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INTRODUCTION 
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INTRODUCTION 

Most of the pathogens invade the human body through mucosal membranes. Thus, mucosal 
surfaces provide the front line of defence by taking advantage of both innate and adaptive 
immune mechanisms. The innate immunity blocks invaders non-specifically, but the 
adaptive immune system consists of pathogen specific immune mechanisms. Further, the 
adaptive immune system has an ability to memorise, and during the consecutive encounter 
with the antigen it can act faster and with higher magnitude than at the first time. The local 
mucosal immune systems at various mucosal surfaces are known to communicate with help 
of circulating lymphocytes migrating from one site to another and, thus constitute the 
Common Mucosal Immune System (CMIS). According to the concept of CMIS antibody 
responses can be induced on a mucosal membrane even if the encounter with an antigen has 
taken place at a remote mucosal site.     

Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus) are 
encapsulated pathogens, which are both able to colonise the human nasopharynx and, 
further, to cause a disease, e.g. pneumonia, meningitis or sepsis. Pneumococcus is also the 
leading bacterial cause of a local infection, acute otitis media. Vaccines against 
pneumococcal and meningococcal diseases have been developed, tested, and used for 
decades. The first licensed vaccines were based on capsular polysaccharides. Later, 
polysaccharides have been conjugated to carrier proteins in order to improve the 
immunogenicity of these vaccines in infants by turning the immune response from T cell 
independent to a T cell dependent type.    

The encounter of microbes at mucosal surfaces may lead to the production of specific 
salivary antibodies. In animal models mucosal antibodies have also prevented the attachment 
of bacteria to the mucosal surface, an event necessary for the infection to proceed. The 
pneumococcal and meningococcal conjugate vaccines have been found to induce systemic 
immunity and immunological memory, but there are only few studies about the conjugate 
vaccines and mucosal immunity.  

This thesis consists of a series of studies characterising the ability of parenterally 
administered pneumococcal and meningococcal conjugate vaccines to induce salivary 
antibodies in infants. We also conducted a study to find the best methods for collection and 
storage of saliva samples. 
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REVIEW OF THE LITERATURE 
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REVIEW OF THE LITERATURE 

1 Mucosal immunity 

Mucosal membranes are continuously exposed to a myriad of antigens, e.g. different food 

antigens, bacteria, viruses and different particles. Over 90% of pathogens invade the human 

body through mucosal membranes (Challacombe 1995), yet, a vast majority of them are 

eliminated by the local immune system. On the other hand, many antigens e.g. different 

nutritional components and bacteria functioning in symbiosis with the human body are 

essential for the well-being of man and have to be tolerated. Thus, the local immune system 

has to make right choices continuously between tolerance and immune response against 

different antigens. It has been estimated that events within the mucosal immune system 

cover more than two thirds of the activity of the entire human immune system (Russell et al. 

2000). 

The history of the concept of mucosal immunity starts in the beginning of the 20th century. In 

1919 Russian-French serologist Alexandre Besredka presented the idea of local immunity 

(Besredka 1919). In 1965 Tomasi et al, confirmed the concept of mucosal immunity by 

finding secretory immunoglobulin A (sIgA) (Tomasi et al. 1965). Further, the idea of the 

common mucosal immune system (CMIS) indicating communication between different 

mucosal surfaces was introduced in 1970’s (Mestecky et al. 1978). The knowledge on the 

local immune system has later on increased considerably. 

1.1 Mucosal surface          

Gastrointestinal, urogenital, and respiratory tracts, and ocular areas are all covered with 

mucosal membranes, which form together an area of approximately 400 m2 in an adult 

human being  (Brandtzaeg et al. 1998). The outer layer of mucosal membranes, epithelium, 

is formed of one layer of cells with different functions; undifferentiated epithelial cells, 

absorptive cells, Paneth cells, enteroendocrine cells, cup cells, tuft cells, intraepithelial 

lymphocytes, M (microfold) cells, and goblet cells. The structure of a mucosal membrane 
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differs depending on the part of the body, e.g. there are more absorptive cells in the small 

intestine than on the nasopharyngeal site. 

Mucus forms a thick barrier on the mucosal epithelium. It mainly consists of well 

glycosylated high molecular weight glycoproteins called mucins, which are produced by 

goblet cells (Deplancke and Gaskins 2001). There are different mucins; at least six different 

genes encode the mucins of the airways (Lamblin et al. 2001). An important function of 

mucus is to trap unwanted microbes and other particles to be removed from the body, partly 

with the help of secretory immunoglobulin A (IgA) and mucociliary clearance (Corthesy and 

Spertini 1999). Further, mucus lubricates and insulates the mucosal epithelium.  

Immediately beneath the mucosal epithelium is situated the lamina propria (LP). This is the 

major functional tissue of mucosa. The lamina propria contains many immunocompetent 

cells, including dendritic cells, macrophages, and lymphocytes. 

1.2 Innate mucosal immunity 

Mucosal membranes themselves form a physical barrier against pathogens. Antigens are also 

actively removed by ciliary and peristaltic movements, coughing, sneezing, and by the flow 

of saliva, mucus and urine. Further, pH ranges, and antibacterial substances like lysozyme, 

lactoferrin and peroxidases participate in the protection. In addition to mucins, goblet cells 

produce trefoil peptides. These small peptides interact with mucins to increase the viscosity 

of mucus, but also protect against different substances, e.g. bacterial toxins (Podolsky 1999). 

Human mucosal epithelial cells also make beta defensins, which help the local immune 

system to make difference between pathogenic and non-pathogenic bacteria based on the 

different signalling systems that harmless and harmful bacteria use (Chung and Dale 2004).  

When invading the body, pathogens also need to cope with the resident microbial flora 

(Mayer 2003). Actually, there are estimated to be approximately 400 different species of 

microbes in the human gut (McCracken and Lorenz 2001). These microbes have different 

functions in the house-keeping of mucosal membranes, and they are also able to stimulate 

immune responses. Germ-free animals have defects in their mucosal immune system despite 

otherwise normal immune system organs (McCracken and Lorenz 2001). 
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In addition to physical and chemical barriers, mucosal surfaces have unspecific 

immunological prevention mechanisms against pathogens. Complement, polymorphonuclear 

leucocytes and macrophages take care of preventing infections to some extent at mucosal 

membranes (Jakobsen and Jonsdottir 2003).   

1.3 Adaptive mucosal immunity 

1.3.1 Common mucosal immune system   

The adaptive immune system consists of two types of lymphocytes, B cells and T cells, 

providing antigen specific humoral and cell-mediated immune responses, respectively. The 

adaptive mucosal immune system is presumed to work quite independently from its systemic 

counterpart (McGhee et al. 1992; Brandtzaeg et al. 1998). It is based on the circulation and 

homing of mucosal lymphocytes, first described in rats by Gowans and Knight (Gowans and 

Knight 1964). Naïve B and T lymphocytes are continuously circulating through all 

secondary lymphoid tissues until they meet a specific antigen or die. After naïve 

lymphocytes are activated by an antigen at a mucosal site, they migrate to regional lymph 

nodes to mature. It has become evident that while naïve cells are able to migrate equally to 

all secondary lymphoid tissues, activated lymphocytes gain tissue-selective homing abilities 

and can, in addition, also invade tertiary lymphoid tissues, e.g. lamina propria and joints. 

This tissue-selective homing enables effective targeting of immune responses to sites where 

the antigen is most probably encountered. Tissue-selective trafficking of memory and 

effector lymphocytes is mediated by unique combinations of adhesion molecules and 

chemokines. This cycle of lymphocyte circulation and homing takes place also in humans 

(Kantele et al. 1986; Czerkinsky et al. 1987; Wenneras et al. 1994; Kantele et al. 1996).   

It has been found that antigen stimulation at one mucosal site of the body can lead to an 

immune response also at remote mucosal sites (Figure 1). This interconnection of mucosal 

surfaces by circulating lymphocytes is called the common mucosal immune system (CMIS) 

(Mestecky 1987). Even if mucosal surfaces can communicate with each other via circulating 

lymphocytes, CMIS appears to be compartmentalised to some extent (Moldoveanu et al. 

1995; Kantele et al. 1998). The CMIS consists of different mucosa-associated lymphoid 

tissues (MALT), e.g. genitourinary organs, inner ear, mammary, salivary and lacrimal glands 
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and gut-associated lymphoid tissue (GALT). In the airways MALT provide an important part 

of the immunity against respiratory pathogens (Brandtzaeg 2003b). The nasal-associated 

lymphoid tissue (NALT) functions in the area of the nasopharynx, nasal cavity and near the 

auditory tube (Mair et al. 1987). Previously, Waldeyer’s ring in the human pharynx 

including palatine, lingual and nasopharyngeal tonsils (adenoids) was considered to be 

analogous to murine NALT. However, it has been recently proposed that young children 

have also NALT (Debertin et al. 2003). Laryngeal and tracheal areas are protected by 

larynx-associated lymphoid tissues (LALT) and lower respiratory tracts by bronchus-

associated lymphoid tissue (BALT).  

 

Figure 1. Hypothetical diagram of the common mucosal immune system (CMIS) in humans. Induction of 

immune response at one part of the system can induce immune response in another parts of the CMIS 

(Mestecky et al. 1994, with permission). 

1.3.2 Mucosal immune response  

GALT is the most thoroughly studied part of the mucosal immune system. It has three 

different types of inductive sites: Peyer’s patches (PP), appendix and small solitary lymphoid 

nodules. Recently, isolated lymphoid follicles have also been suggested to be part of the 

murine GALT (Hamada et al. 2002). The structure of inductive sites in BALT is considered 

to be similar to GALT and thus suggested to function similarly (Tango et al. 2000). Also, 

NALT in mice is comparable to GALT with PP organisation (Wu et al. 1996).  
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Mucosal immune response begins when an antigen reaches the follicle-associated epithelium 

(FAE) of inductive sites e.g. at the dome like structures of PPs (Figure 2). Antigens are taken 

through the FAE either with help of microfold cells (M cells, synonymously used with 

follicle-associated epithelial cells) or dendritic cells (DCs). M cells are epithelial cells 

specialised in the uptake and transport of macromolecules and micro-organisms through the 

mucosa (Bouvet et al. 2002). They have short microvilli, small cytoplasmic vesicles and few 

lysosomes (Wolf and Bye 1984). It was thought for long that M cells are used only to 

transport antigens without their modification (Wolf and Bye 1984). More recent data 

suggested that M cells are able to process and present antigens (Allan et al. 1993). Some 

pathogens e.g. reovirus and salmonella use M cells as a route to invade the human body 

(Wolf et al. 1981; Weinstein et al. 1998).  

Dendritic cells seem to have a dual role in the immune response. First, immature DCs are 

macrophage-like and function as vigorous phagocytes. After ingesting antigens they mature 

and start to act as effective antigen presenting cells (APCs). Further, DCs gather antigens 

from lumen by opening and closing tight junctions between epithelial cells and picking 

antigens with their dendrites (Rescigno et al. 2001). DCs are also suggested to collect 

bacteria, which have reached the lamina propria because of the leakiness of epithelium, 

tissue damage or invasion (Uhlig and Powrie 2003). There are at least three subpopulations 

of DCs at PP’s: myeloid CD11b+, lymphoid CD8α+ and double negative DCs that lack 

expression of CD8α or CD11b (Iwasaki and Kelsall 2000). Lymphoid and double negative 

DCs can induce a Th1 type of cell-mediated immune response, while myeloid DCs are 

capable of inducing Th2 type of cells by producing IL-10, which leads to IgA response by B 

cells at effector sites. Myeloid DCs also produce TGF-β, and are suggested to induce oral 

tolerance. The role of DCs in keeping up the homeostasis of the mucosal immune system 

seems thus to be more important than previously known.  

Inductive sites contain a variety of different cells needed in an immune response. The most 

important inductive sites, PPs, have organised area for both T and B cells including germinal 

centres. In fact, most of the immunoglobulin (Ig) producing lymphocytes are located at the 

intestinal mucosa (Brandtzaeg 1989). After transmission through the mucosal epithelium to 

inductive sites, antigens are first processed and presented to naïve T and B cells by APCs. 

Antigen presentation can take place locally, but DCs may carry antigens to be presented in 
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the lymph nodes. In the human gastrointestinal tract APCs include macrophages, a variety of 

DCs, and B cells (Brandtzaeg 2001). In human nasal mucosa instead closely related 

macrophages and DCs function as APCs (Jahnsen et al. 2004). After lymphocytes, including 

B cells, CD4+ Th1/Th2 cells and CD8+ T cells, are primed at PPs they travel through lymph 

nodes and the thoracic duct to the blood stream, and finally home as effector cells in mucosal 

effector sites e.g. lamina propria (Figure 2).  

 

Figure 2. Induction of mucosal immunity. M cells are present in mucosal inductive sites in both the intestinal 

and upper respiratory tract, specifically in Peyer’s patches and in the NALT, the tonsils and adenoids. M cells 

are thought to play an important role in antigen processing and possibly the induction of antigen-specific 

mucosal immunity in mucosal effector sites. Tissues followed by question marks are presumed sites since 

limited data are available on these tissues (van Ginkel et al. 2000, with permission). 

The homing of mature B and T lymphocytes from circulation to their effector sites is a multi-

step process, where the tissue-specific adhesion molecules have an important role. The 

extravasation of lymphocytes takes place through the endothelial cells of high endothelial 

venules (HEV) in the lymph nodes (Schoefl 1972). The extravasation appears to consist of 

four different steps: primary adhesion (including tethering and rolling), activation, arrest and 
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diapedesis (Picker 1994; Butcher and Picker 1996; Butcher et al. 1999). In the beginning of 

the process lymphocytes are rolling along the wall of a vessel allowing initial interactions. 

The speed of rolling is gradually decelerated providing contacts between the adhesion 

molecules on lymphocytes and on the endothelial cells. One of the central events in the 

homing of lymphocytes into tissues is regarded to be the binding of lymphocyte surface 

homing receptors (HR) to the ligands, addressins, on the endothelial cell walls. Three 

specific homing receptor – addressin pairs have been found: α4β7 is a counterpart to the 

mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) on endothelial cells of the 

gastrointestinal tract (Berlin et al. 1993), L-selectin binds to PNAd in the peripheral lymph 

nodes (Berg et al. 1991a) and cutaneous lymphocyte antigen (CLA) to E-selectin in the skin 

tissue (Berg et al. 1991b). It has been suggested that primed lymphocytes tend to home back 

to their inductive sites as effector cells. Further, chemo attractant cytokines (chemokines) 

have a role in the homing of lymphocytes (Kunkel and Butcher 2003).  

Lamina propria is the main effector site in GALT. LP contains mainly IgA-secreting plasma 

cells (Farstad et al. 2000) and T memory cells (Masopust et al. 2001a; Masopust et al. 

2001b). LP plays also an important role in the regulation of mucosal immune responses 

(Bailey et al. 2001). Tissue-resident DCs in LP have a regulatory role to suppress immune 

response against commensal bacteria. When these DCs encounter non-pathogenic bacteria, 

they produce IL-2 and IL-10, which induce the differentiation of regulatory T cells. 

However, during inflammation macrophages attract circulating DCs from blood to 

phagocytose bacteria and to initiate an immune response (Granucci and Ricciardi-Castagnoli 

2003). 

1.3.3 From a naïve B cell to an immunoglobulin A producing cell  

Several phases take place between the priming and maturation of a naïve B cell into an IgA 

producing plasma cell. The first step is taken at PPs, where naïve B cells with surface IgM 

are switched to IgA bearing cells with help of T cells (Kawanishi et al. 1983). However, IgA 

production can be also T cell independent (TI); a pathway to straight B cell differentiation to 

IgA producing plasma cells has been found (Macpherson et al. 2001). Recently, it has been 

suggested that 25% of murine IgA is produced T cell independently by B1 cells originated 

from the peritoneal cavity and representing a primitive system for recognition of commensal 
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bacteria by polyreactive antibodies. The remaining 75% of IgA is induced by a T cell 

dependent (TD) manner by B2 cells in germinal centres of MALT (Macpherson et al. 2001). 

However, a respective IgA production by peritoneal originated B1 cells unlikely takes place 

in humans (Boursier et al. 2002). The precursors of human B2 lymphocytes have been 

generated in bone marrow. At inductive sites the driving force for IgA switching of B cells is 

TGF- β (Cazac and Roes 2000) and the further maturation of mIgA+ B cells is enhanced by 

IL-5, IL-6 and IL-10 (Salvi and Holgate 1999). The maturation of B cells takes place in 

draining mesenteric lymph nodes, where B cells further divide and differentiate, and it is 

finally completed after homing at mucosal effector sites (Lamm and Phillips-Quagliata 

2002). During this process some B cells differentiate into memory cells (Tangye et al. 2003). 

1.3.4 Immunoglobulin A     

Immunoglobulin A (IgA) is the most abundant immunoglobulin (Ig) class of the immune 

system (Mestecky 1988). In serum, IgA covers only 15-20% of total Ig concentration, but at 

mucosal membranes IgA is the predominating Ig class (Hanson et al. 1985; van Egmond et 

al. 2001). Even if immunoglobulin G (IgG) predominates in serum, the daily production of 

IgA (66 mg/kg/d) exceeds the production of all other immunoglobulin classes combined 

(Monteiro and Van De Winkel 2003). IgA can be either monomeric (mIgA) or polymeric 

(pIgA). In adults over 90% of the IgA in serum is mIgA. Instead, in infants most of serum 

IgA can be pIgA (Weemaes et al. 2003). The proportion of pIgA decreases at the increase of 

total IgA concentration (Weemaes et al. 2003). In secretions instead, IgA is in general 

polymeric, most often dimeric.     

There are two subclasses of immunoglobulin A, IgA1 and IgA2 (Figure 3). The major 

difference between these two subclasses is the absence of a 13-amino acid sequence in the 

hinge region of IgA2 (van Egmond et al. 2001). This part has many sites for O-glycosylation 

and is a target for IgA1 proteases induced e.g. by Neisseria meningitidis, Streptococcus 

pneumoniae, and Haemophilus influenzae type b (Kilian et al. 1996). Cleavage of IgA1 by 

IgA1 proteases can prevent e.g. the stimulation of a respiratory burst in neutrophils through 

Fcα receptors (Almogren et al. 2003). Further, IgA1 has been found to be T-shaped instead 

of Y, which is the common form of other Igs (Boehm et al. 1999). The distribution of IgA 

subclasses in different parts of the immune system varies notably (McGhee et al. 1993). In 
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serum, 90% of the IgA is produced in bone marrow and most of it represents subclass IgA1 

(Delacroix et al. 1982; Kutteh et al. 1982). However, in secretions IgA is produced by 

plasma cells at effector sites. IgA1 predominates in the upper respiratory and in the upper 

gastrointestinal tracts. In the lower gastrointestinal tract the proportion of IgA2 is higher than 

of IgA1 (Brandtzaeg 1994). In saliva, IgA1 predominates normally. However, in infants 

subclass distribution of salivary IgA can vary more than in adults (Smith et al. 1989). The 

distribution of subclasses depends on the nature of the antigen: proteins induce IgA1 

predominating response while the proportion of IgA2 producing cells is higher after 

immunisation with carbohydrates (Tarkowski et al. 1990; Simell et al. 2004). This has been 

seen both in adults and in infants.   

 

Figure 3. IgA isotypes. IgA is composed of two heavy and two light chains. Heavy chains consist of three 

constant regions (CH1, CH2, and CH3), and one variable (VH)  region, whereas light chains are composed of one 

constant (CL) and one variable (VL) region. Positions of the FcαR1 docking site and the O- (I) and N- (●) linked 

glycosylation sites are marked (van Egmond et al 2001, with permission).  

Most of the mucosal IgA is produced by plasma cells of lamina propria and secreted through 

epithelial cells to mucosal lumen by transcytosis (Figure 4). Secreted IgA is always 

polymeric, seen mostly as a dimeric form consisting of two monomeric IgA molecules 

linked together with a polypeptide called J (joining) chain. Mucosal epithelial cells have pIg 
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receptor (pIgR) on their basolateral surface, where pIgA can attach via J chain. Further, pIgA 

is actively transported through cells to an apical/luminal site of the cell through a vesicular 

route (Mantis et al. 2002). At the apical site of the cell, pIgA is cleaved from the pIgR. 

However, a part of pIgR, called secretory component (SC), is attached to the pIgA molecule 

forming together secretory IgA (sIgA). Thus, both plasma cells and secreting epithelial cells 

are essential for the assembly of sIgA.  

LUMEN 

MUCOSAL 
CELL LAYER 

sIgA 

dIgA 

B-cell 

pIgR 

      5) Proteolysis 

LAMINA 
PROPRIA 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The transcytosis of dimeric IgA through epithelial cell layer to secretions. 1) The dimeric IgA 

(dIgA) is produced by the B-cells of the MALT. 2) dIgA binds IgA to polymeric Ig receptor (pIgR) via its J-

chain. 3) The complex of dIgA and pIgR traverses the epithelial cell in an endocytic vesicle by transcytosis 4) 

The complex reaches the apical epithelial surface. 5) Proteolytic enzymes cleave the pIgR between its 

extracellular and transmembrane domains. 6) Secretory IgA (sIgA) is released in secretions. Modified from 

(Kantele 1992). 

Secretory IgA participates in protection against pathogens in all mucosal secretions 

including saliva, tears, breast milk, and gastrointestinal fluids. SIgA is an effective isotype at 

mucosa, because of its stabile nature and resistance to many degrading enzymes. SC 
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prevents the proteolysis of sIgA and further SC protects the binding site for the Fcα receptor 

in sIgA, which improves sIgA’s ability to activate phagocytic cells at the mucosal surface 

(Almogren et al. 2003). Further, the polymeric structure of sIgA enhances binding to 

antigens (Taylor and Dimmock 1985). SIgA prevents pathogens from entering the human 

body through mucosal epithelium and it neutralises viruses, enzymes and toxins (Russell et 

al. 1999). Further, sIgA functions synergistically with factors of the innate immune system, 

e.g. lactoperoxidase and lactoferrin (Marcotte and Lavoie 1998).  

SIgA functions at all levels of the mucosal compartment. First, sIgA traps antigens in lumen 

and eliminates them together with mucus by a mechanism called immune exclusion (Stokes 

et al. 1975). The second level of function is the neutralisation of intracellular viruses 

(Mazanec et al. 1995; Bomsel et al. 1998). SIgA also acts at the third level, stromal side, 

eliminating antigens that have passed the epithelium by transporting them back through M 

cells to the luminal site using transcytosis (Robinson et al. 2001) or by FcαR-bearing 

phagocytes (Geissmann et al. 2001). Pathogens may also use the transcytosis route to invade 

human body (Phalipon and Corthesy 2003). Streptococcus pneumoniae can attach to human 

pIgR at nasopharyngeal epithelial cells by choline binding protein A (CbpA) and to use the 

reverse direction of the transcytosis route to invade the human body through nasopharynx 

(Brock et al. 2002). Serum IgA has anti-inflammatory effects, it can e.g. inhibit complement 

mediated IgG and IgM responses (Griffiss 1983; Kilian et al. 1988). Moreover, IgA in 

human amniotic fluid can protect a foetus by binding to natural maternal IgG autoantibodies 

(Quan et al. 1998). IgA is not able to activate complement by the classical pathway 

(Schaapherder et al. 1995), however, serum IgA can initiate complement activation by the 

alternative (Hiemstra et al. 1987; Janoff et al. 1999) or by the mannan-binding lectin 

pathway (Roos et al. 2001). Anti-Pnc PS specific IgA has also been found to activate 

neutrophil effector functions by binding to FcαR1 (van der Pol et al. 2000). Further, anti-Pnc 

PS specific sIgA in breast milk can initiate the killing of pneumococcus (Finn et al. 2002). 

However, the mechanism of this is not yet known. 

1.3.5 Immunoglobulin G and other immunoglobulins at mucosa 

All five Ig classes, IgA, IgG, IgM, IgE, and IgD are represented at mucosal membranes. IgG 

in mucosal secretions has traditionally been regarded as originating from serum by diffusion 
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(Brandtzaeg 1971). Serum derived IgG can enter the gut also through the hepatobiliary route 

in humans (Quan et al. 1996). In addition, IgG can be produced locally (Berneman et al. 

1998; Bouvet and Fischetti 1999; Ogra 2000). A bi-directional transcytosis route can be used 

for transportation of IgG through the mucosal epithelium. IgG can attach to a major 

histocompatibility complex (MHC) class I-related Fc-receptor, FcRn, on human and mouse 

lung epithelium and can be transferred to the apical side of the cell (Spiekermann et al. 

2002) to compensate functions of sIgA (Bouvet and Fischetti 1999). Actually, on the 

mucosal membranes of lungs IgG has been found more effective against viral infections than 

IgA (Palladino et al. 1995; Mbawuike et al. 1999). Also, in human adenoids B cells 

excreting IgG are more common than IgA producing cells (Boyaka et al. 2000; Zhang et al. 

2002a). This suggests that both IgA and IgG are important in mucosal immunity. 

It has been proposed that polyreactive sIgM is an important factor in primitive immune 

defence (Bouvet and Fischetti 1999). The sIgM molecule is pentameric and also has a 

binding site for pIgR and is transported through the epithelium in the same way as IgA 

(Brandtzaeg et al. 1999). However, because of non-covalent binding to SC, sIgM is not as 

resistant to proteolytic enzymes as sIgA (Bouvet and Fischetti 1999). In IgA deficient 

patients, higher concentrations of sIgM are produced to compensate the IgA deficiency 

(Brandtzaeg 1971). 

Traces of IgE and IgD can be found in mucosal secretions. However, both IgD and IgE are 

fragile molecules and thus hard to detect in mucosal secretions. IgE has a role in protection 

against parasites and in allergy (Negrao-Correa 2001). The actual function of IgD in 

secretions is not known, but it is supposed to have a role in the maturation process of the 

mucosal immune system (Seidel et al. 2001).  

1.4 Regulation of mucosal immune response 

The successful regulation of mucosal immune response is a prerequisite for health. The 

bacteria of normal flora create homeostasis at mucosal membranes by promoting digestion, 

growth and differentiation of epithelial cells, producing vitamins, and further it is needed to 

establish both mucosal and systemic immunity (Mayer 2003). Mucosal sIgA and sIgM 
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antibodies have also a role in homeostasis; mucosal membranes have shown unusual 

leakiness in sIgA and sIgM deficient mice (Johansen et al. 1999).  

T cell anergy, apoptosis, and active regulation are all used for the regulation of mucosal 

immune response (Bailey et al. 2001). When APCs present antigens to lymphocytes, two 

signals are needed for an immune response. First, antigens are presented in context with 

either class I or II MHC. In addition to this, a co-stimulatory signal is needed. A signal to the 

T cell through the CD28 molecule will lead to T cell activation and proliferation. Instead, a 

signal through CTLA-4 (CD152) is inhibitory (Nagler-Anderson 2001). Non-pathogenic 

bacteria are thought to block the NF-κB/IκB (nuclear factor kappaB/inhibitor kappaB) 

signalling pathway, which prevents the transcription of pro-inflammatory cytokines and 

further the immune response (Neish et al. 2000). 

An important mechanism to regulate mucosal immune responses is oral tolerance. Oral 

tolerance can be induced by feeding an animal with a new protein antigen in increasing 

amounts (Challacombe and Tomasi 1980). When later challenged with the same antigen, the 

immune response decreases. The molecular mechanisms needed for immunological tolerance 

and the reason why harmless antigens can be tolerated, but an immune response against 

harmful antigens takes place, are not completely understood, yet. It has been suggested that 

mechanisms needed for tolerance take place at many stages of the immune response (Bailey 

et al. 2001). As previously mentioned, mature DCs are suggested to function in the 

regulation of oral tolerance. In lungs, DCs induce IL-10 production and further IL-10 

producing regulatory type 1 (TR1) T cells (Akbari et al. 2001). Instead, TGF-β transmits 

signals to generate T helper type 3 (TH3) regulatory cells in the gut (Weiner 2001). The third 

important mucosal regulatory cells are CD4+CD25+ T cells (Sakaguchi et al. 1995). The 

regulation mechanism of these cells needs cell-to-cell contact and is thus different compared 

with TR1 and TH3 cells. CD4+CD25+ cells have been found to prevent autoimmune reactions. 

Neither M cells or PPs are required for the induction of oral tolerance (Alpan et al. 2001; 

Spahn et al. 2001). Tolerance can sometimes be broken and this is suggested to be a reason 

for chronic allergic and infectious diseases. Mucosal immunisation is suggested as 

prophylaxis against infectious diseases but also for treating allergy, autoimmune and 

immuno-pathological diseases (Holmgren et al. 2003). 
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1.5 Mucosal memory 

When an antigen is encountered for the second time, the immune response occurs faster, and 

more antibodies with higher avidity are induced. This has been proven clearly within the 

systemic site of the immune system.   

At mucosal sites, both B and T memory cells are available. sIgA producing B memory cells 

have been detected in the mucosal LP (Farstad et al. 2000). Mucosal intraepithelial T 

memory cells have been found to represent at least two subsets; CD8αβ TCRαβ and CD8αα 

TCRαβ. The first, CD8αβ positive ones, are conventional memory cells recognising foreign 

antigens, and CD8αα instead are self-reactive cells with diverse specifities (Cheroutre 2004). 

Natural rotavirus infection can induce CD4+ memory T cell response in humans (Rott et al. 

1997). The mucosal memory also takes place after oral immunisation with cholera toxin in 

mice and humans (Lycke and Holmgren 1986; Lycke et al. 1987), and intranasal 

immunisation induces effectively an immunological memory in mice (Asanuma et al. 1998). 

However, there have been controversial opinions about the existence of mucosal memory 

after intramuscular vaccination. In mice previous intramuscular vaccination with rotavirus 

induced an immune response with enhanced magnitude, but the response was not faster than 

before (Coffin and Offit 1998). Further, it has been speculated that protein antigens could 

induce mucosal memory, but polysaccharides would lack the effect (McGhee et al. 1993).  

2 How to study mucosal immunity?  

Mucosal immunity can be measured by investigating secretions from different mucosal 

areas. Saliva is the most easily accessible fluid, but also breast milk and colostrum are 

relatively simple to collect (Challacombe 1995). However, other mucosal secretions can also 

be used to study mucosal immunity, e.g. tears, nasopharyngeal washes, vaginal, intestinal, 

(Kantele et al. 1998) and bronchial lavages (Atis et al. 2001). Recently, adenoids and tonsils 

have been used to estimate mucosal immunity (Boyaka et al. 2000; Zhang et al. 2002a).  

Detection of specific antibodies in serum or secretions is the traditional way to estimate both 

systemic and mucosal immune responses. Antibody concentrations in secretions can be 

analysed with different techniques. Previously, radio immuno assay (RIA) with 
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modifications and radial immunodiffusion were often used methods (Gleich and Dunnette 

1977; Friedman 1982). Later, enzyme linked immunoassays (EIA), without radioactive 

agents, have been adapted as a more practical system. There are modifications of the basic 

EIA, in which an antigen is attached to the surface of a microtiter plate well to bind a 

specific antibody in a sample. One of them is an antibody capture assay, where a single class 

of human immunoglobulin is captured by an immobilised anti-immunoglobulin. The signal 

can be further amplified by the FITC/anti-FITC system (Vyse et al. 1999). Another 

modification of EIA is immuno-PCR, where an enzyme coupled conjugate is replaced by a 

specific antibody linked to a DNA molecule (McKie et al. 2002). Antibody concentrations 

can also be measured by a time-resolved fluorescence method based on a fluorescent 

antibody format (Hale et al. 2001). A new system, also founded on fluorescence, is a 

multiplexed bead assay Luminex (Seideman and Peritt 2002; Biagini et al. 2004). Luminex 

technology enables detection of antibodies to multiple different antigens at the same time. 

Yet, this method has been tested only with serum samples, but it has potential for analysing 

also saliva samples.    

Mucosal immunity can be also studied by exploiting T and B cells. T cell responses have 

been analysed e.g. from palatine tonsils after immunisation (Davenport et al. 2003). The 

circulation of mucosal lymphocytes within the CMIS offers another approach to study 

mucosal immune response: the migrating cells can be caught from peripheral blood and 

investigated for antibody production. Specific ASC have been found in the circulation of 

humans after mucosal antigen encounter, e.g. after oral typhoid vaccination (Kantele et al. 

1986), oral cholera vaccination (Czerkinsky et al. 1987; Czerkinsky et al. 1991; Quiding et 

al. 1991) and in patients with a mucosal infection (Kantele et al. 1994). During the last 

decade the ASC assay has been established as an important method for assessing the human 

mucosal immune response especially to oral vaccines. The most useful method for this is 

ELISPOT i.e. enzyme-linked immunospot assay (Czerkinsky et al. 1983; Sedgwick and Holt 

1983). In that assay antigen-specific B cells homing into peripheral areas can be detected 

from blood by incubating samples with a specific antigen coated on a microtiter plate. If 

there are ASC secreting antibodies in a sample, antibodies bound to solid antigens can be 

detected as spots in the bottom of the well. It is noteworthy, that specific ASC appear in the 

circulation also after parenteral immunisation (Nieminen et al. 1996; Kantele et al. 1997; 

Kantele et al. 1998; Nieminen et al. 1998a; Nieminen et al. 1998b; Nieminen et al. 1999; 
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Kantele et al. 1999a; Kantele et al. 1999b). These cells are not regarded as homing into the 

mucosal but into the systemic immune system (Kantele 1996).  In order to use the ASC 

assay as a measure of mucosal immune response, the expected site of homing of these cells 

needs to be considered. This can be performed by analysing the homing receptors on the 

surface of these cells (Kantele 1996). 

2.1 Saliva samples 

Saliva is secreted from parotid, submandibular, sublingual, and minor salivary glands, and 

fluid accesses the mouth also through gingival crevices (Challacombe and Shirlaw 1994). 

There is a nomenclature for saliva obtained from different glands (Malamud and Tabak 

1993). Further, the mixture of secretions is named as whole saliva, and oral fluid as fluid 

obtained by placing absorptive collectors into the mouth. Here, the term saliva is referring to 

whole saliva.       

Saliva is an important diagnostic specimen. It reflects the immunological, nutritional and 

even mental state of the human body (Mandel 1993). Saliva can be used for screening 

different hormones, therapeutic drugs, drugs of abuse, and antibodies of different isotypes 

(O'Neal et al. 2000; Gann et al. 2001; Shirtcliff et al. 2001; Tabak 2001). There are many 

advantages in the use of saliva to study mucosal immunity; it is excreted continuously and it 

can be collected non-invasively. Further, specially trained persons are not needed to collect 

saliva samples.   

However, there are also disadvantages. Saliva samples can be either unstimulated or 

stimulated. Usually, unstimulated saliva best reflects the natural situation in the mouth. 

However, it is difficult to get a sample without any stimulation. Further, there can be diurnal 

and monthly variation in salivary antibody concentrations (Butler et al. 1990). In infants, 

breast-feeding can have an effect on the antibody concentration in the saliva. Thus, mothers 

are asked not to breast-feed children just before collecting saliva. 

Saliva samples are often collected by suction with plastic pipettes, or simply by drooling. 

Collecting with a pipette can be enhanced by a mechanical suction device. There are also 

several commercial kits for saliva sampling e.g. OraSure, Omni-SAL, Oracol, Orapette, and 
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Salivette (Hodinka et al. 1998; Vyse et al. 2001; Judd et al. 2003). The use of method 

depends also if whole saliva (oral fluid) is preferred or if a sample consisting more of 

crevicular fluid is needed. Saliva can also be collected straight from individual salivary 

glands (Navazesh 1993).  

Saliva contains many bacterial and other enzymes, e.g. IgA1-protease, which have been 

found to degrade antibody concentrations quickly. To hinder the decrease of antibodies in 

samples, the function of enzymes may be prevented either by freezing or by enzyme 

inhibitors. However, one study has shown that saliva samples can be stored even at +4°C for 

several days without degradation of Igs (Mortimer and Parry 1988). Others have found that 

antibody concentrations decrease in saliva samples rapidly when salivas are stored either at 

+4°C or –20°C (Butler et al. 1990) or during storage at –30°C for 3 months (Ng et al. 2003). 

Storage at –70°C with 50% glycerol could hinder the loss of antibodies during storage 

(Butler et al. 1990). 

3 How to induce mucosal immunity? 

3.1 Natural immunity 

Human secretions contain natural polyreactive autoantibodies, which can react also with 

pathogens (Quan et al. 1997). These antibodies possibly provide protection at mucosal sites. 

However, natural encounters with bacteria e.g. carriage and acute otitis media can induce a 

specific mucosal immune response (Simell et al. 2001; Simell et al. 2002).  

IgA can be detected in the saliva of an infant even on the first day of life (Seidel et al. 2001). 

Some studies suggest that adult levels of salivary antibodies are attained at the age of 6 to 8 

years (Burgio et al. 1980). Others speculate that reaching adult Ig levels takes longer, and an 

increase in mucosal antibody concentrations continues even throughout the life 

(Grundbacher 1988). One study suggests that mucosal immunity to Haemophilus influenzae 

type b (Hib) develops earlier in life than systemic immunity (Pichichero et al. 1981). 

Antibodies induced by natural contact with pathogens can be protective against mucosal 

infections. Both carriage of pneumococcus and pneumococcal AOM can induce specific 
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mucosal antibodies (Simell et al. 2001; Simell et al. 2002), that might have a role in defence 

against pneumococcal local infections like AOM (Simell 2003). Also, Hib infections induce 

mucosal antibodies (Pichichero et al. 1981; Gilsdorf and McDonnell 1991). Further, 

antibodies in breast milk can offer protection for an infant. For example, the risk of dying of 

diarrhoea is reduced 14-24 times in breast-fed infants compared to infants who have not been 

breast-fed (Brandtzaeg 2003a). 

3.2 Parenteral vaccines 

Parenteral vaccination leads to a systemic immune response. However, already in 1973 

parenteral vaccines were shown to induce also mucosal antibody response (Ogra and Ogra 

1973). There are different speculations about the mechanisms, how parenteral immunisation 

can induce mucosal response (Bouvet et al. 2002). It has been suggested that an 

intramuscular antigen migrates to draining peripheral lymph nodes, where it is internalised 

by APCs (Coffin et al. 1999). An mucosal immune response takes place, when these APCs 

reach mesenteric lymph nodes (MLNs) or PPs. An intramuscular soluble or phagocytosed 

antigen may also diffuse directly to MLNs or PPs, where it meets APCs and further induces 

a mucosal immune response. Instead, after transcutaneous or intradermal immunisation 

antigens can activate APCs of the skin and lead to a mucosal immune response (Kripke et al. 

1990). Parenteral typhoid vaccination has been found to induce ASCs expressing homing 

receptor α4β7 directing them to the gut. However, when an antigen is introduced 

parenterally only  58% of the specific ASCs carry α4β7 on their surface, but after mucosal 

administration the respective number is 99% (Kantele et al. 1997). Certain adjuvants, CT, 

forskolin and an active form of vitamin D3, have been found to enhance the mucosal immune 

response induced by intradermal diphtheria toxoid (DT) vaccine in mice (Enioutina et al. 

2000). Vitamin D3 also improves the mucosal immune response following intramuscular 

vaccination in pigs (Van Der Stede et al. 2004). 

3.2.1 Protein vaccines 

Protein vaccines can consist either of living attenuated or inactivated pathogens, inactivated 

toxins or purified proteins. Proteins are T cell dependent (TD) antigens, which use T cell 

help to raise an immune response. TD antigens are presented to T cells through MHC 
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molecules by APCs. TD antigens are immunogenic already in infancy, and able to induce 

immunological memory, affinity maturation and isotype switching of antibodies.  

The first study to indicate that intramuscular immunisation could induce a mucosal IgG 

response was conducted with polio vaccine (Ogra and Ogra 1973). Later parenterally 

administered vaccines e.g. cholera (Mascart-Lemone et al. 1988), Salmonella typhi (Kantele 

et al. 1991), tetanus (Smith et al. 1986), influenza (Brokstad et al. 1995), and measles 

(Bellanti et al. 2004) have been found to a induce mucosal antibody response. 

3.2.2 Polysaccharide vaccines 

Polysaccharide vaccines are based on purified capsular polysaccharides of bacteria. 

Polysaccharides are classified as T cell independent (TI) antigens, which do not require T 

cell help to induce an immune response. TI antigens can further be divided into TI-1 and TI-

2 antigens. TI-1 antigens, e.g. lipopolysaccharides (LPS), function as mitogenic or 

polyclonal B cell activators and are completely independent from T cell help. TI-1 antigens 

can induce immune response early in life. TI-2 antigens, such as capsular polysaccharides, 

consist of highly repetitive epitopes and are able to activate only mature B cells. The 

mechanisms, how TI-2 antigens induce the immune response, are not entirely understood, 

yet. Anyway, TI-2 antigens can induce an immune response by cross-linking surface 

exposed immunoglobulin on B cells (Lesinski and Westerink 2001a).    

TI-2 antigens are not presented to T cells through MHC II molecules. However, different T 

cell derived factors regulate TI-2 response (Baker 1992). How activation of T cells happens, 

is not known. One suggestion is that γδ T cells are involved in antigen presentation without 

MHC (Williams 1998). Another speculation is that DCs could present also polysaccharides 

along with lipids and glycolipids with the help of CD1 molecules on their surface (Porcelli 

and Modlin 1999). Natural killer (NK) cells and macrophages are also potential regulators of 

TI-2 responses (Snapper and Mond 1996) as well as CD5+ B cells (Neron and Lemieux 

1997). 

Immunity to TI-2 antigens in human develops slowly. One reason for the late maturation of 

immunity is that only B cells of adults express type 2 complement receptor (CR2) on their 

surface (Griffioen et al. 1992). CR2 is known to recognise PS combined with complement 
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component C3d and increase immunity to PSs. A second reason can be that CD5+ B cells, 

which are known to produce antibodies against PS, are rare in infants (Barrett et al. 1992). 

The responsiveness to polysaccharides has been found to increase along with CR2 and CD5+ 

B cells. 

TI-2 antigens are not able to raise immunological memory. Neither, can they induce affinity 

maturation or class switching. Thus, after the second contact with the polysaccharide antigen 

the concentration of antibodies induced is not higher, and avidity and opsonophagocytic 

activity of antibodies are not increased.  

Polysaccharide vaccines have been developed against Hib, Neisseria meningitidis 

(meningococcus), Streptococcus pneumoniae (pneumococcus), group B Streptococcus 

(GBS) and Salmonella typhi. Parenteral vaccination with both Hib (Pichichero and Insel 

1983), meningococcus (Nieminen et al. 1996; Zhang et al. 2000; Zhang et al. 2001a), 

pneumococcus (Nieminen et al. 1998a; Nieminen et al. 1998b), and Salmonella typhi 

(Kantele et al. 1999a) polysaccharide vaccines have induced mucosal immune response.   

3.2.3 Conjugate vaccines 

Avery and Goebel found already in 1920’s that saccharides can be turned immunogenic by 

binding them covalently to protein antigens (Avery and Goebel 1926). However, the first 

conjugate vaccine for use in humans was not licensed until 1987 against Hib (Anonymous 

1988).  

Conjugate vaccines consist of purified polysaccharides or/and oligosaccharides covalently 

linked to carrier proteins. Different conjugation techniques are available. However, every 

polysaccharide is conjugated separately to a carrier protein.  

The linkage of polysaccharides with proteins is thought to induce internalisation of 

conjugated complexes by B cells and presentations of antigens through the MHC II route to 

T cells (Schneerson et al. 1980). The immunogenicity of a conjugate vaccine depends on the 

conjugation method, on the length of the polysaccharide, on the carrier molecule, and on the 

number of polysaccharides in the vaccine (Pawlowski et al. 2000). The concentration of a 

carrier protein is a critical factor for the immunity of the conjugate vaccine. The amount 
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needs to be high enough to turn the immune response T cell dependent. However, a too large 

quantity of carrier protein can cause competition between carrier and polysaccharide specific 

B cells (Fattom et al. 1999) and excess induction of carrier specific antibodies (Peeters et al. 

1991). This can lead to an impaired immune response to the polysaccharides included in the 

vaccine (Dagan et al. 1998; Åhman et al. 1999). Parenteral conjugate vaccines have been 

found to induce mucosal immune response against Hib (Kauppi et al 1995), pneumococcus 

(Nieminen et al. 1998a; Nieminen et al. 1998b; Nieminen et al. 1999; Korkeila et al. 2000; 

Choo et al. 2000b), meningococcus (Borrow et al. 1999; Zhang et al. 2000; Zhang et al. 

2001a; Zhang et al. 2002b), and Salmonella typhi (Singh et al. 1999). 

3.3 Mucosal vaccines 

Mucosal membranes provide the entry for most of the pathogens. Therefore, it would be 

important to have protection at the site where the infection naturally begins. Mucosal 

immunisation has several advantages. It could activate both B and T cells responses in the 

mucosal and systemic immune system and thus protect against both carriage and invasive 

disease. Mucosal memory may also be induced. Further, mucosal vaccines are easily 

administered and non-invasive. The immunisation without needles would be important 

especially in poor countries to prevent transmission of parenterally transmitted diseases such 

as hepatitis B and C, and human immunodeficiency virus (HIV). However, at the moment 

there is only one mucosal vaccine which is globally available for routine use, the oral 

poliovirus vaccine. Other mucosal vaccines are produced against typhoid fever, adenovirus, 

rotavirus, cholera, and cold-adapted influenza virus (Ogra et al. 2001). 

A lot of problems need to be solved when developing mucosal vaccines. First, pure 

polysaccharides or proteins are not able to induce an immune response, thus proper 

adjuvants are essential for mucosal immunisation. Heat-labile enterotoxin of Escherichia 

coli (LT) and exotoxin of Vibrio cholerae (CT) and their detoxified variants have been used 

in many studies with animals (Rappuoli et al. 1999). Previous products have been too toxic 

to use in humans (Levine et al. 1983), but site-directed mutagenesis has enabled to generate 

non-toxic forms of these molecules (Pizza et al. 2001). The fully nontoxic mutant of LT, 

LTK63, has been tested in humans with a trivalent subunit influenza vaccine with good 

results (Peppoloni et al. 2003). Other potential adjuvants are: purified B subunit of CT 
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(Czerkinsky et al. 1991), oligodeoxynucleotides containing immunostimulatory CpG motifs 

(Gallichan et al. 2001), IL-12, (Lynch et al. 2003), IL-1 (Staats and Ennis 1999), IL-6 

(Rincon et al. 1997) and IFN-γ (Proietti et al. 2002). With cytokines an immune response 

could also be directed towards Th1 or Th2 type. 

The second problem is to solve how to transport antigens to inductive areas without 

degradation or inactivation. Liposomes (Childers et al. 1990), microcapsules (Lazzell et al. 

1984), chitosan (Jabbal-Gill et al. 1998) and immunostimulating complexes (ISCOMs) 

(Thapar et al. 1991) are solutions, which have been tested, with variable results, to deliver 

vaccines to inductive sites.    

The third problem is to get the antigens in contact with M cells to be transported through 

follicle-associated epithelium (Jakobsen and Jonsdottir 2003). Actually, targeting M cells to 

induce mucosal response is one of the strategies to induce mucosal immune response (Neutra 

et al. 1996). To overcome this problem, live bacterial and viral vectors have been used to 

transport antigens. Attenuated salmonella is an effective vehicle, because it invades the 

human body through M cells (Jepson and Clark 2001). Other potential bacterial vectors are 

Mycobacterium bovis BCG (Mederle et al. 2003), lactobasilli (Scheppler et al. 2002), 

streptococci (Lee 2003), Yersiniae (Sory et al. 1990), and Shigella (Vecino et al. 2002). 

Viral vectors studied are vaccinia (Ramirez et al. 2003), polio (Crotty et al. 1999), adeno 

(Xin et al. 2002), rhino (Dollenmaier et al. 2001) and influenza (Ferko et al. 2001) viruses. 

In the future plants may be used as a delivery system. Edible vaccines would be cheaper and 

easier to produce than current vaccines with industrial fermentation technique (Yuki and 

Kiyono 2003). 

The possible development of tolerance to orally and nasally administered antigens also poses 

a problem. E.g. carrier induced suppression affects mucosal immunity when a conjugate 

vaccine is administered intranasally (Bergquist et al. 1997). This can be overcome by 

formulating an antigen. Live attenuated vaccines have been less tolerogenic than dead or 

subunits vaccines. Further, for example, live cold-adapted influenza vaccine protected better 

against the infections than inactivated influenza vaccine (Treanor et al. 1999).  

Theoretically mucosal vaccines can be delivered by the rectal, vaginal, conjunctival, oral and 

nasal routes. However, the most practical and convenient routes for mucosal vaccination are 
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oral and intranasal. Further, the route to be used depends also on the target disease. For 

example, nasal vaccination has been found to induce better immune response in the upper 

respiratory tract than oral immunisation (Rudin et al. 1998). Also, aging has more impact on  

the immune responses induced by GALT than NALT (Boyaka et al. 2003).   

3.4 Maternal immunisation 

Maternal immunisation e.g. vaccination of women before or during pregnancy is routinely 

used against tetanus in developing countries. The passive transfer of IgG antibodies through 

placenta and/or sIgA and IgG via breast milk offers protection for the infant for the first 

months of life. Maternal vaccination has been studied also against Hib (Englund and Glezen 

2003), Pnc (O'Dempsey et al. 1996a), Men (Shahid et al. 2002), influenza (Englund 2003), 

and respiratory syncytial virus (Munoz et al. 2003). It is a possible immunisation strategy to 

induce mucosal immune response (Shahid et al. 1995). In humans, meningococcal 

polysaccharide vaccine induced antibodies in breast milk (Shahid et al. 2002). Further, in 

pregnant chimpanzees both parenterally and mucosally administered HIV DNA vaccines 

have induced systemic and mucosal immune responses (Bagarazzi et al. 1999). 

4 Pneumococcus and pneumococcal vaccines 

4.1 Streptococcus pneumoniae 

Streptococcus pneumoniae (pneumococcus, Pnc) is a Gram positive, facultatively anaerobic 

lancet-shaped coccus. Pneumococcus is covered with a polysaccharide capsule, which is an 

important virulence factor offering Pnc the ability to resist phagocytosis (Watson and 

Musher 1990). The classification of Pnc into 90 different serotypes is based on the 

polysaccharide capsule (Henrichsen 1995). Further, cross-reactive serotypes have been 

divided into serogroups. There are two nomenclatures for serotypes, Danish and American 

(Kaufman et al. 1960), the first one based on cross-reactions between polysaccharides, being 

widely accepted. Pnc strains can be further classified by multilocus sequence typing (MLST) 

(Feil et al. 2004). 
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Beneath the polysaccharide capsule pneumococcus has two more layers, cell wall and 

plasma membrane. The cell wall consists of a peptidoglycan backbone, where both capsular 

polysaccharides (PS), cell wall polysaccharides (CPS) and proteins e.g. Choline binding 

protein A (CbpA) are anchored (Gosink et al. 2000). The inflammatory reaction during 

pneumococcal disease is mainly caused by cell wall components e.g. cell wall 

polysaccharide (Tuomanen et al. 1985).  

Several proteins participate in the pathogenesis of a pneumococcal infection. For adhesion to 

epithelial cells Pnc uses CbpA (Rosenow et al. 1997), pneumococcal surface adhesin A 

(PsaA) (Berry and Paton 1996b), and IgA1 protease (Weiser et al. 2003). The other 

important virulence factors of pneumococcus are pneumolysin (Ply) (Cockeran et al. 2002), 

pneumococcal surface protein A (PspA) (Crain et al. 1990), autolysin (LytA) (Berry et al. 

1989), hyaluronidase (Kostyukova et al. 1995), zinc metalloproteinase (ZmpB) (Blue et al. 

2003), and neuraminidase enzymes (NanA and NanB) (Berry et al. 1996a). 

To adapt to ambient circumstances, pneumococcus can undergo spontaneous phase variation 

between opaque and transparent colony morphologies (Weiser et al. 1994). The opaque type 

is more virulent and contains more capsular polysaccharide and less teichoic acid than the 

transparent type (Kim and Weiser 1998). The transparent form has been associated with 

adherence and colonization of the nasopharynx (Cundell et al. 1995). In contrast, opaque 

type can more easily resist phagocytosis and cause an invasive disease (Kim et al. 1999).   

Pneumococcus causes a wide variety of diseases, ranging from local acute otitis media 

(AOM) and sinusitis to severe life-threatening diseases, like pneumonia, meningitis and 

sepsis. Pneumococcus spreads from person to person by aerosols. Inhalation of droplets 

containing pneumococcus can lead to the colonisation of the nasopharyngeal epithelium and 

further to asymptomatic carriage. The carriage rate is highest at the age of two years (Dagan 

et al. 1996) after which it starts to decrease (Stenfors and Räisänen 1990). In a Finnish study, 

87% of the children carried pneumococcus in their nasopharynx at least once before the age 

of two years (Syrjänen et al. 2001). In developing countries carriage rate is even higher 

(Gratten et al. 1986; Lloyd-Evans et al. 1996). Carriage rate also varies depending on the 

season, being higher in winter than in summer (Gray et al. 1982). 
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Pneumococcal carriage may lead to AOM or pneumonia and invasive disease. 

Pneumococcus is the most important bacterial cause of both AOM (Luotonen et al. 1981; 

Virolainen et al. 1994; Kilpi et al. 2001) and community-acquired pneumonia (Heiskanen-

Kosma et al. 1998; Juven et al. 2000; Jokinen et al. 2001). Along with meningococcus, 

pneumococcus has been the leading cause of severe invasive disease since the introduction 

of Hib vaccines (Dawson et al. 1999). The risk groups for pneumococcal diseases are 

infants, elderly and immunocompromised people. Other factors predisposing to 

pneumococcal disease are smoking (Nuorti et al. 2000), parental smoking, lack of breast 

feeding, and crowded living conditions (Pukander et al. 1985; Ghaffar et al. 1999). Further, 

viral infections often prepare the way for pneumococcus to cause a disease and have been 

found in association with e.g. AOM (Heikkinen 2000). Also, the pathogenicity of different 

pneumococcal serotypes varies (Brueggemann et al. 2003). For example serotype 14 causes 

more often an invasive disease than serotype 3 (Hausdorff et al. 2000). The increasing 

resistance of pneumococcus to penicillin makes the treatment of pneumococcal disease more 

difficult than before (Jacobs 2003; Amsden 2004). Further, the growing incidence of HIV, 

which predisposes to pneumococcal disease, complicates the pneumococcal problem 

especially in developing countries (Obaro 2000). Thus, pneumococcal vaccines are needed 

to prevent the  disease in the first place. 

4.2 Pneumococcal polysaccharide vaccines 

The era of pneumococcal vaccines started in the beginning of the 20th century, when the first 

pneumococcal vaccine study was conducted by using whole heat-killed pneumococci in 

South African gold miners (Wright et al. 1914). However, the first vaccine was not very 

successful because of the many side-effects (Austrian et al. 1976). The significance of 

immunity to capsular polysaccharides was found in the 1930’s by Francis and Tillet 

(Austrian 1975). This invention lead to the preparation of the first pneumococcal 

polysaccharide vaccine (PPV) in 1945 (MacLeod et al. 1945). The discovery of penicillin in 

the 1940’s decreased the enthusiasm to develop pneumococcal vaccines, because it was 

thought that pneumococcal diseases could easily be treated. In the 1960’s the interest 

towards pneumococcal vaccines rose again, because the high morbidity of pneumococcal 

diseases continued (Smit et al. 1977). In 1977 the PPV containing 14 serotypes was licensed 
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in the United States. Later the vaccine was modified (Robbins et al. 1983) and since 1983 

the 23-valent vaccine containing 25 µg of each serotype has been in use. These 23 serotypes 

included in the vaccine cover approximately 80-95% of the invasive pneumococcal diseases 

depending on the geographical area.  

PPVs are safe, immunogenic and effective against invasive diseases and pneumonia in adults 

and older children (Austrian et al. 1976; Smit et al. 1977; Leinonen 1982; Leinonen et al. 

1986; Sims et al. 1988; Shapiro et al. 1991). PPVs have also found to induce mucosal 

immune response (Nieminen et al. 1998a; Nieminen et al. 1998b). However, even if the 

parenteral 14-valent PPV can induce immune response in middle ear (Koskela 1986), it has 

limited efficacy against AOM (Karma et al. 1985). PPVs are not protective in infants under 

two years of age or in immunocompromised patients (Leinonen 1982). Further, there are 

controversial opinions on the effectiveness of PPV among the elderly and the 

immunocompromised (Örtqvist et al. 1998; Honkanen et al. 1999; Moore et al. 2000; 

Fedson 2003; French 2003). However, the 23-valent PPV is recommended in many 

industrialised countries as a prophylaxis in these risk groups.  

4.3 Pneumococcal conjugate vaccines 

The development of pneumococcal conjugate vaccines (PCV) was encouraged by the 

successful introduction of Hib conjugate vaccines. The number of serotypes included in the 

experimental PCVs has been varied from one (Schneerson et al. 1986), to 11 different 

polysaccharides (Wuorimaa et al. 2001a; Wuorimaa et al. 2001b; Nurkka et al. 2002; 

Puumalainen et al. 2002; Dagan et al. 2004). Several different carrier proteins have been 

tested, e.g. non-toxic mutant variant of diphtheria toxin (CRM197), protein D of H. 

influenzae (PD) (Gatchalian et al. 2001), outer-membrane complex of Men group B 

(OMPC), diphtheria and tetanus toxoids (D and T, respectively). Also, a mixture of D and T 

carriers have been studied (Wuorimaa and Käyhty 2002).  

The PCVs studied have been safe and immunogenic in adults, toddlers and infants (Käyhty 

et al. 1995; Åhman et al. 1996; Mbelle et al. 1999; Shinefield et al. 1999; Miernyk et al. 

2000; Choo et al. 2000a; Obaro et al. 2000; Wuorimaa et al. 2001a; Wuorimaa et al. 2001c; 

Zangwill et al. 2003). They are also protective against invasive disease, pneumonia, and to 
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some extent AOM (Black et al. 2000; Eskola et al. 2001; Klugman 2001; Black et al. 2002; 

Shinefield et al. 2002; Fireman et al. 2003; Kilpi et al. 2003; O'Brien et al. 2003). Further, 

pneumococcal conjugate vaccines reduce carriage (Dagan et al. 1997; Mbelle et al. 1999; 

Dagan et al. 2002), and induce immunological memory (Åhman et al. 1998; Eskola 2000; 

Kamboj et al. 2003), and affinity maturation leading to better avidity and opsonophagocytic 

activity of antibodies (Anttila et al. 1998; Vidarsson et al. 1998; Anttila et al. 1999a; Anttila 

et al 1999b Wuorimaa et al. 2001b; Puumalainen et al. 2003). Pneumococcal conjugate 

vaccines are also able to stimulate mucosal immunity (Nieminen et al. 1998a; Nieminen et 

al. 1998b; Nieminen et al. 1999; Korkeila et al. 2000; Choo et al. 2000b). 

In 2000, the first PCV, PncCRM (Prevnar®, Wyeth-Ayerts Laboratories, Philadelphia, 

USA), was licensed in the Unites States, in 2001 (Prevenar®) in the European Union, and 

later in many other countries. At the moment, this 7-valent vaccine is the only pneumococcal 

conjugate vaccine available. However, serotypes 1 and 5, not included in this vaccine, are 

important serotypes in many developing countries (Sniadack et al. 1995; O'Dempsey et al. 

1996b; Kanungo and Rajalakshmi 2001). 

4.4 Other pneumococcal vaccination strategies 

Maternal immunisation with PCVs results in specific antibodies in newborn infants and in 

breast milk (Shahid et al. 1995; Lehmann et al. 2003). Further, no tolerance or suppression 

of immunity induced by maternal vaccination were found (Lehmann et al. 2003). Also, 

immunisation of post partum women can generate anti-Pnc IgA in breast milk (Finn et al. 

2002). These antibodies were able to initiate killing of pneumococcus. Anti-Pnc antibodies 

induced by vaccination of pregnant mice with PCV were protective in their offspring against 

pneumococcal infections by homologous PSs (Richter et al. 2004). The antibody 

concentrations persisted for several weeks and slowly degraded over time.  

Pneumococcal proteins common to all 90 different serotypes are suggested to induce broader 

protection than polysaccharide-based vaccines. Another reason for the search of 

pneumococcal protein vaccines is that non-vaccine serotypes may replace vaccine serotypes 

(Mbelle et al. 1999; Dagan et al. 2002). There are several candidates for future protein 

vaccines e.g. pneumolysin, PsaA, PspA, PspC (Briles et al. 2000a), alpha-enolase, IgA1 
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proteinase, streptococcal lipoprotein rotamase A, putative proteinase maturation protein A 

(Adrian et al. 2004), PhpA (Zhang et al. 2001b), and protein of the Pht family (Adamou et 

al. 2001; Hamel et al. 2004). A combination of two or more different proteins could also be 

a solution (Briles et al. 2000b). One more approach is to conjugate pneumococcal 

polysaccharides and proteins. In mice serotype 9V conjugated to inactivated pneumolysin or 

autolysin could induce a protective immune response against invasive pneumococcal 

infection (Lee et al. 2001). 

Mucosal vaccination has been considered as a protective strategy also against 

pneumococcus. The first study on mucosal vaccination against pneumococcus was carried in 

1991 in guinea pigs (Yoshimura et al. 1991). The first results were promising, and later 

intranasal immunisation of mice with whole heat-killed encapsulated pneumococci has been 

found to protect against systemic infection (Hvalbye et al. 1999). Also, unencapsulated 

pneumococci administered with CT as an adjuvant protected mice against pneumococcal 

infection (Malley et al. 2001). Oral vaccination with PCV in enterocoated microencapsules 

have been tested in mice (Flanagan and Michael 1999). However, this strategy could not 

induce a proper mucosal IgA response. Instead, better results were achieved with intranasal 

immunisation with PCV (Jakobsen et al. 1999). IL-12 as an adjuvant further enhanced the 

immune response in mice (Lynch et al. 2003). Anyway, others have found oral vaccination 

with pneumococcal PSs in microspheres with cholera toxin B subunit adjuvant protective in 

mice (Seong et al. 1999). Also, PspA and PsaA administered orally were protective against 

pneumococcal infection in mice (Yamamoto et al. 1997; Seo et al. 2002), These proteins 

were also able to prevent pneumococcal carriage in mice (Briles et al. 2000c). The route of 

mucosal Pnc vaccination may have an impact on the immune response (van den Dobbelsteen 

et al. 1995). 

A new vaccination strategy against pneumococcal infections are DNA vaccines. A DNA 

sequence encoding a peptide mimicking pneumococcal serotype 4 has resulted in specific 

antibodies in mice  (Lesinski et al. 2001b). Also, DNA vaccines coding proteins PspA and 

PsaA have been immunogenic in an animal model (Miyaji et al. 2001).   

 35



REVIEW OF THE LITERATURE 
_______________________________________________________________________________________________________________ 

5 Meningococcus and meningococcal vaccines 

5.1 Neisseria meningitidis 

Neisseria meningitidis (meningococcus, Men) is a Gram negative bacterium. Meningococcus 

has two cell membranes and between them a rigid peptidoglycan layer. The outer cell 

membrane contains amphiphilic lipo-oligosaccharide (LOS) molecules and it is further 

covered by a capsule consisting of polysaccharides. Meningococcus can be divided into 

serogroups, serotypes, subtypes and immunotypes according to capsular polysaccharides, 

PorA outer membrane proteins (OMP), PorB OMP and LOS, respectively. Meningococcus 

can further be classified by clonal families by using multilocus enzyme electrophoresis (Hart 

and Rogers 1993), but multi-locus sequence typing and pulse-field gel electrophoresis are 

nowadays used for the characterisation of different meningococcal strains (Morley and 

Pollard 2001). 

Meningococcus can vary surface antigens quickly depending on the environmental and host 

factors. The most important virulence factor of meningococcus is the polysaccharide capsule 

(Vogel and Frosch 1999). The switching of capsule serogroup between similar 

meningococcal types promotes further the ability to escape host immunity (Swartley et al. 

1997). Other factors involved in the pathogenesis of meningococcus are pili, OMPs with 

different functions and IgA1 protease (Griffiss 1995).  

Humans are the only natural reservoir of meningococcus. It spreads by respiratory droplets 

from carriers and may lead to disease, either meningitis or bacteraemia. The meningococcal 

disease is always severe, the mortality rate in developed countries varies between 7 and 10% 

in acute meningococcal disease (Steven and Wood 1995). Survivors often suffer from 

neurological sequelae, e.g. hearing loss and mental retardation. Very rarely severe 

meningococcal infection can lead even to the loss of a limb. When compared to carriage 

rates, meningococcus seldom causes disease, and often a disease is caused by a recently 

acquired strain (Gold et al. 1978). Long term carriage does not necessarily protect against 

meningococcal disease (Ala'Aldeen et al. 2000). Infants carry meningococcus in their 

nasopharynx rarely. The carriage rate is approximately 2% in children under 4 years of age 

(Cartwright et al. 1987). However, it increases by age being highest among teenagers and 
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young adults. In Europe, the rate of overall carriage of meningococcus is approximately 10% 

(Cartwright et al. 1987; Caugant et al. 1994). Risk factors for the carriage of Men and 

further for meningococcal disease are age, contact with carriers, season (peaking in spring 

and autumn in industrialised countries) (Peltola 1983), low socio-economic status (Filice et 

al. 1984), over-crowding (Baker et al. 2000), and active or passive smoking (Stuart et al. 

1989; Caugant et al. 1994). Also, influenza or other viral infections are known to predispose 

to meningococcal diseases (Voss and Lennon 1994). 

From the 13 different meningococcal serogroups A, B and C cause 90% of the 

meningococcal diseases (Ala'Aldeen et al. 2000). Meningococcal diseases may occur as 

epidemics, especially serogroup A (MenA). In 1970’s there were many MenA epidemics 

around the world, one of them in Finland (Peltola 1983). In the sub-Saharan Africa, 

“meningitis belt”, a MenA epidemic occurs every 7 to 10 years (Hart and Cuevas 1997; 

Molesworth et al. 2002). In Europe two thirds of meningococcal diseases are caused by 

serogroups B and approximately one third is serogroup C based (Cartwright et al. 2001). 

Serogroup Y has been found to infect elderly people (> 65 years old) as well as W135, 

which causes disease also in infants (Cartwright et al. 2001). 

5.2 Meningococcal polysaccharide vaccines 

In the beginning of the 20th century serum therapy was used to prevent high mortality from 
meningococcal meningitis (Frasch 1995). Later whole cell and exotoxin vaccines were 
studied (Pollard and Levin 2000). However, the early studies were neither well controlled 
nor successful.  

The immunogenicity of meningococcal polysaccharides of serogroups A and C (MenC) was 
first demonstrated by Gotschlich et al (Gotschlich et al. 1969). Afterwards, both MenA 
(Mäkelä et al. 1975; Peltola et al. 1977) and MenC (Artenstein et al. 1970; Gold and 
Artenstein 1971) polysaccharide vaccines (MPV) have been found safe and effective to 
prevent meningococcal disease. Also, serogroup W135 and Y MPVs are safe and 
immunogenic (Griffiss et al. 1981). The MPVs have been available in different mono- and 
polyvalent combinations (Saxena et al. 1985). The current tetravalent polysaccharide vaccine 
containing A, C, W135, and Y polysaccharides has been found safe and immunogenic 
(Armand et al. 1982; Peltola et al. 1985). It was licensed in 1981 and it is widely used as 
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prophylaxis for risk groups e.g. army recruits in many countries and in Africa in the area of 
the meningitis belt during epidemics. However, the immunogenicity is poor in infants, 
except for Men A (Peltola et al. 1977). 

5.3 Meningococcal conjugate vaccines  

The development of meningococcal conjugate vaccines (MCV) started in the end of 1970’ 
(Riedo et al. 1995). The protein carriers used for studied MCVs have been CRM, D and T 
(Mäkelä and Käyhty 2002). Experimental MCVs containing serogroup C, A and C or 
A/C/W135/Y have been found safe and immunogenic (Fairley et al. 1996; English et al. 
2000; MacLennan et al. 2000; Campbell et al. 2002; Rennels et al. 2002) and able to induce 
immunological memory (Borrow et al. 2000), which persists at least up to 5 years for MenC 
(MacLennan et al. 2001). Meningococcal conjugate vaccines can also induce mucosal 
immune response (Borrow et al. 1999; Zhang et al. 2001a; Zhang et al. 2002b). However, 
serotype replacement can take place also after using meningococcal conjugate vaccines 
(Perez-Trallero et al. 2002).  

In 1999, the first meningococcal serogroup C conjugate vaccine (MenC-CRM) was licensed in the 
UK (Maiden and Spratt 1999) an it is now part of the national vaccine program. After the licensure 
it has been found highly effective against serogroup C disease in the UK population (Ramsay et al. 
2001; Lakshman and Finn 2002). Later, two other meningococcal C conjugate vaccines have been 
licensed (http://www.who.int/vaccines/en/meningococcus.shtml), and other developed countries 
have been taken MCV into their routine vaccination schedule because of the increased incidence of 
the disease. 

5.4 Other meningococcal vaccination strategies 

Protein vaccines have been developed to overcome the problem with MenB cross-reactivity 
with human tissue (Finne et al. 1983) Outer membrane protein based vaccines have been 
investigated in many studies with variable results (Bjune et al. 1991; Sierra et al. 1991; de 
Moraes et al. 1992). They have proved more protective among adults and teenagers as 
compared to children. The PorA protein has been found immunogenic and able to induce 
protective immunity. However, the immunogenicity of different PorAs is variable (Luijkx et 
al. 2003). Other meningococcal outer protein vaccine candidates studied are OpcA, NspA, 
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and iron regulated proteins: TbpA and B, FbpA, and FetA (Morley and Pollard 2001). There 
are also new solutions for the vaccine development, one is to make an anti-idiotypic mimic 
of meningococcal B polysaccharide (Beninati et al. 2004). The another strategy is so called 
reverse vaccinology, where genes encoding possible vaccine candidates are systemically 
searched from the meningococcal genome  (Vermont and van den Dobbelsteen 2003). 

One suggested vaccination strategy is to immunise against the meningococcal transferrin 
receptor (Banerjee-Bhatnagar and Frasch 1990). Meningococci use host-derived iron 
compounds and this would prevent the uptake of iron in meningococcus.       

Mucosal vaccines against meningococcus have also been developed. An intranasally 
administered MenC-CRM conjugate vaccine with LT adjuvant induced a more enhanced 
immune response in mice than a parenteral vaccine (Baudner et al. 2004). Intranasal 
vaccination with MenB derived outer membrane vesicles (OMV) have induced an immune 
response both in mice and humans (Haneberg et al. 1998a; Haneberg et al. 1998b; Dalseg et 
al. 1999). Further, intranasally administered OMVs did not induce mucosal tolerance (Bakke 
et al. 2001).  
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AIMS OF THE STUDY 

The immunogenicity of parenterally administered pneumococcal and meningococcal 

conjugate vaccines has been investigated intensively. However, there are only few studies 

about their ability to induce mucosal antibody response. In order to broaden the knowledge 

about the mucosal immunity induced by conjugate vaccines we     

 

• compared different collection and storage methods of saliva samples to find out the 

best way to preserve the original antibody concentration in a sample (I). 
 

• measured anti-pneumococcal polysaccharide antibody concentrations induced by 

polysaccharide-protein conjugate vaccines in the saliva of children in two phase two 

studies (II-III) and two studies connected to a phase three study, FinOM Vaccine 

Trial (IV-V). 
 

• measured anti-meningococcal polysaccharide antibody concentrations induced by 

meningococcal polysaccharide-protein conjugate vaccines in the saliva of children 

(VI). 
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MATERIALS AND METHODS 

This thesis consists of a pilot study to choose collection and storage methods for saliva 

samples (I), of two immunogenicity studies (II-III) with PCVs, of two immunogenicity 

studies connected to an efficacy study (IV-V) in which two PCVs were studied parallel 

(Eskola et al. 2001; Kilpi et al. 2003), and of one immunogenicity study (VI) with MCV. 

Study subjects were healthy infants in immunogenicity and efficacy studies and adults in the 

methodological study. Saliva samples were collected in all of the studies and their antibody 

concentrations against pneumococcal polysaccharides and/or proteins or meningococcal 

polysaccharides were studied with an enzyme immunoassay (EIA).  

1 Vaccines 

1.1 Pneumococcal vaccines 

PCVs contain a mixture of pneumococcal polysaccharides and/or oligosaccharides 

independently conjugated to a carrier protein. PPVs are composed of  free polysaccharides. 

The vaccines used (II-IV) are listed in a Table 1. 
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Table 1. Pneumococcal vaccines   
 

 

Study vaccine Carrier protein Serotypes  PS/OS content Adjuvant Manufacturer  Paper 

PncCRM1 
CRM197, non-toxic 
mutant variation of 

diphtheria toxin 

4, 6B, 9V, 14, 
18C, 19F, 23F 

4 µg (6B), 2 µg (4, 
9V, 14, 19F, 23F),  2 

µg (18C OS) 

Aluminium 
phosphate 

Wyeth 
Pharmaceuticals 

(West Henrietta, NY) 
II 

PncCRM2 
CRM197, non-toxic 
mutant variation of 

diphtheria toxin 

4, 6B, 9V, 14, 
18C, 19F, 23F 

4 µg (6B), 2 µg (4, 
9V, 14, 19F, 23F),  2 

µg (18C OS) 

Aluminium 
phosphate 

Wyeth 
Pharmaceuticals 

(Pearl River, NY) 
IV 

PncD 

 

 

   

Diphtheria toxoid 3, 4, 6B, 9V, 14, 
18C, 19F, 23F 3 µg - Aventis Pasteur 

(Swiftwater, PA) III 

PncT Tetanus toxoid 3, 4, 6B, 9V, 14, 
18C, 19F, 23F 1 µg - Aventis Pasteur  

(Lyon, France) III 

PncOMPC 

The outer 
membrane protein 

complex of N. 
meningitidis 

4, 6B, 9V, 14, 
18C, 19F, 23F 

5 µg (6B), 3 µg 
(23F), 2 µg (9V, 

18C), 1.5 µg (19F), 1 
µg (4, 14) 

Aluminium 
hydroxide 

Merck & Co., Inc. 
(West Point, PA) V 

PPV (Pneumovax®) None 23 serotypes1 25 µg - Merck & Co., Inc. 
(West Point, PA) V 

PPV (Pnu-Imune®) None 23 serotypes1 25µg -
Wyeth 

Pharmaceuticals 
(West Henrietta, NY) 

II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F 
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1.2 Meningococcal vaccines 

Meningococcal conjugate vaccine MenA/C (Biocine, Siena, Italy), contained meningococcal 

serogroup A and C polysaccharides (11 µg of each) individually conjugated to a carrier  

protein CRM197, which is a non-toxic variant of diphtheria toxin (VI). Aluminium hydroxide 

was used as an adjuvant.    

Meningococcal polysaccharide vaccines were Menpovax A plus C (Biocine) and Mengivac 

A&C (Aventis Pasteur), in the Table 3, MPV1 and MPV2, respectively (VI). Menpovax A 

plus C contained 50 µg of serogroup A and C polysaccharides and Mengivac A&C 10 µg of 

each.  

1.3 Other vaccines 

IV-V:  There was a control group of children vaccinated with a hepatitis B vaccine (HBV, 

Merck & Co., Inc.). One dose of HBV contained 5 µg of hepatitis B surface antigen. 

Children also received the normal childhood vaccinations. II-III: The children were 

immunised with combined diphtheria-tetanus-whole cell pertussis (DTwP) and Haemophilus 

influenzae type b (Hib) conjugate vaccine (Tetramune®, Wyeth) at 2, 4, 6, and 24 months, 

inactivated polio vaccine (IPV; Polio Novum, National Institute for Public Health and 

Environment, Bilthoven, Netherlands) at 7, 12 and 24 months, and measles-mumps-rubella 

(MMR; Virivac, Merck Sharp & Dohme, West Point, PA) at 16 months of age. IV-V: The 

vaccination schedule was similar to papers II-III, but  IPV was Imovax®, Aventis Pasteur, 

and MMR was MMR®II, Merck & Co., Inc. Further, MMR was given at 18 months of age. 

VI: Children received routine vaccinations according to the EPI schedule (Twumasi et al. 

1995), including oral polio, DTwP, hepatitis B, measles and yellow fever vaccines.    
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2 Study subjects 

I: Healthy Kenyan adults among the staff of the Wellcome Trust/Kenya Medical Research 

Institute, Kilifi, Kenya.  

II-III: Healthy Finnish infants from Joensuu and Kerava area.   

IV-V: Healthy Finnish children in the Kangasala subcohort of the FinOM Vaccine Trial. 

This study also contained a control group of children who received hepatitis B vaccine 

(HBV) instead of the PCVs. 

VI:  Five years old children who had been recruited for the trial of a meningococcal 

conjugate vaccine in the Upper River Division of the Gambia in 1992 as infants (Twumasi et 

al. 1995). The study also contained a control group of healthy children who had not received 

any meningococcal vaccine previously. These children were matched for age and village 

with the study children.  

3 The ethical issues 

Before enrolment each adult participant (I) and a parent or legal guardian of a child (II-VI) 

had received information about the study and had given their informed consent. Protocols 

with possible amendments were approved by the Ethics Committee of the National Public 

Health Institute of Finland (KTL) (II-V) and by the relevant local health authorities before 

the initiation. Studies complied with the latest revision of the Declaration of Helsinki and 

followed the European guidelines for Good Clinical Practice. 
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Table 2. Vaccination and sampling schedules in pneumococcal vaccine studies (II-V) 

Study Vaccine 

Primary Booster 

Primary 
series 
(mo) 

Booster 
(mo) 

Saliva 
samples 

(mo) 
N Paper 

PncCRM1 PncCRM1 2, 4, 6 15 7, 16 30 II 

PncCRM1 PPV (Pneumovax®) 2, 4, 6 15 7, 16 30 II 

PncD PncD 2, 4, 6 15 7, 16 25 III 

PncT PncT 2, 4, 6 15 7, 16 25 III 

PncCRM2 PncCRM2 2, 4, 6 12 7, 13 57 IV 

PncOMPC PncOMPC 2, 4, 6 12 7, 13 49 V 

PncOMPC PPV (Pnu-Imune®) 2, 4, 6 12 7, 13 7 V 

 

Table 3. Vaccination schedule in the meningococcal vaccine study (VI) 

Meningococcal vaccinations
Study group 

In infancy At 2 years of age At 4 or 5 years of age N 

1.  No No MPV2 64 

1-3 doses of MCV MCV MPV2 51 2. 

1-3 doses of MCV No MPV2 76 

2 doses of MPV1 MPV1 MPV2 15 

2 doses of MPV1 No MPV2 14 

3. 

No MPV1 MPV2 25 

4. 1-3 doses of MCV MPV1 MPV2 47 

5. 2 doses of MPV1 MCV MPV2 12 
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4 Samples 

4.1 Saliva samples 

I: Study subjects were asked not to eat or drink for 2 hours before the study. Saliva samples 

were collected from every subject by four different methods, conducted in random order 15 

minutes apart.  

The following collection methods were used: 

1. Unstimulated specimen: the subject was asked to “drool” into a clean 50 ml container.  

2. Pastette: the investigator sucked the saliva from under the tongue and the para-gingival 

gutter using a disposable plastic pipette.  

3. OraSure® (Epitope, Beaverton, OR): consists of a cotton pad on a short plastic stick, 

which is placed between the gums and the cheek and left there for 2 minutes. After removing 

it from the mouth, the stick is broken off and the pad is placed in a storage container with 

approximately 800 µl of proprietary buffer. 

4. Oracol® (Malvern Medical Developments Ltd., Worcester, UK): is a cylindrical plastic 

sponge mounted on a short plastic stick. The teeth, tongue and gums are brushed by the 

subject using the Oracol sponge for 60 seconds. The sponge is then placed into an Oracol 

tube with 1 ml of buffer; 10% foetal calf serum (FCS; Gibco, Paisley, UK) in 0.17 M 

phosphate buffered saline (PBS) (DulbeccoA, Oxoid, Hampshire, UK), pH 7.3, with 10 

µg/ml of C-polysaccharide (CPS; Statens Serum Institut, Copenhagen, Denmark). CPS was 

added into the buffer, because anti-pneumococcal antibodies were going to be measured. 

OraSure and Oracol samples were centrifuged for 5 and 10 minutes, respectively, at 3000 

rpm before the pad or sponge was removed.  

Each specimen was divided into three equal aliquots and processed and stored in three ways 

immediately after collecting.  
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1. Snap-freezing in liquid nitrogen. The first aliquot was mixed with an equal volume of 

80% glycerol in H2O and dipped into liquid nitrogen for a couple of minutes.  

2. Enzyme inhibition. The second aliquot was mixed 10:1 with an enzyme inhibitor 

cocktail consisting of pefabloc, leupeptin and aprotinin (Roche Diagnostics, 

Mannheim, Germany); 25, 0.5, and 0.25mg, respectively, in 5 mls of PBS with 50mg 

bovine serum albumin and 20mg EDTA. Samples with enzyme inhibitors were 

stored at +4oC. 

3. Plain. The third aliquot was stored immediately at +4oC without any processing.  

At the end of the working day (4 to 8 hours after handling) all samples were placed in a –

70oC freezer and stored for approximately one week before the analyses.  

II-III: Samples were collected at the study centers with a plastic pipette from the cheek area, 

frozen immediately and transported in dry ice to KTL.   

IV-V: Mothers were advised not to breast feed infants during one hour before saliva 

sampling. Unstimulated saliva samples (up to 2 ml) were collected at study clinics with 

gentle aspiration using an electronic suction device. Samples were immediately frozen at –

70ºC.  However, in the paper IV samples, taken at the age of 4 to 5 years, samples were first 

frozen in dry ice and then moved within 4 hours to the -70ºC freezer. 

VI: Samples were collected with OraSure (Owen Mumford, High Wycombe, UK) between 

gums and upper teeth and 0.9 ml of saliva was added immediately to 0.1 ml of a 10 times 

concentrate of bacterial enzyme inhibitors; aprotinin, leupeptin and pefabloc (Roche 

Diagnostics, Lewes, UK). The samples were immediately frozen in liquid nitrogen until they 

could be transferred to a -70ºC freezer. They were transported from the Gambia to Finland in 

dry ice. 

In every study, saliva samples were stored at -70ºC if not otherwise stated (I). Before the 

analysis, samples were centrifuged at 13 000 or 15 000 rpm for 10 minutes and the 

supernatant was used for the assay. Saliva samples were thawed only once.  
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4.2 Serum samples 

II-VI: Venous blood samples were collected at the same time with saliva samples. Samples 

were centrifuged and the serum was stored at –20ºC. 

5 Serological methods 

5.1 Enzyme immunoassay (EIA) for measurement of pneumococcal 
antibodies in saliva  

I: Microtiter plates (Costar 3591, Cambridge, MA) were coated with 15 µg/ml of capsular 

polysaccharides 1, 5, 6B, and 14 (American Type Culture Collection, Manassas, VA) or with 

5 µg/ml of pneumococcal surface adhesin A, PsaA, (Aventis Pasteur, Toronto, Canada) 

diluted in PBS and incubated over night at room temperature. Plates coated with only PBS 

were used as a background control to determine non-specific binding. PBS plates were 

treated in the same way as antigen plates during the assay.  

All plates were blocked with 10% FCS-PBS for one hour at +37oC and then emptied without 

washing. The frozen saliva samples were centrifuged for 10 minutes at 13 000 rpm. Human 

serum 89-SF (Quataert et al. 1995) from the U.S. Food and Drug Administration, Bethesda, 

MD and an in house serum with high anti-PsaA concentration were used as reference sera 

for the capsular polysaccharide and PsaA assays, respectively. Saliva samples were diluted 

1:10 (expect OraSure samples 1:16.7) in FCS-PBS containing 10µg/ml CPS to neutralize 

anti-CPS antibodies. Samples were incubated at room temperature for 30 minutes. The 

neutralization step was conducted also to the first dilutions of references. Samples were 

assayed at a single dilution in triplicate, reference sera at five serial three-fold dilutions in 

duplicate. Samples were aliquoted (50 µl/well) and incubated for 2 hours at room 

temperature with horizontal rotation (200 rpm). Mouse monoclonal anti-human IgA 

(HP6123, Centers for Disease Control and Prevention, Atlanta, GA) 1:2000 in FCS-PBS was 

incubated for 2 hours at room temperature, followed by rabbit polyclonal phosphatase 

conjugated anti-mouse IgG (315-055-045, Jackson’s Immuno Research Laboratories, West 

Grove, PA) in FCS-PBS incubated over night at room temperature (50 µl/well). Substrate, p-

nitrophenyl phosphate disodium (Sigma Immuno Chemicals, St. Louis, MO) in phosphate 
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buffer, pH 9.8, was incubated for one hour at +37oC. Between steps 1-3 plates were washed 

four times with PBS containing 0.05% Tween 20 (PBS-T) (Merck, Leics, UK); after 

overnight incubation plates were washed three times with PBS-T and two times with 

deionised water. Absorbances were measured at 405 nm and results expressed as optical 

densities (OD) after subtraction of the corresponding sample OD value in a background 

control plate coated only with PBS.  

II-III: Anti-pneumococcal IgG, IgA and sIg to serotypes 4, 6B, 9V, 14, 18C, and 19F was 

analysed. EIA was conducted as above with a few modifications. Microtiter plates 

(MaxiSorp™, Nunc, Roskilde, Denmark) were coated with 2.5 to 10 µg/ml of the 

pneumococcal PSs (ATCC) in PBS. Plates were incubated for 5 hours at +37ºC, and stored 

at +4ºC for a maximum of four weeks. Serum pool 89-SF was applied as a reference for IgG 

and IgA assays and an in-house milk with high anti-pneumococcal antibody concentration 

for sIg assay. Plates were incubated for 2 hours at +37ºC after adding the samples and the 

reference. Alkaline phosphatase conjugated anti-human IgG (A 3188, Sigma, St. Louis, MO) 

and monoclonal anti-human IgA (M26012, Oxoid, Unipath, Bedford, UK) and anti-human 

sIg (I 6635, Sigma) were diluted in the FCS-PBS and incubated for 2 hours at +37ºC. In the 

IgG assay, the substrate (p-nitrophenyl phosphate disodium in the carbonate buffer) was 

added and the absorbances were measured after an hour incubation at +37ºC during the same 

day as the analysis had been started.   

IV-V: The EIA assay to measure IgA, IgA1, IgA2, IgG and sIg antibodies for serotypes 6B, 

14, 19F and 23F was a mixture of the assays above. Microtiter plates used were Costar and 

the coating was performed like in Papers II&III. Serum pool 89-SF was applied as a 

reference for IgG, IgA, IgA1, and IgA2 assays and an in-house milk with high anti-

pneumococcal antibody concentration for sIg assay. The plates were incubated with 

horizontal rotation (200 rpm) for two hours at room temperature after adding the samples 

and standard. Monoclonal anti-human IgA, HP6123, (Centers for Disease Control and 

Prevention, CDC, Atlanta, GA), anti-IgA1, HP6116, (CDC), anti-IgA2, HP6109, (CDC) and 

anti-sIg (Sigma) antibodies diluted in FCS-PBS were used and incubated similarly as after 

aliquoting the samples. In the IgG EIA, polyclonal alkaline phosphatase conjugated anti-

human IgG (cat. number A-3188, Sigma) antibodies were incubated for 2 hours at +37ºC 

without rotation.  
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In the EIA for saliva samples (II-V), the OD value of 0.05 (≥ 2 SD of the blank) or higher 

was regarded as positive (cut off-value). Results for IgA and IgG were calculated in 

nanograms per millilitre (ng/ml) of saliva. The lowest detected concentration was 5 ng/ml for 

IgA and IgG for all the serotypes. Samples with undetectable IgA and IgG were assigned 

values 1.7 ng/ml, half a log less than the lowest detected concentration. IgA1 and IgA2 

results are given as EIA units (U), which were calculated from ODs by using 89-SF as a 

reference with a given calibration factor. The detection limit of IgA1 and IgA2 results for all 

the serotypes was 1.3 U and samples with undetectable IgA1 and IgA2 concentrations were 

given the value 0.65 U. 

5.2 EIA for measurement of meningococcal antibodies in saliva 

Salivary IgG, IgA, and sIg concentrations against MenA and MenC polysaccharides were 

measured by inhibition EIA (VI). MenA and MenC PSs (Connought Laboratories, 

Swiftwater, PA) were diluted (5 µg/ml) in PBS containing methylated human serum albumin 

(5 µg/ml) to improve binding onto the microtiter plates (Immulon, Dynatech laboratories, 

Chantilly, VA) (Arakere et al. 1994). Diluted polysaccharides (100 µl) were pipetted into the 

wells of the microtiter plates, which were incubated overnight at +22ºC.  

On the next day, the plates were washed four times with PBS-T and blocked with 10% FCS-

PBS for one hour at +37ºC. After blocking, the plates were emptied. Saliva samples were 

diluted 1:5 in FCS-PBS and divided into three aliquots. One third of the sample was 

neutralized with MenA PS and one third with MenC PS for one hour at +4ºC at a 

concentration of 30 µg PS/ml, titrated to be optimal for absorption of both anti-MenA and 

MenC antibodies. One third contained only the dilution buffer, FCS-PBS. From each tube 50 

µl were pipetted in triplicates into the wells coated with either MenA or MenC PS and 

incubated for 2 hours at +37ºC. After incubation the plates were washed four times with 

PBS-T. For the IgA and sIg assays, monoclonal murine anti-human IgA (M 26012 

Bionostics, Wyboston, UK) or anti-secretory component (I 6635 Sigma, St. Louis, MO) and 

for the IgG assay, peroxidase-conjugated rabbit antibodies to human IgG (P 0214 Dakopatts, 

Glostrup, Denmark) diluted in FCS-PBS were added and incubated for 2 hours at +37ºC. For 

the IgG assay, the substrate, 1.1 M natriumacetat, 0.6% tetramethylbenzidine and 30% 

hydrogen peroxide diluted into sterile aqua was added after the plates were washed three 
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times with PBS-T and once with aqua. The plates were incubated for 15 minutes at +22ºC in 

the dark and the reaction was stopped by the addition of 2 M sulphuric acid. Absorbances 

(wavelength 450 nm) were measured with a Multiscan MCC/340 (Labsystems, Finland).       

For the IgA and sIg assays, alkaline phosphatase conjugated polyclonal rabbit anti-mouse 

IgG (315-055-045, Jackson Immuno Research Laboratories) diluted in FCS-PBS was added 

and incubated overnight at +22ºC. The plates were washed three times with PBS-T and once 

with aqua. The substrate, p-nitrophenyl phosphate disodium (Sigma) in carbonate buffer (pH 

9.8) was added. The mixture was incubated for one hour at +37ºC and absorbances 

(wavelength 405 nm) were measured as described above.   

All the results are given as optical density units (OD unit; 1000 times the optical density 

reading). The mean values of three neutralized and unneutralised wells were calculated and 

the value of the neutralized sample was subtracted from that of the unneutralised sample. 

The concentrations were calculated after subtraction. The limit of positivity was set at 30 OD 

units, which was higher than 2 SD of 30 determinations of one positive saliva sample on a 

same plate. In statistical calculations, values lower than 30 OD units were assigned as 10 OD 

units.   

5.3 EIA for measurement of pneumococcal and meningococcal 
antibodies in serum 

II-V: Anti-pneumococcal IgG in serum was measured at KTL as described (Käyhty et al. 

1995; Åhman et al. 1996).  

VI: Anti-meningococcal IgG in serum was measured at the CDC as described (Carlone et al. 

1992). 

5.4 Single radial immunodiffusion  

For the determination of total IgA concentrations in saliva samples, anti-human IgA LC-

Partigen® immunodiffusion plates (Behringwerke AG, Marburg, Germany) were used with 

Protein-Standard-Serum LC-V  (Behringwerke) (II). Before the assays, samples were treated 
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with dithiothreitol (Sigma, Ontario, Canada) to convert IgA molecules from dimeric to 

monomeric. The results for total IgA concentrations were given as µg/ml. When calculating 

the ratio of anti-Pnc PS IgA and total IgA, samples with undetectable levels of both anti-Pnc 

PS IgA and total IgA were excluded. Samples with undetectable anti-Pnc PS IgA, but 

detectable total IgA were assigned a value 0.0113, which was the lowest value found.   

6 Statistical methods 

I: Differences in log-concentrations between groups were tested using Student’s T test or 

linear regression. The analysis was conducted with the Stata program (Statacorp, College 

Station, TX). Although separate studies were performed to evaluate laboratory storage and 

specimen collection, the data from the two studies were combined for the analysis of each 

explanatory variable into a single regression model. To overcome the uneven distribution of 

this data and to control variation attributable to differences between subjects, a subject 

number was introduced into the model as a fixed effect. Interactions were tested using the 

Wald test with a combination of dummy variables representing the interaction terms. 

II-VI: The results are given as geometric mean antibody concentrations (GMC) with 95% 

confidence intervals (CI). Non-parametric statistical methods were used, because of the non-

normality of salivary antibody data. Antibody concentrations at different ages were 

compared using the Wilcoxon signed ranks test. Differences in antibody concentrations 

between vaccine groups were analysed with the Kruskal-Wallis and Mann-Whitney tests. 

The proportions of children with detectable antibodies in different groups were compared 

with the Yates-corrected chi square (χ2) test or with Fisher’s two-tailed exact test. Log-

transformed serum and salivary IgG, and IgA and sIg concentrations in saliva were 

compared by Pearson’s correlation analysis. Differences were considered statistically 

significant when the p-value was <0.05.  
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RESULTS 

1 Methodology for collection and storage of saliva samples  

The effects of different collection and storage methods on anti-pneumococcal polysaccharide 

and protein IgA concentrations in saliva samples were studied by collecting samples from 30 

healthy Kenyan adults in random order with four different methods yielding 120 specimens 

(I). Each specimen was further processed with three different storage methods (see Materials 

and methods). Thus, the total number of specimens was 360. However, all the EIA analyses 

were not performed on all of the 360 specimens. First, we analysed the effects of different 

storage methods by measuring anti-pneumococcal antibody concentrations in 30 specimen; 7 

collected with Oracol and OraSure devices and 8 collected by pastette and drooling method. 

The snap-frozen samples gave the highest antibody concentrations and to detect possible 

differences between the four collection methods, we decided to use primarily snap-frozen 

specimens. On one day EIA did not meet the quality criteria and we repeated the analysis by 

using specimens collected with the same method, but by using plain storage method instead 

of snap-freezing. Further, the volume of every specimen was not sufficient for all the 

antibody analyses.      

1.1 Effects of collection method on saliva samples 

1.1.1 Volume of the saliva sample 

The final volume of the saliva sample obtained with OraSure and Oracol devices is 

dependent predominantly on the volume of the sample buffer. The volume achieved by 

collecting samples with plastic pipette was significantly lower than with OraSure, Oracol or 

by unstimulated drooling. The mean volumes with different methods were 1105 µl, 1580 µl, 

673 µl, and 1405 µl, collected by OraSure, Oracol, Pastette, and unstimulated drooling, 

respectively. The order of the sampling did not have any effect on the volume; the rank order 

of volume between different methods remained the same when only the first samples were 

included in the analysis. 
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There were no differences in the attained volume of saliva samples between men and 

women; the mean volume of the samples collected from women was 1214 µl and the 

respective number from men was 1181 µl.  

1.1.2. Anti-pneumococcal IgA concentrations in saliva samples  

The OraSure collection method yielded higher anti-Pnc PS IgA concentrations than the other 

three methods, but after adjustment of subject, storage method and serotype, the ratios of the 

geometric mean concentrations (GMCs) as compared with that of the OraSure specimens 

were 0.93 (p=0.44; 95% confidence interval [CI], 0.78 to 1.22) for the Oracol specimens, 

0.84 (p=0.07; 95% CI, 0.70 to 1.01) for the Pastette specimens, and 0.98 (p=0.81; 95% CI, 

0.82 to 1.17) for the unstimulated drooling specimens. Thus, there were no statistical 

differences between collection methods when the anti-Pnc PS antibody concentrations were 

examined. However, the ratio of anti-PsaA IgA GMC in specimens taken with Oracol was 

only 0.52 (p=0.001; 95% CI, 0.36 to 0.76) compared with the OraSure specimens.    

1.2 Effect of storage method on anti-pneumococcal IgA concentrations 

In all studied polysaccharides, unadjusted anti-Pnc PS IgA concentrations were higher in 

specimens which had been snap-frozen in liquid nitrogen than in plain specimens or in 

specimens which had been treated with enzyme inhibitors. After adjustment of subject, 

collection method, and serotype the ratios of GMCs relative to that of snap-frozen samples 

were 0.68 (p<0.0005; 95% CI, 0.58 to 0.79) for plain samples and 0.71 (p<0.0005; 95% CI, 

0.60 to 0.84) for enzyme-inhibited samples. Anti-PsaA concentrations were higher in the 

samples stored with enzyme inhibitors as compared with the snap-frozen and plain samples. 

The ratios of GMCs of anti-PsaA IgA relative to snap-frozen samples were 1.30 (p=0.11; 

95% CI, 0.94 to 1.81) for the plain samples and 1.44 (p=0.024; 95% CI, 1.05 to 1.98) for 

enzyme-inhibited samples.  
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1.3 Co-effects of collection and storage methods on anti-
pneumococcal IgA in saliva samples  

We also found a significant interaction between the collection and storage methods in the 

anti-Pnc PS antibody concentrations detected. This is illustrated in Table 4 by using samples 

taken by the OraSure method and snap-frozen in the laboratory as a baseline. The table 

reveals that the storage method has less influence on antibody concentrations in the samples 

collected by proprietary methods than in the samples taken by pastette or unstimulated 

drooling methods.     

Table 4. Ratios of concentrations of anti-Pnc PS IgA determined by various EIAs to that in 
snap-frozen OraSure specimens (baseline) relative to the methods of storage. (* = significant 
difference from the baseline) 
 

Ratio of anti-Pnc PS IgA concentration by indicated collection 
method to concentration in snap-frozen OraSure specimen 

Storage method 

OraSure Oracol Pastette Unstimulated 

drooling 

Snap-freezing 1.00 1.06 1.01 1.34* 

Enzyme inhibition 0.93 0.76 0.71 0.75 

Plain 1.06 0.80 0.63* 0.60* 

2 Salivary anti-pneumococcal antibodies induced by conjugate 
vaccines  

Salivary anti-Pnc PS IgA and IgG concentrations were measured after three and four doses 

of pneumococcal conjugate vaccine (PCV) in different studies using PncT, PncD, PncCRM 

and PncOMPC (II-V). Antibody concentrations were determined against serotypes 6B, 14 

and 19F in all studies, against serotypes 4, 9V, and 18C in PncT, PncD and PncCRM1 

studies (II-III), and against serotype 23F in PncCRM2 and PncOMPC studies (IV-V). Anti-
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Pnc PS IgA1 and IgA2 against serotypes 6B, 14, 19F, and 23F were measured in two studies 

(IV-V). In a subgroup of children, anti-Pnc PS IgA and IgG were measured also 3 to 4 years 

after completing the series of vaccinations (IV). In two studies antibody concentrations were 

determined also after pneumococcal polysaccharide vaccine (PPV) booster (II and V). A 

control group of children vaccinated with HBV was included in two studies (IV-V).  

2.1 Anti-pneumococcal IgG  

At the age of 7 months, after three doses of PCV, there were only few anti-Pnc PS IgG 

positive saliva samples (II-V) (Table 5). The percentage of positive samples varied between 

0 and 14%, depending on the study vaccine and serotype. Similarly, antibody concentrations 

were low, GMCs varying between 1.7 and 2.3 ng/ml, respectively (Table 6). Salivary anti-

Pnc IgG was most often found against serotypes 14 and 19F at the age of 7 months. None of 

the children had anti-9V IgG in saliva after three doses of PCV.  

One month after the fourth dose, either at the age of 13 or 16 months, the percentage of anti-

Pnc PS IgG positive samples varied between 0 and 44%, and GMCs ranged between 1.7 and 

5.2 ng/ml depending on the study vaccine and serotype (Tables 5 and 6). After the booster 

dose, anti-Pnc IgG was most often induced against serotypes 6B, 14 and 19F. Further, anti-

Pnc IgG concentrations were highest against these serotypes.   

In the FinOM vaccine trial (IV-V), anti-Pnc PS IgG was detected as seldom in the HBV as in 

the PCV group after the primary series. At the age of 13 months, samples were significantly 

more often anti-Pnc PS IgG positive in the PncCRM2 group for serotypes 6B and 23F, and 

in the PncOMPC group for serotype 14 than in the HBV group.   

Salivary anti-Pnc PS IgG concentrations reflected corresponding concentrations in serum. 

When serum anti-Pnc PS IgG concentration exceeded 10 µg/ml, 24-29% of the saliva 

samples were IgG positive, depending on the study. When anti-Pnc PS IgG concentration in 

serum varied between 10 and 3 µg/ml approximately 8% of the saliva samples contained 

anti-Pnc specific IgG. And when specific IgG concentrations in serum was less than 1 µg/ml 

only 2% of the salivas were positive for anti-Pnc PS IgG.   
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Table 5. Percentages of anti-Pnc IgG positive saliva samples taken at the age of 7 and 13 or 16 months from children vaccinated with different 
PCVs or with a hepatitis B vaccine. (- = not determined) 

Proportion (%) of anti-Pnc IgG positive samples 

4       6B 9V 14 18C 19F 23FStudy 
vaccine N 

7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 

PncT                  10-24 0 20 0 30 0 0 14 14 0 0 8 13 - -

PncD                  

                  

                 

3-21 0 0 0 13 0 0 14 22 5 11 5 44 - -

PncCRM1 28-55 4 7 4 29 0 7 2 32 0 18 4 25 - -

PncCRM1+ 
PPV booster 22-23 - 14 - 32 - 4 - 22 - 27 - 61 - -

PncCRM2 52-57  -  - 7 21  -  - 4 12  -  - 14 12 4 13 

PncOMPC 44-56  -  - 2 7  -  - 4 14  -  - 4 14 2 0 

PncOMPC+ 
PPV booster 5-6  -  -  - 17  -  -  - 50  -  -  - 60  - 0 

control 
(HBV)  54-55  -  - 0 0  -  - 4 2  -  - 9 4 2 2 

 

 

  
 

 
 



 

Table 6. Anti-Pnc IgG concentrations in saliva samples taken at the age of 7 and 13 or 16 months from children vaccinated with different PCVs or with a 
hepatitis B vaccine; geometric mean concentrations (ng/ml) with 95% confidence intervals. (- = not determined) 

 

Anti-Pnc IgG concentrations (ng/ml) 

4       6B 9V 14 18C 19F 23FStudy 
vaccine N 

7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 

PncT  10-24 1.7 
(1.7-1.7) 

2.3 
(1.5-3.6) 

1.7 
(1.7-1.7)

3.1 
(1.7-5.7)

1.7 
(1.7-1.7)

1.7 
(1.7-1.7)

2.3 
(1.7-3.2) 

2.5 
(1.5-4.3)

1.7 
(1.7-1.7)

1.7 
(1.7-1.7)

2.1 
(1.6-2.8)

2.6 
(1.4-4.7)  -  - 

PncD 

  

  

    

    

3-21 1.7 
(1.7-1.7) 

1.7 
(1.7-1.7) 

1.7 
(1.7-1.7)

2.0 
(1.4-2.9)

1.7 
(1.7-1.7)

1.7 
(1.7-1.7)

2.2 
(1.7-2.9) 

2.9 
(1.5-5.7)

1.8 
(1.6-2.0)

2.1 
(1.4-3.1)

1.9 
(1.5-2.4)

5.2 
(2.2-12.3)  -  - 

PncCRM1 28-55 1.8 
(1.7-2.0) 

1.9 
(1.6-2.3) 

1.8 
(1.6-2.0)

3.2 
(2.2-4.6)

1.7 
(1.7-1.7)

2.0 
(1.7-2.3)

1.8 
(1.6-1.9) 

3.6 
(2.4-5.5)

1.7 
(1.7-1.7)

2.3 
(1.8-2.9)

2.0 
(1.7-2.3)

3.3 
(2.1-5.0)  -  - 

PncCRM1+ 
PPV booster 22-23 - 2.4 

(1.6-3.7) - 3.8 
(2.2-6.7) - 1.9 

(1.6-2.3) - 3.1 
(1.9-5.0) - 3.0 

(2.0-4.7) - 10.3 
(5.5-19.6)  -  - 

PncCRM2 52-57  -  - 1.9 
(1.7-2.1)

2.5 
(2.0-3.1) - - 1.8 

(1.6-2.1) 
2.2 

(1.8-2.8) - - 2.2 
(1.8-2.5)

2.1 
(1.8-2.4) 

1.8 
(1.7-1.9) 

2.2 
(1.8-2.7) 

PncOMPC 44-56  -  - 1.7 
(1.7-1.8)

1.9 
(1.7-2.1)  -  - 1.9 

(1.6-2.4) 
2.3 

(1.8-2.9)  -  - 1.8 
(1.7-1.9)

2.3 
(1.8-2.9) 

1.7 
(1.7-1.8) 

1.7 
(1.7-1.7) 

PncOMPC+ 
PPV booster  5-6  -  -  - 2.1 

(1.3-3.4)  -  -  - 4.6  
(1.4-15.0)  -  -  - 7.8 

(1.1-56.2)  - 1.7 
(1.7-1.7) 

control 
(HBV)  54-55  -  - 1.7 

(1.7-1.7)
1.7 

(1.7-1.7) - - 1.9 
(1.6-2.1) 

1.8 
(1.6-1.9) - - 2.0 

(1.7-2.2)
1.8 

(1.6-1.9) 
1.8 

(1.6-1.9) 
1.8 

(1.6-1.9) 
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2.2 Anti-pneumococcal IgA 

Both salivary anti-Pnc IgA concentrations and the proportion of positive samples were higher 

than the corresponding values for IgG (II-V). At the age of 7 months, after three doses of 

PCV, the proportion of anti-Pnc IgA positive samples ranged between 0 and 60%, 

respectively (Table 7). Anti-Pnc IgA concentrations varied between 1.7 and 8.0 ng/ml 

depending on the vaccine and serotype (Table 8). At the age of 7 months, anti-Pnc IgA was 

found most often against serotypes 4, 14, and 19F.  

 

After four doses, at the age of 13 or 16 months, the proportion of anti-Pnc IgA positive 

samples ranged between 0 and 78%, and anti-Pnc IgA concentrations varied between 1.7 and 

11.8 ng/ml depending on the vaccine and serotype (Tables 7 and 8). After the booster, anti-

Pnc PS IgA was often detected against serotypes 4, 6B, 14, and 19F. The number of positive 

samples and antibody concentrations were low against serotypes 9V and 18C.  

 

In the FinOM vaccine trial (IV-V), at the age of 7 months anti-Pnc PS IgA was detected more 

often in the samples of the children in the PCV than in the HBV group for serotypes 6B, 14, 

and 23F (PncCRM2) and for 19F (PncOMPC). At the age of 13 months, there was a 

significant difference in the anti-Pnc PS IgA detection rate only for serotype 14 between the 

PncCRM2 and the HBV groups.  

 

Salivary IgA and sIg concentrations correlated well. In the FinOM study, the correlation 

coefficient was 0.72 among control children and 0.77 and 0.79 in the PncCRM and 

PncOMPC groups, respectively, when the 7 and 13 months and serotype specific results were 

combined.  

2.2.1 Anti-pneumococcal IgA in relation to total IgA  

In paper II we proportioned anti-Pnc PS specific IgA concentrations to total IgA. After the 

adjustment, increases in the anti-Pnc PS concentration between 7 and 16 months of age were 

not found as often as without relation to total IgA. The GMCs of total IgA concentrations 

were at the age of 7 months 8.9 µg/ml, and at the age of 16 months 15.5 µg/ml and 24.8 

µg/ml in the PCV and PPV booster groups, respectively. Thus, the total IgA concentration 

increased relatively more than the anti-Pnc PS specific IgA level.       
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Table 7. Percentages of anti-Pnc IgA positive saliva samples taken at the age of 7 and 13 or 16 months from children vaccinated with different 
PCVs or with a hepatitis B vaccine. (- = not determined) 

Proportion (%) of anti-Pnc IgA positive samples 

4       6B 9V 14 18C 19F 23FStudy vaccine N 

7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 

PncT                 21-24 13 17 0 4 0 9 4 9 0 8 17 21 - -

PncD                  

                  

                 

23-24 14 24 5 13 5 0 19 30 0 8 13 30 - -

PncCRM1 28-55 7 32 11 36 5 14 33 46 4 14 9 43 - -

PncCRM1+ 
PPV booster 24-26 - 42 - 73 - 23 - 50 - 13 - 81 - -

PncCRM2 55-57  -  - 51 65  -  - 60 56  -  - 51 76 28 44 

PncOMPC 45-56  -  - 30 51  -  - 41 42  -  - 57 78 20 40 

PncOMPC+ 
PPV booster 7  -  -  - 71  -  -  - 71  -  -  - 100  - 71 

control 
(HBV)  55  -  - 16 47  -  - 25 29  -  - 31 64 5 31 

  
 

 



 

 
 

  
 

Anti-Pnc IgA concentrations (ng/ml) 

4       6B 9V 14 18C 19F 23F
Study 

vaccine N 

7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 7 mo 13/16 mo 

PncT 21-24 2.1 
(1.6-2.7) 

2.2 
(1.7-2.8) 

1.7 
(-) 

1.8 
(1.6-2.1) 

1.7 
(-) 

2.2 
(1.5-3.1)

1.9 
(1.5-2.4) 

2.4 
(1.5-3-8) 

1.7 
(-) 

2.0 
(1.6-2.4)

2.1 
(1.7-2.7)

2.4 
(1.8-3.2)  -  - 

PncD 

  

  

        

      

        

       

23-24 2.2 
(1.6-3.0) 

2.4 
(1.8-3.2) 

1.9 
(1.5-2.3)

2.1 
(1.6-2.8) 

1.9 
(1.5-2.3)

1.7 
(-) 

2.3 
(1.7-3.2) 

3.5 
(2.1-5.8) 

1.7 
(-) 

1.9 
(1.6-2.1)

2.1 
(1.7-2.7)

3.5 
(2.2-5.7)  -  - 

PncCRM1 28-55 2.0 
(1.7-2.4) 

2.9 
(2.1-4.0) 

2.1 
(1.7-2.6)

3.9 
(2.3-6.5) 

2.0 
(1.7-2.5)

2.7 
(1.7-4.2)

3.6 
(2.6-5.0) 

5.3 
(3.2-8.9) 

1.8 
(1.6-2.1)

2.1 
(1.7-2.7)

2.0 
(1.7-2.2)

4.9 
(2.9-8.2)  -  - 

PncCRM1+ 
PPV booster 24-26 - 3.1 

(2.3-4.2) - 7.8 
(5.0-12.2) - 2.8 

(1.9-4.2) - 6.1 
(3.4-10.8) - 2.1 

(1.7-2.6) - 19.3 
(11.3-32.8)  -  - 

PncCRM2 55-57 - - 5.6 
(3.9-8.2)

10.8  
(7.0-16.5) - -

8.0 
(5.2-
12.1) 

6.2 
(4.3-9.0) - - 5.0 

(3.6-6.9)
11.8 

(8.1-17.1)
3.0 

(2.3-3.8) 
5.1 

(3.5-7.4) 

PncOMPC 45-56 - - 3.2 
(2.4-4.1)

5.8 
(3.8-8.9) - - 3.4 

(2.7-4.4) 
4.4 

(2.9-6.5)  -  - 5.7 
(4.2-7.9)

11.2 
(7.5-16.7)

2.3 
(1.9-2.7) 

3.7 
(2.7-5.1) 

PncOMPC+ 
PPV booster 7 - - - 7.5 

(2.8-19.9) - - - 12.8 
(2.9-56.0)  -  -  - 50.2 

(21.9-115)  - 
6.6 

(2.2-
19.5) 

control 
(HBV) 55 - - 2.5 

(1.9-3.3)
4.5 

(3.3-6.2) - - 2.8 
(2.2-3.7) 

3.0 
(2.3-4.0) - - 3.1 

(2.4-4.1)
8.0 

(5.5-11.5)
1.9 

(1.7-2.2) 
3.0 

(2.3-3.8) 

Table 8. Anti-Pnc IgA concentrations in saliva samples taken at the age of 7 and 13 or 16 months from children vaccinated with different PCVs 
or with a hepatitis B vaccine; geometric mean concentrations (ng/ml) with 95% confidence intervals. (- = not determined
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2.2.2 Anti-pneumococcal IgA subclasses, IgA1 and IgA2 

After the primary series of either PncCRM2 or PncOMPC (IV-V), salivary anti-Pnc PS IgA2 

was detected more often than IgA1; 62 to 94% of the samples were positive for anti-Pnc PS 

IgA1 and 83 to 96% for IgA2, depending on the vaccine group and serotype. The GMCs for 

anti-Pnc PS IgA1 and IgA2 varied between 2.0 and 7.7 EIA units and 2.2 and 5.3 EIA units, 

respectively.    

 

After the booster, at 13 months of age, the number of both anti-Pnc PS IgA1 and IgA2 

positive samples ranged from 82 to 100%, depending on the vaccine group and serotype. The 

GMCs for anti-Pnc PS IgA1 were higher than for IgA2 varying between 3.1 and 18.8 EIA 

units, and 1.6 and 6.3 EIA units, respectively. The anti-Pnc PS IgA2 concentrations were at 

the same level both after the primary series and after the booster. Thus, rises in the IgA 

concentrations after the booster are supposed to be due to IgA1. 

2.3 Persistence of salivary antibodies after pneumococcal vaccination 
in infancy 

In the FinOM study saliva samples were collected also at the age of 4 to 5 years from 32 

children in the PncCRM2 and 29 children in the HBV group, i.e. 3 to 4 years after 

completing the series of four doses of the PncCRM2 or HBV (IV) (Table 9).  

 

The salivary anti-Pnc PS specific IgG concentrations reflected the IgG levels in serum. Both 

salivary and serum anti-Pnc PS IgG concentrations were at 4 to 5 years of age similar to that 

after the booster dose at 13 months of age (Åhman et al. 2002). The percentage of anti-Pnc 

PS IgG positive samples was 16% (5/32) for serotype 6B, 13% (4/32) for 14 and 19F, and 

6% (2/32) for 23F. The GMCs were 1.8 ng/ml for serotype 23F and  2.4 ng/ml for 6B, 14, 

and 19F. In the HBV group, anti-Pnc PS IgG was still seldom detected at the age of 4 to 5 

years; one child had anti-Pnc IgG against serotypes 19F and 23F (Table 9). The detection 

rate of anti-Pnc PS IgG did not differ statistically between PncCRM and HBV groups. 
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IgA concentrations increased with age, and almost every child had anti-Pnc PS IgA in saliva 

3 to 4 years after the booster; 97% of the saliva samples were positive for 6B, 14 and 19F 

and 78% for 23F. The GMCs were also significantly higher than at 13 months of age ranging 

from 14.6 (23F) to 50.1 ng/ml (19F). At the age of 4 to 5 years, the detection rate of anti-Pnc 

PS IgA was similar in the PncCRM2 and in the HBV groups (Table 9).      

 
Table 9. Anti-Pnc PS IgG and IgA in the PncCRM2 and HBV groups at the age of 4 to 5 
years; the percentage of positive samples (% pos) and geometric mean concentrations 
(GMC) ng/ml with 95% confidence intervals.  
 

IgG IgA 

PncCRM2 
(n=32) HBV (n=29) PncCRM2 (n=32) HBV (n=29) Serotypes 

% 
pos GMC % 

pos GMC % 
pos GMC % 

pos GMC 

6B 16 2.4 
(1.8-3.3) 0 1.7  

(1.7.-1.7) 97 28.2 
(18.5-42.9) 90 19.1 

(12.2-29.9) 

14 13 2.4  
(1.7-3.5) 0 1.7  

(1.7-1.7) 97 20.4 
(14.5-28.8) 93 29.2 

(17.6-48.4) 

19F 13 2.4 
(1.7-3.3) 3 1.8  

(1.6-2.1) 97 50.1 
(34.7-72.4) 93 32.2 

(20.0-51.7) 

23F 6 1.8 
(1.6-2.1) 3 1.8  

(1.6-1.9) 78 14.6 
(8.8-24.3) 66 10.3 

(5.7-18.6) 

2.4 The effect of a polysaccharide booster after a primary series with 
conjugate vaccines  

Salivary antibody concentrations and the percentage of anti-Pnc Ig positive samples were 

higher after the PPV than after the PCV booster (II and V) (Tables 5-8). After four doses of 

PncCRM1, the anti-Pnc PS IgG concentrations varied between 1.9 (4) and 3.6 (14) ng/ml, 

and after three doses of PncCRM1 and a PPV booster (at 15 months of age) between 1.9 

(9V) and 10.3 (19F) ng/ml (Table 6). However, the difference between the groups was 

significant only for serotype 19F (II). Also, in the saliva of infants who had received three 

doses of PncOMPC and the PPV booster (at 12 months of age), anti-Pnc PS IgG 

concentration was highest against 19F (V) (Table 6). However, because of the small number 

of subjects in the group of PPV boosted infants, no statistical analysis could be performed. 

After four doses of PncOMPC IgG concentrations ranged from 1.7 (23F) to 2.3 (14 and 19F) 
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ng/ml and after three doses of PncOMPC and the PPV booster from 1.7 (23F) to 7.8 (19F) 

ng/ml (Table 6).  

Anti-Pnc PS IgA was detected more often after the PPV than the PCV booster against all 

other serotypes except 18C (II) (Table 7). However, the difference was statistically 

significant only for serotypes 6B and 19F. Antibody concentrations ranged from 2.1 (18C) to 

5.3 (14) ng/ml, and from 2.1 (18C) to 19.3 (19F) ng/ml after the PncCRM1 and PPV booster, 

respectively (Table 8). In the FinOM Vaccine Trial, anti-Pnc PS IgA was detected more 

often against all analysed serotypes after the PPV booster than after the PncOMPC booster. 

After the PCV booster antibody concentrations ranged from 3.7 (23F) to 11.2 (19F) ng/ml 

and after the PPV from 6.6 (23F) to 50.2 (19F) ng/ml (Table 8).  

3 Natural salivary anti-pneumococcal antibodies 

In the FinOM Vaccine Trial, there was a control group of 55 children who did not receive 

any pneumococcal vaccinations during the study period (IV-V). Salivary antibody 

concentrations were determined at the age of 7 and 13 months, and in 29 children also at 4 to 

5 years of age.  

The anti-Pnc PS IgG concentrations remained at a low level during the whole study period 

(Tables 5, 6, and 9). The concentrations were close to the detection limit and varied between 

1.7 and 2.0 ng/ml depending on the serotype and age. The percentage of positive samples 

ranged from 0 to 9%, respectively. None of the children had IgG against serotype 6B during 

the 4 to 5 years follow-up (Tables 5, 6, and 9).  

The anti-Pnc PS IgA concentrations and detection rate increased by age despite the fact that 

these children had not received any pneumococcal vaccinations during their life (Tables 7, 8, 

and 9). Anti-Pnc PS IgA was found most often in unvaccinated children against serotype 19F 

and most rarely against serotype 23F. At the age of 7 months 5 (23F) to 31% (19F) of infants 

had anti-Pnc PS IgA in saliva. At the age of 13 months the corresponding numbers were 29 

(14) and 64% (19F), and when children were 4 to 5 years old, 66% had IgA against serotype 

23F, 90% against 6B, and 93% against 14 and 19F. The anti-Pnc PS IgA concentrations 

ranged from 1.9 to 3.1 ng/ml at the age of 7 months, from 3.0 to 8.0 ng/ml at the age of 13 
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months and from 10.3 to 32.2 ng/ml at 4 to 5 years of age (Tables 7, 8, and 9).  

4 Salivary anti-meningococcal antibodies induced by a MenA/C 
polysaccharide vaccine in previously primed and unprimed 
children  

Children in Paper VI were divided into 5 groups according to the meningococcal vaccination 

history. In group 1, children had not been primed with meningococcal vaccines. In group 2 

children had been vaccinated previously with meningococcal conjugate vaccine (MCV) and 

in group 3 with meningococcal polysaccharide vaccine (MPV). Subjects in group 4 had been 

primed with MCV in infancy and with MPV at the age of 2 years. In group 5 children 

received the same vaccines as in group 4 but in reverse order. At the age of 4 to 5 years, all 

children received one dose of MPV. 

4.1 Anti-MenA IgG and IgA antibodies 

The number of anti-MenA IgG positive saliva samples increased significantly after the 

revaccination in every vaccine group (Table 10). In primed children GMCs of anti-MenA 

IgG ranged from 10.4 to 12.6 OD units before the booster vaccination and from 19.4 to 69.1 

OD units after the vaccination depending on the group. Children vaccinated with MPV in 

infancy and with a MCV at two years of age (group 5) had a significantly higher anti-MenA 

IgG concentration in saliva after the revaccination than children who had received MCV in 

infancy and MPV at the age of two years (group 4) (p<0.03). In unprimed children the anti-

MenA IgG concentration increased significantly after MPV immunisation; the GMC was 

10.7 OD units before the vaccination, and 19.4 OD units after the vaccination. After the 

MPV, salivary anti-MenA IgG concentrations were still significantly higher in children in 

groups 2, 3, and 5 than in unprimed children (p<0.003).  

 

Salivary anti-MenA IgA detection rate increased after revaccination with MPV regardless of 
the previous vaccination history (Table 11). In primed children the GMCs varied between 
17.0 and 24.5 OD units before the vaccination, and between 67.3 and 149.9 OD units after 
the vaccination, depending on the vaccine group. In unprimed children the GMC of anti-
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MenA IgA was 18.5 OD units before the vaccination, and 88.5 OD units after the 
vaccination. There were no significant differences in salivary anti-MenA IgA concentrations 
between the groups either before or after MPV booster immunisation.   

4.2 Anti-MenC IgG antibodies 

There were no significant differences in the salivary anti-MenC IgG concentrations between 
different vaccination groups before the MPV vaccination at 4-5 years of age; most of the 
children were negative for anti-MenC IgG (Figure 5). After vaccination there was a 
significant increase in the number of anti-MenC IgG positive saliva samples (Table 10) and 
in the GMC in all groups (p<0.008) (Figure 5). The salivary anti-MenC IgG concentrations 
reflected the serum IgG concentrations, which have been described earlier (MacLennan et al. 
2001). Children who had previously received only MCV (group 2) and children who had 
received MPV vaccine in infancy and MCV at the age of  two years (group 5) had 
significantly higher anti-MenC IgG concentrations after revaccination than the other 
previously vaccinated children (p<0.001 for all comparisons) and the control group 
(p<0.006). In the previously vaccinated children the anti-MenC IgG GMCs varied between 
33.5 and 148.8 OD units and in the unprimed group GMC was 36.2 OD units.    
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Figure 5. Anti-MenC PS IgG concentrations in different vaccine groups (see Table 3, 
Materials and methods) before and after vaccination with MPV at 4 or 5 years of age; 
geometric mean concentrations (GMC) and 95% confidence intervals (CI).   
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4.3 Anti-MenC IgA antibodies 

Before revaccination children who had previously received 1 to 3 doses of MPV had 
significantly higher salivary anti-MenC IgA concentrations (GMC 22.5 vs. 11.0 OD units, 
p<0.001) than children who had been vaccinated with 1 to 4 doses of MCV (Figure 6). 
Further, the proportion of children with anti-MenC IgA positive saliva samples was lower 
among children who had previously received only MCV as compared with previously 
unprimed children (p<0.001). Before the vaccination, in previously unvaccinated children 
the anti-MenC IgA GMC was 17.2 OD units. 
 
All the other children had significantly higher salivary anti-MenC IgA concentration after 
revaccination than before, expect children who had been previously vaccinated with 2 doses 
of MPV in infancy and with MCV at two years age (group 5). Anyway, the number of anti-
MenC IgA positive samples increased in all groups (Table 11). After revaccination, anti-
MenC IgA concentrations were significantly higher (p<0.001) in the group of children 
vaccinated previously only with MPV than in groups of children who had received 
previously only MCV (group 2) or MCV in infancy and MPV at the age of two years (group 
4). Also, previously unvaccinated children had significantly higher anti-MenC IgA 
concentrations (54.8 OD units) after vaccination than children in group 4 (21.6 OD units) 
(p=0.02). In the other groups GMCs ranged between 34.7 and 85.0 OD units. 
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Figure 6. Anti-MenC PS IgA concentrations in different vaccine groups (see Table 3, 
Materials and methods) before and after vaccination with MPV at 4 or 5 years of age; 
geometric mean concentrations (GMC) and 95% confidence intervals (CI). 
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Table 10. The percentage of anti-MenA and MenC IgG positive saliva samples before and 
after vaccination with MPV at the age of 4 to 5 years.  
  

N MenA MenC 
Groupa

pre post pre post pre post 
1. 64 64 3 30*** 5 52***

2. 123 124 4 52*** 11 78***

3. 54 54 7 61*** 13 61***

4. 46 44 2 43*** 15 52***

5. 12 11 8 82*** 8 82***

 
a For groups, see Table 3. in Materials and methods 
b Statistically significant difference between pre and post immunisation samples;  
*** p < 0.001, ** p < 0.01,  * p < 0.05. 

 
 
Table 11. The percentage of anti-MenA and MenC IgA positive saliva samples before and 
after vaccination with MPV at the age of 4 to 5 years.  

 
 

N MenA MenC 
Groupa

pre post pre post pre post 

1. 64 64 28 78***b 28 63***

2. 126 125 25 78*** 6 56***

3. 54 54 43 83*** 37 81***

4. 47 45 40 78*** 15 38*

5. 12 11 42 100** 25 82*

 
 a For groups, see Table 3. in Materials and methods 

b Statistically significant difference between pre and post immunisation samples;  
*** p < 0.001, ** p < 0.01,  * p < 0.05. 

4.4 Correlation of anti-Men IgA and sIg 

Both salivary anti-MenA and anti-MenC IgA and sIg concentrations were compared. There 

was significant correlation between IgA and sIg both before (r=0.89 and 0.94) and after 

(r=0.90 and 0.90) the revaccination with MPV for MenA and MenC, respectively. 
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4.5 Origin of anti-Men IgG 

We also compared anti-MenA and C antibody concentrations in saliva and in serum. 

Salivary and serum IgG concentrations correlated both before (r=0.39 and 0.65) and after 

(r=0.51 and 0.75) the revaccination with MPV for MenA and MenC, respectively. Also, the 

proportion of MenA and MenC IgG positive saliva samples increased with the increasing 

serum IgG concentration.                   
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DISCUSSION 

1 Study design 

This thesis consists of six studies (I-VI) carried out in 1994-2001 in Finland, the Gambia and 

Kenya. Five of them were conducted to investigate the ability of different pneumococcal 

vaccines (II-V) and one meningococcal conjugate vaccine (VI) to induce specific antibodies 

in the saliva of infants. We also ran a pilot study to test different collection and storage 

methods of saliva samples in relation to the anti-pneumococcal polysaccharide and protein 

antibody concentrations (I). The studies II, III, and VI were phase two immunogenicity 

studies, and IV and V were part of the FinOM Vaccine Trial, which was a phase three study. 

Mucosal immunity was only one arm of these studies, and saliva samples in the studies had 

already been collected before planning study I. Further, publications II and III included in 

this thesis contain detailed serum IgG results, which are out of the scope of this thesis and 

are not presented here.    

2 Methodology  

2.1 Saliva samples  

Saliva samples were collected to measure mucosal immune response induced by 

pneumococcal and meningococcal vaccines. Saliva samples have advantages over other 

mucosal secretion samples: they are relatively easy to collect, can be taken non-invasively, 

and persons collecting the samples do not need special education. One of the major concerns 

in measuring salivary antibodies has been the presumed instability of antibodies in the saliva 

samples. In addition to this, immunoglobulin concentrations in saliva are low, which implies 

that the respective methods for detection of salivary antibodies have to be more sensitive 

compared with the serum assays. Further, saliva samples are often viscous and thus hard to 

handle. The volume attained from infants is frequently low, and therefore all the planned 

analyses cannot always be performed. This restricted the number of serotypes against which 

antibody concentrations were estimated also in our studies. Thus, we prioritised the most 
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often carried serotypes in our analyses.  

Antibody levels in saliva have natural diurnal and monthly variation (Butler et al. 1990). 

Also, stimulus of the mouth can increase the flow of saliva and dilute it. Optimally, saliva 

samples should be unstimulated. Albumin and total IgA concentrations among others have 

been used as adjustment factors to equalise the dilution effect (Kugler et al. 1992; Kauppi et 

al. 1995). However, it has recently been found, that also concentrations of these proteins 

have within-subject variation (Rantonen and Meurman 2000). In study II, we indicated anti-

Pnc PS IgA results also proportioned to total IgA. However, the total IgA concentrations 

increased relatively more than the specific IgA concentration, and increases in the specific 

IgA concentrations could not be detected as often as without adjustment. The 

immunodiffusion assay we used to measure total IgA concentration is not very accurate and 

this may lead to the distortion of results. Further, the increasing total IgA concentration may 

be due to increases in specific IgA levels to other antigens encountered. In studies IV and V 

we had a control group to compare the specific anti-Pnc PS IgA concentration in children 

with and without vaccination with PCV. We speculate that the difference in actual 

concentrations of specific IgA between control and vaccine groups is important. Thus, we 

decided to determine only the anti-PS IgA concentrations without relating them to total IgA 

in these studies.  

In addition to antibodies, whole saliva consists of excretions of salivary glands, gingival 

crevicular fluid, mucosal products, viruses, bacteria, hormones, and traces of food. There are 

also plenty of different enzymes, for example IgA1 protease produced by e.g. 

pneumococcus, meningococcus and Hib (Kilian et al. 1996). Thus, antibodies in saliva 

samples are prone to degradation and to prevent this they need to be handled and stored 

properly. Therefore saliva samples are in general stored at –70°C and are commonly thawed 

only once.   

2.2 Collection and storage methods for saliva samples 

We found that there were differences between anti-Pnc PS and anti-protein IgA 

concentrations depending on the method of collection and storage. However, the sensitivity 
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of the anti-PsaA IgA EIA was low and thus, we based our conclusions about collection and 

storage of saliva samples on the anti-Pnc PS IgA concentrations.  

We did not find any significant differences between the collection methods in anti-Pnc PS 

antibody concentrations, even if, Oracol has been better in terms of IgM yield in a previous 

study (Vyse et al. 2001). The storage method by contrast had less effect on the antibody 

concentration when samples had been collected with OraSure or Oracol methods than with 

drooling or plastic pipette. Proprietary methods OraSure and Oracol are also more practical 

than pastette and drooling systems. However, they are more expensive and have been 

designed for the investigation of crevicular fluid rather than whole saliva; and when samples 

are stored properly after collection by snap-freezing to –70°C, drooling appears to be the 

more advantageous method for sampling.  

When different storage methods were compared, samples snap-frozen in liquid nitrogen 

contained 41 to 47% higher antibody concentration compared to samples stored with the 

other methods. Samples stored with enzyme-inhibitors or as plain were stored at +4°C for 4 

to 8 hours before freezing at –70°C. The storage prior final freezing may have had an effect 

on the antibody concentrations. However, a previous study points out that saliva samples 

could be stored at +4°C without degradation of antibodies (Mortimer and Parry 1988). We 

have found before that in saliva samples, stored at –20°C with enzyme inhibitors, antibody 

concentration decrease quickly compared to the samples stored with glycerol or without 

additives at –20°C (unpublished data). Others have speculated that enzyme inhibitors in 

saliva samples may interfere with the EIA (Rosenqvist et al. 2001). Anyway, our studies are 

not consistent with this, because we have seen that when saliva samples are stored at –70°C, 

antibody concentrations can be maintained also in the samples stored with enzyme inhibitors 

(unpublished data). As a conclusion, the best way to preserve antibody concentrations in 

saliva samples is to freeze (most preferably to snap-freeze) them as soon as possible after 

collection and store samples at –70°C.  

In the pneumococcal vaccine studies (II-V), saliva samples were collected with a plastic 

pipette or with gentle aspiration using an electronic suction device. After that, samples were 

immediately frozen either in dry ice or placed at –70°C in a freezer. In the meningococcal 

vaccine study (VI), saliva samples were collected with the Oracol method, stored with the 
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enzyme inhibitor cocktail, and snap-frozen also immediately after collection in liquid 

nitrogen and then stored at –70°C. Some of the saliva samples studied (II-III) had been 

stored even 1.5 years before analyses, and in studies IV-V even longer. This might have had 

an effect on the antibody concentration. Anyhow, we have seen that the anti-Pnc PS antibody 

concentration in saliva samples can be maintained at least for one year (unpublished data). 

With reference to the two previous paragraphs, the collection method does not have a major 

effect on the antibody concentration. But saliva samples should be frozen to –70°C as soon 

as possible after collection. This way of action was followed during studies II to VI.   

2.3 EIA for detection of salivary antibodies 

The EIA method to detect specific salivary antibodies is based on a serum assay (Käyhty et 

al. 1995). In the serum assay to measure anti-Pnc PS IgG, absorption of the samples with 

cell wall polysaccharide (CPS) has been used to prevent unspecificity caused by impurities 

in polysaccharide preparations (Koskela 1987). To further improve specificity, absorption 

with serotype 22F has been used in the serum EIA (Concepcion and Frasch 2001). The 22F 

absorption is becoming a standard procedure in the serum EIA. In our salivary EIA CPS 

neutralisation was a part of the protocol, but 22F absorption was not used in these studies. 

The problem of 22F EIA both in serum and saliva assays is however, that anti-Pnc PS IgG 

and IgA concentrations in the reference sera have been determined for EIA without 22F 

absorption and thus the concentrations may not represent the actual values attained by 22F 

EIA.  

Saliva samples are much more heterogeneous in nature than serum samples, and in spite of 

CPS absorption, unspecific binding of antibodies on the microtiter plates has been a 

problem. This so called background binding was not similar in all samples; the degree of the 

binding appears to depend on the person. Consecutive samples of a person all seemed to 

have high background binding while all samples of another person had low background. We 

have used in all assays plates coated with PBS, which have been treated in the same way as 

plates coated with antigens. In the end, OD values on PBS plates have been subtracted from 

antigen plates. This system creates more reliable results, but the reduction of background OD 

values may sometimes reduce actual ODs too much and thus antibody concentrations may be 

lower than in reality. In some cases the PBS plate even gives higher OD values than the 
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antigen plate. When analysing anti-Men antibodies with MenA and MenC EIA we solved the 

background binding problem by absorbing samples with MenA or MenC polysaccharides; 

we had samples incubated with and without the corresponding polysaccharide, and in the end 

we subtracted the OD values of absorbed samples from the unabsorbed.   

To further reduce unspecific background binding and to make the method more sensitive, we 

modified the salivary EIA for detecting pneumococcal antibodies during the time period the 

studies (II-V) were conducted. For example, in the IgA assay, after adding samples and 

monoclonal anti-human IgA antibodies, we changed the incubation at +37°C without 

rotation to incubation at room temperature with horizontal rotation. This resulted in the 

reduction of background binding and an increase in sensitivity. This can be due to better 

contacts between antibodies and antigens during incubation because of rotation. Because of 

the changes in the assay, IgA results of the studies II-III and IV-V are not directly 

comparable.    

The IgA1 and IgA2 assays we used were differing in terms of their sensitivity; there were 

much more saliva samples positive for anti-Pnc PS IgA2 as compared with IgA1. Thus, the 

anti-Pnc PS IgA1 and IgA2 concentrations can not be compared to each other directly. 

3 Salivary anti-pneumococcal antibodies induced by conjugate 
vaccines 

We studied salivary antibodies against seven pneumococcal serotypes (included in the 

heptavalent vaccine currently on the market) induced by 4 different PCVs. We also 

investigated the effect of a pneumococcal polysaccharide vaccine as a booster compared 

with the conjugate. In the FinOM Vaccine Trial we were able to study the development of 

natural anti-pneumococcal antibodies in a group of children, who had not received any 

pneumococcal vaccines during the 4 to 5 year study period. The studies with the 

pneumococcal vaccines have been conducted separately and the method has been slightly 

modified between different studies. Thus, the results are not totally comparable to each 

other. 
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3.1 Salivary anti-pneumococcal IgG  

Most of the salivary IgG have been suggested to transudate through capillaries from serum 

and especially through gingival crevices. In the present study anti-Pnc PS specific salivary 

and serum IgG correlated moderately. The low level of correlation most probably results 

from the small number of anti-Pnc PS IgG positive saliva samples. However, salivary IgG 

concentrations reflected corresponding IgG concentrations in serum. When anti-Pnc PS IgG 

concentration in serum exceeded 10 µg/ml, a quarter of the saliva samples were positive for 

IgG. In spite of that, there were IgG positive saliva samples with a low concentration in 

serum, which suggests that local production of IgG can take place. This has also been seen in 

previous studies (Berneman et al. 1998; Ogra 2000; Choo et al. 2000b).   

At the age of 7 months, after three doses of a PCV, anti-Pnc PS IgG was detected seldom in 

saliva. After four doses the detection rate increased, being at highest 44% for serotype 19F in 

the PncD group. On the average the detection rate after the PCV booster was 15%. In 

general, anti-Pnc PS IgG was most often found against 6B, 14, and 19F, which are often 

carried serotypes in Finnish infants. Most seldom anti-Pnc PS IgG was found against 

serotype 9V.  

Besides the serotype specific differences, we also found differences between the PCVs. 

Salivary anti-Pnc PS IgG was detected more often after PCV than HBV, but PncCRM and 

PncD tended to induce more specific salivary IgG than the other vaccines. Different 

conjugate vaccines have previously been found to vary in the ability to evoke systemic 

immune response (Käyhty et al. 1991). These disparities in the immunogenicity can be due 

to the characteristics of different conjugate vaccines due to the conjugation technique 

(Fattom et al. 1995). However, a possible explanation can be the different PS contents of the 

vaccines; e.g. PncT has 1 µg and PncD 3µg of each serotype.     

3.2 Salivary anti-pneumococcal IgA  

IgA is the predominating isotype on a mucosal surface. In concordance with this we detected 

salivary anti-Pnc PS IgA more often than IgG. Further, salivary anti-Pnc PS IgA 
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concentrations correlated with the anti-Pnc PS sIg concentrations, which indicates that 

salivary IgA against Pnc PSs is secretory in nature.  

Anti-Pnc PS IgA was detected often already after three doses of a conjugate vaccine; even 

60% of the infants had anti-Pnc PS IgA in their saliva in the PncCRM2 group (IV). At the 

age of 13 or 16 months, after 4 doses, 30% on the average had anti-Pnc PS IgA in their 

saliva. Salivary IgA was detected most often against serotypes 19F and 14 and least often 

against serotypes 9V and 18C. The serotype specific differences in the IgA concentrations 

are similar to IgG. In the FinOM study, anti-Pnc PS IgA was detected more often in the PCV 

groups than in the HBV group at the age of 7 months, but later the difference between the 

groups decreased. PncCRM and PncOMPC induced more often anti-Pnc PS IgA than the 

other PCVs. Further, PncD induced also more anti-Pnc PS IgA than PncT. This has been 

seen also previously in toddlers in studies with the four-valent PncT and PncD vaccines 

(Nieminen et al. 1999).       

3.3 Salivary anti-pneumococcal IgA subclasses, IgA1 and IgA2 

Human IgA is found in two subclasses IgA1 and IgA2. IgA1 is a predominant subclass both 

in serum and in saliva, but IgA2 is detected proportionally more often in saliva than in 

serum. The nature of the immunising antigen has an effect on the IgA1:IgA2 ratio; in adults 

polysaccharide antigens have been claimed to induce mainly IgA2 dominating response and 

protein antigens IgA1 dominating response (Tarkowski et al. 1990). In children the 

IgA1:IgA2 ratio is only slightly higher for a PS than a protein antigen (Simell et al. 2003).  

In the FinOM Vaccine Trial we determined IgA subclass concentrations at 7 and 13 months 

of age. Due to methodological reasons we are not able to compare IgA1 and IgA2 

concentrations directly. We found the rises in the IgA concentrations between 7 and 13 

months of age to be due to IgA1. This is in accordance with previous studies with Hib and 

PCVs (Kauppi-Korkeila et al. 1998; Korkeila et al. 2000). Among many other bacteria, both 

pneumococcus and meningococcus produce proteases, which cleave IgA1 antibodies in the 

hinge region into Fab and Fc fragments (Kilian et al. 1996; Chintalacharuvu et al. 2003). 

Pneumococci are able to use Fab fragments to enhance the attachment on respiratory 
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epithelial cells (Weiser et al. 2003). It has been suggested that Fab fragments, by binding to 

the surface of the bacteria, protect against an inhibitory effect of the negatively charged 

capsule. Thus, in fact IgA2 antibodies would be more advantageous than IgA1 in defense 

against pneumococcus.    

3.4 Persistence of salivary antibodies after pneumococcal vaccination 
in infancy 

Three to four years after the series of four doses of a PCV, PncCRM2, the detection rate of 

salivary anti-Pnc PS IgG stayed approximately at the same level as one month after the 

booster. Still, it was higher than in the HBV group. Salivary IgG concentrations reflect the 

corresponding serum antibody concentrations (Åhman et al. 2002), and therefore it can be 

suggested that most of IgG in saliva has been transudated from serum.  

On the contrary, salivary anti-Pnc PS IgA was detected more often 3 to 4 years than one 

month after the booster dose of PCV. Almost all children had anti-Pnc PS IgA in their saliva 

at the age of 4 to 5 years. However, anti-23F IgA was detected relatively less often than 

antibodies to 6B, 14, and 19F. At the age of 4 to 5 years, the detection rate of salivary anti-

Pnc PS IgA was as high in the HBV as in the PCV group. Since completing the series of 

vaccinations 3 to 4 years earlier, the children have probably encountered pneumococci 

several times. Thus, it appears that pneumococcal contacts have induced the production of 

antibodies both in the vaccine and control groups.  

3.5 The effect of a polysaccharide booster after a primary series with 
conjugate vaccines 

In two studies (II and V) a 23-valent PPV was used as a booster at 12 or 15 months of age 

instead of a PCV. After the PPV booster, anti-Pnc PS IgG could be found in 60% of the 

infants. Also, antibody concentrations were higher than after a PCV booster. The same was 

true for anti-PncPS IgA concentrations after the PPV booster. However, there were serotype 

specific differences, e.g. anti-18C IgA was detected as often after four doses of PCV than 

after three PCV doses and a PPV booster.  

 77



DISCUSSION 
_______________________________________________________________________________________________________________ 

A polysaccharide booster has been found to induce higher anti-Pnc PS IgG concentrations 

than a conjugate booster also in serum (Kilpi et al. 2003). The antibody concentrations and 

the detection rate of anti-Pnc PS IgG have been especially high for serotype 19F both in 

serum and in saliva. There are a couple of possible explanations for this phenomenon. High 

anti-19F antibody concentrations might either be due to the cross-reactive antibodies induced 

by 19A included in the PPV or by cross-reactive bacteria from the normal flora  (Lee et al. 

1984; Lee and Wang 1985). However, higher responses can also be induced by the higher PS 

content of the PS vaccine. The PPV contains 5 to 25 times more PS antigen depending on 

the vaccine and serotype than PCV.  

Despite the high antibody concentrations, the use of a PS vaccine as a booster has been 

thought possible to trigger existing memory cells and further possibly to lead to depletion of 

memory cells and suppression of immunity (MacLennan et al. 2000). In contrast, a conjugate 

booster has been suggested to stimulate the generation of new high-affinity B memory cells 

resulting antibodies with better avidity (Anttila et al. 1999a). The clinical efficacy against 

AOM has been found the same after the PCV and PPV booster in healthy children (Kilpi et 

al. 2003). However, one or two doses of PCV and PPV booster did not reduce episodes in 

children suffering from recurrent AOMs (Veenhoven et al. 2003). 

4 Natural salivary anti-pneumococcal antibodies 

In the FinOM Vaccine Trial we had a group of children who did not receive any 

pneumococcal vaccines during the study period of 4 to 5 years. Anti-Pnc PS IgG was 

detected only seldom in the saliva of these children, and the detection rate of antibodies did 

not increase by age. None of the children had salivary anti-6B IgG during the study. These 

results are in concordance with the serum data; serum IgG concentrations stayed low until 

the age of 4 to 5 years in unvaccinated children. Thus, natural contacts with pneumococcus 

do not appear to augment a clear local IgG production. 

Anti-Pnc PS IgA was detected often also in unvaccinated children and the detection rate 

increased with age. Previously, Simell et al have found that pneumococcal carriage and 

AOM can induce both anti-Pnc PS and protein antibodies in saliva of infants (Simell et al. 

2001; Simell et al. 2002). Thus, it appears that an increase in antibody concentrations in 
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these children is a consequence of natural contacts with pneumococci. 

In addition to this, anti-Pnc PS antibodies can be induced by cross-reactive bacteria of 

normal nasopharyngeal and enteric flora e.g. Escherichiae coli, Klebsiellae, GBS, and 

nongroupable streptococci (Tsui et al. 1982; Lee et al. 1984; Lee and Wang 1985; Reason 

and Zhou 2004). However, the role of naturally induced antibodies in protection is not clear. 

5 Salivary anti-meningococcal antibodies induced by vaccines 

Children in study VI had received MCV and/or MPV in infancy (Twumasi et al. 1995). At 4 

to 5 years of age all the children were vaccinated with MPV in order to study immunological 

memory induced by meningococcal vaccines (MacLennan et al. 2001). To investigate 

mucosal immune response and memory induced by meningococcal vaccines, saliva samples 

were collected before and 9 to 14 days after the vaccination.  

We found that the meningococcal vaccine was able to induce mucosal antibodies; there were 

significant IgG and IgA responses for both MenA and MenC. Both anti-MenA and MenC 

antibodies detected in saliva represented more often class IgA than IgG. Further, IgA found 

in saliva was secretory in nature.  

Salivary antibody responses to the MPV were found in all vaccine groups, but there were 

differences in the anti-MenC antibody concentrations depending on the meningococcal 

vaccination history. Children who had been primed with one or more doses of MPV had 

significantly higher salivary anti-MenC IgA concentrations both before and after the 

revaccination with MPV than children who had been primed with MCV. In serum, the 

situation was vice versa: children who had been primed with MCV had higher IgG antibody 

concentrations than children who had received the MPV earlier (MacLennan et al. 2001). 

Also, bactericidal activity of the antibodies was lower in children primed with MPV. 

Salivary anti-MenC IgG response reflected these serum results indicating 

hyporesponsiveness to the polysaccharide vaccination after reimmunisation. A reason for 

discrepancies between salivary IgA and IgG responses can be that a conjugate vaccine is not 

able to reach the mucosal induction sites in a T dependent form. Also, conjugate vaccine 

contains shorter chain oligosaccharides compared to the polysaccharide vaccine, which are 

probably not able to activate specific B cells as efficiently as longer polysaccharides.    
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As to the MenA IgA concentrations, no differences were found between the vaccine groups 

either before or after revaccination. The anti-MenA IgG was detected more often in children 

who had been primed with meningococcal vaccines before than in the control group. There 

are two possible reasons for the differences between MenA and MenC responses. First, the 

MenA component of the vaccine was not able to induce immunological memory at the 

systemic site (Leach et al. 1997). Second, during the study there was a meningococcus A 

epidemic in the study area (MacLennan et al. 2001). 

6 Mucosal immunological memory 

When immunological memory has been induced, the next encounter with an antigen is 

expected to result in a faster response with higher concentrations of high avidity antibodies. 

In conjugate vaccine studies a polysaccharide vaccine has often been used as a challenge to 

mimic a contact with bacteria. Polysaccharide vaccines are T cell dependent antigens and 

therefore not regarded to induce immunological memory. Conjugate vaccines by contrast 

have been found to prime for systemic immunological memory. The results of the studies 

aiming to show the ability of conjugate vaccines to induce mucosal immunological memory 

have been controversial (Korkeila et al. 2000; Choo et al. 2000b).  

We could not find any evidence of mucosal immunological memory induced by parenterally 

administered, either pneumococcal or meningococcal, conjugate vaccines. Children who had 

never been vaccinated with pneumococcal vaccines had at the age of 4 to 5 years anti-Pnc PS 

IgA in their saliva as often as children who had been immunised with a  series of a PCV. 

Thus, it can be expected that if there were mucosal memory B cells, natural contacts with 

pneumococcus would have boosted higher antibody concentrations in children who had been 

primed with pneumococcal vaccines compared with the unvaccinated children. Further, 

children who received their first MenA/C vaccine at the age of 4 to 5 years, had even 

significantly higher anti-MenC IgA concentrations after vaccination than children who had 

been immunised with 1 to 3 doses of MCV in infancy and one dose of MPV at the age of 

two years. However, the serum and salivary anti-Men IgG data speak clearly for the systemic 

immunological memory (MacLennan et al. 2001).  

Even if we could not find mucosal immunological memory after parenteral vaccination with 
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bacterial vaccines, others have found intramuscular rotavirus vaccination in mice to result in 

an enhanced specific mucosal immune response after challenge with a virus (Coffin and 

Offit 1998). However, the second response did not take place any earlier than the first one. 

The induction of mucosal memory may be dependent on the exposure to an antigen on a 

mucosal surface, which might explain the different responses to parenteral cholera 

vaccinations in different populations (Svennerholm et al. 1980). Also, because mucosal 

immunological memory has been induced by mucosal vaccinations, both oral and intranasal 

(Lycke et al. 1987; Asanuma et al. 1998), it has been speculated that the route of vaccination 

might have an impact on the emergence of mucosal immunological memory (Asanuma et al. 

1998). Even if most of the children in our studies had been exposed naturally to Men and 

Pnc, they are not able to mount an immunological memory by themselves. This is suggested 

to be due to the fact that these bacteria are covered by a TI-antigen, polysaccharide capsule.   

7 The significance of salivary antibodies 

Both natural contacts with bacteria and parenterally administered vaccines can induce 
specific antibodies in the saliva of children. All the vaccines we studied were able to induce 
salivary antibodies, and also unvaccinated children had produced anti-Pnc and anti-Men PS 
specific IgA. Animal studies suggest that local antibodies have a role in defence; mucosal 
antibodies to PS antigens prevent acquisition of Hib or Pnc (Kauppi et al. 1993; Malley et al. 
1998). However, salivary anti-PS antibodies have not been found to clearly have a protective 
effect against AOM or carriage (Simell 2003). 

In the FinOM study we had an opportunity to relate salivary antibody concentrations to the 
vaccine efficacy results. We did not find any differences in the salivary anti-19F IgA 
concentrations between children vaccinated with PncCRM2 and HBV either at the age of 7 
or 13 months. In accordance, the efficacy against type 19F AOM was low, 25% (95% CI –14 
to 51%). However, protection was good against serotypes 6B, 14, and 23F varying between 
59 and 84%, and we found that the IgA concentrations against these serotypes were 
significantly higher in the PncCRM2 than in the control group. According to this we could 
speculate that anti-Pnc PS IgA have a role in defence against AOM. Even so, in the 
PncOMPC group, there was a significant difference between the PCV and the HBV groups 
in the anti-Pnc PS IgA detection rate for 19F at the age of 7 months, and the efficacy against 
19F AOM in this group was 37%. For other serotypes no differences between PCV and 
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HBV groups could be found, and the efficacy varied between 52% and 79% for 23 and 6B, 
respectively. However, the number of subjects was too small to allow statistical analyses, 
and to draw clear conclusions. The correlation of the anti-Pnc PS specific antibodies and the 
efficacy of the vaccine against AOM was not straightforward either on the systemic site 
(Jokinen et al. 2004). 

It appears that both IgG and IgA have a role in defence, because bacteria have developed 
mechanisms to avoid the action of both of them. For example, pneumococci have the 
polysaccharide capsule to protect against IgG induced phagocytosis (Brown et al. 1983). 
Further, to avoid elimination by IgA it produces IgA1 protease (Kilian et al. 1996) and 
CbpA, which inactivates the antibody by binding to SC (Elm et al. 2004). We found that at 
the age of 7 months there was more often a difference between PCV vaccinated and 
unvaccinated children in the anti-Pnc PS IgA detection rate compared to IgG. Instead, at the 
age of 13 months, the situation was vice versa. Thus, it can be speculated that salivary IgA is 
more important than IgG early in life. Actually, the salivary IgA response has been found to 
mature early in life (Seidel et al. 2001). Later both salivary IgA and IgG can be suggested to 
have roles in mucosal defence.  

Most of the pneumococcal and meningococcal vaccine studies have focused on antibody 
concentrations in serum, and the phagocytosis aided by anti-pneumococcal antibodies or 
serum bactericidal activity of anti-meningococcal antibodies have been thought to be the 
most important factors in defence against pneumococcal or meningococcal disease, 
respectively. However, these bacteria invade the human body through mucosal membranes 
and local antibodies most probably have a role in defence against them (Kauppi et al. 1993; 
Malley et al. 1998). However, how important salivary antibodies actually are, is not known. 
E.g. we do not know, which is actually more important, the salivary IgA or IgG 
concentration, and further, how high concentrations of antibodies are needed for protection. 
More profound knowledge on the function and protective capacity of the mucosal immune 
system would be helpful for the further development of efficient vaccines against upper 
respiratory tract pathogens, like pneumococcus and meningococcus.    
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CONCLUSIONS 

The following conclusions can be drawn from the studies included in this thesis:  

• The collection method of saliva does not have a significant effect on the anti-Pnc PS 
specific IgA concentrations. 

• It is important to freeze saliva samples as soon as possible after collection to –70°C 
to prevent degradation of antibodies. 

• Pneumococcal conjugate vaccines induce PS specific antibodies in saliva. However, 
there are differences between the vaccines in the ability to induce mucosal immune 
response and there are also serotype specific differences in the antibody 
concentrations and in the proportion of positive samples after a series of 
vaccinations. 

• Salivary IgG is mainly derived from serum, but some local IgG production may take 
place. 

• Salivary IgA is secretory in nature and thus locally produced. 

• Increases in the anti-Pnc PS IgA concentrations appear to be mainly due to the IgA1.  

• The pneumococcal conjugate vaccines in the present study were not able to induce 
mucosal immune memory; the anti-Pnc IgA concentrations increased by age also in 
the saliva of unvaccinated children. 

• A booster immunisation with a pneumococcal polysaccharide vaccine induces 
stronger salivary antibody responses than a conjugate booster.   

• Meningococcal conjugate and polysaccharide vaccines induce specific salivary IgG 
and IgA antibodies in infants. However, it appears that they are not able to induce 
mucosal immune memory. 

• Responses to MenA and MenC differed from one another; meningococcal 
vaccination priming did not have an effect on the salivary anti-MenA IgA response, 
while children vaccinated with MPV previously had more anti-MenC IgA in saliva 
than children vaccinated only with MCV.   

• Salivary anti-MenC IgG responses reflected the hyporesponsiveness to multiple 
MPV doses detected on the systemic site of immunity.   

 
 
 

 83



SUMMARY 
_______________________________________________________________________________________________________________ 

 

SUMMARY 

Streptococcus pneumoniae and Neisseria meningitidis come into contact with the human 

body at mucosal membranes. It is important to provide efficient protection at the portals of 

entry in order to prevent colonisation and ensuing local and invasive diseases. Salivary 

antibody concentration has been regarded to reflect antibody level at the nasopharynx. It is 

known that salivary antibody responses can be induced both by natural contact with bacteria 

and by vaccines. There are only few studies on conjugate vaccines and salivary immune 

response.  

To improve methodology to investigate salivary antibodies, we studied different methods for 

collection and storage of saliva samples. We found that the collection method did not have 

an effect on the anti-pneumococcal antibody concentration in saliva samples. However, it is 

important to store them as soon as possible after collection at –70°C to preserve the antibody 

concentration. 

We studied salivary antibody responses induced by four different pneumococcal conjugate 

vaccines and one meningococcal conjugate vaccine. All the studied conjugate vaccines 

evoked a salivary immune response in children. When polysaccharide vaccine was used as a 

booster the response was even stronger than with a conjugate booster. Still, we could not 

find evidence of mucosal immunological memory. Antibody concentrations increased by age 

also in unvaccinated children, suggesting natural encounters with bacteria.  

In the future, it appears important to study the actual impact of mucosal immunity on 

immune defence against pneumococcal and meningococcal diseases. It has been suggested 

that protein vaccines and mucosal immunisation would be more potent in inducing systemic 

and mucosal immune responses. These and other potential approaches should be studied in 

order to develop more effective vaccines against both local and invasive infections.
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FUTURE CONSIDERATIONS 

Pneumococcal and meningococcal conjugate vaccines, and natural contacts with bacteria, 

have all been found to induce specific antibodies in saliva. Based on animal studies local 

antibodies have a role in defence. However, the actual importance of salivary anti-Pnc and 

anti-Men antibodies in humans is not completely clear. We do not know, which is more 

important, IgA or IgG or how high mucosal antibody concentrations are needed to prevent 

an acquisition or disease. In serum, surrogates of protection against pneumococcal disease 

have been sought for many years. Recently, serum anti-Pnc PS IgG concentration 0.35 µg/ml 

has been suggested as a surrogate of protection against invasive disease at population level 

(http://www.who.int/biologicals/Guidelines/Vaccines.htm). Five µg/ml in serum has been 

proposed to be a preventive level against pneumococcal carriage (Goldblatt et al. 2004).  

Another issue is that antibodies in saliva have been thought to reflect antibody concentration 

in the nasopharynx where bacteria colonise the human body. Studies to compare how well 

anti-Pnc PS or Men antibodies in the nasopharynx and saliva correlate have not been 

conducted. Also, the quality of salivary antibodies has not been studied. We do not know, 

e.g. whether there is a difference between vaccine-induced and natural antibodies with 

respect to the avidity and functional activity. Neither is it known whether there are 

differences between the qualities of salivary antibodies after a polysaccharide booster 

compared with a conjugate booster.  

Thus far the pneumococcal and meningococcal vaccines studied have been administered 

mainly parenterally. In animal models pneumococcal vaccines given through a mucosal 

route e.g. nasally have been protective against pneumococcal disease (Hvalbye et al. 1999; 

Jakobsen et al. 1999; Malley et al. 2001). Further, mucosally administered pneumococcal 

vaccines in mice have been found to induce better antibody responses both in serum and 

mucosa than parenterally given vaccines (Jakobsen and Jonsdottir 2003). Would that be the 

case also in humans, remains to be seen. In a study by Haneberg et al an immune response to 

MenB was not as strong after mucosal as after parenteral vaccination (Haneberg et al. 

1998b), yet, the antibodies induced by mucosal vaccination were bactericidal.   
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To summarise, in the future more effort should be put to investigate the actual role of 

mucosal immunity against pneumococcal and meningococcal disease in humans, e.g. how 

antibodies function and the roles of both B and T cell immunity. Parenterally administered 

protein vaccines against pneumococcal disease are under development. The ability of these 

vaccines to induce mucosal immunity should be studied and the possible role of mucosal 

immunity as a surrogate of protection should be considered. However, according to the 

information available today, the best solution against pneumococcal disease might be a 

nasally administered protein or whole cell vaccine. Also a combination of nasal and 

parenteral administration could be considered. That would offer protection against different 

serotypes and further induce both systemic and mucosal immunities. Compared with the 

conjugate vaccines, the price of these vaccines might be lower, which would further 

facilitate the implementation of pneumococcal vaccines both in developed and developing 

countries. 
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