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SUMMARY

Bacterial surface-associated proteins are important in communication with the
environment and bacteria-host interactions. In this thesis work, surface
molecules of Lactobacillus crispatus important in host interaction were studied.
The L. crispatus strains of the study were known from previous studies to be
efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess
an adhesive surface layer (S-layer) protein, whose functions and domain
structure was characterized. We cloned two S-layer protein genes (cbsA;
collagen-binding S-layer protein A and silent cbsB) and identified the protein
region in ChsA important for adhesion to host tissues, for polymerization into a
periodic layer as well asfor attachment to the bacterial cell surface. The analysis
was done by extensive mutation analysis and by testing Hiss-tagged fusion
proteins from recombinant Escherichia coli as well as by expressing truncated
CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-
274) of ChsA showed efficient and specific binding to collagens, laminin and
extracellular matrix on tissue sections of chicken intestine. The N-terminal
region also contained the information for formation of periodic S-layer polymer.
Thisregion is bordered at both ends by a conserved short region rich in valines,
whaose substitution to leucines drastically affected the periodic polymer
structure. The mutated CbsA proteins that failed to form a periodic polymer, did
not bind collagens, which indicates that the polymerized structure of ChsA is
needed for collagen-binding ability. The C-termina region, which is highly
identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and
Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell
wall. The C-terminal ChsA peptide specifically bound to bacterial teichoic acid
and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer
protein of L. crispatus is important for polymerization and adhesion to host
tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall
teichoic acids.

Lactobacilli are fermentative organisms that effectively lower the surrounding
pH. While this study was in progress, plasminogen-binding proteins enolase and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the
extracellular proteome of L. crispatus ST1. In this work, the cell-wall
association of enolase and GAPDH were shown to rely on pH-reversible binding
to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally
compared with enolase from L. johnsonii as well as from pathogenic
streptococci  (Streptococcus  pneumoniae,  Streptococcus  pyogenes)  and
Staphylococcus aureus. Hisg-enolases from commensal lactobacilli  bound



Summary

human plasminogen and enhanced its activation by human plasminogen
activators similarly to, or even better than, the enolases from pathogens.
Similarly, the Hiss-enolases from lactobacilli exhibited adhesive characteristics
previously assigned to pathogens. The results call for more detailed analyses of
the role of the host plasminogen system in bacterial pathogenesis and
commensalism as well of the biologica role and potential health risk of the
extracellular proteome in lactobacilli.



Introduction

1 INTRODUCTION

Species of Lactobacillus form the most numerous genus in the heterogeneous
group of Lactic Acid Bacteria. Lactobacilli are Gram-positive, non-spore-
forming, and strictly fermentative organisms producing lactic acid as the primary
end product (Saminen and von Wright, 1998). The genus contains about one
hundred described species, which are subdivided by 16S rRNA analysis, DNA-
DNA hybridization and other phylogenetic methods, into eight major groups:
Lactobacillus buchneri, Lactobacillus delbrueckii, Lactobacillus case,
Lactobacillus  plantarum, Lactobacillus reuteri, Lactobacillus sake,
Lactobacillus salivarius, and Lactobacillus brevis group (Salminen and von
Wright, 1998; Delaglio and Felis, 2005). The L. delbrueckii group includes the
main species investigated in my PhD work, Lactobacillus crispatus, as well as
dozens of other species, such as Lactobacillus acidophilus, Lactobacillus
helveticus, Lactobacillus gallinarum, Lactobacillus gasseri, and Lactobacillus
johnsonii.

Lactaobacilli belong to the normal flora of humans and animals in the oral cavity,
the vagina and the gastrointestinal tract. They are widdy utilized in production
of various food products, in eg. fermentation of milk, meat, beverages and
vegetables, and therefore exploitation of lactobacilli has a huge economic
impact. Because of their proposed hedlth promoting properties, Lactobacillus
species are widdy used as probiotics (Ouwehand et al., 2002). Probiotics are
microbial cell preparations or components of microbial cells that have a
beneficial effect on health or well-being (Salminen et al., 1999). An important
property proposed for a probiotic bacterium isthe ability to adhere and colonize
host tissues, which enhances multiplication and survival of bacteria in the host
and prevents colonization by pathogenic bacteria. Suppression of the growth of
pathogens can also be achieved through competition for nutrients as well as by
production of bactericidal components, such as bacteriocins, lactic acid or
hydrogen peroxide (Salminen and von Wright, 1998; Blum et al., 1999a; Reid
and Burton, 2002). Several studies have indicated potential of lactobacilli in
modulation of mammalian immune system. Lactobacillus species affect cytokine
expression in human monocytes, macrophages, or dendritic cells (Vaarala, 2003;
Merk et al., 2005).

In clinical trias, probiotics have been shown to prevent and promate recovery
from acute rotavirus infection (Isolauri et al., 1991; Limdi et al., 2006) and their
role in antibiotic-induced diarrhoes, irritant bowe disease and food alergy has
been suggested (Boyle and Tang, 2006; Limdi et al., 2006). However,
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lactobacilli are occasionally associated with endocarditis, bacteraemia and
several other localized infections, such as pulmonary infection, abscesses or
peritonitis. These infections are usually opportunistic and polymicrobial, and
patients have often underlying immunosuppressive conditions, and they may be
receiving broad spectrum antibiotic therapy or have other underlying conditions,
such as dental infection or heart disease (de Vrese and Schrezenmeir, 2002;
Cannon et al., 2005; Salvana and Frank, 2006).

In my Ph.D. work, | have studied the surface proteins of L. crispatus and
molecular basis of these proteins in host interaction, such as in adhesion to host
tissue components and in interaction with the human proteolytic plasminogen

(Plg) system.
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2 SURFACE PROTEINS OF LACTOBACILLUS
INVOLVED IN HOST INTERACTION

Lactobacilli interact with the host via several distinct surface componerts.
Adhesion to host tissues is considered to be the first step in bacterial
colonization. The role of proteinaceous surface molecules in adhesion has been
proposed in several studies (Conway and Kjelleberg, 1989; Tuomola et al.,
2000; Lorca et al., 2002), although non-proteinaceous lipoteichoic acids (LTA)
have been reported to mediate adhesion (Granato et al., 1999). Severa
lactobacillar surface proteins, including the surface layer (S-layer) proteins, have
been shown to bind to epithelia cells, mucus layer or other host tissue structures
(Table 1). S-layers are periodic crystalline arrays that are composed of protein or
glycoprotein subunits, which form a solid layer to cover the whole cell surface
(Saraand Sleytr, 2000). They are found in both Archaea and Bacteria, including
Lactobacillus species, especially in the L. delbrueckii group, but also in L.
brevis, L. buchneri and in L. casel groups. The functional and structural details
of lactobacillar S-layers are discussed in Chapter 2.1. Also, several non-S-layer
proteins have been characterized to mediate lactobacillar adhesion to host tissues
(Table 1). Many of these proteins are anchored covalently to peptidoglycan (PG)
by the so-called LPXTG-moatif. The protein anchoring mechanisms onto Gram-
positive cell wall are discussed more in Chapter 2.3.

One class of lactobacillar proteins important in survival within the host is the
bacteriocins, which are produced by several lactobacillar species and are
antimicrobial against other microbes. These bacteriocins have a role in food
industry, where they prevent spoilage, and promote quality of the products, but
they are also proposed to suppress the growth of harmful bacterial species in the
gastro-intestinal tract and thus may have potential in clinical applications (Cotter
et al., 2005). Bacteriocins of Lactobacillus are inhibitory against several
pathogens, such as Campylobacter jgjuni (Stern et al., 2006), Porphyromonas
gingivalis (Pangsomboon et al., 2006), Helicobacter pylori (Kim et al., 2003)
and Listeria monocytogens (Loessner et al., 2003; Ghalfi et al., 2006) but also
against heterologous Lactobacillus species (Ouwehand, 1998).

Another class of important lactobacillar surface proteins are proteases, in

particular those degrading casein, the most abundant protein in milk. Casein
provides essential amino acids for bacterial growth in milk (reviewed in Savijoki
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Table 1. Proposed or identified adhesive surface proteins of Lactobacillus.

Adhesin Target SpeciedStrain Reference

Surface layer proteins

S-layer protein  Avianinteginal epithdlial cdls Lactobacillus acidophilus spp. Schneitz et al., 1993

ChsA Collagens, laminin Lactobacillus crispatus JCM 5810 Tobaet al., 1995

SIpA Fibronectin, human epithelial Lactobacillus brevis ATCC8287 Hynonen et al., 2002

S-layer protein (I;i(ljllla?god cells Lactobacilluskefir CIDCA 8321, Garroteet al., 2004
Lactobacillus parakefir CIDCA 8328

SIpA Murineileal epithelial cells Lactobacillus acidophilus M92 Freceet al., 2005

LPXTG-motif proteins

Mub Hen intestinal mucus, pig mucin Lactobacillus reuteri 1063 Roos and Jonsson,
2002

Mub Human intestinal epithelial cell Lactobacillus acidophilus NCFM Buck et al., 2005
(LBA1392) line

Lsp Murine gut epithelium Lactobacillus reuteri 100-23 Walter et al., 2005
Msa(LP1229) Mannosides Lactobacillus plantarum WCFS1 Pretzer et al., 2005
LspA Human intestinal epithelial cell Lactobacillus salivarius UCC118 van Pijkerenet al.,

line 2006b

Anchorless housekeeping proteins

EF-Tu Human intestinal epithelial cell Lactobacillus johnsonii NCC533 Granato et al., 2004
line, mucin

GroEL Human intestinal epithelial cell Lactobacillus johnsonii NCC533 Bergonzelli et al.,
line, mucin 2006

Others

Cna Type| collagen Lactobacillus reuteri NCIB 11951 Rooset al., 1996

FbpA Human intestinal epithelial cell Lactobacillus acidophilus NCFM Buck et al., 2005
line

MapA Porcineintestinal mucus, human Lactobacillus reuteril04R Rojaset a., 2002;
intestinal epithelial cell line Miyoshi et al., 2006

et al., 2006). Cdl-envelope proteases (CEPs), which perform the first step in
casein degradation, have been characterized from Lactobacillus paracasel
(Holck and Naes, 1992), Lactobacillus bulgaricus (Gilbert et al., 1996), L.
helveticus (Pederson et al., 1999), and from Lactobacillus rhamnosus (Pastar et
al., 2003). These proteases are typically large in molecular size (approximatdy
2000 amino acids) and comprised of several domains with distinct functions,
such as prepro-domain, catalytic domain, spacer domain, and cel wall
attachment domain (the LPXTG-motif) (Siezen, 1999; Savijoki et al., 2006).
The second phase in casein utilization, the transportation of peptides into the
cdl, is mediated by the Opp transporter system as well as by DtpT and Dpp
systems (Doeven et al., 2005). In Lactococcus lactis, the PrtP protease and Opp
transporter system are crucial for growth in milk (Tynkkynen et al., 1993;
Siezen, 1999; Savijoki et al., 2006), whereas the individual intracellular
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peptidases responsible for further degradation of casein are not essential
(Christensen et al., 1999; Savijoki et al., 2006). Importance of lactobacillar
protease systems in host interaction is poorly known. Liberation of bioactive
peptides from casein has been proposed to promote human health by eg.
stimulating the immune system (Pihlanto and Korhonen, 2003; Meisd, 2004).
Several reports of lactobacillar interaction with human immune system has
recently been published (reviewed in Vaarala, 2003), however, only a few
proteins have been shown to be involved in immunological processes, e.g.
GroEL and the e ongation factor Tu (EF-Tu) discussed in Chapter 2.4.

Sequencing of lactobacillar genomes has produced new insights into putative
surface proteins with a possible rolein host interaction. For instance, the genome
of L. plantarum encodes 223 putative surface proteins identified by domain
compositions and homology to characterized surface proteins in other bacterial
species. From those surface proteins, 12 were predicted to be involved in
adhesion, 69 in enzyme reactions, 30 as transporters and the rest were predicted
to function as regulators, phage receptors or possess an unknown function
(Boekhorst et al., 2006b). This prediction suggests presence of a biologically
important secretome in lactobacilli, and extensive efforts will be needed to
confirm and to characterize the possible role of these putative surface proteinsin
lactobacillar-host interaction. Indeed, several reports on identification of the
secretome of Lactobacillus have been reported during last years (Wall et al.,
2003; van Pijkeren et al., 2006; Hurmalainen et al., 2007). Proteins with an
essential physiologica function in intracellular processes have been found on the
bacterial cell wall and in the extracellular proteome. These proteins are called
anchorless since no typical signal sequence or anchoring motif has been detected
in their sequence. In Lactobacillus, these proteins have been shown to modulate
the immune system and to interact with the human proteolytic Plg system (see
Chapter 2.4).

2.1 Surface layer proteins

No general function has been identified for S-layer proteins, but several
lactobacillar S-layers have been identified as putative adhesins with affinity for
various tissue compartments or molecules (Table 1). Treatment of Lactobacillus
kefir and Lactobacillus parakefir cells with lithium chloride (LiCl), which is the
routine method to extract the S-layer from the bacterial surface, abolished the
hemagglutination ability of these cells (Garrote et al., 2004). However,
hemagglutination is apparently not a common characteristic of Lactobacillus
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(Ocaria et al., 1999; Colloca et al., 2000). Schneitz et al., (1993) proposed that
S-layer of L. acidophilus mediates binding to intestinal epithelial cells and Frece
et al., (2005) showed that treatment of L. acidophilus M92 cells with LiCl
abolished the bacterial adhesiveness to mouse ileal epithelial cells. However,
removal of Slayer with LiCl or other chemica extraction method may
simultaneously remove other cdl-wall proteins important in adhesion, and these
observations remain suggestive. The deletion of the S-layer gene sIpA in L.
acidophilus NCFM abolished the bacterial adherence to a human intestinal
epithelial cell line, but the authors suggested that phenotype of the mutation
likely resulted from loss of other surface proteins bound onto the S-layer (Buck
et al., 2005). L. crispatus JCM 5810 adheres efficiently to collagens and laminin,
which are major components of mammalian extracellular matrix (ECM) and the
extracted S-layer protein bound to collagen IV (Toba et al., 1995). Only in one
case the adhesive function of a lactobacillar S-layer has been confirmed by
genetic means. Treatment of L. brevis ATCC 8287 cdl with GnHCI abolished
binding of this strain to intestinal epithelial cell line and suggested therole of S-
layer. Expression of fragments of the L. brevis S-layer protein SIpA as a genetic
fusion in flagellar FHiC subunits in Escherichia coli conferred binding of
chimeric flagella to human epithelial cells and fibronectin confirming the
adhesive characteristics of the L. brevis SIpA. The receptor-binding region
responsible for binding to fibronectin was mapped to 81 amino acids in the N-
terminal part of the protein (Hynonen et al., 2002).

Adhesive S-layers have a role in inhibition of adhesiveness of pathogenic
bacteria and thus can contribute to probiotic effects of lactobacilli. The removal
of S-layer with GnHCI from L. crispatus JCM 5810 diminished the ability of L.
crigpatus cellsto inhibit adhesion of pathogenic E. coli to a basement membrane
(BM) preparation (Horie et al., 2002). The adhesion of enterohaemorrhagic E.
coli O157:H7 to human epithelial cell line was inhibited in the presence of the S-
layer protein extract of L. helveticus (Johnson-Henry et al., 2007).

In addition to lactobacillar S-layer, S-layer proteins from other bacterial genera
mediate adhesion to host tissues. Bacillus cereus binds to laminin and the S-
layer protein was identified as a laminin-binding protein by inhibition assays
using antiserum against the S-layer (Kotiranta et al., 1998). The native and
recombinant S-layer protein of Clostridium difficile bind to human and murine
gastrointestinal epitheium and lamina propria (Calabi et al., 2002). Also in
Gram-negative bacteria, S-layer proteins have been characterized as adhesins
and also as virulence factors. In Aeromonas, the S-layer functions as an adhesin
tofish cell linesas well asto BM and ECM components laminin and fibronectin
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(Ishiguro et al., 1981; Doig et al., 1992; Noonan and Trust, 1997). The purified
S-layer protein of Bacteroides for sythus has hemagglutination ability, and based
on antibody inhibition assays, the S-layer isinvolved in adhesion and invasion to
human oral epithelial cell line (Sabet et al., 2003).

Other functions for S-layers have also been identified. The S-protein of L.
helveticus CNRZ 892 functions as a receptor for a phage (Beveridge et al.,
1997). In Bacillus anthracis, the two S-layer proteins exhibit murein hydrolase
activity (Ahn et al., 2006). The S-layer of G. stereothermophilus functions as a
molecular sieve by trapping high molecular weight solutes (S&ra and Sleytr,
1987) and as an adhesion site for exoenzyme amylase (Egelseer et al., 1995;
Jarosch et al., 2001). The S-layer of Bacillus thuringiensisisinvolved in toxicity
against an insect host (Pefia et al., 2006). S-layers have been proposed to have a
rolein cell shape determination and cell wall stabilization (Sleytr and Beveridge,
1999). Indeed, the extraction of S-layer protein reduced the viability of L.
acidophilus at low pH, suggesting a protective role for the S-layer (Frece et al.,
2005).

The S-layer represents the outermost surface layer in hundreds of species in
Archaea and in both Gram-positive and Gram-negative Eubacteria (S&ra and
Sleytr, 2000). So-far, the S-layer has been detected in a few species of the genus
Lactobacillus (Table 2), whereas the presence of S-layer in other species of
Lactobacillus has been poorly examined. The S-layer genes and proteins have
been cloned and characterized from L. acidophilus (Boot et al., 1993), L.
gallinarum (Hagen et al ., 2005), L. helveticus (Callegari et al., 1998; Gatti et al .,
2005) and from L. brevis (Vidgren et al., 1992; Jakava-Viljanen et al., 2002).
Formerly, L. johnsonii and L. gasseri were proposed to lack an S-layer (Boot et
al., 1996b), but recently, Ventura et al., (2002) identified the protein called
aggregation-promoting factor from these species as an S-layer-like protein,
having amino acid composition and physical properties similar to lactobacillar
S-layers. Despite their similar amino acid composition, such as a low content of
cysteine and methionine as well as a high content of hydrophobic amino acids
and hydroxyl amino acids, the S-protein primary sequences are conserved only
in closely-related species (Avall-Jaaskeldinen and Palva, 2005). Lactobacillar S-
layers have a rdatively high isoelectric point (pl), a characteristic aso of
Methanothermus fervidus S-layer (Brockl et al.,, 1991), whereas other
characterized bacterial S-layers are weakly acidic (S&ra and Sleytr, 2000).
Lactobacillar S-layers are rdatively small, 25 kDa to 71 kDa in size (Avall-
Jééskeldinen and Palva, 2005), whereas the molecular masses of S-layers in
other bacterial species range up to 200 kDa (Sara and Sleytr, 2000).
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Table 2. Lactobacillus species reported to possess an S-layer.

Species Reference

Lactobacillus acidophilus Boot et al., 1993; Boot et al., 1995
Lactobacillus amylovorus Boot et al., 1996b

Lactobacillus brevis Masuda and Kawata, 1979; Vidgren et al., 1992; Jakava-Viljanen et al., 2002
Lactobacillus buchneri Masuda and Kawata, 1981

Lactobacullus casei Barker and Thorne, 1970

Lactobacillus crispatus Tobaet al., 1995

Lactobacillus fermentum Masuda and Kawata, 1983

Lactobacillus gallinarum Boot et al., 1996b; Hagen et al., 2005

Lactobacillus gasseri Venturaet al., 2002 *

Lactobacillus helveticus Lortal et al., 1992; Callegari et al., 1998; Gatti et al., 2005
Lactobacillus johnsonii Venturaet al., 2002 *

Lactobacillus kefir Garroteet al., 2004

Lactobacillus par akefir Garrote et al., 2004

* proposed S-layer like surface protein

Multiple S-layer genes have been identified in the genomes of L. acidophilus,
Lactobacillus amylovorus, L. gallinarum, L. crispatus, L. brevis, L. gasseri and
L. johnsonii (Boot et al., 1996b; Jakava-Viljanen et al., 2002; Ventura et al.,
2002) as well as in several bacteria belonging to other genera (Dworkin and
Blaser, 1997; Kuen et al., 1997; Mesnage et al., 1997). Boot et al., (1996b)
identified two S-layer protein encoding genes, one silent and one actively
transcribed, in L. acidophilus ATCC 4356 and in the related species, L.
crigpatus, L. amylovorus, and L. gallinarum. In the genome of L. acidophilus,
the active and silent genes are located in opposite orientations on a 6 kb
chromosomal segment. The inversion of the slp segment causes an interchange
of the active and the silent S-layer genes (Boot et al., 1996c¢), which resembles a
mechanism of phase variation in bacterial surface antigen expression. Four S
layer genes are present in L. brevis ATCC 14869, and their expression is
influenced by growth conditions. In cells grown in aerobic conditions, the L.
brevis S-layer is composed of two S-layer proteins, in contrast to cells from
anaerobic conditions, where only one S-layer protein is synthesized (Jakava-
Viljanen et al., 2002). Transcription of L. brevis S-layer genes was controlled by
an unidentified soluble factor and involved activation of transcription rather than
occurring by chromosomal DNA rearrangement (Jakava-Viljanen et al., 2002).
Variation in S-layer gene expression as a response to environmental changes has
also been described in G. stereothermophilus (Scholz et al., 2001), B. anthracis
(Mignot et al., 2002), and Campylobacter fetus (Dworkin and Blaser, 1997).
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As S-layer proteins represent 10-15% of the total amount of proteins in
Lactobacillus cdls (Boot and Pouwels, 1996), their transcription and secretion
mechanisms must be efficient and tightly regulated. Multiple promoters precede
several S-layer genes (Boot and Pouwels, 1996), including S-layer genes of L.
acidophilus (Boot et al., 1996a) and L. brevis (Vidgren et al., 1992; Kahala et
al., 1997) and are likely to ensure efficient transcription of these genes. Also, the
half-lives of mRNA encoding lactobacillar S-layer proteins are relatively high,
approximately 15 min, which enables efficient protein translation (Boot et al.,
1996a; Kahala et al., 1997). The predicted lactobacillar S-layer proteins contain
a conserved N-terminal signal sequence of 25-30 amino acids (Avall-
Jééskeldinen and Palva, 2005), which indicates that their secretion occurs viathe
general Sec-pathway. The highly efficient lactobacillar promoter regions and
signal sequences have been utilized in various heterologous proteins expression
systems (Savijoki et al., 1997; Kahala and Palva, 1999, Avall-Jaaskelginen et
al., 2003), for instance, in expresson of the adhesive S-layer protein of L.
crigpatus JCM 5810 (Martinez et al., 2000).

S-layers sdf-assemble to cover up to 70% of the bacterial cell surface. The S
layer is not impermeable and has pores between the identical lattice units (Sara
and Sleytr, 2000). Based on eectron microscopy using negative staining or
freeze-etching, the S-layer subunits are composed of lattices with oblique,
square or hexagonal symmetry (Séra and Sleytr, 2000). The oblique lattice type
was identified in the S-layers of L. acidophilus (Smit et al., 2001), L. brevis
(Jakava-Viljanen et al., 2002) and L. helveticus (Lortal et al., 1992) and the
hexagonal latticetypein L. casei and L. buschneri (Masuda and Kawata, 1981).

Two types of post-translational modification are known in S-layer proteins.
Phosphorylation has been described only in the S-layer protein of Aeromonas
hydrophila, where the tyrosine residues are post-trandationally modified
(Thomas and Trust, 1995), whereas glycosylation has been reported for S-layers
from Archaea and from Gram-positive bacteria (Claus et al., 2005), including
Geobacillus (Schéffer et al., 2002; Steiner et al., 2006), and Clostridium (Calabi
et al., 2001). In Gram-positive bacteria, linear or branched homo- or
heterosaccharides have been identified (reviewed in Schéffer and Messner,
2004). The glycan structure has been reported from L. buchneri (Upreti et al.,
2003), whereas most lactobacillar S-layers apparently are non-glycosylated
(Masuda and Kawata, 1983).
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Only afew lactobacillar S-layer proteins have been characterized in detail, these
include the S-layer proteins from L. acidophilus ATCC 4356 (Smit et al., 2001)
and from L. brevis ATCC 8287 as well as the S-layer protein ChsA of L.
crigpatus JCM 5810 characterized in my PhD work. The S-layer protein from L.
acidophilus has a two-domain structure. A fragment containing the N-terminal
two-thirds of the protein (SAN) crystallized into a layer and was proposed to be
composed of two sub-domains with a surface-exposed loop (Smit et al., 2002).
The C-terminal part (SAC) was responsible for cell wall anchoring (see Chapter
2.3.1). In the adhesive S-layer protein of L. brevis, an N-terminal domain is
responsible for adhesiveness (Hyntnen et al., 2002). However, the predicted
amino acid sequences of L. brevis and L. acidophilus S-layers are not identical
and, hence, the domain structure of L. acidophilus cannot be extended to L.
brevis. The successful surface expression of a foreign peptide epitope in the C-
terminal part of L. brevis Slayer protein suggests that the cell-wall binding
domain may not be C-terminal in this S-layer protein (Avall-Ja&skelginen et al.,
2002). Separate crystallization and cell-wall binding domains have also been
characterized in S-layer proteins from B. anthracis (Candela et al., 2005), G.
stearothermophilus (Jarosch et al., 2001; Pavkov et al., 2003) and Clostridium
cellulovorans (Kosugi et al., 2002). Only a few attempts to determine crystal
structures of an S-layer protein has been reported (Claus et al., 2002) and these
structures are resolved only from subdomains of Slayer from G.
stearothermophilus and archaeal Methanosarcina (Jing et al., 2002; Pavkov et
al., 2003).

2.2 Non-S-layer adhesion proteins

In addition to S-layer proteins, a few adhesive surface proteins in lactobacilli
have been characterized to bind to epitheia cdls, intestinal mucus or
components of the ECM (Table 1). Several species of Lactobacillus adhere in
vitro to the mucus preparations isolated from intestine (Rojas and Conway,
1996; Edelman et al., 2002; Gusils et al., 2003) as well as to mucus isolated
from human faeces (Kirjavainen et al., 1998; Tuomola et al., 2000; Ouwehand et
al., 2001). The binding to mucus has generally been considered to reflect
bacterial adherence to tissues, but the binding might also facilitate the removal
of the bacteria and mucus can inhibit bacterial adherence to enterocytes
(Salminen and von Wright, 1998). A few mucus-binding proteins have been
identified, such as Mub and MapA from L. reuteri (Roos and Jonsson, 2002;
Miyoshi et al., 2006) as well as GroEL and EF-Tu from L. johnsonii (Granato et
al., 2004; Bergonzelli et al., 2006) discussed further in Chapter 2.4.
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The high-molecular-weight (358 kDa) protein Mub of L. reuteri contains 14
repeats of approximately 200 amino acids and has features typical of a surface
protein, including a signal sequence, an LPXTG anchor motif (see Chapter 2.3)
and a membrane-spanning region. Mub extracted from cell surface as well as
recombinant Mub protein bind pig gastric mucin (Roos and Jonsson, 2002).
Anti-Mub antibodies inhibited the mucus-adhesiveness of L. reuteri, which
supported the role of Mub in bacterial adherence. Recent analysis of genome
sequences of Lactobacillus predicted the presence of multiple putative mucus-
binding proteins in lactobacilli originating from the gastrointestinal tract
(Boekhorst et al., 2006a). These putative mucus-binding proteins have a domain
structure; the domains range from 100 to over 200 amino acids in size and in
number from 1 to 15. Mutants defective in putative mucin-binding proteins Mub
(LBA1392) of L. acidophilus (Buck et al., 2005) and LspA of L. salivarius (van
Pijkeren et al., 2006) showed significantly reduced adherence to human
epithelial cell lines. Three mucus-binding domains are present in the mannose-
binding protein Msa (LP1229) of L. plantarum (Boekhorst et al., 2006a).
Deletion of Msa gene from L. plantarum abolished agglutination ability of yeast
cdls, which are covered by a-mannoside oligosaccharides (Pretzer et al., 2005).

A 29 kDa protein from L. reuteri 104R (formerly Lactobacillus fermentum)
binds porcine intestinal mucus and gastric mucin (Rojas et al., 2002). Miyoshi et
al., (2006) showed that this protein also binds to human intestinal cells and
named the protein MapA (Mucus adhesion promoting factor). Further, this
protein shows 94% sequence identity with the characterized collagen-binding
protein (Cnb) of L. reuteri NCIB 11951, which has sequence similarity to a
solute binding component of ABC transporters (Roos et al., 1996). Further, the
29 kDa protein from L. fermentum, which has identical N-terminal sequence
with Cnb, is released from the cell surface and can inhibit the adhesion of
Enterococcus faecalis (Heinemann et al., 2000).

Recently, a homolog of the fibronectin-binding protein of Sreptococcus
gordonii and Streptococcus mutans was identified in L. acidophilus and shown
to mediate bacterial adhesion to human intestinal epithelial cells (Buck et al.,
2005). L. reuteri expresses a high-molecular-mass surface protein (Lsp), which
is similar to other surface proteins involved in adherence and biofilm formation
by Gram-positive bacteria. Insertion mutagenesis of Isp impaired the adherence
and initial colonization ability by L. reuteri in murine gut (Walter et al., 2005).
Also, mutants defective in methionine sulfoxide reductase B (MsrB) of L. reuteri
showed atered colonization ability in murine gut. Msr proteins protect the
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bacterial cell from oxidation, suggesting that tolerance to nitric oxide produced
by epithelial cells might be important in colonization (Walter et al., 2005).

Recent analysis of the genome sequence of L. plantarum identified 12 proteins
with known adhesive domain structures; three collagen-binding, one chitin-
binding, one fibronectin-binding and seven mucus-binding proteins (Boekhorst
et al., 2006a). However, the expression of these proteins as wel as their possible
rolesin bacterial adhesion and host interaction remain open.

2.3 Cell wall anchoring of lactobacillar surface proteins

The cdl envelope of Gram-positive bacteria is composed of a cell membrane
covered with a PG layer and secondary cell wall polymers. PG is comprised of
glycan strands, which in all bacteria consist of repeated disaccharide units, N-
acetylglucosamine-(b1-4)-N-acetylmuramic acid (GIctNAc-MurNAc). These
glycan strands are cross-linked by short cell-wall peptides, whose composition
varies between bacterial species. PG network forms a huge macromolecular
structure completely surrounding the cell (Navarre and Schneewind, 1999; Ton-
That et al., 2004). Detailed structure of PG has been determined from several
Lactobacillus species (Hungerer et al., 1969; Wallinder and Neujahr, 1971). The
PG layer is abundantly decorated with secondary cell-wall polymers classified as
teichoic acids, teichuronic acids and other neutral or acidic polysaccharides
(Schéffer and Messner, 2005). Teichoic acids, which are composed of glycerol-
phosphate, ribitol-phosphate or glucosyl-phosphate, are covaently attached to
PG, whereas LTA are anchored to cytoplasmic membrane via alipid moiety and
are mostly composed of polymerized glycerol-phosphate. Under phosphate-
limited conditions, the synthesis of teichuronic acid, where phosphate is
substituted to uronic acid, is enhanced rapidly (Seltman and Holst, 2002). The
cell wall has many critical functions, such as protection against the environment
and cell lysis, but it also provides an attachment site for the surface proteins
interacting with the host.

A variety of distinct mechanisms for anchoring proteins to the Gram-positive
cell envelope are currently identified (Figure 1). A common mechanism is the
sortase-dependent anchoring via the LPXTG-motif to PG. The proteins with this
anchoring mechanism contain a carboxyl terminal LPXTG sequence, a
hydrophaobic region and a tail of charged amino acids. The LPXTG sequence is
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Figure 1. Mechanisms of protein anchoring in the proteins to the Gram-positive cell surface. @) LPXTG-motif
covalently anchors surface proteins to peptidoglycan b) Protein anchored to teichoic acids via GW-motif c)
LysM protein anchored to peptidoglycan d) Lipoprotein linked to cell membrane €) Trans-membrane protein.
N- and C-termini of proteins are indicated (N, C). GW, protein having GW-motif; LysM, proteins with LysM
domain.

recognized by a membrane-associated sortase enzyme, which covalently links
the protein to peptide cross-bridge of PG (Paterson and Mitchell, 2004; Ton-
That et al., 2004). In the published whole genome sequences of Lactobacillus
species, 4 to 25 LPXTG-proteins are found (Kleerebezem et al., 2003; Pridmore
et al., 2004; Altermann et al., 2005; van Pijkeren et al., 2006). Lactobacillar
proteins which contain this motif include the adhesins, Mub (Roos and Jonsson,
2002) and Lsp of L. reuteri (Walter et al., 2005) and other putative mucus-
binding proteins (Boekhorst et al., 2006a), as well as cell-envelope proteases
(Savijoki et al., 2006), and other exoenzymes such as fructosyltransferase (van
Hijum et al., 2002).

The genomes of Lactobacillus species also encode proteins having the LysM
domain. For instance, in the genome of L. reuteri seven LysM proteins are
predicted, and four of those are putative hydrolases (Bath et al., 2005). This
domain is widespread in several bacterial genomes, and mediates protein binding
to PG (Bateman and Bycroft, 2000). Steen et al., (2003) showed that the C-
terminal LysM domain of lactococcal autolysin binds to PG extracted from
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many different bacterial species and to distinct PG types suggesting that this
domain binds to a component common in PG such as the glycan strands.
Autolysin is localized in the cell septum in L. lactis, probably as a consequence
of steric hindrance of PG-binding by unevenly positioned LTAS.

Several mechanisms for protein anchoring to teichoic acids and other secondary
cell polymers are known. Streptococcus pneumoniae has choline in the teichoic
acids and LTAs and several choline-binding proteins have been identified, which
function in cell adhesion, invasion, or colonization, as wdl as in immunological
processes (Bergmann and Hammerschmidt, 2006). These proteins bind to
choline moieties of teichoic acids via a C-terminal repeated domain (Y other and
White, 1994; Garcia et al., 1998). Limited data is available on choline-binding
proteinsin other species. However, a choline-binding domain has been identified
in Clostridium beijerinckii (Sanchez-Beato and Garcia, 1996) and three proteins
with the choline-binding domain were detected in the genome of L. plantarum
(Kleerebezem et al., 2003). The GW-motif was first identified in Listeria
monocytogenes InIB (Braun et al., 1997). The carboxy terminus, which anchors
the GW motif to the cell-wall teichoic acids, contains a repeat region starting
with glycine and tryptophan (Jonquiéres et al., 1999). This motif is also present
in several other proteins of L. monocytogenes (Cabanes et al., 2002), in other
Gram-positive bacteria and also in Lactobacillus species. The functions of GW-
proteins in Lactobacillusremain open.

In addition, a number of proteins bind directly to plasma membrane via a
common cysteine-containing lipobox (Sutcliffe and Russell, 1995; Sutcliffe and
Harrington, 2002) or an apha-helical transmembrane anchor (Desvaux et al.,
2006). Recently, anchorless multifunctional proteins, which lack established
signal sequences or anchoring domains, were identified on the cdl surface in
pathogenic bacteria, but aso in lactobacilli (Chhatwa, 2002; Pancholi and
Chhatwal, 2003; Hurmalainen et al., 2007). These proteins are known to
contribute to the virulence of pathogenic bacteria by interacting with host
components, such as glycoproteins of the ECM and circulating Plg (Chapter
2.4).
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2.3.1 Attachment of the surface layer proteins to the bacterial cell
wall

The subunits in the S-layer proteins are non-covalently bound to each other and
to the cell wall. Therefore, S-layer proteins can be extracted from the cell surface
with chaotropic agents, such as GnHCI and urea, or with high concentration of
salts, such as LiCl (Sleytr and Séra, 1997) and from Gram-negative bacteria with
metal-chelating agents, such as EDTA (Bingle et al., 1987). Removal of these
agents for example by dialysis, enable the S-layer peptides to self-assemble and
to form a periodic layer (Sleytr and Séra, 1997).

No general mechanism of anchoring the S-layer proteins to cell wall has been
found. A conserved S-layer homology (SLH) motif present in several S-layer
proteins of Gram-positive bacteria was first identified by Lupas et al., (1994).
The SLH domain is located at the N-terminus of S-layer proteins and, typically,
this motif comprises three repeats of 50-60 amino acids each (Engelhardt and
Peters, 1998). The SLH domain can be found in several Gram-positive S-layers
proteins, including B. anthracis, Bacillus sphaericus, B. thuringiensis, C.
thermocelum, G. stearothermophilus PV72/p2, and Thermoanaerobacterium
thermosulfurigenes, in which this motif anchors the S-layer protein to the
secondary cdl wall polymers (Ries et al., 1997; Lemaire et al., 1998; Brechtel
and Bahl, 1999; Chauvaux et al., 1999; Ilk et al., 1999; Mesnage et al., 2001,
Mader et al., 2004). Mesnage et al., (2000) showed that pyruvulation of PG-
associated polysaccharide is needed for anchoring the S-layer protein of B.
anthracis to the cell wall and this mechanism, which is mediated by the csaAB
operon, was proposed to be common in bacteria. Recently, evidence for a direct
anchoring of a protein via the SLH-domain to PG has been provided (Zhao et
al., 2006). In addition to the S-layer proteins, SLH motif is also present in the C-
termini of exoenzymes and other exoproteins in Gram-positive bacteria
(Engelhardt and Peters, 1998; Chitlaru et al., 2004) aswell asin outer membrane
proteins (Omps) of Gram-negative bacteria (Kalmokoff et al., 2000). Anchoring
of these proteins to the cell wall via the SLH-motif has been demonstrated
(Lemaireet al., 1995; Kosugi et al., 2002).

The SLH-motifs is not present in all characterized S-layer proteins, eg. in the
sequences of the Slayer proteins of Corynebacterium glutamicum, G.
stearothermophilus wild-type strain or from lactobacillar S-layer proteins.
Chami et al., (1997) proposed that the C-terminal hydrophobic region of the S
layer protein of C. glutamicum anchors the protein to cell wall. The S-layer
proteins of G. stearothermophilus wild-type strains attach to secondary cell wall
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polymers via their identical N-terminal regions (Egelseer et al., 1998; Jarosch et
al., 2000). The S-layer proteins from L. buchneri and L. brevis were proposed to
bind to a neutral polysaccharide moiety in the cell wall, but not to PG or teichoic
acids (Masuda and Kawata, 1980; Masuda and Kawata, 1981). The C-terminal
one-third of the S-layer protein from L. acidophilus (SAC) was shown to bind to
the cell surface after chemical removal of the S-layer. Similarly, the SAC binds
to LiCl-extracted cell surface of L. crispatus and L. helveticus, which have a
closely related S-layer protein (Smit et al., 2001). Further, the cell-wall binding
site was localized to the N-terminal region of 65 amino acids in the SAC
domain, and based on a preliminary analysis of cell wall by selective extraction,
Smit and Pouwels, (2002) suggested that SAC binds to the cell wall teichoic
acids.

2.4 Anchorless multifunctional proteins

Recently, several proteins with essential intracellular roles in bacterial growth
and metabolism have also been found on the bacterial surface or in the
extracellular proteome. They enhance virulence of pathogenic bacteria by
mediating adhesion, or have proteolytic or immuno-stimulating activities
(Chhatwal, 2002; Pancholi and Chhatwal, 2003; Bergmann et al., 2005). These
proteins are called anchorless, since no established signal sequence or anchoring
motif is present in their predicted sequences. Recently, the anchorless proteins
have also been identified in lactobacilli, where they include GroEL and EF-Tu,
as well asthe glycolytic enzymes enolase and GAPDH.

The GroEL, which is an essential intracellular protein functioning in protein
folding, was identified both on the cell surface and in the culture medium of L.
johnsonii Lal (NCC 533). GroEL binds to mucin and human epithelial cells at
acidic pH. In addition, recombinant GroEL stimulates interleukin-8 secretion in
macrophages and aggregates cells of the gastric pathogen Helicobacter pylori,
but not Salmonella enterica or E. coli cdls (Bergonzelli et al., 2006). EF-Tu,
which has arolein intracellular protein synthesis as a guanosine binding protein,
was found on the surface of L. johnsonii Lal and recombinant EF-Tu bound to
mucin and human intestinal epithelia cells, and the binding was more efficient
inpH 5 than in pH 7.2 (Granato et al., 2004). Similarly, binding of L. johnsonii
Lal to mucusis promoted at pH 5 (Blum et al., 1999b). The EF-TU of this strain
also induced a proinflammatory immune response in the presence of soluble
CD14 (Granato et al., 2004).
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Enolase and GAPDH are essential intracellular glycolytic enzymes. GAPDH
catalyzes oxidation and phosphorylation of glyceraldehyde-3-phosphate to 1,3-
biphosphoglycerate, whereas enolase catalyzes dehydration of 2-
phosphoglycerate (2-PGE) to phosphoenolpuryvate. Enolase also catalyzes
reverse reaction in gluconeogenesis. These enzymes are also present on the
surface in several Gram-positive bacterial species (Table 3), in Gram-negative
bacteria (Kenny and Finlay, 1995; Hara et al., 2000; Grifantini et al., 2002; Sha
et al., 2003) as well as in fungi and other eukaryotic organisms (reviewed in
Pancholi, 2001; Pancholi and Chhatwal, 2003).

Eukaryotic a-enolase is a dimer (Pancholi, 2001), whereas some bacterial
enolases form octameric structure (Pawluk et al., 1986; Schurig et al., 1995;
Brown et al., 1998; Ehinger et al., 2004). The surface-exposed enolases of
Gram-positive  pathogenic  Listeria  monocytogens, S pneumoniae,
Staphylococcus aureus, S. mutans, and Streptococcus pyogenes bind Plg and/or
plasmin (Pancholi and Fischetti, 1998; Bergmann et al., 2001; Mdlkanen et al.,
2002; Ge et al., 2004; Schaumburg et al., 2004). Plg is a precursor of plasmin, a
serine protease involved in several physiological processes, such as fibrinolysis,
degradation of ECM, enhancement of cel migration and activation of
prohormones and growth factors (Mignatti and Rifkin, 1993; Lijnen and Collen,
1995; Plow et al., 1999; Myohanen and Vaheri, 2004). A number of bacterial
species activate Plg to plasmin or bind Plg and by this way enhance Plg
activation by human Plg activators tissue-type Plg activator (tPA) or urokinase
(uPA) (Lahteenmaki et al., 2001). A few bacterial species express their own Plg
activators, which include the streptokinase of Streptococcus and staphylokinase
of Saphylococcus (Lahteenméki et al., 2001; Walker et al., 2005; Bokarewa et
al., 2006), but no evidence of such activity has reported from Lactobacillus.
Bacteria utilize the human Plg system to degrade ECM and to migrate across
tissue barriers (Lahteenméaki et al., 2005), as well as in release of peptides for
nutrition (Kitt and Leigh, 1997) and in inactivation of protease inhibitors
(Darenfed et al., 1999).

In both eukaryotic and prokaryotic cells, Plg/plasmin binds typically to lysine
rich domains, which are often located in the C-terminus of a receptor protein
(Redlitz and Plow, 1995). However, importance of arginine and histidine
residues in Plg-binding has been reported in the Plg-binding M-like protein
(PAM) and from the PAM-related protein Prp of S pyogenes (Sanderson-Smith
et al., 2006; Sanderson-Smith et al., 2007). In the enolase of S. pyogenes, the C-
terminal lysine residues are important in Plg binding, and a mutant strain
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Table 3. Gram-positive bacteriareported to express extracellularly localized enolase or GAPDH

Species

Reference

Enolase

Bacillus anthracis

Group B, C, E, G, H, L streptococci
Listeria monocytogens
Lactobacillus acidophilus
Lactobacillus amylovorus
Lactobacillus crispatus
Lactobacillus gallinarum
Lactobacillus gasseri
Lactobacillus johnsonii
Leuconostoc mesenter oides
Staphylococcus aureus
Streptococcus agalactiae
Streptococcus mutans
Streptococcus pneumoniae
Streptococcus pyogenes

GAPDH

Bacillus anthracis

Group B, C, E, G, H, L gtreptococci
Listeria monocytogens
Lactobacillus acidophilus
Lactobacillus crispatus
Lactobacillus gallinarum
Lactobacillus gasseri
Lactobacillus johnsonii
Lactobacillus paracasei
Lactobacillus rhamnosus
Lactococcus lactis
Mycobacterium avium
Mycobacterium tuberculosis
Oenococcus oeni
Staphylococcus aureus
Staphylococcus epidermidis
Streptococcus agalactiae
Streptococcus equisimilis
Streptococcus gordonii
Streptococcus oralis
Streptococcus pneumoniae
Streptococcus pyogenes
Streptococcus suis

Lamonica et al., 2005

Panchoali and Fischetti, 1992
Schaumburg et al., 2004

Hurmalainen et al., 2007

Hurmalainen et al., 2007

Hurmalainen et al., 2007

Hurmalainen et al., 2007

Hurmalainen et al., 2007

Hurmalainen et al., 2007

Leeet al., 2006

Molkénen et al., 2002; Carneiro et al., 2004
Hugheset a., 2002; Fluegge et al., 2004
Geet al., 2004

Bergmann et al., 2001

Pancholi and Fischetti, 1992

Lamonica et al., 2005
Pancholi and Fischetti, 1992
Schaumburg et al., 2004
Hurmalainen et al., 2007
Hurmalainen et al., 2007
Hurmalainen et al., 2007
Hurmalainen et al., 2007
Hurmalainen et al., 2007
Hurmalainen et al., 2007
Hurmalainen et al., 2007
Hurmalainen et al., 2007
Bermudez et al., 1996
Bermudez et al., 1996
Carretéet al., 2005

Modun and Williams, 1999
Modun and Williams, 1999
Hugheset al., 2002; Seifert et al., 2003
Gaseet al., 1996

Nelson et al., 2001
Maeda et al., 2004
Bergmann et al., 2004
Lottenberg et al., 1992; Pancholi and Fischetti, 1992
Brassard et al., 2004
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expressing an enolase, where the C-terminal lysines were substituted with
leucines, showed reduced ability in Plg binding and penetration ECM (Derbise
et al., 2004). However, the corresponding mutation in S. pneumoniae showed
similar Pig binding ability as did the parental strain, but the virulence of the
mutant strain was attenuated in a mouse model of intranasal infection
(Bergmann et al., 2003). The binding activities of the C-terminally mutated
enolase proteins of pneumococci suggested presence of another PIg binding site
in the molecule (Pancholi and Fischetti, 1998; Bergmann et al., 2003). Assays
with synthetic peptides, which covered the whole enolase sequence, revealed a
nine-amino-acids long internal sequence (**FYDKERKVYD) capable to bind
Plg and inhibit binding of Plg to pneumococcal cells. The crystal structure of
pneumococcal enolase reveals that this internal sequence is surface-exposed in
the octameric molecule, whereas the C-terminus of the protein is located in a
groove between two dimers and is inaccessible for Plg-binding (Ehinger et al.,
2004). Substitution of the lysine and glutamic acid residues in the internal
sequence significantly reduced Plg-binding by the parental strain and diminished
plasmin-dependent degradation of ECM, as well as attenuated pneumococcal
infection in a mouse model of intranasal infection (Bergmann et al., 2003;
Bergmann et al., 2005). Besides functioning as a Plg-binding molecule, enolases
of S mutans (Ge et al., 2004) and S aureus (Carneiro et al., 2004) bind to
salivary mucin and to laminin, respectively, and thus may contribute to bacterial
adhesiveness. Also, evidence for the role of streptococcal enolase as an
immunosuppressive protein has been provided (Veiga-Malta et al., 2004).

The GAPDH protens from several Gram-positive bacteria, such as L.
monocytogens, S. aureus, Streptococcus epidermidis, Streptococcus equisimilis,
S pyogenes, and S pneumoniae, have been shown to bind Plg or plasmin
(Pancholi and Fischetti, 1992; Gase et al., 1996; Modun and Williams, 1999;
Bergmann et al., 2004; Schaumburg et al., 2004). In S pyogenes, the
substitution of the C-terminal lysine in recombinant GAPDH protein reduced
Plg-binding, whereas the mutant strain expressing the C-terminal substitutions
bound PIg as efficiently as did the parental strain (Winram and Lottenberg,
1998).

The GAPDH protein of S. pyogenes binds fibronectin and lysozyme (Pancholi
and Fischetti, 1992) as well as to human pharyngeal cells (Jin et al., 2005).
Further, the interaction of GAPDH with pharyngeal cells involved
phosphorylation of cellular proteins (Pancholi and Fischetti, 1997) and the
urokinase Plg activator receptor (UPAR/CD87) was identified as the epithelial
receptor for GAPDH (Jin et al., 2005). In addition, a mutant strain of S
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pyogenes unable to secrete GAPDH after a genetic fusion of a C-terminal
hydrophobic peptide bound less Plg and adhered poorly to human pharyngeal
cdls suggesting that extracellular localization of GAPDH has a role in
streptococcal infection (Boél et al., 2005). The mutant strain had lost the
antiphagocytic activity, but the direct role of GAPDH in this process remained
open. The GAPDH of S pyogenes captures C5a, thus inhibiting chemotaxis and
H,O, production by neutrophils and enabling the escape of Streptococcus from
immune defence (Terao et al., 2006). Similarly, Madureira et al., (2007)
suggested that the GAPDH of Streptococcus agalactiae interferes with immune
system. Recombinant GAPDH induced B cell and T cell activation and a strain
overexpressing GAPDH showed increased virulence in a mouse model. The
GAPDH of S agalactiae binds actin and fibrinogen (Seifert et al., 2003) and
Brassard et al., (2004) showed that the GAPDH of Streptococcus suis binds
porcine tracheal rings.

Recently, interaction of commensal lactobacilli with the human Plg system was
reported (Hurmalainen et al., 2007). L. crispatus ST1 and several other species
of the genus Lactobacillus were shown to enhance both tPA- and uPA- mediated
formation of plasmin. Enolase and GAPDH were identified in the extracdlular
proteome and shown to bind Plg and enhance its activation by tPA and uPA
(Hurmaainen et al., 2007). In contrast to Gram-positive pathogens, which bind
Plg onto the cell surface, only limited binding of Plg to the lactobacillar cell
surface was detected, whereas the lactobacillar extracellular proteome obtained
at neutral pH efficiently enhanced activator mediated plasmin formation
(Hurmalainen et al., 2007). The commensal Bacteroides fragilis aso
immobilizes Plg on its surface (Sijbrandi et al., 2005). These findings
demonstrate that commensal bacteria interact with the human Plg system and
that among bacteria such interactions are more common than what have been
expected. Enolase and GAPDH of L. crispatus lack the C-terminal lysine
resdues that in many Plg receptors have been shown to interact with Plg.
However, sequence of the enolase of L. crispatus contains a similar internal Plg-
binding sequence, FYNKDDHKY, in the same position as in the pneumococcal
enolase (Hurmalainen et al., 2007). No other nonenzymatic function has so far
been identified for lactobacillar enolase or GAPDH.

Besides enolase and GAPDH, several other proteins are released to extracellular
proteome of Lactobacillus (Hurmalainen et al., 2007). Recently, the cell-free
culture medium of L. rhamnosus GG was shown to inhibit pro-inflammatory
cytokine expression, induce heat-shock protein expression, and modulate signal
transduction pathways in murine macrophages (Pefia and Versalovic, 2003; Tao
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et al., 2006). Further, Tao et al., (2006) showed that the factor responsible of
heat-shock protein induction is a small-molecular-weight peptide. However,
further characterization of this peptide, including expression analyses and study
of effects of different environmental conditions in its rdease, remain to be
performed.

Secretion mechanisms of these anchorless proteins remain poorly known. Boél
et al., (2004) suggested that automodification of enolase by its substrate 2-PGE
is associated with its secretion. By mass spectrometry analysis with proteolytic
peptides, enolase was shown to bind 2-PGE via lysine 341, which is located in
the active site. Mutation in this point in the enolase of E. coli prevented the
export of the enolase. On the other hand, deletion of htrA, which encodes a
surface protease known to be involved eg. in the folding and maturation of
extracellular proteins, increased expression of enolase and GAPDH in the
culture medium of S. mutans (Biswas and Biswas, 2005). In S. gordonii, more
GAPDH protein was found in culture media when the pH of the medium was
raised from 6.5 to 7.5 (Nelson et al., 2001). However, no mechanistic
explanations have been reported for the observations described above.
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3 AIMS OF THE STUDY

This study was aimed to characterize lactobacillar surface proteins, their role in
adhesion, their structures, aswell as their anchoring mechanisms on the bacterial
cell wall. Collagen-binding by the S-layer protein of L. crispatus JCM 5810 had
been reported (Toba et al., 1995). Adhesiveness of lactobacilli to host tissues is
considered important for lactobacillar colonization and therefore characterization
of the domain structure of the adhesive S-layer protein CbsA of L. crispatus
JCM 5810 and regions important for adhesion and crystallization were the first
topics in my PhD thesis work. In particular, identification of the regions and
possible domains important for tissue-adhesion and self-crystallization was a
topic in my thesis. Identification of the domain structure in CbsA led to the study
on its anchoring mechanisms onto the cell wall. During my thesis work, it
became evident that glycolytic enzymes, enolase and GAPDH are found on the
surface of lactobacilli, and their surface-association as well as functions became
a second major topic in my thesis. Surface-associated enolases function as Plg
receptors or activation cofactors in Gram-positive pathogens, and this study was
the first step in comparing the human PIg system in bacterial pathogenesis and
commensalism.

31



Materials and methods

4 MATERIALS AND METHODS

The bacterial strains and plasmids used in this study are listed in Table 4. The
methods are described in detail in the original publications and are summarized
in Table5.

Table 4. Bacterial strains and plasmidsused in this study

Bacterial strain or plasmid Origin/relevant property ~ Article  Reference and/or source
Bacterial strains
Lactobacillus acidophilus ATCC human pharynx | Johnson et al., 1980, JICM
4356 (JCM 1132)
Lactobacillus acidophilus JCM 1023  rat faeces | Johnson et al., 1980, JICM
Lactobacillus amylovorus F81 calf feces I, 1 Fujisawaet al., 1992, ICM
Lactobacillus amylovorus JCM5807  pigintestine | Mitsuoka, 1969, JICM
Lactobacillus brevis ATCC 8287 green fermenting olives 11 Vidgren et al., 1992, ATCC
Lactobacillus casei ATCC 393 cheese I Martinez et al., 2000
Lactobacillus crispatus A269-21 human feces | Fujisawaet al., 1992, ICM
Lactobacillus crispatus JCM 5810 chicken feces I, 1 Mitsuoka, 1969, JICM
Lactobacillus crispatus LMG 12003  human feces I, 1 BCCM
Lactobacillus crispatusLMG 9479  eye I BCCM
Lactobacillus crispatus ST1 chicken feces 1, 1v Edelman et al., 2002
Lactobacillus gallinarum F41 chicken feces I, 1 Fujisawaet al., 1992, ICM
Lactobacillus gallinarum T-50 chicken feces | Fujisawaet al., 1992, ICM
Lactobacillus gasseri JCM 1130 human feces I, 1 Lerche and Reuter, 1962, JCM
Lactobacillus gasseri JCM 5813 human feces | Mitsuoka, 1969, JICM
Lactobacillus johnsonii 5 F49 mouse feces I, 1 Fujisawaet al., 1992, ICM
Lactobacillus johnsonii F133 calf feces I, 1V Fujisawaet al., 1992, ICM
Escherichiacoli XL1 Blue MRF' cloning host | Stratagene Inc.
Escherichia coli M15(pREP4) host for pQE-30 vector L1, 1V Qiagen
Streptococcus pneumoniae TIGR4 v Tettelin et al., 2001
Streptococcus pyogenes serotype T1 v Miettinen et al., 1998
IH32030
Staphylococcus aureus 8325-4 v Novick, 1967
Plasmids
pBluescript KS cloning plasmid | Stratagene Inc.
pQE-30 His-tag expression vector I, 11,1V Qiagen
pLPMSSA3 lactobacillar expresson 11 This study

vector
pLPMSSA4 lactobacillar expresson |l This study

vector

ATCC, American Type Culture Collection
BCCM, Begian Co-ordinated Collections of Micro-organisms
JCM, Japan Collection of Microorganisms

32



Materials and methods

Table 5. M ethods used in thisstudy

Method

Described and used in

Genetic methods

Isolation of chromosomal DNA
Cloning to pQE-30 vector

Cloning to L. casei expression system
PCR mutagenesis

RNA analysis

Southern hybridization

DNA sequencing

Adhesion assays

Binding of soluble '*I-labelled glycoproteins

Adherence of bacterial cellsto immobilized glycoproteins
Adherence of bacterial strainsto frozen section of chicken intestine
Adherence of peptidesto glycoproteins by ELISA

Binding of peptidesto cel surfacesand cell wall material
Interaction of proteinswith LTA

Immunological methods
ELISA

Whole-cell ELISA

Indirect immunofluorescence
Western blotting

Protein assays

SDS-PAGE

Expresson and purification of His-peptides
Transmisson € ectron microscopy
Polymerization assay (cross-linking with glutaraldehyde)
Mass spectrometry

Protein and peptide sequencing

Extraction of cell surface components
Enolase enzyme activity measurement
Enhancement of plasminogen activation
Plasminogen binding

1V
LIV
1
I, 1
I, 1V
I, 11
LIV

I, 1

1

I, 1
LIV
I, 11
I, 11

LIV
1
I, 11
11

L L TV
L TV
I, 1
1
I, 1
|
I, 11
v
1, 1v
1, 1v
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5 RESULTS AND DISCUSSION

5.1 Characterization of the S-layer protein of
Lactobacillus crispatus (I, Il)

When this study was initiated, L. crispatus JCM 5810 had been shown to
strongly adhere to mammalian ECM via its collagen-binding S-layer protein
(Toba et al., 1995). In this thesis work, the gene encoding the S-layer protein of
JCM 5810, cbsA (collagen-binding S-layer protein A), was cloned and expressed
as a recombinant protein, and the domains responsible for crystallization,
binding to host tissues and attachment to cell wall were characterized. The
overview of the domain structure of ChsA identified in this thesis work is
presented in Figure 2.

410

[l M T T 1T T T 1T T T m

L Il |

| 31-274 needed for collagen-binding | 288-410 needed for
binding to cell surface

| and lipoteichoic acids

31-274 needed for laminin-binding

32-271 needed for pericdic polymer

Figure 2. Overview of domains of S-layer protein of L. crispatus CbsA. The bar represents CbsA with 410
amino acid residues, and residues conserved in eight S-layer proteins of L. crispatus, L. acidophilus and L.
helveticus were identified by the CLUSTALW program and are represented by a line. Functional regions are
indicated below the bar. Modified from Figure 1 of article |1 with permission of Blackwell Publishing Ltd.

5.1.1 Cloning of S-layer genes cbsA and cbsB of L. crispatus JCM
5810 (1)

To characterize the S-layer protein CbsA of L. crispatus JCM 5810, the cbsA
gene was cloned and sequenced. N-terminal and internal peptide sequences were
determined from the S-layer protein extracted from cell surfaceand DNA probes
were designed to localize cbsA by Southern hybridization of genomic DNA from
JCM 5810. The chromosoma fragment encoding CbsA was cloned and
sequenced. The predicted open reading frame of cbsA encodes a 440 amino-
acids long peptide with a 30-amino-acids long N-terminal signal sequence. It
was known that isolates of L. crispatus commonly possess two S-layer genes, a
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transcribed one and a silent one, which have highly conserved 5 and 3" regions
and may be subjected to phase variation (Boot et al., 1996b). To analyze
whether this also is the case in JCM 58190, the S-layer cbs fragment from JCM
5810 was amplified, isolated and digested with Xhol to cut and eliminate the
cbsA, which contains a single Xhol site, and the remaining DNA fragment was
cloned and sequenced. The cloned region encoded a predicted protein of 453
amino acids where the first 23 amino acids were identical with CbsA. The
overall predicted amino acid sequence of the peptide was 46% identical to the
CbsA sequence. Therefore this gene was considered to encode another S-layer
protein which was named ChsB. To analyze which of the proteins, CbsA or
CbsB, is expressed, total RNA was analyzed by specific chsA and cbsB probes.
The cbsA-specific probe detected a transcript of predicted size of cbsA, whereas
no signal was obtained from the cbsB probe. Also, the peptide sequencing of 16
proteolytic fragments of the Slayer protein extracted from cell surface
completely matched the amino acid sequence of CbsA but not of ChsB, and it
was concluded that CbsA was the expressed S-layer peptide.

Both of these proteins have typical features of a lactobacillar S-layer protein,
such as a high content of hydrophobic amino acids and a high pl (Avall-
Jééskeldinen and Palva, 2005). CbsA and ChsB sequences show high homology
to lactobacillar S-layer proteins from L. acidophilus ATCC 4356 (SIpA and
SlpB; Boot et al., 1993; Boot et al., 1995), L. helveticus strains, as well as from
L. crispatus LMG 12003 (SlpnA and SlpnB; Pouwels and Martinez,
unpublished). Especially, the C-termini of these proteins exhibit a high identity
(64-98 %), whereas the N-termini share 30-71% identity (Figure 2 and Figure 1
of article 1), and contain short conserved peptide stretches. Further, ChsA and
CbsB show only very low identity with S-layer proteins of L. brevis (7-14%) or
with sequenced S-layer proteins of other bacteria or Archaea. Thus, the predicted
Slayer proteins in lactobacilli exhibit considerable sequence variability, in
particular in their N-terminal halves, and an emerging question was whether this
is related to the reported functional differences.

5.1.2 Expression of the S-layer proteins as His-tag fusion proteins

{, 1)

In order to initiate the analysis of possible domain structure in CbsA, it was
expressed and purified as an N-terminal Hiss-fusion protein from E. coli. In
addition, Hiss-fusions were generated from cbsB, the S-layer gene sIpA of L.
acidophilus ATCC 4356, as well as from slpnB, a silent S-layer gene of L.
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crigpatus LMG 12003, which possesses a very high sequence identity (73%)
with CbsA. The proteins were purified in denaturating conditions in presence of
6 M urea and after extensive dialyss against phosphate-buffer saline (PBS), the
Hiss-S-layer proteins auto-assembled to periodic crystaline layers similar to the
S-layers extracted from the lactobacillar surface (Figure 3 of I; Smit et al.,
2001). L. crispatus JCM 5810 adheres efficiently to collagens and laminin as
well as ECM and the S-layer protein extracted from bacterial surface was
identified to bind solubilized *I-labelled type IV collagen (Toba et al., 1995).
However, L. acidophilus ATCC 4356 and L. crispatus LMG 12003 do not
adhere to collagens or laminin (Sillanp&4, 2001; J. Antikainen, unpublished).
The Hise-CbsA bound efficiently radiolabelled type | and IV collagens, whereas
no collagen-binding to Hiss-SIpA, Hiss-CbsB or Hiss-SIpnB were detected
(Table 1 of I). Binding of radiolabelled collagens to His;-ChsA was inhibited (by
>99%) by excess of unlabelled collagens, but not by fibronectin (1) as previously
observed with JCM 5810 cells (Toba et al., 1995). We concluded that the
expression and purification of S-layer proteins as a Histag fusion protein in E.
coli did not affect crystalization into periodic S-layer or the ability to bind
collagens, which indicates that histidine residues do not affect to polymerization
ability in vitro. Formation of regular S-layers in recombinant E. coli has been
reported for S-layer proteins from several species, such as G. stearothermophilus
(Kuen et al., 1996; Jarosch et al., 2000), B. anthracis (Candela et al., 2005) and
L. acidophilus (Smit et al., 2001).

5.1.3 N-terminal domain of CbsA is responsible for crystallization

{, 1)

To characterize the domain structure of ChsA, more than 50 truncated peptides,
hybrid fusions, and specific substitution mutations were created in this work (I,
I1). As afirst step, the Hiss-peptides and mutated Hiss-proteins (Table 1 of 1)
were analyzed by transmission eectron microscopy for crystaline layer
formation. Only the peptide with first N-terminal 287 amino acids formed a
periodic S-layer like structure (Table 1 of I, Fig. 3 of 1), whereas no regularly
arranged structures were recognized in shorter peptides (1-250, 1-212, 42-287).
Also, the C-terminal peptide CbhsA288-410 failed to polymerize into a crystalline
layer.

After observing that the first 287 amino acids formed a periodic structure and

that the first 41 N-terminal amino acids are important in this process, we mapped
the borders of the crystallization domain in more detail by generating amino acid
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deletions at the N- and C-termini of this domain region (Figure 2 of 1I). The C-
terminal truncations revealed that 275 or more of the N-terminal amino acids are
needed for polymerization to shedt-like structures, which, however, were mixed
with regularly arranged, large cylindrical polymers (Figure 2 of Il). The sheet
layer was observed only in CbsA1-410 suggesting that the C-terminal region
stahilizes the sheet-like structure. Further deletions at the C-terminus changed
the polymer structure first to small tubular polymers (1-274, 1-271) and further
to non-regular aggregates (1-269 and shorter). The truncation of N-terminus
revealed that the region 30-34 is important in polymer formation, since the
peptides with a deetion more of than 32 amino acids from the N-terminus (33-
287, 34-287, 29-287) failed to polymerize.

These regions important for polymerization, i.e. the residues 30-32 and 269-273
(Figure 1 of 11), are highly conserved in the S-layer proteins of closely related
lactobacillar species and rich in valines. Substitution of valines at these two
regions (VNV30TNT, VTVNV269TTTNT) changed the morphology type to a
mixture of large cylindrical polymers and small tubular polymers (Table 2 of I1).
In article |, two short N-terminal deletions and 11 amino acid substitutions were
congtructed at sites where the lactobacillar S-layer protein sequences differ
(Table 1 of 1) with an aim to identify sites and residues important for collagen
binding by CbsA. These substitutions did not have dramatic effects on polymer
formation (Table 1 of 1). The His;-CbsA protein with the substitutions
KSDV257TANN and V260N formed large cylinder-like structures and not
sheet-like layers observed in the other mutant Hiss-CbsA proteins. The
KSDV257TANN mutation is situated in a conserved region in lactobacillar S-
layer proteins (Figure 1 of 1), and this conserved region might be important in
for correct assembly of the S-layer.

The multimeric structure of selected CbsA peptides was also analyzed by cross-
linking the peptides with glutaradehyde (Figure 3 of I1) and was detected to
correlate with the transmission electron microscopy results. The peptides (1-271,
1-275, 1-287, and 32-287) observed to crystallize to periodic polymer by
electron microscopy, formed multimers in the cross-linking study. The smaller
peptides (1-269, 33-287) that failed to form a periodic structure, formed dimers
and tetramers in the cross-linking study (Figure 3 of 11) but also by mass
spectrometric analysis tested with non-fixed peptides. Formation of these
smaller multimers is likely to assist in the assembly to S-layers by advancing
correct folding of protein domains.
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We concluded that the amino acids 32-271 of CbsA are needed for formation of
a periodic polymer and that the two conserved hydrophobic regions 30-34 and
269274 are extremely important for polymerization. The stepwise truncation of
CbsA probably causes destabilization of the S-layer three-dimensional polymer,
and the conserved regions are essential in forming intramolecular interaction.
Domain structurein an S-layer protein has also been studied by deletion analysis
or substitutions in the SbsC and SbsB of G. stearothermophilus. Requirements
for self-assembly of SbsC were studied by generating N- and C-terminal
truncations and their expression and purification as recombinant proteins from E.
coli. The N-terminal part of SbsC is responsible for anchoring to cell surface and
needed for formation of shee-like layers, whereas further deletion of ShbsC
changed the structure to cylinder-like structure or peptides failed to form
periodic polymer (Jarosch et al., 2000; Jarosch et al., 2001). Thisisin congruent
with CbsA, where truncation of the C-terminal part of the protein, which is
responsible for anchoring to cell wall (Chapter 5.1.5), changed the polymeric
structure from sheet-like layers to cylinders (Chapter 5.1.3). Howorka et al.,
(2000) substituted 75 residues in SbsB of G. stearothermophilus with cysteine,
which is not present in the native protein, and analyzed surface-accessible
residues of these mutants. They concluded that functional domains are dispersed
in SbsB sequence. Only few crystal structures of S-layer proteins have been
reported; i.e. the S-layer protein of archaeal Methanosarcina (Jing et al., 2002)
and SbsC of G. stearothermophilus (Pavkov et al., 2003). However, sequences
of these proteins are not related to lactobacillar S-layer protein sequences,
therefore, it is impossible to estimate properties of lactobacillar S-layer domain
structures on basis of these published structures.

5.1.4 N-terminal domain is responsible for binding to collagen-
containing tissue sites (I, 1)

L. crispatus JCM 5810 adheres to proteins of ECM, such as collagen | and 1V as
well as laminin (Toba et al., 1995) and the S-layer protein was shown to bind
collagen IV. To further study the structure/function relationships in CbsA, we
assessed the binding of radiolabelled, solubilized collagen | and IV to Hiss-
constructs. First, we generated hybrid S-layer proteins, where the N- or the C-
terminus was exchanged between ChsA and non-adhesive SIpA or SipnB (Table
1 of I). Investigation of protein functions using hybrid molecules between
closely related but functionally distinct proteins is a commonly used method to
localize functional domains (Koulich et al., 1997; Kukkonen et al., 2001). The
hybrids His-CbsA1-287/SIpA290-413 and His-CbsA1-287/SpnB287-409
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efficiently bound collagen | and IV, whereas no binding was detected with the
counter-wise hybrids containing N-terminus from SIpA or SipnB (Table 1 of I).
These findings indicate the importance of the N-terminus in collagen-binding.
Also, the hybrids SpnB1-19/CbsA29-287 and SlpnB1-72/CbsA82-410
efficiently bound collagens indicating that the extreme N-terminus of CbsA can
be substituted without loss in collagen-binding efficiency. As a detailed structure
of collagen-ChsA interaction has not been resolved, it is not possible to infer
whether structural features in the N-terminus of SipnB compensate for ChsA
structure in collagen-binding. The hybrids with 194, 212 or 250 N-terminal
amino acids from CbsA did not bind collagens (Table 1 of 1).

To further characterize the role of N-terminus of CbsA in collagen-binding, we
assessed the collagen-binding by the N or C-terminally truncated peptides (Table
1 of I; Figure 2 of I1). Surprisingly, binding of collagens by the C-terminally
truncated peptides 1-287, 1-279, 1-277, 1-275 and by the N-terminally truncated
peptides 29-287, 30-287 were two or three fold higher than the binding to the
entire Hiss-CbsA 1-410. This phenomenon has several possible explanations.
First, the assembly domain in entire CbsA might shield the collagen-binding
sites. Second, the distinct polymer types may have unequal coating efficiency on
the membrane used for measurement or, third, it is possible that the sheet-like
structures are immobilized in an upside-down orientation. Peptides 1-274 and
32-287 showed reduced level binding and shorter peptides (1-274, 1-273, 1-271,
1-269, 1-250, 33-287, 34-297, 39-287, 42-287) did not bind collagens at al, but
at the same time they lost the ability to form periodic polymers. No binding of
collagens to C-termina peptides 250-410 and 288-410 were observed. We
concluded that amino acids 32-274 are needed for collagen-binding and that the
binding was best exhibited by sheet- or cylinder-like structures.

We also made several point mutations in the regions where the CbsA sequence
differs from those of the non-collagen binding proteins SIpA and SIpnB. The N-
terminal deletion amino acids 22-26 or 91-96 reduced collagen binding by more
than 70%. In addition, substitutions of D130N, N226A, TA264SK, and P269A
reduced binding by 40% to 70%, whereas NNN14INL and F19S had less effect.
A complete loss of collagen-binding was observed after the substitution
KSDV257TANN (Table 1 of I). Further mapping of this site showed that S258A
and V260N had a significant effect to collagen-binding, whereas K257T and
D259N had less effect (Table 1 of I). By electron microscopy, all constructs
were observed to form periodic structure however, KSDV257TANN and
V260N formed cylinder-like structure, instead of sheet-like structure observed
by other substitutions.
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Because collagens occur in insoluble, immobilized networks in tissues, and to
ascertain the biological function of the CbsA-collagen interaction, we assessed
the binding of S-layer peptides to immobilized collagen by enzyme-linked
immunosorbent assay (ELISA). The entire CbsA and the peptide 1-287
efficiently bound to immobilized collagen | and IV and the binding was
considered specific since it was dependent on the amount of added ChsA peptide
(Figure 4 of 1). The shorter peptides (1-212, 1-250, 42-287) or the C-terminal
peptide 288-410 did not bind immobilized collagens, which is in agreement with
earlier results observed with soluble collagen. Also, no binding was detected
with SlpnB or the mutant KSDV257TANN of ChsA. No binding to laminin,
fibronectin or bovine serum albumin (BSA) were detected (Figure 4 of 1).

The L. crispatus JCM 5810 was originaly isolated from the chicken, and L.
crigpatus strains colonize efficiently chicken and human intestine (Lan et al.,
2002; Véasquez et al., 2002; Guan et al., 2003; Antonio et al., 2005). We tested
the adherence of this strain onto frozen sections of chicken colon. JCM 5810
showed adherence to connective tissue sites, which wererich intype 11 collagen
detected by antibody staining (Figure 5 of I). Removal of the S-layer with
GnHCI completely abolished the adherence (Figure 5 of ), which is in
agreement with CbsA binding to collagen.

The role of CbsA 1-287 in collagen- and tissue-binding was ascertained by
expressing ChsA and truncated peptides on the surface of recombinant L. casel.
In this display system, CbsA peptides were fused to an LPXTG motif to anchor
the peptide to the cell wall (Martinez et al., 2000). The strong promoter and
signal sequence of CbsA were utilized to ensure efficient transcription and to
direct the protein onto the cell wall. Surface expression was confirmed with anti-
CbsA antibodies detected both by immunofluorescence and ELISA (Figure 4A
of Il). CbsA of the strain JCM 5810 adheres to immobilized laminin and
collagens (Toba et al., 1995; Table 1 of I). In accordance, the strain JCM 5810
adhered efficiently to collagen 1V and laminin immobilized on glass, whereas
the surface-display vector strain (pLPMSSA3) did not adhere (Figure 4 of I1). L.
casel derivatives expressing CbsA 1-287, 1-274, 28-287, or 31-287 adhered to
both laminin and collagen 1. In contrast, the CbsA peptides 1-269, 34-287, 39-
287 failed to confer adherence. Reduced adhesiveness was seen with L. casel
expressing CbsA 251-410, accordant with the results obtained with recombinant
Hiss-ChsA 251-410. None of the constructs bound to BSA. L. casel expressing
the entire CbsA 1-410 showed only low level of adherenceto laminin or type IV
collagen (Figure 4B of 11). A praobable reason for the failure to adhere might be
simultaneous presence of two anchoring motives, i.e. the LPXTG-motif and the
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C-terminus of CbsA (Chapter 5.1.5), which may cause conformational distortion
in the CbsA molecule on bacteria surface. The adhesive L. casei derivatives and
the strain JCM 5810 adhered to laminin- and collagen-containing BM areas in
chicken colon and ileum, whereas no binding of the vector strain or the non-
adhesive derivatives were detected (Figureb of I, Figure 4C of 11).

Our results show that L. crispatus JCM 5810 adheres to collagens and laminin as
well as to connective tissue sites on chicken intestine and confirm the adhesive
function of CbsA. A few lactobacillar S-layers have been proposed as adhesins
binding to different tissue targets (see Table 1), but CbsA is so far the only
collagen-binding lactobacillar S-layer protein that has been identified. In article
I, genomic DNA from 11 strains representing closely related species of L.
crispatus were hybridized with the 819-bp Hpal fragment that encodes the N-
terminal collagen-binding domain. Five of the isolates were adhesive to
collagen, but a hybridization signal was detected only with JCM 5810 DNA.
This suggests that CbsA-like S-layers are not common in lactobacilli, which,
however, commonly express adhesiveness to collagens and/or laminin
(McGrady et al., 1995; Styriak et al., 2001; Horie et al., 2005). It seems that
Cnb-like ABC transporter proteins (Roos et al., 1996) or other non-S-layer
collagen-binders (Boekhorst et al., 2006b) are more common in lactobacilli.
Collagen-binding ability of Lactobacillus was suggested to mediate colonization
at tooth surfaces, and thus affect to pathogenesis of dental diseases (McGrady et
al., 1995). Allen et al., (2002) suggested that laminin-binding proteins of Gram-
positive pathogens mediate bacterial adherence to heart valves and play arolein
endocarditis, a disease also associated with lactobacilli. However, adhesiveness
of Lactobacillus in the intestinal tract is associated with probiotic, health
promoting property. Adhesion to collagens is likely to promote persistent
colonization at tissues, as reported with E. coli expressing collagen-binding Dr
fimbriae (Sevarangan et al., 2004) and with collagen-binding outer membrane
protein of Haemophilus (Fulcher et al. 2006). Adhesion to tissue sites also
inhibits adhesion of pathogenic bacteria (Tuomola et al., 1999; Vaughan et al.,
2002; Edelman et al., 2003; Lee et al., 2003) and Horie et al., (2002) suggested
that ChsA has arolein inhibition of pathogenic E. coli.

The extensive analysis of Hisg-constracts revealed that the collagen-binding
epitope is comprised of a large N-terminal domain, which exhibited a regularly
polymerized structure. The N-terminal sequence of CbsA shows no significant
sequence similarity to the known bacteria collagen-binding proteins, but large
collagen-binding regions are typical also for several other collagen-binding
adhesin. In adherence to collagens and laminin, CbsA resembles the YadA
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adhesin of Yersinia enterocolitica, which forms a regular layer composed of
lollipop-shaped molecules on the bacteria surface; the collagen-binding region
is large and conformational (El Tahir and Skurnik, 2001; Nummelin et al.,
2004). A collagen-binding region is also large in the structurally related proteins
Cna of S aureus, Acm of Enterococcus faecium, and Ace of Enterococcus
faecalis (Patti et al., 1992; Rich et al., 1999; Nallapareddy et al., 2003; Zong et
al., 2005). However, these domains do not show significant sequence homology
to ChsA.

5.1.5 C-terminal domain of CbsA binds to cell wall and teichoic
acids (Il

Lactobacillar S-layer proteins lack the SLH-motif, which in several other
bacteria anchors the S-layer protein to the bacterial cell wall (Engelhardt and
Peters, 1998). To characterize the domain in CbsA responsible for cell-wall
binding, we assessed the binding of N-terminal (1-269) and C-terminal peptides
(251-410, 288-410) of CbsA to the surface of native cels as well as of cells
extracted with GnHCI and LiCl. These chaotropic agents remove the S-layer,
which is non-covalently linked to the cell wall (Sleytr and Beveridge, 1999).
Binding of peptides was assessed by ELISA (Figure 5B of Il) and by indirect
immunofluorescence (Figure 5B of 11). None of peptides (1-269, 251-410, 288-
410) bind to native cells, however, binding of ChsA 1-287 to native cells was
observed (Figure 4 of 1) indicating that polymerized molecules are able to attach
to cell surface covered with S-layer and that this interaction is mediated by
polymeric structure. Efficiently binding of C-terminal peptides to JCM 5810
cells from where the S-layer had been removed was observed, whereas the N-
terminal peptide failed to bind. Further treatment of GnHCl-treated JCM 5810
cells with mutanolysin, which cleaves N-acetylmuramyl bonds in peptidoglycan
(Hancock and Poxton, 1988) and is commonly used in isolation of proteins from
Gram-positive cell surface (Granato et al., 2004; Maeda et al., 2004; Walter et
al., 2005), decreased the binding of the C-termina peptides. We also assessed
the binding of CbsA peptides to other strains of Lactobacillus. The C-terminal
peptides bound to GnHCI-extracted cells of L. crispatus LMG 9479 and LMG
12003 and of L. brevis ATCC 8287 but showed only poor binding to cell surface
of L. amylovorus F81, L. gallinarum F41, L. gasseri JCM 1130 and L. johnsonii
5F49 (Figure 6 of 11).

As the further treatment of GnHCI-extracted cells with mutanolysin decreased
the binding of peptides, we assessed their binding to the material released by the
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mutanolysin treatment. The two C-terminal peptides bound to the mutanolysin
extract, whereas no binding of the N-terminal peptide was detected (Figure 7 of
I1). Toidentify the cell-wall components responsible for S-layer attachment, we
purified PG, teichoic acid as well as teichuronic acid and polysaccharides from
L. crispatus JCM 5810 and assessed them for peptide binding. The C-terminal
peptides bound to the teichoic acid fraction, whereas no binding was detected to
other fractions. In addition, the C-terminal peptides bound to the commercially
available LTAs from Streptococcus faecalis and S. aureus as assessed both by
ELISA and a mobility shift assay in nondenaturating PAGE (Figure 7 of I1). In
conclusion, the C-terminal domain of CbsA is responsible for anchoring the S
layer protein of L. crispatus JCM 5810 to the cell wall and to teichoic acids. This
is not surprising as the C-terminus of CbsA is highly basic (10.00), in contrast to
the N-terminus, which has neutral pl (6.81). Similarly, the anchoring domains of
several well-known teichoic acid or LTA-binding proteins are highly basic
(Rigden et al., 2003). The lactobacillar cell wall is not characterized in sufficient
details for us to understand why the C-terminus of ChsA only binds to some of
the tested lactobacillar strains.

The anchoring mechanism of CbsA shares features with the anchoring
mechanisms seen with the S-layer protein of L. acidophilus ATCC 4356 (SIpA).
The C-terminal region of SIpA (SAC) is 76% identical with C-terminus of
CbsA. SAC hinds to cell wall of L. acidophilus, from which S-layer had been
removed. Further, the binding of SAC was abolished after treatment of the cells
with hydrofluoric acid, which extracts the PG-associated components, such as
teichoic acids (Smit and Pouwels, 2002). This suggests that lactobacillar surface
proteins, which have a similar C-terminal sequence, interact via similar
mechanisms with the negatively charged teichoic acid on bacterial surface.

5.2 Enolase and GAPDH are associated with the
lactobacillar cell surface (lll)

5.2.1 pH-dependency of association (lll)

While this PhD study was in progress, it became evident in our laboratory that
enolase and GAPDH, which are well-characterized surface-associated Plg-
binding proteins in streptococci and staphylococci (Pancholi and Fischetti, 1992;
Pancholi and Fischetti, 1998; Bergmann et al., 2001; Mdélkdnen et al., 2002;
Bergmann et al., 2004; Derbise et al., 2004; Bergmann et al., 2005), are major
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components in the cell-free, extracellular proteome obtained from L. crispatus
and other Acidophilus group lactobacilli a neutral pH (Hurmalainen et al.,
2007). Lactobacilli are strictly fermentative organisms and produce lactic acid as
an end product of their carbohydrate metabolism, which rapidly lowers the pH of
the environment below pH 5. This prompted us to assess the distribution of
enolase and GAPDH as well as of the S-layer protein on the cell surface and in
the extracellular proteome at two pH values, pH 5 and pH 8. During the assays,
the pH dropped further to 4.5 and 7.5. This assay was done with the strain ST1
of L. crispatus, which is characterized for its adhesins and in which the
extracellular proteome was identified (Ededman, 2005; Hurmalainen et al.,
2007). Using indirect immunofluorescence assay and Western blotting, we found
that enolase and GAPDH are attached to the cell surface at pH 5, whereas at pH
8 enolase and GAPDH are found mainly in the supernatant from where the cells
had been removed by filtration (Figure 1 of I11). Further, stepwise increase of pH
from 4.4 to 7.0 revealed that the release of enolase and GAPDH becomes
detectable at pH 5.2, which are are close to the pl values of enolase and GAPDH
(4.8 and 5.2, respectively). The release of enolase and GAPDH was instant at pH
8, whereas at pH 5 no release was detected until 24 hours. Further, the enolase
and GAPDH were also released at pH 5 by 0.25 M sodium chloride, which
indicate the role of ionic interactions in the cell wall anchoring. In contrast, the
surface association of the S-layer protein was not dependent on pH, and it was
detected on cells from both pHs.

Chloramphenicol had no effect on release of enolase and GAPDH, which
indicates that protein synthesis is not needed for the release (Figure 2 of I11).
Further, we did not see any significant differences in the transcription of eno or
gap in cells from the two pHs (Figure 2 of I11). We concluded that the rel ease of
enolase and GAPDH is not related to intracellular expression, but is exclusively
distributed between the cell surface and the extracdlular proteome.

5.2.2 Binding of enolase and GAPDH to lipoteichoic acids (lll)

Enolase and GAPDH of L. crispatus have isoelectric points of 4.8 and 5.4,
respectively, and thus they have a positive charge at lower pH values and could
bind to negatively charged cell-wall components, such as LTA. Indeed, using
mobility shift assay, we were able to show that both enolase and GAPDH bind to
LTAs, but not to PG in a pH-dependent manner (Figure 3 of I11). At low pH,
LTA clearly retarded the movement of enolase and GAPDH in nondenaturating
polyacrylamide gel electrophoresis, whereas a pH 5.6, where enolase and
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GAPDH have a negative charge, no association with the negatively charged
LTA was detected. Further, enolase and GAPDH —coated fluorescent beads
bound efficiently to LTA a pH 4.4, whereas only a low-level-binding was
detected at neutral pH. No binding to PG was observed at either of the pHs
(Figure 3 of 111).

Pneumococcal enolase reassociates to the cell wall (Bergmann et al., 2001). We
assessed the reassociation of enolase and GAPDH of L. crispatusto the cell wall
at pH 4.4 and pH 7.0. Both enolase and GAPDH wererecovered on the cell wall
a pH 4.4, whereas at pH 7.0 only a low-levd-binding was detectable. LTA
inhibited efficiently the reassociation of enolase and GAPDH at pH 4.4 (Figure4
of I11). Mechanisms for surface association by bacterial enolases and GAPDHs
have not been previously reported, and a very interesting feature of the present
anchoring model is that lactobacilli rapidly change their surface properties in
response to pH that changes during their growth.

Our results suggest that enolase and GAPDH are anchored to LTA at low pH by
ionic interactions. Several other bacterial proteins that bind to LTA have been
identified. These include glycyl-tryptophan (GW) module proteins, such as InIB
of L. monocytogens (Jonquiéres et al., 1999), choline-binding proteins (Garcia et
al., 1998) and the S-layer protein (CbsA) of L. crispatus characterized in my
thesis (Chapter 5.1.5). The pl of the cell-wall-binding domains of these proteins
are above nine, thus they are positively charged at pH values lower 9, and can
bindto LTAsand to cell wall also at neutral pH, which indeed was demonstrated
with CbsA inarticles1l (Figure7) and Il (Figure 1).

5.2.3 Plasminogen-binding by L. crispatus at different pHs (l11)

The Plg-binding characteristic of enolase and GAPDH was also observed in the
proteins of L. crispatus (Hurmalainen et al., 2007) and used in article Il as a
functional assay for studying the pH-dependent surface variation of these
enzymes. We showed that PlIg binds to lactobacillar cell surface at low pH, but
was recovered in the cell-free supernatant from pH 8 (Figure 5 of I11). Similarly,
Plg binds poorly onto L. crispatus cells at neutral pH (Hurmalainen et al., 2007).
Further, we tested enhancement of tPA-mediated Plg activation by the cells and
the supernatant fractions originating from pH 5 and pH 8. The cells from pH 5,
but the supernatant from pH 8 enhanced plasmin formation.
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In an analogy to the GAPDH of L. crispatus, GAPDH of S gordonii was found
primarily on the cell surface at acidic pH, whereas at neutral pH, GAPDH (more
than 90%) was in culture medium. With GAPDH of S pyogenes, no release to
buffer was detected at neutral pH, or after treatment of the cells with 2% SDS or
2 M sodium chloride. Further, Plg remained bound to S. pneumoniae and S
pyogenes cells at neutral pH (Derbise et al., 2004; Bergmann et al., 2005),
whereas L. crispatus cdls bound poorly soluble Plg (Hurmalainen et al., 2007).
It thus seems likely that pathogenic streptococci and commensal lactobacilli
have differing mechanisms in the surface association of “anchorless’ Plg-
binding surface enzymes.

Our results suggest that lactobacilli response to a change in environmenta pH by
modifying cell surface and releasing surface proteins. Lactobacilli colonize
several acidic tissue sites in humans, such as the vagina epithelia, the oral
cavity, and the small intestine, where lactobacilli reduce the environmental pH
by producing lactic acid as a primary end product of metabolism. The pH-
dependency of surface protein anchoring here described indicates that pH
changes arelikely to strongly affect lactobacillar-host interactions.

5.3 Comparison of enolases from commensal
lactobacilli and pathogenic streptococci (V)

5.3.1 Expression of enolases (V)

Pathogenic streptococci expose Plg-binding enolase on the cell surface, where
the activation of Plg is enhanced and leads to degradation of ECM and BM
proteins; this promotes transmigration of bacteriain tissues (Derbise et al., 2004,
Bergmann et al., 2005). Recently, enolase of commensal Lactobacillus was
shown to bind Plg and enhance tPA-mediated plasmin formation (Hurmalainen
et al., 2007). We compared the enolases from lactobacilli with enolases from
severe pathogenic bacteria, S. pyogenes, S. pneumoniae and S. aureus. The
enolases were cloned from S pneumoniae TIGR4, S pyogenes IH32030 and S
aureus 8325-4 as well as from two lactobacillar strains, L. crispatus ST1 and L.
johnsonii F133. One enolase gene is present in published genomes of S
pneumoniae, S. pyogenes and S. aureus as well asin L. crispatus (Hurmalainen
et al., 2007), whereas three enolase genes are present in the genome of L.
johnsonii NCC 533 (Pridmore et al., 2004) and their sequences were utilized to
clone eno 1-3 from L. johnsonii F133. Existence of more than one enolase is
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common in the genome of Lactobacillus, since L. plantarum and L. gasseri have
also more than one enolase gene in the genome (Kleerebezem et al., 2003;
Makarova et al., 2006). Sequence comparison of these enolase segquences
revealed two subfamilies. Enolase of L. crispatus is highly similar with enolase
1 and 2 of L. johnsonii, whereas enolase of S. pneumoniae, S. pyogenes, S
aureus and enolase 3 of L. johnsonii form another subfamily (Figure 1 of 1V).

The enolases were expressed and purified as Hise-fusion proteins, whose
apparent molecular weights corresponded to the predicted molecular sizes (46.6-
47.4 KDa; Figure 2A of 1V). All Hiss-enolases except enolase 2 of L. johnsonii
were found enzymatically active (Figure 2B of 1V), which indicates that Hiss-
fusion tag does not disturb the enzymatic activity of enolases or cause dramatic
disturbances in the structure. By transcription anaysis of RNA of L. johnsonii
F133, we found that only enolases 1 and 3 are expressed in exponentially
growing cells, whereas no expresson of enolase 2 was detected in the test
condition (Figure 2C of 1V). These results suggest that enolase 2 could be a
cryptic gene or a pseudogenein L. johnsonii F133.

Several bacteria enolases have an octameric structure (Pawluk et al., 1986;
Schurig et al., 1995; Brown et al., 1998; Ehinger et al., 2004). To define the
multimeric state of enolase from L. crispatus and compare it with the structures
of pneumococcal enolases, whose structurewas recently reported (Ehinger et al .,
2004), the Hiss-enolase of L. crispatus and the enolase in extracelular proteome
of L. crispatus were analysed in an analytical gel filtration column. The enolases
from both samples eluted with a size of approximately 370-415 KDa, which
suggests an octameric structure. The same size was in this study estimated for
the pneumococcal enolase, which has earlier been shown to be an octamer
(Ehinger et al., 2004). Our results indicate that the L. crispatus enolase forms an
octameric structure both in extracel lular proteome and as a Hiss-fusion protein.

5.3.2 Functional similarity of Hise-enolases (IV)

Binding of Plg is a well-characterized and biologically important function of
enolases from several bacterial species (Pancholi and Fischetti, 1998; Bergmann
et al., 2001; Ge et al., 2004; Hurmalainen et al., 2007). Therefore, we first
compared the Plg-binding by Hiss-enolases (Figure 3 of V). L. crispatus
enolase, L. johnsonii enolases 1 and 2 as well as S aureus enolase efficiently
bound to PIg by a lysine-dependent manner, whereas a significantly lower level
of PIg binding was detected with the closely related L. johnsonii enolase3 and S
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pneumoniae and S. pyogenes enolases. A similar pattern in enolases was seen in
enhancement of tPA- and uPA-mediated Plg activation (Figure 3 of 1V).

Enolase has been identified as a laminin-binding protein on the staphylococcal
surface (Carneiro et al., 2004), and therefore we tested the laminin-binding, but
also fibronectin, collagen | and BSA binding by the Hiss-enolases (Figure 4 of
V). Enolases of S aureus, aswell as L. crispatus and enolase 1 of L. johnsonii
bound to laminin and with a lower efficiency to collagen |, whereas other
enolases bound significantly less to laminin and collagen I. None of these
proteins bound to fibronectin or BSA. Similarly, the enolase from extracd lular
proteome of L. crispatus bound to laminin and collagen |, but no binding to
fibronectin or BSA was detected (Figure 4 of IV) suggesting that laminin-
binding is a true property of L. crispatus enolase and not of the recombinant
protein alone.

Laminin- and collagen-binding property might direct the lactobacillar enolase
protein in the ECM areas of tissues and facilitate plasmin-mediated degradation
of tissue component, but it might also inhibit pathogenic bacteria to adhere to
tissue sites via laminin- or collagen-binding proteins. Enolase was shown to
associate with the cell surface at acidic pH (Chapter 5.2) and the lactobacillar
binding to host tissues is strongly promoted at lower pH values (Harty et al.,
1994; Blum et al., 1999b), therefore, enolase might have role in bacteria
adhesion to host tissues in acidic environment, such asvagina or oral cavity.

In Plg-binding assay, in particular the enolase of L. crispatus and the structurally
similar L. johnsonii enolase 1 were highly efficient. In general, Plg-binding has
been associated with bacterial pathogenesis, and, eg., the virulence role of
streptococcal enolases and its Plg-binding ability have been characterized
(Bergmann et al., 2003; Derbise et al., 2004; Bergmann et al., 2005). C-terminal
lysines are important in several Plg-binding proteins, including the enolase of S.
pyogenes (Pancholi and Fischetti, 1998; Derbise et al., 2004). However, the
sequences of lactobacillar enolases do not contain C-terminal lysines (Pridmore
e a., 2004; Hurmalanen et al., 2007). An internal Pig-binding
“®FYDKERKVY site was identified from pneumococcal enolase (Ehinger et al .,
2004) and substitution of lysines and glutamic acid reduced the PlIg-binding
ability of both a recombinant protein and a parental strain. Our ongoing analysis
has shown that substitution of the two lysines in the related sequence in L.
crispatus (**FYNKDDHKY) only marginally reduced enhancement of tPA-
mediated plasmin formation. Therefore, it is likely that residues elsewhere in
enolase of L. crispatus are involved in the interaction with Plg.
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At neutral pH, lactobacilli release their enolase into to medium (Hurmalainen et
al., 2007; Chapter 5.2), which has not been described for streptococcal
pathogens. Immobilization of Plg on its receptors, such as the enolase on
bacterial surface, is important for enhancement of Plg activation and protection
of the plasmin activity againg the main circulating plasmin inhibitor, a,-
antiplasmin (Wiman et al., 1979; Mangel et al., 1990). Thisis a mgjor difference
in Plg immobilization and enhancement of Plg activation by the pathogens and
the lactobacillar commensals, and in theory, should in vivo severdy prevent
generation of high level of plasmin proteolysis. The biological role and the risk
potential of lactobacillar enolase in opportunistic, eg. endocarditis and
bacteremia, remain open.
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6 CONCLUSIONS

In this work, the molecular basis of adhesion and host interaction of L. crispatus
was studied. This study characterized the domain structure in the S-layer protein
CbsA, which is presently the best characterized lactobacillar adhesive surface
protein. We showed that the N-terminal part of the molecule is responsible for
binding to extracellular matrix in intestinal tissue and also for formation of the
paracrystalline structure. Collagen-binding ability was associated with the S-
layer polymerization, indicating that the adherence simultaneously involves
several ChsA molecules or that the three-dimensional S-layer like structure is
optimal for collagen-binding ability. Further characterization of CbsA
polymerization and collagen-binding would require structural analysis by X-ray
crystallography, but the difficulties in production of crystals of good quality
retards the potential of structure determinations (Engelhardt and Peters, 1998).
Recently, atomic force microscopy has risen as a technique to solve internal
forces between S-layer subunits (Gydrvary et al., 2003; Vadillo-Rodriguez et al.,
2005; Ebner et al., 2006; Martin-Molina et al., 2006), and its use in analyzing
the forces involved in the stability and assembly of CbsA has begun (C.
Verbelen, J. Antikainen, T.K. Korhonen, Y.F. Dufréne, submitted).

As a collagen-binding adhesin, CbsA is an exceptiona S-layer protein in
lactobacilli. We have not identified another collagen-binding S-layer protein in
lactobacilli. This is accordant with the sequence variability in the N-terminal
regions of lactobacillar S-layer proteins, but, however, rather surprising in regard
of how common the collagen-adherence is among lactobacilli (McGrady et al.,
1995; Styriak et al., 2001; Harty et al., 1994); indeed, this study identified
another group of collagen-binding surface proteins in lactobacilli, the enolases.
The polymeric S-layer seems an ideal adhesin for binding to the huge collagen
molecules and networks, a similar polymeric platform for collagen-binding is
formed by the YadA adhesin of Y. enterocolitica (El Tahir and Skurnik, 2001),
which in adhesive functions resembles CbhsA. The biological role of collagen-
and ECM-binding by lactobacilli remain to be established, by an analogy to
other bacterial systems, one can speculate that collagen-binding promotes long-
term colonization in host tissues (Selvarangan et al., 2004; Fulcher et al. 2006).

The highly conserved C-terminal part of CbsA anchors the protein to the cell
wall and binds to teichoic acids. C-terminal part of CbsA has an alkaline pl, and
it can bind to the negatively charged teichoic acids. Also, we showed that the
multifunctional enzymes enolase and GAPDH bind to the cell wall and LTAS,
but the binding is dependent on pH. In contrast to CbsA, these enzymes have an
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acidic pl, and they are released from surface-LTAs at neutral and alkaline pH
but remained attached to the cell wall at acidic pH. Enolase and GAPDH bdong
to the so-called anchorless surface proteins, and it will be interesting to learn
whether these surface-associated enzymes have a similar cdl-wall attachment
mechanism in other bacterial species. Lactobacilli change their surrounding pH
very efficiently, and a major conclusion from this work is that they have such a
simple and rapid mechanism to alter their surface architecture in response to
changesin pH.

Enolase and GAPDH are characterized Plg-binding proteins in several
organisms, in particular in streptococcal pathogens, where they may increase
bacterial infectivity and/or colonization by adhesive characteristics as well. We
found that the lactobacillar enolases, as a group, do not drastically differ from
enolases from streptococcal or staphylococcal pathogens. Lactobacillar enolases
exhibit adhesiveness to collagen and laminin and are efficient Plg-binders. This
thesis work can be seen as a first step in comparing the Plg system in bacterial
pathogenesis and commensalism. Plg activation is not restricted to tissue damage
and cell migration, but is also utilized in release of peptides for nutrition (Kitt
and Leigh, 1997). An obvious difference between the pathogenic and
commensal bacteria here studied is that the former group expresses Plg
activators of their own, i.e. streptokinases and staphylokinase, such activities
have not been detected in lactobacilli. The lactobacillar interaction with PIg can
in principle be harmful, e.g. in tissue damage associated with opportunistic
infections such as infective endocarditis, or beneficial, such as in generation
peptide fragments from Plg.
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