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   ABSTRACT 
 

Type 2 diabetes is associated with many metabolic disturbances including 

hyperinsulinemia, insulin resistance, hyperglycemia, dyslipidemia and obesity. The 

alterations occurring in lipoprotein metabolism in diabetes have been described in 

detail, but the metabolism of cholesterol and bile acids has been less well 

characterized, and the results from the few previous studies are controversial. 

Obesity, in addition to predisposing to the development of diabetes, is associated 

with abnormal cholesterol metabolism. Accordingly, cholesterol metabolism was 

studied in obesity with and without type 2 diabetes, and in type 2 diabetes with and 

without overweight. In addition, the effects of weight reduction were studied on 

cholesterol and sterol metabolism in a non-stable state during fasting and also in 

subsequent steady state after a prolonged follow-up.     

 

Cholesterol absorption and cholesterol and bile acid synthesis were studied in 16 

obese (BMI > 30 kg/m2) type 2 diabetic patients and compared to 16 similarly obese 

controls to reveal the role of diabetes on cholesterol metabolism. The effects of body 

weight on cholesterol metabolism were investigated with 20 normal-weight (BMI ≤ 

26.0 kg/m2) and 44 overweight (BMI > 26.1 kg/m2) type 2 diabetic patients. 

Cholesterol absorption was evaluated with the peroral dual isotope technique and by 

quantitating serum ratios of phytosterols and cholestanol to cholesterol, cholesterol 

synthesis with sterol balance as well as serum ratios of squalene and precursor 

sterols (cholestenol, desmosterol, lathosterol) to cholesterol. In order to clarify the 

role of weight reduction in modulating cholesterol metabolism in type 2 diabetes, 

parameters associated with cholesterol and sterol metabolism were determined 

during weight reduction, and during a 2-year follow-up after weight reduction. Ten 

obese type 2 diabetic patients consumed a very low energy diet virtually free of 

cholesterol, cholestanol and plant sterols for 3 months, and serum squalene and non-

cholesterol sterol levels were determined before and after the weight reduction 

program in a non-steady state situation. Sixteen obese type 2 diabetic patients 

consumed a very low energy or low-energy diet for 3 months, after which they 

consumed a weight-maintaining diet for up to 2 years. The changes in cholesterol 

metabolism were determined by assaying cholesterol absorption efficiency, sterol 

balance, and serum sterols after a 2-year follow-up, at a stable, reduced weight level.     
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The efficiency of cholesterol absorption and the amounts of absorbed total, dietary 

and biliary cholesterol were lower in the obese type 2 diabetic patients than obese 

controls or in normal-weight type 2 diabetic patients. Cholesterol absorption was 

similar in both diabetics with normal body weight and obese controls. Fecal 

elimination of cholesterol, mainly as neutral sterols and less as bile acids, was 

increased, and this enhanced cholesterol synthesis more in obese patients with type 

2 diabetes than in obese controls or normal-weight diabetic patients. In addition, fecal 

bile acids, the total intestinal cholesterol pool, biliary cholesterol secretion and 

cholesterol turnover were significantly higher in obese diabetic patients than normal-

weight diabetic patients, when expressed as mg/d. Moreover, BMI was positively 

associated with variables of cholesterol synthesis and negatively with cholesterol 

absorption. Cholesterol absorption and synthesis were inversely related in the 

diabetic population suggesting that the homeostatic regulation between cholesterol 

absorption and synthesis was not distrupted by diabetes.  

 

Serum plant sterols and cholestanol ratios correlated with the cholesterol absorption 

efficiency, and those of cholesterol precursor sterols correlated with variables of 

cholesterol synthesis and excretion, suggesting that they reflect cholesterol 

metabolism similarly as in the non-diabetic population. Indeed, lower cholesterol 

absorption and higher synthesis in obese type 2 diabetes was also seen as lower 

ratios of serum plant sterols and cholestanol and higher ratios of cholesterol 

precursor sterols as compared with normal-weight diabetes.  

 

Serum levels of SHBG were lower and serum insulin higher in obese than in normal-

weight diabetic patients, suggesting that insulin resistance increased with weight. 

With high levels  of serum insulin and low levels of SHBG, cholesterol absorption was 

low and cholesterol synthesis was enhanced in obese diabetes. Serum SHBG was 

positively associated with variables of cholesterol absorption and negatively with 

cholesterol synthesis. Thus, insulin resistance is related to cholesterol metabolism so 

that with increasing insulin resistance, cholesterol absorption is lowered and 

synthesis enhanced. 

 

During effective weight reduction, the ratio of cholestanol increased and those of 

cholesterol precursor sterols decreased, suggesting that cholesterol absorption was 
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increased and synthesis decreased in a non-steady state situation. Weight reduction 

to a steady state caloric balance after the 2-year follow-up increased the efficiency of 

lowered baseline cholesterol absorption capacity and the ratios of serum plant sterols 

markedly. In addition, the SHBG level increased and serum insulin level decreased, 

and SHBG was related to plant sterols and cholestanol after weight reduction. Thus, 

with weight reduction, variables related to glucose metabolism improved and 

cholesterol absorption increased, and the improvement of insulin resistance possibly 

contributed to the enhanced absorption of cholesterol.  

   

In conclusion, type 2 diabetes is associated with low cholesterol absorption and 

enhanced cholesterol synthesis, and these alterations in cholesterol metabolism are 

not explained by obesity. In addition, body weight, over its entire range, regulates 

cholesterol metabolism in type 2 diabetes, so that increasing body weight further 

lowers cholesterol absorption. Cholesterol and glucose metabolism are closely 

linked, and the regulation of cholesterol metabolism is related to variables reflecting 

insulin resistance; the magnitude of the abnormalities in cholesterol absorption and 

synthesis possibly indicating the severity of the insulin resistance. The abnormalities 

in cholesterol metabolism are not irreversibile, weight reduction is an efficient way to 

improve cholesterol metabolism. In addition, the beneficial effects of weight loss on 

cholesterol metabolism can be seen rather quickly, even in a non-steady state 

situation.  

 

These studies have increased our knowledge of cholesterol metabolism in type 2 

diabetes, and also provided new insights into the beneficial effects of weight 

reduction as the primary treatment for obese type 2 diabetes.  
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1. INTRODUCTION 
 

Type 2 diabetes is one of the most common endocrine diseases in all populations 

throughout the world. Its prevalence has increased in an exponential manner over 

the last century. The pathophysiology of type 2 diabetes has become clearer during 

recent years, and both insulin resistance and pancreatic beta-cell dysfunction can 

affect the development of the disease. Type 2 diabetes is associated with long-term 

micro- and macrovascular complications, which account for the overall increased 

morbidity and mortality associated with this disease, with the most common causes 

of death being cardiovascular diseases (National Diabetes Data Group 1995). Type 2 

diabetes is associated with many metabolic disturbances including hyperinsulinemia, 

insulin resistance, hyperglycemia, dyslipidemia and obesity, all of which contribute to 

the accelerated atherogenesis in diabetes (National Institutes of Health 1985, 1987). 

Most patients with type 2 diabetes are obese (American Diabetes Association 1997), 

and obesity, as an independent risk factor for the diabetes, also complicates the 

management and exacerbates the metabolic abnormalities in diabetes (Maggio and 

Pi-Sunyer 1997). Type 2 diabetes, obesity and dyslipidemia are integral parts of the 

insulin resistance syndrome (DeFronzo and Ferrannini 1991), and insulin resistance 

with or without compensatory hyperinsulinemia provides a possible cause for the 

metabolic abnormalities. 

 

Cholesterol is a major component of cell membranes. It is essential for tissue growth 

and the production of steroid hormones in the body. Cholesterol is acquired either by 

de novo synthesis or by absorption from the diet, and it is eliminated mainly through 

biliary secretion into the intestine after conversion to bile acids or secreted into the 

bile as cholesterol itself. The amount of cholesterol in the body is regulated by 

absorption and endogenous synthesis of cholesterol. The liver is the major organ 

responsible for the regulation of total-body cholesterol metabolism. When there is a 

reduction of dietary cholesterol, and during bile acid or cholesterol malabsorption, 

there is an increase in the hepatic cholesterol synthesis rate, whereas an increase in 

dietary cholesterol has an opposite effect, thus compensating for changes that 

expand or reduce the tissue pools of cholesterol.  
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The abnormalities occurring in lipoprotein metabolism in type 2 diabetes have been 

described in detail (e.g. American Diabetes Association 1993, Evans et al. 1999), but 

the metabolism  of cholesterol and bile acids has been less extensively 

characterized, and the results are controversial. For instance, in some (Bennion and 

Grundy 1977, Abrams et al. 1982, Naoumova et al. 1996, Gylling and Miettinen 

1997), but not all (Briones et al. 1986) studies, cholesterol synthesis and fecal 

excretion as neutral sterols have been increased compared with non-diabetic 

subjects. Cholesterol absorption efficiency (Briones et al. 1986, Gylling and Miettinen 

1997) and serum plant sterol levels (Sutherland et al. 1992, Gylling and Miettinen 

1997), which are indicators of cholesterol absorption, are low in diabetes, even in 

subjects with high-normal blood glucose levels (Strandberg et al. 1996). However, in 

these earlier studies, the variable degrees of body mass index, the small and 

heterogeneous study groups, the different degrees of glucose control, the different 

types of dyslipidemia and treatments of type 2 diabetes all complicate the 

interpretation of the results, and the actual abnormalities in cholesterol metabolism in 

type 2 diabetes remain unclear. In addition, the effects of insulin resistance on 

cholesterol metabolism are still largely unexplored.  

 

In obesity, cholesterol synthesis (Miettinen 1971a, Nestel et al. 1973) and turnover 

(Nestel et al. 1969) are markedly enhanced and the cholesterol absorption efficiency 

is decreased (Miettinen and Gylling 2000). Accordingly, cholesterol metabolism in 

type 2 diabetes mimics that observed in obesity. Thus, these results raise the 

question whether being overweight alone, though this is frequently associated with 

diabetes, is the factor which is responsible for the observed alterations in cholesterol 

metabolism.  

 

Weight reduction is considered to be the primary treatment for obese patients with 

type 2 diabetes, because of its beneficial effects on glycemic balance, insulin 

sensitivity and lipoprotein abnormalities (American Diabetes Association 1999). 

Following effective weight reduction in obese patients without diabetes, the high 

levels of cholesterol synthesis and fecal excretion of bile acids and neutral sterols 

were decreased (Miettinen 1970, Bennion and Grundy 1975, Di Buono et al. 1999), 

but, despite acute caloric restriction, the cholesterol absorption percentage remained 

unchanged (Kudchodkar et al. 1977). The effects of weight reduction on cholesterol 
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metabolism in diabetes have not been documented. Since weight reduction improves 

cholesterol metabolism in obesity, and ameliorates the metabolic abnormalities 

associated with diabetes, it could be anticipated also to have beneficial effects on  

possible abnormal cholesterol metabolism in type 2 diabetes.  

 

Therefore, this study was conducted to compare cholesterol metabolism in obese 

subjects with and without type 2 diabetes, to compare cholesterol metabolism in type 

2 diabetes with and without overweight, and to examine the associations between 

cholesterol, lipoprotein and glucose metabolism in diabetes. In addition, the effects of 

weight reduction were studied on cholesterol and sterol metabolism in a non-steady 

state during fasting and in subsequent steady state after a prolonged follow-up 

period.      
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2. REVIEW OF THE LITERATURE 
 

2.1 Type 2 diabetes 
 

Type 2 diabetes is one of the most common chronic diseases in the world. It has 

been estimated that over 140 million people worldwide currently have diabetes, and 

by the year 2025, over 300 million people will have this disease (World Health 

Organization 1999). Type 2 diabetes accounts for around 90% of all diabetes cases. 

In Finland, there are approximately 150 000 type 2 diabetes patients, and the 

incidence has been estimated to increase by 70 % by the year 2010 (DEHKO 2000). 

The main factors contributing to the increasing prevalence of type 2 diabetes are 

aging of the population, increasing levels of obesity and lack of physical activity.  

 

The most common cause of morbidity and mortality in type 2 diabetes is 

cardiovascular disease (National Diabetes Data Group 1995). The risk of coronary 

artery disease is two to four fold, higher in women as compared to men, and 

following an acute myocardial infarction the risk of death is more than double 

compared with a  non-diabetic population (Stamler et al. 1993, Haffner et al. 1998, 

Miettinen et al. 1998). A diabetic patient without a previous myocardial infarction has 

a comparable risk of myocardial infarction as a non-diabetic patient with a previous 

infarction (Haffner et al. 1998). There are several known cardiovascular risk factors in 

type 2 diabetes including hyperinsulinemia, hypertension, dyslipidemia, insulin 

resistance and obesity, all of which are thought to be involved in the accelerated 

development of atherosclerosis (National Institutes of Health 1985, 1987).  

 

Type 2 diabetes is defined by elevated glucose levels in blood. The principal 

pathophysiological abnormalities include resistance to insulin action combined with a 

deficiency in insulin secretion (Taylor et al. 1994, Kahn and Rossetti 1998). These 

are present to varying degrees in virtually all patients with the common form of type 2 

diabetes. Although the molecular basis of type 2 diabetes is not clear,  it has been 

speculated to result from genetic defects that cause both insulin resistance and 

insulin deficiency. Both of these defects have genetic, environmental and secondary 

causes, thus no single gene defect or candidate gene causing the common form of 

type 2 diabetes has been found to contribute to the etiology of the disease (Kahn and 
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Porte 2001). The general belief is that type 2 diabetes is a polygenic disorder, which 

probably results from several combined gene defects influenced by enviromental 

factors, all of which together produce the clinical syndrome.   

 

2.1.1 Insulin resistance 

Insulin resistance can be defined as an impaired response to the physiological 

effects of insulin occurring in peripheral organs and leading to abnormalities in 

glucose, lipid and protein metabolism (Kahn 1994). Over 66 years ago, Himsworth 

(1936) observed the phenomenon of insulin sensitivity in some diabetic patients and 

suggested that diabetes should be sub-divided into two categories according to the 

insulin sensitivity and insensitivity, the latter condition now being classified as type 2 

diabetes (non-insulin dependent diabetes).  Insulin resistance is present in the 

majority of patients with impaired glucose tolerance or type 2 diabetes, and it is also 

found in up to 25 % of the general, apparently healthy population (Reaven 1988). 

The genetic background as well as many pathological  conditions, such as obesity, 

contribute to the insulin resistance. Many studies have been performed in order to 

find candidate genes and possible mutations and abnormalities in the mechanisms of 

insulin action at the molecular level (Groop and Tuomi 1997, Kahn and Porte 2001). 

In 1988, Reaven postulated that most individuals with insulin resistance remain non-

diabetic because they are able to compensate for their insulin resistance by secreting 

more insulin, and it is claimed that insulin resistance per se does not cause diabetes 

as long as the pancreas can secrete more insulin to overcome the insulin resistance 

(Porte 1991, Leahy et al. 1992).      

 

2.1.2 Insulin secretion 

Pancreatic beta-cell dysfunction causes abnormal secretion of insulin, and 

contributes to the pathogenesis of type 2 diabetes. Normal insulin secretion under 

basal conditions is phasic, and the hormone is secreted in a pulsatile manner. In non-

diabetic subjects after glucose administration, the rapid and immediate increase in 

insulin secretion, lasting approximately 10 minutes, is defined as the first-phase 

response, whereas the second-phase insulin secretion is the subsequent sustained 

increase in insulin secretion which is slower and lasts longer. The first-phase 

secretion of insulin as a response to glucose is lost in type 2 diabetes (Pratley and 

Weyer 2001). A secretory defect in the second phase is also characteristic of type 2 
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diabetes, and the ability of glucose to potentiate the effects of other stimulants of 

insulin secretion is diminished (Ward et al. 1984, Roder et al. 1998). In addition, the 

oscillatory insulin release is abnormal in type 2 diabetes (Lang et al. 1981). There are 

anatomic abnormalities in the pancreatic islet cells in type 2 diabetes, but these 

cannot account for the beta-cell dysfunctions characteristic of type 2 diabetes (Kahn 

and Porte 2001). The etiology of the beta-cell dysfunction of type 2 diabetes is 

incompletely understood, it is thought to result from both genetic and environmental 

factors (Kahn and Porte 2001, Pratley and Weyer 2001.)  

 

2.1.3 Interaction of insulin resistance and beta-cell dysfunction 

Type 2 diabetes is a complex disease, which evolves over many years and 

progresses through multiple stages, still today, controversy exists about the precise 

sequence of events and primary causes in the natural history of this disease. It is 

believed that both insulin resistance and insulin secretion are abnormal before the 

onset of frank type 2 diabetes, and the hepatic gluconeogenesis is a late 

phenomenon and determines the degree of hyperglycemia. Thus, the following 

section is a simplified formula of the progressive evolution of the type 2 diabetes. 

 

Insulin resistance in peripheral organs develops relatively early, leading to an 

increased need of insulin in the body to be able to maintain glucose uptake and 

utilisation. In order to maintain the balance, pancreatic beta cells increase their rate 

of insulin secretion to compensate for the insulin resistance, thus plasma levels of 

insulin rise and glucose tolerance remains normal. Nevertheless, the compensation 

might not be complete and/or the ability of beta cells to increase insulin secretion 

declines, leading to impaired glucose tolerance, and, as the situation evolves, 

ultimately to diabetes. In addition, increased hepatic glucose production due to 

hepatic insulin resistance and uninhibited lipolysis in adipose tissue causing overflow 

of free fatty acids to liver all possibly can accelerate hepatic glucose production 

leading to severe hyperglycemia.    

 

Several methods have been developed to quantitate insulin action in patients. These 

include clamps, insulin infusion sensitivity tests, measurement of fasting insulin 

levels,  intravenous glucose tolerance and model assessments (Laakso 1993, Taylor 

2001). All of these methods have their limitations, and there is a considerable 
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variation in the complexity and labour intensity of the various methods. The 

euglycemic clamp (DeFronzo et al. 1979), “the gold-standard”, is very useful for 

intense physiological studies on small numbers of subjects. More recently a new 

method was developed, homeostasis model assessment (HOMA) (Matthews et al. 

1985), which utilizes computer aided modeling of fasting glucose and insulin 

concentrations, and this seems to provide a useful model to assess insulin resistance 

and beta-cell function in large epidemiological studies (Bonora et al. 1998, Wallace 

and Matthews 2002)      

 

2.1.4 The metabolic syndrome 

The term metabolic syndrome consists of a cluster of metabolic disorders, many of 

which promote the development of atherosclerosis and increase the risk of 

cardiovascular disease events. The major components of the metabolic syndrome 

include abdominal obesity, glucose intolerance/type 2 diabetes, dyslipidemia and 

hypertension (Hauner 2002). Insulin resistance may lie at the heart of the metabolic 

syndrome. During the past few years, evidence has accumulated suggesting that 

there are other abnormalities, secondary to insulin resistance and/or compensatory 

hyperinsulinemia, that could be added to the cluster of these metabolic events. An 

impairment of the fibrinolytic system is now mentioned in extended definitions. In 

1988, Reaven suggested that this cluster of abnormalities constituted an important 

clinical syndrome, designated as syndrome X (Reaven 1988). The syndrome has 

since gained a number of different names including Reaven’s syndrome, insulin 

resistance syndrome,  metabolic syndrome, chronic cardiovascular risk syndrome; 

with no generally accepted definition.  

 

2.2 Overview of lipoprotein metabolism 
 

The following summary of lipoprotein metabolism is based on several references 

(e.g. Gotto et al. 1986, Havel and Kane 2001). Fat absorbed from the diet and lipids 

synthesized by the liver and adipose tissue must be transported between the various 

tissues for utilisation and storage. Since lipids are insoluble in water, they are 

transported in plasma as lipoproteins. Lipoprotein particles contain a central core of 

non-polar lipids, mainly triglycerides and cholesteryl esters, and a surface monolayer 

of polar lipids, mainly phospholipids, apolipoproteins (apo) and free cholesterol. 
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Apolipoproteins, excluding apo B, and free cholesterol are readily water soluble and 

thus have high potential to be easily exchanged between lipoprotein particles. 

Lipoprotein core lipids and phospholipids need a specific transfer protein in order to 

be transferred between lipoproteins but free surface cholesterol is freely 

exchangeable.  

 

Based on density, plasma lipoproteins are separated into five major classes, which 

have different compositional and functional properties: chylomicrons ( d ~ 0.93 g/ml), 

very low density lipoproteins; (VLDL) (d = 0.93-1.006 g/ml), intermediate density 

lipoproteins; (IDL) (d = 1.006-1.019 g/ml), low density lipoproteins; (LDL) (d= 1.019-

1.063 g/ml), and high density lipoproteins; (HDL) (d = 1.063-1.210 g/ml). The 

lipoprotein particle size is inversely related to their density, describing the amounts of 

low-density core lipids and high density apolipoproteins. The core of the two largest 

classes, chylomicrons and VLDL, contain mainly triglycerides, and are called 

triglyceride rich lipoproteins (TRL).  

 

Chylomicrons are formed in the enterocytes, and they contain mainly the newly 

absorbed fatty acids as triglycerides added to smaller amounts of cholesterol esters. 

The major protein component is apo B-48, and they contain also the A-

apolipoproteins. After secretion, chylomicrons acquire apolipoproteins C and E from 

HDL. These particles are transported via the lymph into blood, where they bind to 

lipoprotein lipase on the surface of capillary endothelial cells, leading to rapid 

hydrolysis of most of the triglycerides. Some phospholipids and the apolipoproteins A 

and C are transferred to HDL resulting in a residual particle called the chylomicron 

remnant. The remnants are cleared from blood to the liver by several mechamisms. 

Thus, virtually all cholesterol absorbed from the intestine is delivered to the liver. The 

cholesterol in hepatocytes can enter metabolic pathways leading to formation of bile 

acids, be secreted into bile as such, be incorporated into nascent lipoproteins or be 

stored within the cell.   

 

VLDL is formed mainly in hepatocytes, and provides a pathway for export of excess 

triglycerides from the liver cells. Triglycerides can be derived from hepatic de novo-

production, from plasma free fatty acids taken up by liver or from chylomicron 

remnants. The VLDL particle consists of a large amount of triglycerides and smaller 
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amounts of cholesterol and phospholipids. The major protein component of the 

nascent VLDL is apo B-100, and it contains also some C and E apolipoproteins. In 

the blood, the triglycerides of VLDL are hydrolyzed in extrahepatic tissues by 

lipoprotein lipase leading to smaller, remnant particles including particles isolated as 

IDL. The surface components of the remnant particle, including phospholipids, free 

cholesterol and soluble apolipoproteins, are transported to HDL facilitated by plasma 

phospholipid transfer protein (PLTP)(Tall 1995). VLDL remnants can then interact 

with LDLapo B-receptors on hepatocytes via apo E. The remnant particles, which 

contain several molecules of apo E, bind effectively to the LDLapo B-receptors and 

are rapidly taken up from blood to the hepatocytes for catabolism. Particles with 

smaller amounts of apo E remain longer in the blood. These are transformed to IDL 

and with further processing by hepatic lipase and the loss of the rest of apo C and E 

they can form LDL. In most mammals, the majority of VLDL remnants are rapidly 

taken up by liver, and only a small amount is converted via IDL to LDL. In humans, a 

much greater fraction of the remnants, perhaps even 50 %, is converted to LDL.  

 

LDL is mainly produced as an end product of the metabolism of VLDL, and it 

contains predominantly cholesterol esters added to small amounts of triglycerides, 

phospholipids and free cholesterol. LDL is the main carrier of cholesterol in blood 

since LDL cholesterol normally accounts for about two-thirds of plasma total 

cholesterol. The exclusive apolipoprotein of LDL is apo B-100, one LDL particle 

containing one apo B molecule.  LDL can be taken up from the circulation into 

hepatocytes by LDLapo B- receptors or LDLapo B-receptors on extrahepatic cells. 

The binding to the receptors is mediated via recognition of apo B-100. Due to the 

relatively low affinity of LDL for the hepatic LDLapo B-receptors, as compared to the 

respective affinity of VLDL remnants, LDL circulates in the blood for about three 

days.  Therefore, an appreciable fraction of blood LDL is taken up by many 

extrahepatic tissues via their LDLapo B-receptors. Thus, LDL is the major particle 

responsible for transporting cholesterol to peripheral tissues.   

 

Nascent HDL particles are either secreted by the liver or the intestine, or are 

assembled in the plasma from products of the catabolism of TRL. During the lipolysis 

of TRL in peripheral tissues, their surface components, phospholipids, cholesterol 

and apolipoproteins, are transferred to HDL. This is facilitated by PLTP. These 
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components give rise to new HDL particles, or may be incorporated  into pre-existing 

HDL particles. The major apolipoproteins of HDL are apo A-I and apo A-II. In addition 

to being transferred from VLDL and chylomicrons, apolipoproteins may be secreted 

as free apolipoproteins, which then acquire lipids via an interaction with the cellular 

ATP binding cassette transporter (ABC). In both mechanisms, the discoidal, pre-

beta-HDL particles are formed. The plasma cholesterol–esterifying enzyme lecithin: 

cholesterol acyl-transferase (LCAT) circulates bound to these nascent and discoidal 

HDLs,  and generates cholesteryl esters from free cholesterol. These cholesteryl 

esters form the core of the spherical, now mature HDL particle. HDL cholesteryl 

esters may be transferred to apo-B containing lipoproteins by cholesteryl ester 

transfer protein (CETP) in exchange for triglycerides. The triglycerides of HDL are 

hydrolyzed by hepatic lipase. The transfer of triglycerides and other surface 

components from the apo-B containing lipoproteins, and the elevation in the core 

cholesteryl ester amount due to the function of LCAT both increase the size of the 

HDL particle. Conversely the transfer of cholesteryl esters out of HDL by CETP and 

hydrolysis of HDL triglycerides and phospholipids by hepatic lipase will reduce the 

HDL size. Large HDL particles are often called HDL 2 and the smaller HDL particles 

are called HDL 3. 

   

HDL is an important mediator of the reverse cholesterol transport, in which 

cholesterol from peripheral tissues is delivered to the liver: pre-beta HDL particles are 

specially adapted for mediating free cholesterol efflux from peripheral cells. 

Cholesterol is then esterified, generating larger cholesteryl ester rich-HDL particles. 

Next, the cholesteryl esters can be removed from the circulation to the liver with apo-

B containing lipoproteins, through selective uptake of special scavenger receptor BI 

(SR-BI), or as a part of an HDL particle uptake mechanism. The action of the 

different enzymes affecting and remodelling the HDL composition contributes to the 

conversion of the mature HDL back to the pre-beta HDL, which is then capable of re-

entering the HDL metabolism circle; thus the removal of cholesterol from the 

extrahepatic cells and the flow of the cholesterol to the liver is maintained.  
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2.3 Lipoprotein metabolism in diabetes 
 

Type 2 diabetes is associated with abnormal fasting as well as postprandial 

lipoprotein metabolism. The key features of this dyslipidemia are the elevated levels 

of triglycerides, the reduced levels of HDL cholesterol, and the increased number of 

small, dense LDL particles, called LDL subclass pattern B (Howard 1987, American 

Diabetes Association 1993, Reaven et al. 1993, Evans et al. 1999). In contrast, the 

levels of total and LDL cholesterol are comparable to those seen in subjects without 

diabetes. Studies have shown that a dyslipidemic lipoprotein profile characteristic to 

type 2 diabetes precedes the onset of diabetes (Haffner et al. 1990, Mykkänen et al. 

1993) and is present in many conditions where only insulin resistance is observed 

(American Diabetes Association 1993, Ginsberg 2000).      

 

The mechanism of formation of dyslipidemia in type 2 diabetes remains uncertain, 

even though many factors are involved including insulin resistance, hyperinsulinemia, 

disturbed fatty acid metabolism and even hyperglycemia (Evans et al. 1999). The 

composition and amount of the different lipoproteins are altered. Many studies 

demonstrate an overproduction of triglyceride-rich VLDL particles and apolipoprotein 

B-100 (e.g. Ginsberg 1987, Howard 1994). The activity of lipoprotein lipase is 

diminished leading to a decrease in VLDL catabolism. Despite the expanded VLDL 

pool, LDL cholesterol levels may be normal due to increased proportion of VLDL 

particles being metabolized without conversion to LDL (Howard 1987) and to the 

enhanced fractional catabolic rate of LDL. There is an increased lipid exchange 

between triglyceride-rich VLDL and both HDL and LDL, possibly due to increased 

activity of CETP and the excess VLDL pool (Elchebly et al. 1996, Ginsberg 2000). 

This leads to the decrease of HDL cholesterol and the formation of triglyceride-rich 

HDL and LDL particles. In addition, the catabolism of HDL is also increased because 

of the overactivity of hepatic lipase (Howard 1994, De Man et al. 1996). This results 

in the generation of smaller, more dense lipoprotein particles with abnormal 

functions. The fractional catabolic rate (FCR) of apo A-I is increased (Golay et al. 

1987) leading to a lower HDL cholesterol level (Brinton  et al. 1994). 

 

Lipoprotein particles are also modified by glycosylation in the presence of 

hyperglycemia (American Diabetes Association 1993). The clearance of glycated 
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LDL particles is prolonged, and they  might be more readily oxidized, also leading to 

their increased uptake by macrophages (Witztum et al. 1982, American Diabetes 

Association 1993, Bowie et al. 1993). 

 

Insulin resistance is a strong candidate to play a role in evoking these changes:  

Dyslipidemia appears to be part of the insulin resistance syndrome with or without 

type 2 diabetes (DeFronzo and Ferrannini 1991, American Diabetes Association 

1993, Betteridge 1997). The dyslipidemic lipoprotein profile is more severe in insulin-

resistant than in insulin-sensitive type 2 diabetic subjects (Haffner et al. 1999). 

Prospective studies have shown that hyperinsulinemia predicts the onset of both 

dyslipidemia and diabetes (Haffner et al. 1992). The antilipolytic effect of insulin is 

reduced in adipose tissue  leading to increased release of fatty acids (Reaven 1988). 

Especially when there is the presence of high levels of intra-abdominal fat, liver is 

exposed to a large free fatty acid load, which could induce hepatic insulin resistance 

(Carey et al. 1996) and provide substrates for increased VLDL production (Björntorp 

1991). As a matter of fact, abnormal VLDL production and a deranged activity of 

lipoprotein lipase have been linked to insulin resistance (Pollare et al. 1991, 

Malmström et al. 1997). In addition, small dense LDL particles have been shown to 

be closely related to hypertriglyceridemia in insulin resistance rather than diabetes 

per se (Austin and Edwards 1996, Lahdenperä et al. 1996, Syvänne and Taskinen 

1997). 

 

The combination of hypertriglyceridemia, and increased numbers of small dense LDL 

particles frequently associated with low levels of HDL cholesterol is nowadays called 

hypertriglyceridemic hyperapoB. This atherogenic lipoprotein profile is not only seen 

in type 2 diabetes, but it is also common in subjects prone to develop diabetes, 

subjects with insulin resistance,  and subjects with coronary artery disease. 
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2.4 Obesity 
 

The prevalence of obesity everywhere in the world is increasing rapidly (Kuczmarski 

et al. 1994, Kuulasmaa et al. 2000). Obesity is the presence of excessive amount of 

adipose tissue. It is a physiological response to the environment and behaviour, in 

which energy intake exceeds energy output, and the interaction between genotypes 

and the environment all contribute to development of obesity. 

  

The body mass index (BMI kg/m2) is commonly used for the assessment of obesity. 

The World Health Organization has proposed that BMI from 18.5 kg/m2 to 24.9 kg/m2 

is considered as normal (World Health Organization 1998). With respect to the 

increased incidence of complications, BMI from 25 kg/m2 to 29.9 kg/m2 is considered 

unhealthy, and is defined as overweight. BMI values of 30 kg/m2 and above are 

designated as obese. It has been suggested that obesity should be considered as a 

disease (World Health Organization 1998, National Institutes of Health 1998). 

Numerous studies have shown that elevated body weight, the consequence of 

increased body fat, is associated with an increased prevalence of comorbidities, 

leading to an elevated risk of death (World Health Organization 1998, National 

Institutes of Health 1998, Leibel et al. 2001). An increased mortality rate is 

associated with BMI ≥  30 kg/m2 (National Institutes of Health 1998).There has been 

debate regarding the impact of overweight on mortality at BMI from 25 kg/m2 to 30 

kg/m2 (Wooley and Wooley 1984, Ernsberger and Haskew 1987, Kassirer and Angell 

1998). However, BMI > 28 kg/m2 is associated with a three- to fourfold increase in 

overall risk of morbidity (hypertension, dyslipidemia, diabetes), and a two-fold 

increase of death (Van Itallie 1985). In cross-sectional studies, there is a progressive 

positive correlation between BMI and adiposity-related morbidities (World Health 

Organization 1998), and prospective studies show a significant increase in the 

incidence of future morbidities when BMI exceeds 27.5 kg/m2 (Sorkin et al. 1994). 

Moreover, higher levels of body weight, even within the “normal” range as well as 

modest weight gains after 18 years of age, increase greatly the risks of coronary 

heart disease and ischemic stroke in middle-aged women (Willett et al. 1995, 

Rexrode et al. 1997). Modulating factors such as age, smoking, sex, family history 

and physical activity can have an impact on the risks of overweight in any given 

individual, and thus the benefits and risks of overweight must be assessed on an 
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individual basis (National Institutes of Health 1998). World Health Organization has 

suggested that individuals with  BMI > 25 kg/m2 should be considered at-risk for 

adiposity-related morbidity (World Health Organization 1998). 

 

Obesity is associated with many metabolic abnormalities such as insulin resistance 

with hyperinsulinemia, dyslipidemia, hypertension, cardiovascular diseases and type 

2 diabetes (Pi-Sunyer 1993). The risk of development of diabetes increases clearly 

as the degree of overweight increases (Van Itallie 1985). In fact, several studies 

reveal an increasing risk at relatively low levels of BMI, as well as with even modest 

amounts of weight gain after 18 years of age (Chan et al. 1994, Colditz et al. 1995, 

Sowers 1995). Most patients with type 2 diabetes are obese (Maggio and Pi-Sunyer 

1997), and the dramatic increase in obesity during the past decade has been 

accompanied by a 25 % increase in the prevalence of type 2 diabetes (Harris et al. 

1998).  

 

The distribution of body fat plays an important role in the obesity-associated health 

implications. When body fat is accumulated centrally, e.g., intra-abdominal or visceral 

obesity, it is associated with a higher risk of concomitant diseases, metabolic 

abnormalities and mortality than more peripheral distribution of body fat or 

subcutaneus abdominal fat (Pi-Sunyer 1993, Després 2001). It has been shown that 

visceral adiposity increases the risk for hyperinsulinemia and glucose intolerance at a 

given BMI (Kaye et al. 1991, Després 1998), and insulin resistance, hyperinsulinemia 

and type 2 diabetes are related to increased levels of intra-abdominal fat (Hartz et 

al.1983, Haffner et al. 1986). Ohlson et al. (1985) in an 8 year prospective 

longitudinal study showed that central obesity imposed an increased risk of 

developing diabetes, which was greater than the risk of adiposity per se, a finding 

that has been confirmed later by others (Lundgren et al. 1989, Haffner et al. 1991).  

 

2.4.1 Lipoprotein metabolism in obesity 

Obesity is often associated with abnormal lipoprotein metabolism. The levels of 

triglycerides are higher and HDL cholesterol lower in obese than in lean subjects  (Pi-

Sunyer 1993). Total and LDL cholesterol can be elevated, but are also often normal 

(Barrett-Connor 1985, Grundy and Vega 1990, Pi-Sunyer 1993). Obesity enhances 

the production of apo B-containing lipoproteins (Kesäniemi and Grundy 1983, Egusa 
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et al. 1985, Kesäniemi et al. 1985). However, the plasma cholesterol transport by 

LDL appears to increase relatively modestly, probably due to rapid catabolism of LDL 

and enhanced removal of VLDL remnants without their conversion to LDL 

(Kesäniemi and Grundy 1983, Egusa et al. 1985). Increasing BMI is also associated 

with small, dense triglyceride-enriched LDL particles (Krauss et al. 1998).  

 

It is known that the distribution of body fat has a role in lipoprotein metabolism in 

obesity. The major accumulation of visceral adipose tissue is characterized by the 

most severe metabolic disturbances compared to that is seen with subcutaneus 

accumulation of adipose tissue, including fasting hypertriglyceridemia and reduced 

HDL cholesterol (Després et al. 1990, Pouliot et al. 1992). Viscerally obese patients 

have also an increased proportion of small, dense LDL particles compared to obese 

patients lacking visceral body fat accumulation (Tchernof et al. 1996).  

 

The plasma levels of free fatty acids are elevated in obesity and especially in visceral 

obesity; this is attributable to their increased elimination from adipose tissue (Jensen 

et al. 1989). The increased flux of free fatty acids through the hepatic portal 

circulation provides substrates for triglyceride synthesis, and also promotes hepatic 

insulin resistance (Björntorp 1991, Grundy 1999, Arner 2001) contributing to the 

dyslipidemia.  

 

Many investigations have revealed that hypertriglyceridemia is closely linked to 

insulin resistance (Kissebah et al. 1976, Steiner 1994, Després 1998). Some studies 

have also shown an association between insulin resistance and small, dense LDL 

(Haffner et al. 1995, Austin and Edwards 1996) as well as insulin resistance and low 

HDL cholesterol (Karhapää et al. 1994). Obesity is an insulin resistant state (Reaven 

1988, Ferrannini et al. 1997) with compensatory hyperinsulinemia providing one 

possible cause for the dyslipidemia in obesity.  

 

The detailed mechanisms underlying the dyslipidemia still remain unclear, though 

many theories exist. However, the major factors causing/influencing these metabolic 

changes are insulin resistance with compensatory hyperinsulinemia and the degree 

of intra-abdominal obesity (American Diabetes Association 1993). 
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2.5 Diabetes and obesity 
 

Insulin resistance is a characteristic feature of both type 2 diabetes and obesity. In 

the latter, it is acquired due to excessive calorie intake (Sims et al. 1973) with or 

without predisposing genetic factors, whereas in the former, inheritance of gene(s) 

that confer insulin resistance are involved (DeFronzo and Ferrannini 1991). In insulin 

resistance, the normal glucose tolerance is maintained by increased insulin secretion 

leading to  hyperinsulinemia. In obesity, the compensatory response of insulin 

secretion is nearly perfect and glucose tolerance remains normal. In diabetes, a 

defect of insulin secretion is present, leading to glucose intolerance and 

hyperglycemia. As obesity persists or weight is further gained, the excessive 

secretion of insulin cannot be maintained, thus leading to frank diabetes. Even with 

inadequate or defective insulin secretion compensatory to the insulin resistance, the 

plasma insulin levels remain 1.5- to 2-fold elevated compared with age- and weight-

matched control subjects (DeFronzo 1988, Golay et al. 1988, Haffner et al. 1988, 

Reaven et al. 1989, Saad et al. 1989). As the situation evolves, insulin secretion 

declines, plasma insulin levels normalize or even fall below normal, and severe 

glucose intolerance develops. A prospective follow-up study, in which obese/diabetic 

subjects were followed for 6 years, has confirmed the above sequence of events 

(Jallut et al. 1990), and a prospective study with Pima Indians have shown similar 

results (Saad et al. 1989). 

 

Many studies have shown that the insulin resistance in normal weight type 2 diabetes 

patients is of a similar magnitude as in nondiabetic obese patients (Kolterman et al. 

1981, Hollenbeck et al. 1984, DeFronzo 1988, Golay et al. 1988). Both diabetes and 

obesity are characterized by exhibiting hyperinsulinemia, even though there is a 

difference in the plasma insulin concentrations in these two groups. The plasma 

insulin response in normal weight type 2 diabetes is higher than in normal weight 

controls, but it is significantly decreased compared with nondiabetic obese subjects, 

despite a similar magnitude of insulin resistance (DeFronzo and Ferrannini 1991) .  

 

Lipoatrophy predisposes to diabetes, and it is characterized by insulin resistance 

probably caused by the absence of fat (Taylor 2001). Gavrilova et al. (2000) have 

shown that surgical fat transplantation could reverse hyperglycemia, lower insulin 
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levels and improve insulin sensitivity in lipoatrophic mice, the phenotype of the mice 

resembled closely that of humans with severe lipoatrophic diabetes. 

 

Therefore, abnormal quantities of adipose tissue, whether too much or too little 

seems to be important in contributing to insulin resistance and increasing the risk for 

diabetes mellitus.      

 

2.6 Cholesterol metabolism 
 

Cholesterol is present in every tissue and is transported in plasma lipoproteins either 

as free cholesterol or combined to long-chain fatty acids as cholesteryl esters. 

Cholesterol is an essential structural component of cell membranes, and it is a key 

regulator of membrane fluidity. Cholesterol is also the precursor of all other steroids 

in the body, such as corticosteroids, sex hormones, bile acids and vitamin D. The 

transport of mainly water-insoluble cholesterol in the circulation is facilitated by 

lipoproteins, with LDL being the main carrier.  

 

In humans, cholesterol is acquired from two sources: from the diet and from a cellular 

de novo cholesterol synthesis from acetyl-CoA. Virtually all cells containing nucleus 

are able to synthesize cholesterol, and cholesterol in any particular tissue is derived 

from this de novo synthesis or from the circulating lipoproteins. The liver is the major 

organ synthetizing cholesterol in the human body. Cholesterol is eliminated from the 

body mainly as cholesterol and bile acids through biliary secretion into the intestine, 

from where unabsorbed cholesterol is finally excreted into stools. The main features 

of cholesterol transport in man are presented in Figure 1.  

 

Homeostatic mechanisms maintain the balance between the input of cholesterol from 

its two sources, intestinal absorption and de novo synthesis, and its output by two 

major hepatic mechanisms, irreversible conversion to bile acids and secretion into 

bile as free cholesterol. The liver is the key organ in the metabolism of cholesterol 

since it has critical importance in the processes regulating the whole-body cholesterol 

homeostasis (cholesterol synthesis, plasma clearance of lipoproteins, bile acid 

synthesis, and biliary cholesterol secretion) (Dietschy et al. 1993).  Cholesterol 

synthesis and dietary cholesterol absorption equals fecal excretion of total steroids in 
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a steady state at the whole body level, and the amount of cholesterol in hepatocytes 

(derived from cholesterol synthesis, absorbed from the intestine, produced in other 

tissues) is equal to the biliary secretion of lipids. According to the homeostatic 

regulation of cholesterol metabolism, low intestinal absorption of cholesterol 

upregulates cholesterol synthesis and turnover, whereas an increase in the intestinal 

cholesterol flux to the liver suppresses cholesterol synthesis. Therefore, any 

reduction of dietary cholesterol, or bile acid or cholesterol malabsorption, will trigger 

an increase in hepatic endogenous cholesterol synthesis (Miettinen and Kesäniemi 

1986), whereas an increase in dietary cholesterol has an opposite effect.   

 

The sterol balance is defined as the difference between dietary intake and total sterol 

excretion. The negative balance implies the removal of cholesterol from the body (the 

fecal excretion of total steroids exceeds the dietary intake of cholesterol), whereas a 

positive balance indicates that cholesterol is accumulating within the body (dietary 

intake of cholesterol exceeds the fecal excretion of total steroids). In steady state, 

this balance is usually negative, and numerically equal to the endogenous synthesis 

of cholesterol.  
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2.6.1 Cholesterol absorption 

2.6.1.1 Sources of intraluminal cholesterol 

The intraluminal cholesterol available for absorption originates from three sources; 

the diet, bile and turnover of intestinal mucosal epithelium. The daily Western diet 

contains 300-500 mg cholesterol, of which a variable proportion is cholesterol esters 

(8-19%) (Wilson and Rudel 1994). The amount of biliary cholesterol entering the 

intestine daily varies usually from 800 to 1200 mg (Grundy 1983). All biliary 

cholesterol is in an unesterified form. The mucosal cell loss and intestinal secretion of 

cholesterol provide additional sources of cholesterol to the intestinal cholesterol pool, 

though estimates of this contribution are hard to come by. In three patients with total 

bile duct obstruction, the intraluminal cholesterol resulting from this source was 

estimated to be 250-400 mg daily (Cheng and Stanley 1959). The significance of this 

endogenous cholesterol in humans is still unknown, whereas in rats, it was shown to 

significantly contribute to the endogenous cholesterol pool (Danielsson 1960). Thus, 

in humans, over 1 g of cholesterol enters the intestine daily, and approximately one 

half of this amount is absorbed (Grundy  and Ahrens 1969, Wilson and Rudel 1994). 

 

2.6.1.2 Luminal events 

Cholesterol absorption is intimately linked to the overall process of lipid absorption. 

Hydrolysis of dietary fat begins in the stomach, from which the emulsion is delivered 

to the lumen of the small intestine. The pancreatic secretions contribute hydrolytic 

enzymes, and bile contributes bile salts, which solubilize the hydrolytic end products 

of intraluminal fat digestion. Long-chain triglycerides are hydrolysed by pancreatic 

lipase, with the hydrolysis being accelerated by colipase (Borgström 1975). 

Phospholipids are hydrolyzed at the 2-position by pancreatic phospholipase A2, to 

yield lysophospholipid and free fatty acids (Van Deenen et al. 1963). Cholesteryl 

esters are hydrolyzed by pancreatic cholesterol esterase (Vahouny and Treadwell 

1958, Vahouny et al. 1964). This hydrolysis is important, because only free 

cholesterol is efficiently absorbed (Swell et al. 1955, Swell et al. 1960); this 

observation has been confirmed later in mice lacking the cholesterol esterase gene 

(Howles et al. 1996).  
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Cholesterol is only minimally soluble in aqueous systems, its solubility is dependent 

on the solubilizing properties of bile salt solutions (Siperstein et al. 1952, Swell et al. 

1958). Mixed bile salt micelles and small unilamellar vesicles are thought to be the 

main natural carriers from which the mucosal uptake of lipids is possible (Carey and 

Hernell 1992). If there is to be micellar formation and subsequent cholesterol 

absorption, there must be bile salts present above the critical micellar concentration 

(Hofmann and Small 1967). In the presence of bile salts, more soluble lipids such as 

phospholipids, fatty acids and monoglycerides, can increase the solubility of 

cholesterol and facilitate the micellar solubilization and therefore they can improve 

the absorption of cholesterol. The known requirement of bile acids for intestinal 

cholesterol to be absorbed, recently demonstrated with mice lacking an enzyme 

essential for bile acid formation (Schwarz et al.1998), is met with this model.   

 

2.6.1.3 Mucosal events 

2.6.1.3.1 Uptake and re-excretion 

Cholesterol absorption occurs through the intestinal mucosal cells, which cover the 

surface of the intestinal villi, and the uptake occurs mainly in the apical region of the 

villi (Sylvén and Nordström 1970). The classical model for the molecular mechanism 

of cholesterol absorption  has been that unesterified cholesterol is shuttled in a mixed 

micelle across the unstirred water layer lining the brush border of enterocytes 

(Westergaard and Dietschy 1976). Subsequently, the transfer of cholesterol to the 

cell surface and inside the cell is mediated by passive diffusion according to the 

concentration gradient. More recently, Thurnhofer and Hauser (1990) suggested that 

uptake of cholesterol is an active process, and it is protein-mediated, possibly 

relating to cholesterol-transfer protein in enterocytes (Thurnhofer et al. 1991). 

Scavenger receptor class B type I (SR-BI), a membrane protein located on the brush 

border membrane, has been suggested to mediate intestinal cholesterol absorption 

by facilitating the uptake of dietary cholesterol from either bile salt micelles or 

phospholipid vesicles (Hauser et al. 1998). This receptor has been suggested to play 

a role in the absorption of other lipids, such as triglycerides, and even esterified 

sterols (Compassi et al. 1995).  Prior to SR-BI, a direct role for the pancreatic 

cholesterol esterase (i.e carboxyl ester lipase) in intestinal cholesterol absorption was 

proposed by Lopez-Candales et al. (1993). However, in knockout mice lacking the 

cholesterol esterase gene, the efficiency of intestinal cholesterol absorption was 
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identical to wildtype mice, though intestinal absorption of cholesteryl esters was 

impaired (Howles et al.1996). This result has been recently confirmed (Weng et al. 

1999).         

 

ABC transporters are integral membrane proteins, which transport various molecules 

across the cellular membrane, and are important in cholesterol metabolism (ABCA1) 

(Brooks-Wilson et al. 1999, Orso et al. 2000). A study in mice showed that treatment 

with retinoid X receptor (RXR) ligand could increase the intestinal expression of 

ABCA1 leading to enhanced efflux of cholesterol from enterocytes back to intestinal 

lumen (Repa et al. 2000). Further genetic studies have shown that both absorption 

and secretion of cholesterol are controlled by ABC transporters, ABCG5 and ABCG8, 

which act in concert to pump cholesterol out of cells (Berge et al. 2000, Lee et al. 

2001). In the intestine, they re-excrete cholesterol that has entered enterocytes from 

the intestinal lumen, thereby limiting cholesterol absorption.  

 

2.6.1.3.2 Mucosal cholesterol 

Inside the enterocytes, cholesterol and lipids are esterified, and approximately 75 % 

of newly absorbed cholesterol appearing in lymph chylomicrons is in an esterified 

form (Wilson and Rudel 1994). Fatty acids and monoglycerides are re-esterified to 

form triglycerides and free cholesterol is esterified to form cholesteryl esters. The 

monoglyceride pathway is used for the synthesis of chylomicron triglycerides (Field 

and Mathur 1995). Acyl CoA:cholesterol acyltransferase (ACAT) is the enzyme 

responsible for the esterification of absorbed cholesterol (Purdy and Field 1984,  

Chang et al. 1997). More recently, two ACAT enzymes were cloned, ACAT 1 and 

ACAT 2, of which ACAT 2 is most likely mainly responsible for esterification of 

intestinally absorbed cholesterol (Anderson et al. 1998, Cases et al. 1998, Oelkers et 

al. 1998). Accordingly, the role of ACAT 2 in cholesterol absorption is the formation of 

cholesteryl esters for packaging into chylomicrons, which prevents the back 

diffusion/transport of free cholesterol into intestinal lumen.  The effects of ACAT 

inhibition on cholesterol absorption have been variable, but most studies have shown 

a decrease in the extent of cholesterol absorption (Krause et al. 1993, Wilson and 

Rudel 1994). However, with a normal-low cholesterol containing diet, ACAT 2 -

deficient mice had plasma cholesterol similar to those of wildtype mice, but when 

they consumed a high fat, high cholesterol diet, their cholesterol absorption was 85 
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% lower than in wildtype mice (Buhman et al. 2000). These results emphasize the 

importance of ACAT, especially when high amounts of cholesterol are available for 

absorption.  

 

After the esterification, triglycerides and cholesteryl esters are assembled in the 

endoplasmic reticulum with other lipids and proteins to form the core of nascent 

chylomicrons. The major protein is apo B-48, which is obligatory for chylomicron 

formation (Hussain et al. 1996), and which acts in concert with microsomal 

triglyceride transfer protein (MTP). The assembly of chylomicron particle is completed 

in the Golgi apparatus (Field and Mathur 1995).  MTP has a role in rescuing apo B-

48 from intracellular degradation during early lipidation of the protein, this lipidation 

process possibly being mediated by MTP (van Greevenbroek et al. 1998).  When the 

formation is terminated, chylomicrons enter lacteals in the intestinal villi, and are 

delivered via the thoracic duct into the bloodstream.   

 

2.6.1.4 Regulation of serum cholesterol level  

The cholesterol absorption efficiency has been reported to regulate serum 

cholesterol levels in a random population of Finnish males (Kesäniemi and Miettinen 

1987, Kesäniemi et al. 1987). The cholesterol absorption efficiency was positively 

associated with serum and LDL cholesterol concentrations, and negatively with 

cholesterol synthesis (Kesäniemi and Miettinen 1987, Miettinen and Kesäniemi 1989, 

Gylling and Miettinen 1989, Miettinen et al. 1990). Studies in hyper- and hypo-

responding nonhuman primates also indicated that cholesterol absorption and 

plasma cholesterol level were positively related (Wilson and Rudel 1994). However, 

in contrast to these previous studies, the efficiency of cholesterol absorption was not 

related to serum total or LDL cholesterol concentrations in two recent studies 

(Sehayek et al. 1998a, Bosner et al. 1999). The subjects in the study by Bosner et al. 

(1999) were from various ethnic groups with a high interindividual variation in their 

percent cholesterol absorption. In the study by Sehayek et al. (1998a), almost two-

thirds of the variation in LDL cholesterol was explained by the dietary cholesterol-

induced change in percentage dietary cholesterol absorption, even though the 

relationship between change in percentage dietary cholesterol absorption versus 

percent change in LDL cholesterol was non-linear. The use of the plasma isotope 

ratio method (Sehayek et al. 1998a, Bosner et al. 1999) determines only the 
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cholesterol absorption percentage, the value is determined from only short period of 

time, it yields only a single measure of absorption, and the value of cholesterol 

absorption may be dependent on the composition of the test meal. With the 

continuous isotope feeding method (Kesäniemi and Miettinen 1987, Kesäniemi et al. 

1987,  Miettinen and Kesäniemi 1989, Gylling and Miettinen 1989, Miettinen et al. 

1990), the cholesterol absorption percentage, amount of cholesterol absorbed and 

the intestinal influx of endogenous cholesterol can be determined in a balanced, 

constant state providing more steady and consistent values of cholesterol absorption 

from day to day during the period of one week. Therefore, the use of different 

methods for measuring cholesterol absorption in these earlier studies may explain 

the variation in the obtained results. 

  

The role of cholesterol absorption as a regulator of serum HDL cholesterol seems 

more evident. Many studies have shown that the cholesterol absorption efficiency as 

well as plant sterols, indicators of cholesterol absorption, are positively associated 

with serum HDL cholesterol levels. (Miettinen and Kesäniemi 1989, Miettinen et al. 

1990, Miettinen and Gylling 2000)   

 

The fractional and absolute absorption of cholesterol correlates negatively with 

cholesterol synthesis (Miettinen and Kesäniemi 1989). Accordingly, effective 

cholesterol absorption will lower cholesterol synthesis and serum levels of cholesterol 

may increase, whereas with ineffective absorption, the overall cholesterol synthesis 

is increased (Miettinen et al. 1990). The association between cholesterol synthesis 

and serum and LDL cholesterol levels are insignificant in many studies (Gylling and 

Miettinen 1988, Miettinen and Kesäniemi 1989, Miettinen et al. 1989, Gylling et al. 

1994), suggesting that serum and LDL cholesterol levels are regulated mainly by 

cholesterol absorption rather than cholesterol synthesis.   

 

2.6.1.5 Measurement of cholesterol absorption 

A variety of different methods have been developed for estimating the absorption of 

cholesterol in humans. Most of these methods are based on the use of radioactive 

isotopes. One of the earliest methods used was based on the administration of a 

single oral or intravenous dose of radioactive 3H- or 14C- , and the absorption of 

cholesterol was calculated as the difference between the dietary cholesterol and 
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fecal exogenous neutral steroids (Borgström 1969, Quintao et al. 1971, Sodhi et al. 

1974, Samuel et al. 1978). This method has been modified by extending the isotope 

administration for several days or even as long as several weeks (Quintao et al. 

1971), as well as with the use of intestinal intubation (Grundy and Mok 1977). 

Although these methods provide information about cholesterol absorption, they suffer 

from some particular disadvantages such as the need for hospitalization in a 

metabolic ward and inconvenience to the subject. In addition, only one measurement 

of a single dose of radioactive cholesterol may not accurately estimate the mean 

absorption over a period of time.  

 

The plasma isotope ratio method, first introduced in rats (Zilversmit 1972), and later 

validated in humans (Samuel et al. 1978), is based on giving the reference 

compound 3H-cholesterol intravenously simultaneously with an oral dose of 14C-

cholesterol, and the resulting 14C/3H ratio in the plasma gives an estimate of the 

percentage absorption of cholesterol from the intestine. Despite the simplicity and 

feasibility for outpatient studies, this method measures only absorption percentage of 

cholesterol, and the absorption value is determined only from a short period of time, 

which possibly is not the true reflection of mean overall absorption.  

 

In the continuous isotope feeding method, developed by Crouse and Grundy (1978), 

the subjects receive peroral low-dose 14C-cholesterol and 3H-sitosterol in capsules 

three times a day with meals for 7-10 days. The stool is collected on days 3-10. The 

ratio of isotopes in feces becomes constant after the first 3 days. The percentage 

absorption of cholesterol is calculated from the difference between the dietary 

(capsules) and fecal isotope ratios. This measurement gives an accurate value of 

cholesterol absorption percentage because of the sufficiently long study period which 

allows one to achieve stable state and constancy in the ratio of the isotopes in feces, 

and sequential fecal samples diminish the fluctuation in the absorption. In addition, 

other advantages include the simple administration of isotope, analysis of fecal 

samples is easy, though laborious, the analysis can be repeated daily, and it is 

suitable for outpatients. The amount of cholesterol absorbed and the intestinal influx 

of endogenous cholesterol can be calculated, if the daily intake of cholesterol and 

fecal neutral steroid excretion are also measured. The only drawback is that children 

and women of child-bearing age cannot be studied.  
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More recently, the continuous isotope feeding method was modified by using 

markers labeled with stable isotopes, deuterated cholesterol, and deuterated 

sitostanol, quantified by gas-liquid chromatography-selected ion monitoring 

(Lütjohann et al. 1993). This method is claimed to be safe and reproducible without 

radioactive exposure. In addition, a nonradioactive modification was developed 

based on the plasma isotope ratio method (Zilversmit 1972), in which six extra mass 

units of 2H-cholesterol were given orally and 5 extra mass units of 13C were 

administered intravenously on day 0: the absorption percentage of cholesterol was 

calculated on day 3 from the plasma ratio of the two tracers using gas 

chromatography-mass spectrometry with selected ion monitoring (Bosner et al. 

1993). The sensitivity of the analysis was further improved by using negative ion 

mass spectrometry (Ostlund et al. 1996).  Furthermore, the measurement of serum 

plant sterols and cholestanol ratios to cholesterol, variables reflecting cholesterol 

absorption (Tilvis and Miettinen 1986, Miettinen et al. 1989, Miettinen et al. 1990) by 

gas-liquid chromatography provides a less laborious method to evaluate cholesterol 

absorption compared to methods based on the use of radioactive or stable isotopes.  

 

2.6.1.6 Factors affecting cholesterol absorption 

Despite the close relation between intestinal absorption of cholesterol and dietary 

fats as well as the presence of bile acids as requirements for cholesterol absorption, 

there are marked differences in the extent of absorption. For instance, the absorption 

of dietary fat is over 95 % (Carey et al. 1983), that of cholesterol approximately 50 %, 

and the bile acids are almost quantitatively reclaimed (> 95%)(Wilson and Rudel 

1994). The cholesterol absorption efficiency between different individuals shows a 

high variation, with values ranging widely from 25 % to 80 % (Miettinen and 

Kesäniemi 1989, Bosner et al. 1999).   

 

Diet 

Results from several studies indicate that the cholesterol absorption efficiency 

remains mainly unaltered even though there are daily variations in the dietary 

cholesterol content (McMurry et al. 1985, Miettinen and Kesäniemi 1989, Sehayek et 

al. 1998a). However, with feeding of extra large amounts of cholesterol, the 

cholesterol absorption efficiency becomes decreased (McNamara et al. 1987, Gylling 

and Miettinen 1992, Vuoristo and Miettinen 1994). Increasing the amount of dietary 
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cholesterol resulted in substantial overall reductions in the absorption efficiency of 

cholesterol, but there was a considerable heterogeneity in the response of different 

individuals (Ostlund et al. 1999). Studies in Finnish and American populations have 

shown that ordinary cholesterol intake was not significantly related with cholesterol 

absorption efficiency (Miettinen and Kesäniemi 1989, Bosner et al. 1999). The 

association between cholesterol absorption and hypo- and hyper-responsiveness in 

humans (Beynen et al. 1987, Katan and Beynen 1987) might contribute to the results 

of dietary cholesterol intake- induced changes in cholesterol absorption. Feeding 

increasing amounts of cholesterol to mice led to a decrease in the percentage 

absorption of dietary cholesterol and an increase in the biliary cholesterol 

concentration, and these two variables were strongly and inversely correlated, 

suggesting that the biliary cholesterol secretion may have a role in regulating the 

efficiency of dietary cholesterol absorption (Sehayek et al. 1998b). Biliary cholesterol 

could saturate the intestinal micelles, preventing the normal absorption of dietary 

cholesterol. Other studies in mice (Carter et al. 1997) and monkeys (Rudel et al. 

1994) have concluded that cholesterol absorption efficiency is significantly lower, 

when the animals are fed a diet containing extra high amounts of cholesterol 

compared to feeding a low cholesterol diet. 

 

The results concerning the effects of dietary cholesterol on cholesterol absorption are 

not clear. The expanded intestinal cholesterol pool due to high amounts of dietary 

cholesterol may contribute to the dilution of labeled cholesterol resulting in its 

reduced absorption. The other concern with diets high in cholesterol is the difficulty of 

ensuring that all the cholesterol is properly micellar-solubilized in the intestine and 

available for absorption. However,  most studies reveal that the amount of cholesterol 

absorbed is closely related to cholesterol intake, and the increased intake of 

cholesterol is associated with an increased mass absorption of cholesterol (Miettinen 

and Kesäniemi 1989). 
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Intestinal transit time 

There are only limited number of studies concerning the effects of intestinal motility 

and transit time on cholesterol absorption. The reduction of small-bowel transit time 

by chenodeoxycholic acid (Ponz de Leon et al. 1979) or by metoclopramide (Ponz de 

Leon et al. 1982) decreases cholesterol absorption. In addition, the cholesterol 

absorption efficiency has been shown to correlate positively with mouth to anus 

intestinal transit time (Koivisto and Miettinen 1986). However, the atropine-induced 

prolongation of the small-bowel transit time did not enhance dietary cholesterol 

absorption in subjects whose cholesterol absorption percentage was normal (Ponz 

de Leon et al. 1982). Based on these results, the intestinal transit time seems to be 

related to steroid absorption under normal physiological conditions.     

 

Obesity 

The cholesterol absorption efficiency is decreased  in obesity (Miettinen and Gylling 

2000). An inverse correlation between BMI and absorption efficiency has been 

reported in a random population of Finnish men (Miettinen and Kesäniemi 1989). 

However, in another study, the correlation between BMI and cholesterol absorption 

percentage remained insignificant (Bosner et al. 1999). The obesity-related increased 

cholesterol synthesis with increased biliary output could contribute to lowered 

cholesterol absorption in obesity (Miettinen and Gylling 2000), but the exact 

mechanisms are not known.    

 

Age 

The effect of age on cholesterol absoption is controversial. Cholesterol absorption 

efficiency was lower in 75 year olds compared to 50 year old subjects (Gylling  et al. 

1994). On the contrary, the relation between age and the serum plant sterol levels, 

markers of cholesterol absorption, remained insignificant in another study (Kempen 

et al. 1991). In a third study, a positive correlation was found between age and the 

amount of dietary cholesterol absorbed, though the respective correlation for the 

cholesterol absorption percent was not significant (Bosner et al. 1999) 
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Apo E 

The apo E phenotype is closely associated with the cholesterol absorption efficiency, 

a finding described first by Kesäniemi et al. (1987). More recent studies have 

confirmed this relationship (Gylling et al. 1989, Miettinen et al. 1992). The cholesterol 

absorption efficiency was highest in individuals with the E4/4 and E4/3 phenotypes, 

lowest with E2/2, and E3/3 was situated in  the middle. The serum cholesterol levels 

were distributed in a similar manner so that highest levels were found in subjects with 

E4/4 or E4/3 phenotypes (Utermann et al. 1977). These results may confirm the role 

of cholesterol absorption as the regulator of serum cholesterol levels in a random 

sample of male population (Kesäniemi and Miettinen 1987, Kesäniemi et al. 1987). In 

studies with individuals consuming low fat-low cholesterol diets, the relation between 

apo E and cholesterol absorption efficiency vanished (Miettinen et al. 1992, Bosner 

et al. 1999).  

 

Plant sterols 

Plant sterols have been used for the treatment of hypercholesterolemia since the 

early 1950s because they lower serum cholesterol by inhibiting cholesterol 

absorption (Pollak 1953, Lees et al. 1977, Mattson et al. 1982). Further, it was shown 

that sitostanol, a saturated derivate of sitosterol, could reduce serum cholesterol 

more efficiently than sitosterol in rats (Sugano et al. 1977, Ikeda et al. 1981) and in 

humans (Heinemann et al. 1986). In 1993, based on Dr. Miettinen’s hypothesis that a 

fat soluble esterified form of stanol would be more physiological and more palatable, 

and, accordingly, could inhibit cholesterol absorption and lower serum cholesterol 

more efficiently than the crystalline form, stanol ester rich mayonnaise (Vanhanen et 

al. 1993) and later rapeseed oil margarine were developed. Subsequently, many 

studies have confirmed the effect of stanol ester margarine as a way to safely inhibit 

cholesterol absorption and decrease serum total and LDL cholesterol levels in 

normo- and hypercholesterolemic individuals (Miettinen et al. 1995, Gylling et al. 

1995), postmenopausal women with prior myocardial infarction (Gylling et al. 1997) 

as well as in non-insulin dependent diabetes mellitus (Gylling  and Miettinen 1994a, 

1996a).  

 

Dietary plant sterols interfere with the micellar solubility of cholesterol, which directly 

impacts on the incorporation of micellar cholesterol to the absorptive enterocytes 
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(Ikeda and Sugano 1983, Ikeda et al. 1988). Hence, more sterols remain in the 

intestinal lumen, subsequently cholesterol absorption is depressed and serum 

cholesterol levels decrease. However, the exact mechanisms by which plant sterols 

inhibit cholesterol absorption have not been clarified in detail (Björkhem et al. 2001).  

 

2.6.2 Plant sterols and cholestanol 

Plant sterols are constituents of plant lipids. The normal human diet contains 200-300 

mg/d of plant sterols (Salen et al. 1970), mainly sitosterol (65%), campesterol (32%), 

and trace amounts of stigmasterol (3%) (Björkhem et al. 2001). These sterols are 

structurally similar to cholesterol except for a difference in their side chain structure. 

The side chain of sitosterol contains an ethyl- and campesterol methyl group at the 

C-24 position. Stigmasterol has the same structure as sitosterol, except for a double-

bond at C-22.  

 

The human body is unable to synthesize plant sterols, thus all plant sterols are 

derived by absorption from the diet. Serum concentrations of plant sterols are 

regulated by dietary intake, absorption of these sterols from the intestine, and their 

elimination from the body through secretion into bile. A high cholesterol absorption 

efficiency is usually associated with high levels in serum of plant sterols, whereas 

high cholesterol synthesis, usually in conjunction with low absorption, is associated 

with low serum plant sterol levels as well as increased biliary sterol secretion 

(Miettinen et al. 1989, Miettinen et al. 1990). The ratios of plant sterols to cholesterol 

correlate positively with fractional absorption of dietary cholesterol and negatively 

with cholesterol precursor sterols and cholesterol synthesis, and thus measurement 

of their ratios to cholesterol can be used as indicators of cholesterol absorption (Tilvis 

and Miettinen 1986, Miettinen et al. 1989, Miettinen et al. 1990, Gylling and Miettinen 

1997, Miettinen and Gylling 2000).   

 

Cholestanol, a 5α-saturated derivate of cholesterol, is enzymatically formed from its 

precursor. Small amounts of cholestanol accompany cholesterol in most tissues. 

Dietary intake of cholestanol is normally very small (< 2 mg)(Miettinen et al. 1989), 

and its absorption is low, about 9 % (Vuoristo and Miettinen 2000). In addition, the 

serum levels of cholestanol remain constant during consumption of a cholestanol 

free-diet (Salen and Grundy 1973). Therefore, the body cholestanol is considered to 
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be mainly derived from endogenous cholesterol, its mean daily synthesis being about 

12 mg/d (Salen and Grundy 1973). Cholestanol is eliminated from the body through 

bile as such or degraded to 5α-bile acids. The accumulation of cholestanol in the 

tissues and its high serum levels are seen in cerebrotendinous xanthomatosis, a rare 

inherited disease characterized with a defect in bile acid biosynthesis, and in 

sitosterolemia (Björkhem et al. 2001), and in cholestasis (Nikkilä et al. 1991). 

Measuring the serum cholestanol level is used  as an indicator of cholesterol 

absorption (Miettinen et al. 1989).     

 

2.6.2.1 Absorption of plant sterols 

The intestinal absorption of plant sterols is normally limited. Only < 5 % of ingested 

sitosterol is absorbed (Salen et al. 1970), and absorption of campesterol is 

approximately 10 % (Tilvis and Miettinen 1986). Despite the high inter-individual 

variation of plasma sitosterol concentrations (Kempen et al. 1991), the plasma plant 

sterol concentrations seem to be very stable within individuals. The inter-individual 

variation in the plant sterol concentrations is genetically determined (Berge et al. 

2002). Extremely high concentrations of plant sterols occur in a rare hereditary 

disorder called sitosterolemia (phytosterolemia) (Bhattacharyya and Connor 1974), in 

which sterol absorption is increased and sterol excretion into bile is decreased 

(Miettinen 1980, Björkhem et al. 2001). Mutations in the two ABC transporters, 

ABCG5 and ABCG8, have been described as one cause for this disease (Berge et 

al. 2000, Lee at al. 2001). Recent studies show that polymorphisms in ABCG8 have 

a contributing effect to genetic variation in the serum plant sterol concentrations  in 

normal, healthy individuals (Berge et al. 2002).  

 

2.6.2.2 Transport in serum  

There are only a few studies, in which the distribution of plant sterols and cholestanol 

in different serum lipoproteins has been defined. Cholestanol is reported to be 

transported similarly to cholesterol mainly in LDL (Salen and Grundy 1973). In 

sitosterolemia, plant sterols are mainly transported in LDL and HDL (Bhattacharyya 

and Connor 1974), thus following cholesterol distribution. In order to diminish the 

effect of varying levels of serum cholesterol on the concentrations of plant sterols, 

they are usually standardized and expressed in relation to cholesterol in serum and 

lipoproteins as mmol/mol of cholesterol (Vuoristo and Miettinen 2000). In humans 
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when cholesterol absorption is normal, the ratios of plant sterols to cholesterol seem 

to accumulate in HDL (Tilvis and Miettinen 1986) this also being seen in rats (Sugano 

et al. 1978). In familial hypercholesterolemia patients with increased cholesterol 

synthesis due to ileal bypass, the ratios of serum plant sterols to cholesterol in 

lipoproteins appear to increase slightly with increasing lipoprotein density (Koivisto 

and Miettinen 1988b). In rats, plant sterols are transported to bile only in HDL 

(Robins and Fasulo 1997). 

 

2.6.3 Cholesterol synthesis 

Cholesterol is synthesized through several intermediates from acetyl-CoA (Figure 2). 

The rate-limiting step of cholesterol synthesis is the reduction of 3-hydroxy-3-

methylglutaryl-coenzyme A (HMG-CoA) to mevalonate. This process is catalyzed by 

HMG-CoA reductase, the rate-limiting enzyme in the synthesis of cholesterol. 

Mevalonate is transformed to squalene, which is converted to lanosterol. Cholesterol 

is finally formed from lanosterol after several further steps. The synthetic pathway 

from squalene to cholesterol includes several intermediate methyl- and demethyl 

sterols released in serum. 

   

Liver is the major organ responsible for cholesterol synthesis. De novo cholesterol 

synthesis is strictly regulated by the amount of cholesterol in cells (Brown and 

Goldstein 1983). Hepatocytes receive both exogenous and endogenous cholesterol. 

Chylomicron remnants transport the absorbed dietary cholesterol from the intestine 

to the liver, and circulating lipoproteins, mainly LDL, transport the endogenous 

cholesterol back to the liver for further processing. The key to the uptake process of 

these particles to the hepatocytes is their binding to the LDLapo B-receptor, thus 

mediating the endocytosis (Brown and Goldstein 1986). In addition, LDL receptor-

related protein (LRP) is another member of the  LDL receptor gene family, which 

binds to chylomicron remnants, probably mediating  their uptake (Havel 1998).  

 

Once inside the cell, cholesteryl esters are hydrolyzed in the lysosomes. The level of 

free cholesterol mediates a feedback control system, which regulates intracellular 

cholesterol homeostasis. This inhibits the HMG-Coa reductase enzyme leading to the 

termination of cholesterol synthesis, and it also activates ACAT leading to formation 

of cholesteryl esters for storage in the cell. It furthermore suppresses the synthesis of 
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LDL receptors preventing the overaccumulation of cholesterol in the cell. Free 

cholesterol is also used for membrane synthesis, as a precursor for steroid hormones 

or is converted to bile acids or secreted to the bile as such.     

 

 

 

Acetyl-CoA Condensation of the molecules of acetyl-CoA

Acetoacetyl-CoA Condensation with acetyl-CoA

3-hydroxy-3-methylglutaryl-CoA
Reduction by 3-hydroxy-3-methylglutaryl-CoA reductase

Mevalonate

Squalene

Lanosterols

8,24-Dimethylsterol

8-Dimethylsterol

  Methostenols

Desmosterol 8-cholestenol

 7-lathosterol

Cholesterol
 

Figure 2.  Biosynthesis of cholesterol 

 

The sterol regulatory element-binding proteins (SREBPs) are transcription factors 

that are important regulators of cholesterol biosynthesis (Horton and 

Shimomura1999). SREBPs are membrane-bound molecules, whose activity is 

controlled by sterol-regulated proteolysis (Brown and Goldstein 1997). When the 

amount of cholesterol in the cell is low, SREBPs are liberated from membranes, and 

they enter the nucleus. When cellular sterols accumulate, SREBP cleavage is 

suppressed which leads to decreased levels of nuclear SREBPs.  
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When they gain access to the nucleus, SREBPs activate the genes involved in the 

synthesis of cholesterol and fatty acids, and the uptake of cholesterol through 

transcription of the LDL receptor enzymes. With respect to the cholesterol 

biosynthetic pathway, SREBPs activate the genes encoding HMGCoA reductase, 

HMGCoA synthase, farnesyl diphosphate synthase, squalene synthase and 

lanosterol demethylase (Brown and Goldstein 1997).  

 

To date, three SREBP isoforms have been identified and characterized, SREBP-1a, -

1c and SREBP-2 (Brown and Goldstein 1997). There are transgenic mice, which 

have overexpression of nuclear SREBP-2. This mutation led to marked increases in 

the mRNAs of cholesterol biosynthetic enzymes and the rate of cholesterol synthesis 

increased 28 –fold (Horton et al. 1998).  SREBP-2 is suggested to be the principal 

isoform responsible for controlling the cholesterol biosynthetic pathway (Horton and 

Shimomura 1999). 

 

2.6.3.1 Reverse cholesterol transport 

Lipid-rich HDLs arise from lipid poor precursors or from lipid-free apolipoproteins 

(Fielding and Fielding 1995). Reverse cholesterol transport is initiated by the removal 

of cholesterol from peripheral tissues, either by passive diffusion to lipid-poor pre-

HDL or receptor-mediated efflux to apo A-I.  

 

The active removal is  mediated by ABCA1, an ATP- binding cassette transporter, 

which facilitates the addition of phospholipids and cholesterol from the cells to free 

apoA-I, initiating the formation of HDL (Schmitz and Langmann 2001). The enzyme 

LCAT uses phospholipids and free cholesterol as its substrates and forms cholesteryl 

esters. Cholesteryl esters formed within HDL can be delivered to the liver by three 

routes.  

 

Cholesteryl esters may be transferred to TRL by CETP (Tall 1993, 1995). These 

lipoproteins are further metabolized in the circulation to form lipoprotein remnants. 

The uptake of the remnants to the liver is mediated by binding to the hepatic 

receptors (LDLapo B-receptors or LRP), proteoglycans and apo E.  
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HDL cholesteryl esters may also be taken up by the liver via a process of selective 

lipid uptake. It has been shown recently that this selective uptake is mediated by SR-

BI. Hepatocytes and steroid hormone producing cells express SR-BI. This protein 

binds to HDL and mediates the uptake of cholesteryl esters without internalization 

and degradation of HDL proteins (Acton et al. 1996, Kozarsky et al. 1997, Rigotti et 

al. 1997). In addition to cholesteryl ester uptake, SR-BI might mediate free 

cholesterol uptake of HDL to the liver, providing an important source of biliary 

cholesterol (Ji et al. 1999, Mardones et al. 2001). Some HDL particles contain apo E, 

and can be taken up by hepatocytes via the LDLapo B-receptors (Hennessy et al. 

1997). The mechanisms of the HDL particle uptake are not clear, and proteoglycans, 

apoproteins and still unknown receptors might also be involved (Ji et al. 1997).     

 

2.6.4 Squalene and demethylated cholesterol precursors  

In addition to cholesterol, some of its precursors including squalene and 

demethylated sterols, especially ∆8 –cholestenol (cholestenol), desmosterol and ∆7 –

lathosterol (lathosterol), are present in detectable amounts in serum. The sterols are 

transported in serum by lipoproteins similarly to cholesterol, such that the highest 

amounts are found in LDL. When expressed as ratios to cholesterol, the lathosterol 

ratio is highest in VLDL in subjects with increased cholesterol synthesis (Koivisto and 

Miettinen 1988a). Most of the squalene is carried in LDL and HDL in fasting human 

serum (Miettinen 1982b, Gylling and Miettinen 1994b), but the highest ratio of 

squalene to cholesterol (Gylling and Miettinen 1994b) and the newly synthesized 

squalene (Goodman 1964) are found in VLDL. Many studies have shown that serum 

levels of different precursors to cholesterol are increased under conditions of 

increased synthesis of cholesterol, and reduced with reduced synthesis of cholesterol 

(Miettinen 1969, 1970, 1981, Miettinen and Koivisto 1983, Miettinen 1985, Vuoristo 

and Miettinen 1986).  The non-cholesterol precursor sterols correlate positively to 

HMG-CoA reductase activity and the cholesterol synthesis rate (Björkhem et al. 

1987, Kempen et al. 1988, Miettinen et al. 1990) and negatively to cholesterol 

absorption and to the levels of plant sterols in serum (Miettinen et al. 1990). In 

addition, treatment with lovastatin reduced the cholesterol synthesis rate and serum 

lathosterol concentrations as well as the ratio of lathosterol to cholesterol in serum 

(Kempen et al. 1988, Duane 1995). Thus, non-cholesterol sterols have been 

demonstrated to reflect the rate of cholesterol synthesis, and thus measurement of 
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their ratios to cholesterol can be  used as indicators of cholesterol synthesis. The 

serum content of squalene seems to reflect cholesterol synthesis less efficiently 

(Miettinen et al. 1990).     

 

2.6.5 Elimination of cholesterol  

Liver is the major organ responsible for the removal of cholesterol from the body. The 

removal of cellular cholesterol from peripheral tissues to the liver by HDL mediated 

extraction occurs by a number of mechanisms including aqueous diffusion, a specific 

apoprotein-mediated mechanism as well as facilitated efflux mediated by cell surface 

receptors. In addition, some cells are able eliminate intracellular cholesterol by 

converting it into more polar metabolites by oxidative mechanisms. These oxysterols 

are important as transport forms of cholesterol over cell membranes and the blood-

brain barrier, because they are easily excreted from the cells and transported to the 

liver for conversion to bile acids. For instance, cholesterol in the brain is converted 

into 24S-hydroxycholesterol which can be transported over the blood-brain barrier 

much more rapidly than unmetabolized cholesterol, and taken up by liver from the 

circulation for further metabolism (Björkhem and Diczfalusy 2002). 

 

Cholesterol is eliminated from the body primarily by fecal excretion of neutral sterols 

and bile acids. Cholesterol is secreted either unchanged or as bile acids into bile, and 

biliary secretion of cholesterol is linked with biliary bile acid output (Schersten et al. 

1971). Fecal neutral sterols consist mainly of cholesterol and its bacterial metabolites 

coprostanol, epicoprostanol and coprostanone, and also variable amounts of 

cholesterol precursors and plant sterols, and their coprostanol and coprostanone 

bacterial products (Miettinen et al. 1965, McNamara et al. 1981). The daily excretion 

rate of cholesterol is 400-1000 mg (Miettinen et al. 1965), mostly being excreted as 

its metabolite coprostanol.  

 

2.6.5.1 Bile acids 

The formation of bile acids from cholesterol accounts for over 30 % of the cholesterol 

removal from the body. During the past few years it has been shown that the initial 

step in the formation of the bile acids may start in the extrahepatic tissues (Princen et 

al. 1997). However, all the subsequent steps in the formation of the bile acids are 

almost exclusively located in the liver. The hepatic conversion of cholesterol into bile 
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acids involves many steps and enzymatic processes. The major, “neutral” pathway 

begins with the rate-limiting step of the conversion of cholesterol into 7 α-hydroxy-

cholesterol, catalysed by the cholesterol 7α-hydroxylase (CYP7A1). This enzyme 

regulates the overall conversion of cholesterol into bile acids in this pathway, and its 

activity is regulated through negative feedback by reabsorbed bile acids returning to 

the liver. An alternative pathway, the “acidic pathway”, starts with the 27-

hydroxylation of cholesterol followed by a microsomal 7α –hydroxylation by a specific 

oxysterol 7α -hydroxylase (Björkhem and Eggertsen 2001). This pathway is less 

responsive to bile acid negative feedback, and is regulated separately from the major 

pathway (Björkhem et al. 2001). The neutral pathway seems to be responsible for 

over 50 % of the total synthesis of bile acids, whereas acidic pathway starting in the 

liver may be responsible for 30-50 % of the total production (Björkhem and Eggertsen 

2001). Only a minor amount of the whole bile acid pool is produced by extrahepatic 

tissues starting with 27-hydroxylation (Duane and Javitt 1999).    

 

The end products of these pathways are the primary bile acids, cholic acid and 

chenodeoxycholic acid.  The primary bile acids are secreted into bile as conjugates 

with glycine or taurine (3:1). After secretion, these bile acids may be deconjugated 

and also dehydroxylated by intestinal bacteria. Deconjugation alters both the physical 

and chemical properties of bile acids. Deoxycholic acid is the dehydroxylated product 

of cholic acid and lithocholic acid is the corresponding product of chenodeoxycholic 

acid. Deoxycholic acid is water soluble and it is partly absorbed, whereas lithocholic 

acid is mainly excreted in the feces. From the intestine, bile acids are reabsorbed 

and returned to the liver via the portal circulation. Absorbed bile acids are taken up 

by hepatocytes and secreted again into bile. This enterohepatic circulation is an 

extremely efficient way to conserve bile acids, of which only 2-5% escape the 

intestinal absorption to be excreted into feces.  

 

Transformation of cholesterol into bile acids is the major pathway of cholesterol 

catabolism, and thus bile acids have an important role in cholesterol homeostasis. 

The activity of CYP7A1 is controlled by negative feedback of the reabsorbed bile 

acids to guarantee the maintenance of an intact bile acid pool. CYP7A1 enzymatic 

activity is influenced by a number of dietary and hormonal factors.  A close 
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correlation is found between the activity of HMG-CoA reductase and CYP7A1 

(Björkhem and Åkerlund 1988), and their activities usually increase in parallel both in 

basal conditions and in situations of bile acid malabsorption (Färkkilä and Miettinen 

1990, Björkhem et al. 1997). Enhanced fecal elimination of bile acids due to 

interruption of the enterohepatic circulation, e.g. with cholestyramine or surgical 

resections, can increase bile acid synthesis, stimulate the expression of hepatic LDL 

receptors and increase the synthesis of cholesterol (Everson and Kern 1995), which 

is seen also in an elevation in the levels of the cholesterol precursor sterols 

(Miettinen 1985, Färkkilä et al. 1988).  

 

Recent studies have shown that the secretion of bile acids and cholesterol from 

hepatocytes into bile is controlled by ABC transporters. The bile salt export pump 

(BSEP) is a member of the ABC superfamily of transporters (ABCB11). This pump is 

located on the canalicular membrane of hepatocytes where it facilitates the transport 

of bile acids from the hepatocyte into bile (Schmitz et al. 2000). The secretion of 

cholesterol into bile is mediated by two other ABC transporters, ABCG5 and ABCG8 

(Goldstein and Brown 2001). 

 

2.6.6 Nuclear receptors and cholesterol metabolism 

Nuclear receptors function as ligand-activated transcription factors that regulate the 

expression of target genes. Two nuclear hormone receptors involved in the 

regulation of cholesterol homeostasis are liver X receptor (LXR) and farnesoid X 

receptor (FXR). The natural ligands for LXR and FXR are oxysterols and bile acids 

(Accad and Farese 1998, Russell 1999). Ligand-activated LXR or FXR both form 

heterodimers with the RXR in order to modulate and control transcriptional activity of 

several important genes regulating cholesterol metabolism.  

 

Three genes coding ABC transporters (ABCA1, ABCG5 and ABCG8) which are 

involved  in the absorption of cholesterol, are the proposed target genes of LXR 

(Berge et al. 2000, Repa et al. 2000, Lee et al. 2001). In addition, genes coding 

CYP7A1, (enzyme onvolved in bile acid synthesis), and SREBP-1c (biosynthesis of 

fatty acids) are activated by the LXR-RXR heterodimer (Repa and Mangelsdorf 1999, 

Goldstein and Brown 2001). FXR is highly expressed in liver where it appears to 

function as a bile acid sensor. The genes encoding BSEP and ileal bile-acid binding 
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protein (I-BABP) (mediates the re-uptake of bile acids from the intestinal lumen) are 

target genes for FXR (Edwards et al. 2002). In addition, the FXR-RXR heterodimer 

represses CYP7A1 transcription (Lu et al. 2000).  

 

Therefore, nuclear receptors are important in regulating cholesterol metabolism by 

controlling the transcription of several important genes involved in cholesterol and 

bile acid metabolism.   

 

2.7 Cholesterol synthesis and elimination in obesity 
 

Cholesterol synthesis (Miettinen 1971a, Liu et al. 1975, Nestel et al. 1973) and 

turnover Nestel et al. 1969) are increased in obesity. The serum levels of methyl and 

demethyl sterols,  cholesterol precursor sterols, and squalene are elevated in 

obesity, reflecting increased synthesis of cholesterol (Miettinen 1970, Liu et al. 1975, 

Nestel and Kudchodkar 1975, Miettinen and Gylling 2000). Some of the excess 

cholesterol is produced by the enlarged amount of adipose tissue (Miettinen and 

Tilvis 1981), though adipose tissue-synthesized cholesterol does not account for all 

of the enhanced synthesis of cholesterol in obesity (Schreibman and Dell 1975, 

Miettinen and Tilvis 1981). Increased cholesterol synthesis in liver seems to be 

responsible for most of the excess cholesterol produced in obesity, associated with 

increased fatty acid transport to the liver and generally enhanced lipogenesis (Nestel 

and Goldrick 1976). It has been shown that the activity of hepatic HMG-CoA 

reductase is increased in obesity (Angelin et al. 1982). More recently, in a study of 

liver biopsies obtained from obese and non-obese subjects, the activity and mRNA 

level of HMG-CoA reductase were markedly higher in the liver of obese than non-

obese subjects (Ståhlberg et al. 1997).  

 

In addition to enhanced cholesterol synthesis, the elimination of cholesterol to feces 

is enhanced through its increased secretion into bile and also because of the 

increased formation of bile acids (Miettinen 1971a, Nestel et al. 1973, Bennion and 

Grundy 1975, Miettinen and Gylling 2000). In fact, the activity and mRNA level of 

CYP7A1 are clearly increased in obese vs non-obese subjects (Ståhlberg et al. 

1997). The increased secretion of cholesterol into bile increases the risk for gallstone 

formation in obesity (Miettinen 1987). 
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2.8 Cholesterol metabolism in diabetes 
 

Type 2 diabetes is associated with many metabolic disturbances, including 

abnormalities in glucose and lipid metabolism. The alterations in lipoprotein 

metabolism have been studied and described in detail earlier, and thus are well 

known (American Diabetes Association 1993, Evans 1999). The study of cholesterol 

metabolism and bile acids in diabetes has been somewhat neglected, perhaps 

because of the more common and obvious abnormality in plasma lipids. There are 

some earlier studies describing cholesterol metabolism in diabetes, though the 

results are not always consistent. 

 

2.8.1 Cholesterol absorption 

A few studies have shown that the cholesterol absorption efficiency might be low in 

hypercholesterolemic type 2 diabetes (Gylling and Miettinen 1997) or in markedly   

hypertriglyceridemic diabetes subjects (Briones et al. 1986). However, in the latter 

study, of 40 diabetic subjects, 22 were receiving insulin treatment at the time of the 

study, and 6 were insulin –dependent diabetics. Low plant sterol concentrations in 

type 2 diabetes have been described in two studies (Sutherland et al. 1992, Gylling 

and Miettinen 1997). The cholesterol absorption efficiency and serum plant sterol 

levels are higher in type 2 diabetic subjects with coronary artery disease compared to 

those without this disease (Gylling and Miettinen 1996b). In addition, cholesterol 

absorption efficiency and serum levels of plant sterols and cholestanol are low in 

nondiabetic subjects with high-normal blood glucose levels (Strandberg et al. 1996).  

 

2.8.2 Regulation of serum cholesterol level 

There are only few studies describing the regulation of serum cholesterol level in type 

2 diabetes, but the number of study populations in these reports is are very small. 

The serum cholesterol level seems to be regulated in type 2 diabetes similarly as in 

the non-diabetic population by the homeostasis between cholesterol absorption, 

synthesis and LDL catabolism (Gylling and Miettinen 1997). The serum LDL 

cholesterol level was inversely related to cholesterol synthesis and FCR of LDL apo 

B (Gylling and Miettinen 1996b, 1997), and FCR of LDL apo B also correlated 

positively with the lathosterol ratio (Gylling and Miettinen 1997). However, LDL 

cholesterol  did not correlate significantly with cholesterol absorption. Based on these 
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results obtained with a few study subjects, the connection between cholesterol 

absorption and serum LDL levels seen in the normal population, may not necessarily 

occur in type 2 diabetics.   

 

2.8.3 Cholesterol synthesis and excretion 

Bile acid and cholesterol synthesis and cholesterol excretion as neutral sterols are 

increased in  non-obese, mildly hypercholesterolemic (Gylling and Miettinen 1997), 

mildly hypertriglyceridemic non-obese (Abrams et al. 1982, Naoumova et al. 1996), 

markedly hypertriglyceridemic (Briones et al. 1986) and markedly overweight 

(Bennion and Grundy 1977) patients with type 2 diabetes. The ratios of cholesterol 

precursor sterols to cholesterol in serum were higher in diabetics than in controls 

(Gylling and Miettinen 1997). The serum level of insulin and lathosterol were 

correlated positively  only in  the diabetic but not in control subjects (Sutherland et al. 

1992). Scoppola et al. (1995) found that cholesterol synthesis, measured by urinary 

mevalonic acid excretion, was higher in normolipidemic, non-obese diabetics than 

controls. In addition, urinary mevalonate excretion was significantly and positively 

correlated with glycated hemoglobin concentrations (HbA1c) in non-obese 

normolipidemic type 2 diabetics, suggesting that there is enhanced cholesterol 

synthesis with a lower degree of blood glucose control (Scoppola et al. 2001). On the 

contrary, by using sterol balance measurements, Briones et al. (1986) found no 

difference in cholesterol synthesis between diabetics and controls, when the lipid 

profile was normal. However, 12 out of the 19 diabetic subjects were receiving insulin 

treatment, and 4 were type 1 diabetics. Andersen et al. (1986) found that the net 

steroid balance (total cholesterogenesis) was almost twice as high in diet-treated 

type 2 diabetics than in controls, and overweight was not a confounding factor. 

Cholesterol synthesis, indicated by both the cholesterol precursor ratios to 

cholesterol and  by sterol balance data were similar in type 2 diabetes patients with 

or without coronary artery disease (Gylling and Miettinen 1996b). Cholesterol 

synthesis and serum lathosterol and desmosterol levels were increased in 

nondiabetic subjects with high-normal blood glucose level (Strandberg et al. 1996), 
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 and one-third of a randomly selected non-diabetic hypertriglyceridemic population 

(n=53) had an increased serum lathosterol concentration (Asplund-Carlson et al. 

1999). 

 

2.8.4 Insulin treatment 

There is no consensus on the effect of insulin treatment on cholesterol metabolism in 

type 2 diabetes. Enhanced bile acid and cholesterol synthesis was decreased, and 

gallbladder bile was more saturated after insulin therapy in six obese diabetics, and 

therefore the net sterol balance was changed (Bennion and Grundy 1977). In five 

non-obese diabetics, the fecal bile acid excretion decreased and fecal neutral steroid 

excretion increased with insulin therapy, so that the total sterol balance was not 

changed (Saudek and Brach 1978). In addition to the controversial results obtained, 

there were many differences in the protocols of these two studies, such as the 

duration of the insulin treatment, characteristics of the study populations and their 

caloric intake.  In another study with 14 non-obese diabetics, the increased synthesis 

rates of cholesterol and bile acids remained elevated after a short treatment with 

insulin (Abrams et al. 1982). The formation and turnover of bile acids and the fecal 

excretion of neutral steroids were similar in insulin-treated diabetics and controls, 6 

out of 11 diabetics being type 1 diabetics (Andersen et al. 1986). In a study with 6 

non-obese type 2 diabetics with higher baseline plasma mevalonic acid 

concentrations than in  6 controls, the mevalonic acid concentrations decreased with 

hyperinsulinemic clamp in both groups, but significantly so only in the control group 

(Naoumova et al. 1996). Intensive insulin therapy decreased the high baseline 

cholesterol synthesis in ten non-obese normolipidemic type 2 diabetic subjects, when 

measured by the urinary excretion of mevalonic acid (Scoppola et al. 1995). 

Moreover, the increased plasma levels of mevalonic acid decreased markedly with a 

3-h euglycemic hyperinsulinemic clamp in these same patients.  

   

2.8.5 Summary   

Increased synthesis and decreased absorption of cholesterol have been reported in 

mildly hypercholesterolemic (Gylling and Miettinen 1997), and hypertriglyceridemic 

(Briones et al. 1986) type 2 diabetes subjects without insulin therapy. However, 

considering the earlier cholesterol metabolic studies, variable degrees of BMI, small 

and heterogeneous study groups, different degrees of glucose control, different types 
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of dyslipidemia and diabetes treatment as well as controversy in results complicate 

the interpretation of these results, and abnormalities of cholesterol metabolism in 

type 2 diabetes remain somewhat unclear.  

 

2.9 Treatment with weight reduction 
 

Obesity, especially abdominal obesity, enhances insulin resistance and is a risk 

factor for the development of type 2 diabetes. Many studies have shown that weight 

reduction, even a modest degree of sustained weight loss, can reduce the risk for 

developing type 2 diabetes as well as impaired glucose tolerance progressing to 

frank diabetes compared to obese diabetics not losing weight (Pi-Sunyer 1996, 

Leibel et al. 2001). In addition, the reduction in plasma lipids in obese subjects with 

type 2 diabetes has been suggested to be the cause of the reversibility of insulin 

resistance after weight loss, rather than the weight loss per se  (Mingrone et al. 

1997). 

 

2.9.1 Glucose and lipoprotein metabolism 

Dattilo and Kris-Etherton (1992) have quantified the effects of weight loss on plasma 

lipids by meta-analysis of 70 studies; every 1 kg decrease in weight was associated 

with a reduction of total cholesterol by 0.05 mmol/l, LDL cholesterol by 0.02 mmol/l, 

triglyceride levels by 0.015 mmol/l, increase in HDL cholesterol by 0.009 mmol/l, as 

long as the weight reduction was maintained. In addition, HDL cholesterol decreased 

by 8% or 0.007 mmol/l while subjects were actively losing weight in short term 

interventions. 

 

Weight reduction is considered as the primary treatment for obese type 2 diabetic 

subjects, because of its beneficial effects for the improvement of metabolic 

abnormalities associated with this disorder (American Diabetes Association 1999). 

Weight loss has been shown to reduce fasting plasma glucose and insulin 

concentrations (Henry et al. 1985, 1986, Wing et al. 1987), decrease insulin 

resistance (Henry et al.1986, Henry and Gumbiner 1991) and improve insulin 

secretion (Henry et al. 1986, Gumbiner et al. 1990). Many studies have shown that 

weight reduction lowers serum triglyceride levels, total and LDL cholesterol and free 

fatty acid concentrations, and converts LDL particles to a more normal pattern 
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(Gumbiner et al. 1998, American Diabetes Association 1999). HDL cholesterol 

increases with weight reduction (Pi-Sunyer 1996), even though the composition of 

the diet, the amount of weight loss, and the time after the weight reduction seem to 

contribute to the changes in the HDL cholesterol level (Henry and Gumbiner 1991). 

Even energy restriction independent of the weight loss can have marked effects on 

the glycemic control (Wing et al. 1994), and several studies have shown improved 

glycemic control within 10 days of imposing energy restriction before any significant 

weight loss could be achieved (Henry et al. 1985, Bosello et al. 1997). The 

improvements in the glycemic and lipid abnormalities have been observed even with 

modest weight reductions, ~ 5 % of the initial weight, and these confer long-term 

benefits (Wing et al. 1987, Pi-Sunyer 1996). In conclusion, with energy restriction and 

weight reduction, even with modest weight loss, the glycemic and lipoprotein 

metabolism is improved, and some of these changes occur quite rapidly. However, 

obesity is an accentuating factor for abnormal lipoprotein metabolism in type 2 

diabetes, but not the only cause, and therefore dyslipidemia is not fully corrected with 

weight reduction. Triglyceride levels may remain moderately elevated, low HDL 

levels often persist, and small, dense LDL particles can be retained (Garg et al. 

1992). 

 

2.9.2 Cholesterol metabolism 

There are only a few studies of weight reduction on cholesterol metabolism in 

general and their results are inconsistent. In addition, in type 2 diabetes, the effects 

of calorie restriction and weight reduction on cholesterol metabolism are largely 

unknown. In non-diabetic subjects, weight reduction reduces the fecal excretion of 

neutral and acidic steroids (Miettinen 1968a, 1970, 1971a, Bennion and Grundy 

1975, Kudchodkar et al. 1977), and  lowers effectively cholesterol synthesis 

(Miettinen 1968a, 1970, 1971a, Bennion and Grundy 1975, Kudchodkar et al. 1977), 

and serum methyl sterol values (Miettinen 1968b, 1971b). Di Buono et al. (1999) 

studied cholesterol biosynthesis by measuring the incorporation of deuterium from 

body water into free cholesterol in the erythrocyte membrane over 24 hours. They 

found that endogenous cholesterol synthesis was suppressed immediately after the 

modest weight reduction achieved with energy restriction. Griffin et al. (1998) studied 

the relationship of postprandial glucose and insulin to cellular cholesterol synthesis in 

thirteen subjects, characterized with an increased postprandial cholesterol synthesis. 
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Cellular cholesterol synthesis was measured by quantitating the amount of 14C-

acetate incorporated into human peripheral blood mononuclear leucocytes. After an 

8% weight reduction to a new-weight stable condition, insulin resistance and insulin 

secretion fell in seven subjects (3 diabetic and 4 non-diabetic), and their cholesterol 

synthesis no longer increased postprandially. In six subjects (3 diabetic, 3 non-

diabetic), however, despite the occurence of a similar weight loss, insulin resistance, 

insulin secretion and postprandiallly enhanced cholesterol synthesis did not change.  

 

Acute caloric restriction did reduce cholesterol synthesis and total fecal bile acids, 

even though cholesterol absorption percentage remained unchanged (Kudchodkar et 

al. 1977). Bennion and Grundy (1975) also studied the effects of chronic caloric 

restriction on cholesterol and bile acid metabolism, and found that the outputs of 

cholesterol, bile acids and phospholipids, and the bile acid pool size were reduced, 

and in addition, cholesterol synthesis and fecal excretion of cholesterol were also 

reduced. In another study, cholesterol output and bile acid secretion were decreased 

in six obese subjects after they consumed a hypocaloric diet for four weeks (Mazzella 

et al. 1995). In a recent study, the fractional cholesterol synthesis rates were lower 

after the subjects consumed a diet containing low amounts of fat and/or energy 

compared with a diet containing an unlimited amount of fat and energy (Raeini-Sarjaz 

et al. 2001).  

 

The effects of weight reduction on cholesterol metabolism in type 2 diabetes have not 

been documented in detail. There are only two studies in which the study population 

included type 2 diabetic patients; in the first study, two out of three subjects were 

diabetic (Miettinen 1971a), and in the second study, six out of thirteen subjects were 

diabetic (Griffin et al. 1998).       

 

These earlier studies which were performed mainly in non-diabetic subjects indicate 

that cholesterol synthesis and fecal excretion of bile acids and neutral sterols are 

reduced with weight reduction in subjects still actively losing weight or on a stable, 

reduced weight level regardless of whether some weight loss, even modest, is  

achieved by total fasting or caloric restriction.  However, the effect of weight loss on 

cholesterol absorption has not been documented. 
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3. AIMS OF THE STUDY 
 

The risk of coronary artery disease is high in type 2 diabetes, and the frequent 

metabolic disturbances associated with diabetes including dyslipidemia, 

hyperinsulinemia, insulin resistance, hyperglycemia and obesity can contribute to the 

accelerated atherogenesis. Cholesterol metabolism has not been characterized in 

detail in type 2 diabetes, and very little is known about the interrelation of cholesterol 

and glucose metabolism in diabetes. The metabolism of cholesterol is disturbed in 

obesity, and the abnormalities resemble those seen in a few studies with type 2 

diabetic subjects. It is not known whether overweight, which is frequently associated 

with diabetes, is responsible for the alterations observed in the few studies of 

cholesterol metabolism in type 2 diabetes, or whether diabetes has any independent 

role in regulating cholesterol metabolism. Accordingly, type 2 diabetes with obesity 

may be associated with more profound alterations of cholesterol metabolism. 

 

Weight reduction is the primary means to treat overweight diabetic subjects, because 

of its beneficial effects on glycemic balance, insulin sensitivity and lipoprotein 

abnormalities. The effects of weight reduction on cholesterol metabolism remain 

unclear in diabetes. Studies of obesity without diabetes have indicated that 

cholesterol synthesis decreases with weight loss. Therefore, treatment by weight 

reduction might change cholesterol metabolism in type 2 diabetes as well. However, 

the role of effective weight reduction in cholesterol and sterol metabolism acutely 

after the weight loss is not known, nor the stability of these changes during prolonged 

follow-up. Thus,  the objectives of the present study were  

 

• to investigate the relations of cholesterol, lipoprotein and glucose metabolism 

in type 2 diabetes. 

 
• to evaluate the independent effect of type 2 diabetes on cholesterol 

metabolism, when obesity is not a confounding factor, comparing obese 

patients with and without diabetes with each other. 

 
• to investigate the effect of body weight on cholesterol metabolism in type 2 

diabetes, comparing type 2 diabetes patients with and without overweight with 

each other. 
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• to investigate cholesterol metabolism, reflected by  serum squalene and non-

cholesterol sterols, during chronic weight reduction in type 2 diabetes, and 

 

• to investigate the effects of weight reduction on cholesterol, glucose and 

lipoprotein metabolism in type 2 diabetes after a two year follow-up in a stable, 

weight maintaining eucaloric phase in type 2 diabetes. 
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4. MATERIALS AND METHODS 
 

4.1 Subjects and designs 
 

The type 2 diabetic patients for the studies were recruited on the basis of their reply 

to an advertisement in a newspaper, from health centers of Helsinki, and from the 

Outpatient Department of Helsinki University Central Hospital. The diagnosis of type 

2 diabetes was based on repeated fasting blood glucose level ≥ 7 mmol/l (World 

Health Organization 1999). The age of the subjects ranged 41 to 74 years. None of 

the subjects were using insulin therapy or lipid lowering medication. Exclusion criteria 

were also the presence of diabetic nephropathy and neuropathy, abnormal thyroid, 

liver or kidney function tests, gastrointestinal disease, unstable angina pectoris, 

recent myocardial infarction or invasive coronary treatment within one year. All 

women were postmenopausal and not taking hormone replacement therapy. All 

subjects volunteered for the studies and gave an informed consent. The study 

protocols had been accepted by the Ethics Committee of Department of Medicine, 

University of Helsinki. The studies were conducted according to the principles of the 

Declaration of Helsinki.   

 

Table 1. Characteristics of the study populations. 
Variables                        Study I                                        Study II                                        Study III             Study IV    
                                       DM                    Controls             DM                     DM                    DM                    DM 

Number of subjects 16 16 20 44 10 16 
Males/females 13/3 10/6 16/4 34/10 8/2 13/3 
Age, years 52.2±1.8 50.8±0.5 62.1±2.0 59.0±1.2 51.5±2.8 52.3±1.8 
BMI, kg/m2 32.2±1.0 33.3±0.9 24.1±0.4* 31.0±0.5 31.7±0.9 31.7±0.6 
Blood glucose, mmol/l 8.4±0.6* 4.6±0.2 8.5±0.5 8.6±0.4 6.9±0.5 8.4±0.6 
Apo E phenotype       
E2/E3/E4 (n) 1/9/6 2/10/4 3/11/6 8/19/17        1/5/4 1/9/6 
Values are mean±SE. * for the difference between groups in the individual studies (Study I, II, III and IV). For apo 
E phenotype, E2 = phenotypes 2/3 and 2/4; E3 = phenotype 3/3; E4 = phenotypes 4/3 and 4/4.   
 

4.1.1 Study I 

To determine the effect of type 2 diabetes on cholesterol metabolism, the study 

population consisted of obese type 2 diabetic subjects (DM group) and an obese 

non-diabetic control group (Table 1). The DM  group comprised sixteen obese type 2 

diabetes patients, thirteen men and three women. Their BMI was > 30 kg/m2 , and 

the mean age was 52±2 (SE) years. Diabetes was recently diagnosed (< 2 years). 

Diabetes was treated with diet in 10 patients, 3 had glibenclamide and 3 had a 

combination therapy of glibenclamide and biguanide. The control group was recruited 
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from random population-based age-cohorts of 50 year old men and women. It 

consisted of sixteen obese, healthy normoglycemic subjects, of which ten were men 

and six were women. Their BMI and age were similar to the DM group. Their health 

status was determined with medical examination and laboratory tests.   

 

The DM group consumed a low-fat, low-cholesterol diet, whereas the controls 

consumed their normal ad libitum home diet. The subjects visited the Outpatient 

Department twice a week. During the week, the subjects kept a food record for seven 

days. In order to measure absorption and fecal elimination of cholesterol, they took a 

marker capsule, the ingredients of which are given in detail in the methods section, 

three times a day with their regular meals during the 7-day period. A three-day stool 

collection was performed during the last days of the week. The absorption, synthesis 

and fecal excretion of cholesterol and bile acids were quantitated from these stool 

samples.   

 

A blood sample was taken at the beginning and at the end of the study, both after 12-

hour fasting, from which serum lipids, lipoproteins and blood glucose were analyzed.  

 

4.1.2 Study II 

The modulating effect of body weight on cholesterol metabolism was investigated in 

type 2 diabetic groups with and without overweight (Table 1). The total study 

population consisted of 64 DM patients, 51 men and 13 women with a mean age 

60±1 years, and BMI of 28.8±0.5 kg/m2 (range from 20.7 to 40.1 kg/m2). The 

diagnosis of diabetes had been made within 5 years. Diabetes was treated with diet 

in 32 subjects, with sulphonylureas in 14 subjects, with biguanides in 5 subjects, and 

with a combination of these two drugs in 13 subjects. Twenty-two patients were 

taking beta-blocking therapy, 25 calcium channel blockers and 6 diuretics.  

 

The subjects were divided into two study groups according to their BMI. Those 20 

subjects with BMI ≤ 26.0 kg/m2 formed a normal-weight group, and 44 subjects with 

BMI > 26.1 kg/m2 formed the overweight group. The distribution of the different 

medical treatments were similar between the study groups. The medication and the 

diet were kept unchanged during the study week. 
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The subjects consumed their normal home diet during the study. The study protocol 

was similar as in Study I. The methods and the procedure to measure cholesterol 

synthesis and absorption, and fecal composition of bile acids, neutral steroids and 

non-cholesterol sterols were performed similarly as in Study I. Two fasting blood 

samples were taken one week apart. Serum lipids, lipoproteins, non-cholesterol 

sterols, squalene, insulin, blood glucose and serum sex hormone binding glodulin 

(SHBG), an indicator of insulin resistance (Haffner 1996), were analysed from these 

samples. 

 

4.1.3 Study III 

The changes in cholesterol metabolism reflected by serum squalene and non-

cholesterol sterols were studied before and during extensive long-term weight 

reduction, on a non-steady state, in obese patients with type 2 diabetes (Table 1). 

The study population consisted of 8 men and 2 women with a mean age of 51.5± 2.8 

years and BMI > 30 kg/m2. Diagnosis of diabetes had been made within 2 years.  

Diabetes had been treated with diet in 8 subjects, one had glibenclamide and one 

had a combination therapy with glibenclamide and biguanide.  Four subjects used a 

combination therapy of beta- and calcium channel blockers, and three used beta-

blockers as a hypotensive medication.  

 

The study consisted of two periods. The first, run-in period, lasted for six weeks. The 

subjects consumed their normal home diet, and the baseline studies were performed. 

The second period, the effective weight reduction, lasted for three months. During 

this period, the subjects consumed daily only 3 servings of a very low energy diet 

(VLED), which consisted of 97 kJ of energy per day (Cambridge Diet, Howard 

Foundation, Cambridge, UK). One serving consisted of 14.2 g of protein, 15.0 g of 

carbohydrates, 2.7 g of fat and essential minerals, trace nutrients and vitamins. The 

hypoglycemic medication was discontinued during the low calorie period.  

 

For the baseline studies and at the end of the weight reduction period, two fasting 

blood samples were taken, a week a part. Serum lipids, lipoproteins, squalene and 

non-cholesterol sterols, blood glucose, serum insulin and SHBG were analysed from 

serum samples obtained before and at the end of the low calorie period. The amount 

of sterols of the VLED serving were also quantitated. 
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4.1.4 Study IV 

This study was performed to investigate the effects of weight reduction on 

cholesterol-, glucose- and lipoprotein metabolism in type 2 diabetes after a two year 

follow-up in a stable, weight maintaining eucaloric phase (Table 1). Sixteen type 2 

diabetic subjects participated in the study. The study population consisted of 13 men 

and 3 women with a mean age 52.3±1.8 years and BMI > 30 kg/m2. Diabetes was 

recently diagnosed ( < 2 years).  

 

Ten subjects were randomly selected to intensive weight reduction with a VLED for 3 

moths, called the VLED group, and six subjects formed the diet group. In VLED 

group, diabetes was treated with diet in 8 subjects, one used glibenclamide, and one 

had a combination therapy of glibenclamide and biguanide. In the diet group, 2 

subjects were on diet, 2 had glibenclamide and 2 had combination therapy. Four 

subjects in the VLED group and two in the diet group used a combination of beta- 

and calcium channel blockers, and three control subjects had beta-blockers alone, 

and this medication was kept unchanged during the study. 

 

The study lasted for two years, and it consisted of three periods. During the first, the 

run-in period, which lasted for six weeks, the subjects were randomized, and 

baseline metabolic studies were performed. The second, the effective weight 

reduction period lasted for 3 months. The VLED group ingested daily 3 servings of 

the same very low energy diet as used in Study III. The diet group was advised to 

consume a low fat, low cholesterol diet. Biguanides were discontinued, and the 

glibenclamide dose was adjusted to keep blood glucose < 7 mmol/l. The third period 

continued after the 3-month weight reduction and lasted up to 2 years. Both groups 

consumed a weight maintenance diet, in which the daily energy balance was zero, 

each subject individually advised by a dietician. 

 

Initially, before the low-calorie diet, and at the end of the study, at about two years 

after active weight reduction, metabolic and kinetic studies of lipoproteins were 

performed and blood glucose, serum insulin and SHBG were measured from fasting 

blood samples. The methods and the procedure to measure cholesterol synthesis 

and absorption, and fecal composition of bile acids, neutral steroids and non-

cholesterol sterols were performed similarly as in Studies I and II. LDL and HDL 
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turnover studies were performed after the stool collection. During these studies, 

which lasted for two weeks, serum lipids, lipoproteins, apolipoproteins A-I, A-II and B-

100, and serum non-cholesterol sterols and squalene were analysed four times from 

fasting serum samples.  

 

The baseline serum sterols and the fecal samples were frozen and analyzed together 

with the 2-year samples to avoid the interassay variation. The freezing procedure 

does not alter the sterol concentrations or the compositions; e.g. the interassay 

coefficient of variation for serum campesterol was 4.8 %. The lipoprotein assays 

were performed in fresh serum samples. The interassay coeffiecient of variation was 

e.g. for LDL cholesterol 6.1 %. Therefore, the laboratory procedures did not confound 

the obtained results.   

 
4.2 Methods 
 
4.2.1 Inclusion criteria measurements  

The diagnosis of diabetes was confirmed by measuring blood glucose levels at least 

from two fasting blood samples. Serum total, HDL cholesterol, serum triglycerides, 

variables describing liver (alanine aminotransferase) and kidney functions 

(creatinine) and thyroid hormones (thyroxine) were also quantitated from these blood 

samples. LDL cholesterol was calculated by Friedewald formula (Friedewald et al. 

1972). Specimens of urine were analysed with commercial dipstics.  

 

The health status of the subjects participating in the studies was determined in a 

medical examination, which included also weight, height, waist-hip ratio, and blood 

pressure measurements.  

 

4.2.2 Lipoprotein separation 

Lipoproteins were separated from fasting blood samples by ultracentrifugation into 

density classes: VLDL < 1.006 g/ml, IDL 1.006-1.019 g/ml, LDL 1.019-1.063 g/ml, 

and HDL 1.063-1.210 g/ml (Havel et al. 1955, Lipid Research Clinics Program 1974). 

For this purpose, 2x3.6 ml of plasma was overlayered with a salt solution of density 

1.006 g/ml and centrifuged in a Ti 50.4 rotor (Beckman Instruments) at 35 000 rpm 

for 18 hours. Lipoproteins of less than solvent density were concentrated in a layer at 

the top of the tubes, thus VLDL was isolated by aspiration of the top supernatant. A 
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salt solution of density 1.019 g/ml was added to the remaining infranate, centrifuged 

at same rpm for 18 hours, and IDL was isolated by aspiration. The LDL was isolated 

with salt solution of density 1.151 g/ml, centrifuged 35 000 rpm for 20 hours, 

aspirated, and then the remaining infranatant was isolated as HDL. 

 
4.2.3 Lipids and apolipoproteins 

Total and free cholesterol, triglycerides and phospholipids from serum and different 

lipoproteins  were analyzed enzymatically with commercial kits (Boehringer 

Diagnostica, Mannheim, Germany; Wako Chemicals GmbH, Neuss, Germany). 

Apolipoproteins A-I, A-II and B were quantitated with commercial kits, in which an 

immunochemical assay is based on immunoprecipitation of antiserum reagent and 

reference sample (Orion Diagnostica, Espoo, Finland). Apolipoprotein E phenotypes 

(six different main phenotypes, E2/2, E2/3, E2/4, E3/3, E3/4, and E4/4) were 

determined electrophoretically by isoelectric focusing from serum (Havekes et al. 

1987). 

 

4.2.4 Lipoprotein kinetic studies 

LDL and HDL turnover studies were performed in Study IV in order to elucidate the 

production and clearance of these lipoproteins.  

 

50 ml of fasting plasma was drawn for these kinetic studies. Autologous LDL and 

HDL were separated by serial  density preparative ultracentrifugations. LDL apo B 

was obtained by method described by Bilheimer et al. (1972), and apolipoprotein A-I 

was isolated from HDL (Gylling et al. 1992). Briefly; guanidine hydrochloride was 

added to HDL, solution was incubated, after which it was dialyzed four times against 

dialysis solution containing 150 mmol/l NaCl, 10mmol/l Tris-chloride, 0.01 % EDTA, 

pH 8.0. The HDL solution was then density-adjusted to 1.12 g/ml using NaBr, and 

ultracentrifugated. The protein content of the infranatant contained pure apo A -I, thus 

the bottom 1.5 ml of the sample was extracted and extensively dialysed aganist 150 

mmol/l NaCl, 0,01 % EDTA, pH 7.4. 

 

Apo A-I was iodinated with 125I, and LDL apo B with 131I by a modification of the 

iodine-monochloride method (McFarlane 1958, Bilheimer et al. 1972). Three days 

before injection the subjects started to take peroral potassium iodide to maximize the 
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safety of the thyroid gland. Approximately 1 mg of the labeled autologous LDL apo B 

and apo A-I were mixed with 5 % human serum albumin, filtered, and injected 

simultaneously. The total amount of radioactivity did not exceed 60 µCi.  

 

After the injection, blood samples of 10 ml were collected for 14 days and counted. 

The die-away curves were constructed from plasma for  125I - HDL and 131I - LDL. 

FCR for LDL apo B and HDL apo A-I were determined using a two-pool model 

(Matthews 1957). This model assumes the existence of an intravascular pool in 

dynamic equilibrium with an extravascular pool. Accordingly, both new inputs and 

exits of apolipoproteins occur from the intravascular pool. Transport rate (TR) was 

calculated by multiplying FCR by the pool size. The pool size was the apolipoprotein 

plasma concentration multiplied by plasma volume, which was calculated to be 4.5% 

of body weight. FCR describes the rate at which lipoprotein is removed from the 

circulation, and it is expressed in pools/day. TR describes the production rate of the 

lipoprotein in the circulation, and it is expressed in mg/kg/d.   

 

4.2.5 Analysis of cholesterol metabolism 

4.2.5.1 Measurement of cholesterol absorption and elimination 

The determination of cholesterol absorption was performed by using the continuous 

isotope feeding method described by Crouse and Grundy (1978). For this, the study 

subjects consumed a capsule containing 0.14 Ci of 14C-cholesterol, 0.18 Ci of 3H-

sitostanol, and 200 mg of chromic oxide (Cr2O3) three times a day, one capsule with 

each of three major meals, during the 7-day period. The ratio of the isotopes in feces 

becomes constant after the first 3 days. Feces were collected during the last 3 days 

for the 7-day period. Cholesterol absorption efficiency was calculated from the 

difference of the isotope ratios (14C -cholesterol/3H-sitostanol ratio) between the 

capsule administered and the feces samples collected. Cr2O3 was applied to evaluate 

the fecal flow (Bolin et al. 1952). Fecal cholesterol as fecal neutral sterols 

(cholesterol, coprostanol and coprostanone) and bile acids, and plant sterols (and 

their coprostanols and coprostanones), were quantitated by gas-liquid 

chromatography (GLC) from non-saponifiable material as described earlier (Grundy 

et al. 1965, Miettinen et al. 1965, Miettinen 1982a), correcting fecal flow by Cr2O3 

measurement. The measurement of fecal plant sterols indicate the amount of dietary 

plant sterol intake. Fecal analyses were carried out in studies I, II and IV.  In order to 
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diminish the effect of varying body weight on variables of cholesterol metabolism, the 

values are standardized and expressed by mg/kg/d. The use of nonstandardized 

values (mg/d) are separately noted.  

 

4.2.5.2 Determination of squalene and non-cholesterol sterols 

Non-cholesterol sterols and squalene were quantitated by GLC from nonsaponifiable 

serum material on a 50 m long Ultra 1 R SE-30 capillary column (Hewlett-Packard, 

Delaware, Little Falls, Wilmington, USA) (Miettinen and Koivisto 1983). This 

procedure measures total cholesterol, cholesterol precursors: squalene, cholestenol, 

desmosterol and lathosterol, and plant sterols, campesterol and sitosterol, and 

cholestanol from serum. In this procedure, 100 µl  5α-cholestane, an internal 

standard, was added to 200 µl of serum samples. The samples were saponified with 

99,5% of ethanol and potassium-hydroxide (10M) (9:1, volume:volume) solution. 

Non-saponified lipids were extracted by hexane. The lipid extracts were silylated, and 

sterol fractions were isolated and quantitated with GLC as trimethylsilyl derivates. 

The sterol composition of the VLED serving was also analysed with GLC. 

  

Serum squalene and non-cholesterol sterols are mainly carried in lipoproteins 

similarly to cholesterol, and their concentrations are highly dependent on serum and 

lipoprotein cholesterol levels. To eliminate the effect of variation in serum and 

lipoprotein cholesterol levels, the squalene and non-cholesterol sterol values are 

expressed in terms of 102 x mmol/mol of cholesterol, i.e ratios to serum total and 

different lipoprotein cholesterol. When concentrations of compounds are described 

these are stated separately. 

   

4.2.5.3 Calculations 

The dietary intakes of cholesterol, fat and calories were calculated from the 7-day 

food record (Knuts et al. 1991).  

 

Cholesterol synthesis was obtained as the difference between fecal steroids (neutral 

and acidic) of cholesterol origin and dietary cholesterol. 

Total intestinal cholesterol flux (pool) was the fecal neutral sterols of cholesterol 

origin divided by (1-fractional cholesterol absorption).  
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Biliary cholesterol secretion (flux) was measured as total intestinal cholesterol flux 

minus dietary cholesterol.  

The absorbed mass of total, dietary and biliary cholesterol was equal to the 

respective fluxes multiplied by cholesterol absorption efficiency. 

Cholesterol turnover was obtained as the sum of cholesterol synthesis and dietary 

cholesterol absorbed.  

All of the above values represent daily means and are expressed as mg/kg/d of body 

weight. In special circumstances they are also expressed as mg/d. 

 

The ratios of lathosterol to campesterol and sitosterol were calculated by dividing the 

concentrations of lathosterol by those of campesterol and sitosterol. Those ratios 

were considered to indicate cholesterol synthesis (Study II). 

 

4.2.6 Analysis of variables in glucose metabolism 

Blood glucose was analyzed enzymatically with the hexokinase method, and HbA1c 

with high-pressure liquid chromatography. Serum insulin was assayed with 

radioimmunoassay (Phadeseph   Insulin RIA, Pharmacia and Upjohn, Uppsala, 

Sweden) and serum SHBG with fluoro-immunoassay (Delfia   SHBG, Wallac, Turku, 

Finland), using commercial kits.  

 

The ratios of SHBG to insulin were calculated by dividing the SHBG concentration by 

the insulin concentration in order to evaluate any changes in variables describing 

glucose metabolism after weight reduction.  

 

4.2.7 Statistical analyses 

Statistical analysis of data were performed with Microsoft Excel version 6 and the 

Biomedical Data Processing Program (BMDP Statistical Software, Inc., Los Angeles, 

California, USA). Differences between the study groups for independent continuous 

variables were tested with two-tailed t-tests, and for dichotomous variables with Chi-

square tests. The differences within the groups of repeated measures were tested 

with paired t-tests. With three or more independent groups of observations, testing 

was performed using one way analysis of variance (ANOVA). Correlations between 

the continuous variables were analysed by calculating Pearson’s correlation 

coefficient or Spearman’s rank correlation coefficient. Most variables were normally 
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distributed. In the case of skewed distributions, transformation to symmetric 

distribution was obtained by taking logarithms or non-parametric correlation 

coefficient was calculated.  

 

A stepwise regression analysis was performed to examine the potential role of BMI, 

the variables of glucose metabolism and cholesterol absorption as independent 

explanatory variables in the synthesis of cholesterol in Study II. The analysis was 

carried out using cholesterol synthesis as the dependent variable and BMI, 

percentage of cholesterol absorption, serum SHBG, blood glucose, dietary 

cholesterol intake, and LDL cholesterol as the independent variables. 

 

The appropriate sample size for the Study IV was calculated assuming the achieved 

weight reduction of 5 kg, α=0.05, and β=0.2, i.e., the sample size was expected to 

give an 80 % power to detect a weight reduction of 5 kg at the level p < 0.05.   

 

The  value p < 0.05 was considered as statistically significant. Values of the 

continuous variables were expressed as mean±SE.  
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5. RESULTS 
 

Table 2. Serum and lipoprotein lipids in Studies I and II. 
Variables                                                            Study I                                                             Study II                               
                                                         DM                           Controls                            DM                              DM   
                                                         n=16                         n=16                                 n=20                            n=44  
                                                         BMI>30                     BMI>30                            BMI≤26.0                     BMI>26.1 
Serum cholesterol,  
Mmol/l 

5.90±0.20 6.20±0.30 6.21±0.28 5.85±0.15 

VLDL cholesterol,  
Mmol/l 

1.40±0.20** 0.60±0.20 0.61±0.11* 0.96±0.12 

LDL cholesterol,  
Mmol/l 

3.20±0.20* 4.00±0.30 3.66±0.18 3.36±0.13 

HDL cholesterol,  
Mmol/l 

0.85±0.05*** 1.25±0.07 1.26±0.07*** 0.95±0.04 

Serum triglycerides,  
Mmol/l 

3.80±0.60* 1.90±0.40 1.74±0.20** 2.85±0.29 

VLDL triglycerides,  
Mmol/l 

3.10±0.50** 1.10±0.30 1.17±0.17** 2.17±0.25 

LDL triglycerides,  
Mmol/l 

0.31±0.02* 0.45±0.05 0.26±0.02 0.30±0.02 

HDL triglycerides,  
Mmol/l 

0.18±0.01 0.19±0.01 0.14±0.01* 0.17±0.01 

 
Values are mean ± SE. *p<0.05, **p<0.01, ***p<0.001 for the difference between the groups in the individual 
studies. 
 

5.1 Diabetes and cholesterol metabolism (Study I) 
 

Since obesity, which frequently accompanies type 2 diabetes, is associated with 

abnormalities in cholesterol metabolism, it might augment the independent role of 

diabetes in regulating cholesterol metabolism. In order to evaluate the effects of type 

2 diabetes on cholesterol metabolism, cholesterol absorption and sterol balance were 

determined for 16 obese type 2 DM subjects and 16 similarly obese, non-diabetic 

controls.  

 

The two study groups were similar according to the demographic variables and apo E 

phenotype distribution, but the blood glucose level was higher in the DM group 

(Table 1). In addition serum total cholesterol levels were similar in the two groups 

(Table 2), and the dietary variables, fat intake, dietary plant sterols, and cholesterol 

intake did not differ between the study groups (Table 3). The presence or type of 

hypoglycemic medication had no effect on the different variables evaluated.   
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Serum and lipoprotein lipids 

The lipoprotein metabolism of two study groups differed from each other such that 

serum total and VLDL triglycerides were higher and LDL triglycerides lower in DM 

than in controls (Table 2). Despite the similar serum total cholesterol levels, VLDL 

cholesterol was higher and LDL and HDL cholesterol were lower in DM than controls. 

The LDL cholesterol level tended to be higher in the non-diabetic controls than in 

diabetic subjects overall (Study I and II), and their HDL cholesterol and triglyceride 

levels in serum, VLDL and HDL were similar than in normal-weight diabetics of Study 

II (ns for all; Table 2). 

 

Table 3. Dietary variables in Studies I and II. 
Variables                                                             Study I                                                     Study II                               
                                                               DM                         Controls                  DM                         DM   
                                                               n=16                       n=16                       n=20                       n=44  
                                                               BMI>30                   BMI>30                  BMI≤26.0               BMI>26.1 
Dietary cholesterol, mg/d 351±47 455±49 340±44 350±22 
Dietary fat, g/d 92±9 101±9 86±7 94±5 
Dietary calories, kcal/d 2078±141 2187±155 2117±129 2180±86 
Plant sterol intake, mg/d * 356±31 352±34 426±26 403±52 
Values are mean±SE. 

• measured as fecal plant sterols 
 
 

Cholesterol metabolism 
The presence of type 2 diabetes modulated cholesterol metabolism such that 

cholesterol absorption percentage and the absorbed mass of dietary, total and biliary 

cholesterol were significantly lower in DM than in controls (Table 4). In the control 

group, cholesterol absorption efficiency and the absorbed mass of dietary, biliary and 

total cholesterol were similar to that seen in the normal-weight diabetics in Study II 

(ns for all; Table 4).  

 

Cholesterol absorption efficiency and the total mass of cholesterol absorbed were 

significantly related to serum total and HDL cholesterol only in the controls 

(absorption % vs HDL; r=+0.7098, and mass vs HDL r=+0.7187, p<0.01 for both).  
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Figure 3. Correlation between blood glucose and cholesterol synthesis. Diabetes group: y=0.005x- 
0.042, r=0.663, p<0.01; Controls: y=0.001x+3.296, r=0.590, p<0.05  
 

Cholesterol synthesis was higher (p<0.05), and cholesterol excretion as neutral and 

total steroids, bile acid synthesis and cholesterol turnover tended to be higher in 

diabetes than in controls (Table 4). In the control group, cholesterol synthesis, 

excretion as neutral and acidic sterols, cholesterol turnover and total intestinal 

cholesterol secretion were similar than in diabetics without obesity in Study II (ns for 

all; Table 4). Blood glucose was significantly related to fecal neutral sterols in both 

study groups (diabetes; r= +0.501, controls; r=+0.551, p<0.05, for both), and 

cholesterol synthesis (Figure 3). 

 
Table 4. Cholesterol metabolism in Studies I and II. 
Variables                                                            Study I                                                                Study II                     
                                                         DM                           Controls                           DM                            DM   
                                                         n=16                         n=16                                n=20                         n=44  
                                                         BMI>30                     BMI>30                           BMI≤26.0                  BMI>26.1 
Cholesterol absorption, % 
 

29.5 ± 1.3*** 41.7 ± 2.3 40.2 ± 2.4** 32.4 ± 1.4 

Total cholesterol  
absorbed, mg/kg/d 

5.89 ± 0.48** 8.61 ± 0.65 7.82 ± 0.58* 6.34 ± 0.37 

Dietary cholesterol 
absorbed, mg/kg/d 

1.09 ± 0.14** 1.95 ± 0.23 1.90 ± 0.22** 1.24 ± 0.09 

Biliary cholesterol 
absorbed, mg/kg/d 

4.80 ± 0.42* 6.66 ± 0.67 5.92 ± 0.47 5.09 ± 0.32 

Fecal bile acids,  
mg/kg/d 

7.00±0.64 6.53 ± 0.90 6.26 ± 0.45 7.45 ± 0.54 

Fecal neutral sterols †, 
mg/kg/d 

13.96 ± 0.87 11.88 ± 0.63 11.48 ± 0.62* 13.40 ± 0.64 

Total fecal steroids †, 
mg/kg/d 

20.96± 1.12 18.40 ± 1.30 17.74 ± 0.75* 20.86 ± 0.98 

Biliary cholesterol 
secretion, mg/kg/d 

16.08 ± 1.06 15.81 ± 1.11 14.61 ± 0.71 15.93 ± 0.75 

Total intestinal cholesterol 
pool, mg/kg/d 

19.85 ± 1.23 20.49 ± 0.92 19.32 ± 0.82 19.75 ± 0.80 

Cholesterol synthesis, 
mg/kg/d 

17.25 ± 0.93* 13.73 ± 1.50 13.04 ± 0.76** 17.02 ± 0.93 

Cholesterol turnover, 
mg/kg/d 

18.33 ± 0.96 15.68 ± 1.38 14.96 ± 0.66** 18.28 ± 0.92 

Values are mean±SE. *p<0.05, **p<0.01, ***p<0.001 for the difference between the groups in the individual 
studies. 
† of cholesterol origin 
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Taken together, cholesterol absorption was lower and cholesterol synthesis was 

higher in obese subjects with diabetes than in those without diabetes, suggesting that 

diabetes modulates cholesterol metabolism more than would be the case if the 

subjects were merely obese. 

 

5.2 Body weight and cholesterol metabolism (Study II) 
 
Since obesity is known to exacerbate the abnormalities of lipoprotein metabolism in 

type 2 diabetes, it might modulate cholesterol metabolism in diabetes as well. To 

evaluate whether weight interferes with cholesterol metabolism, cholesterol 

absorption and cholesterol and bile acid synthesis were studied in 64 type 2 diabetic 

subjects with different weights, ranging from lean to overweight values. The study 

population was divided by BMI into normal-weight and overweight subgroups. The 

distributions of age, gender, blood glucose (Table 1), blood pressure and medication 

did not differ between the two study groups, and the dietary intakes of plant sterols, 

cholesterol, fat and calories were also similar (Table 3). In addition, age and HbA1c 

were not related with any of the variables of cholesterol metabolism. 

 

Despite the similar blood glucose levels, the serum level of SHBG was significantly 

higher, and the serum insulin level lower in the normal-weight than in the overweight 

group (p<0.001, for both) (Table 5). The ratio of serum SHBG to insulin was four 

times higher in the normal-weight than in the overweight group. 

 

Table 5.  Variables of glucose metabolism in Studies II, III and IV. In Study III, variables are at baseline and during 
weight reduction. In Study IV, variables are at baseline and 2 years after weight reduction (follow-up). 
Variables                                                  Study II                                     Study III                                   Study IV      
                                                   DM (n=20)       DM (n=44)       DM (n=10)                              DM (n=16)  
                                                   BMI≤26.0         BMI>26.1         BMI>30         During              BMI>30                                    
                                                                                                    Baseline        weight loss      Baseline         After follow-up 
Blood glucose, mmol/l 8.5±0.5 8.6±0.4 6.9±0.5 5.3±0.4*** 8.4±0.6 7.2±0.5** 

SHBG, nmol/l 45.6±5.1 30.9±2.2*** 24.7±4.7 45.4±5.8*** 24.7±4.7 26.6±2.4 

Serum insulin, mU/l 10.2±1.0  20.0±1.4*** 18.0±1.7 7.3±0.8*** 19.7±1.2 15.1±1.7 

SHBG / serum insulin 6.24±1.75 1.44±0.19*** 1.26±0.19 8.54±3.10* 1.27±0.18 2.11±0.35* 

Values are mean±SE. *p<0.05, **p<0.01, ***p<0.001 for difference between the groups in Study II, baseline and 
during weight loss in Study III, and baseline and after follow-up in Study IV.  
 

Serum and lipoprotein lipids and sterols 

Serum total and LDL cholesterol were similar in the two study groups, but the VLDL 

cholesterol was higher, and the HDL cholesterol lower in the overweight than in the 

normal-weight group (Table 2). Serum total, VLDL and HDL triglycerides were 
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significantly lower in the normal-weight group vs overweight group. HDL and VLDL 

cholesterol and serum and lipoprotein triglyceride levels were similar in the normal-

weight DM group compared to the respective values in the obese subjects without 

diabetes in Study I (ns for all; Table 2). 

 

The serum campesterol, sitosterol and cholestanol ratios were markedly higher, 

whereas squalene and the precursor sterol ratios (except lathosterol) were lower in 

the normal-weight than in the overweight group (Table 6). Lathosterol/campesterol 

(1.02±0.14 vs 1.47±0.11 p<0.05) and lathosterol/sitosterol ratios were lower in the 

normal-weight than overweight subjects. 

 

Table 6. Serum squalene and non-cholesterol sterol ratios to cholesterol (102 x mmol/mol of cholesterol) in 
Studies II, III and IV. In Study III, variables are at baseline and during weight reduction. In Study IV, variabl es are 
at baseline and 2 years after weight reduction (follow-up). 
 
Variables                                                  Study II                                    Study III                                Study IV      
                                                 DM (n=20)       DM (n=44)       DM (n=9)                                  DM (n=10)  
                                                 BMI≤26.0         BMI>26.1         BMI>30          During               BMI>30                                    
                                                                                                  Baseline         weight loss       Baseline          After follow-up 
Cholestanol 108.0±4.6 89.1±3.8** 95.6±4.1 125.1±5.6*** 85.0±4.0 95.0±5.0 

Campesterol 223.5±17.3 182.9±10.7 154.5±15.7 126.3±11.5 162.0±14.0 197.0±14.0* 

Sitosterol 121.9±8.6 95.9±4.6** 84.1±9.2 79.2±7.4 87.5±5.0 103.0±8.0* 

Squalene 33.4±2.6 42.2±2.9* 47.4±3.2 58.7±13.2 nd nd 

Cholestenol 18.9±1.8 28.7±1.7*** 20.4±3.0 15.7±1.2 24.1±1.7 22.3±1.2 

Desmosterol 84.7±4.8 116.2±12.2* 82.4±4.7 66.3±4.5*** 136.0±29.0 109.0±15.0 

Lathosterol 195.5±17.8 233.7±12.0 207.8±14.9 159.2±10.4* 226.0±8.0 218.0±10.0 

Values are mean±SE. *p<0.05, **p<0.01, ***p<0.001 for the difference between groups in Study II, baseline and 
during weight loss in Study III, and baseline and follow-up in Study IV. nd =not determined. 
 

 

Cholesterol metabolism 

Cholesterol absorption efficiency was higher (p<0.01) in the normal-weight subjects 

compared to the overweight subjects (Table 4, Figure 4). The amounts of absorbed 

total and dietary cholesterol were higher in normal-weight subjects, but the mass of 

absorbed biliary cholesterol showed no significant difference between the groups. 

The variables of cholesterol absorption in the normal-weight diabetes group were 

similar to the respective values in obese subjects without diabetes in Study I (ns for 

all; Table 4). 
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Figure 4. Cholesterol absorption efficiency (%) and the amount of total cholesterol absorbed in overweight and 
normal-weight type 2 diabetic subjects. *p<0.05, **p<0.01. 
 

Cholesterol synthesis, fecal neutral sterol and total steroid output, and cholesterol turnover 

were significantly higher in overweight than normal-weight diabetic subjects (Table 4). In 

addition, when expressed without weight stardardization, also fecal bile acids were  

significantly higher in the overweight than normal-weight subjects (Figure 5). Biliary 

cholesterol secretion (overweight; 15.9±0.8 vs. normal 14.6 ±0.7 mg/kg/d; ns) only tended to 

be higher in the overweight subjects. No difference existed in fecal plant sterols between the 

groups (normal-weight 5.6±0.7 vs. overweight 4.7±0.3 mg/kg/d; ns) suggesting that the 

dietary plant sterol intake was similar in the groups. Synthesis and excretion of cholesterol 

were similar in the normal-weight diabetic and obese non-diabetic subjects in Study I (ns for 

both; Table 4). In the stepwise multiple regression analysis, the cholesterol absorption 

percentage explained 24 % of the variability of cholesterol synthesis, and body mass index 

accounted for 15% of the variability, and these were the only variables explaining the 

variation in cholesterol synthesis.  

Figure 5. Fecal neutral sterols, bile acids and cholesterol synthesis in overweight and normal-weight 
type 2 diabetic subjects. *p<0.01, **p<0.001 
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Correlations 

The correlations between BMI and variables of glucose and cholesterol metabolism 

were determined in the total study population of diabetes (n=64). Cholesterol 

absorption efficiency was negatively associated with fecal neutral sterol excretion 

and cholesterol synthesis, and positively with serum cholestanol and sitosterol ratios 

(Table 7). The serum lathosterol ratio correlated with cholesterol synthesis (r=+0.347, 

p<0.01), and fecal neutral sterols and bile acids. Cholesterol absorption did not 

correlate with serum cholesterol level. BMI correlated positively with serum 

lathosterol ratio, fecal neutral and acidic steroids and cholesterol synthesis (Figure 

6), and negatively with serum sitosterol (Figure 6) and cholestanol ratio, but 

insignificantly with cholesterol absorption percentage (r=-0.137, ns). In addition, BMI 

was positively related to serum insulin and negatively to SHBG levels (serum insulin; 

r=+0.470, SHBG; r=-0.469, p< 0.001, for both), but insignificantly to blood glucose. 

 

Figure 6. Correlations between body mass index (BMI) and serum sitosterol ratio, and cholesterol synthesis in 
type 2 diabetes (n=64). Cholesterol synthesis: y= 60.45x-394.09, r=0.476, p<0.001, Serum sitosterol ratio: y= -
2.917x+189.33, r= -0.358, p<0.01. Ratio = 102 x mmol/mol of cholesterol  
 

Blood glucose was associated with fecal bile acids and cholesterol synthesis, 

whereas serum insulin was associated with fecal neutral sterols and inversely with 

serum sitostanol ratio. On the contrary, serum SHBG was inversely related to fecal 

neutral and acidic steroids and cholesterol synthesis (Figure 7), but positively with 

cholesterol absorption percentage (Figure 7) and serum sitosterol and cholestanol 

ratios. Blood glucose, serum insulin, and SHBG were not interrelated. Dietary 

cholesterol was not associated with any of the variables.  
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Figure 7. Correlations between sex hormone binding globulin and cholesterol absorption and synthesis in type 2 
diabetes (n=64). Cholesterol absorption: y=0.208x+29.32, r=+0.369, p<0.01. Cholesterol synthesis:  
y=-14.52x+1829.9, r= -0.481, p<0.001. 
 

Table 7. Correlation coefficients between variables of cholesterol and glucose metabolism in type 2 diabetes 
(Study II) (n=64) 
Variables 
 

BMI  
(kg/m2) 

Cholesterol 
absorption, % 

Cholesterol 
Synthesis 

Blood 
Glucose 

Serum  
Insulin 

Serum SHBG 
(n=50) 

Serum cholesterol, mmol -0.143 0.007 -0.066 0.136 -0.120 -0.133 
LDL cholesterol, mmol/l -0.165 0.073 -0.091 0.094 -0.024 -0.233 
Serum triglycerides, mmol 0.360 ** -0.211 0.199 0.101 0.297 * -0.346 ** 
Variables of cholesterol absorption 
Cholesterol absorption  (%) -0.137 1.000 -0.494 *** -0.069 -0.092 0.369 ** 
Serum cholestanol 1       -0.291 * 0.455 *** -0.450 *** -0.152 -0.011 0.387 ** 
Serum sitosterol 1           -0.358 ** 0.565 *** -0.382 ** -0.032 -0.289 * 0.436 *** 
Variables of cholesterol synthesis 
Serum lathosterol1        0.265 * -0.089 0.347 ** 0.103 0.297  * -0.178 
Fecal bile acids, mg/d 0.368 ** -0.183 0.811 *** 0.391 ** 0.066 -0.431 *** 
Fecal neutral sterols, mg/d 0.383 ** -0.550 *** 0.819 *** 0.216 0.282  *  -0.398 ** 
Cholesterol synthesis, mg/d 0.476 ***    -0.494 ***   1.000  0.303 * 0.222 -0.481 *** 
*p<0.05,  **p<0.01,  **’*p<0.001 
1  102x mmol/mol of cholesterol 

 

Taken together, the cholesterol absorption and serum cholestanol and plant sterol 

ratios were lower, and cholesterol synthesis, excretion and cholesterol precursors 

were higher in overweight than normal-weight type 2 diabetic subjects. Cholesterol 

absorption and synthesis were related to variables of glucose metabolism and insulin 

resistance, but cholesterol absorption and BMI were the only parameters explaining 

the variability in cholesterol synthesis. Accordingly, cholesterol and glucose 

metabolism are interrelated, and body weight regulates cholesterol metabolism in 

type 2 diabetes. In addition, low levels of cholesterol absorption and a high synthesis 

rate may be part of the insulin resistance syndrome.   

  

0
10
20
30
40
50
60
70

0 20 40 60 80 100

Sex hormone binding globulin, mmol/l

C
ho

le
st

er
ol

 a
bs

or
pt

io
n,

 %

0

1000

2000

3000

4000

0 20 40 60 80 100

Sex hormone binding globulin, mmol/l

C
ho

le
st

er
ol

 s
yn

th
es

is
, m

g/
d



77 

5.3 Treatment with weight reduction (Study III and IV) 
 

Weight reduction is the primary treatment for obese type 2 diabetic subjects, because 

of its beneficial effects for improving the metabolic abnormalities  in diabetes. The 

changes in glycemic control and lipoprotein metabolism occur rather rapidly, even 

with energy restriction, and these confer long-term benefits to the patients. The 

effects of weight reduction on cholesterol and sterol metabolism are mainly 

undocumented in type 2 diabetes. In order to clarify the role of weight reduction in 

modulating cholesterol metabolism in type 2 diabetes, Study III was performed to 

determine cholesterol and sterol metabolism during weight reduction in a non-steady 

state situation, and Study IV investigated the changes in cholesterol metabolism 2 

years after weight reduction on a stable eucaloric and reduced weight level.    

 

5.3.1 Serum non-cholesterol sterols and squalene during weight reduction 

(Study III) 

This study was perfomed to determine the effects of chronic caloric restriction and 

lack of dietary plant sterols on cholesterol and sterol metabolism by measuring serum 

squalene and non-cholesterol sterol levels before and after a 3-month extensive 

weight reduction obtained with very low energy diet (VLED) in 10 obese type 2 

diabetic patients. One major interest was the elucidation of changes in cholesterol 

and sterol metabolism during weight reduction in a non-steady state situation.   

 

At the beginning of the study, all subjects were markedly overweight (Table 8). 

Serum insulin and SHBG levels were within normal limits (reference values, hospital 

laboratory:2-20mU/l and 10-42 nmol/l). However, the serum insulin level was higher 

and serum SHBG and its ratio to insulin were markedly lower than in diabetic 

subjects without obesity (p<0.001 for all) (Table 5). Elevated serum total cholesterol 

and triglyceride levels with low HDL cholesterol provided a typical finding in type 2 

diabetes (Table 8). Serum sitosterol and campesterol ratios were significantly lower 

and squalene ratios higher than in normal-weight diabetic subjects in Study II 

(p<0.05-0.01, for all; Table 6). In addition, body weight and the desmosterol ratio 

were significantly related (r=0.680, p <0.05). 
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Weight reduction  

Dietary intake 

VLED was well-tolerated. The daily intake contained about 19 % of the prefasting 

dietary calories. The diet contained only minimal amounts of sterols, because 

analysis of 15 servings with GLC revealed that the daily intake of cholesterol was 

11.4±2.0 mg/d, campesterol 4.1±0.3 mg/d, sitosterol 11.3±0.8 mg/d, and stigmasterol 

3.7±0.3 mg/d. The dietary intakes of lathosterol, cholestanol, campestanol, sitostanol, 

avenasterol and squalene were all < 1 mg/d. Thus, the dietary intake of cholesterol 

was about 3 % and plant sterols, campesterol and sitosterol, 4% of the prefasting 

values measured in Study IV. 

 

Body weight and glucose metabolism 

Body weight was reduced by 15.5 ± 1.7 kg, (range 8.5-25 kg), the reduction being 

16.8±1.5% from the baseline weight (Table 8). Despite the effective weight reduction, 

several subjects were still overweight, their mean BMI was 26.3±0.7 kg/m2. Blood 

glucose was lowered by 23 %, HbA1c by 8%, and serum insulin by 59%. Serum 

SHBG increased by 108%, and its ratio to blood glucose and serum insulin were 

increased (Table 5). All of these changes were highly significant (p<0.05-0.001, for 

all).  

 

Serum lipids and lipoproteins 

Serum total cholesterol was reduced by 21 % and triglycerides by 45 % from the 

baseline values (p< 0.001, for both; Table 8). The HDL cholesterol level remained 

unchanged, but its ratio to serum total cholesterol was increased by 34 % (p<0.001).  

 

Table 8. Weight, BMI, variables of glucose metabolism and serum and lipoprotein lipids at baseline and during 
weight reduction in type 2 diabetes (n=10) 
Variables Baseline  During weight reduction 
Weight, kg 92.3 ± 4.8  76.7 ± 4.2   * 
BMI, kg/m2 31.7 ± 0.9  26.3 ± 0.7   * 
Blood glucose, mmol/l 6.9 ± 0.5  5.3 ± 0.4     * 
SHBG, nmol/l 24.7 ± 4.7  45.4 ± 5.8   * 
Serum insulin, mU/l 18.0 ± 1.7  7.3 ± 0.8     * 
SHBG / serum insulin 1.26 ± 0.19  8.54 ± 3.10 # 
Serum cholesterol , mmol/l 5.83 ± 0.24  4.52 ± 0.13 * 
Serum triglycerides, mmol/l 2.60 ± 0.26  1.40 ± 0.17 * 
HDL cholesterol, mmol/l 0.96 ± 0.08  0.99 ± 0.07 
Values are mean±SE. # p < 0.05 , * p < 0.001 by paired t-test.  
Reference values from hospital laboratory: serum insulin 2-20 mU/l, SHBG 10-42 nmol/l. 
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Squalene and non-cholesterol sterols 

The desmosterol and lathosterol ratios to cholesterol decreased significantly, 

whereas the ratio of serum squalene increased by 24 % (ns) (Table 6). The serum 

cholestanol concentration tended to increase (203.4±14.7 µg/dl vs. 209.4±15.5 µg/dl, 

ns), whereas the decrease in campesterol and sitosterol concentrations was only 

significant for campesterol (330.3±39.6 µg/dl  vs. 208.2±18.2 µg/dl, p < 0.01). As 

measured as ratios to cholesterol, the increase in cholestanol ratio was highly 

significant (p <0.001), while the ratios of campesterol and sitosterol only tended to 

decrease (-12% and –4 %, ns for both) (Table 6).    

 

The cholestanol ratio was markedly higher after the weight reduction than the 

respective ratio in diabetic subjects with normal weights (Table 6). In addition, 

cholestenol, desmosterol and lathosterol ratios were lower after weight loss in these 

still overweight subjects compared to the normal-weight diabetic subjects.  

 

Correlations 

The change in body weight tended to be positively associated with that of the 

desmosterol ratio (r=0.630, p=0.06) and inversely with final the SHBG level (r=-0.776, 

p < 0.01). A significant inverse association existed between the change in serum 

sitosterol and the baseline (r=-0.752) and final (r=-0.742, p< 0.05, for both) body 

weight. In addition, the ratios of serum lathosterol and cholestanol were interrelated 

(r=-0.823, p<0.01) after the weight reduction, and the change in serum cholestanol 

correlated inversely with the final serum insulin level (r=-0.689, p<0.05). 

 

Taken together, the restriction of calories and dietary sterols improved markedly the 

control of diabetes. It also decreased serum cholesterol precursor sterols and 

increased serum cholestanol suggesting that cholesterol absorption was increased 

and synthesis decreased. Serum values of plant sterols only tended to decrease 

despite their minimal dietary intake. Accordingly, cholesterol metabolism is improved 

during weight reduction in a non-steady state situation, and the changes in glucose 

and cholesterol metabolism are interrelated.     
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5.3.2 Cholesterol, glucose and lipoprotein metabolism after treatment with 

weight reduction (Study IV) 

This study examined the effects of weight reduction on glucose, cholesterol and 

lipoprotein metabolism after a 2-year follow-up in type 2 diabetes. Cholesterol 

absorption efficiency was measured with peroral dual isotopes and cholesterol 

synthesis with sterol balance. The 3-month weight reduction was obtained by very-

low-energy diet (VLED; n=10 diabetic subjects) or by low-energy diet (LED; n=6 

diabetic subjects). Age, sex, BMI, serum lipids, serum sterols and variables of 

cholesterol metabolism were similar in these two groups at the baseline. The 

presence or type of hypoglycemic therapy had no effect on the distribution of BMI, 

serum glucose, SHBG, serum sterols, and variables of cholesterol metabolism. There 

was no significant difference in serum lipids and metabolic variables between women 

and men, and the 16 subjects were analyzed as an aggregate. 

 

At the beginning of the study, the subjects were markedly overweight (Table 9). The 

subjects had a similar dyslipidemic lipoprotein profile and serum levels of insulin and 

SHBG as in Study III. Blood glucose was related to bile acid and cholesterol 

synthesis, and to serum insulin concentration (r=0.558, p<0.05). The serum insulin 

level also correlated with fecal neutral sterols and cholesterol synthesis. Serum 

SHBG was positively associated with body weight and the cholesterol absorption 

efficiency (r=+0.575, p<0.05) but not with blood glucose or serum insulin.   

 

Two-year follow-up 

All subjects completed the study without side effects, and VLED was well tolerated. 

After the two year follow up, the mean body weight was 6±1 kg (6.4 %) lower than at 

baseline (Table 9). The changes in body weight ranged from –18 kg to +1 kg. Most of 

the subjects were still characterized as obese, because the mean BMI was 30.3±0.8 

kg/m2. The daily intakes of energy, cholesterol, and plant sterols, as expressed by 

mg/kg/day, were similar, but the fat intake was significantly lower than at the 

baseline.  
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Table 9. Weight, BMI and cholesterol metabolism at baseline and 2 years after weight reduction (follow-up) in 
obese patients with type 2 diabetes (n=16) 
 
Variables                  Baseline  After follow-up  

Weight, (kg) 93.2 ± 3.7  87.2±3.2     *  
BMI, (kg/m2) 31.7 ± 0.6  30.3 ± 0.8   *  
Blood glucose, mmol/l 8.4 ± 0.6  7.2 ± 0.5     **  
SHBG, nmol/l 24.7 ± 4.7  26.6 ± 2.4  
Serum insulin, mU/l 19.7 ± 1.2  15.1 ± 1.7  
SHBG / serum insulin 1.27 ± 0.18  2.11 ± 0.35 *  
Cholesterol absorption, % 29.5 ± 1.3  37.6 ±2.1    **  
Total cholesterol absorbed, mg/kg/d 5.9 ± 0.5  7.3 ± 0.6     *  
Cholesterol synthesis, mg/kg/d 17.3 ± 0.9  17.1 ± 1.4  
Fecal bile acids, mg/kg/d 7.0 ± 0.6  7.8 ± 0.9  
Fecal neutral sterols, mg/kg/d 14.0 ± 0.9      12.5 ± 1.0   *  
Values are mean±SE. *p<0.05, **p<0.01. 
 

The blood glucose level was reduced by 14 %, serum insulin decreased slightly, and 

SHBG concentrations tended to increase (Table 9). The ratio of serum SHBG to 

insulin increased by 66 % (Table 9).  

 

Free and esterified cholesterol and phospholipids were practically unchanged in 

serum and lipoproteins. However, triglyceride levels in serum and VLDL, LDL and 

HDL decreased significantly (e.g. serum; 3.79±0.56 vs 2.64±0.36, VLDL; 3.08±0.53 

vs 2.00±0.32, p<0.05 for both).  

 

Even though the serum and LDL cholesterol levels were unchanged, the FCR for 

LDL apo B decreased significantly (baseline; 0.331±0.016 vs follow-up; 0.302±0.018 

pools/d, p<0.05), whereas the transport rates for LDL apo B remained unchanged. 

The kinetics for HDL apo A-I did not change significantly.  

 

Cholesterol metabolism 

The cholesterol absorption efficiency was increased by 28 %, and the total amount of 

cholesterol absorbed was increased by 23 % (Table 9). These increased values were 

similar to those of diabetic subjects without obesity (cholesterol absorption % after 

follow-up; 37.6±2.1 vs normal-weight diabetes; 40.2±2.4, ns). The serum sitosterol 

and campesterol ratios increased significantly, whereas the increase in serum 

cholestanol ratio only tended to be significant (Table 6).  
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The serum SHBG was positively related to the ratios of sitosterol (r=+0.779, p<0.01), 

campesterol (r=+ 0.669) and cholestanol (r=+0.516, p<0.05 for both). The reduction 

of body weight was associated with the changes in campesterol (r=-0.582) and 

sitosterol ratios (r=-0.647, p<0.05 for both).  

 

The synthesis of bile acids and cholesterol remained practically unchanged despite 

the significant decrease in fecal neutral sterol excretion (Table 9). The ratios of 

cholesterol precursor sterols, cholestenol, desmosterol and lathosterol, only tended 

to decrease (Table 6). The significant baseline correlations between serum insulin, 

blood glucose, and variables of cholesterol synthesis and excretion were not 

significant after the follow-up.   

 

Therefore, cholesterol absorption (i.e. absolute and relative absorption and the serum 

ratios of plant sterols and cholestanol) markedly increased after weight reduction 

suggesting that weight reduction tended to normalize cholesterol metabolism in type 

2 diabetes. Hyperinsulinemia and insulin resistance also improved after weight 

reduction. Variables reflecting insulin resistance were related to variables reflecting 

cholesterol absorption after weight reduction. Thus, the cholesterol absorption 

efficiency and insulin resistance are interrelated, and the efficacy of cholesterol 

absorption seems to be an inverse indicator of insulin resistance. 
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6. DISCUSSION 
 

6.1 Study population 
 

The study population provided a homogenous and large-enough population to 

elaborate cholesterol metabolism in type 2 diabetes. The mean age of the subjects 

was 56 years varying from 41 to 74 years. All women participating in the studies were 

postmenopausal and did not use any hormone replacement therapy. The variables of 

cholesterol, glucose and lipoprotein metabolism did not differ between the genders, 

and therefore male and female subjects in the individual studies could be analyzed 

together. Gender is known to affect lipoprotein metabolism e.g. women have 

generally higher HDL cholesterol levels as compared to men. However, HDL 

cholesterol levels did not differ between women and men in the present study, in 

which the number of women participants was quite small. 

 

Diabetes had been recently diagnosed, and blood glucose levels were comparable 

among the diabetic patients. None of the subjects were receiving insulin therapy or 

using any lipid-lowering medication. The patients with diabetes did not have any 

detectable diabetic nephro- or neuropathy, and they had normal hepatic, pancreatic, 

thyroid and intestinal functions. Therefore, the subjects were in good glycemic control 

and did not suffer any diabetic complications. The presence or type of hypoglycemic 

medication did not affect the variables of cholesterol and glucose metabolism. In 

addition, the use of hypotensive treatment was not a confounding factor.  

 

The dietary variables, which could be assumed to affect cholesterol metabolism, i.e., 

cholesterol and fat intake, type of fat and dietary plant sterols, including stanols, were 

similar in the different studies. In addition, the study groups were well comparable 

with regard to serum and LDL cholesterol levels and  apo E phenotype distribution 

suggesting that there were no obvious confounding factors. In the case-control study 

I, the subjects with and without diabetes were similarly obese and differed from each 

other only in their blood glucose level. 

 

Cholesterol metabolism was compared between the different studies (e.g Study I and 

II), even though it was not originally in the protocol. Since the factors possibly 
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affecting cholesterol metabolism (e.g. demographic and dietary variables and apo E 

phenotype distribution) did not differ between the two studies, except for age, these 

comparisons could be performed. In addition, age did not correlate with any variables 

of diet and cholesterol metabolism, suggesting that it was not a confounding factor.  

 

6.2 Measurement of cholesterol metabolism 
 

The measurement of cholesterol absorption requires differentiation of endogenous 

from exogenous steroids, which can be achieved by using labeled cholesterol 

administered both orally and intravenously. The oral dose labels exogenous 

cholesterol and its steroid products, whereas the intravenous dose labels 

endogenous steroids. With or without simultaneous measurement of cholesterol 

excretion, the absorption of dietary cholesterol can be calculated after a leveling 

period. Several methods have been developed for the determination of dietary 

cholesterol absorption, and these methods are described in detail in the review of the 

literature section on pages 35-37. 

 

In the present study, the absorption of cholesterol was measured with the continuous 

isotope feeding method, which is based on peroral administration of labeled 

cholesterol and an unabsorbable reference compound. A reduction of the labeled 

cholesterol/marker ratio in stools reveals the absorption percent of cholesterol. The 

measurement of cholesterol absorption with this method gives an accurate value of 

the absorption because the study period is long enough to achieve steady state and 

constancy of ratio of the isotopes in feces, and sequential fecal samples diminish the 

fluctuation in the absorption. In addition, other advantages include the simple 

administration of isotope, analysis of fecal samples is easy, though laborious, the 

analysis is possible to be repeated daily, and it is suitable for outpatients. 

Furthermore, the administration of the isotopes in capsules with the regular meals of 

the study subjects gives the accurate absorption of cholesterol during normal home 

conditions in everyday life, thus preventing the possible confounding effect of a 

special test meal. The possible recirculation of absorbed isotopic cholesterol into 

fecal samples is not a confounding factor, since the fecal isotope ratio remains 

constant for 10 days after administration of the isotope, and the percent absorption 

obtained with the present method compared with that of other methods is similar up 
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to 14 days after isotope administration. Moreover, the amount of cholesterol 

absorbed and the intestinal influx of endogenous cholesterol can be calculated, if the 

daily intake of cholesterol and fecal neutral sterol excretion are also measured.  

 

A more simplified way to measure cholesterol absorption is the plasma isotope ratio 

method, which is based on the simultaneous oral and intravenous administration of 

labeled cholesterol. Although this method has provided considerable information 

about cholesterol absorption, it has several drawbacks. It estimates only the 

cholesterol absorption percentage, the value is determined from only a short period 

of time, it yields only a single measurement of absorption, and the value of 

cholesterol absorption may be dependent on the composition of the test meal. In 

addition, as the method is based on the determination of the ratio of the two isotopes 

in plasma after days of equilibration in the rapidly miscible pool of body cholesterol, 

the applicability of this method in subjects with different metabolic conditions or in 

malabsorption syndromes is uncertain; i.e. in conditions where cholesterol synthesis 

and elimination is enhanced, the metabolic fate of intravenously administered 

cholesterol tracers is largely unknown. In these conditions the turnover of the rapidly 

miscible cholesterol pool is faster and thus invalidates the complete equilibration of 

the two tracers, resulting bias in the estimation of the cholesterol absorption 

percentage.   

 

The measurement of serum squalene and non-cholesterol sterol ratios to cholesterol 

from serum samples by gas-liquid chromatography provides an efficient, easily 

reproducible and less laborious method to estimate cholesterol absorption and 

synthesis. The sterol balance technique, in which assaying total-body sterol pool in a 

steady state by calculating the difference between fecal steroids of cholesterol origin 

and dietary cholesterol intake, provides a direct and accurate method to determine 

the endogenous biosynthesis of cholesterol.   

 
In the present study, serum plant sterol and cholestanol ratios correlated with the 

cholesterol absorption efficiency, and the ratios of serum cholesterol precursor 

sterols with cholesterol synthesis. Accordingly, serum non-cholesterol sterols reflect 

cholesterol metabolism in a similar manner to the non-diabetic population (Miettinen 

1970, Miettinen and Koivisto 1983, Tilvis and Miettinen 1986, Vuoristo and Miettinen 
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1986, Kempen et al. 1988, Miettinen et al. 1989, Miettinen et al. 1990,  Miettinen and 

Gylling 2000), and can be used in the evaluation of cholesterol absorption and 

synthesis. In addition, serum squalene was higher in subjects with elevated 

cholesterol synthesis compared with those of lower synthesis suggesting that in this 

diabetic population, serum squalene was also a marker of cholesterol synthesis rate.  

 

6.3 Cholesterol metabolism in diabetes (Study I and II) 
 
6.3.1 Cholesterol absorption 

Low cholesterol absorption has been described earlier in a limited number of type 2 

diabetes patients with overweight and hypercholesterolemia (Gylling and Miettinen 

1997), or those with hypertriglyceridemia (Briones et al. 1986), and in obesity 

(Miettinen and Gylling 2000). One of the most interesting observations in the present 

study was the lower cholesterol absorption in obese type 2 diabetes than in normal-

weight type 2 diabetes, or when compared with the respective similarly obese, non-

diabetic state. In addition, absorption of cholesterol was similar in normal-weight type 

2 diabetic patients and obese non-diabetic patients. These results suggest that 

diabetes with some unknown mechanism inhibits the absorption of cholesterol. In 

addition, obesity in diabetes still attenuates the efficiency of sterol absorption.  

 

Diet 

The effect of dietary cholesterol on cholesterol absorption efficiency is controversial 

according to earlier results. It may remain mainly unaltered despite high amounts of 

dietary cholesterol (McMurry et al. 1985, Miettinen and Kesäniemi 1989, Sehayek et 

al. 1998a) or decreased (McNamara et al. 1987, Gylling and Miettinen 1992, Vuoristo 

and Miettinen 1994). In some studies, cholesterol intake was not significantly related 

to cholesterol absorption efficiency (Miettinen and Kesäniemi 1989, Bosner et al. 

1999). More recent studies have shown that with a modest increase in dietary 

cholesterol, there was a decline in the cholesterol absorption efficiency (Ostlund et al. 

1999). Along these lines, the absorption percent in the present study might have 

been even higher in the control group, and the difference in cholesterol absorption 

efficiency between the groups even larger. However, the dietary cholesterol intake 

was not associated with the variables of cholesterol, lipoprotein or glucose 

metabolism. Moreover, the dietary cholesterol intake and cholesterol absorption 
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efficiency were not interrelated, if anything, the relationship was negative. Therefore, 

it could be argued that the dietary cholesterol intake was not  a confounding factor in 

the present studies.  

 

Extra amounts of dietary fiber added to the regular diet lower the cholesterol 

absorption percentage in normal (Salvioli et al. 1985) and hypercholesterolemic 

subjects (Everson et al. 1992). However, the association between fiber intake and 

the absorption percentage of cholesterol remained negative in subjects on their 

normal diet (Miettinen and Kesäniemi 1989, Kesäniemi et al. 1990, Bosner et al. 

1999). In the present study, the subjects consumed their normal, regular home diet 

without extra fiber intake, and did not consume any additional products of gel forming 

or viscous fibers.   

 

Plant sterols and their stanol esters are known to reduce cholesterol absorption (e.g. 

Grundy et al. 1969,  Mattson et al. 1982, Vanhanen et al. 1993, Vanhanen et al. 

1994).  Fecal plant sterols were similar in all study groups suggesting they had a 

similar dietary plant sterol intake. In addition, none of the subjects consumed 

functional foods consisting of plant stanols and this was confirmed by analysing their 

levels of fecal stanols.  

 

Apolipoprotein E 

Apo E 2/3/4 phenotype is closely associated with intestinal absorption efficiency of 

cholesterol (Kesäniemi et al. 1987, Miettinen et al. 1992), and the polymorphism of 

apo E may be one reason for the high interindividual variabily in cholesterol 

absorption (Miettinen and Kesäniemi 1989). However, the similar distribution of apo 

E phenotypes between the study groups suggests that the results obtained in 

cholesterol metabolism were not affected by the apo E phenotype.  

 
Intestinal motility 

Gastrointestinal motility disorders are common in patients with diabetes, and their 

orocaecal transit time is prolonged (Rayner et al. 2001). In addition to the autonomic 

neuropathy resulting in motility disorders, hyperglycemia has inhibitory effects on 

gastrointestinal motility to which hyperinsulinemia is contributing (Byrne et al. 1998). 

In healthy subjects without diabetes, intestinal transit time influences cholesterol 
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absorption such that a short transit time appears to reduce the cholesterol absorption 

efficiency (Ponz de Leon et al. 1982, Koivisto and Miettinen 1986). In the present 

study, diabetes had been recently diagnosed, and subjects did not have any diabetic 

complications suggesting normal/near normal gastrointestinal motility and transit 

time. In study II, despite the similar blood glucose levels, the normal-weight type 2 

diabetic patients had a greater cholesterol absorption than overweight diabetic 

patients. Moreover, it could have been anticipated that the possible prolonged 

intestinal transit time should have enhanced the absorption efficiency of cholesterol 

in normal-weight diabetes vs obese nondiabetes. However, this was not the case, as 

their cholesterol absorption efficiencies were similar. Therefore, intestinal motility and 

intestinal transit time were not confounding factors in the present study.    

 

Clinical conditions and statins 

Many diseases and organic dysfunctions, e.g. pancreatic insufficiency, liver, gastric 

or   ileal diseases or dysfunctions, especially celiac disease, alter cholesterol 

metabolism by inducing cholesterol malabsorption (e.g. Vuoristo et al. 1988, Vuoristo 

et al. 1992). Hypothyreosis, in which cholesterol synthesis and elimination (Abrams 

and Grundy 1981), and intestinal motility are impaired, may influence cholesterol 

absorption. During the initial stage of this study, the possibility of some kind of 

disease or condition possibly affecting cholesterol metabolism in the subjects was 

ruled out. Therefore, clinical conditions did not have any effect on the results in the 

present study.  

 

Statins, HMG-CoA inhibitors, in addition to inhibiting cholesterol biosynthesis, have 

been found to interfere with cholesterol absorption probably due to the reduction in 

biliary cholesterol secretion. Statin treatment caused a significant reduction in 

cholesterol absorption of patients with familial hypercholesterolemia (Miettinen 1991, 

Vanhanen et al. 1992), but not in nonfamilial mildly hypercholesterolemic patients 

(Vanhanen and Miettinen 1995). Since the use of statin therapy might interfere with 

cholesterol absorption in type 2 diabetes as well, the use of statins or any 

hypolipidemic drug was one of the exclusion criteria in the present studies.     
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6.3.2 Cholesterol synthesis and excretion 

It has been observed earlier in a limited number of diabetic subjects that cholesterol 

and bile acid synthesis and fecal elimination of cholesterol are increased compared 

with controls (Bennion and Grundy 1977, Abrams et al. 1982, Briones et al. 1986, 

Scoppola et al. 1995, Naoumova et al. 1996, Gylling and Miettinen 1997). In all of 

these previous studies, the subjects were obese and /or hypertriglyceridemic, and 

some had insulin treatment. However, no difference was found in cholesterol 

synthesis between diabetic patients and controls, when the lipid profile was normal 

(Briones et al. 1986). The results from the present study confirm that cholesterol 

synthesis and excretion are higher in obese than normal-weight type 2 diabetes, and 

even higher than in obese non-diabetic subjects. Furthermore, the synthesis and 

excretion of cholesterol is similar in diabetes with normal body weight to non-diabetic 

state with obesity. Accordingly, diabetes per se seems to upregulate cholesterol 

synthesis, and obesity further enhances those diabetes-induced alterations. 

 
The constancy of total body cholesterol is maintained by balancing dietary and biliary 

cholesterol absorption and endogenous cholesterol synthesis with bile acid synthesis 

and excretion of biliary cholesterol. In addition, there is a homeostatic regulation 

between cholesterol absorption and synthesis such that a low intestinal absorption of 

cholesterol will upregulate cholesterol synthesis and turnover. The interrelation of the 

variables of cholesterol absorption and synthesis in the present study suggests that 

cholesterol homeostasis is not impaired in type 2 diabetes. Furthermore, the 

homeostasis is preserved despite the effects of varying body weight. 

 
6.4 Cholesterol and lipoprotein metabolism (Study I and II) 
 

Hypertriglyceridemia with low HDL cholesterol, and moderately elevated serum total 

and LDL cholesterol is the typical lipoprotein profile in an insulin resistant state  

(DeFronzo and Ferrannini 1991, American Diabetes Association 1993), this being 

also a finding in the present study. However, patients with obese type 2 diabetes 

were characterized with higher triglyceride contents in serum and VLDL and lower 

HDL cholesterol than in obese non-diabetic patients or in normal-weight diabetes.          

 

Many factors are involved in the development of dyslipidemia, including insulin 

resistance with compensatory hyperinsulinemia, disturbed fatty acid metabolism, and 
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hyperglycemia (Evans et al. 1999). Furthermore, the dyslipidemic lipoprotein profile is 

more severe in insulin-resistant than insulin sensitive type 2 diabetes (Haffner et al. 

1999), suggesting that dyslipidemia is aggravated by the increasing degree of insulin 

resistance. The insulin resistance in type 2 diabetics with normal weight is of similar 

magnitude as in the nondiabetic obese state (Defronzo 1988, Golay et al. 1988). 

Therefore, the more aggravated dyslipidemic lipoprotein profile observed in obese 

type 2 diabetes in the present study suggests that insulin resistance was increased 

with increasing body weight.  

 

In the non-diabetic population, earlier studies have reported an association between 

serum total, LDL and HDL cholesterol level, and cholesterol absorption efficiency 

(Gylling and Miettinen 1989, Miettinen and Kesäniemi 1989, Miettinen et al.1990), 

suggesting that the higher the cholesterol absorption, the higher the serum 

cholesterol level. However, not all studies support this observation (Sehayek et al. 

1998a, Bosner et al. 1999). The controversy of the results of these studies may be 

explained by the use of different methods for measuring cholesterol absorption, since 

the plasma isotope ratio method (Sehayek et al. 1998a, Bosner et al. 1999) 

determines cholesterol absorption from only a short period of time yielding only a 

single measure of absorption. Thus, the value of cholesterol absorption may be 

dependent of the composition of the test meal. On the other hand, the continuous 

isotope feeding method (Gylling and Miettinen 1989, Miettinen and Kesäniemi 1989, 

Miettinen et al. 1990) determines cholesterol absorption over a longer period of time 

in a balanced, constant state resulting in more steady and consistent values from day 

to day. 

 

The lack of associations between cholesterol synthesis and serum total and LDL 

cholesterol level is consistent in nondiabetic population (Gylling and Miettinen 1988, 

Miettinen and Kesäniemi 1989, Miettinen et al. 1989, Gylling et al. 1994). However, 

earlier studies in a limited number of type 2 diabetic patients, the connection between 

cholesterol absorption and LDL cholesterol levels is inconsistent (Gylling and 

Miettinen 1997), whereas LDL cholesterol and cholesterol synthesis have been 

inversely linked (Gylling and Miettinen 1996b, 1997). In the present study, neither 

cholesterol absorption nor cholesterol synthesis were associated with serum or 

lipoprotein cholesterol levels in diabetic patients suggesting that the association 
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between serum lipids and cholesterol metabolism was more complicated than in non-

diabetic subjects. 

 

6.5  Cholesterol and glucose metabolism (Study I and II) 
  

In non-diabetic men with high glucose levels, cholesterol absorption is lower than in 

low-normal glucose men (Strandberg et al. 1996) suggesting that increasing glucose 

concentrations occur in parallel with decreasing cholesterol absorption and 

increasing cholesterol synthesis. However, in the present study, the low cholesterol 

absorption in obese vs normal-weight diabetic patients with similar blood glucose 

levels, and the comparable cholesterol absorption between persons with normal-

weight diabetes and obese controls do not support the role of hyperglycemia as the 

only modulator of cholesterol metabolism. In addition, even though blood glucose 

and cholesterol synthesis were interrelated in an univariate model, the independent 

effects of blood glucose on cholesterol metabolism attenuated in the regression 

models. 

 

The serum variables reflecting glucose metabolism and insulin resistance were 

related to variables reflecting cholesterol metabolism. With high levels of serum 

insulin and low levels of SHBG, suggesting more aggravated insulin resistance, 

cholesterol absorption is low and synthesis is enhanced, whereas with low insulin 

and high SHBG levels, cholesterol absorption is high and cholesterol synthesis low. 

As a result, the regulation of cholesterol metabolism seems to be closely linked to 

insulin resistance. In addition, since the cholesterol absorption percentage and BMI 

were the only variables significantly explaining the variability of cholesterol synthesis, 

the effects of insulin resistance on cholesterol metabolism may be mediated by BMI 

in diabetes. The almost 2-fold higher serum insulin levels, and the 32 % lower serum 

SHBG values in diabetes with obesity compared with normal-weight diabetic patients 

showed increased insulin resistance as weight increased. Therefore, the 

abnormalities in cholesterol metabolism reflect the magnitude of insulin resistance in 

a steady state, the efficacy of cholesterol absorption being an inverse and the rate of 

cholesterol synthesis being a direct index of insulin resistance.   
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6.6 Weight reduction (Study III and IV) 
 

6.6.1 Chronic caloric restriction (Study III) 

The increase of the ratios of serum cholestanol and the respective decrease of the 

cholesterol precursor sterols during effective weight reduction in type 2 diabetes 

suggest that cholesterol absorption was increased and synthesis decreased in this 

acute non-steady state situation. In addition, the negative correlation between 

increased cholestanol and decreased lathosterol indicated that decreased synthesis 

during weight reduction was associated with an increased cholesterol absorption 

efficiency. This suggests that normal homeostasis of cholesterol metabolism is 

sustained even in calorie non-steady state.  

 

Actual mechanisms for the increase in serum cholestanol during weight reduction are 

not known. The serum level of cholestanol can be regulated by its biliary secretion, 

intestinal absorption or production from cholesterol (Björkhem et al. 2001). Serum 

cholestanol is very consistently positively related to cholesterol absorption or 

inversely to cholesterol synthesis, but usually not associated with the synthesis of 

bile acids (Miettinen et al. 1989).  Dietary intake of cholestanol is normally very small 

(Miettinen et al. 1989), and in the present study virtually zero, its absorption from the 

intestine low (Vuoristo and Miettinen 2000), and its serum levels remain constant 

during consumption of a cholestanol free diet (Salen and Grundy 1973). Thus, the 

mechanism for the relation of serum cholestanol to cholesterol absorption is also 

unclear. Extensively high serum cholestanol values are found in primary biliary 

cirrhosis (Nikkilä et al. 1991), and cholestatic conditions increase the serum 

cholestanol level in a corresponding manner (Hakala et al. 1996). However, in the 

present series, no signs of cholestasis were found during weight reduction.  

 

A diet with the lowest possible amount of plant sterols is used in treating a patient 

with sitosterolemia, after which the plasma plant sterol levels usually decrease 

rapidly (Björkhem et al. 2001). In the present study, serum plant sterol ratios only 

tended to decrease despite the virtually phytosterol-free diet for 3 months. In fact, the 

dietary intake of plant sterols was only about 4 % of the prefasting amount. Since 

plant sterols are not synthesized in human tissues, the serum levels of plant sterols 

are regulated by dietary intake, absorption efficiency of sterols and biliary sterol 
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secretion. As for the minimal dietary intake in the present study, the levels of serum 

plant sterols depended on their absorption efficiency, release from lost adipose tissue 

and biliary secretion. In normal individuals, the fractional turnover rate of sitosterol is 

more rapid than cholesterol (Salen et al. 1970) possibly because of restricted 

intestinal absorption of sitosterol combined with its rapid excretion into bile. Due to 

the rapid turnover rate, plant sterols do not normally accumulate in the organs, the 

greatest amounts are normally found in the liver, adrenal glands, ovaries and testes 

in experimental animals (Subbiah and Kuksis 1973, Sugano et al. 1978). Even 

though plant sterols are not accumulated in the adipose tissue to any great extent, 

the high amounts of adipose tissue in obesity might conceal their accumulation. In 

addition, shrinkage of adipose tissue by calorie restriction results in accumulation of 

cholesterol and other sterols in adipocytes (Tilvis and Miettinen 1979), release of 

sterols being slower than that of triglyceride fatty acids. Therefore, the slow 

mobilization of plant sterols from the shrinken adipocytes during weight reduction 

may partly prevent the decrease of serum levels. Moreover, reduced synthesis and 

biliary secretion of cholesterol due to caloric restriction might have decreased the 

intestinal dilution of plant sterols, increasing their micellar solubilization and thus 

facilitating the absorption of the minimal amounts of dietary and biliary plant sterols. 

Therefore, the release of plant sterols from the adipose tissue together with the 

markedly improved efficiency of cholesterol and sterol absorption prevented the 

significant decrease in serum plant sterols ratios, despite their minimal dietary intake.      

 

Even though serum desmosterol and lathosterol ratios were reduced, suggesting 

diminished cholesterol synthesis, serum squalene was not decreased, it even tended 

to increase. Squalene is both absorbed from the diet and synthesized in adipose 

tissue, liver and skin. It is not known whether there is an interregulation between 

different tissue pools and the serum level of squalene. The serum level of squalene is 

usually low, and adipose tissue is rich in squalene, though most of it is metabolically 

inactive (80% of total), very slowly released  from the  adipocytes if at all (Tilvis et al. 

1978). After weight reduction due to intestinal bypass, adipose tissue squalene 

concentrations increased so that the peak values were reached 12 months after the 

operation, although adipose tissue cholesterol reduced after 6 months (Tilvis and 

Miettinen 1979). According to the present results, the unchanged serum squalene 

levels after the 17 % reduction of body weight might suggest that either the elapsed 
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time was not long enough to reflect changes in squalene metabolism or the 

metabolism of squalene in adipose tissue was separate from the hepatic pool. 

Therefore, squalene seems to be a poor marker of cholesterol synthesis in the 

nonsteady situation.  

 

6.6.2 Steady state after weight loss (Study IV) 

Earlier studies have shown that weight reduction can normalize cholesterol 

metabolism in obesity without diabetes so that cholesterol and bile acid syntheses 

and fecal excretion of neutral sterols are reduced with weight reduction, even with 

caloric restriction, measured in a non-steady or in a steady state (Miettinen 1970, 

1971a, 1971b, Bennion and Grundy 1975, Kudchodkar et al. 1977, Di Buono et al. 

1999). The results from the present study show that in type 2 diabetes during steady 

state, cholesterol absorption (i.e. absolute or relative absorption and serum plant 

sterol and cholestanol ratios to cholesterol) were markedly improved after weight 

reduction so that diminished excretion of cholesterol in feces as neutral sterols was 

balanced by increased absorption. Accordingly, weight reduction tended to normalize 

cholesterol metabolism, even though cholesterol synthesis still remained higher and 

absorption lower than in a random population of similar age (Miettinen et al. 1990). 

These results point to the reversibility of the abnormalities of cholesterol metabolism 

in diabetes. In a previous study, enhanced post-prandial cholesterol synthesis, 

measured by quantitating the amount of 14C-acetate incorporated into human 

peripheral blood mononuclear leucocytes, did not change with weight reduction, if 

there was no decrease in insulin resistance (Griffin et al. 1998). Accordingly, despite 

the modest weight loss achieved in the present study, the subjects were still obese 

and probably insulin resistant. It seems that even a modest decrease in weight is be 

enough to diminish insulin resistance, which then could lead to enhancement of 

cholesterol absorption, whereas a more profound improvement in insulin resistance 

is needed to see a change in cholesterol synthesis. 

 

Weight reduction in type 2 diabetes improves hyperinsulinemia and insulin resistance 

(Henry et al. 1986, Henry and Gumbiner 1991), which were also observed in the 

present study on the basis of serum glucose, insulin, and SHBG concentrations. After 

weight reduction, the serum SHBG was significantly associated with variables of 

cholesterol absorption, but not with the variables of cholesterol synthesis. In addition, 
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weight reduction and the final steady state body weight were inversely related to the 

changes of the variables reflecting cholesterol absorption, but not to the variables 

expressing cholesterol synthesis. These associations suggest that weight reduction-

induced improvements in insulin resistance and cholesterol absorption are 

interrelated. Furthermore, the efficacy of cholesterol absorption can also inversely 

indicate the changes in insulin resistance. Even though the rate of cholesterol 

synthesis may indicate insulin resistance in a steady state, it does not reflect insulin 

resistance in a new steady state after weight reduction. 

  

6.7 Mechanisms of abnormal cholesterol metabolism in diabetes 
 

The question then arises, what is initially responsible for the altered cholesterol 

metabolism in diabetes? The results from the present study suggest that type 2 

diabetes modulates cholesterol absorption and synthesis, and it is not only due to 

obesity alone. However, also body weight can affect cholesterol metabolism in 

diabetes and thus the possible effects of insulin resistance on cholesterol metabolism 

are mediated also by BMI. Accordingly, diabetes seems either to up-regulate 

cholesterol synthesis or down-regulate cholesterol absorption compared with what 

occurs in the respective non-diabetic state throughout the weight scale. Obesity 

enhances the diabetes-induced alterations, but the homeostasis between cholesterol 

absorption and synthesis is still preserved regardless of weight also in type 2 

diabetes.  

 

Since the efficient weight loss in diabetes improves cholesterol absorption efficiency 

and markers of insulin resistance, and these changes are closely interrelated, 

cholesterol absorption efficiency might be the variable being affected primarily. In 

addition, based on the multivariate regression analyses, the variability of cholesterol 

synthesis was explained by cholesterol absorption and BMI. However, the blood 

glucose level is significantly related to cholesterol synthesis, whereas the respective 

relation to absorption of cholesterol remains insignificant. Even though the variability 

of cholesterol synthesis is not independently explained by blood glucose, the role of 

cholesterol synthesis as a primarily regulated variable can not be ruled out. 

According to the cholesterol homeostasis theory, when cholesterol absorption is 

decreased, cholesterol synthesis is increased, whereas with enhanced synthesis of 
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cholesterol, its absorption decreases. Does the insulin resistance per se affect 

intestinal sterol transport, or is it the up-regulated cholesterol synthesis that 

predominates? Both situations are considered separately in the following section. 

 

6.7.1 Cholesterol synthesis 

The synthesis of cholesterol will be upregulated if the hepatic cholesterol pool is 

diminished. This could be due to depressed hepatic cholesterol influx from the 

tissues, from intestine, or due to increased cholesterol output through bile as bile 

acids or neutral steroids, or increased VLDL synthesis.  

 

Considering first the hepatic influx of cholesterol from tissues, the HDL cholesterol 

was within normal limits in the non-obese diabetic patients but lowered in the obese 

diabetic patients, suggesting that reverse cholesterol transport might be impaired in 

obesity. However, even if it were, its significance in upregulating cholesterol 

synthesis remains open. In addition, because  of the small amounts of cholesterol 

carried through this pathway (Tall et al. 2001), this would be unlikely to be sufficient 

to up-regulate cholesterol synthesis.  

 

Second, insulin resistant fat cells release large amounts of free fatty acids into the 

circulation, which are taken up by the liver. Lipoprotein synthesis is increased, 

followed by the assembly and secretion of large amounts of VLDL and this could be 

observed in the obese type 2 diabetic group. The similar serum total and VLDL 

triglyceride levels in obese controls and normal-weight diabetic patients suggest that 

despite the higher amounts of adipose tissue in obesity, the increased flux of free 

fatty acids to the liver is similar. It can be speculated that the adipose tissue and its 

fat cells are more prone to insulin resistance in type 2 diabetes. It is not known, 

whether the enhanced flux of free fatty acids to the liver and increased lipogenesis is 

able to activate sterol regulatory element binding protein 2 (SREBP), which is needed 

to be up-regulated to augment cholesterol synthesis (Horton and Shimomura 1999). 

However, in the present study, the variables of cholesterol synthesis were not 

associated with serum or VLDL triglyceride levels. Accordingly, the role of enhanced 

lipogenesis in increasing cholesterol synthesis remains open.  
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Third,  the enhanced production of apo-B containing lipoproteins in obesity is 

associated with their rapid catabolism and enhanced removal of the remnants 

(Kesäniemi and Grundy 1983, Egusa et al. 1985). The production rates of LDL apo-B 

were similar between non-obese type 2 diabetic patients and non-diabetic controls, 

whereas the LDL apo-B removal was higher in diabetic subjects (Gylling and 

Miettinen 1997). Since LDL cholesterol levels were higher in the obese controls than 

obese diabetic patients, it could be speculated that the probably enhanced 

production of LDL apo B in both groups due to obesity was compensated by their 

higher removal in the diabetic group. Therefore, the flux of cholesterol to the liver via 

the LDL receptor pathway compensated by the increased LDL apo B synthesis was 

not thought to be sufficient to up-regulate cholesterol synthesis.  

 

6.7.2 Cholesterol absorption 

The fourth possibility is that cholesterol synthesis is increased in obese type 2 

diabetes because of diminished hepatic influx of cholesterol due to decreased 

cholesterol absorption from the intestine. Even though the relative and absolute 

absorption (mg/kg/d) of cholesterol was lower in the obese type 2 diabetic subjects, 

the amount of cholesterol entering the liver was similar to that in non-obese diabetic 

subjects because of the larger amount of cholesterol entering the intestine from bile. 

It has been shown in transgenic mice that biliary cholesterol concentration is 

inversely and almost linearly correlated with the percentage of cholesterol absorption 

(Sehayek et al. 1998b), suggesting that large amounts of biliary cholesterol are able 

to saturate the micellar cholesterol pool resulting in poor absorption of cholesterol 

and other sterols. In subjects without diabetes, similar negative correlations were 

found for all biliary lipid concentrations, even though the percentage of absorption 

was only insignificantly negatively related to intestinal cholesterol pool (Miettinen and 

Gylling 2000), similar to findings in the present diabetic population. In addition, biliary 

cholesterol secretion did not differ in diabetic or non-diabetic subjects of differing 

body weight.  

 

The question remains, why was cholesterol absorption lower in the obese type 2 

diabetic subjects compared with obese non-diabetes or with normal-weight diabetes? 

Elevated cholesterol synthesis in obesity increases the biliary secretion of 

cholesterol, expanding the intestinal cholesterol pool (Miettinen and Gylling 2000). 



98 

The large intestinal cholesterol pool may dilute the labeled cholesterol contributing to 

the reduced cholesterol absorption efficiency. In addition, increased biliary lipids may 

prevent the entry of labeled dietary cholesterol from the oil phase to the micellar 

phase, reducing the absorption of labeled cholesterol in obese subjects. The low 

relative and absolute (mg/kg/d) absorption of cholesterol was probably not due to 

dilution of the isotope in the larger intestinal cholesterol pool in obese diabetic 

subjects, because serum plant sterols and cholestanol ratios gave the same result, 

both being lower in obese type 2 diabetes. Certainly dietary plant sterols can also be 

diluted in the large intestinal cholesterol mass, slightly lowering their absorption, and 

effective biliary cholesterol and sterol secretion could have also contributed to their 

low serum levels. However, despite the increased fecal neutral sterol elimination, the 

bile acid synthesis, biliary cholesterol secretion and intestinal cholesterol pool tended 

to be similar in the obese and normal-weight diabetic subjects. In addition, there were 

increases in cholesterol absorption efficiency, and the serum levels of plant sterols 

and cholestanol after weight reduction which were not accompanied by any change 

in intestinal cholesterol pool, suggesting that improved insulin resistance with slightly 

decreased body weight, enhanced mucosal capacity to absorb cholesterol and 

sterols.  

 

The question must be asked, whether ABC transporters play a role in regulating 

sterol absorption in diabetes and obesity, i.e. in the insulin resistance state? A high 

fat diet increases mRNA expression of the ABCG5 and ABCG8 genes in the liver and 

intestine of mice (Berge et al. 2000), inhibiting the absorption of sterols. On the 

contrary, in phytosterolemia, their expression is depressed by mutations (Berge et al. 

2000, Lee et al. 2001), resulting in major absorption of sterols and high serum plant 

sterol levels. Recent studies have shown that polymorphisms in ABCG8 have a 

contributing effect to the variation in serum plant sterol concentrations in normal, 

healthy individuals (Berge et al. 2002). Therefore, insulin resistance may play a role 

in regulating the expression of these ABC transporter genes. It could be argued that 

type 2 diabetes alone, especially when associated with obesity, could increase the 

expression of these genes in the liver and intestine similarly to a high fat diet in mice, 

resulting in low absorption and effective biliary secretion of cholesterol and plant 

sterols.  
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7. SUMMARY AND CONCLUSIONS 
 

Type 2 diabetes is associated with abnormalities in glucose and lipoprotein 

metabolism, which contribute to accelerated atherosclerosis. Cholesterol metabolism 

in diabetes has been less clearly documented, and the results are controversial. 

Obesity, in addition to favoring to the development of diabetes, is associated with 

abnormal cholesterol metabolism. Therefore, the aim of this study was to investigate, 

first, the metabolism of cholesterol and bile acids in diabetes, and second, whether 

body weight modulates cholesterol metabolism in diabetes. In addition, the 

relationships between cholesterol, lipoprotein and glucose metabolism were 

evaluated. Furthermore, the effects of weight reduction on cholesterol and sterol 

metabolism in a non-stable state as well as in a steady state after a prolonged follow-

up were studied.  

 

Cholesterol metabolism was studied in 16 obese (BMI > 30 kg/m2) type 2 diabetic 

patients compared to 16 similarly obese non-diabetic controls to discover the role of 

diabetes in cholesterol metabolism. Second, the effects of body weight on cholesterol 

metabolism in diabetes were investigated in patients with normal-weight (n=20) and 

overweight (n=44) patients with type 2 diabetes.  

 

Cholesterol absorption was evaluated with the peroral dual isotope technique and by 

quantitating serum ratios of phytosterols and cholestanol to cholesterol, and 

cholesterol synthesis with sterol balance and by quantitating the serum ratios of 

squalene and precursor sterols (cholestenol, desmosterol, lathosterol) to cholesterol.    

 

Cholesterol absorption efficiency and the amounts of absorped total, dietary and 

biliary cholesterol were lower in the obese diabetic patients than obese non-diabetic 

controls or normal-weight diabetic patients. Cholesterol absorption was similar in 

diabetes with normal body weight to obese non-diabetes. The differences in 

cholesterol absorption were not due to hyperglycemia because of lower cholesterol 

absorption efficiency with similar blood glucose levels in obese diabetic as in normal-

weight diabetic subjects, and also because of comparable cholesterol absorption 

between normal-weight diabetic and obese non-diabetic subjects.  Fecal elimination 

of cholesterol was increased, mainly as neutral sterols rather than bile acids, 
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enhancing cholesterol synthesis more in patients with obese type 2 diabetes than 

obese non-diabetic controls or normal-weight diabetes. In addition, fecal bile acids, 

the total intestinal cholesterol pool, biliary cholesterol secretion and cholesterol 

turnover were significantly higher in obese diabetics compared to normal-weight 

diabetics when expressed as mg/d. The variables expressing the synthesis and 

excretion of cholesterol and bile acids were quite similar in obese non-diabetic and 

normal-weight diabetic subjects. The ratios of serum plant sterols, sitosterol and 

campesterol, and cholestanol to cholesterol, indicators of cholesterol absorption, 

were higher, and those of the cholesterol precursors, markers of cholesterol 

synthesis, were lower in normal-weight than obese diabetic patients.  

 

In the diabetic population, BMI was positively associated with variables of cholesterol 

synthesis and negatively with cholesterol absorption. Since the study populations did 

not differ with respect to the possible confounding factors affecting cholesterol 

metabolism, e.g. age, gender, apo E phenotype distribution and dietary intakes of 

cholesterol and plant sterols, the lower cholesterol absorption and higher synthesis in 

obese type 2 diabetics were probably due to diabetes, which, with some unknown 

mechanism, can modulate cholesterol metabolism. It can be speculated that diabetes 

either inhibits the absorption of cholesterol and sterols leading to compensatory 

increase in cholesterol synthesis, or that it upregulates cholesterol synthesis per se. 

Furthermore, obesity enhances these diabetes-induced alterations.  

  

There is a homeostatic regulation between cholesterol absorption and synthesis in 

the normal population such that with a low cholesterol absorption, the synthesis of 

cholesterol increases. The variables of cholesterol absorption and synthesis 

(including also squalene and non-cholesterol sterols) were interrelated in diabetic 

population, suggesting that cholesterol homeostasis was not disturbed in type 2 

diabetes. In addition, the negative correlation between cholestanol and lathosterol 

during weight reduction suggested that normal homeostasis of cholesterol 

metabolism was sustained also in the calorie non-steady state. Serum plant sterols 

and cholestanol were correlated with cholesterol absorption efficiency, and 

cholesterol precursor sterols were correlated with cholesterol synthesis measured 

with sterol balance, indicating that serum non-cholesterol sterols reflected cholesterol 

metabolism in a manner similar to that in the non-diabetic population. The higher 
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serum levels of squalene in those subjects with higher cholesterol synthesis 

compared to those with lower synthesis could indicate that serum squalene levels 

reflect cholesterol synthesis rate in diabetes, which is different from the situation in 

the non-diabetic population. 

 

Serum levels of SHBG, a marker of insulin resistance, and its ratio to serum insulin 

were higher and serum insulin level lower in normal-weight than obese diabetes, 

despite the similar blood glucose levels, suggesting that insulin resistance in diabetes 

increased with weight. Furthermore, BMI was positively associated with serum insulin 

and negatively with SHBG levels.  

 

Hypertriglyceridemia with low HDL cholesterol, and moderately elevated serum total 

and LDL cholesterol was characteristic for the diabetic patients and obese non-

diabetic subjects. Serum total cholesterol levels did not differ in the subjects with or 

without diabetes regardless of their body weight despite their differences in 

cholesterol metabolism. However, obese type 2 diabetic patients had higher 

triglyceride contents in serum and VLDL, and lower HDL cholesterol than subjects 

with obese non-diabetes or normal-weight diabetes. Thus, this more aggravated 

dyslipidemic lipoprotein profile may be related to the higher magnitude of insulin 

resistance in diabetic patients with obesity. The serum or lipoprotein cholesterol 

levels were not associated with cholesterol absorption or synthesis in diabetes 

suggesting that the association between serum lipids and cholesterol metabolism 

was more complicated than in non-diabetes.   

 

Serum cholestanol levels increased and serum cholesterol precursor levels 

decreased with effective weight reduction in type 2 diabetes measured in a non-

steady state situation. In addition, weight reduction to a steady state caloric balance 

after a 2-year follow up increased low baseline cholesterol absorption efficiency to 

the same level as in normal-weight diabetic patients. In addition, ratios of serum plant 

sterols and cholestanol to cholesterol were higher, and those of cholesterol 

precursors lower than at baseline at this new, steady state weight level. Thus, the 

abnormalities of cholesterol metabolism in diabetes are reversibile, and the weight 

reduction is an efficient way to improve cholesterol metabolism. The increased 
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cholesterol absorption might be due to the improved insulin resistance with some 

mechanism leading to enhanced intestinal mucosal capacity to absorb cholesterol. 

 

The serum variables reflecting glucose metabolism and insulin resistance were 

related to the variables reflecting cholesterol metabolism. When there were high 

levels of serum insulin and low levels of SHBG, cholesterol absorption was low and 

its synthesis enhanced, whereas with low insulin and high SHBG levels, cholesterol 

absorption was high and cholesterol synthesis low. As a result, the regulation of 

cholesterol metabolism seemed to be closely linked to indicators of insulin 

resistance. Since the results from multivariate analysis showed that the percentage 

of cholesterol absorption and BMI were the only variables significantly explaining the 

variability of cholesterol synthesis, the effects of insulin resistance on cholesterol 

metabolism may be mediated by BMI. When the subjects under-went weight 

reduction, the variables of glucose metabolism were improved and cholesterol 

absorption was increased, with these changes being related to each other. In 

addition, weight reduction correlated with the changes in variables of cholesterol 

absorption, but not with cholesterol synthesis, suggesting that improved insulin 

resistance leads to enhanced absorption of cholesterol, and that the efficacy of 

cholesterol absorption was an inverse indicator of insulin resistance.   

 

In conclusion, type 2 diabetes is associated with abnormalities of cholesterol 

metabolism, which are not explained either by hyperglycemia or obesity. However, 

body weight, through its entire range, can regulate cholesterol metabolism in 

diabetes so that in conjunction with the increasing insulin resistance evoked by 

obesity, the cholesterol absorption became lowered and cholesterol synthesis 

increased. Thus, the regulation of cholesterol metabolism seems to be closely linked 

to insulin resistance. Despite the disturbances in cholesterol metabolism, the total-

body homeostasis between cholesterol absorption and synthesis is not disturbed. 

The abnormalities in cholesterol metabolism are not irreversible, and weight 

reduction, even a modest sustained weight loss, is an efficient way to improve 

cholesterol metabolism by increasing cholesterol absorption. In addition, the 

beneficial effects of weight loss on cholesterol metabolism can be seen rather 

rapidly, even in a non-steady calorie state.  

 



103 

Taken together, low cholesterol absorption and high synthesis seem to be part of the 

insulin resistance syndrome. The exact molecular mechanisms for the modulating 

effect of insulin resistance on the intracellular trafficking of cholesterol in the liver and 

intestinal cells are unknown. It could be assumed that insulin resistance in type 2 

diabetes, and its higher magnitude especially when associated with obesity, could 

modulate the expression of genes regulating cholesterol metabolism resulting in low 

absorption, more effective biliary secretion and elevated synthesis of cholesterol, and 

low levels of serum plant sterols.   
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