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Summary

The growth factors of the glial cell line-derived neurotrophic factor (GDNF) family 
ligands (GFLs), consisting of GDNF, neurturin (NRTN), artemin (ARTN) and persephin 
(PSPN), are involved in the development, differentiation and maintenance of many 
types of neurons. They also have important functions outside the nervous system in 
the development of kidney, testis and thyroid gland. Each of these GFLs preferentially 
binds to one of the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptors 
α (GFRα). GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to 
GFRα4. The GFLs in the complex with their cognate GFRα receptors all bind to and 
signal through the receptor tyrosine kinase RET. Alternative splicing of the mouse 
GFRα4 gene yields three splice isoforms. These had been discribed as putative GPI-
anchored, transmembrane and soluble forms. My goal was to characterise the function 
of the different forms of mouse GFRα4.

I fi rstly found that the putative GPI-anchored GFRα4 (GFRα4-GPI) is glycosylated, 
membrane-bound, GPI-anchored and interacts with PSPN and RET. We also showed that 
mouse GFRα4-GPI mediates PSPN-induced phosphorylation of RET, promotes PSPN-
dependent neuronal differentiation of the rat pheochromocytoma cell line PC6-3 and 
PSPN-dependent survival of cerebellar granule neurons (CGN). However, although this 
receptor can mediate PSPN-signalling and activate RET, GFRα4-GPI does not recruit 
RET into lipid rafts. The recruitment of RET into lipid rafts has previously been thought 
to be a crucial event for GDNF- and GFL-mediated signaling via RET. 

I secondly demonstrated that the putative transmembrane GFRα4 (GFRα4-TM) is 
indeed a real transmembrane GFRα4 protein. Although it has a weak binding capacity 
for PSPN, it can not mediate PSPN-dependent phosphorylation of RET, neuronal 
differentiation or survival. These data show that GFRα4-TM is inactive as a receptor 
for PSPN. Surprisingly, GFRα4-TM can negatively regulate PSPN-mediated signaling 
via GFRα4-GPI. GFRα4-TM interacts with GFRα4-GPI and blocks PSPN-induced 
phosphorylation of RET, neuronal differentiation as well as survival. Taken together, our 
data show that GFRα4-TM may act as a dominant negative inhibitor of PSPN-mediated 
signaling. 

The most exciting part of my work was the fi nding that the putative soluble GFRα4 
(GFRα4-sol) can form homodimers and function as an agonist of the RET receptor. In 
the absence of PSPN, GFRα4-sol can promote the phosphorylation of RET, trigger the 
activation of the PI-3K/AKT pathway, induce neuronal differentiation and support the 
survival of CGN. Our fi ndings are in line with a recent publication showing the GFRα4-
sol might contribute to the inherited cancer syndrome multiple endocrine neoplasia 
type 2. Our data provide an explanation to how GFRα4-sol may cause or modify the 
disease. 

Mammalian GFRα4 receptors all lack the fi rst Cys-rich domain which is present 
in other GFL co-receptors. In the fi nal part of my work I have studied the function of 
this particular domain. I created a truncated GFRα1 construct lacking the fi rst Cys-rich 
domain. Using binding assays in both cellular and cell-free systems, phosphorylation 
assays with RET, as well as neurite outgrowth assays, we found that the fi rst Cys-rich 
domain contributes to an optimal function of GFRα1, by stabilizing the interaction 
between GDNF and GFRα1. 
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Review of the Literature

1. Review of the literature

1.1.  General introduction to 
neurotrophic factors
In 1951 Levi-Montalcini and Hamburger 
discovered the first neurotrophic factor, 
the nerve growth factor (NGF). NGF was 
able to support the survival of sensory and 
sympathetic neurons of chick embryos 
(Levi-Montalcini and Hamburger, 1951). 
Later several families of neurotrophic 
factors have been discovered, such as 
the neurotrophin family and the glial cell 
line-derived neurotrophic factor (GDNF) 
family. In addition some members of the 
cytokine family (also called neurokines), 
the insulin-like growth factor (IGF) family, 
the fi broblast growth factor (FGF) family, 
the other members of the  transforming 
growth factor beta (TGF-β) superfamily, 
and the hepatocyte growth factor have 
neurotrophic activity (Mitsumoto and 
Tsuzaka, 1999). All neurotrophic factors 
have in common that fi rst, they support 
the survival of a subset of neurons 
during naturally occuring programmed 
cell death (PCD) period; second, they 
are synthesized in and secreted from the 
target tissues ( Barde, 1988; Mitsumoto 
and Tsuzaka, 1999). The growth factors 
that are classifi ed as neurotrophic factors 
are similar in many ways, even sometimes 
with overlapping actions, but are 
eventually not identical. Here I will give 
a short introduction of the neurotrophin 
family and the cytokine family, then focus 
in more detail on the GDNF family. 

1.1.1. Neurotrophin family
The neurotrophin family consists of NGF, 
brain-derived neurotrophic factor (BDNF), 
neurotrophin-3, -4/5, -6, -7 (NT-3, NT-
4, NT-6, and NT-7) (Gotz et al., 1994; 
Mitsumoto and Tsuzaka, 1999; von Boyen 
et al., 2002). NT-6 and NT-7 are only 

in fish species. Neurotrophins are first 
synthesized as precursors (pre-pro-form). 
Pre-region is cleaved in the endoplasmic 
reticulum (ER) during secretion. The pro-
form of the immature proteins is then 
proteolytically cleaved either in the Golgi 
by furin or in the secretory granule by 
pro-protein covertases into active, mature 
proteins (neurotrophic factors) (Seidah et 
al., 1996). 

  
1.1.1.1. Structure of neurotrophins
Neurotrophins contain a cysteine “knot” 
which is formed by three disulfi de bonds, 
and neurotrophins exist exclusively as 
dimers. The core structure of neurotrophin 
is formed by two pairs of intertwined two-
strand β sheets which are assembled by 
three disulfi de bonds. This core structure 
is conserved in all members of the 
neurotrophin family (Butte et al., 1998; 
Butte, 2001). 
 
1.1.1.2. Receptors of neurotrophins
Neurotrophin receptors consist of two 
types of receptors, the Trk tyrosine kinase 
receptor family and neurotrophin receptor 
p75 (p75NR). The Trk receptor family 
includes three high-affinity receptors, 
Trk A, Trk B, and Trk C, each of them 
specifi cally bind a set of neurotrophin; Trk 
A binds NGF, NT-6 or NT-7; Trk B binds 
BDNF or NT-4/5; and Trk C binds NT-3.  
The p75 receptor, also called a low-affi nity 
receptor, belongs to the tumor necrosis 
factor receptor (TNFR) family that signal 
through the intracellular death domain 
to activate the apoptotic machinery. 
Recent studies have demonstrated that 
the pro-form of BDNF can interact with 
p75NR with a high affinity and affect 
the neuronal fate (Lee et al., 2001; Egan 
et al., 2003; Nykjaer et al., 2004; Teng 
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et al., 2005). These two neurotrophin 
receptors can either consort or inhibit each 
other´s actions to mediate the effects of 
neurotrophins  (Chao, 1992; Lindsay et 
al., 1994; Kaplan and Miller, 2000). 

1.1.1.3.  Splicing of neurotrophins and 
their receptors 
Most of the eukaryotic genes are mosaics 
and consist of protein encoding sequences 
(exons) and intervening sequences 
(introns). The transcripts of this kind of 
split genes (including introns as well as 
exons) are called pre-messenger RNAs 
(mRNA). During protein synthesis in the 
cells, mRNAs containing a contiguous 
stretch of codons are translated into 
proteins. Noncoding sequences from 
introns can not at this stage be identifi ed 
and skipped, meaning that the introns in 
the pre-mRNA must be removed before 
the initiation of the translation process. 
The removal process of introns from pre-
mRNA is called splicing.

Alternative splicing gives rise 
to variants of neurtrophins and their 
receptors. For instance, alternative 
splicing and different initiation from two 
promoters, result in four different NGF-
encoding mRNA transcripts, A-D (Selby 
et al., 1987). Alternative splicing and 
multiple promoters generate  eight unique 
BDNF transcripts (Timmusk et al., 1993) 
that might be translated into eight different 
BDNF forms. Alternative splice variants of 
BDNF have been shown to be differently 
regulated (Timmusk et al., 1993) and to be 
responsive for behavioral learning (Rattiner 
et al., 2004). The nt-3 gene consists of two 
small upstream exons (exons IA and IB) 
and a larger downstream exon (exon II). 
The mature NT-3 proteins are encoded by 
two different transcripts (A and B) which 
are formed by alternatively splicing of 
exon IA or exon IB to the common exon 

II (Leingartner and Lindholm, 1994). A 
third transcript of NT-3 was also identifi ed 
in rat. This transcript is derived from the 
splicing of exon 1A to exon 1B as well as 
to exon II (Kendall et al., 2000). 

Like the neurotrophins,  their 
cognate receptors are also translated 
from alternatively spliced mRNAs. For 
example, trkA has two splice forms, trkA 
I and trkAII. TrkA II proteins contain an 
insert of six amino acids. Both forms have 
an equal ability to bind the ligand, but their 
expression pattern is different (Barker et 
al., 1993). Although the binding ability of 
these two receptor variants to their ligands 
is similar, TrkA II has signifi cantly higher 
activation by NT-3 than TrkA I (Clary and 
Reichardt, 1994). Very recently a novel 
alternative trkA splice variant, trkA III, 
was identified in undifferentiated early 
neural progenitors, human neuroblastomas 
(NBs), and a subset of other neural crest-
derived tumors (Tacconelli et al., 2004). 
The mammalian trkB, by alternatively 
splicing, gives at least eight different 
transcripts and results in two different 
receptor classes. The fi rst class consists 
of the full-length TrkB receptor (TrkBTK+) 
and the second class consists of truncated 
TrkB receptors (TrkBTK−). TrkBTK- has the 
same extracellular and transmembrane 
domains as TrkBTK+, but contains only a 
short cytoplasmic domain of 23-amino 
acids, lacking the entire catalytic kinase 
region (Klein et al., 1989; Klein et al., 
1990; Middlemas et al., 1991). These two 
classes of the TrkB receptors have been 
shown to have different effects on dendritic 
arborization and neuronal morphology 
(Haapasalo et al., 1999; Yacoubian and 
Lo, 2000). However,  in vivo and in vitro 
studies indicate that the TrkBTK- receptors 
negatively influence neuronal survival 
by interfering with the function of the 
TrkBTK+ receptors (Haapasalo et al., 2001; 
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Luikart et al., 2003). In chicken there are 
two splicing forms of trkB, a full-length 
receptor and a truncated form which is 
lacking 11 amino acids in the extracellular 
domain. These two forms have different 
response to BDNF and NT-4/NT-5 
(Boeshore et al., 1999). The trkC gene 
encodes multiple NT-3 receptor isoforms 
with distinct biological properties and 
substrate specificities (Lamballe et al., 
1993), including receptors with inserts or 
deletions in the catalytic domain (Tsoulfas 
et al., 1993; Valenzuela et al., 1993). The 
TrkC isoforms with inserts (TrkC14 and 
TrkC25) appear to be inactive as receptors 
for NT-3 (Tsoulfas et al., 1996), and the 
truncated TrkC receptors have pleiotropic 

modulatory functions in vivo (Palko et al., 
1999). Two isoforms of p75 have been 
identifi ed,  a full length transmembrane 
and a truncated form lacking the second, 
third and fourth extracellular cysteine-
rich repeats (von Schack et al., 2001). The 
truncated p75 does not bind neurotrophins, 
and is expressed at markedly reduced 
levels compared to the full-length p75 in 
human and birds. The biological functions 
of the truncated form are unclear. Gene-
targeted animals lacking both isoforms 
exhibit more profound losses in sensory 
neurons and Schwann cells, and an 
additional defect in the development of the 
great vessels, compared to animals lacking 
only the full-length p75 (von Schack et al., 
2001; Hempstead, 2002).  

1.1.2. Cytokine family
The cytokine family members are small 
ubiquitous pleiotropic molecules that are 
synthesized and released in response to a 
variety of stimuli (Kishimoto et al., 1992). 
This family consists of numerous members 
including ciliary neurotrophic factor 
(CNTF), interleukin 6 (IL-6), lukemia 
inhibitory factor (LIF), and several other 

growth factors. This family is sometimes 
also called CNTF-family of neurotrophic 
factors. They have a multitude of actions 
throughout the body, including actions 
on the central and peripheral nervous 
systems (CNS and PNS). It has been 
shown that CNTF acts as a trophic factor 
for many types of neurons, including 
parasympathetic, sympathetic, sensory, 
and motor neurons in vitro. In addition  it 
was considered as the most potent trophic 
factor for motor neurons (Arakawa et al., 
1990). However, later  in vivo studies have 
shown that it is not required for embryonic 
development of motor neurons, but it is 
required for maintaining the number of 
motor neurons in adult mice (Masu et al., 
1993). IL-6 has been reported to affect 
neuronal survival (embryonic rat sensory 
neurons, cultured hippocampal neurons, 
rat striatal cholinergic neurons, and dosal 
root ganglion (DRG) neurons), neuronal 
differentiation (sensory neurons and 
motorneurons), nerve regeneration (DRG), 
and synaptic plasticity in the hippocampus 
(Gadient and Otten, 1997; Tancredi et 
al., 2000; De Jongh et al., 2003). LIF has 
been shown to promote the proliferation 
of olfactory sensory neuron precursors in 
vivo and in vitro (Kim et al., 2005). 

1.1.2.1.  Structure of cytokines
CNTF is not a cysteine knot growth 
factor, it is rather a four-helix bundle 
protein belonging to the IL-6 family of 
hematopoietic cytokines. The primary 
structure of CNTF shows the four helices, 
named A-D (Butte, 2001).  Two helices, B 
and C, contribute to the dimer interface, 
whilst the other two show pronounced 
kinks. Analysis of the electrostatic surface 
of CNTF identifi ed residues within these 
kinked helices that may contact the 
CNTF receptor-α. The A and C helices 
contribute to the interaction with gp130, 
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the common receptor for the CNTF family 
of neurotrophic factors (McDonald et al., 
1995).

1.1.2.2. Receptors of cytokines and 
their splice variants
The receptor of IL-6 (IL-6-R) has two 
splice forms, the membrane-bound and 
soluble forms. The biological functions 
of these two isoforms are basically the 
same (Nowell et al., 2003; McLoughlin 
et al., 2004). The receptor of CNTF has 
two variants, glycosylphosphatidylinositol 
(GPI)-anchored and soluble forms. 
The GPI-anchored form is expressed in 
neuronal and skeletal muscle cells (Davis 
et al., 1991; Ip et al., 1993). The soluble 
form serves as a cofactor in potentiating 
CNTF actions on cells (Davis et al., 1993). 
Several isoforms of the common gp130 
receptor of cytokines have been identifi ed. 
There are at least three different splice 
variants of soluble gp130, in addition 
to the membrane-associated gp130. The 
size of these three variants is 50 kDa, 
90 kDa and 110 kDa, respectively, and 
these may be involved in regulating 
IL-6 trans-signaling. Also, the purified 
recombinant soluble gp130 (90 kDa and 
110 kDa) showed an inhibitory effect on 
the biological function of IL-6 via gp130 
(Narazaki et al., 1993; Zhang et al., 1998; 
Richards et al., 2006).

The members of the cytokine family 
signal via multicomponent receptor 
complexes. All cytokine receptors have 
a single transmembrane domain and an 
intracellular signaling domain, except 
the CNTF receptor α (CNTFRα), which 
is anchored to the membrane by a 
GPI-anchor. The common receptor for 
cytokines is gp130. In order to signal, 
cytokines need to bind their own cognate 
receptors and then induce either the 
homodimerization of gp130 receptors, or 

the  heterodimerization of gp130 and LIF 
receptor (LIFR). There are two theories on 
how the signal complexes are formed. One 
is based on immunoprecipitation and gel 
fi ltration, and predicts that the complex 
is hexameric with a stoichiometric ratio 
of 2:2:1:1 (cytokines: cognate receptors: 
gp130:LIFR/gp130). The other theory 
is based on molecular modeling, and 
predicts that the complex is tetrameric 
with a stoichiometric ratio of 1:1:1:1. 
IL-6 is an example of the former type of 
ligands whereas LIF, oncostatin M (OSM), 
CNTF and cardiotrophin 1 (CT-1) are the 
examples of the latter type (Sanchez-
Cuenca et al., 1999; Butte, 2001; Vergara 
and Ramirez, 2004).
                      
1.1.2.3.  Splicing variants of cytokines
Some of the cytokines have been reported 
to have splicing isoforms. IL-6 and IL-6-
alt arise through alternative splicing. Both 
form signaling complexes with p80 and 
gp130, although IL-6-alt is lacking the 
second exon. This second exon encodes 
amino acid residues which are known 
to be important for the gp130-mediated 
signal transduction pathway. Therefore 
IL-6-alt has less activity comparing to 
IL-6, but does not act as an inhibitor of 
IL-6 (Kestler et al., 1995; Kestler et al., 
1999). Several splice variants of LIF have 
also been described in human tissues. By 
alternative use of the fi rst exons (D, M, 
and T), three variants are formed (LIF-D,-
M, and -T). The LIF-D is a biologically 
active, secreted protein and can signal 
via the LIF receptor. The LIF-M is a 
secreted and intracellular protein, and 
may have biological activity when it is in 
the extracellular matrix; the LIF-T is an 
intracellular protein which might function 
as a transcription factor (Hisaka et al., 
2004). 
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1.2. Glial cell-derived neurotrophic 
factors and their receptors
There are four different types of GDNF 
family ligands (GFLs), GDNF (Lin et 
al., 1993), neurturin (NRTN) (Kotzbauer 
et al., 1996), artemin (ARTN) (Baloh 
et al., 1998b), and persephin (PSPN) 
(Milbrandt et al., 1998). ARTN is also 
called neublastin (NBN) (Rosenblad et 
al., 2000) or enovin (EVN) (Masure et 
al., 1999). These four factors have their 
own preferential receptors, respectively, 
so called GDNF family receptor alphas 
(GFRαs), which are GPI-linked cell 
surface proteins. There are four GFRαs, 
GFRα1, GFRα2, GFRα3, and GFRα4, 
and a common receptor tyrosine kinase 
called RET. I will introduce the growth 
factors and their signaling receptors in the 
following chapters.

1.2.1. GFLs and their splice variants

1.2.1.1. GDNF 
GDNF was fi rst cloned and purifi ed as a 
potent neurotrophic factor that enhances 
the survival of midbrain dopaminergic 
neurons. The full-length GDNF consists 
of 211 amino acids and harbours both a 
signal sequence and a pro-region. The pro-
region is cleaved from the mature domain 

possibly at a RXXR cleavage site (Lin et 
al., 1993), but the biological activity of 
the pro-GFLs are still uncharacterised. In 
this context it is interesting to note that the 
pro-forms of NGF and BDNF have some 
biological functions naturely inducing cell 
death (Lee et al., 2001; Egan et al., 2003). 
Mature GDNF consists of 134 amino acids 
with a predicted molecular weight of ~15 
kDa. Biochemical analysis has shown that 
mature GDNF is a glycosylated protein 
and forms covalent disulfide-bridged 
homodimers (Lin et al., 1993). GDNF is 
a growth factor which contains a cysteine 
“knot”, and the monomer of the three-
dimensional structure is characterized by 
two long fi ngers formed by pairs of anti-
parallel β-strands connected by a loop 
and a helical portion in the opposite site 
(Fig. 1) (Eigenbrot and Gerber, 1997). The 
monomers are associated in a head-to-tail 
orientation to form the dimer. Because of 
the anti-parallel arrangement, the structure 
of GDNF has a left-right symmetry, which 
may indicate that there is a symmetrical 
binding site for a dimerized receptor. 
The structure-function analysis showed 
that the first 39 amino acids in the N-
terminus of GDNF are not required for 
its biological activities in motor neurons 
(Chen et al., 2000). It should be noted that 

Fig. 1. The 3D structure of GDNF. Note that 38 amino acids at the N-terminus of GDNF 
are not visible on this structure. GDNF is a homodimer. Indicated amino acids on the 
fi nger 1 and 2 are important for receptor binding (Adapted from Eketjäll et al., 1999).   
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the 3D structure of the N-terminal region 
is still missing. Most likely this region is 
structurally very dynamic and therefore 
not visible in the crystal structure. The 
C-terminus is critical for the stability and 
biological activity of GDNF, the α-helix, 
fi nger 1 and fi nger 2 are involved in the 
binding of GDNF to the GFRα1 receptor 
(Chen et al., 2000). More precisely, 
Eketjäll et al. have identified a set of 
eight residues, four negatively charged 
(Asp52, Glu61, Glu62, Asp116) and four 
hydrophobic (Ile64, Leu114, Tyr120, 
Ile122), that are involved in the binding 
of GDNF to the GFRα1 receptor. Any 
individual mutation in these residues 
results in a major effect on the binding 
affinity of GDNF to GFRα1, indicating 
that each of these amino acids is critical 
for the binding (Eketjäll et al., 1999).

GDNF is expressed in many tissues 
and in many cell types throughout the 
body, including neurons (Schaar et al., 
1993; Stromberg et al., 1993; Springer 
et al., 1994; Trupp et al., 1995; Suvanto 
et al., 1996; Golden et al., 1999). It is 
widely expressed in the CNS and PNS, 
and has multiple neuronal targets in the 
nervous system. The effects of GDNF on 
nervous systems are summarized in Table 
1 (modifi ed from Bohn, 2004).

Outside the nervous system, GDNF 
has a crucial role in kidney development 
and spermatogenesis. GDNF-/- mice 
displayed complete renal agenesis due 
to a lack of the induction of the ureteric 
bud formation which are early steps in 
kidney development (Moore et al., 1996; 
Pichel et al., 1996; Sanchez, et al., 1996). 
In vitro assays show that exogenous 
GDNF stimulates both the branching and 
proliferation of embryonic kidneys (Vega 
et al., 1996; Sainio et al., 1997). It was 
also showed that GDNF can stimulate the 
chemotaxis in kidney organ culture (Tang 

et al., 1998). During spermatogenesis, 
GDNF regulates the cell fate decision 
of undifferentiated spermatogonia. 
GDNF+/- mice displayed a disturbed 
spermatogenesis with degenerated tubules. 
However, mice overexpressing GDNF 
show an accumulation of spermatogonia 
stem cells and are unable to respond 
properly to differentiation signals, later 
these mice develope nonmetastatic 

testicular tumors (Meng et al., 2000; Meng 
et al., 2001).  

1.2.1.2.  NRTN and ARTN

1.2.1.2.1. NRTN
NRTN is a GFL which binds preferentially 
to GFRα2 receptor and signals via RET. 
NTRN was identified on the basis of 
its ability to support the survival of 
sympathetic neurons in culture. Mouse 
NRTN is synthesized as a pre-pro-form 
consisting of 195 amino acids, where 19 
amino acids form the signal sequence and 
76 amino acids form the pro-region (Fig. 
2). After cleavage of the pro-protein, a 100 
residues long mature NRTN is formed. 
Human mature NRTN is 91% identical to 
mature mouse NRTN and both proteins 
have a predicted molecular weight of about 
11.5 kDa (Kotzbauer et al., 1996). As all 
other GFLs, NRTN is also biologically 
active as a homodimer.     

The distribution of NRTN has been 
described in detail for developing and adult 
mice and rats (Golden et al., 1999; Xian et 
al., 1999). In addition to the sympathetic 
neurons, NTRN also maintains the enteric 
neurons in the gut (Heuckeroth et al., 
1998; Rossi et al., 1999), neurons in the 
DRG, trigeminal and nodose ganglion 
(Kotzbauer et al., 1996; Rossi et al., 1999), 
CNS dopaminergic neurons in the ventral 
midbrain (Horger et al., 1998) and the 
spinal motor neurons (Klein et al., 1997). 
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Outside of the nervous system, NRTN can 
induce the branching of the ureteric bud in 
an in vitro assay (Milbrandt et al., 1998). 
The expression of NRTN in and around 
bone suggests that it might be involved 
in the bone development. In the prostate 
the high-level of NRTN may influence 
the growth of prostate epithelium and it is 
expressed at high-levels in the epithelium 
and mucosa of the oviduct (Golden et al., 
1999). Recently, NRTN, as well as PSPN 
have been found to promote the survival 
of rat basal forebrain neurons in vitro 
including both cholinergic neurons and 
a population of non-cholinergic neurons 
(Golden et al., 2003).
    
1.2.1.2.2. ARTN
ARTN, mentioned already earlier is 
called enovin and neublastin (Masure 
et al., 1999; Rosenblad et al., 2000), is 
more similar to NRTN and PSPN (about 
45% identity), than to GDNF (about 36% 
identity). Like GDNF and NRTN, ARTN 
is also synthesized as a pre-pro-form (Fig. 
2). Human mature ARTN consists of 113 
amino acids with a molecule weight of 
around 12.5 kDa. ARTN is a trophic factor 
for sensory and sympathetic neurons in 

vitro (Baloh et al., 1998b), and  enhances 
the neuronal generation, growth and neurite 
outgrowth of sympathetic neurons in vitro 
(Andres et al., 2001; Enomoto et al., 
2001). In the CNS, this factor is expressed 
at a very low level. ARTN supports at least 
the survival of dopaminergic neurons in 
the midbrain in vitro (Baloh et al., 1998b). 
The physiological functions of ARTN 
were demonstrated by characterizing 
ARTN-defi cient mice, where the migration 
and axonal projections of sympathetic 
neuroblasts were disrupted. However, 
only small effects on cell survival or 
proliferation were observed, which is in 
contrast with the in vitro data (Honma 
et al., 2002). Furthermore, the activity 
of ARTN is mediated by heparin sulfate 
proteoglycans (HSPGs). The crystal 
structure reveals that the arginine residues 
in the pre-helix and amino-terminal regions 
of ARTN are involved in ARTN binding 
HSPGs, and the substitution of these 
residues can reduce the ability of ARTN 
to activate RET (Silvian et al., 2006). 
ARTN is also expressed in smooth muscle 
cells of the vessels during development 
of the vasculature, and it may thereby 
act as a guidance factor for sympathetic 

Fig. 2. Schematic structure of GFLs showing the relative lengths (in amino acid number). The 
conserved seven cysteines in the mature regions are marked (black lines), and “N” stands for the 
glycosylation sites (kindly provided  by Professor Saarma).  
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fi bers to project toward their fi nal target 
tissues in vivo. This fi nding indicates that 
ARTN is an important guidance factor for 
sympathetic fi bers to follow blood vessels 
as they project toward their final target 
tissues (Honma et al., 2002). 

1.2.1.3. PSPN
Pspn was cloned based on the sequence 
homology to gdnf and nrtn, and the 
mature PSPN is about 40% identical to 
mature GDNF and NRTN. The rat and 
mouse pspn genes contain an intron in 
the sequence encoding the pro-region of 
PSNP, and removal of this intron leads to 
the formation of an open reading frame 
encoding a pre-pro-protein of 156 amino 
acids, with a predicted 21 residues long 
signal peptide (Fig. 2). The mature PSPN 
is a 96 amino acid long protein with a 
molecular weight of about 10~12 kDa 
(Milbrandt et al., 1998).

Human PSPN also has an intron 
present in the pro-domain. After splicing, a 
156 amino acid protein with 80 % identity 
to mouse and rat PSPN can be translated. 
Human PSPN shows 38% identity to 
human NRTN (50% in the mature region), 
and 30% identity to human GDNF (40% 
in the mature region). The pro-region is 
cleaved from the mature protein at the 
RXXR site fi ve residues upstream of the 
fi rst conserved cysteine (Milbrandt et al., 
1998). 

Pspn mRNA is expressed at very 
low levels and was detected in all tissues 
examined in embryos and adult animals. 
Two species of PSPN encoding mRNA 
(unspliced and spliced mRNA) were 
detected using RT-PCR. The larger, 
more abundant species correspond to 
the unspliced mRNA (Milbrandt et al., 
1998; Lindfors et al., 2006). The levels 
of both pspn mRNA species were stable 
from E10 through E18. Comparison of 

the expression levels in adult tissues and 
their embryonic counterparts showed that 
PSPN encoding mRNA appears to be 
present at relatively similar levels in most 
tissues examined, but with slightly higher 
levels in embryonic tissues (Milbrandt et 
al., 1998). 

PSPN supports the survival of rat 
motoneurons in culture and in vivo after 
sciatic nerve axotomy. Surprisingly, unlike 
GDNF and NRTN, PSPN does not maintain  
any of the peripheral neurons examined, 
including those from the superior cervical, 
dorsal root, nodose, trigeminal, and 
enteric ganglia (Milbrandt et al., 1998). 
The recent fi ndings of its effects on the 
rat basal forebrain neurons including both 
cholinergic neurons and a population of 
non-cholinergic neurons shed light on the 
possibility  that PSPN may be effective as 
a neuroprotective agent for basal forebrain 
cholinergic neurons (BFCNs) in vitro and 
in vivo (Golden et al., 2003). The potential 
neurobiological function of PSPN in 
vivo was also investigated and it was 
demonstrated that mice lacking PSPN have 
markedly increased cerebral infarction 
after focal ischemia (Tomac et al., 2002). 
Moreover, PSPN prevented by ~70% the 
loss of dopaminergic neurons and also by 
51-66% the behavioral abnormalities in a 
rodent Parkinson´s disease model (Åkerud 
et al., 2002).

PSPN can support the survival of 
rat dopamine neurons and spinal cord 
motor neurons both in vitro and in vivo 
(Milbrandt et al., 1998; Bilak et al., 1999). 
The potential clinical application of PSPN 
was recently reported. Engineered neural 
stem cells (NSCs), expressing PSPN 
were used in a PD model. In this study 
PSPN appeared to enhance the dopamine-
dependent behavioral parameters in 
unlesioned mice, prevented the loss of 
dopamine neurons and the behavioral 
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impairment of mice exposed to 6-OHDA. 
These results suggest that PSPN has 
a clinical potential in the treatment of 
PD (Åkerud et al., 2002).  Besides the 
potential in the treatment of PD, PSPN 
also has a potential to bring a new strategy 
to stroke treatment. Mice lacking PSPN 
are hypersensitive to cerebral ischemia 
showing an increase of about 300 % 
in infarction volume as compared with 
the controls (Tomac et al., 2002). The 
glutamate-induced Ca2+ infl ux was thought 
to be a major component of ischemic 
neuronal cell death (Zipfel et al., 1999; Lee 
et al., 1999; Zipfel et al., 2000). In vitro 
experiments demonstrated that PSPN can 
reduce hypoxia-induced cortical neuronal 
death. Furthermore, in vivo administration 
of recombinant PSPN before ischemia can 
attenuate the neuronal cell death. Taken 
together, these events indicate that PSPN 
may have an important control function 
in the context of stroke and glutamate-
mediated neurotoxicity (Tomac et al., 
2002).
 
1.2.2. GFL family receptors and their 
splice variants 

1.2.2.1. GFRαs 
After the discovery of GDNF, one of 
the main targets was the search for a 
functional receptor for GDNF signaling. 
Under this effort, Jing et al. in 1996 found 
a novel membrane-associated protein 
which can bind GDNF, GDNFR-α (later 
named GFRα1).

Recently a GDNF receptor-alpha-like 
gene, gral has been identifi ed from mouse. 
Sequence analysis showed that the gral is 
a distant homolog of the GFRα family, 
and its amino acid sequence is 20, 26, 30 
and 30 % identical to that of GFRα1,-2, 
-3, and -4, respectively. There are two 
splice variants of gral, gral-A (2080 bp) 

and gral-B (1833 bp). Gral-A and gral-B 
encode proteins of 393 and 238 amino acid 
residues respectively, and the GRAL-A is 
a putative transmembrane protein, whereas 
the GRAL-B is a putative soluble protein. 
GRAL transcripts have been detected 
primarily in the CNS in adult mouse, it is 
highly expressed in the cerebrocortex and 
hippocampus at birth, thereafter decline 
in the developing mouse brain (Li et al., 
2005). The function of GRAL remains 
unclear.

GAS1 (the growth arrest-specifi c gene 
1) protein has been recently demonstrated 
as an alternative receptor for GFLs. GAS1 
protein shows high structural similarity 
to GFRαs. It can bind RET, therefore 
modify the downstream signaling. The 
functional similarities between GFRαs 
and GAS1 may be in their functions in 
embryogenesis, differentiation and glia 
maintenance (Schueler-Furman et al., 
2006; Cabrera et al., 2006). 
   
1.2.2.1.1. GFRα1
Based on the conserved cysteine residues, 
it was predicted that the GFRα1 receptor 
has a three-domain structure, D1, D2, 
and D3 (Suvanto, 1997; Airaksinen et al., 
1999). This three-domain structure seems 
to be common to all GFRα receptors except 
for the mammalian GFRα4 receptors, 
which lack the first domain, D1. Rat 
GFRα1 consists of 468 amino acids, there 
are three potential N-linked glycosylation 
sites and a predicted molecular weight of 
about 47 kDa. Structural and biochemical 
analysis show that this protein is actually 
linked to the cell surface by a GPI-linkage 
(Jing et al., 1996). It has also been shown 
that GFRα1 may act as the alternative 
receptor for NRTN to activate RET, but 
NRTN binding to GFRα1 is much weaker 
than to GFRα2 (Creedon et al., 1997).
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Alternative splice isoforms of gfrα1 
have been identified and named gfrα1a 
(includes exon 5) and gfrα1b (excludes 
exon 5) (Sanicola et al., 1997; Dey et al., 
1998; Shefelbine et al., 1998). GFRα1a 
is expressed predominantly in the whole 
brain, while GFRα1b was found in 
peripheral tissues. This indicates that these 
two isoforms may have distinct functions 
(Yoong et al., 2005). Indeed, in vitro 
studies show that the two isoforms have 
different binding affi nities for GDNF and 
NRTN. Moreover, the GFRα1b isoform, 
which has a higher affinity for both 
GDNF and NRTN, is also mediating more 
effi ciently the RET autophosphorylation 
upon ligand stimulation (Charlet-
Berguerand et al., 2004). These results 
suggest that the regulation of GFRα1 by 
alternative splicing may have a function in 
neuronal differentiation.

GFRα1 is expressed in both neuronal 
and non-neuronal tissues. Those neurons 
include the enteric, parasympathetic, 
sympathetic, sensory, motor neurons, and 
dopamine neurons in the ventral midbrain 
(Golden et al., 1999). GFRα1 is also 
expressed in non-neuronal cells, such as 
in the cells of the urogenital system, the 
respiratory system, spermtogonial stem 
cells (Golden et al., 1999). GFRα1 has 
also recently been found to be expressed 
in the developing rat carotid body (Leitner 
et al., 2005).

Recently structural studies resulted 
in a fi rst model of the GFRα1 fragment 
that binds GDNF. The crystal structure of 
rat GFRα1 domain 3 (residues 239–346) 
and a model of the homologous domain 2 
(residues 150–238), combined with site-
directed mutagenesis, led to the identifaion 
of the  residues Phe213, Arg224, Arg225 
and Ile229 as part of a putative GDNF-
binding surface. Furthermore, the crystal 
structure of GFRα1 domain 3 revealed a 

new protein fold with all-α fold with fi ve 
disulfi de bridges (Leppänen et al.,  2004).
  
1.2.2.1.2. GFRα2 
Gfrα2 was identifi ed in 1997 from human, 
rat, mouse and chicken tissues based on 
the homology to gfrα1 (Baloh et al., 1997; 
Buj-Bello et al., 1997; Klein et al., 1997; 
Suvanto et al., 1997). This protein consists 
of 464 amino acids with 48% identity  to 
GFRα1 and is anchored to the cell surface 
by GPI-linkage. Like the other family 
members it has an N-terminal signal 
peptide for secretion and three putative 
glycosylation sites.

Gfrα2 has three isoforms, named 
gfrα2a, gfrα2b and gfrα2c. These three 
variants have the same 5´-UTR (Wong 
and Too, 1998). GFRα2a is expressed in 
the SCG neurons and DRG. In the adult 
brain it acts preferentially as a receptor 
for NRTN. GFRα2a consists of 463 amino 
acids with N-terminal signal sequence 
and C-terminal hydrophobic domain. The 
amino acid sequence of GFRα2b is the 
same as GFRα2a except for the 105 amino 
acid deletion at the N-terminal region 
(14-119 a.a.). No functional studies on 
GFRα2b are available yet. GFRα2c is the 
shortest form and it consists of 330 amino 
acids, and it also has the same amino 
acid sequence as GFRα2a except the 
deletion of 133 amino acids (14-147 a.a.) 
at the N-terminal (Wong and Too, 1998). 
GFRα2c responds equivalently to both 
GDNF and NRTN in mediating the RET 
phosphorylation (Baloh et al., 1997).

GFRα2 is expressed in the nervous 
system and other tissues during both the 
development and adulthood. It is expressed 
in the CNS (the spinal cord and the all 
areas of  brain), the PNS (the sensory and 
autonomic ganglion), the developing heart, 
the developing limbs and the skeleton 
(Golden et al., 1999). However, the 
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expression of GFRα1 decreases by P1, but 
the level of GFRα2 remains  unchanged 
(Leitner et al., 2005). GFRα2/NRTN may 
indeed have a role as a trophic factor for 
the maintenance of mature cells. This 
hypothesis is supported by expression data 
which show that a decreased expression 
of GFRα1 is also accompanied by an 
increased or maintained expression of 
GFRα2, in the sphenopalatine and otic 
ganglia of the parasympathetic nervous 
system (Enomoto et al., 2000; Rossi et 
al., 2000), as well as in the neurons of the 
ENS (Golden et al., 1999). 

1.2.2.1.3. GFRα3
Gfrα3 was actually cloned before the 
discovery of its ligand, ARTN. Gfrα3 
was identified based on the homology 
to gfrα1 and gfrα2. GFRα3 is a protein 
of 397 amino acids which contains a 
hydrophobic signal peptide as well as a 
stretch of hydrophobic amino acids at its 

C-terminus that comprises a putative GPI-
linkage sequence. It also contains three 
putative N-linked glycosylation sites. 
Rat GFRα3 displays 33 % amino acid 
identity with GFRα1 and 36 % identity 
with GFRα2. The fully glycosylated form 
has a molecular weight of 62 kDa (Jing et 
al., 1997; Worby et al., 1998; Widenfalk et 
al., 1998; Masure et al., 1998). No GFRα3 
isoforms have yet been found.

GFRα3 is highly expressed by 
embryonic day 11 but is barely expressed 
in the adult mouse (Worby et al., 1998). 
A prominent expression was found in 
the peripheral ganglia and in the nerves. 
No robust expression was found in CNS 
(brain and the spinal cord), but there was 
a strong expression in the DRG and in the 
trigeminal ganglia at all developmental 
stages investigated (Widenfalk et al., 
1998). Gfrα3 encoding mRNA was also 
found in developing non-neuronal tissues, 

for instance in the kidney, liver, and heart 
(Jing et al., 1997; Widenfalk et al., 1998). 
Like GFRα1 and GFRα2, GFRα3 was 
found to be expressed in the developing 
carotid body (Leitner et al., 2005).

The study on structure of GFRα3 and 
ARTN complex revealed that the complex 
consists of a single ARTN homodimer 
and two GFRα3 D2D3 molecules (Wang 
et al., 2006). This “D2D3” modules 
are closely packed together to form a 
compact glubolar structure (Wang et 
al., 2006) which is unexpected based on 
the speculation that the GFRαs fold into 
three independent domains (Leppänen 
et al., 2004). The interface between the 
two domains of GFRα3 forms a large 
hydrophobic core involved ten highly 
conserved residues in all GFRα receptors. 
The binding domain for ARTN in GFRα3 
is the D2 domain only, the D3 domain 
of GFRα3 has no interaction with ARTN 
(Wang et al., 2006), which is in contrast to 
the speculation that it forms direct ligand 
contacts (Leppänen et al., 2004). Together 
with the mutant chimeric receptors 
analysis, the data indicate that the role 
of the D3 domain of GFRα3 appears to 
stabilize the D2 domain (Wang et al., 
2006). 

1.2.2.1.4. GFRα4 
 GFRα4, the preferred receptor for PSPN 
signaling, was fi rst identifi ed from chicken 
embryos (Thompson et al., 1998). The 
chicken cDNA encodes a protein of 431 
amino acids with an identity of about 
40% to mammalian GFRα1 and GFRα2, 
but only with an identity of about 27% 
to mammalian GFRα3.  Chicken GFRα4 
also has the same pattern of conserved 
cysteines as the other GFRαs, a putative 
signal sequence and a putative sequence 
for a GPI-anchor (Thompson et al., 
1998). 
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Functional studies of chicken GFRα4 
showed that it binds PSPN with a Kd of 
approximately 1 nM. By introducing 
gfrα4 and ret into neurons, it was shown 
that GFRα4 and RET together can mediate 
PSPN signaling and support the survival of 
neurons (Enokido et al., 1998). During the 
chicken development, GFRα4 is expressed 
in CNS, but also in non-neuronal tissues, 
such as kidney, heart and liver (Thompson 
et al., 1998).

The mammalian GFRα4 was identifi ed 
after the chicken GFRα4. Rat, human and 
mouse GFRα4 receptors were recently 
cloned by different laboratories. All the 
receptors lack the fi rst Cys-rich domain, 
characteristic of the other GFRαs including 
the chicken GFRα4 (Lindahl et al., 
2000; 2001). It was shown that different 
mammalian GFRα4s can bind PSPN with 
high affi nity. The Kds were about 6 nM, 
100 pM and 2 nM for rat, human and 
mouse GFRα4, respectively (Masure et 
al.,  2000; Lindahl et al., 2001 and I of 
this study). The rat gfrα4 gene consists of 
six exons. Alternative splicing gives rise to 
two variants, GFRα4 A and GFRα4 B with 

different COOH-termini of the translated 
proteins. GFRα4 A protein has 273 amino 
acids with a predicted molecular weight 
of 30 kDa. It has two predicted possible 
GPI cleavage sites meaning that it may 
be a GPI-anchored protein on the cell 
surface. GFRα4 B protein has 258 amino 
acid residues with a molecular weight of 
28 kDa, and has a shorter hydrophilic 
C-terminus, which indicates that it 
could represent a soluble GFRα4 form. 
Both forms have one putative N-linked 
glycosylation site (Masure et al., 2000). 
The gfrα4 encoding mRNA is expressed 
in the cortex, hippocampus, and substantia 
nigra as shown by in situ hybridization 
experiments in rats (Masure et al., 2000). 
However, though rat GFRα4 binds PSPN 

with a high affi nity, it does not mediate the 
activation of RET upon PSPN-stimulation 
(Masure et al., 2000). It is therefore 
assumed that the discovered rat GFRα4 
variant is biologically inactive.   

Mouse gfrα4 was identified from 
the mouse thyroid tissue based on the 
homology to other gfrαs (Lindahl et 
al., 2000). The mouse gfrα4 gene also 
consists of six exons, and the predicted 
full-length protein consists of 263 amino 
acid residues with a hydrophobic signal 
sequence and C-terminal sequence typical 
for GPI-anchored protein. The mouse 
protein is 53 % identical with the chicken 
GFRα4. Mouse GFRα4 also lacks the fi rst 
cysteine-rich domain (D1) (Lindahl et al., 
2000). Alternative splicing of the mouse 
gfrα4 gene gives rise to three variants, the 
putative GPI-anchored, transmembrane 
and soluble forms (described in more detail 
in the section of results and discussion and 
in the original publications I, II, and IV). 
The alternative splicing of the mouse gfrα4 
gene occurs tissue-specifi cally (Lindahl et 
al., 2000).

Mouse gfrα4 mRNA has been 
detected in different tissues, including the 
midbrain dopamine neurons (Lindahl et 
al., 2000; Åkerud et al., 2002). However, 
the expression of the GPI-anchored 
GFRα4 isoforms is very restricted. The 
isoforms are expressed in a tissue-specifi c 
manner, for instance, by semiquantitative 
RT-PCR analysis, the GPI-anchored form 
was detected in adrenal and thyroid from 
P0 to 6 weeks though the expression levels 
vary during different stages (Lindahl et al., 
2000). In pituitary, this isoform continues 
to be expressed until adulthood. In testis, 
the expression of the GPI-anchored form 
was found up to 4 weeks. The mRNA 
encoding the transmembrane form of 
GFRα4 has a higher expression level in 
the adrenal, thyroid (P0 and 6 weeks), 
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pituitary and testis as compared with the 
GPI-anchored form (Lindahl et al., 2000). 
The expression pattern of the mRNA for 
soluble GFRα4 is similar with that of 
the transmembrane form, but there is in 
addition a very low expression in the brain 
(Lindahl et al., 2000). The tissue-specifi c 
distribution of the three GFRα4 variants 
may indicate the various biological 
functions of them.

Human GFRα4 was identified by 
using the information about mouse gfrα4 
(Lindahl et al., 2001). The alternative 
splicing of the human GFRα4 gene also 
gives rise to three different forms: GFRα4a, 
GFRα4b, and GFRα4c. GFRα4a encodes 
a protein of 290 amino acid residues and 
corresponds to the mouse GPI-anchored 
GFRα4. It contains a putative N-terminal 

hydrophobic signal, one N-linked 
glycosylation site, and a sequence for a 
GPI-anchore in the C terminus. Similary 
to rat and mouse GFRα4 human GFRα4 
also lacks the fi rst cysteine-rich domain 
(Lindahl et al., 2001). The amino acid 
sequence alignment shows that the identity 

between mouse and human GFRα4 is 
76%, whereas the identity between human 
and chicken GFRα4 is 54%. GFRα4b 
differs from GFRα4a with a small intron 
(79 bp) between exons 2 and 3 included 
in the transcript (Lindahl et al., 2001). It 
also differs from GFRα4a in that the 3´-
splice site of exon 4 is 11 bp upstream 
of the corresponding site in the GFRα4a 
transcript. Translation of this transcript 
leads to a protein of 299 amino acids, 
where N- and C-terminal ends are identical 
to those of the GFRα4a form. However, 
this “b” form has a unique stretch of 66 
amino acids in the middle region (Lindahl 
et al., 2001). GFRα4c is a protein of 236 
amino acids, which is considered to be a 
soluble protein as the transcript includes 
two introns (between exons 2 and 3, and 

between exons 3 and 4 ) resulting in a 
frameshift with a stop codon located inside 
exon 5 (Lindahl et al., 2001).

The expression of human GFRα4 
mRNA was detected at high levels in the 
adult thyroid gland and at lower levels in 
the fetal adrenal and fetal thyroid gland 
(Lindahl et al., 2001). Interestingly, 
GFRα4 mRNAs, both encoding the two 
GPI-anchored forms at the similar level 
and the soluble form at a low level, 
were expressed in the medullary thyroid 
carcinoma (MTC), particularly in the 
malignant C-cells, but not in other primary 
thyroid carcinomas (Lindahl et al., 2001). 
This expression is pretty restricted, 
since no expression was detected in the 
accompanying connective tissue and blood 
vessels, nor in the adjacent apparently 
normal follicle cells or other thyroid 
tumors (Lindahl et al., 2001). 

1.2.2.2. Ret and its splice variants
Ret was originally identified as a novel 
oncogene (transforming gene) (REarranged 
during Transfection) activated by DNA 
rearrangement (Takahashi et al., 1985). 
This chimeric oncogene encoded a fusion 
protein consisting of an N-terminal 
dimerizing domain and a C-terminal 
tyrosine kinase domain (Takahashi et 
al., 1985; Takahashi and Cooper, 1987). 
The normal allele of ret encodes a 
receptor tyrosine kinase (RTK) with four 
cadherin-related motifs and a cysteine-
rich region in the extracellular domain, a 
single membrane-spanning domain, and a 
tyrosine kinase domain in the intracellular 
domain  (Takahashi and Cooper, 1987; 
Airaksinen et al., 1999). RET is a 
glycosylated protein of 150 kDa and 170 
kDa, the latter one is the fully glycosylated 
mature protein located on the cell surface 
which acts as the active signaling receptor 
for GFLs (Ponder, 1999). The 150 kDa 
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protein is considered as a partially 
glycosylated immature protein that 
resides in the ER (Ponder, 1999). The fi rst 
cadherin-like domain in the extracellular 
portion has been shown to be required 
for the interaction with the GFRα/GFL 
complexes (Kjær and Ibáñez, 2003). The 
second and third cadherin-like domains 
form a calcium binding site (Anders et al., 
2001). Ca2+ is important for the transport 
of the fully mature RET protein to the 
plasma membrane (van Weering et al., 
1998), as well as for the GFL-dependent 
function of the receptor on the cell surface 
(Nozaki et al., 1998).

RET is  expressed widely in 
mammalian embryos. During embryonic 
development,  RET is mainly expressed in 
the excretory and the nervous systems and 
plays diverse functions in the development 
(Pachnis et al., 1993; Tsuzuki et al., 
1995). In the nervous system, RET is 
expressed in the progenitors of the ENS 
and is required for their migration. RET 
is important for the development of 
mouse enteric, autonomic and sensory 
neurons of the PNS, as well as for the 
motor neurons of the CNS (Natarajan et 
al., 2002). Outside of the nervous system, 
RET is mainly expressed in the embryonic 
kidney (Pachnis et al., 1993), and mice 
lacking RET show defects in the kidney 
and ENS development (Schuchardt et 
al., 1994). RET is also expressed in the 
spermatogonia stem cells (Meng et al., 
2000). In adult humans, RET is expressed 
in cells of the nervous system, in C-cells, 
the adrenal medulla and the parathyroids 
(Nakamura et al., 1994). 

The  in t race l lu lar  domain  of 
RET contains several tyrosine auto-
phosphorylation sites. The phosphorylated 
tyrosine residues serve as docking sites for 
various intracellular signaling molecules 

in the target cells (Putzer and Drosten, 
2004; Santoro et al., 2004). Among the 
phosphorylated tyrosine residues, four are 
well studied (Tyr 905, Tyr 1015, Tyr 1062, 
and Tyr 1096) (Airaksinen and Saarma, 
2002). The most interesting one is the Tyr 
1062 which upon phosphorylation can 
bind at least six different molecules (Shc, 
FRS2, DOK4/5, IRS1/2, enigma, and 
PKCα) (Airaksinen and Saarma, 2002; 
Andreozzi et al., 2003), and is important 
for the transforming ability of mutant RET 
(Asai et al., 1996). Knock-in mice with 
mutated Tyr 1062 have a severe defect 
of enteric neurons in addition to kidney 
hypodysplasia, indicating that Tyr 1062 
is important for the development of the 
enteric nervous system and the kidney 
(Jijiwa et al., 2004). Tyr 905 binds to 
Grb7/10,  Tyr 1015 to phospholipase Cγ 
(PLCγ), and Tyr 1096 to Grb2 (Pandey 
et al., 1995; Borrello et al., 1996; Alberti 
et al., 1998). Recently, the Tyr 981 in 
RET has been characterized as a residue 
that recruits c-Src and thereby mediates 
neuronal survival (Encinas et al., 2004). 
Recent studies also demonstrate that the 
same tyrosine residue, Tyr 1062, can 
contribute differently to the biological 
functions of the two RET isoforms 
(Degl’Innocenti et al., 2004). A point 
mutation of this residue to Ala in RET51 
did not abolish the ability of SK-N-MC to 
scatter, or the branching in MDCK cells. 
However, this mutation impairs both the 
scattering of SK-N-MC and branching 
of MDCK cells mediated by RET9 
(Degl’Innocenti et al., 2004). Besides the 
phosphorylated tyrosine residues, recent 
data show that the phosphorylation of 
Ser 696 is involved in the modulating 
the GDNF-induced activity of RET 
(Fukuda et al., 2002). Importantly, the 
phosphorylation of Ser-696 in RET is not 
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induced by GDNF, but rather seems to be 
regulated by protein kinase A (PKA) in a 
GDNF-independent way.      

By alternatively splicing of the 3’ 
region, three RET variants, RET9 (1072 
amino acids), RET43 (1106 amino acids), 
and RET51 (1114 amino acids), are 
generated. Of these three variants RET9 
and RET51 are the major isoforms. The 
difference between these two forms is in 
their C-terminal tails. RET9 has a tail of 
nine amino acids, which is replaced by an 
unrelated tail of 51 amino acids in RET51 
(Ishizaka et al., 1989). Although the two 
forms behave similarly in a number of in 
vitro assays, in vivo assays with mutant 
mice demonstrate that when breeding of 
transgenic mice expressing either RET9 
or RET51 with RET null mice, only RET9 
can rescue the kidney phenotype of the 
RET null mice (Srinivas et al., 1999). 
The importance of RET9 in embryonic 
development was confirmed by studies 
on transgenic mice with monoisoformic 
RET9 or monoisoformic RET51 (de Graaff 
et al., 2001). Monoisoformic RET9 mice 
are viable and appear normal. In contrast, 
monoisoformic RET51 animals, which 
lack RET9, have kidney hypodysplasia 
and lack enteric ganglia from the colon. 
This indicates that RET51 is dispensable 
during embryogenesis, whereas RET9 
is necessary and sufficient for normal 
development of the ENS and the excretory 
system (de Graaff et al., 2001). However, 
RET51 may be involved in differentiation 
events later during kidney organogenesis 
(de Graaff et al., 2001; Lee et al., 2002). 
RET51, compared with RET9, associates 
more strongly with the ubiquitin ligase 
Cbl, which leads to faster turnover of 
RET51 (Sariola and Saarma, 2003; Scott 
et al., 2005). 

Interestingly, in addition to its function 
as the signaling receptor for GDNF family 

ligands, RET exhibits a pro-apoptotic 
property in the absence of GDNF. This 
pro-apoptotic activity can be blocked by 
the ligand implicating a possible novel 
functional mechanism, for example in 
ENS development (Bordeaux et al., 2000). 
However, additional experiments and in 
vivo results are needed to understand the 
importance of RET-mediated apoptosis.

1.2.2.3. Alternative receptors
Throughout  the nervous system, 
particularly in the forebrain and cortex, 
the expression of GFRα proteins is wider 
than that of RET (Trupp et al., 1997; 
Yu et al., 1998), indicating that GFLs 
in the complex with GFRαs may signal 
independently of RET by using alternative 
transmembrane proteins (Poteryaev et al., 
1999; Trupp et al., 1999). One candidate 
for the alternative GFL signaling is 
the MET receptor. Exogenous GDNF 
can partially restore ureteric branching 
in ret-/- mice that exhibit severe renal 
hypodysplasia (Popsueva et al., 2003). 
In MDCK cells expressing GFRα1, 
but lacking RET, GDNF stimulates 
branching but not chemotaxis. GDNF-
dependent chemotaxis is only detectable 
after transfection of ret into these cells. 
MET can be phosphorylated upon GDNF 
stimulation in cells expressing GFRα1 
(but lacking RET), indicating that the 
MET receptor might contribute to RET-
independent GDNF signaling. However, 
no detectable interaction between GDNF/
GFRα1 and MET is found, which makes 
a direct interaction unprobable (Popsueva 
et al., 2003). Recently, another membrane 
protein, neural cell adhesion molecule 
(NCAM), has also been demonstrated 
to be an alternative receptor for GFL 
signaling (Paratcha et al., 2003). NCAM 
(p140NCAM isoform) is a prominent 
cell adhesion molecule in the nervous 
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system, and participates in a number of 
developmental processes, for instance,  
cell migration, neurite outgrowth, and 
synaptic plasticity (Schachner, 1997; 
Crossin and Krushel, 2000; Ronn et al., 
2000). NCAM is coexpressed with GFRα1 
in many tissues lacking RET (Crossin and 
Krushel, 2000). The intracellular domain 
of p140NCAM  NCAM has been shown to 
associate with the Src family tyrosine 
kinase member Fyn (Beggs et al., 1997). 
NCAM has been demonstrated to bind 
GDNF with a high-affi nity in the presence 
of GFRα1 (Kd=1.1±0.32 nM) (Paratcha 
et al., 2003). Interestingly, GDNF also 
directly binds to NCAM (Kd=5.2±1.8 nM) 
(Paratcha et al., 2003). In neuronal cells 
and ganglia, GDNF can induce the activity 
of Fyn via NCAM (Paratcha et al., 2003). 
In vitro assays showed that GDNF, only 
in the presence of GFRα1, can stimulate 
Schwann cell migration via NCAM, 
and GDNF can also mediate the axonal 
growth in primary neurons via NCAM and 
Fyn kinase. In both cases, the activity is 
independent of RET (Paratcha et al., 2003). 
Another related study demonstrated that 
the in vitro and in vivo effects of GDNF 
on midbrain dopaminergic neurons are 
inhibited by NCAM-blocking antibodies, 
which further supports the physiological 
relevance of GDNF signaling through 
NCAM (Chao et al., 2003). 

In vitro  accumulated evidence 
suggests that RET-independent GDNF/
GFRα-mediated signaling plays an 
important physiological function. Either 
by capturing and concentrating diffusible 
GFLs and presenting them in trans to 
RET-expressing cells (Enomoto et al., 
2004), or by signaling through NCAM or 
MET in trans and in cis (Paratcha et al., 
2001; Ledda et al., 2002; Paratcha et al., 
2003; Popsueva et al., 2003). 

1.2.3. GFL signaling pathways
The ligand/receptor complexes for 
GFLs include three components, the 
transmembrane receptor RET, the GPI-
anchored GFRαs, and the GFLs. In 
this complex RET acts as the signaling 
transducer and GFRαs act as specific 
ligand-binding components. The four 
identified GFRα receptors, GFRα1, 
2, 3, and 4 first bind their preferred 
ligands. However there may be weak 
cross-talks between GDNF-GFRα2 
and NRTN-GFRα1, as well as between  
ARTN-GFRα1 (Airaksinen et al., 1999; 
Airaksinen and Saarma, 2002) (Fig. 3), 
but the physiological function of these 
interactions is unclear .  

The binding of various adaptor 
proteins to the different docking sites 
activates a variety of signaling molecules. 
The recruitment of Shc to Tyr 1062 
triggers RAS-ERK(MAPK) and PI-
3K/AKT pathways (Besset et al., 2000; 
Hayashi et al., 2000; Kurokawa et al., 
2001). The JNK and MAPK pathways are 
also activated mainly through Tyr1062 
(Durick et al., 1996; Hayashi et al., 
2000; Hennige et al., 2000; Grimm et al., 
2001; Melillo et al., 2001). Activation of 
MAPK and PI-3K/AKT pathways via Tyr 
1062 has been shown to be important for 
the activation of the CREB and NFκB 
transcription factors (Hayashi et al., 2000),  
as well as for the survival of PC12 cells 
(De Vita et al., 2000). In addition, RAS 
activation is essential for RET-induced 
cell differentiation in PC12 cells (Califano 
et al., 2000),  whereas PI-3K signaling 
independent of AKT is necessary for 
lamellipodia formation that is a critical 
event during neuritogenesis (van Weering 
and Bos, 1997; van Weering and Bos, 
1998).  The role of PLCγ is to mediate 
Ca2+ release from intracellular pools. 
Recently, it has been shown that PLCγ 
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Fig. 3. Schematic representation of the interaction between GFLs and GFRs, RET. Note, the 
binding of enigma to Y1062 is independent of its phosphorylation (Modifi ed based on the picture 
kindly provided by Professor Saarma). 

activation is involved in the enhancement 
of neurotransmission mediated by NT-3 
(Yang et al., 2001). 

1.2.4. GFLs and lipid rafts
There is increasing evidence showing 
that lipid rafts are involved in growth 
factor triggered signal transduction. Lipid 
rafts are microdomains in the cell surface 
that consist of dynamic assemblies of 

cholesterol and sphingolipids (Simons and 
Toomre, 2000), as well as GPI-anchored 
proteins, certain transmembrane proteins, 
doubly acylated proteins, cholesterol-
linked and palmitoylated proteins (Saarma, 
2001). These lipid-associated proteins 
usually function in transmembrane 
signaling events. The close association 
of the proteins in the lipid rafts facilitate 
their interactions with each other and 
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prevent them from interacting with 
molecules outside the rafts. However, 
some transmembrane proteins associate 
with lipid rafts only transiently by entering 
or leaving lipid rafts in response to the 
ligand binding. This supports the idea that 
lipid rafts may be a platform for signal 
transduction (Paratcha and Ibáñez, 2002). 
The GFRα receptors, by virtue of the 
GPI-anchor, are located in lipid rafts, and 
therefore lipid rafts also have an important 
role for GFL-signaling (Poteryaev et al., 
1999; Tansey et al., 2000; Paratcha et al., 
2001). 

In cells coexpressing RET and 
GFRα1, GDNF stimulation triggers the 
localization of RET into lipid rafts. This 
recruitment is essential for GDNF-induced 
differentiation, neuronal survival and 
downstream signaling. Moreover, RET 
interacts with Src family kinases (SFK) 
(p60Src) only when localized to lipid 
rafts, and Src activity is necessary for an 
optimal GDNF-mediated differentiation, 
neuronal survival and signaling, (Tansey 
et al., 2000; Encinas et al., 2001). GDNF 
signaling has been shown to be dependent 
on the integrity of lipid rafts, because the 
depletion of cholesterol from cells with 
methyl-β-cyclodextrin, a treatment known 
to disorganize lipid rafts, reduces GDNF-
dependent signaling (Tansey et al., 2000).

The non-overlapping expression 
of RET with GFRαs indicates that RET 
somehow may become activated by other 
means. Paratcha et al. and Worley et al. 
demonstrated that soluble GFRα1 which is 
formed by enzymatic cleavage of the GPI-
anchor can promote RET signaling in trans 
in the presence of GDNF (Paratcha et al., 
2001; Worley et al., 2000). Furthermore, 
soluble GFRα1 can also recruit RET into 
lipid rafts, by a novel mechanism that 
requires the activity of its intracellular 

kinase domain (phosphorylated Tyr 905, 
or Tyr 1062) (Paratcha et al., 2001). 

GFLs may signal independently of 
RET. In vitro assays show that GDNF 
promote biochemical and biological 
responses in cells expressing GFRα1, 
but lacking RET. In these cells, GDNF-
stimulated GFRα1 activates Src family 
tyrosine kinases, triggers phosphorylation 
of phospholipase Cγ (PLCγ), MAPK and 
cAMP response element binding protein 
(CREB), up-regulates the transcription of 
c-fos encoding mRNA and also promotes 
cell survival (Poteryaev et al., 1999; Trupp 
et al., 1999). The discovery of MET and 
NCAM as alternative receptors explains 
how GFLs may signal independently of 
RET (Paratcha et al., 2003; Popsueva et 
al., 2003).

1.2.5.   What are the knockouts of 
GFLs and their receptors telling us?

1.2.5.1. The defects in nervous system 
of GFL, GFRα and RET knockouts
Gfrα1-/-, and ret-/- mice, like gdnf-/- 
mice, die soon after birth. The phenotypes 
of GFRα1 and RET mutant mice are 
strikingly similar, but not identical with 
that of GDNF mutants (table 1), and 
display neuronal, spermatogonial and 
renal deficits. The motoneurons of the 
CNS are defective in GFRα1 mutant mice. 
For example, about 20-40 % of spinal and 
cranial motoneurons are missing in gfrα1-
/-, which is similar with that of gdnf-/- 
mice (Cacalano et al., 1998; Garces et al., 
2000). However, in ret-/- mice, signifi cant 
losses are observed in all motoneuron 
populations examined (Airaksinen and 
Saarma, 2002). In PNS, no effects on the 
number of sensory neurons of spinal and 
trigeminal ganglia are detected in both 
gfrα1-/-  and gdnf-/- newborns (Airaksinen 
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et al., 1999; Oppenheim et al., 2000). In 
gfrα1-/- mice, no loss of SCG neurons was 
observed at birth, but about 30% loss was 
observed in gdnf-/- mice (Moore et al., 
1996; Cacalano et al., 1998; Enomoto et 
al., 1998). However, the migration of SCG 
precursor cells and initial axon growth are 
defective in ret-/- mice (Enomoto et al., 
2001). In parasympathetic neurons, the otic 
and sphenopalatine ganglia are missing 
in newborn of gdnf-/-, gfrα1-/- and ret-/- 
mice indicating that this ligand-receptor 
complex is required for the embryonic 
development of these parasympathetic 
neurons (Enomoto et al., 2000; Rossi et 
al., 2000). The enteric neurons are lacking 
below the stomach in gdnf -/-, gfrα1-/- and 
ret-/-  mice (Manie et al., 2001). 

The nrtn-/- and gfrα2-/- mice, unlike 
the gdnf -/-, gfrα1-/- and ret -/- mice, 
are viable and fertile. In CNS, no gross 
defects of motoneurons are observed in 
nrtn - and gfrα2-deficient mice (Garces 
et al., 2000), but a subtle deficit in the 
synaptic transmission of hippocampal 
neurons in gfrα2-/- mice has been 
reported (Nanobashvili et al., 2000). In 
the parasympathetic nervous system, the 
cholinergic innervation is almost absent 
in the lacrimal and salivary glands and 
severely reduced in the small bowel. A 
lack of vagally stimulated secretion of 
pancreatic zymogens has been observed 
in gfrα2-/- mice. Also the parasympathetic 
innervation in the sublingual gland is 
missing and markedly reduced in the 
parotid gland that may explain why gfrα2-
/- mice grow poorly  (Rossi et al., 1999; 
Rossi et al., 2000; Rossi et al., 2003). In 
other ganglia the reduced cell number, 
soma size as well the failed innervation 
are observed in nrtn-/- and gfrα2-/- mice 
(Airaksinen and Saarma, 2002). The data 
clearly demonstrates that NRTN-GFRα2 
signaling via RET is required for the later 

target innervation of parasympathetic 
neurons and for the survival of many 
submandibular neurons during target 
innervation (Rossi et al., 2000). 

The expression of GFRα3 appears 
largely restricted to the PNS and ganglia. 
Accordingly, ARTN has the ability to 
enhance the survival, proliferation and 
neurite outgrowth of sympathetic neurons 
in vitro (Baloh et al., 1998a; Baloh et al., 
1998b; Naveilhan et al., 1998; Widenfalk 
et al., 1998; Andres et al., 2001), 
suggesting that ARTN/GFRα3 signaling 
infl uences the development and function 
of the sympathetic neurons. In vitro ARTN 
also stimulates the neurite outgrowth of 
juvenile DRG sensory neurons (Paveliev 
et al., 2004).

The artn-/- and gfrα3-/- mice are 
viable and fertile (Nishino et al., 1999; 
Honma et al., 2002). It has been shown 
that, in gfrα3-/- mice the survival of SCGs 
in adult is impaired due to the massive 
apoptosis or marked reduction in size 
of SCG during postnatal development 
(Nishino et al., 1999). However, in 
artn -/- mice, the size of SCG ganglia is 
normal except that the peripheral target 
is not innervated. This indicates that 
ARTN may be critical for sympathetic 
innervation to peripheral targets but not 
for sympathetic neuron survival in vivo. 
Therefore other target-derived trophic 
factors, such as NGF, must be critical for 
postnatal survival of sympathetic neurons 
once the axonal targets are innervated 
(Honma et al., 2002). Using whole mount 
TH immunostaining, the rostral migration 
of SCG precursor cells was observed to be 
impaired in gfrα3-/- and artn-/- embryos 
(E11.5-E14.5). In addition, SCG ganglia 
are abnormally located and the trunk 
sympathetic chain ganglia in adult and P0 
thoracic region are smaller and aberrantly 
segmented in both mutant mice. Although 
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GFRα3 is highly expressed in neurons of 
the peripheral sensory ganglia, including 
DRG and trigeminal, no deficiency is 
observed  in these neurons in either mutant 
mice (Nishino et al., 1999; Honma et al., 
2002).

The pspn-/- and gfrα4-/- mice appear 
normal in development and behavior 
(Tomac et al., 2002; Lindfors et al., 2006) 
though the gfrα4 mRNA is expressed 
in many areas in both embryonic and 
adult rodents including the cortex and 
the hippocampus (Lindahl et al., 2000; 
Masure et al., 2000). The expression of 
PSPN and GFRα4 in the cortex and the 
hippocampus could suggest a potential 
function for PSPN/GFRα4 in memory 
and learning. In vitro data indeed showes 
that PSPN can promote the survival of 
rat motoneurons (Milbrandt et al., 1998). 
But no in vivo data is in line with the in 
vitro observations (Tomac et al., 2002). 
However, the ablation of the pspn gene 
in mice is increasing their sensitivity to 
stroke indicating that  the pspn-/- mice 
developed a more severe cerebral infarct 
after ischemia (Tomac et al., 2002). 
Furthermore, in vitro experimental data 
showed that a pretreatment with PSPN 
can markedly reduce the infarct volume of 
ischemia and protect cortical neurons from 
hypoxia-induced cell death (Tomac et al., 
2002).

1.2.5.2. The defects in non-nervous 
system of GFL, GFRα and RET  
knockouts
GDNF signaling through RET and the 
coreceptor GFRα1 is one of the main 
signaling pathways that promotes ureteric 
bud branching morphogenesis (Sariola and 
Saarma, 2003). Mice lacking GDNF die 
soon after birth, and show kidney agenesis 
owing to the failure to induce of ureteric 
buds. The enteric innervation is also 

defective (Pichel et al., 1996; Moore et al., 
1996; Sanchez et al., 1996). In vivo data 
from transgenic mice show that GDNF-
dosage regulates the spermatogonial 
self-renewal and differentiation (Meng 
et al., 2000; Meng et al., 2001). Recent 
data confirms that GDNF-induced cell 
signaling is essential in spermatogonial 
stem cells (SSCs) self-renewal (Kubota 
et al., 2004). Like the gdnf-/- mice, gfrα1-
/- mice show renal abnormalities. Most of 
the homozygous animals lack both kidneys 
(Cacalano et al., 1998; Enomoto et al., 
1998). In ret-/- homozygous, the animals 
show renal agenesis or several dysgenesis 
(Schuchardt et al., 1994). However, 
unlike the gdnf +/- mice, where up to 30 
% animals appear kidney abonormalities 
(Sanchez et al., 1996), gfrα1+/- and ret +/- 
mice have normal kidneys comparing to 
the wild type animals (Schuchardt et al., 
1994; Enomoto et al., 1998).   

Nrtn-/- and gfrα2-/- mice have dry 
eyes with blinking eyelids due to the 
loss of innervation of the lacrimal gland. 
gfrα2-/-, but not nrtn -/- mice grow poorly 
after weaning (Heuckeroth et al., 1999; 
Rossi et al., 1999). This defect may due 
to the failure innervation of salivary gland 
leading to malnutrition (Rossi et al., 
1999). 

The artn-/- and gfrα3-/- mice have 
the ptosis. The ptosis may result from the 
failure of sympathetic innervation to the 
superior tarsus muscle by the SCG. In 
both artn-/- and gfrα3-/-  mice the SCG 
ipsilateral to the eye displaying ptosis is 
either missing or markedly  reduced in 
size (Nishino et al., 1999; Honma et al., 
2002).

Mammalian gfrα4 gene was initially 
cloned from thyroid and thought to be 
required for the thyroid development. 
However, the functional ablation of gfrα4 
gene in mice does not cause any gross 
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defects in the thyroid, only mild testis 
degeneration was observed (Lindfors et 
al., 2006). The expression of GFRα4 in 
the thyroid C-cells suggests that it may 
be important for the development of C-
cells or some tumors derived from thyroid 
C-cells, for instance, medullary thyroid 
carcinoma (MTC). Recent studies on 
the gfrα4-/- mice crossed with RETMEN2B 
knock-in mice showed that the number 
of C-cells, which are calcitonin positive 
as well, is reduced in RETMEN2B/GFRα4 
double mutant mice indicating that 
GFRα4 might be required for C-cell 
development (Lindahl, 2004). Moreover, 
the physiological role of GFRα4 has 
been assessed by measuring the thyroid 
calcitonin levels in GFRα4-defi cient and 
wild type mice. In GFRα4 null mice, the 
calcitonin content is signifi cantly reduced 
by about 60 % in newborn, by about 45 % 
in juvenile, but not in adult null (Lindfors 
et al., 2006).  The studies of pspn-/- 
mice show  that PSPN may regulate the 
glutamate receptor-mediated calcium 

infl ux in a biphasic manner (high and low 
concentrations) (Tomac et al., 2002).

1.2.6. GFLs, GFRαs and RET related 
diseases
               
1.2.6.1. Neurodegeneration diseases
Hirschsprung disease (HSCR) is a 
congenital disorder characterized by 
the absence of ganglion cells in the 
gastrointestinal tract. It is a disease which 
caused by the inactivity of the mutant 
genes and occurs in one in 5000 live births. 
Up to 90% of HSCR families are linked to 
ret mutations (mutations were dectected in 
up to 50% of familial patients and in 7%-
35% of sporadic HSCR cases) (Lantieri 
et al., 2006). In HSCR, the mutations of 
RET are dispersed throughout the whole 
gene, and the nucleotide changes include 

all inactivation mutants, microdeletions, 
insertions, splice variants, nonsense 
mutations and missense mutations. So far 
more than 100 missense mutations have 
been described, however none of them 
is suffi cient for HSCR, meaning that the 
other mutant genes or factors, such as 
SOX10, EDNRB, EDN3 and ECE1, are 
needed. The molecular mechanism of 
HSCR pathogenesis is sustained by loss-
of-function effects of RET mutations 
(Kashuk et al., 2005; Lantieri et al., 2006). 
Several mutations are also found in the 
gdnf gene from patients with HSCR. Only 
fi ve of these are missense mutations and 
therefore result in a change in the amino 
acid sequence. The mutation at codon 
93 with the replacement of arginine with 
tryptophan (R93W) has been reported in 
HSCR patients having RET mutations 
as well (Angrist et al., 1996; Salomon et 
al., 1996). This mutation has also been 
found in sporadic pheochromocytoma 
(Woodward et al., 1997).  The mutation 
at codon 150 (change from aspartate to 
asparagine) was identified in a case of 
sporadic HSCR in a patient with Down’s 
syndrome (Salomon et al., 1996). The 
replacement of threonine 154 with serine 
(T154S) was found as a de novo mutation 
in a case of sporadic HSCR (Ivanchuk 
et al., 1996). In addition one mutation, 
proline 21 (P21S), was detected in the 
pre-pro-part of GDNF (Salomon et al., 
1996), and a mutation of isoleucine 211 to 
methionine has been reported (Martucciello 
et al., 1998; Martucciello et al., 2000). 
However, none of the GDNF mutations 
identifi ed so far in HSCR patients are per 
se likely to result in HSCR. Functional 
studies of the effects of these mutations 
on GDNF function, for instance the ability 
to mediate the activity of RET, indicated 
that all mutations, except P21S which may 
have a function in the post-translation 
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processing of the protein (Salomon et al., 
1996), appeared not to affect the ability 

of GDNF to activate RET. However two 
of them (D150N and I211M) resulted 
in a signifi cant  reduction in the binding 
affi nity of GDNF for GFRα1 (Eketjäll and 
Ibáñez, 2002). These data indicate that 
these two mutations may, in conjunction 
with other genetic lesions, contribute to 
the pathogenesis of this disease. 

NRTN, the close homolog of GDNF, 
has also been considered to be a causative 
gene of HSCR. One mutation was 
identifi ed at codon 96 with the replacement 
of alanine with serine (A96S). This amino 
acid substitution is very likely to alter the 
cleavage of the pre-pro-form of NRTN 
into mature NRTN, but the data showed 
that this mutation appears not suffi cient to 
cause HSCR (Doray et al., 1998). So far, 
there are no reports concerning ARTN- or 
PSPN-mutations which would be involved 
in the HSCR disease. 

Although ten mutations in GFRα1 
have been detected, no disease specific 
mutations of this gene were found in a 
large population of HSCR patients. Of 
ten mutations, five of them resulted in 
amino acid substitutions, but none of 
these changes was found within predicted 
functional domain (Myers et al., 1999). In 
GFRα2, six sequence variants were found, 
but four of them did not cause any amino 
acid change. The other two did affect the 
amino acid sequence, but no correlation 
between these variants and the HSCR was 
detected (Vanhorne et al., 2001). With 
GFRα3, three mutations were identifi ed, 
but like GFRα1 and GFRα2, none of them 
correlates with the disease (Onochie et al., 
2000). Four sequence variants were also 
identifi ed in GFRα4, but no relationship 
with the HSCR disease was detected.  
These data showed that none of the single 

mutations of GFRα1-4 is strongly involved 
in HSCR (Borrego et al., 2003).  

Under the attempt to identify the 
gene responsible for Hallervorden-Spatz 
syndrome (NBIA1 syndrome, neuro-
degeneration with brain iron accumulation 
type 1), two variants of GFRα4 that would 
alter the amino acid sequence were found 
from two NBIA1 families. In one family, 
a nucleotide substitution at residue 39, 
from thymine to adenine led to a change 
from one conserved cysteine to serine 
(C39S).  In a second family, a cytosine 
to thymine change resulted in a proline to 
serine change at residue 145 (P145S).  The 
P145S change seems not to be correlated 
with the disease, and the role of the C39S 
mutation is unclear (Zhou et al., 2001).

1.2.6.2. Tumorgenesis 
Besides the involvement in the neuro-
degeneration disorders, GFRα genes seem 
to have some correlation with MTC. Six 
mutations in GFRα1, one mutation in 
GFRα2, and two mutations in GFRα3 have 
been identifi ed, but only two variants in 
GFRα1 seem to correlate with the sporadic 
MTC. One variant is at codon 6 with the 
replacement of leucine with proline (L6P), 
and the other sequence variant which 
is normally very rare is upstream of the 
coding sequence (at -193 ) (Borrego et al., 
2002). Recent studies (discussed in more 
detail below) showed that the mutations 
of GFRα4 may contribute to the inherited 
multiple endocrine neoplasia type 2 (MEN 
2) disease (Vanhorne et al., 2005). It is an 
autosomal dominant cancer syndrome 
characterized by pheochromocytoma 
derived from the adrenal chromaffi n cells 
and MTC, tumors arising from calcitonin-
secreting C cells of the thyroid (Eng et al., 
1996; Brandi et al., 2001; Machens et al., 
2003).
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Although there are several mutations 
of genes contributing to MEN 2, the 
mutations of the RET proto-oncogene 
are the major contributor. However, there 
is considerable phenotypic variation 
within and among MEN 2 families with 
the same RET mutation. The mutation of 
GFRα4 gene has recently been proposed 
as a modifi er involved in the modifi cation 
of the course of the disease (Vanhorne 
et al., 2005). Vanhorne et al. detected 
two variants among total 10 sequence 
variants in the  GFRα4 gene. One is a 
single-base substitution upstream of the 
GFRα4 coding region (52 bp upstream of 
the GFRα4 translation initiation site) in 
patients with no known RET mutations. 
This mutation may affect the expression 
of GFRα4. Another one is a 7 bp insertion 
in exon 3 (GCGCCCC) in a patient with 
a mutation in RET (V804L). The latter 
mutation results in a reading frame shift 
for all GFRα4 isoforms, and thereby 
changes their amino acid sequence. These 
GFRα4 mutants may alter the formation 
of RET signaling complexes and could  
contribute to an MEN 2-like phenotype in 
the absence or presence of RET mutations 
(Vanhorne et al., 2005).

RET  proto-oncogene not only 
contributes to normal organ development 
as mentioned previously, but also 
contributes to the development of human 
diseases. RET was first recognized as a 
causative gene in MEN 2, then followed 
by papillary thyroid carcinoma (PTC), 
sporadic medullary thyroid carcinoma 
(sMTC) and then in HSCR disease (Edery 
et al., 1994; Eng, 1999; Pacini et al., 2000; 
Gonzalez et al., 2003). The contribution of 
RET to human diseases is due either to a 
rearrangement of RET with a variety of 
other genes or to point mutations in RET. 
For instance, in sporadic and radiation-
induced PTC, the genomic rearrangements 

lead to a fusion of the sequence encoding 
the intracellular domain of RET with 
the sequence of an activating gene. The 
activating gene is in all cases located 5´ to 
the sequence encoding the kinase domain 
of RET. A spontaneous dimerization of 
this N-terminal sequence leads to a ligand-
independent dimerization and constitutive 
activation of the C-terminally located 
kinase domain (Klugbauer et al., 2000; 
Salassidis et al., 2000; Santoro et al., 
2004). Germ-line mutations, mainly point 
mutations, lead to a constitutive activation 
of RET, which are responsible for the 
development of MEN 2A and MEN 2B, 
and familial medullary thyroid carcinoma 

(FMTC) (Eng et al., 1996; Brandi et al., 
2001; Machens et al., 2003).   

The association between RET 
mutations and MEN 2 and FMTC has 
been widely studied. It has been shown 
that most MEN 2A and FMTC mutations 
affect cysteines in the extracellular 

cysteine-rich domain of RET. MEN 2A 
is associated with six cysteine residues 
(codons 609, 611, 618,and 620 in exon 
10, and 630 and 634 in exon 11) (Eng, 
1999). The most frequent mutation is 
that codon 634 leading to a change from 
cysteine to arginine (C634R) (~85%) 
(Mulligan et al., 1995; Eng et al., 1996). 
This mutation reslts in the dimerization 
of RET via S-S bridges, and therefore 
causes the constitutive activity of RET 
leading to MEN 2A disease (Santoro et al., 
1995; Eng and Mulligan, 1997). FMTC 
mutations are evenly distributed among 
the various cysteines in the extracellular 
cysteine-rich domain of RET. In addition, 
FMTC can also be associated with residue 
changes in the tyrosine kinase domain at 
codons E768D (exon 13), L790F (exon 
13), Y791F (exon 13), V804L (exon 14), 
V804M (exon 14), and S891A (exon 15) 
(Jhiang, 2000; Santoro et al., 2004). The 
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mutations associated with MEN 2B are 
located at codon 883 (exon 15) and 918 
(exon 16) in the kinase domain (Eng, 
1999). Most patients (~95%) carry the 
methionine to threonine change at 918 
(M918T), this mutation does not cause 
the dimerization of the protein, but alters 
the substrate specifity of the kinase, 
therefore affect the downstream signaling 
pathways, and thought to be the causative 
factor of MEN 2B (Santoro et al., 1995; 
Eng and Mulligan, 1997). Only a small 
fraction of patients harbor the alanine to 
phenylalanine substitution at 883 (A883F) 
(Eng, 1999). These different point 
mutations may underlay the phenotypical 
differences between MEN 2A and MEN 
2B patients (Santoro et al., 1995; Jain et 
al., 2004). 

The studies of targeted overexpression 
of GDNF in undifferentiated spermato-
gonia demonstrated that the overdosage 
of GDNF can trigger the testicular 
tumorgenesis due to the abnormalities 
of spermatogenesis, spermatogonia 
differentiation, and spermatogonial 
clusters. It resembles the human classic 
seminomas (Meng et al., 2001).  

1.2.7. Use of GFLs in the treatment of 
diseases 
GFLs were considered as potential 
therapeutic reagents for the treatment of 
some neurological diseases since their 
discovery. Most attention has paid to 
GDNF because of its survival-promoting 
effects on nigral dopaminergic neurons, 
which are undergoing degeneration in 
Parkinson´s disease (PD). The possibility 
to use the other GDNF family trophic 
factors in the treatment of diseases is still 
poorly investigated.

In animal models of PD, where 
nigrostriatal lesions are induced with 6 
hydroxydopamine (6-OHDA) or 1-methyl-

4-phenyl-1,2,3,6-tetrahydopryridine 
(MPTP), injected GDNF can prevent the 
death of dopamine neurons and regenerate 
dopamine terminals in vivo (Kearns and 
Gash, 1995; Tomac et al., 1995). The 
successful use of GDNF in animal models 
of PD prompted clinical trials in patients 
with PD. Although the results from Nutt et 
al. (2003), where GDNF was injected into 
the brain ventricles, were disappointing, 
the failure of this trial was most likely 
due to the failure of GDNF to penetrate 
into the putamen located deep in the 
brain. This region is the most affected 
region in PD and it is possible that it did 
not receive much of GDNF. In another 
trial GDNF was locally and continuously 
infused (intraparenchymal infusion) into 
the putamen region using mechanical 

pumps. In this limited trial with 5 patients 
GDNF protected the death of dopamine 
neurons and regenerated the dopamine 
terminals in PD patients (Gill et al., 2003). 
Even after two years of continuos GDNF 
infusion, no serious clinical side effects 
were observed, and the patients showed 
signifi cant clinical improvement (Patel et 
al., 2005). The weak point in this trial was 
that only fi ve patients took part in the trial, 
and there were no placebo controls. More 
recent double-blind placebo controlled 
trial with 34 patients GDNF showed no 
clinical benefi t (Lang et al., 2006). 

Based on the reported data, the key 
question in the use of neurotrophic factors 
in treating diseases is the delivery of the 
factors. The currently used modes are: 
infusion of the recombinant proteins, cell-
based delivery system, and viral vectors 
(Kirik et al., 2004). Each of them has 
their own advantages and limitations. 
For example, the advantage in infusion 
method is that the dose can be well 
controlled and the infusion can be stopped 
in case of unwanted side effects. On the 
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other hand, the disadvantage is that the 
factor is infused from a point source and 
it makes the factor unavailable for the 
close tissues (Kirik et al., 2004). The 
use of viral vectors, for instance, adeno-
associated virus (rAAV) and lentivirus 
(rLV), brings highly effi cient tools for the 
delivery of factors into CNS. However, 
the limitations of this method are the 
safety issues related to for instance their 
potential immunogenicity and their risks 
of mutagenesis (Kirik et al., 2004). 

In other neuronal diseases GDNF also 
exerts therapeutic functions. For example, 
in vivo data demonstrated that pretreatment 
of the cortical surface or the hippocampus 
with GDNF reduces the cerebral infarction 
caused by middle cerebral artery (MCA) 
occlusion in adult and newborns (Abe 
et al., 1997; Kitagawa et al., 1998; 
Miyazaki et al., 1999; Ikeda et al., 2000). 
Huntington´s disease is an autosomal 
dominant neurodegenerative disorder 
characterized by chorea, psychiatric 
disturbances and dementia, and caused by 
the expansion of a polyglutamine (polyQ) 
in the N-terminus of huntingtin protein 
(Landles and Bates 2004). In animal 
models of this disease, the infusion or viral 
delivery of GDNF into the striatum has 
signifi cant neuroprotective effects (Araujo 
and Hilt, 1997; Alberch et al., 2004; Kells 
et al., 2004). Data from an animal model 
of amyotrophic lateral sclerosis (ALS) 
demonstrated that GDNF has a therapeutic 
potential also in this disease (Manabe et 
al., 2003). Furthermore, GDNF has been 
shown to have some effects on drug 
addiction, particularly on chronic morphine 
and cocaine addictions. Infusion of GDNF 
into the rat VTA (the ventral tegmental 
area of the midbrain) blocks biochemical 
adaptations and behavioral responses 
to chronic drug exposure, whereas the 
functional inhibition of GDNF by GDNF 

function-blocking antibody enhances 
responsiveness to drug exposure. Gdnf+/- 
heterozygous mice show an enhancement 
of behavioral responses to drug exposure,  
indicating that GDNF has a potential to 
be used in the treatment of drug addiction 
(Messer et al., 2000). 

NRTN, like GDNF, can support the 
survival of midbrain dopaminergic neurons, 
which suggests its potential use in clinical 
treatment of PD as well. In animal models 
of Parkinson´s disease, NRTN promotes 
the survival of dopaminergic neurons 
exposed to 6-OHDA or MPTP (Horger et 
al., 1998; Li et al., 2003). Notably rodent 
DA neurons do not express GFRα2. NRTN 
is therefore most likely signaling via 
GFRα1/RET.  Interestingly, recent studies 
show that unlike GDNF, the delivery of 
wild type NRTN by the lentiviral gene 
delivery method in the intrastriatal 6-
hydroxydopamine lesion model of PD 
resulted in poor neuroprotective effects. 
However, the delivery of a pro-region 
deleted NRTN resulted in significantly 
higher neuroprotective activity compared 
to the wild type NRTN. The pro-region 
deleted variant of NRTN also showed  
effi cient neuroprotection of lesioned nigral  
dopaminergic neurons, similar to GDNF, in 
the intrastriatal 6-OHDA lesion model of 
PD (Fjord-Larsen et al., 2005). Moreover, 
in animal model of Huntington´s disease, 
NRTN showed also promising trophic 
effects on striatal projecting neurons, even 
more robustly than GDNF (Perez-Navarro 
et al., 2000a).

As ARTN also has survival-promoting 
effects on midbrain dopaminergic neurons 
(Baloh et al., 1998b), the injection of 
lentiviral vectors encoding ARTN increased 
the density of dopamine neurons in nigra 
and TH-immunoreactivity in striatum in 
rats exposed to 6-OHDA (Rosenblad et 
al., 2000). This indicates that ARTN also 
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is a potent neuroprotective factor for the 
nigrostriatal dopaminergic neurons in vivo. 
Since the expression of GFRα3 in CNS is 

not detectable (Widenfalk et al., 1998), 
it is possible that ARTN also signals via 
GFRα1.  
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2. Aims of the study

Recently three splice variants of mouse gfrα4 were discovered. Interestingly, these splice 
variants are differently expressed in mouse tissues and organs. The aim of this study was 
to characterize if the splice variants mediate PSPN signaling in a similar or different 
way. The specifi c aims were:

A. First, to study the molecular structure, PSPN binding and function of  the GPI-
anchored mouse GFRα4; and to compare it to GFRα1. 

B. Second, to elucidate if the transmembrane and soluble GFRα4 function similarly 
to, or differently from the GPI-anchored GFRα4. 

C.  As the mammailan GFRα4 receptors lack the N-terminal fi rst cysteine-rich 
domain, which is present in all other GFRα receptors, my third goal was to 
determine what is the function of this domain in GFRα1.

Aims of the Study
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3. Materials and methods  

3.1. FLAG-tagging of GFRαs (I, II, III 
and IV)
Three splicing variants, GPI-anchored, 
transmembrane, and soluble forms,  were 
previously cloned from the mouse thyroid 
(Lindahl et al., 2000). The soluble form 
was cloned into a mammalian expression 
vector from the mouse adult thyroid tissue. 
Total RNA was isolated from adult mouse 
thyroid tissue by using Trizol reagent (Life 
Technologies). The RT-PCR was done 
with Superscript II (Life Technologies) 
for RT and the GC-rich PCR kit (Roche) 
for PCR. The primers used for mouse 
gfrα4 soluble form were P1: 5´-CCA CCA 
TGG CCC ACT GCA TGG AGT C-3´ 
and P2: 5´-TTC AGC TCA GTG AGC 
AGT CAT CG-3´. The PCR products 
were then directly cloned into pCR-TOPO 
vector using the kit (Invitrogen) according 
to the manufacturer´s instructions. The 
cDNA was subcloned into the mammalian 
expression vector pcDNA3. The correct 
clone was verified by sequencing. The 
three variants were FLAG-tagged at the 
position following the last amino acid of 
the signal sequence. All constructs were 
sequenced throughout and the expression 
of the three FLAG-tagged proteins was 
tested individually with anti-FLAG 
antibody (Sigma) (I, II, and IV). The fi rst 
domain-deleted rat GFRα1 was created 
by deleting the amino acid fragment 23-
121. This truncted rGFRα1 was tagged by 
FLAG following the last amino acid of the 
signal sequence. The expression of this 
truncted rGFRα1 was verifi ed by FLAG 
antibodies (III).    

3.2. Generation of stable cell lines 
expressing different forms of mouse  
GFRα4s (I, II and IV)
In order to characterize the different forms 
of GFRα4 biochemically, I established 
stable cell lines expressing the variants 
individually. Mouse neuroblastoma Neuro 
2a cells were transfected with pcDNA3 
harboring inserts encoding FLAG-tagged 
mgfrα4s using FuGENE6 transfection 
reagent (Roche). The following day G418 
was applied on the transfected cells at 400 
μg/ml and the selection was continued 
for two weeks. Single clones were picked 
up and propagated. The expression of 
GFRα4s was verifi ed by immunoblotting 
with anti-FLAG antibodies (I, II, and IV). 
The positive clones were then stored as 
stocks in liquid nitrogen. 

3.3. Glycosylation and membrane 
association assays (I and IV)
Glycosylation of mouse GFRα4s was 
examined by culturing the established 
stable cells in medium with/without 
tunicamycin at 5 μg/ml (Sigma) for 
16 h. The cells were washed and lysed 
on ice. The lysates were analysed by 
immunoblotting with antibodies to 
FLAG.

For the membrane association 
assay, the cells expressing GFRα4s were 
homogenised in lysis buffer, and the post-
nuclear supnatant was mixed with 67 % 
sucrose to give a fi nal concentration of 60 
% sucrose. The sample was centrifugated 
in a gradient of 67 %, 60 %, 50 % and 
5 % sucrose. After the centrifugation, 
the fractions were analyzed by Western 
blotting with antibodies to FLAG. 
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3.4. Immunofl uorescence staining (IV)
Neuro 2a cells were grown on coverslips 
overnight and subsequently transiently 
transfected. 24 h after transfection the cells 
were fixed with 4 % paraformaldehyde 
(PFA), and then the cells were either 
permeabilised with 0.1 % Triton X-100 for 
10 min at RT or were left intact. The cells 
were washed and stained with anti-FLAG 
antibodies for FLAG-tagged or anti-6xHis 
antibodies for His-tagged GFRα4. After 
washing, the cells were incubated with 
Cy3TM-conjugated secondary antibody for 
30 min at RT. Thereafter the cells were 
refi xed and the coverslips were mounted 
on objective glasses (IV).

3.5. The binding and cross-linking of 
PSPN to mouse GFRα4s (I, II and IV)
Human recombinant PSPN (Pepro Tech 
EC Ltd) was enzymatically iodinated with 
125I/Na by the lactoperoxidase method 
(Lindahl et al., 2001). The binding assay 
was essentially performed as previously 
described (Jing et al., 1996; Lindahl 
et al., 2001) for the GPI-anchored 
and transmembrane forms. Neuro 2a 
cells, transiently or stably transfected 
with mGFRα4-GPI and mGFRα4-TM, 
respectively, were used for the experiments. 
The transfected cells were seeded in pre-
coated 24-well plates. The following day 
the cells were incubated with 1 nM 125I-
labelled PSPN in DMEM containing 0.2 % 
bovine serum albumin, 15 mM Hepes (pH 
7.5) for 4 h on ice, either in the absence 
or presence of different concentrations of 
unlabelled PSPN. Cells were washed and 
lysed in 1M NaOH, and the amount of 
bound 125I-labelled PSPN was measured 
using a Liquid Scintillation Counter (LAB, 
Wallac) (I and IV).    
       The binding assay for the soluble form 
of GFRα4 was done in a cell-free manner 
as follows: the supernatant of cells stably 

expressing FLAG-tagged soluble mouse 
GFRα4 was collected and spun down in 
order to get rid of  cellular debris. 125I-
PSPN was added into the supernatant 
in the absence or presence of unlabeled 
PSPN. Thereafter the supernatant was 
rotated at + 4 ºC for 4 h. Anti-FLAG 
antibody was added into the tubes, the 
immunocomplexes were precipitated with 
protein G Sepharose beads (Amersham 
Pharmacia Biotech). The beads were then 
washed, and the amount of the bound 
125I-PSPN was measured using a Liquid 
Scintillation Counter as previously (II).

For the chemical cross-linking 
assays the cells expressing FLAG-
tagged mGFRα4-GPI and FLAG-tagged 
mGFRα4-TM were incubated with 1 nM 
125I-labelled PSPN in TYROIDE buffer in 
the presence or absence 100 nM unlabelled 
PSPN (100x molar excess over the 125I-
labelled PSPN). For the soluble form 
the medium from the cells expressing 
soluble GFRα4 was used. The chemical 
cross-linker BS3 (Perice) was added and 
then the cells were incubated at RT for 
45 min. The 125I-PSPN/soluble mGFRα4/
RET complexes were brought down by 
immunoprecipitating with anti-FLAG 
antibodies. After running the SDS-PAGE, 
the gel was dried and analyzed with a 
PhosphoImager (FUJIFILM BAS-1500).

3.6. Receptor activity and signaling 
assays (I, II and IV)
The receptor activity was monitored using 
antibodies to phosphorylated tyrosine 
residues. The Neuro 2a cells co-expressing 
RET and mGFRα4s were starved, 
exposed to PSPN and lysed. RET was 
immunoprecipitated and the precipitate 
was analysed by Western blotting with 
anti-phosphotyrosine antibodies (I and 
IV).
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To test the ability of soluble GFRα4 
to activate RET, the in vitro kinase assay 
was carried out essentially as described 
by Kato, M. et al., 2000. Naive Neuro 2a 
cells expressing RET were starved for 4-
5 h in serum-free RPMI 1640 medium, 
then treated with medium with/without 
soluble mGFRα4, and lysed on ice. The 
post-nuclear supernatant was subjected 
to immunoprecipitation with anti-RET 
antibodies, and the immunocomplexes 
were collected with protein G Sepharose 
beads. The kinase reaction was done 
using myelin basic protein (MBP) as an 
exogenous kinase substrate. The activity 
of RET was visualised by autoradiography 
(II).

To analyze the activation of the PI-
3 K/AKT pathway triggered by soluble 
GFRα4 via RET, naive Neuro 2a cells 
expressing RET were plated in 6 cm 
plates. The following day the cells were 
starved for 4-5 h in serum-free RPMI 
1640 medium. The cells were treated with 
medium with/without soluble mGFRα4 
(30, 60 min), and then lysed with the 
sample buffer. The phosphorylated 
AKT was monitored by anti-phospho-
AKT antibodies after running the SDS-
PAGE and blotting. The inhibition of the 
activation of PI-3K/AKT pathway was 
done using the selective inhibitor of PI-3 
kinase, LY 294002. The starved cells were 
treated with LY 294002 at 20 μM for 1 
h prior to the treatment of the cells with 
soluble mGFRα4 (II).

3.7. Lipid rafts localization analysis (I)
The different types of Neuro 2a cell lines 
going to the assay were starved for 4-5 
h, and stimulated or not with GFLs, then 
collected into cold lysis buffer (10 mM 
Hepes pH 7.2, 250 mM sucrose, 2 mM 
EDTA, 1 mM PMSF, 1 mM Na3VO4, and 

Complete Mini Protease Inhibitor Cocktail 
Tablets (Roche)) on ice and homogenised 
with a syringe. After addition of Triton-
X100 (fi nal concentration of 0.1 %) to the 
post nuclear supernatant the samples were 
incubated for 20 min and analysed on 
Optiprep density gradients. Fractions were 
collected and the localization of proteins 
was analysed by Western blotting with 
various antibodies to monitor different 
proteins.

3.8. Neurite outgrowth assay (I, II, III 
and IV)
The assay was done essentially as 
discrebed by Tansey et al. 2000 and 
Crowder et al. 2004. For GPI-anchored 
and transmembrane forms of GFRα4, the 
transfected PC6-3 or Neuro 2a cells were 
plated at 70,000 cells/well in Falcon 12-
well dishes. In the next day the cells were 
switched to medium containing low serum 
concentrations, and supplied with or 
without GFLs. After 1-2 days (for Neuro 
2a cells) or 3-4 days (for PC6-3 cells ) 
of culture, cells bearing neurites at least 
one cell body diameters in length  were 
counted from 3-4 random fi elds from each 
transfected cell lines in order to monitor 
the neurite outgrowth (I and IV). 

For the soluble GFRα4-mediated 
neurite outgrowth assay the cells were, 
after 24 h plating, switched to medium 
containing soluble mGFRα4, and cultured 
for 4-5 days in order to induce the 
differentiation. The medium was changed 
every second day. For the statistical 
analysis, cells bearing neurites at least 
one cell body diameters in length were 
counted from 3 random fi elds from each 
treatment. The experiments were repeated 
three times, and for each treatment two 
parallel assays were done (II).

Materials and Methods



33

3.9. Neuronal culture, transfection, and 
survival assay (I, II and IV)
Primary cerebellar granule neurons 
(CGNs) were isolated from postnatal 
day 7 (P7) rats as described by  Miller 
and Johnson, 1996. The cerebellum was 
dissected and chopped into pieces, washed 
and digested with trypsin. The cells were 
resuspended in the Basal Medium Eagle 
(BME) (Life Technologies) containing 
trypsin inhibitor and DNase. The cells 
were then triturated until the suspension 
became homogeneous. The neurons 
were then collected by centrifugating 
and resuspended in conditional BME 
medium and plated on poly-D-lysine 
precoated plates. After 24 h, cytosine β-
D-arabinofuranoside (Ara-C) was added 
to the fi nal concentration of 10 μM to the 

cells in order to inhibit the proliferation of 
non-neuronal cells (I,II, and IV). 

The granule neuronal transfection was 
done as described essentially by Craig, 
A.M. (Culturing Nerve Cells, 1998). On 
day 5 of culture, the transfection was done 
with various cDNA constructs. EGFP 
was used to monitor for the transfected 
neurons. To assess the neuronal survival, 
the number of initial positively transfected 
neurons in designated fi elds were counted 
24 h after transfection. The neurons were 
then switched to high potassium medium 
plus serum, or low potassium medium 
without serum in the presence of GFLs or 
soluble GFRα4 protein. The neurons were 
cultured for an additional 2.5~3.5 days, 
and the transfected cells remaining in the 
same fi elds were counted. 
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4. Results and discussion

4.1. Functional charaterization of the 
mouse GFRα4-GPI coreceptor (I)
Mouse gfrα4 gene consists of six extrons. 
By alternative splicing the gfrα4 gene 
gives three different forms which are 
developmentally regulated (Lindahl et 
al., 2000). One of the variants is the 
putative GPI-anchored form (GFRα4-
GPI) consisting of 260 amino acids 
harbouring a hydrophobic ER signal 
sequence, a glycosylation site and a 
putative C-terminal GPI-anchored region 
(Lindahl et al., 2000). The other two 
variants are the putative transmembrane 
and soluble variants (discussed later) 
with identical N-terminal amino acid 
sequences as the GPI-anchored form. The 
difference between these three variants is 
in their C-termini (Lindahl et al., 2000) 
(Fig. 4). The predicted molecular weight 

of the GPI-anchored form is 29 kDa, 
which is the same as the result from the 
Western blot analysis, where the lysates of 
Neuro 2a cells stably expressing FLAG-
tagged GFRα4-GPI were immunoblotted 
with FLAG antibodies (I, Fig. 1A). As 
predicted, this protein is a glycosylated 
protein, in order to verify it, the cells 
expressing FLAG-targged GFRα4-
GPI were treated with Tunicamycin, as 
showed in I of this study, the glycosylated 
band (upper band) disappeared after the 
treatment (I, fi g. 1A). Next, we verifi ed its 
GPI-anchored nature by PI-PLC treatment 
of the mouse GFRα4-GPI expressing cells. 
PI-PLC is a specifi c protease which can 
cleave the GPI-anchored proteins from the 
cell membrane, but not other membrane 
associated proteins. Our results showed 
that the putative GPI-anchored GFRα4 

Fig. 4. Schematic domain structure of mouse GFRα4 variants comparing with GFRα1 (PM stands 
for plasma membrane)
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can be released from the cell surface by 
the enzyme (I, fig. 1C). The membrane 
localization of this protein was further 
verified by the sucrose gradient and 
biotinylation assays (I, fi g. 1B and D). It 
has been well studied that the initiation 
event of GFL-signaling is the binding of 
GFLs to their cognate receptors, GFRαs. 
With these new putative PSPN receptors, 
it was therefore of great interest to check if 
they have an equal affi nity for their ligand, 
PSPN. Therefore I first performed the 
cell-based binding assay of PSPN to the 
GFRα4-GPI coreceptor with 125I-PSPN, 
and determined the Kd of about 2 nM (I-
II), which is more or less comparable with 
the Kds of other GFL-GFRα interactions 
except the mouse GFRα4-TM-PSPN 
(discussed later) (I). 

In general, it is assumed that after 
the GFL-GFRα complex has formed, this 
complex interacts with RET and results 
in the dimerisation and phosphorylation 
of RET in order to induce signaling. 
Therefore I wanted to know if the PSPN/
mGFRα4-GPI complex can interact 
with and activate RET. To answer this 
question, the cross-linking experiment was 
performed in Neuro 2a cells transfected 
with FLAG-tagged mGFRα4-GPI. The 
data showed that the complex of mGFRα4-
GPI and 125I-PSPN can form a complex 
with RET (I, fi g. 1E). The consequence 
event of the triple complex formation, as 
also been shown with the human GFRα4/
PSPN/RET complex, is to induce the 
phosphorylation of RET (Lindahl et al., 
2001), thus I studied the PSPN-mediated 
RET phosphorylation via mGFRα4-
GPI. As expected when PSPN was 
applied to Neuro 2a cells co-expressing 
GPI-anchored GFRα4 and RET, PSPN 
mediated the activation of RET in a dose-
dependent manner via mGFRα4-GPI (I, 
fi g. 1F).

The biological activities of the mouse 
GFRα4-GPI variant were analysed by 
PSPN-induced neurite outgrowth and 
neuronal survival assays. Although it has 
been shown that PSPN can not induce 
motor axon outgrowth in organotypic 
spinal cord cultures (Bilak et al., 1999), 
it does induce neurite outgrowth in rat 
midbrain dopaminergic neurons (Chen et 
al., 2003). PC6-3 cells were transiently co-
transfected with mGFRα4-GPI and RET 
and used for neurite outgrowth assays. 
Upon PSPN treatment, the mGFRα4-GPI 
showed clearly the ability to induce neurite 
outgrowth in cells (I, fig. 4B and C). 
GDNF and GFRα1 were used as a positive 
control. For the neuronal survival assays, 
the postnatal day 7 cerebellar granule 
neurons (CGN) were used as a model 
since no GFRαs and Ret expression was 
detectable, and furthermore, the neurons 
are undergoing apoptosis in the condition 
of low potassium. On day 5, the cultured 
CGNs were co-transfected with mGFRα4-
GPI and RET encoding cDNAs, and in 
the next day, the transfected CGNs were 
switched to the low potassium medium 
with PSPN. The viable neurons were 
counted after 2.5 days. Our results showed 
that PSPN can support the survival of 
about 50 % of the transfected neurons via 
mGFRα4-GPI and RET receptors (I, fi g. 
4A). 

Taken together our results show that 
the putative mouse GPI-anchored GFRα4 
is a real co-receptor for PSPN, which can 
mediate the activation of RET and thereby 
also neuronal differentiation and survival 
in vitro.  Interestingly, mGFRα4-GPI has 
a weaker capacity in recruiting RET into 
lipid rafts compared with GFRα1 (I; fi g. 
2). This recruitment was thought to be 
essential for RET signalling (discussed in 
more detail later).  
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4.2. The mouse soluble GFRα4 is an 
agonist of RET (II)
The mouse soluble GFRα4 consists of 
190 amino acids (Lindahl et al., 2000). 
It is a small (~21 kDa), secreted, and 
unglycosylated protein (II, fig. 1e and 
data not shown). Compared with the other 
two variants of mGFRα4 which have two 
domains, D2 and D3, the soluble form 
consists of the full D2 and partial D3 (II, 
fi g.1 a-d), this may give it unique features. 
The crystal structure and sequence 
alignment assays of GFRα1 have located 
the GFL binding site to the D2 and to the 
cleft of D2 and D3 (Scott and Ibáñez, 
2001; Leppänen et al., 2004). In soluble 
GFRα4, the normally conserved structure 
of domain 3 is replaced by an unique 
sequence harbouring fi ve cysteine residues. 
Although the folding of the conserved 
domian 2 is probably normal, the folding 
of the third domain is impossible to 
predict. The expression of GFRα4 protein 
is restricted to the calcitonin-secreting C 
cells of the thyroid (Lindfors et al., 2006), 
where the MEN 2 disease arise from. As 
mentioned previously, due to the different 
location of the mutant residues in RET, 
MEN 2 has been classified into MEN 
2A and MEN 2B (Eng, 1999). However, 
although more than 95% MEN 2 patients 
harbor the RET mutations, still about 5% 
of MEN 2 or MEN 2-like patients have no 
RET mutation identifi ed (Vanhorne et al., 
2005). Also, the association between the 
different RET mutations and the various 
disease phenotypes is unclear suggesting 
that maybe some other molecules 
are possibly involved (Eng, 1999).  
Furthermore, the variation in age of the 
disease onset and types was found in the 
families even with a same specifi c RET 
mutation (Vanhorne et al., 2005). All these 
data suggest that other related genes must 
contribute to or modify the phenotypes or 

severity of the disease. Actually, Vanhorne 
et al. 2005 have identifi ed a mutation in 
human GFRα4, which may contribute 
to a more aggressive disease course of 
MEN 2. The mutation is derived from a 
7 bp insertion, which causes the reading  
frame shift in all the human GFRα4 splice 
variants, and thereby seems to change the 
balance between the GPI-anchored and 
soluble human GFRα4 (Vanhorne et al., 
2005). Interestingly, this mutation was 
identifi ed from the patients with MEN 2 or 
MEN 2-like phenotype, that do not have 
the RET mutations (Vanhorne et al., 2005). 
Together with the restricted expression 
pattern of GFRα4 in thyroid, it suggests 
that GFRα4 may have a causative function 
in MEN 2 disease. 

The RTKs not only are activated by 
their ligands, but also respond to their 
agonists. For instance, the EGF receptor 
(EGFR) can be tyrosine phosphorylated 
by its agonists, bradykinin and angiotensin 
(Luttrell et al., 1999; Gschwind et al., 
2001). The mouse soluble GFRα4 is a 
small, secreted molecule, and exists as a 
homodimer independently of its ligand 
(II, fi g. 1e). The homodimers probably are 
caused by the unpaired cysteines in the 
third domain. These may participate in the 
formation of an intermolecular bridge. To 
test if the soluble GFRα4 is biologically 
active, I fi rst performed the binding assay 
with 125I-PSPN, as showed in II, fig 2a, 
that the soluble GFRα4 can bind to PSPN 
with a Kd of about 1.6 nM. Since the 
soluble GFRα4 exists as a dimer and is an 
active receptor for PSPN (II, fi g 1e and fi g 
2a), we asked if it can interact with RET 
independently of PSPN, and therefore 
promote the activation of RET? By 
coimmunoprecipiting I demonstrated that 
it can interact with RET (II, fi g. 2c). Most 
interestingly soluble GFRα4 can promote 
the phosphorylation of RET independently 
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of PSPN (II, fi g. 2d). To further study the 
biological activities of the soluble GFRα4, 
I investigated the intracellular signaling 
pathways mediated by RET upon its 
activation by soluble GFRα4 alone. In 
general, upon the interaction between 
RET and the complex of GFL/GFRα in 
cis, which means that RET and the GPI-
anchored GFRα are expressed in the same 
cells as membrane-associated protein, the 
whole complex moves into lipid rafts, and 
triggers the raft-specific signaling, for 
example, the MAPK pathway (Airaksinen 
and Saarma, 2002). However, when the 
soluble GFRα together with GFL interacts 
with RET in trans meaning that the GFRα 
is cleaved from the cell surface and exists 
as soluble proteins, this complex is outside 
of lipid rafts (Airaksinen and Saarma, 
2002), and due to the activation of RET, 
some adaptor proteins, for instance SHC, 

are recruited to its docking site (Tyr 1062), 
thereby triggering some other signaling 
pathways occurring outside rafts, such 
as the PI-3K/AKT pathway (Airaksinen 
and Saarma, 2002). From the lysates 
of Neuro 2a cells treated by the soluble 
GFRα4 protein alone, SHC protein was 
immunoprecipitated with the anti-RET 
antibodies (data not shown), also the PI-
3K/AKT pathway was activated in those 
cells (II, fi g. 3a). This result is in line with 
our fi ndings that the GFRα4-GPI can not 
recruit RET into lipid rafts, but still has 
the biological function (I). On the cellular 
level, I tested if the soluble GFRα4 can 
promote the neuronal differentiation and 
survival. As expected, the soluble GFRα4 
alone can induce neurite outgrowth in 
Neuro 2a cells and support the survival of 
CGN (Fig. 5 and II, fi g.4).

Fig. 5. Mouse GFRα4-soluble protein mediates the survival of CGN via RET
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Our data are in line with the recent 
publication (Vanhorne et al., 2005), and 
may provide a molecular mechanism of 
how the GFRα4 may modulate the course 
of the MEN 2 diseases. For example our 
results may explain why patients without 
RET mutations and with GFRα4 mutations 
can have MEN 2 disease. As Vanhorne et 
al. 2005 showed that the reading frame 
shift of GFRα4 due to the insertion of 7 
nucleotides results in a predicted soluble 
GFRα4 protein, which may be the 
causative factor in MEN 2 or MEN 2-
like disease in which no RET mutation is 
detectable. Also, based on the amino acid 
sequence alignment, we have showed that 
the cysteines in D2 domain are conserved 
between the mouse soluble GFRα4 and 
the human mutant GFRα4. This may 
suggest that the structure of these two 
proteins may be similar, indeed it is in line 
with our computational structure analysis 

of mouse soluble GFRα4 showing that it 
is very similar with the crystal stucture 
of human GFRα3 D2 (II, fig.1). Thus, 
combined together with our experimental 
data, we showed that, in the case of no 
RET mutation detectable in the MEN 
2 or MEN 2-like patients, the soluble 
GFRα4 may act as an agonist to promote 
the phosphorylation of RET, therefore 
resulting in the constitutive activity of 
RET.  Unfortunately, despite numerous 
serious attempts we were unable to purify 
the soluble GFRα4 protein to confirm 
these data with the purified protein. In 
summary, we showed for the first time 
that the soluble GFRα subunit can activate 
RET independently of the GFL ligand. 
Fig.6 shows a hypothetical scheme of how 
GFLs and the soluble GFRα4 signal.

The expression of PSPN in vivo is 
extremely low (Milbrandt et al., 1998), 
and the pspn -/- mice show no gross 

Fig.  6.  Hypothetical scheme of mGFRα4-sol signaling
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phenotype in CNS and PNS (Tomac et al., 
2002). Also, unlike the other GFLs, which 
can interact with the extracellular matrix 
components, for instance N-syndecan, 
for signaling, PSPN does not bind to 
N-syndecan (Bespalov and Saarma, 
unpublished data). These events suggest 
that PSPN and its coreceptor perhaps 
work differently from the other GFLs 
and GFRαs. Although it has been shown 
that the GFRα4 transcripts are expressed 
in the nervous system, most of them are 
presumed to be not functional due to 
either lack the functional signal sequence 
or translation  as a truncated form, which 
is thought to be secreted ( Lindahl et al., 
2000; Lindfors et al., 2006). Our results 
show that indeed the truncated form is 
a secreted protein and active (II). It also 
indicates how this soluble GFRα4 may 
balance the shortage of PSPN in vivo. For 
instance, due to the very low level of PSPN, 
the soluble GFRα4 can act as a pleiotropic 
factor to activate RET independently of 
PSPN in order to facilitate the utilization 
of PSPN by the GPI-anchored GFRα4 
whenever needed. On the other hand, 
since PSPN can not bind N-syndecan, 
which may help to concentrate the low 
level factors to the matrix, the soluble 
GFRα4 could trap PSPN and then bring it 
to RET-expressed cell and activate RET in 
trans. Moreover, as described previously, 
several forms of MEN 2 disease are 
derived from the mutant Ret, therefore 
Ret maybe the target for treating this 
disease. Our study demonstrated that as an 
agonist, the soluble GFRα4 can activate 
RET and mediate its signaling (II). This 
may give an opportunity to develop drugs 
for treating MEN 2 disease by designing 
small molecules or peptides based on the 
structure of the soluble GFRα4, that would 
block the activation of the mutant RET in 
the patients.        

4.3.  Functional charaterization of the 
mouse GFRα4-TM coreceptor (IV)  
By alternative splicing involving the exon 
VI, the mouse gfrα4 gene gives another 
variant, the putative transmembrane 
gfrα4 (mgfrα4-TM). Comparing with the 
mgfrα4-GPI which is mainly produced 
by the thyroid and parathyroid gland of 3-
week old mice, the mgfrα4-TM is the major 
transcript in newborn and 6-week old 
mice (Lindahl et al., 2000). The difference 
between this putative transmembrane form 
and the GPI-anchored form is that the 
mGFRα4-TM has a putative membrane-
spanning region (Lindahl et al., 2000). 
mGFRα4-TM consists of 293 amino acids 
with a predicted molecular weight 33 kDa, 
which is verified by Western blot with 
FLAG antibodies (IV, fi g. 1C). To study 
the membrane association of the putative 
mGFRα4-TM, the FLAG-tagged mgfrα4-
TM transfected cell lysate was analysed 
with the sucrose gradient. Western 
blotting analysis of the fractions showed 
that the FLAG-tagged mGFRα4-TM is 
located in the top fractions which are the 
membrane-associated fractions (IV, fig. 
1E). To exclude the artifi cial membrane 
association of mGFRα4-TM, a portion of 
the initial membrane-associated fraction 
was treated with 50 mM Na2CO3 (pH 
11.5) and centrifugated. After the soluble 
proteins were precipitated with acetone, 
the data show that the mGFRα4-TM is 
still in the membrane-associated portion 
(pellet) after Na2CO3 treatment (IV, fig. 
1F). In order to further characterize the 
transmembrane feature of mGFRα4-
TM, the cells expressing FLAG-tagged 
mGFRα4-TM were treated with PI-PLC 
enzyme and analysing the supernatant with 
anti-FLAG antibodies, we demonstrated 
that this putative mGFRα4-TM receptor 
is not a GPI-anchored protein since it 
can not be released from the cell surface 
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by the specific GPI-anchored protease 
(IV, fi g. 1D). Although our biochemical 
data show that the mGFRα4-TM is a 
membrane-associated protein rather than 
GPI-anchored, the question we asked was 
whether mGFRα4-TM is localized to the 
cell membrane? To address this question, 
I performed the immunocytochemical 
analysis. With the aid of the C-
terminal 6xHis-tagged mGFRα4-TM, I 
demonstrated that the mouse GFRα4-TM 
receptor is a real transmembrane receptor 
(IV, fi g. 2).

As a putative coreceptor variant 
of PSPN, the binding of PSPN to the 
mGFRα4-TM and formation of the 
PSPN/mGFRα4-TM/RET complex were 
investigated by binding and cross-linking 
assays. Surprisingly, the transmembrane 
variant has a much weaker affinity for 
PSPN (Kd ≈ 180 nM) than the mGFRα4-
GPI variant (IV, fi g. 4A). Also in the cross-
linking assay, due to the weaker binding 
capacity of PSPN to mGFRα4-TM, the 
formation of the PSPN/mGFRα4-TM/RET 
complex was dramatically reduced (IV, 

fi g. 4B). Considerating the developmental 
regulation of the transcripts of mouse 
GFRα4, these data may indicate that 
indeed, under physiological conditions, 
the transmembrane form of GFRα4 is 
an inactive receptor, i.e. is not mediating 
PSPN effects because the expression 
level and tissue concentration of PSPN 
are very low in vivo (Milbrandt et al., 
1998). It also may refl ect how the different 
variants of GFRα4 work in vivo. Sequence 
alignment shows that the rat, human, 
and mouse GFRα4 receptors, but not 
the chicken GFRα4, have a similar two-
domain structure. The modelling of the 
electrostatic surfaces of human GFRα4 
identified the amino acids arginine 96, 
arginine 97, and phenylalanine 101 as 
important amino acids for PSPN-binding 
(Lindahl, 2004). These amino acids are 
conserved in all mouse GFRα4 variants 
(II, fi g. 1a). Therefore it remains unclear 
how the transmembrane domain of the 
mGFRα4 affects the binding of PSPN. 
Taken together these data indicated that 
mGFRα4-TM can bind PSPN and RET, 

Fig. 7. mGFRα4-TM inhibits PSPN-mediated RET phosphorylation
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but PSPN does mostly likely not signal 
via mGFRα4-TM through RET under 
physiological conditions. 
        In order to study the mouse GFRα4-
TM in more detail, I further tested its 
biological functions such as its capacity 
to activate RET, induce neuronal 
differentiation and survival. To study the 
activation of RET by mGFRα4-TM, I 
used Neuro 2a cell expressing the FLAG-
tagged GFRα4-TM. Upon the stimulation 
with PSPN at 100 ng/ml, no active RET 
was detected with the anti-phospho-
tyrosine antibodies (Fig. 7) compared to 
the mGFRα4-GPI coreceptor, even with 
the high concentration of PSPN (500 
ng/ml) (data not shown). The neuronal 
differentiation assay was performed in 
Neuro 2a cells coexpressing the mGFRα4-
TM and RET, the result shows that PSPN 
can not induce the neurite outgrowth via 
mGFRα4-TM and RET (IV, fig. 6). To 
study the effects of mGFRα4-TM on the 
neuronal survival, CGN were cultured 
and transfected as described in materials 
and methods. As expected, mGFRα4-TM 
can not support the survival in response to 
PSPN (IV, fi g. 7). These data indicate that 
the mGFRα4-TM is indeed biologically 
inactive coreceptor of PSPN. 

Because the mGFRα4-TM appears 
not to mediate PSPN signaling, we asked 
what the biological function of this variant 
could be? The identical N-terminal amino 
acid sequences between the mGFRα4-GPI 
and the mGFRα4-TM, the physiological 
data from the GFRα4-deficient mice, 
and also the expression pattern in tissues 
suggested that the mGFRα4-TM variant 
might interact with the mGFRα4-
GPI and thus regulate its function. By 
immunoprecipitation assay, we showed 
that the mGFRα4-TM indeed interacts 
with the mGFRα4-GPI (IV, fi g. 3A). This 
interaction seems to induce changes in the 

properties of the mGFRα4-GPI receptor 
and consequently, prevent its ability to 
bind PSPN (IV, fi g. 4C). It also inhibits the 
PSPN-dependent phosphorylation of RET 
mediated by the GPI-anchored GFRα4 
(Fig. 7). Consequently, the induction of 
neurite outgrowth and the promotion of 
neuronal survival are blocked (IV, figs 
6 and 7). In addition, I found that the 
interaction between the mGFRα4-TM 
and the mGFRα4-GPI does not affect 
the interaction between mGFRα4-GPI 
and RET which was detected both in the 
presence and absence of PSPN (IV, fig. 
3B). In addition, I showed experimentally 
in this study the existence of pre-
formed complexes of GFRα and RET 
independently of GFL (IV, fi g. 3B). Taken 
together, the data indicate that although 
the mGFRα4-TM and the mGFRα4-GPI 
are identical except the C-termini, their 
biological activities are quite different. 
This difference must be due to the 
difference in the receptor configuration 
caused by their C-termini.

Our data suggest that the mouse 
transmembrane GFRα4 may act as a 
dominant negative inhibitor of PSPN-
mediated signaling pathway. It has been 
shown that the growth-factor-mediated 
signaling can be regulated through a 
dominant negative mechanism. For 
instance, the truncated trkB can negatively 
regulate the full length trkB-mediated 
signaling (Haapasalo et al., 2001). The 
endogenous truncated EphA7 receptor 
can impair the activation of the active 
EphA7 receptor (full length), and alter its 
physiological actions during the neural 
tube development (Homberg et al., 2000). 
Also the activation of fi broblast growth 
factor receptor and TGF-β have been 
reported to be regulated via a domainant 
negative way (Osterhout et al., 1997; 
Onichtchouk et al., 1999). The different 
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splicing of transmembrane and GPI-
anchored GFRα4 is developmentally 
regulated (Lindahl et al., 2000). The 
functional GPI-anchored form is expressed 
in juvenile thyroid C cells, and in contrast, 
the transmembrane GFRα4 is expressed 
in newborn and adulthood (Lindahl et al., 
2000; Lindfors et al., 2006). The studies 
on gfra4-/- mice showed that gfra4 does 
not affect the development of thyroid 
C cells, but the less calcitonin-positive 
cells (37%) in ret-/- mice comparing 
with the wild type indicates that the 
subpopulation of C cell development is 
ret-dependent and some other GFRαs 
may be involved in (Lindahl et al., 2000). 
Actually the expression of GFRα1 in 
the C cells precursors during embryonic 
development suggests that maybe the 
RET-GFRα1 signaling is required for the 
earlier development of C cells (Lindfors 
et al., 2006). There are two hypothetic 
mechanisms of how growth-factor-
mediated signaling is negatively regulated. 
For instance, when the truncated TrkB is 
not expressed with the full-length TrkB in 
the same cells, the truncated TrkB can trap 
the ligand, therefore restrict the availability 
of ligand by the full length TrkB (Biffo 
et al., 1995). However when they are 
expressed in the same cells, the truncated  
TrkB will interact with the full length 
TrkB and inhibit the activation of the full 
length TrkB. Our data demonstrated that 
in vitro the transmembrane GFRα4 acts as 
a dominant negative inhibitor of PSPN-
mediated signaling via the GPI-anchored 
GFRα4 by interacting with the GPI-
anchored GFRα4 when they are expressed 
in the same cells. The formation of this 
hetero dimer therefore restrict the utility 
of the ligand by the GPI-anchored GFRα4. 
Considering the overlapping expression 
pattern of the transmembrane and GPI-
anchored in vivo (Lindahl et al., 2000), 

our hypothesis is that the transmembrane 
GFRα4 may act as a domainant negative 
regulator of PSPN-mediated signaling in 
vivo as well. Recently, the mutations of 
human GFRα4 have been reported to be 
as modifi ers of the MEN 2 disease which 
do not harbor RET mutants (Vanhorne et 
al., 2005). It would be highly interesting 
to address whether the transmembrane 
GFRα4 can also impair the signaling in 
MEN 2 disease lacking the RET mutants 
mediated by the GFRα4 mutants. This 
may be the potential clinical advantage of 
the transmembrane GFRα4. 
 
4.4.  The difference between GFRα4 
and GFRα1 (I, II and III)

4.4.1. The role of the fi rst cysteine-rich 
domain of GFRα1, which is absent
in mammalian GFRα4s (III) 
As mentioned previously the fi rst Cys-rich 
domain characterized in other GFRαs, 
including chicken GFRα4, is lacking in 
mammalian GFRα4s. GFRα1 has been 
postulated to consist of three similar Cys-
rich domains, D1, D2 and D3 (Fig. 4). The 
domain 2 and cleft between D2 and D3 has 
been shown to be involved in the binding 
of GDNF. The D2 has be postulated to 
interact with RET (Airaksinen et al., 
1999; Scott and Ibáñez, 2001; Leppänen 
et al., 2004;). Crystal structure study 
of the complex of GFRα3 and ARTN 
demonstrated that the D2 of GFRα3 
interacts with ARTN, the D3 domain is 
not involved in the ligand binding but 
stablizes the D2 domain. The D2D3 
region of GFRα3 is the binding surface 
for RET (Wang et al., 2006). However, the 
D1-lacking GFRα4s (GPI-anchored and 
soluble variants) are GFRα receptors that  
can mediate the activation of RET, neuronal 
differentiation and survival (Lindahl et al., 
2001; I and II). These data, together with 
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the studies from Scott and Ibáñez (2001) 
and Wang et al. (2006) suggest that the 
D1 in GFRαs is dispensable. In order to 
investigate the real function of the D1, we 
used the D1-deletion variant of GFRα1 
for the bioactivity assays (III). Our results 
showed that D1 of GFRα1 is important 
for stabilizing the binding of GDNF 
to GFRα1, but not for the interaction 
with RET. The truncated GFRα1 (D1-
lacking) showed lower activities in 
mediating the phosphorylation of RET 
in low concentrations, in promoting the 
neurite outgrowth and neuronal survival 
as compared to the full-length GFRα1 
(III, fi g. 4 and 5). Unlike the D2 and D3 
domains, which have a major contribution 
to the interaction of GDNF and RET, the 
D1 has a minor effect on this interaction, 
but has an important stabilizing role in 
GDNF binding and therefore is optimizing 
the function of GFRα1. 

The hypothesis of how the D1 domain 
stabilizes the binding of GDNF to GFRα1 
is that either by interacting with GDNF or 
both GDNF and GFRα1 subdomain. In the 
fi rst case, D1 might bend its 30 amino acid 
hinge down in order to reach the bound 
GDNF and stabilize the GDNF-GFRα1 
complex. In the latter case, the D1 might 
interact with the bound GDNF and the 
subdomain of GFRα1, therefore somehow 
link tightly the complex. Also it is possible 
that the D1 domain has some other still 
unidentified functions. Confirmation 
of these possibilities awaits the further 
studies, for instance the crystallization of 
the GDNF–GFRα1 complex.   

4.4.2. The recruitment of RET to lipid 
rafts is mediated differently by 
GFRα1 and GFRα4 (I) 
Lipid rafts participate at several different 
stages of signaling cascades and act 
as platforms for signal transduction 

integration. By virtue of their GPI anchor, 
the GPI-anchored GFRαs are localized 
into lipid rafts (Poteryaev et al., 1999; 
Tansey et al., 2000; Paratcha et al., 2001). 
By comparing the GPI-anchored and an 
artificial transmembrane GFRα1, it was 
previously shown that the recruitment 
of RET molecules to lipid rafts trigged 
by GDNF is critical for the GDNF-
mediated signaling. Using an artificial 
transmembrane GFRα1 it was shown  that 
although it can not recruit RET to lipid 
rafts in response to GDNF stimulation, 
the proximal RET signaling events such 
as receptor complex formation and RET 
phosphorylation are unaffected (Tansey 
et al., 2000). The authors also showed 
that in spite of its capacity to activate 
the phosphorylation of RET, the artifi cial 
transmembrane GFRα1 could not mediate 
full biological activity of GDNF. These 
data raised the question of whether the 
localization of RET to lipid rafts upon 
GFL treatment is required for GFL 
signaling? By examining the localization 
of the naturally existing mGFRα4-GPI 
and the recruitment of RET to lipid rafts 
mediated by the mGFRα4-GPI, we found 
that for some reasons the mGFRα4-GPI 
receptor is not associated with the lipid 
raft as tightly as the GPI-anchored GFRα1 
does. In addition, PSPN/GFRα4 recruited 
much less of RET into the lipid raft as 
compared to GDNF/GFRα1 (I). This 
result is unexpected and in contrast with 
the data obtained on GFRα1 where GDNF 
signaling has been shown to depend on the 
integrity of lipid rafts, because cholesterol 
depletion with methyl-β-cyclodextrin, 
a treatment known to disorganize lipid 
rafts, reduces GDNF-dependent activation 
of MAPK and AKT kinases (Tansey 
et al., 2000). Interestingly, PSPN still 
can mediate the neurite outgrowth and 
neuronal survival via the mGFRα4-GPI 
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and RET. Taken together, these data from 
mouse GPI-anchored GFRα4 indicate that 
RET can promote neuronal differentiation 
and survival although it is not strongly 
associated with lipid rafts.
 
4.4.3. PSPN-mediated signaling 
pathways
As the ligand for GFRα4, PSPN can induce 
the phosphorylation of RET receptor via 
GPI-anchored GFRα4, therefore promote 
the intracellular signaling pathways as 
neurite outgrowth and neuronal survival 
(Enokido et al., 1998; Lindahl et al., 
2001 and I). Although it is unclear which 
tyrosine residues become phosphorylated 
after PSPN stimulation, indirect evidence 
showed that, most probably the Tyr1062 
is phosphorylated upon PSPN stimulation 
since SHC and c-Src were recruited to 
the active RET mediated by PSPN via 
GFRα4 (data not shown). In vitro and in 
vivo studies also demonstrated that PSPN 
can promote the survival of many types 
of neurons except the peripheral neurons 
(Milbrandt et al., 1998; Paveliev et al., 
2004). The evidence from the analysis 
of the splicing forms of mouse GFRα4 
indicate that PSPN may promote different 
signaling pathways via different forms 
of its receptor. For instance, PSPN can 
activate MAPK and PI-3K/AKT signaling 
pathways via the GPI-anchored mGFRα4 

receptor in Neuro 2a cells (Lindholm and 
Saarma, unpublished data). However, in 
trans together with soluble GFRα4, PSPN 
activates only PI-3K/AKT signaling 
pathway, but not the MAPK pathway (data 
not shown), possibly refl ecting a different 
physiological role of soluble mGFRα4 in 
vivo. 

Pspn-/- mice show hypersensitivity 
to focal cerebral ischemia or stroke, 
and the exogenous application of 
PSPN demonstrated that PSPN has the 
neuroprotective function in the ischemia/
neurotoxicity models both in vitro and in 
vivo (Tomac et al., 2002). However it is 
unknown through which forms of GFRα4 
receptor PSPN exerts its neuroprotective 
roles. It is interesting to identify which 
form of GFRα4 is expressed in which 
particular neuronal types by the aid of 
available antibodies to the different 
forms. Also it will be very interesting to 
study the gfrα4-/- mice and see whether 
they have the same phenomenon as the 
pspn-/- mice. Combined with our current 
studies showing that the different forms of 
GFRα4 receptor function differently, the 
PSPN-mediated signaling, for example 
the regulation of the elevation of the 
intracellular calcium level in cortical 
neurons, maybe controlled by its different 
receptor forms.  
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5. Conclusions 
  
I. The mouse GPI-anchored GFRα4 is a functional coreceptor for PSPN and 

mediates PSPN signaling via RET. It can promote the downstream signaling 
of RET and thereby, mediate PSPN-dependent neuronal differentiation and 
survival. However, upon ligand stimulation GPI-anchored GFRα4, contrary to the 
previously described GFRα1, fails to recruit RET to the lipid rafts.

II. The mouse secreted GFRα4 variant, independently of its ligand, PSPN, can 
function as an agonist of RET. This pluripotential protein can interact directly 
with RET, mediate the autophosphorylation of RET, and regulate the downstream 
forward signals needed for the stimulation of neuronal differentiation and 
survival. 

III. The cysteine-rich D1 domain-deleted GFRα1 was used as a model to reveal the 
roles of the fi rst domain which is absent in mammalian GFRα4. The data showed 
that D1 domain is involved in the stabilizing the binding of GDNF to GFRα1 
receptor.

IV. The novel mouse transmembrane GFRα4, although having an identical N-end 
structure with GPI-anchored GFRα4, is  biologically inactive in response to 
PSPN. The transmembrane form can inhibit the biological functions of the GPI-
anchored GFRα4, block neuronal differentiation and survival mediated by the  
PSPN/mGFRα4-GPI/RET complex. 
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