoluted masses shown were calculated. The proportions of peptides 
with (left) and without (right) the 80 Da mass modification are indicated.



53

the backbone fragmentation (Figure 10). 

Immunoblotting and Edman degradation. 
In immunoblotting experiment with anti-
phosphotyrosine antibody no signal of 
pancreatic trypsinogen-2 was detected. 
Furthermore, fifteen cycles of N-terminal 
sequence analysis by Edman degradation of 

the purified chymotryptic peptide of pancreatic 
trypsinogen-2 comprising amino acids 149 to 
178 gave a sequence SSGADYPDELQCLDA. 
The signal of the phenylthiohydantoin (PTH) 
derivative of tyrosine in position six (Tyr154) 
corresponds to the signals of the amino acid 
derivatives obtained from the other positions. 

Figure 10. MSMS fragmentation spectra of tryptic peptides containing the modified amino 
acid (Tyr154) in pancreatic trypsinogen isoenzymes. Panel A shows the MSMS fragmentation 
spectra of the triply charged precursor ion of m/z 1200.54 representing a sulfated tryptic peptide 
(mass 3598.60) comprising amino acids 139-170 in trypsinogen-1. The MSMS spectra of the 
triply charged precursor ion of m/z 1216.55 (mass 3646.63) is likely to represent in-source 
dissociated fragment of the tryptic peptide of trypsinogen-2 containing amino acids 147-178 
(panel B). The peptide sequences derived from fragmented y-ion series are annotated on the 
spectra. Cysteine alkylated with an ethylpyridyl group is abbreviated epy-C. Panel C shows 
the fragmentation spectra of a phosphotyrosine-containing synthetic peptide (mass 1584.71), in 
which the fragmentation derived b-ion series is annotated on the spectra. The sulfated tyrosine 
residues of the precursor ions are indicated by asterisks.
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Discussion

TR-IFMAs for trypsinogen-1 and -2 

The first aim of the present study was to 
produce monoclonal antibodies to trypsinogen 
isoenzymes identified in cyst fluid of ovarian 
cancer patients. We were able to produce 
several high affinity MAbs by immunization of 
mice with a preparation containing both TAT-1 
and -2 isoenzymes. These MAbs were suitable 
for the development of immunofluorometric 
assays, and for purification and detection 
of trypsinogen isoenzymes by various 
immunologic techniques. 

We developed highly sensitive and specific 
TR-IFMAs for trypsinogen-1 and -2 based on 
microtiterplate technology. The TR-IFMAs 
are sandwich-type assays with, by design, 
specificity for two epitopes on a molecule. 
The catcher MAb is immobilized onto 
microtiterplate wells in high concentration 
resulting in high sensitivity, wide analytical 
range and high recovery (Alfthan, 1986). 
The tracer MAb is labeled with lanthanide 
europium. Five to fifteen Eu molecules can 
be incorporated into an antibody molecule 
(Soini and Kojola, 1983) and high tracer 
concentration contributes to assay sensitivity 
(Alfthan, 1986). The lanthanide  chelates have 
long Stokes’ shift, narrow emission peaks 
and exceptional decay times, which allows 
easy and efficient background discrimination 
(Hemmilä and Laitala, 2005). This results in 
low background reading and high sensitivity in 
immunoassays when measuring time-resolved 
fluorescence (Hemmilä et al., 1984, Soini and 
Kojola, 1983, Soini et al., 1990). The shelf-life 
of lanthanide-labeled tracer is long (Alfthan, 
1986). These properties of luminescent 
lanthanide chelates make them superior as 
compared to other absorptive, fluorescent or 
radioactive probes in immunoassays. The TR-
IFMAs have good precision due to technical 
convenience and robustness. 

High specificity in the developed TR-IFMAs 

was achieved by combination of two MAbs 
with preferential reactivity for one isoenzyme. 
We compared our TR-IFMA for trypsinogen-1 
with a commercial radioimmunoassay for 
trypsin and found that the assays correlated well 
at concentrations above 30 µg/L, but the RIA 
discriminated poorly at low concentrations. 
The detection limits of the TR-IFMAs for 
trypsinogen-1 and -2 were 0.1 and 0.3 µg/L, 
respectively. 

The immunoreactivity of DFP-inactivated 
trypsin-1 has been shown to be different from 
that of the proenzyme in some (Borgström and 
Ohlsson, 1976) but not in all (Lafont et al., 
1995) immunoassays. Anyhow, trypsinogen-1 
and trypsin-1 inhibited with aprotinin or 
PMSF reacted equally in our assay for 
trypsinogen-1. Thus, we could use trypsin-1 
inhibited with PMSF as standard in the assay 
for trypsinogen-1, as purified trypsinogen-1 
was not available in sufficient amounts. On the 
other hand, trypsin-2 inhibited with aprotinin or 
PMSF had clearly reduced immunoreactivity 
in the assay for trypsinogen-2. This could 
be the result of autodegradation of the 
highly purified and concentrated trypsin-2 
preparation, as trypsin-2 has been shown to be 
prone to autolysis (Mallory and Travis, 1973, 
Rinderknecht and Geokas, 1972). It appears 
to be important to use the proenzyme as a 
standard in the TR-IFMA for trypsinogen-2.

Immunoreactive trypsinogen-1 and 
-2 in serum samples

Healthy subjects. Trypsinogens are mainly 
produced by the exocrine pancreas and 
secreted at high concentrations into pancreatic 
fluid (Rinderknecht and Geokas, 1972). A 
small portion of trypsinogens and active 
trypsins escapes into the circulation, where 
trypsinogen remains free but active trypsins 
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are rapidly inactivated mainly by α2M and API 
(Borgström and Ohlsson, 1978). Trypsinogen-1 
concentrations in serum measured by us 
(median 21 µg/L, range 2 to 85 g/L) are in line 
with those measured by a commercial RIA 
and by others using in-house RIA (mean 15 
to 26 µg/L) (Borgström and Ohlsson, 1976, 
Florholmen et al., 1984b, Geokas et al., 1979), 
IRMA (“most serum samples do not exceed 
70 µg/L”) (Lafont et al., 1995), and ELISA 
(mean 28 µg/L) (Kimland et al., 1989). 

We could not make direct comparisons with 
other assays for trypsinogen-2 because 
such assays are not generally available. The 
median trypsinogen-2 concentration in serum 
measured in our study was 17 µg/L (range 2 to 
60 µg/L). Later, a reference range of 18 to 90 
µg/L for our assay was determined (Hedström 
et al., 1994). Similar results have been 
measured by an ELISA method (mean 21 µg/L) 
(Kimland et al., 1989). However, Largman et 
al. (Largman et al., 1978) have determined a 
normal mean serum level of immunoreactive 
trypsinogen-2 of 4.5 µg/L. This result was 
measured by RIA that used TLCK-inactivated 
trypsin-2 for calibration. The difference 
in immunoreactivity of trypsinogen-2 and 
inactivated trypsin-2 was marked at least in 
our assay and the difference in the standards 
used could explain the discrepancy. 

We found that the ratio of trypsinogen-1 to -2 
in sera from healthy subjects and patients with 
extrapancreatic disease was 1.24. This result 
is likely to reflect the trypsinogen-1 to -2 ratio 
of 2 in pancreatic fluid (Figarella et al., 1969, 
Guy et al., 1978, Rinderknecht et al., 1979). 
Similar ratio of 1.36 (Kimland et al., 1989) 
and 1.25 (Petersson et al., 1999) has been 
reported by others using ELISA. 

Acute pancreatitis patients. In acute pancreatitis 
we found that the serum concentration of 
trypsinogen-2 is 50-fold higher than in 
healthy controls, whereas the difference in 
trypsinogen-1 concentrations was only 15-fold 
and 10-fold when measured by TR-IFMA and 
RIA, respectively. Thus, in patients with acute 
pancreatitis the ratio of serum trypsinogen-1 

to -2 was reversed. It was 0.38 as measured 
by us and 0.77 in another study (Petersson 
et al., 1999). This finding is compatible with 
previous reports of the relative concentrations 
of trypsinogen isoenzymes in pancreatic juice 
of patients with acute pancreatitis (Borulf et al., 
1979, Rinderknecht et al., 1979). As discussed 
earlier, up-regulation of trypsinogen-2 may 
be a defensive mechanism, by which trypsin 
generation is significantly limited in potential 
pathological conditions (Kukor et al., 2003). 

Our finding that the levels of trypsinogen-2 
are increased in acute pancreatitis suggested 
that it could be used as a diagnostic marker 
for acute pancreatitis. This has been confirmed 
in other studies both in serum (Hedström et 
al., 1994, Hedström et al., 1996c, Hedström 
et al., 2001, Kimland et al., 1989, Kylänpää-
Bäck et al., 2002, Rinderknecht, 1996, Sainio 
et al., 1996) and especially in urine (Appelros 
et al., 2001, Hedström et al., 1996d, Jang 
et al., 2007, Kylänpää-Bäck et al., 2000, 
Sankaralingam et al., 2007). In general, 
elevated serum levels of trypsinogen-2 are 
associated with other pancreatic diseases 
as well, i.e. pancreatic cancer (Borgström 
and Andren-Sandberg, 1995, Hedström et 
al., 1996a), chronic pancreatitis (Borgström 
and Andren-Sandberg, 1995) and pancreas 
allograft rejection (Douzdjian et al., 1994, 
Lieberman et al., 1997, Marks et al., 1990, 
Perkal et al., 1992).

Pancreatectomized patients. The sensitive 
assays allowed us to measure concentrations 
of trypsinogen-1 and -2 in serum samples from 
patients who had undergone pancreatectomy. 
All samples contained trypsinogen-2 (median 
3 µg/L), whereas trypsinogen-1 (2 µg/L) was 
detected in only one of nine samples. This result 
showed that the expression of trypsinogen, 
and especially that of trypsinogen-2, is not 
restricted to the pancreas. It was earlier 
shown that human Paneth cells in the intestine 
express trypsinogen immunoreactivity (Bohe 
et al., 1984), and the expression of trypsinogen 
isoenzymes in various normal tissues has now 
been confirmed by several studies (Cederqvist 
et al., 2003, Cottrell et al., 2004, Critchley et 
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al., 2000, Ghosh et al., 2002, Kawano et al., 
1997, Koshikawa et al., 1997, Koshikawa et 
al., 1998, Paju et al., 2000, Stenman et al., 
2005, Wiegand et al., 1993).

Immunoreactive trypsinogen-1 and 
-2 in cancer

Several proteases have been shown to be 
up-regulated in cancer (Barsky et al., 1983, 
Diamandis et al., 2003, Hasui et al., 1989, 
Liotta et al., 1980, Malhotra et al., 2002, de 
Bruin et al., 1988). We found this to be the 
case also for TAT. The most interesting finding 
was that TAT levels, especially those of TAT-2 
correlated with the degree of malignancy. 
We suggested that TAT could promote 
cellular invasion by participating in the 
tumor-associated protease cascade involving 
urokinase plasminogen activator (uPA), uPA 
receptor (uPAR), plasminogen and latent 
matrix metalloproteinases (MMPs). 

Formation of metastases is the main cause of 
treatment failure and death for cancer patients. 
Remodeling of ECM in local invasion is 
enabled by proteinases like the MMPs and 
tissue serine proteinases, including tPA, uPA, 
plasminogen, thrombin, plasmin and trypsin 
(Mignatti and Rifkin, 1993, Mignatti et al., 
1986). Expression of trypsinogen has been 
found to be associated with aggressiveness 
of not only ovarian tumors (Hirahara et al., 
1995, Hirahara et al., 1998, Paju et al., 2001b, 
Paju et al., 2004, Stenman et al., 2003), but 
also esophageal squamous cell carcinoma 
(Yamamoto et al., 2001), colorectal cancer 
(Yamamoto et al., 2003), gastric cancer 
(Ichikawa et al., 2000), experimental gastric 
cancer in nude mice (Kato et al., 1998), 
prostate cancer (Bjartell et al., 2005), as well 
as several human cancer cell lines (Kato et al., 
1998, Koshikawa et al., 1992, Miyagi et al., 
1995, Miyata et al., 1998, Miyata et al., 1999). 
The increased expression of TAT-2 can even 
be measured in serum samples of patients 
with ovarian cancer (Paju et al., 2004), gastric 
cancer (Ichikawa et al., 2000), biliary and 
pancreatic cancer, and cholangiocarcinomas 
(Hedström et al., 1996a, Hedström et al., 1999, 

Lempinen et al., 2007). 

TAT-2 can directly activate several MMPs (Imai 
et al., 1995, Koivunen et al., 1989, Moilanen 
et al., 2003, Nyberg et al., 2002, Paju et al., 
2001b, Prikk et al., 2001, Sorsa et al., 1997) and 
membrane bound latent matriptase (membrane 
type serine proteinase-1, MT-SP1) (Jin et al., 
2005). MT-SP1 degrades extracellular matrix 
proteins and activates uPa, hepatocyte growth 
factor (HGF) and PAR-2 (Lee et al., 2000) and 
its expression is associated with malignancy 
as well (Lee et al., 2005). TAT-2 has been 
demonstrated to efficiently degrade many 
ECM components (Koivunen et al., 1991a, 
Koshikawa et al., 1992, Moilanen et al., 2003, 
Stenman et al., 2005). In vitro studies have 
shown that cancer cell mediated degradation of 
ECM (Koivunen et al., 1991a) and activation 
of several proMMPs (Moilanen et al., 2003) is 
inhibited by TATI. 

TAT-2 isolated from a colon carcinoma cell 
line is an efficient activator of PAR-2 in an 
in vitro study (Alm et al., 2000). The PARs 
are up-regulated in cancer and inflammation 
(Borgono and Diamandis, 2004) so TATs 
might also be potential in vivo activators of 
PAR-2. It has thus become widely accepted 
that TAT plays an important role in cancer 
progression and metastatic processes such as 
cellular invasion, degradation of extra-cellular 
matrix proteins, angiogenesis and tissue 
remodeling, either alone or in cascade with 
other proteolytic enzymes.

Immunoreactive TATI in cancer

TATI was earlier shown to be a tumor marker 
for mucinous ovarian tumors (Halila et al., 
1988, Huhtala et al., 1982). This study shows 
that very high concentrations of TATI, up 
to 15 000 µg/L, occur in mucinous ovarian 
cyst fluids, both in benign and malignant 
ones. We also found that in some serous cyst 
fluids from borderline and malignant tumors 
the concentrations of both TAT isoenzymes 
were remarkably elevated but the levels of 
TATI were not. We thought this might reflect 
a disturbance in proteolytic balance, which 
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may contribute to the invasive properties of 
malignant cells. Similar results were obtained 
later, when the molar ratio of trypsinogen to 
TATI was found to be significantly higher in 
serous than in mucinous cyst fluids (Paju et 
al., 2001b). 

TAT-2 has been shown to degrade tissue 
inhibitor of metalloproteinase-1 (TIMP-1) 
(Sorsa et al., 1997), which might be one factor 
in disturbing the balance between proteinases 
and their inhibitors in cancer. The excess of 
proteinase in relation to its inhibitor was 
suggested to be related to the poorer prognosis 
of serous than mucinous ovarian carcinomas at 
an early stage of the disease by Vergote et al. 
(Vergote et al., 1993). High TATI expression 
in gastric cancer tissue seems to correlate with 
a favourable prognosis for the patient in one 
study (Wiksten et al., 2005). The finding that 
trypsinogen is expressed in both malignant 
and benign bladder epithelium, whereas TATI 
expression decreases with increasing stage 
and grade of malignancy, suggests balanced 
expression of trypsinogen and TATI in normal 
tissue, but disruption of this balance in tumor 
progression (Hotakainen et al., 2006). These 
results are suggestive of a protective role of 
TATI in tumour invasion, possibly by reducing 
the proteolytic activity of trypsin and thereby 
inhibiting tissue destruction and mucosal 
degradation. 

However, in ovarian (Paju et al., 2004, 
Venesmaa et al., 1994, Venesmaa et al., 1998), 
bladder (Kelloniemi et al., 2003), prostate 
(Paju et al., 2007) and renal cell cancers (Paju 
et al., 2001a) an increased serum level of TATI 
is a marker of poor prognosis. In a previous 
report, PSTI/TATI expression correlated, 
in intestinal type of gastric tumours, with 
advanced stage tumours as well as nodal 
involvement (Higashiyama et al., 1990a). 
It has been suggested that trypsinogen and 
TATI are expressed simultaneously by many 
tumors, and an elevation of TATI in serum or 
urine reflects trypsinogen expression by the 
tumor, which in most cases is associated with 
aggressive disease (Paju and Stenman, 2006). 
Thus, the mechanisms by which trypsins and 

TATI act in tumor growth and metastasis are 
not yet understood in detail.

Characterization of pancreatic and 
extra-pancreatic trypsinogens

Determination of the isoenzyme pattern by ion 
exchange chromatography revealed isoelectric 
variants of trypsinogen isoenzymes in serum 
samples. The less acidic forms corresponded 
to the main TAT-1 and -2 isoenzymes in 
mucinous ovarian cyst fluid, and the more 
acidic isoenzymes corresponded to the main 
peaks in serum from a patient with pancreatitis. 
Earlier, pancreatic trypsinogen-1 and -2 had 
been shown to incorporate radioactive sulfate 
to tyrosine residue (Scheele et al., 1981). We 
speculated that lack of sulfation could explain 
the shorter retention time of TATs in anion 
exchange chromatography. 

Later, based on a crystal structure study and 
MS analysis of trypsin-1 Gaboriaud et al. 
(Gaboriaud et al., 1996) localized an 80 Da 
modifying group at Tyr154 in the substrate 
binding pocket, in the S’2 subsite. As the mass 
of HPO3 is 79.966 Da and that of SO3 is about 
79.957 Da, the PTM was misinterpreted to 
be phosphate. Szilagyi et al. (Szilagyi et al., 
2001) reported that two forms of trypsinogen-1 
isoenzymes can be found in human pancreatic 
juice. Trypsin-1 with a molecular mass 24.184 
Da in MS analysis, corresponding to the amino 
acid sequence of trypsin-1 and an 80 Da mass 
addition, was obtained from pancreatic juice 
from one patient. This mass addition was 
preliminarily suggested to result from sulfation, 
not phosphorylation. Non-modified trypsin-1 
with a molecular mass of 24.104 Da in MS 
analysis was obtained from another patient’s 
pancreatic juice. The isolation process of this 
trypsin contained prolonged exposure to acid 
environment. The authors could not explain 
whether the non-modified trypsin was result 
of hydrolytic loss of the modifying group, 
or was trypsinogen in fact unmodified in that 
sample (Szilagyi et al., 2001). 

Recently, Sahin-Tóth et al. performed alkaline 
hydrolysis to purified human trypsinogen 
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isoenzymes (Sahin-Tóth et al., 2006). Thin 
layer chromatography of the hydrolysates 
revealed existence of sulfated tyrosine residue 
in both trypsinogen-1 and -2. The tyrosine 
sulfate residue was attributed to Tyr154 in 
trypsinogen-1 by incorporation of 35SO4 to 
trypsinogen-1 but not to Tyr154Phe mutant 
trypsinogen-1 expressed in human embryonic 
kidney 239T cells (Sahin-Tóth et al., 2006). 

In other words, we observed isoelectric 
variants of trypsinogen isoenzymes in serum 
samples by ion exchange chromatography. In 
the literature, there were contradictory reports 
of trypsinogen PTM. We therefore isolated 
pancreatic trypsinogen isoenzymes and TAT-2 
from conditioned medium of COLO 205 cell 
line, and characterized intact trypsinogen 
isoenzymes, and tryptic and chymotryptic 
peptides by ESI-MS, Western blot analysis 
and N-terminal sequencing. 

Investigation of Tyr154 modification 

Phosphorylation of trypsinogen isoenzymes 
(Gaboriaud et al., 1996) was excluded by 
immunoblotting with anti-phosphotyrosine 
antibody. No specific signal was detected 
with pancreatic trypsinogen isoenzymes, 
whereas the antibody efficiently recognized 
the Tie1 tyrosine kinase, which is known to 
be phosphorylated on tyrosine (Saharinen et 
al., 2005). The presence of trypsinogen-1 and 
-2 isoenzymes, respectively, were verified by 
probing the same lanes with MAb against the 
respective trypsinogen isoenzyme.

A clear signal of PHT derivative of Tyr154 was 
seen in Edman degradation of purified peptide 
from pancreatic trypsinogen-2. The fact that the 
PTH derivative of phosphotyrosine is hardly 
soluble under standard Edman sequencing 
conditions (Aebersold et al., 1991) indicates 
the absence of phosphotyrosine in position 
154 of trypsinogen-2. 

Mass modified trypsin peptides lost their mass 
addition of 80 Da both in in-source dissociation 
and CID experiments, which would not occur 
to phosphorylated peptides. Under the CID 

conditions in MSMS analysis, the HPO3 
moiety would remain attached to the tyrosine 
residue allowing site-specific identification of 
the phosphorylation. Tyrosine phosphorylation 
in peptides can be identified by detecting the 
immonium ion of phosphotyrosine (m/z 216.04) 
in positive mode precursor ion scanning on a 
Q-TOF MS, and the phosphorylation site can 
be localized in the same experiment by MSMS 
fragmentation. Furthermore, potential serine 
or threonine phosphorylation would induce a 
loss of 98 Da, resulting in the appearance of 
dehydroalanine or dehydroamino-2-butyric 
acid in the MSMS fragmentation spectrum 
under the CID conditions used (Zhou et al., 
2001). None of these was observed. In sharp 
contrast, it is reported (Nemeth-Cawley et 
al., 2001, Rappsilber et al., 2001) that loss of 
SO3 is the first fragmentation event in low-
energy collisionally activated dissociation, 
as the energy required to break the S-O bond 
is lower than the energy required to fragment 
the polypeptide backbone. Therefore, the 
observed loss of 80 Da from both pancreatic 
trypsinogen-1 and -2 derived peptides in in-
source dissociation and CID experiments 
indicates that they are sulfated and not 
phosphorylated.

The pancreatic trypsinogen-1 peptide contains 
only one tyrosine residue, namely Tyr154, 
while the trypsinogen-2 peptide analyzed 
contains two tyrosine residues, Tyr154 and 
Tyr175. Tyr154 is sulfated in trypsinogen-1, 
and a sulfation consensus sequence surrounds 
Tyr154 but not Tyr175 in trypsinogen-2. 
Therefore, it is most probable that the 
Tyr 154 is also sulfated in trypsinogen-2. 
Taken together, our results confirm the 
previous findings indicating that pancreatic 
trypsinogen-1 and -2 are modified at Tyr154 
and that this modification is sulfate, not 
phosphate (Gaboriaud et al., 1996, Sahin-Tóth 
et al., 2006, Scheele et al., 1981, Szilagyi et 
al., 2001).

On contrarily, we could show that TAT-2 
from a colon carcinoma cell line is not 
posttranslationally modified. Instead, in 
MS analysis the mass of TAT-2 corresponds 
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to the theoretical mass of trypsinogen-2. 
This difference in sulfation at Tyr154 could 
explain the previously reported differences 
between pancreatic and tumor-associated 
trypsinogens (Koivunen et al., 1989). 
Pancreatic trypsinogens have been found to 
be fully sulfated suggesting extra-ordinary 
tyrosine sulfation capacity (Sahin-Tóth et 
al., 2006). TPST-1 and -2 are expressed in all 
tissues examined (Moore, 2003) but mRNA 
expression of the TPST-2 isoform is drastically 
higher in the pancreas than any other tissues 
examined (Ouyang and Moore, 1998). This 
might explain the incomplete sulfation of 
trypsinogens in extra-pancreatic tissues.

Aromatic interactions in proteins

Aromatic interactions, usually described as 
π-π interactions, are ubiquitous in nature and 
are involved in many biological processes like 
in the antigen-binding of immunoglobulins 
(Padlan, 1990), stability of duplex DNA 
(Kool, 2001) or stabilizing protein tertiary 
structures (Mitchell et al., 1994, Singh and 
Thornton, 1990). The delocalized electrons 
of the benzene ring are the basis for the these 
interactions (Kryger et al., 1998, Kryger et al., 
1999, Obst et al., 1997). 

Contribution of aromatic interactions in 
binding affinity and ligand selectivity in the S3/
S4 pocket of bovine trypsin, human factor Xa 
and chimeric S3/S4 mutants have been studied 
(Di Fenza et al., 2007). The aromatic character 
of this pocket increases from trypsin (only 
Trp215) to factor Xa (Trp215, Tyr99, Phe174). 
The results show that the establishment of 
favourable directional aromatic-aromatic 
interactions in the S3/S4 pocket with a bound 
ligand will increasingly contribute to binding 
affinity and will thus determine selectivity (Di 
Fenza et al., 2007). Factor Xa is thus more 
selective with respect to bovine trypsin for 
ligands which opportunely interact with the 
fully established aromatic box in the S3/S4 
subsite. 

The effect of tyrosine sulfation on 
trypsin

Modification of aromatic tyrosine residue 
by sulfation provides it with highly 
polarizable electrons and makes it even 
more electronegative. Thus, proteins and 
peptides become more interactive by this 
PTM (Lyon et al., 2000, Sasaki et al., 1999, 
Woods et al., 2007). Tyrosine sulfate has 
been shown to be involved in protein-protein 
interactions (Costagliola et al., 2002, Stone 
and Hofsteenge, 1986, Wilkins et al., 1995, 
Woods et al., 2007) and proteolytic activity 
(Michnick et al., 1994). 

In trypsinogen and trypsin, Tyr154 is located 
in the S’2 subsite within the primary substrate 
binding pocket (Gaboriaud et al., 1996, Katona 
et al., 2002). Thus, it is likely that sulfation of 
Tyr154 in trypsin contributes to more efficient 
substrate binding. Indeed, autoactivation of 
sulfated trypsinogen-1 was shown to be faster 
than that of the nonsulfated recombinant 
form (Sahin-Tóth et al., 2006). (Sulfated) 
pancreatic trypsin-1 and -2 were shown to 
be more effective activators of pro-uPA than 
(non-sulfated) TAT-1 and -2, respectively 
(Koivunen et al., 1989). Furthermore, 
modified (sulfated) trypsin-1 was shown to 
be more efficiently inhibited by PSTI than the 
non-modified form (Sahin-Tóth et al., 2006, 
Szilagyi et al., 2001). 

On contrary to the findings of Sahin-Tóth et 
al. (Sahin-Tóth et al., 2006) and Szilagyi et 
al. (Szilagyi et al., 2001), (non-sulfated) TATs 
were somewhat more efficiently inhibited 
by TATI and soybean trypsin inhibitor than 
the pancreatic trypsins, whereas pancreatic 
trypsin-1 was more efficiently inhibited by 
limabean trypsin inhibitor than TAT-1 in a 
study of Koivunen et al. (Koivunen et al., 
1989). As described above, there is evidence 
supporting more efficient substrate binding for 
the sulfated trypsin forms as compared to the 
non-sulfated ones. TATI has been found to be 
heterogenous (Huhtala et al., 1982, Kikuchi 
et al., 1985) so the PSTI/TATI preparations 
used in these studies may not necessarily be 
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comparable. It is also shown that substrate 
binding is not only determined by the primary 
substrate binding site, but several distal 
interactions are also involved (Hedstrom et 
al., 1992, Hedstrom et al., 1994b). These 
distal binding interactions and the possible 
differences in the PSTI/TATI preparations 
used could explain the discrepancy between 
these results.

The enzymatic parameters of native (sulfated) 
pancreatic and non-modified trypsins from 
pancreatic juice, ovarian cyst fluid and 
recombinant trypsin expressed in Escherichia 
coli have been determined using p-nitroanilide 
peptide substrates. The kinetic constants of 
pancreatic and tumor-associated trypsins were 
similar for one substrate (S-2222), but for two 
substrates (S-2444 and S-2251) the kcat for 
pancreatic trypsin-2 was lower and the kcat/ Km 
higher than that for TAT-2 (Koivunen et al., 
1989) indicating for more efficient substrate 

binding by (sulfated) pancreatic trypsin-2. 
In other studies using different p-nitroanilide 
peptide substrates, the catalytic activity of 
native (sulfated) pancreatic trypsin-1, native 
non-modified pancreatic trypsin-1 and non-
modified recombinant trypsin-1, respectively, 
was found to be practically identical (Sahin-
Tóth et al., 2006, Szilagyi et al., 2001). The 
nonexistent or modest differences reported in 
the enzymatic parameters between (sulfated) 
pancreatic trypsins and (non-sulfated) tumor-
associated or recombinant trypsins are likely 
to result from the structure of the p-nitroanilide 
peptide substrates used. The Tyr154 residue in 
the S’2 subsite interacts with the leaving group 
side of the scissile bond, not the acyl group 
side. In the chromogenic substrates used there 
is no P’2 residue, only the acyl group side 
(P1 to P4) with an arginine or lysine as the 
P1 residue. Thus, the influence of S’2 site on 
substrate binding when using p-nitroanilide 
peptide substrates is unlikely. 
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Conclusions

The most important result of this study was 
the development of specific MAbs and TR-
IFMAs to trypsinogen-1 and -2. With these we 
could show that:

1) in acute pancreatitis serum trypsinogen-2 
is elevated 50-fold, whereas serum 
trypsinogen-1 is elevated 15-fold, suggesting 
that trypsinogen-2 could be a diagnostic 
marker for acute pancreatitis.

2) TAT-2 is the predominant form in ovarian 
cyst fluids and its concentrations correlate 
with malignancy of these tumors. Thus, TAT 
is likely to be involved in ovarian tumor 
dissemination and breakage of tissue barriers.

3) serum samples from pancreatectomized 
patients contain immunoreactive trypsinogen 
isoenzymes. These results indicate that 
trypsinogen is not exclusively expressed in the 
pancreas and certain tumors, but that it may 
also be produced by normal extrapancreatic 
tissues.

4) two forms of trypsinogen-1 and -2, 
respectively, can be found in human sera and 
ovarian cyst fluids. 

Finally, we confirmed by ESI-MS analysis that 
pancreatic trypsinogen-1 and -2 are sulfated 
and not phosphorylated at Tyr154, whereas 
tumor-associated trypsinogen-2 is not. We 
suggest that this modification may explain 
the previously observed differences between 
pancreatic and tumor-associated trypsin.
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Concluding remarks 

When this study was started PSTI/TATI had 
been isolated from urine of an ovarian cancer 
patient (Huhtala et al., 1982). Two tumor-
associated trypsinogen (TAT) isoenzymes 
had been isolated from mucinous ovarian 
cyst fluid and were suggested to be the 
target proteinases of TATI in ovarian cancer 
(Koivunen et al., 1989). It had also been 
shown by immunohistochemistry that trypsin 
immunoreactivity occurs in the Paneth cells 
of the small intestine (Bohe et al., 1986), but 
the function of this Paneth cell trypsinogen 
was not known. The human trypsinogen genes 
were thought to constitute a multigene family 
of more than ten genes (Emi et al., 1986). 
It was not known whether the TATs, the 
Paneth cell trypsinogen, and the pancreatic 
trypsinogens were encoded by different 
genes. The production of specific MAbs 
and development of sensitive time-resolved 
immunofluorometric assays in the beginning 
of this study facilitated new approaches to 
purify and characterize human trypsinogens 
on one hand, and to study the expression of 
them in various tissues and diseases on the 
other hand. 

We established provisional reference ranges for 
trypsinogen-1 and -2 with the newly developed 
TR-IFMAs. Furthermore, we showed that 
especially serum trypsinogen-2 levels are 
strongly elevated in acute pancreatitis. These 
results are in line with those reported by others 
(Borgström and Ohlsson, 1976, Florholmen 
et al., 1984b, Geokas et al., 1979, Hedström et 
al., 1994, Kimland et al., 1989, Lafont et al., 
1995, Petersson et al., 1999). We suggested 
that serum trypsinogen-2 could be used as 
a diagnostic marker for acute pancreatitis. 
Indeed, clinical studies employing the MAbs 
and TR-IFMAs developed in this study and 
by others have revealed that trypsinogen-2 in 
serum and especially in urine is specific and 
sensitive marker for the diagnosis of acute 
pancreatitis (Appelros et al., 2001, Hedström 
et al., 1994, Hedström et al., 1996c, Hedström 

et al., 1996d, Hedström et al., 2001, Jang et 
al., 2007, Kimland et al., 1989, Kylänpää-
Bäck et al., 2000, Kylänpää-Bäck et al., 
2002, Rinderknecht, 1996, Sainio et al., 1996, 
Sankaralingam et al., 2007). These studies 
were follwed by the development of a rapid 
dipstick screening test, which is commercially 
available (Hedström et al., 1996b). This test 
is more sensitive and specific than amylase, 
but due to both tradition and the availability 
of cheap reagents compatible with automatic 
clinical chemistry analyzers, serum amylase 
- despite of its known drawbacks - has 
remained the most often used marker for 
acute pancreatitis in hospital laboratories.

Apart from our results, there are no other 
reports showing that trypsinogen occurs 
in serum of pancreatectomized patients. 
However, it is now known that trypsinogen 
is expressed in several normal tissues other 
than the pancreas, too. Thus, the levels of 
trypsinogen measured by us are likely to 
reflect normal extrapancreatic trypsinogen 
expression. Trypsinogen-2 was shown 
to be the main isoenzyme in serum from 
pancreatectomized patients. It has been shown 
to be expressed in several extrapancreatic 
cells (Cederqvist et al., 2003, Ghosh et al., 
2002, Koivunen et al., 1989, Koshikawa et 
al., 1997, Paju et al., 2000, Prikk et al., 2001, 
Stenman et al., 2005). 

Sulfated trypsin(ogen)-1, which is more 
efficiently autoactivated, more stable 
and is less sensitive to inhibition than 
trypsin(ogen)-2, is the main isoenzyme 
in pancreatic juice (Colomb et al., 1978, 
Mallory and Travis, 1973, Rinderknecht 
and Geokas, 1972). This ensures efficient 
digestion of dietary proteins and activation 
of other dietary enzymes. It is tempting to 
speculate that due to the high proteolytic 
potential of trypsinogen-1 its expression 
is limited in extrapancreatic tissues, where 
less proteolytic potential than in digestion is 
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needed. Trypsinogen-2 (or trypsinogen-3 or 
-4) would thus remain the main trypsinogen 
isoenzyme in extrapancreatic tissues.

Our finding that TAT-2 is the predominant 
trypsinogen form in ovarian cyst fluids 
and that its concentrations correlate with 
malignancy led to clinical studies on 
trypsinogen expression in other malignancies 
as well. TAT-2 was found to be a new potential 
diagnostic marker for cholangiocarcinomas 
(Hedström et al., 1996a, Lempinen et al., 
2007) and prognostic marker for ovarian 
carcinomas (Paju et al., 2004). Up-regulation 
of TAT-2 has also been found in other 
cancers (Bjartell et al., 2005, Hotakainen et 
al., 2006). The methods developed in this 
study have also been used to clarify the 
mechanisms underlying tumor growth and 
metastatic processes (Koivunen et al., 1991a, 
Lukkonen et al., 2000, Moilanen et al., 2003, 
Sorsa et al., 1997). The developed MAbs 
and TR-IFMAs have proved to be excellent 
tools in the ongoing studies associated with 
trypsinogen quantitation, purification, and 
characterization.

The recent development of mass spectrometry, 
software tools and especially soft ionization 
techniques has made mass spectrometry a 
valuable tool in protein chemistry. We were 
able to determine the chemical difference 
between pancreatic and tumor-associated 
trypsinogens by ESI-MS analysis. The absence 
of sulfation at Tyr154 in tumor-associated 
trypsinogen is likely to explain the differences 
between these trypsinogen forms observed 
earlier. It is possible to produce specific 
MAbs to sulfotyrosine (Hoffhines et al., 2006, 
Kehoe et al., 2006). If all extrapancreatic 
trypsinogens lack sulfate, it would be possible 
to develop immunometric assays specific for 
pancreatic trypsinogen-1 and -2. We have 
become aware of many biological processes 
other than digestion where pancreatic or 
extrapancreatic trypsinogens are involved. 
Specific determination of pancreatic and 
extrapancreatic trypsinogens, respectively, is 
therefore of potential clinical utility.
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