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ABSTRACT

Ahlström M. Cyclic nucleotide inactivation in osteoblasts and osteosarcoma cell lines

[dissertation]. Helsinki. University of Helsinki 2001.

The cyclic nucleotides cyclic adenosine monophosphate (cAMP) and cyclic guanosine

monophosphate (cGMP) are crucial second messengers in the hormonal regulation of

bone metabolism. The mechanisms involved in the generation of cyclic nucleotides are

rather well characterized. However the mechanisms of inactivation of cAMP and

cGMP in osteoblasts are poorly defined. Therefore, the main aim for this thesis was to

address the question of which components and mechanisms take part in the inactivation

of cyclic nucleotides in osteoblasts and how this inactivation is regulated. Both cAMP

and cGMP are known to mainly be inactivated by the cyclic nucleotide

phosphodiesterases (PDEs), a superfamily of enzymes divided into 11 known families,

designated PDE1-11.

UMR-106 rat osteoblast-like cells were used for studying the regulation of

PDE-activity by parathyroid hormone (PTH) and atrial natriuretic factor (ANF). Both

hormones were potent activators of PDE-activity. The effects of PTH was mediated by

a cAMP/ protein kinase A dependent mechanism, and the activated enzyme was shown

to be a member of the PDE4 family. As the ANF stimulated activation of PDE activity

was shown to be independent of protein kinase G, the effect of ANF is likely to be

mediated by direct stimulation of PDE2 activity by cGMP binding. The main cAMP

hydrolyzing enzyme family in UMR-106 cells was shown to be PDE4, whereas cGMP

was hydrolyzed by PDE1, PDE2 and PDE5. In human osteoblasts, the main cAMP

hydrolyzing PDE families were identified as PDE1, PDE3 and PDE7. The

corresponding PDE profile of human SaOS-2 osteosarcoma cells consisted of PDE1,

PDE4 and PDE7. In line with the differences in PDE-profiles, inhibition of PDE

activity by PDE4 selective inhibitors rolipram and Ro 20-1724 effectively potentiated

prostaglandin E2 stimulated cAMP accumulation in UMR-106 and SaOS-2 cells, but not

in human osteoblasts.
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ABBREVIATIONS

AC, adenylate cyclate
ALP, alkaline phosphatase
ANF, atrial natriuretic factor
AMP, adenosine monophosphate
BAR, β-adrenergic receptor
BNP, brain natriuretic peptide
8-Br-cAMP, 8-Bromoadenosine 3',5'-cyclic monophosphate
8-Br-cGMP, 8-Bromoguanosine 3',5'-cyclic monophosphate
BSA, bovine serum albumin
cDNA, complementary deoxyribonucleic acid
CNG, cyclic nucleotide gated (channel)
cAMP, adenosine 3’,5’-cyclic monophosphate
cbfa1, core binding factor alpha1
CaM, calmodulin
cGMP, cyclic guanosine monophosphate
CNP, C-type natriuretic peptide
CRE, cAMP response element
CREB, cAMP response element binding protein
EPAC, exchange protein directly activated by cAMP
FCS, foetal calf serum
GC, guanylate cyclase
GMP, guanosine 3’,5’ monophosphate
GTP, guanosine triphosphate
HBSS, Hank’s balanced saline solution
IBMX, 3-isobutyl-1-methylxanthine
mRNA, messenger ribonucleic acid
8-MMX, 8-methoxymethyl-1-methyl-3-(2-methylpropyl) xanthine
M-CSF, macrophage colony-stimulating factor
NHOst, normal human osteoblasts
NO, nitric oxide
NOS, nitric oxide synthase
NPR, natriuretic peptide receptor
OC, osteocalcin
OPG, osteoprotegerin
PCR, polymerase chain reaction
PDE, cyclic nucleotide 3', 5' phosphodiesterase
PGE2, prostaglandin E2

PKA, protein kinase A
PKC, protein kinase C
PKG, protein kinase G
PTH, parathyroid hormone
PTHrp, parathyroid hormone related hormone
RANK, receptor activator of NF-κB
RANKL, receptor for activator of nuclear factor-κB ligand
RT-PCR, reverse transcriptase polymerase chain reaction
Vmax, maximal velocity constant
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INTRODUCTION

The remodeling of bone is a process that includes both the formation and destruction of

bone tissue. The skeleton is therefore not a static tissue, but rather a metabolically

active organ that undergoes continuous change in shape. Different, highly specialized

cells control remodeling of bone. Three main cell types with distinct functions can be

found in bone tissue. The cells responsible for bone matrix deposition, or bone

formation, are the osteoblasts (Puzas 1993). The secreted extracellular matrix

eventually matures to the rigid material that our bones are built of. As the osteoblast

form the extracellular matrix, they become embedded in the bone material and further

differentiate into another cell type, the osteocyte. Approximately 10-20% of osteoblasts

become osteocytes. At the point when the osteocytes become completely embedded into

the bone material, their metabolic activity decreases dramatically due to lack of

nutritient diffusion. Small canals in the bone called canaliculi are at that point the only

routes of nutrient and gas supply to the osteocyte (Puzas 1993).

The third type of bone cells are the osteoclasts, cells responsible for destroying,

or resorbing bone. In contrast with the osteoblasts and osteocytes that origin from

mesenchymal stem cells, the osteoclasts differentiate from hematopoietic progenitor

cells (Mundy 1993, Aubin & Bonnelye 2000). The osteoclasts are highly specialized

multinucleated cells that lie on bone surfaces. When initiating bone resorption, the

osteoclasts form a sealing zone that attaches the resorbing cell to the bone matrix. Inside

the sealing zone a “ruffled membrane” is formed, and the tightly sealed space between

the ruffled membrane and the bone surface constitutes the osteoclast’s resorptive

organelle (Mundy 1993, Väänänen et al. 2000). After the formation of the ruffled

membrane, bone mineral is dissolved by acidification of the isolated microenvironment,

generated by the means of an electrogenic proton pump. The organic component of bone

is degraded by lysosomal proteases and the degradation products are then endocytosed

at the ruffled membrane. The endocytosed vesicles are transported through the cell and

released into the extracellular space at the cell’s antiresorptive surface (Salo et al.

1997, Väänänen et al. 2000, Teitelbaum 2000).

The differentiation of precursor cells into mature osteoblasts, and the functional

regulation of the osteoblasts are under the control of many extracellular signals,

typically hormones, such as parathyroid hormone (PTH), calcitonin and prostaglandins.
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These two hormones are, together with 1,25-Dihydroxyvitamin D and estrogen, among

the best known of the factors that regulate the remodeling of bone (Mundy 1993). It is

well known that the intracellular signalling of both PTH and prostaglandin E2 (PGE2)

include cyclic 3’, 5-adenosine monophosphate (cAMP), a cyclic nucleotide that is

present in all animal cells. The signalling cascades involving alternations in the

intracellular levels of cAMP in turn affect a wide array of components in the

intracellular communication of the osteoblasts, making this molecule a pivotal factor in

the metabolism of bone (Partridge et al. 1994). Another cyclic nucleotide, cyclic 3’, 5-

guanosine monophosphate (cGMP), also participate in the hormonal signalling of animal

cells. The role of cGMP in bone metabolism is not as well known as cAMP, but the

effects of factors signalling through cGMP, such as natriuretic factors and nitric oxide

are beginning to emerge (Hagiwara et al 1996, Suda et al. 1999, Ralston 1997, Hikiji

1997). This work was conducted to elucidate the mechanisms that inactivate cAMP and

cGMP, and might provide more insight to the role of cyclic nucleotide signalling in the

regulation of bone metabolism.

REVIEW OF THE LITERATURE

1. The role of osteoblast in the regulation of bone remodeling

The role of systemic factors, such as PTH and vitamin D in the remodeling process has

been known for decades. Factors such as insulin-like growth factors (IGF I and IGF II)

and transforming growth factor-β are known to take part in the bone remodeling at a

local level. These local factors are in turn regulated by the systemic hormones that

stimulate cAMP synthesis in bone cells (Canalis, 1993). The bone remodeling cycle is

highly regulated by interaction between the osteoblasts and the osteoclasts. Udagawa et

al. (1990) were first to note that stromal cells or their osteoblast progeny are required

for the maturation of osteoclasts. In the light of recent advances in the field of bone

biology, it is now evident that some newly identified local factors expressed by the

osteoblast lineage have a major impact in the control of osteoclast activity. One of these

factors, termed receptor for activator of nuclear factor-κB ligand (RANKL, also known

as ODF, OPGL and TRANCE) is either secreted by, or expressed as a membrane bound

form on the outer surface of the cell. Osteoclast precursor cells possess receptors for
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RANKL that are termed RANK. It is believed that RANKL is most abundantly

expressed by bone marrow stromal cells or osteoblast progenitor cells, but also to a

lesser degree by mature osteoblasts (Teitelbaum, 2000). The main effect of RANKL, in

concert with macrophage colony-stimulating factor (M-CSF), which is also secreted by

stromal cells and osteoblast, is to promote the differentiation and the activity of

osteoclasts, and consequently increase bone resorption.

Osteoblasts/stromal cells also express another factor called osteoprotegerin

(OPG), which is another key regulator of osteoclast function (Teitelbaum, 2000). The

effect of OPG is to bind to RANKL and compete with RANK, thus reducing the number

of activated RANK receptors on the osteoclasts. As a consequence the osteoclast

differentiation is blunted, and the rate of bone resorption is reduced.

Figure 1. Relationship between osteoblasts / stromal cells and osteoclasts in the regulation of
bone resorption. PTH induces the expression of RANKL, which by interacting with RANK
receptors on the osteoclasts leads to increased bone resorptive activity under the apical side of
the osteoclast. PTH also reduces the expression of OPG resulting in increased RANK / RANKL
binding (in part adapted from Teitelbaum 2000).
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In osteoblasts PTH has been shown to up-regulate the expression of RANKL and down-

regulate the secretion of OPG, which could explain at least some of the catabolic effects

of PTH on bone (Figure 1). In addition to resorption, the bone formation by the

osteoblasts has an equally important role in the regulation of bone remodeling. Core

binding factor alpha1 (cbfa1), the only known osteoblast-specific transcription factor,

was recently identified (Ducy et al. 1997). It seems to function as a “master” regulator

of osteoblast differentiation. Cbfa1 deficient mice develop a skeleton that is made

exclusively of cartilage, which supports the hypothesis of a central role of cbfa1 as a

regulator of osteoblast differentiation  (Ducy et al. 2000). As no cell type autonomously

decides to differentiate along a particular lineage, one of the challenges of osteoblast

research has been to identify the extracellular signals that regulate the expression of

cbfa1. Activation of the cAMP pathway has been shown to inhibit the DNA binding

ability of cbfa1, and to inhibit the expression of cbfa1 regulated genes in an osteoblastic

cell line (Tintut et al. 1999). The control of cbfa1 expression by several growth factors

has also been implicated. Bone morphogenic proteins have been shown to induce, and

TGF-β to inhibit cbfa1 expression in vitro. In addition, the gene for osteocalcin, which

is a protein secreted by terminally differentiated osteoblasts, is also controlled by cbfa1

(Ducy et al. 1997). Due to its recent discovery, the regulation of cbfa1 and its effects on

bone formation in osteoblast are still partly unknown. However, it seems clear that

cbfa1 function is not limited to cell differentiation. Cbfa1 has been shown to regulate the

level of bone matrix deposition in already differentiated osteoblasts, and one

implication of these findings is that increased levels of cbfa1 transcription could be a

way to prevent the appearance of osteoporosis (Karsenty 2000).

2. Molecular mechanisms and actions of the cAMP second messenger pathway

 2.1 The seven-transmembrane receptors coupled to the cAMP pathway

Transmembrane receptors can be divided into three major types: G-protein-coupled

receptors, enzyme-linked receptors and ion-channel linked receptors. The receptors that

use cAMP as second messenger belong to the G-protein coupled seven transmembrane

receptors. In order to trigger the elevation of intracellular cAMP, at least three mebrane

components are required: a transmembrane receptor, a heterotrimeric G-protein
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complex and adenylate cyclase (Figure 2) (Gilman 1989, Darnell et al. 1990). The

archetypal transmembrane receptor proteins that involve cAMP in signalling (e.g. beta-

adrenergic, thyroid stimulating hormone-, prostaglandin E2- and parathyroid hormone

receptors) consist of extracellular, transmembrane and intracellular domains. The

receptor protein itself contains seven sequences of hydrophobic amino acids that span

the plasma membrane seven times. The intermediate loops on the extracellular side

forms the ligand binding part of the receptor, and the intracellular part contain domains

which interact with G-proteins, and also contain sequences that can be phosphorylated

by protein kinases, thereby altering the function of the receptor (Darnell et al. 1990).

Despite common overall structure, the amino acid sequences of these receptors are

usually not very similar. These sequence differences therefore determine which specific

ligands that bind to the various receptors.

2.2 The G-protein complex and adenylate cyclase

In cAMP signalling, the G-protein functions as a communicator between the receptor

and adenylate cyclase (AC), the enzyme responsible for the formation of cAMP from the

precursor nucleotide ATP. The G-protein is composed of three peptide chains: α, β, γ.

The binding of a ligand to its specific receptor leads to a conformational change,

causing the receptor to bind to the G-protein. The α subunit of the G-protein, Gsα, can

bind both GTP and GMP, but is in its active form only when bound to GTP. When the

Gsα subunit replaces bound GMP by GTP the G-protein is dissociated into two parts:

Gβ,γ and Gsα. The liberated Gsα subunit, now in its activated form, binds to adenylate

cyclase, causing an activation of the enzyme with consequent synthesis of cAMP

(Gilman 1989). Adenylate cyclase (AC) is a membrane bound enzyme responsible for

the conversion of ATP to cAMP and pyrophosphate. The stimulatory effect of AC by

hormones and neurotransmitters is mediated by the Gsα subunit of the stimulatory G-

protein complex, but the G-protein complex also exists in an inhibitory form. A part of

the inhibitory G-protein complex, the Giα subunit is activated in similar manner as the

Gsα subunit, but instead of activating AC, the Giα subunit reduces cAMP formation by

inhibiting adenylate cyclase activity. Thus, it is not solely the receptor, but also the

structure and function of the G-protein complex that determines if the ligand binding

causes an amplification or reduction of the cAMP signal (Gilman 1989, Darnell et al.
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1990). Several other regulatory mechanisms of the AC activity have been identified. AC

can be regulated by both PKA and PKC mediated phosphorylation, and some AC forms

are regulated by changes in intracellular Ca2+ levels. After the original cloning of the

mammalian adenylate cyclase gene (Krupinski et al. 1989), at least nine additional

isoforms of mammalian adenylate cyclases have been identified (Sunahara et al 1996).

2.3 Protein kinase A: activation and downstream targets

The protein kinase family contains hundreds of diverse but related enzymes that regulate

nearly all aspects of growth, differentiation and proliferation of eukaryotic cells. PKA

was one of the first protein kinase to be discovered (Walsh et al. 1968), and is

responsible for transducing the cAMP second messenger signal in cells and

phosphorylates a variety of proteins. It is believed that most of the effects of cAMP are

attributed to the binding of cAMP to PKA. PKA consists of four subunits of which two

are regulatory and two catalytic subunits. Binding of cAMP to sites on the regulatory

subunits releases the two catalytic units from the PKA complex, which become

activated. The target proteins of PKA are typically components of receptors, protein

kinases and other enzymes (Kemp et al. 1994, Carling et al. 1997). The activated

subunits does not only phosphorylate cytoplasmic substrates, as they in their activated

form are capable of entering the nucleus where they can phosphorylate proteins

important for the gene transcription such as the nuclear transcription factor cAMP

response element binding protein (CREB). The binding of CREB and its co-regulatory

molecule CREB-binding protein (CBP) to cAMP response elements (CRE) results in

changes in the transcription of the particular gene, thus altering gene expression (Taylor

& Radizio-Andzelm 1994, Richards 2001). Other, more direct effects on cellular

responses such as PKA dependent phosphorylation of calcium channels, cyclic

nucleotide 3', 5' phosphodiesterases (PDEs) and membrane receptors are also essential

parts of the cAMP signal (Sculptoreanu 1995, Sette et al. 1994, Blind et al. 1995). The

activation as well as inactivation of other cell signalling cascades such as the mitogen

activated protein kinases (MAPKs) in a cell specific manner has also been shown,

revealing a role of PKA in signalling cross-talk (Vossler et al. 1997, Qiu et al. 2000).
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Figure 2. Activation of cAMP production and the primary target molecules for cAMP in
mammalian cells. AC, adenylate cyclase; ATP, adenosine triphosphate; c, cyclic
nucleotide-gated channel; epac, exchange protein directly activated by cAMP; G, G-
protein complex; H, hormone; PDE, cyclic nucleotide phosphodiesterase; PKA, protein
kinase A; R, transmembrane receptor.

2.4 Epac: a novel target protein for cAMP

The Ras superfamily of GTPases comprises several subfamilies of small GTP-binding

proteins whose functions include the control of proliferation, differentiation, and
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apoptosis (programmed cell death), as well as cytoskeleton organization. Rap1 is a

small, Ras-like GTPase that can be activated by least three different second messengers,

namely diacylglycerol, calcium and cyclic AMP. These second messengers activate

Rap1 by promoting its release of the guanine nucleotide GDP and its binding to GTP. It

was recently reported that activation of Rap1 by forskolin and cAMP occurs

independently of PKA. The protein responsible for the activation of Ras1 was shown to

be directly activated by cAMP and was consequently named Epac (exchange protein

directly activated by cAMP). This protein contains a cAMP binding site and a domain

that is homologous to domains of known guanine-nucleotide-exchange factors (GEFs)

for Ras and Rap1. The binding of cAMP to Epac causes a conformational change

leading to the increased activity towards Rap1 (Figure 2), which in turn mediates

cellular responses (de Rooij et al. 1998).

On a cellular level the cAMP elevating agent forskolin has been shown to

activate Rap1 in Rat1 cells, and the cAMP-specific type 4 family PDE inhibitor

rolipram potentiates this activation (McPhee et al. 2000). Probably due to the quite

recent discovery of the cAMP-Epac pathway, specific physiological functions involving

this signalling cascade has not yet been identified. However, thyrotropin, through the

cAMP-Epac pathway has been shown to be involved in the function, differentiation, and

proliferation of dog and human thyroid cells. The cAMP-Epac cascade might therefore

be of importance in the regulation of thyroid function (Dremier et al. 2000).

3. Molecular mechanisms and actions of the cGMP second messenger pathway

3.1 Natriuretic peptides and particulate guanylate cyclase

The main role of the natriuretic peptides is to defend the body against excess salt and

water retention and to promote vascular relaxation (Levin et al 1998). The natriuretic

peptide family consists of three identified peptides: atrial natriuretic factor (ANF),

brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). All three

peptides bind to membrane bound receptors, the natriuretic peptide receptors (NPR).

Three subtypes of the NPR have been identified by molecular cloning techniques. These

are the NPR-A NPR-B and NPR-C (Levin et al. 1998). The NPR-A and NPR-B are

coupled to intrinsic guanylate cyclase and binding of the natriuretic peptide to the
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receptor leads to increased intracellular cGMP by inducing the conversion of GTP to

cGMP (Figure 3). Binding of natriuretic peptide to NPR-C does not increase cGMP,

because it lacks intrinsic GC, and their function are considered to be "clearance

receptors" that metabolically remove natriuretic peptides, thus reducing the natriuretic

peptide effects. The C-receptor is internalized after ligand binding and the ligand is

enzymatically cleaved, after which the C-receptor returns to the cell surface (Waldman

& Murad 1989, Anand-Srivastava and Trachte 1993, Levin et al. 1998). NPR-A binds

both ANF and BNP, with preference for ANF. NPR-B, although structurally similar to

NPR-A, binds CNP with high affinity, and is probably not a natural receptor for ANF

and BNP. The gene for ANF codes a precursor protein of 126 amino acids, which is

later cleaved into a 98 amino acid and a 28 amino acid carboxy-terminal fragment of

which the latter is the biologically active form of ANF (Levin et al. 1998). ANF

treatment results in rapid accumulation of cGMP in several studied tissues and target

cells, and cell surface receptors for ANF has been identified in smooth muscle cells,

renal membranes and pituitary cells (Koller & Goeddel 1992, Levin et al. 1998). ANF

has been shown to activate cGMP-stimulated cAMP-phosphodiesterase activity, which

leads to decreased cAMP followed by decreased steroidogenesis in adrenal

glomerulosa cells, thus linking the cAMP and cGMP signalling pathways (MacFarland

et al. 1991). The biologically active form of CNP is a 22-amino-acid peptide,

structurally related to but genetically distinct from ANF and BNP. CNP is widely

present in the rat, mouse, and human kidney and in the human central nervous system

(Dean et al. 1994, Totsune et al. 1994). High CNP tissue concentrations also occur in

the anterior pituitary, where it is a highly potent stimulator of cGMP production, and

probably plays a role as an autocrine regulator of gonadotropes (McArdle et al 1994).

3.2 Nitric oxide and soluble guanylate cyclase

In addition to the activation of particulate GC by natriuretic peptides, cGMP is

generated by the action of soluble GC (sGC, Figure 3). Soluble guanylate cyclase is a

protein found in the cytosolic fraction of virtually all mammalian cells. It was originally

purified from bovine lung, and was shown to exist as a heterodimer, of α- and β-

subunits. The central part contains sequences that mediate the dimerization of the α- and

β-monomers. The conversion of GTP to cGMP takes place at the C-terminal, catalytic
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domain of sGC (Hobbs 1997).  The acceptor molecule that triggers the cGMP synthesis

of soluble GC is nitric oxide (NO). NO is synthesized from the amino acid L-arginine

by the action of an intracellular soluble enzyme nitric oxide synthase (NOS), which

exists as a neuronal form (nNOS), an endothelial form (ecNOS) and an inducible form

(iNOS). Since its discovery NO has emerged as a mediator in several tissues and organ

systems. It is involved in neurotransmission, maintenance of vascular smooth muscle

tone, and immunological processes. A role of nitric oxide is also evident in a variety of

pathological states such as septic shock and asthma (Moncada et al. 1991, Xu & Liu

1998).

Figure 3. The formation and main target molecules of cGMP. Natriuretic peptide
receptors (NPR) activate intrinsic guanylate cyclase (GC) upon receptor binding
followed by cGMP production from the precursor GTP. Soluble GC, activated by nitric
oxide (NO) also catalyzes the production of cGMP. Three known cGMP target
molecules, protein kinase G (PKG), cyclic nucleotide phosphodiesterase (PDE) and
cyclic nucleotide gated-channels (c) may be activated, leading to initiation of cellular
responses.

3.3 Target molecules of cGMP

The principal targets of cGMP are: (1) cGMP-dependent protein kinases (PKG), (2)

cyclic nucleotide phosphodiesterases (PDEs, separately reviewed below), (3) cyclic

nucleotide-gated cation channels (CNG-channels, separately reviewed below). PKG is
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likely to be the key receptor molecule in most cellular processes involving cGMP. Two

genes coding for an α- and β-isoform of PKG have been described. These isoforms

have regulatory domains fused to their catalytic domain. Activation of the enzyme by

cGMP leads to autophosphorylation, rendering the enzyme into its active state.

Activated PKG affects cellular metabolism by phosphorylating a wide range of target

proteins (Kemp et al. 1994).

Of the PDEs, it is mainly the PDE2 families that are targets of cGMP. PDE2 has

binding sites at the regulatory domains of the enzymes and the binding to these sites

increases affinity, and results in upregulation of both cAMP and cGMP hydrolysis

(Vaandrager & Jonge 1996, Conti et al. 1995, Beavo 1995). cGMP also potently

regulates the cAMP-PDE activity of PDE3, but this is due to the higher affinity of cGMP

for the catalytic site of PDE3. Therefore cGMP is rather a substrate than a regulatory

factor for PDE3 as its effect is due to competition with cAMP. A high-affinity

noncatalytic cGMP binding site has been identified on PDE5, but the binding is at least

not directly associated with changes in affinity or hydrolytic activity. However, it has

been suggested that binding of cGMP to the noncatalytic site transforms PDE5 into a

good substrate for PKG mediated phosphorylation (Beavo 1995).

4. Cyclic nucleotide-gated channels

It has been proposed that cAMP and cGMP elicit some of their effects through direct

gating of Ca2+ -permeable ion channels that are termed cyclic nucleotide-gated (CNG)

channels (Broillet & Firestein 1999). CNG-channels are heterotrimeric proteins that are

directly opened by the binding of cAMP or cGMP. The activation of the channels begins

with the binding of cyclic nucleotide to a domain in the carboxyl terminal region. This

binding, in turn, produces an induced fit of the protein that involves a movement of the

C-helix portion of the binding domain. The induced fit of the binding domain is coupled

to an allosteric conformational change opening the channel pore and allowing the influx

of Na+ and Ca2+ (Zagotta 1996, Biel et al. 1998).

Most functional CNG-channels have been confined to photoreceptors and

olfactory epithelium, in which CNG channels are abundant and easy to study. In

vertebrate olfactory sensory neurons, the synthesis of cAMP is coupled to the odorant

sensory signal. CNGs are activated by binding of cAMP and conduct a depolarizing
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receptor current that leads to electrical excitation of the neuron. Photoreceptor CNG-

channels have been known for decades and their important role in vision is well

studied. In the dark, the cGMP levels are high due to low PDE6 activity, and the CNG-

channels are consequently in opened state allowing influx of Ca2+. In the light, PDE6 is

activated and reduces the intracellular cGMP, thus closing the CNG-channels followed

by a decrease in cGMP levels. The widespread distribution of CNG channels in the

brain but also in other tissues throughout the body has only recently been recognized.

cGMP-gated channels have been identified in olfactory neuroepithelium, heart and

nephrons, where they might fulfil various physiological functions (McCoy et al. 1995,

Vandorpe et al. 1997, Kingston et al. 1999, Broillet & Firestein 1999).

5. The cyclic nucleotide phosphodiesterases: general function and structure

The molecular machinery that is responsible of the formation of the cyclic nucleotides

has been well characterized as compared to the mechanisms that inactivate the cyclic

nucleotides. Phosphodiesterase activity was first described by Robinson et al. (1971),

shortly after the discovery of cAMP and cGMP. In the last few years, there has been an

increasing interest in the field of cyclic nucleotide inactivation by the PDEs. The PDEs

hydrolyse the 3’ phosphoester bond of cAMP and cGMP to their respective biologically

inactive forms 5'-AMP and 5'-GMP. This seemingly simple task has lately emerged as

an important part of the regulation of different signal transduction pathways. The main

tasks of the PDEs are considered to be termination of hormonal stimulation, to play a

role in integrating different signalling pathways, and to serve as effectors in signal

transduction (Conti 1991, Conti et al. 1995). The role of PDEs in hormonal regulation of

the cell, in cross-talk between different signalling pathways, in control of the

proliferation and differentiation of cells of a variable origin has been the focus in an

impressive number of recent studies (Conti et al. 1995, Beavo 1995, Dousa 1999, Conti

2000).

Development of isozyme selective drugs and the use of molecular biological

tools have revealed the full complexity of the PDEs; currently over 30 gene products,

clustered to 11 gene families has been found in mammalian genomes (Conti et al. 1995,

Guipponi et al. 1998, Dousa 1999, Soderling et al. 1999, Fujishige et al. 1999). Many

products of these genes seem to be more or less tissue specific and new roles of the
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PDEs in different aspects of cellular biology emerge frequently. The described tissue

specificity of the PDEs has introduced the PDEs as possible target molecules for the

treatment of several disorders. This, recently acknowledged potential role of PDE

inhibitors as therapeutic agents, has further increased the interest in the PDEs. PDE

inhibitors are considered as promising candidates for the treatment of a wide range of

diseases. A number of drugs are in clinical trials for asthma, and sildenafil citrate

(Viagra) has become the first selective phosphodiesterase inhibitor to be approved by

the US Food and Drug Association (Torphy 1998, Perry & Higgs 1998). Possible future

applications in the treatment of cardiac disease, depression, multiple sclerosis and other

autoimmune diseases have been suggested (Beavo 1995, Ekholm et al. 1997, Perry &

Higgs 1998, Conti 2000).  The development of inhibitors with higher selectivity and

affinity towards the targeted PDEs would decrease side effects and increase the potency

of such drugs. This is exemplified by sildenafil citrate, which is approximately 240-

times more potent in inhibiting PDE5 than zaprinast, a traditional PDE5 inhibitor

(Ballard et al. 1998). The use of short synthetic oligonucleotides (anti-sense

oligonucleotides) to control gene expression is another promising therapeutic approach

that could be applied to PDE inhibition (Ma et al. 2000). At an experimental level, anti-

sense oligonucleotides have been applied in inhibiting PDE activity. Anti-sense

oligonucleotides were used to selectively inhibit PDE7 expression in T cells resulting

in reduced rate of proliferation. Thus, inhibition of PDE7 could be an approach in

treating T cell-dependent disorders (Li et al 1999).

 The molecular composition of PDEs present in mammalian cells is basically

similar. They have a conserved region that corresponds to the catalytic domain where

the hydrolyzation of cAMP and cGMP takes place. The amino terminal part contains

protein interaction domains as well as binding sites for small molecules such as cyclic

nucleotides. In addition, phosphorylation domains that control the catalytic function have

been mapped at the amino terminal part of most PDEs. The carboxyl terminal domains

may be involved in dimerization, or may function as a regulatory domain being a target

for phosphorylation (Conti et al. 1995, Conti 2000). The currently used nomenclature of

the PDE isozymes is described in figure 4.
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PDE family

↓

subtype (gene)

↓

isoform (splice variant)

↓

PDE1 PDE1A PDE1A2

Figure 4. Currently used nomenclature of the PDEs according to Beavo et al. 1994,
demonstrated with PDE1A2 as an example.

5.1 Calcium / calmodulin-stimulated phosphodiesterases, the PDE1 family

The PDE1 family of isozymes is perhaps the most intensively studied and best known of

the multiple PDE families. The activity of PDE1 is dependent on the intracellular

concentration of Ca2+ and calmodulin (CaM). CaM is a small protein that mediates many

effects of Ca2+ in eukaryotic cells.  Apparently the binding of the Ca2+/CaM-complex to

regulatory domains causes a conformational change of the enzyme that allows the

displacement of an inhibitory domain from the catalytic site, leading to the activation of

PDE1 (Sonnenburg et al. 1998).  A tenfold stimulation of the PDE activity by Ca2+/CaM

binding is common. The rapid changes that take place in intracellular Ca2+ after

stimulation by calciotropic factors can therefore regulate the PDE activity and

consequently the intracellular concentration of cyclic nucleotides.

Three different PDE1 genes, PDE1A, PDE1B and PDE1C, and 9 splice products

of these genes have been identified, making PDE1 one of the more diverse of the PDE

families. Of interest is to note that the different PDE1 families have different affinity for

Ca2+/CaM. CaM can activate the splice product PDE1A1 over ten times more potently

than PDE1A2, indicating that splicing is a means to regulate sensitivity to Ca2+/CaM. A

difference in the Ca2+/CaM affinity of PDE1B and PDE1C has also been reported (Conti

2000). The products of the three different genes are also distinguished by different

affinity for cAMP and cGMP. PDE1A and PDE1B isotypes have a higher affinity for

cGMP than for cAMP, while some of the PDE1C subtypes have similar affinities for

both nucleotides (Dousa 1995, Loughney et al 1996). In addition of being regulated by

Ca2+/CaM, the PDE1 isozymes are modulated by PKA- CaM-dependent protein kinase

II- and by PKC mediated phosphorylation (Hashimoto et al. 1989, Spence et al. 1995,
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Kakkar et al 1999). The PDE1 isozymes are therefore potential sites of cross-talk

between these kinase signalling pathways.

 PDE1 isoforms are expressed in the central nervous system, heart and kidney

but are abundant in most tissue types. Due to the wide tissue distribution, it is not

surprising that this PDE family plays a central role in many physiological and

pathophysiological functions. The function of PDE1 in the pathogenesis of certain

neurological conditions, such as Parkinson’s disease is a central area of investigation

(Kakkar et al. 1999). Various reports have indicated that PDE1 levels are elevated in

tumours (Thompson et al 1980, Wei et al. 1983, Hickie et al. 1992). Inhibition of PDE1

by both PDE-inhibitors and anti-sense oligonucleotides has been shown to induce

apoptosis in human leukemic cells, and the use of this mechanism to promote death of

leukemic cells has been suggested (Jiang et al. 1996).

5.2 cGMP-stimulated phosphodiesterases, the PDE2 family

A PDE activity stimulated by low concentrations of cGMP was first described

by Russell et al. (1973). PDE2 seems to be one of the less diverse PDE families: only

one gene and three products have thus far been identified, coding for three isoforms

(PDE2A1-2A3). PDE2 has two high-affinity non-catalytic binding sites for cGMP.

Binding of cGMP to these sites causes an allosteric change in the catalytic domain and

the activity of both cAMP and cGMP hydrolysis is stimulated several-fold (Conti

2000). PDE2 has a rather low affinity for both cAMP and cGMP and similar Vmax for

both nucleotides. However, it is believed that PDE2 function as a cGMP-stimulated

cAMP-PDE in the intact cell (Beavo 1995). PDE2 isoforms has been found in adrenal

cortex, several areas in the brain and in cardiac tissue (Meacci et al 1992, Repaske et

al. 1993). PDE2 is a potential site for cross-talk between cAMP and cGMP-related

signalling pathways and the physiological role of this PDE2 mediated cross-talk is

diverse. Perfusion of single heart cells with cGMP activates PDE2 and the resulting

decline in intracellular cAMP reduces cardiac cell contractility by decreasing the

inward Ca2+-current. In bovine aortic vascular endothelial cells, ANF stimulated cGMP

reduces cAMP by activating PDE2. Thus, PDE2 associated cross-talk possibly
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TABLE  I
Summary of the PDE superfamily, general properties and selective inhibitors.

PDE family genes
described

number of
isoforms

substrate intracellular
modulator

hormones / factors
regulating activity

kinases involved in
enzyme regulation

PDE1 1A, 1B, 1C at least 9 cAMP/ cGMP Ca2+/CaM ↑ PKA, PKC, CaM-PK II
PDE2 2A 3 cAMP/ cGMP cGMP ↑ natriuretic peptides,

NO
PDE3 3A, 3B 3 cAMP cGMP ↓ insulin, glucagon,

dexamethasone
PKA, unknown insulin-

stimulated PK
PDE4 4A, 4B,

4C, 4D
at least 15 cAMP FSH, PTH, TSH,

β-AR agonists
PKA

PDE5 5A 2 cGMP Zn2+↑ PKG
PDE6 6A, 6B, 6G 2 cGMP light PKC
PDE7 7A, 7B 2 cAMP
PDE8 8A, 8B 3 cAMP
PDE9 9A 2 cGMP
PDE10 10A 2 cAMP/ cGMP
PDE11 11A 4 cAMP/ cGMP

Abbreviations: β-AR, β-adrenergic receptor ; Ca2+/CaM, calcium/calmodulin complex ; CaM-PK II, calmodulin
dependent protein kinase II ; FSH, follicle stimulating hormone ; PK, protein kinase ; PKA, protein kinase A ; PKC,
protein kinase C ; PTH, parathyroid hormone ; TSH, thyroid stimulating hormone. Explanations of symbols: ↑,
modulator increases PDE activity; ↓, modulator decreases PDE activity. The table is adapted from Conti et al.
(1995) and Dousa (1999).
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function as a regulator of cardiac contraction (Hartzell & Fischmeister 1986, Kishi et al.

1994, Verde et al., 1999). PDE2 might also play a role in the function of the kidney. The

activation of PDE2 by ANF stimulated cGMP has been shown to cause a fall in

intracellular cAMP in glomerulosa cells of the adrenal cortex, which in turn results in a

reduction of aldosterone production in these cells (MacFarland et al., 1991).

5.3 cGMP-inhibited phosphodiesterases, the PDE3 family

The PDE3 family has a high affinity for both cAMP and cGMP. However, it has an as

much as 10-times lower Vmax for cGMP, and therefore hydrolyzes mainly cAMP. The

inhibitory effects of cGMP on cAMP hydrolysis are a result of competition by cGMP at

the catalytic site of the enzyme (Beavo 1995). Two isogenes, PDE3A and PDE3B have

been identified (Meacci et al. 1992, Taira et al 1993). In rat tissues the PDE3A subtype

is located mainly in the cytosolic fraction, the PDE3B subtype seems to be limited to the

particulate fraction (Liu & Maurice 1998). PDE3A has been found in smooth muscle,

platelets and cardiac tissue, while PDE3B is abundant in liver and adipocytes. PDE3

can often be found abundantly in cells where cAMP and cGMP have similar effects;

factors that elevate cGMP potentiate the effects of agonists that elevate cAMP (Beavo,

1995). The activity of both subtypes is modulated by serine/threonine phosphorylation.

An increased activity of PDE3 trough PKA mediated phosphorylation has been shown in

a variety of cells, such as platelets and adipocytes (Macphee et al. 1988, Grant et al.

1988, Gettys et al. 1988, Degerman et al. 1997). The PDE3B subtype is in addition

activated by phosphorylation by insulin-dependent kinases. The antilipolytic effects of

insulin have in fact been shown to be at least in part dependent on a decrease in

intracellular cAMP. The decrease in cAMP seems to be caused by activation of

PDE3B, which has been decribed in both rat and human adipocytes (Degerman et al.

1990, Eriksson et al. 1995, Degerman et al. 1997, Rondinone et al. 2000). Protein

kinase B has been suggested as the kinase that phosphorylates PDE3B, thus activating

the enzyme in rat adipocytes (Wijkander et al. 1998). PDE3 is also thought to be

involved in glucose induced insulin secretion. PDE3 inhibition augments glucose-

induced insulin secretion in an insulin-secreting cell line (Ahmad et al. 2000).

Furthermore, arylpiperazine, which is an insulin secretagogue, has been shown to inhibit

PDE activity in mouse pancreatic islet cells (Leibowitz 2000). The regulation of PDE3
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activity by these mechanisms might have a major role in lipolysis, and PDE3 inhibitors

could consequently function as possible therapeutic agents in treatment of diabetes.

 Other well-known physiological roles of PDE3 are associated with the control

of blood pressure, cardiac contraction and platelet function. In human and frog

myocytes, a NO-donor that activates guanylate cyclase and initiates cGMP production

was found to increase cAMP by inhibiting PDE3 (Kirstein et al. 1995).  As elevated

endogenous cAMP stimulates cardiac Ca2+-current, it is possible that PDE3 plays a

central role in the regulation of myocardial contraction. A similar mechanism might

exist in platelets, where NO-donor induced cGMP seems to inhibit platelet function by

increasing cAMP by inhibiting PDE3 activity (Maurice & Haslam 1990). PDE3 is one

of the major isozymes in vascular smooth muscle, and inhibitors of PDE3 are potent

smooth muscle relaxants. PDE3 inhibitors, such as milrinone, vesnarinone and

cilostazol have been used in clinical trials in the treatment of congestive heart failure, as

antithrombotic and antihypertensive agents (Yasunaga & Mase 1985, Beavo et al 1994,

Beavo 1995).

5.4 cAMP-specific phosphodiesterases, the PDE4 family

PDE4 is the most diverse of the PDE families; 4 genes, and at least 15 different

isoforms have been found. Perhaps because of this diversity and the promising role of

PDE4 selective inhibitors as therapeutic agents, this enzyme is among the best

characterized of the PDE families. PDE4 does not hydrolyse cGMP, and all isoforms

have high affinity for cAMP. The activity of some PDE4 isoforms can be up-regulated

by two distinct cAMP/PKA mediated mechanisms. PDE4D3 is activated by PKA

mediated phosphorylation of the amino-terminal part of the enzyme (Sette et al. 1994,

Conti 2000). This phosphorylation causes a rapid, transient activation of the enzyme,

and increases its sensitivity to the PDE4 selective inhibitor rolipram (Sette et al. 1994,

Alvarez et al. 1995). PDE4D1 and PDE4D2 are regulated in a “long-term” fashion via a

cAMP mediated transcriptional activation, followed by up-regulation of de novo protein

synhesis of these isoforms (Swinnen et al. 1989). In sertoli cells the PKA mediated

“long-term” activation by FSH leads to a 100-fold increase in PDE4D mRNA and a 10-

fold increase in PDE4 activity (Conti 2000). In human myometrial cells PDE4B and

PDE4D are upregulated at both mRNA and protein level, and a role of these subtypes in



22

pregnancy has been suggested (Méhats et al. 1999). In a similar fashion as in PKA

mediated activation of PDE3, the corresponding activation of PDE4 probably plays a

role in the feedback-regulation of cAMP. The physiological roles of these mechanisms

have been studied in PDE4D knockout mice, and PDE4D-null mice show a 30-40%

decrease in growth rate during puberty, associated with a decrease in circulating IGF-1

levels. The PDE4 isozymes can be found in a variety of tissues, but the main interest has

been focused in the role of PDE4 in the function of the brain, olfactory sensory

transduction, and the involvement of PDE4 in inflammatory processes (Beavo, 1995).

The use of PDE4 inhibitors as anti-inflammatory agents is currently being evaluated in

several studies (Underwood et al. 1993, Underwood et al. 1998).

5.5 cGMP-binding phosphodiesterases, the PDE5 family

This PDE family is strictly selective for cGMP. Only one gene has been described, and

it possesses both catalytic and non-catalytic binding sites for cGMP. The binding of

cGMP to the non-catalytic binding sites does not directly affect the activity of the

enzyme, but it apparently results in a conformational change that makes it more sensitive

to phosphorylation by PKG and PKA. This phosphorylation leads to upregulation of the

PDE activity (Corbin et al. 2000). PDE5 has been found abundantly in lung, platelets

and smooth muscle cells. The PDE5 isozyme has recently attracted a lot of attention, as

it is the target enzyme of the PDE5 selective inhibitor sildenafil citrate. The effect of

sildenafil as a treatment of penile erectile dysfunction is mediated by an increase in

smooth muscle cell cGMP as a result of the inhibited activity of PDE5 (Price et al.

1998).

5.6 Photoreceptor phosphodiesterases, the PDE6 family

Three different genes of the PDE6 family have been described (PDE6A-C).  These PDE

families have several different gene products. The PDE6 family is exclusively found in

the outer segments of rods and cones of the retina in vertebrate eye. PDE6 appears to

have a rather complex structure, and consist of a tetramer of one α-subunit, one β-

subunit and two γ-subunits (Deterre et al. 1988). cGMP is a central molecule in vision

and a key player in transducing the effects of light in rod cells. In dark-adapted rod
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cells, a high level of cGMP acts to keep Na+ channels open and the membrane

depolarized. Absorption of light activates PDE6, and as a result, cGMP levels drop,

closing Na+ channels and hyperpolarizing the plasma membrane. The reduced level of

Ca2+ activates guanylate cyclase, and the increased cGMP restores the cells to a new

baseline state (Liebman et al. 1987, Darnell et al. 1990). PDE6 shares some features of

the PDE5 family; substrate preference, affinity to cGMP and sensitivity towards some

selective inhibitors are similar.

5.7 The PDE7 family

The PDE7 family was the first cAMP-specific PDE discovered that shows no

sensitivity to rolipram and RO 20-1724 and has a very high affinity for cAMP. There

are no reported selective inhibitors for PDE7, and it is present in only low levels in

most tissues and cell types. This might be the reason for the relatively late discovery of

PDE7. The PDE7 family was first characterized by Michaeli et al. (1993), although an

unknown PDE activity, specific to cAMP, but insensitive to rolipram, had been

described earlier in human T-lymphocyte cell lines by Ichimura and Kase (1993). Two

PDE7 subtypes have been identified so far, PDE7A and PDE7B (Michaeli et al.1993,

Hetman et al. 2000). The PDE7A1 isoform can be found in multiple tissues, but is

predominantly expressed in lymphoid tissue, and a role in T-cell activation has been

suggested  (Li et al. 1999). PDE7A2 is mainly expressed in skeletal muscle and

myocardium (Michaeli et al. 1993, Bloom et al. 1996, Han et al. 1997). PDE7A has

also been found in airway epithelial cells  (Fuhrmann et al. 1999), but determination of

the functional role has been slow due to the lack of PDE7 selective inhibitors. The

PDE7B subtype is most highly expressed in pancreas, brain, heart, skeletal muscle and

liver and is relatively sensitive for the inhibitors IBMX and dipyridamole (Hetman et

al. 2000, Gardner et al. 2000).

5.8 The PDE8 family

The third family of cAMP-specific PDEs identified was the PDE8 family (Fisher et al.

1998, Soderling et al. 1998). Two genes, PDE8A and PDE8B have been found.  The

two PDE8A isoforms identified have different tissue distribution: PDE8A1 is found in
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multiple tissues, PDE8A2 mainly in testis and liver. PDE8B seems to be highly

expressed in the thyroid, with only low expression in other tissues (Hayashi et al.

1998). Both PDE8A and PDE8B are insensitive to most known PDE inhibitors,

including IBMX. However, the tissue-specific location of PDE8 in the thyroid makes it

an interesting potential target for pharmacological manipulation of thyroid hormone

levels.

5.9 The PDE9 family

The PDE9 isozyme was discovered almost simultaneously with PDE8. PDE9 is strictly

a cGMP-hydrolyzing enzyme, which is insensitive for IBMX, and apparently lacks any

non-catalytic binding sites for cGMP (Dousa 1999). PDE9 has been found in human

brain, heart, spleen, prostate and colon (Guipponi et al. 1999). In murine tissue PDE9 is

expressed prominently in the kidney and far less in other tissues (Dousa 1999). At least

four splice products of this family have been found (PDE9A1-PDE9A4) with different

N-terminal ends. The kinetic characterization, inhibitor sensitivity and regulatory

properties of these enzymes are yet poorly defined. The PDE9A gene is located at

chromosome 21, and it has been suggested that PDE9A could play a role in genetic

diseases originating to this chromosome, such as trisomy 21, and a form of hereditary

deafness (Guipponi et al., 1999).

5.10 The PDE10 family

The PDE10 family is a dual-substrate PDE that may regulate both cAMP and cGMP

under physiological conditions. (Loughney et al. 1999, Soderling et al. 1999, Fujishige

et al.1999, Kotera et al. 1999). Two isotypes have been described, PDE10A1 and

PDE10A2. PDE10 is widely expressed, but is found most abundantly in heart, brain,

kidney and testis. There are no PDE10 selective inhibitors developed as yet, but the

non-specific inhibitor IBMX and the PDE5 selective inhibitor dipyridamole inhibits

PDE10 moderately. The splice variant PDE10A2 can be phosphorylated on its N-

terminal end, but it is not known how this affects the properties of the enzyme.
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5.11 The PDE11 family

The most recently identified phosphodiesterase family, PDE11, is also a dual substrate

PDE. It has less than 50% similarity to all other known phosphodiesterases, and has

highest amino acid similarity with PDE5. Tissue distribution studies indicate that

PDE11 expression occurs at highest levels in skeletal muscle, prostate, kidney, liver,

pituitary, salivary glands and testis (Fawcett 2000, Hetman et al. 2000, Yuasa et al.

2000). PDE11 is expressed as three different transcripts suggesting the existence of

multiple PDE11 subtypes. PDE11 is relatively sensitive towards the non-selective

inhibitor IBMX and zaprinast and in particular for dipyridamole, which is generally

considered a PDE5/PDE6 selective inhibitor.

6. Inactivation of cAMP and cGMP by cyclic nucleotide efflux

Although cyclic nucleotides are mainly inactivated by PDEs in most cells, the efflux of

cAMP and cGMP are one potential way in which cells can inactivate cyclic

nucleotides. An important role of the efflux mechanism has been implicated in the

control of intracellular cAMP or cGMP in rat glial cells, bovine adrenal medullary

cells, hepatocytes and platelets (Penit et al. 1974, Marley et al. 1992, Billiar et al.

1992, Wu et al. 1993). In most cells studied, the outward movement of cAMP and

cGMP seems to have a relatively minor or no effect (Barber & Butcher 1981,

Mercapide et al. 1999). The mechanism responsible for the outward movement of the

cyclic nucleotides is not well studied, and the molecule(s) responsible for the efflux has

not been identified and adequately characterized. However, the efflux has been shown

not to be a simple diffusional, but rather an energy-dependent and unidirectional

movement, blocked by prostaglandin A2 and by probenecid, a non-selective antagonist

of anion-transport (Rindler et al. 1978, Barber & Butcher 1981, Billiar et al. 1992,

Millul et al. 1996). In pig aortic smooth muscle cells the cAMP efflux rate seems to be

connected with the concentration of extracellular adenosine (Fehr et al. 1990). It has

also been suggested that the efflux rate of cGMP could be dependent on if cGMP is

generated by the soluble or particulate form of guanylate cyclase (Mercapide et al.

1999). Treating hepatocytes with a combination of lipopolysaccarides, interferon γ,

tumor necrosis factor and interleukin-1 activates the NO pathway, with a consequent
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increase in cGMP. After 18 hours incubation with this combination, these cells release

high levels of cGMP as compared to the intracellular cGMP levels (Billiar et al. 1992).

These results are in line with a more recent report that suggests a role of cyclic

nucleotide efflux mechanisms in long–term, but not in acute cyclic nucleotide

accumulation (Mercapide et al. 1999).

7. Role of cyclic nucleotides in osteoblast biology

7.1 Effects on of hormones and factors involving cAMP in their signalling

7.1.1 Parathyroid hormone and parathyroid hormone related protein

Parathyroid hormone (PTH) is one of the central regulators of bone and mineral

homeostasis. Its classical endocrine role is to regulate the concentration of calcium in

the extracellular fluid. The hormone is secreted from the parathyroid glands in response

to hypocalcemia and acts on the kidneys and bone, promoting reabsorption of calcium

from the distal tubule and increasing bone resorption leading to an elevation of plasma

calcium levels. Molecular cloning has revealed that the PTH receptors expressed in

bone and kidneys are identical and belong to a subgroup of the seven-transmembrane

receptors. A second member of the PTH family designated parathyroid hormone-related

protein (PTHrP) has also been identified (Suva et al. 1987). PTHrP was first identified

as a mediator of hypercalcemia of malignancy but was subsequently detected in many

normal tissues including bone (Walsh et al. 1995). The widespread expression of

PTHrP and low circulating physiological levels indicate that this is a paracrine factor

rather than a hormone. Nevertheless, PTHrP and PTH share the same receptor and binds

to the receptor with equal affinity. Consequently, the receptor has been designated the

PTH/PTHrP receptor (Lanske & Kronenberg 1998, Kronenberg et al. 1998). These

receptors are distinctive in the capacity for dual activation of both the cAMP/PKA and

Ca2+ / PKC signal transduction pathways. The receptors couple to Gsα, which activates

adenylyl cyclase leading to intracellular accumulation of cAMP and activation of PKA.

They also couple to Gqα, which activates phospholipase C leading to the generation of

phosphoinositides and activation of the PKC. This dual activation constitutes a complex

system of regulation, which is likely to allow cross talk between the pathways.
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By using truncated PTH fragments it has been shown that the first two N-terminal

amino acids in the PTH and PTHrP molecules are important for the cAMP response.

Hence, if the first two amino acids are deleted PKC is activated but stimulation of

cAMP does not take place (Rixon et al. 1994). The cAMP signalling parthway has been

shown to be a major mediator of PTH action on many osteoblastic responses. These

include upregulation of osteocalcin, upregulation of collagenase secretion and increased

synthesis of several cytokines (Heath et al 1984, Partridge et al. 1994). In addition the

cAMP pathway regulates alkaline phosphatase, which is a marker of osteoblastic

activity, and type I collagen synthesis (Majeska and Rodan 1981, Partridge et al. 1989,

Gallagher et al. 1996). In mouse calvarial osteoblasts, rat MC3T3-E1 cells and rat

calvarial osteoblast-rich cultures, PTH and other agents that increase cAMP inhibit

osteoblast differentiation (Sabatini et al 1996, Koh et al. 1999).

Early clinical trials demonstrated that low doses of PTH have anabolic effects

on humans (Reeve et al. 1976). The effects of PTH/PTHrp on bone have since been

extensively studied in different experimental conditions using animal, organ culture and

cell culture models (Canalis et al. 1989, Whitfield et al. 1995). In rats PTH has been

shown to be more effective than estrogen or bisphosphonates for restoration of lost bone

mass (Wronski et al. 1993). However, the effects of PTH can be either anabolic or

catabolic depending on the administered dose, and if the treatment is continuous or

intermittent (Canalis et al. 1989, Mosekilde et al. 1991, Hock & Gera 1992, Dempster

et al. 1993, Li et al. 1995). Cortical porosity in patients with hyperparathyroidism has

raised the concern that intermittent PTH given to treat osteoporotic patients may weaken

cortical bone by increasing its porosity. In a recent study intermittently administered

PTH treatment dose-dependently increased intracortical porosity in the humerus of

cynomolgus monkey. However, the increased porosity did not have a significant

detrimental effect on the mechanical properties of the bone (Burr et al. 2001).

Mimicking the effects in vivo, PTH effects on bone cell cultures may also depend on

whether the treatment is intermittent or not (Nishida et al. 1994), but as well on

experimental conditions such as cell density and duration of treatment. In cells derived

from human trabecular bone PTH stimulates proliferation only when the cells are

cultured at high density (MacDonald et al. 1986). In mouse calvarial cells seeded at a

low density, PTH (1-34) increases alkaline phosphatase (ALP) at both enzyme and

mRNA levels. In contrast, when cells are seeded at a high density, PTH reduces ALP
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activity and mRNA with a simultaneous decrease in osteocalcin secretion. These effects

were shown to be cAMP dependent as they could be mimicked by the adenylate cyclase

activator forskolin and the synthetic cAMP analogue dibutyryl-cAMP (Isogai et al.

1996). Recently Schiller et al. (1999) reported that the anabolic response of rat

MC3T3-E1 osteoblastic cells depend on the time and duration of the PTH treatment.

When PTH was administered before the 20th day of culture, the in vitro mineralization

was decreased. Initiating the PTH treatment after day 20 left the mineralization

unaffected. However, if the PTH treatment was started at day 20 and terminated at day

25, a 5-fold increase in the mineralization could be shown. Also using rat osteoblastic

cells, Ishizuya et al (1997) showed that the response of PTH treatment on osteoblast

differentiation is different depending on the time of exposure to PTH. When osteoblastic

cells were intermittently exposed to PTH for the first hour of a 48-h incubation cycle

and cultured for the remainder of the cycle without the hormone, osteoblast

differentiation was inhibited as shown by suppressed alkaline phosphatase activity,

bone nodule formation and osteocalcin secretion. By using inhibitors and stimulators of

cAMP/PKA and Ca2+/PKC it was demonstrated that cAMP/PKA was the major signal

transduction pathway in the inhibitory action of PTH. In contrast, an intermittent

exposure to PTH for the first 6 hours of a 48-hours cycle stimulated osteoblast

differentiation. Both cAMP/ PKA and Ca2+/PKC systems appeared to be involved

cooperatively in the anabolic effect. In a mesenchymal C3H10T1/2 cell line, used as a

differentiation model, PTH enhanced osteogenic development in cells at an early stage

of differentiation, but not cells at a later stage of differentiation (Hollnagel et al 1997).

These results suggest that osteoblasts not only respond differently depending on the dose

and time of the PTH administration, but the response also seems to be dependent on the

stage of differentiation of the treated cells.

In addition to the stage of differentiation and bone forming activity of individual

osteoblast, also the total osteoblast number is important in determing the formation rate

of bone. As the majority of the osteoblasts die by apoptosis, this process is potentially

as important as the proliferation rate in determining osteoblast number. Recently it has

been demonstrated that intermittent PTH treatment of mice increases bone fornation

without increasing the generation of new osteoblasts (Jilka et al. 1999). Instead, the

PTH treatment seems to increase the life-span of the osteoblasts by reducing their rate of

apoptosis. The antiapoptotic effects of PTH has also been confirmed in vitro using
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rodent and human osteoblasts, and the reported effect seems to be mediated by

stimulation of cAMP production and activation of PKA (Jilka et al. 1999).

 Insulin-like growth factor 1 (IGF-1) has been proposed as one of the mediators

of the anabolic effects of PTH (Canalis et al. 1989, McCarthy et al. 1989, 1990,

McCarthy et al. 1995). In cells from rat calvariae, a transient treatment by PTH (1-34)

stimulated IGF-1 synthesis, while a continuous treatment was without effect. The effect

of PTH on the IGF-1 production was shown to be mediated by cAMP. Simultaneously

the intermittent PTH administration had a mitogenic effect and collagen synthesis was

increased. Addition of IGF-1 antibody to the cultures abolished the increase in collagen

synthesis, although the mitogenic effect was unaffected (Canalis et al. 1989, McCarthy et

al. 1989, 1990, McCarthy et al. 1995). Recently also IGF binding protein (IGFBP-5)

has been shown to be upregulated by cAMP mediated stimulation, in line with the

hypothesis that the cAMP pathway and IGF-mediated anabolic effects are interrelated

(Ji et al. 1999).

For over a decade, it has been known that osteoblasts secrete one or more

factors in response to PTH that recruits and activates osteoclasts (McSheehy &

Chambers 1986). It was only recently that RANKL was identified as an osteoclast-

activating factor (Teitelbaum 2000). As mentioned earlier, RANKL expressed by

stromal/osteoblastic cells and the binding of RANKL to RANK receptors on osteoclast

precursors activate the maturation, and consequently the bone resorbing activity of the

osteoclast. PTH has been shown to enhance RANKL and inhibit OPG expression,

although it is not yet known if the cAMP signal transduction pathway is involved in this

activation (Lee & Lorenzo 1999).

7.1.2 Prostaglandin E2

The prostaglandins are metabolites of arachidonic acid that exert a wide range of local

physiological effects through activation of G-protein-coupled prostaglandin receptors.

All three of the known prostaglandins, PGE2, PGF2 and PGI2, have been shown to be

released by bone, although PGE2 represents the major prostaglandin and seems to be

functionally most relevant to bone (Rodan et al. 1981).

There are currently four subtypes of seven transmembrane domain receptors that bind

and respond to PGE2 (EP1, EP2, EP3 and EP4). These four receptor types are coupled
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to either intracellular Ca2+ mobilization, or stimulation or inhibition of adenylate

cyclase. Osteoblasts appear to express all four receptor types, but EP2 and EP4 seem to

be coupled to cAMP production (Negishi et al. 1995, Suzawa et al. 2000). The

functional significance of PGE2 receptor activation in bone is diverse. Early reports

demonstrated that PGE2 potently increased bone resorption (Klein & Raisz 1970).

More recently, anabolic effects of PGE2 in rats have been described. Intraosseus

injections of PGE2 increased the formation of woven bone associated with an increase

in osteoblast and osteoclast number (Yang et al. 1993). A 30 days PGE2 treatment

induced a massive increase in osteoblastic cells, and dramatically increased woven and

lamellar bone formation in aged rats (Cui et al. 2001). In primary rat osteoblasts PGE2

has been shown to induce morphologic changes and to upregulate IGF-1 (McCarthy et

al. 1991, Yang et al. 1998). In addition, a recent study describes enhanced expression of

RANKL by PGE2 induced cAMP (Suzawa et al. 2000). PGE2 also increases the

formation of mineralized nodules, although the effect of PGE2 has been shown to be

independent of the cAMP pathway (Kaneki et al.  1999). Nevertheless, there are strong

implications that activation of the EP receptor followed by the rise in intracellular

cAMP accumulation has a role in mediating metabolic effects of PGE2 in osteoblasts.

7.1.3 Agonists of the β-adrenergic receptors

The family of β-adrenergic receptors (BAR1, -2 and -3) are seven transmembrane

receptors that mediate the physiological responses of catecholamines (Summers &

Lynne 1993). The extracellular N-terminal region of these receptors contain the ligand

binding sites, while the intracellular regions, interacts with the G-protein complex and

has phosphorylation sites for both PKA and PKC, as well as for β–adrenergic receptor

kinase (BARK). The more tissue specific BAR3 appears not to be expressed by

osteoblasts. BAR1 and BAR2 in osteoblasts are coupled to Gs activation, which results

in AMP accumulation, PKA phosphorylation and stimulation of the immediate early

gene c-fos (Kellenberger et al. 1998). Heterodimers of c-fos with c-jun acting as the

transcription factor AP-1, bind and regulate a wide variety of AP-1 responsive genes,

including alkaline phosphatase, osteocalcin and collagen 1 (Stein & Lian 1993).
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 TABLE II
Summary of the responses to hormones and factors that activates the cAMP signalling pathway in osteoblasts and osteoblast-like cells.

hormone / agent function response cell source reference

PTH proliferation ↑ primary mouse osteoblasts Sabatini et al. 1996
PTH collagen synthesis ↓ UMR-106 rat osteosarcoma Partridge et al. 1989
PTH, PGE2 collagenase secretion ↑ primary mouse osteoblasts Heath et al. 1984
PTH, forskolin, Bu2cAMP ALP ↓#

↑§
primary mouse
primary mouse

Isoigai et al. 1996

PTH ALP ↓ ROS 17/2 rat osteosarcoma Majeska & Rodan 1982
PGE2 RANKL expression ↑ primary mouse osteoblasts Suzawa et al. 2000
PGE2 PTH  receptor regulation ↓ UMR-106 rat osteosarcoma Mitchell & Goltzman 1990
PTH, PGE2 IGF-1 synthesis ↑ primary rat osteoblasts McCarthy et al. 1990, 1991
PTH IGF binding protein-5 ↑ primary rat osteoblasts Ji et al.  1999
PTH extracellular acidification

rate
↑ SaOS-2 human osteosarcoma Barrett et al. 1997

PTH, forskolin OC ↑ ROS17/2.8 rat osteosarcoma Noda et al. 1988
PTH, forskolin MAPK activation

proliferation
↓
↓

UMR-106 and ROS 17/2.8
rat osteosarcoma cell lines

Verheijen & Defize 1995

PTH prostaglandin synthase
expression

↑ MC-3T3-E1 rat cell line Tetradis et al. 1996

PTH, Bu2cAMP apoptosis ↓ primary mouse osteoblasts
MG-63 human osteosarcoma

Jilka et al. 1999

Abbreviations: ALP, alkaline phosphatase: IGF, insulin-like growth factor; MAPK, mitogen activated protein kinase; OC, osteocalcin;
PGE2 ,prostaglandin E2; PTH, parathyroid hormone; RANKL, receptor activator of NF-κB ligand. Explanations of symbols: ↑ increase, ↓
decrease, # cells seeded at high density, §cells seeded at low density.
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8.  Effects of hormones and factors involving cGMP in their signalling

8.1 Natriuretic factors and bone

As described above, the natriuretic peptides, atrial natriuretic factor (ANF), brain

natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are a family of

structurally related peptides that has been reported to regulate a variety of physiological

processes in diverse tissues, including bone. ANF is made in the cells of the cardiac

atrium, stored there in granules, and acts upon vascular smooth muscle and other targets

to influence vascular tone and fluid and electrolyte balance. In bone cells, Fletcher et al.

(1986) first identified ANF receptors in osteoblast from newborn rat calvaria and

UMR-106-01 rat osteosarcoma cells. The binding of ANF to its receptor resulted in a

200-fold increase in intracellular cGMP. Later studies have revealed interesting effects

of ANF, and other natriuretic peptides on bone metabolism. In isolated foetal rat

calvaria ANF reduced the cAMP response to PTH and PGE2, and also reduced PGE2

stimulated bone resorption in the calvaria (Vargas et al. 1989). In MC3T3-E1 rat

osteoblast-like cells, the synthetic cGMP analogue 8-Bromo-cGMP and cGMP

produced by natriuretic peptides increased ALP activity, suggesting a direct

involvement of the cGMP signalling pathway in the osteoblast differentiation (Nashida

et al. 1996). In osteoblast cultures isolated from rat calvaria, the presence of a synthetic

cAMP analogue, 8-Bromo-cAMP, resulted in both inhibition of alkaline phosphatase,

and the formation of mineralized nodules. In contrast, 8-Bromo-cGMP, a corresponding

analogue of cGMP had opposite effects: ALP activity was increased and the formation

of mineralized nodules was promoted (Inoue et al. 1995). MC3T3-E1 cells have been

shown to secrete and express CNP mRNA, and consequently CNP has been suggested to

be a potent paracrine/autocrine modulator of osteoblastic cells (Suda et al. 1996).

MC3T3-E1 cells respond to CNP by a decrease in proliferation rate, and stimulation of

intracellular cGMP production by CNP increases the mRNA transcripts of collagen type

1, ALP and osteocalcin  (Suda et al. 1996, Inoue et al 1996).  In osteoblasts from

newborn rat calvaria, both ANF and CNP reduced the proliferation rate, increased

production of the osteoblast specific protein osteocalcin and also increased ALP, both

at the mRNA and protein level (Hagiwara et al. 1996). Furthermore, the formation of

mineralized nodules was also increased, suggesting anabolic effects of both ANF and



33

CNP. In line with these results, Suda et al. (1999) recently reported that CNP, and in a

less pronounced way, ANF causes a decrease in proliferation rate and a slight increase

in the ALP activity of ROB-C26 cells, which is a rat derived osteogenic cell line. In

organ culture of mouse tibias CNP and 8-Br-cGMP significantly increased bone growth

by stimulating endochondral ossification (Yasoda et al. 1998). However, CNP

stimulation of 1,25-dihydroxyvitamin D3-treated, osteoclast containing mouse bone

marrow cultures was shown to stimulate the bone resorption (Holliday et al. 1995).

8.2 Nitric oxide and bone

Nitric oxide (NO) is a short lived free radical that is involved in various physiological

processes in cardiovascular, immune and central nervous tissues. NO is known to

activate soluble guanyl cyclase resulting in an increase of intracellular cGMP, this being

the main effector mechanism of NO (Moncada et al. 1991, Moncada and Higgs 1993).

While initial work focused on NO in the vascular and nervous systems, several studies

in the last few years have demonstrated that also cells of other tissues, such as

macrophages, hepatocytes, chondrocytes and bone marrow cells produce NO. Also

bone cells produces NO and express NOS enzymes, and increasing evidence show that

NO plays an important role as a paracrine and autocrine mediator of bone cell

physiology (Ralston et al. 1994).

NO seems to be involved in anabolic processes mediated by mechanical strain,

sex hormones and fracture healing, but it also mediates catabolic processes in response

to inflammation. It has been shown that a slow and moderate release of nitric oxide

stimulates the replication of primary rat osteoblasts and alkaline phosphatase activity,

while a rapid release and high concentrations of NO inhibit proliferation and induce

apoptosis. Both the stimulatory and apoptosis-inducing effects of NO on primary

osteoblasts seem to be mediated by cGMP, since both can be abolished by inhibition of

guanylate cyclase (Mancini et al. 2000). A direct action of NO on osteoblastic

differentiation of mouse osteoblasts, at least in part mediated by cGMP, was

demonstrated by Hikiji et al. (1997) by showing that NO donors stimulate osteocalcin

mRNA and ALP. These effects were accompanied with a reduction of PGE2 secretion,

which in part could explain the anti-resorptive effects of NO that has been shown

(Kasten et al. 1994). Furthermore, sodium nitroprusside, a NO donor, inhibits
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resorption of fetal rat limb bones in organ culture (Stern & Diamond 1992). NO also

inhibits osteoclast formation and activity but the molecular mechanisms behind these

events are unknown (Ralston 1997). Mice deficient of nitric oxide synthase (NOS), the

enzyme responsible of the production of NO, has been shown to have abnormalities in

bone formation. Histomorphometric analysis showed that the NOS gene knockout mice

had reduced femural bone volume and reduced bone formation rate (Aguirre et al.

2001).

TABLE III
Summary of the response to hormones and factors that activates the cGMP signalling

pathway in osteoblasts and osteoblast-like cells.

hormone / agent function response cell source reference

ANF, CNP ALP, OC,
mineralization

↑ primary rat
osteoblasts

Hagiwara et al. 1996

ANF, CNP ALP ↑ ROB-C26 rat
osteosarcoma

Suda et al. 1999

8-Br-cGMP ALP,
mineralization

↑ primary rat
osteoblasts

Inoue et al. 1995

CNP collagen type 1
ALP, OC

↑ MC3T3-E1 rat
osteoblastic
cells

Inoue et al. 1996

ANF, CNP
8-Br-cGMP

ALP ↑ MC3T3-E1 rat
osteoblastic
cells

Nashida et al. 1996

ANF, CNP ALP
proliferation

↑
↓

ROB-C26 rat
osteosarcoma

Suda et al. 1999

NO ALP, OC ↑ mouse primary
osteoblasts

Hikiji et al. 1997

Abbreviations: ALP, alkaline phosphatase; ANF, atrial natriuretic factor; CNP, C-type
natriuretic peptide; NO, nitric oxide; OC, osteocalcin. Explanations of symbols: ↑
increase, ↓ decrease.
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9. Effects of phosphodiesterase inhibitors on bone metabolism

Osteoporosis, which is caused by imbalance between bone resorption and formation,

has become a major public health problem in the developed countries. The development

of new drugs that inhibit the formation or activity of osteoclasts, or that promote bone

formation is under continuous development in the pharmaceutical industry. Numerous

new treatments have already been clinically used, and several new drugs have been

developed during the last decade. The main treatments include estrogen replacement

therapy, the use of selective estrogen receptor modulators (SERMs) and osteoclast

inhibitors such as calcitonin and bisphosphonates (Linsay et al. 1976, Raisz 1997,

Heikkinen et al. 1997, Genazzani & Gambacciani 2000). Clinical studies using daily

intermittent dosage of PTH has also shown impressive gains in bone density in

osteoporotic women and men (Reeve 1996, Lindsay et al 1997, Rodan & Martin 2000).

New targets with promising potential are the recently identified RANKL, its receptor

RANK, the RANKL decoy receptor OPG. These molecules and their corresponding

signalling pathways provide a number of new therapeutic targets for osteoclast

inhibition (Rodan & Martin 2000, Aubin & Bonnelye 2000). It is widely believed that

the effects of PTH on bone is at least in part mediated by its stimulating effects on

RANKL expression, thus making the PTH/cAMP signalling pathway an additional

potential target for the treatment of osteoporosis.

The diversity and complexity of the PDE superfamily presents PDE inhibitors as

promising agents for therapeutic intervention, in the treatment for a wide spectrum of

disease states (Beavo 1995, Perry  & Higgs 1998). A possible role of PDE inhibitors in

the treatment of different diseases of bone has recently been suggested in several studies

using rat and mouse model (Miyamoto et al. 1997, Waki et al. 1999, Kinoshita et al.

2000, Horiuchi et al. 2001). In vitro studies has shown that non-selective

methylxanthine PDE inhibitors, IMBX and theophylline, and two PDE4 selective PDE

inhibitors, Ro 20-1724 and rolipram, increased the release of Ca2+ and proline from

new-born mouse calvaria in organ culture, indicating that these inhibitors stimulate bone

resorption. The effect of the PDE inhibitors in this study was probably due to

potentiation of the effects of prostaglandin, since the resorption could be abolished by

the addition of indomethacin (Lerner et al. 1986, Ransjo et al. 1988). Further studies

performed on isolated mouse calvarial osteoblasts showed that long-term treatment with
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rolipram or with IBMX increases ALP, a marker of bone formation (Lundberg et al.

1999). In cultured rat bone marrow cells, denbufylline, IBMX and Ro 20-1724

increased the formation of mineralized nodules by up to 90 %, with a concomitant

decrease in the number of active osteoclasts by up to 70 % (Miyamoto et al. 1997). XT-

44, a novel PDE4 inhibitor, increased mineralized nodule formation by 250 %, with a

50 % reduction of active osteoclasts (Waki et al. 1999). In vivo experiments have been

shown to be in line with the described results. In rats, inoculated with Walker 256/S

carcinoma to induce an artificial osteoporotic state, bone loss was reduced by over 50

% after a two-week denbufylline treatment (Miyamoto et al. 1997). Similar results were

obtained by XT-44, which recovered the bone mineral density decrease induced by

neurectomy and ovariectomy in rats (Waki et al. 1999). Furthermore, Kinoshita et al.

(2000) showed that a five-week treatment of mice with the PDE4 selective inhibitor

rolipram or by a non-selective inhibitor, pentoxifylline significantly increased both

cortical and cancellous bone mass in normal mice.  In this study, histomorphometric

measurements suggested that the bone mineral density increase was achieved rather by

an increase in bone formation, than by a reduction in the rate of resorption. Horiuchi et

al. (2001) reported that daily injections of pentoxifylline enhances bone formation on

bone morphogenic protein (BMP) impregnated collagen disks, implanted into the back

muscles of mice. The mechanism by which pentoxifylline enhances the BMP-induced

bone formation is not known, but it seems likely that the described effects include

inhibition of PDE, followed by interference in cyclic nucleotide signalling of the

osteoblasts. Taken together, there is strong evidence suggesting that phosphodiesterase

inhibitors increase the formation of bone, and the phosphodiesterases could therefore be

potential therapeutic targets in the treatment of osteoporosis.
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AIMS OF THE STUDY

The mechanisms involved in the generation of cAMP in osteoblasts are rather well

characterized. The structure and function of the receptors that are connected to cAMP

synthesis, such as the PTH/PTHrp receptor, and the G-protein complex coupled to

adenylate cyclase are rather well defined. Many of the mechanisms of the cGMP-

signalling pathway in osteoblasts are also reasonably well known. However the

inactivation of both cAMP and cGMP has been largely neglected, even though it is

known that intracellular cyclic nucleotide levels depend on both cyclic nucleotide

generating and inactivating mechanisms. Therefore, the main aim of this thesis was to

address the question of which components and mechanisms take part in the inactivation

of cyclic nucleotides in osteoblasts, and how this inactivation is regulated.

The specific aims were to:

1) study the hormonal regulation of PDE activity in osteoblasts.

2) determine the role of PDEs and efflux on the inactivation of cAMP and cGMP.

3) identify the PDE families present in rat and human osteoblasts, and evaluate their role

in cAMP accumulation.

4) identify the subtypes of the main PDE families present in human osteoblasts and

osteosarcoma cells.
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METHODS

1. Cell culture

1.1 Osteosarcoma cell lines

Two osteosarcoma cell lines, one of human- and one of rat origin were used in the

study. UMR-106 rat osteosarcoma cell line was used to evaluate the regulation of PDE

activity by PTH and ANF (I, III), and to study the role of cAMP and cGMP efflux (II,

III). The UMR-106 cell line was originally developed by TJ Martin at the University of

Sheffield. It is a clonal derivate of a transplantable osteosarcoma induced by injection

of radiophosphorus (32P) into a rat. UMR-106 cells have receptors, and are responsive

to PTH, PGE2 and ANF.  It has been widely used as a model for studying many different

aspects of osteoblast functions (Fletcher et al. 1986, Civitelli et al 1988, Zajac et al.

1992, Fang 1992, Azarani 1995). The cell line used in the present studies was

purchased from American Type Tissue Collection (ATCC). UMR-106 cells were

grown in Dulbecco's modified Eagle's medium (DMEM), supplemented with 10 % FCS,

50 IU penicillin and 50 ug/mL streptomycin.

The SaOS-2 human osteosarcoma cell line has also frequently been used as an

osteoblast model. It is responsive to PTH and several growth factors, such as EGF and

TGFβ (Murray et al. 1987, Rodan et al. 1989, Takeuchi et al 1995). It was originally

isolated and cloned from an osteosarcoma of an 11 years old female. The genome

consists of 56 chromosomes, which are partly structurally rearranged. Also this cell line

was purchased from ATCC. SaOS-2 cells were grown in McCoy's 5A medium,

supplemented with 12.5  % FCS, 50 IU penicillin and 50 ug/mL streptomycin.

1.2 Human osteoblasts

Normal human osteoblasts (NHOst) and all cell culture reagents for NHOst cells were

purchased from BioWhittaker. Two strains of NHOst cells from two different 1-year-

old female donors were used. Both strains were characterized by the supplier with

respect to alkaline phosphatase staining and in vitro mineralization. The cells were

seeded at a density of 5.000 cells/cm2 and cultured in osteoblast growth medium
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(OGM), supplemented with 10% foetal calf serum (FCS), 50 µg/ml ascorbic acid, 5

mM β -glycerophosphate, 200 nM hydrocortisone 21 hemisuccinate, 0.1% gentamicin /

amphotericin-B solution, at 37oC in 5% CO2 / 95 % air atmosphere on plastic petri

dishes.

2. Assay of cyclic nucleotides

2.1 Measurement of cAMP accumulation

The cells were grown on 35-mm petri dishes, or on 24-well plates. After treatments of

the cells with different compounds, the cells were washed with HBSS buffer containing

118 mM NaCl, 4.6 mM KCl, 10 mM D-glucose, 20 mM HEPES, 0.4 mM CaCl2, pH 7.4.

All incubations were carried out in HBSS buffer, at 37o. cAMP was extracted from the

cells with 96 % ethanol at -18o for 3 hours. The extract was evaporated either in a

vacuum oven at 37o or by N2-gas, at 50 o and dissolved in assay buffer  (0.05 M sodium

acetate, pH 6.2). To measure cAMP efflux, 100 µl samples were withdrawn from the

incubation buffer. The samples were instantly boiled for 1 minute. cAMP content was

determined by radioimmunoassay according to Frandsen and Krishna (1976).

Succinylated samples and standards were incubated overnight with rabbit anti-cAMP

antibody, using adenosine 3’, 5’-cyclic phosphoric acid 2’-O-succinyl 3-[125I]

iodotyrosine methyl ester as tracer (2000 Ci /mmol). After precipitation with cold

ethanol, the radioactivity of samples was counted.

2.2 Measurement of cGMP accumulation

Cells were grown to confluence on 35 mm plastic petri dishes. 20 hours before

treatment with ANF and various compounds the media was changed to Dulbecco's

modified Eagels medium, replacing FCS with 0.1% BSA. The cultures were washed

with HBSS buffer, containing 118 mM NaCl, 4.6 mM KCl, 10 mM D-glucose, 20 mM

Hepes, 0.4 mM CaCl2, pH 7.4). All incubations were carried out in HBSS buffer at 37o

C.  For measurement of intracellular cGMP, the experiments were terminated by

washing twice with ice cold HBSS. The cGMP was then extracted from cells with 1 ml
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96 % ethanol at -18o C for 3 h. The extract was transferred to plastic tubes and

evaporated in vacuum at 37o C. The evaporated samples were then dissolved in 1 ml of

assay buffer containing 0.05 M sodium acetate, pH 6.2. If necessary, the samples were

further diluted with assay buffer, and the cGMP concentration was then determined by

radio-immunoassay according to Frandsen and Krishna (1976), with [125I]-cGMP as a

tracer. To measure cGMP efflux, 100 µl samples were withdrawn from the incubation

buffer. The samples were instantly boiled for 1 minute and assayed by radio-

immunoassay.

3. Assay of PDE activity

The PDE activity was assayed essentially as described by Thompson & Appleman

(1971), in an incubation buffer containing 40 mM Tris-HCl, pH 8.0, 0.1% protease

inhbition cocktail (PIC) containing 0.08 mM aprotinin, 2.2 mM leupeptin, 4.0 mM

bestain, 1.5 mM pepstatin A, 1.4 mM E-64 and 100 mM AEBSF, 0.05% BSA, 1 mM

mercaptoethanol, 10 mM MgCl2 and 3H-cGMP (0.25µM) or 3H-cAMP (0.5 µM). 50-

100 µl sample was added to incubation buffer to give a final reaction volume of 300 µl,

and the mixture was incubated at 34oC for 30-60 min. The reactions were stopped by

boiling tubes for 1 min. After cooling on ice, 100 µl crotalus atrox snake venom

nucleotidase (1 mg/ml) was added, and the samples were further incubated at 34oC for

10 min. 500 µl of a 1:2 slurry of AG1-X8 anion exchange resin was then added,

followed by a 5 min. centrifugation at 6000 g. The radioactivity of the supernatant was

counted.

4. Preparation of cell homogenates

UMR-106 cells, growing on 60 mm plastic petri dishes were treated with ANF in HBSS

buffer at 37oC. At the end of the experiments, the cells were washed twice with HBSS

and harvested with a cell scraper into 2 ml ice-cold 40 mM Tris-HCl, pH 8.0,

containing 0.1% PIC and 5 mM mercaptoethanol. The harvested cells were then

homogenized by ten passages through a Teflon/glass homogenizer on ice, and
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centrifuged at 800 g for 5 min. The cGMP-PDE activity of the supernatant was assayed

as described above.

5. Separation of PDE activities

Five confluent cultures of either NHOst, SaOS-2 or UMR-106 cells, grown on 100 mm

plastic petri dishes were washed twice with PBS buffer, harvested with a cell scraper

into 6 ml ice-cold homogenization buffer (buffer A), containing 20 mM Bis-tris, pH 6.5,

5 mM mercaptoethanol, 0.1 % PIC. The harvested cells were then homogenized by ten

passages on ice with a Teflon/glass homogenizer. The homogenization was repeated

three times. The homogenate was then centrifuged for 20 min. at 20.000 g. Five

millilitres of the supernatant was diluted with 20 mL buffer B, containing 20 mM Bis-

tris, pH 6.5, 0.1 M sodium acetate, 0.02% PIC (v/v), 0.1 mM EDTA, 1 mM

benzamidine and 1 mM mercaptoethanol, filtered through a 0.22 mM syringe filter, and

applied to a column (5mL bed volume) of Q sepharose High Performance (Amersham

Pharmacia Biotech) previously equilibrated with buffer B. After washing the column

with 10 bed volumes, the PDE activities were eluted with a 0.1-1.3 M linear sodium

acetate gradient in buffer B, at a flow-rate of 2.5 ml/min. Fractions of 2 ml were

collected into tubes containing 50 µL 5% BSA, and assayed for either cAMP-PDE or

cGMP-PDE activity as described below.

6. Identification and characterzation of the PDEs

6.1 Identification of PDE families by selective inhibitors

Several PDE families can be identified according to their sensitivity to selective

inhibitors that has been developed. A list of these inhibitors, and their relative

inhibitory potential of different PDE families are listed in table IV. The PDE families

isolated by Q sepharose chromatography were in part identified in respect to the

sensitivity towards these inhibitors. For each eluted separate PDE activity, peak

fractions were pooled, and the PDE activity was measured in the presence of increasing

concentrations of inhibitors (usually in the range from 0 to 64 µM).  The data resulting

from these assays were analyzed by non-linear regression, to obtain half-maximal
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inhibiting concentration (EC50) using GraphPad Prism software. In some experiments,

the PDE activities were further characterized by determing the affinity (Michaelis)

constant (Km) with the same software.

Table IV

Selective and nonselective phosphodiesterase inhibitors and their inhibitory potency

towards PDE isoenzyme families.

Inhibitor MW IC50 PDE types inhibited reference

Cilostamide 342.4 0.07 PDE3 Verghese et al. 1995

Denbufylline 320.4 1.0 PDE4 Nicholson et al. 1989

EHNA 313.8 4 PDE2 Michie et al. 1996

IBMX 222.2 2 – 50 nonselective Scamps et al. 1993

8-MMX 266.3 4.0 PDE1 Wells et al. 1988

Milrinone 211.2 0.30 PDE3 Harrison et al. 1986

Ro 20-1724 278.4 0.9 PDE4 Souness et al. 1991

Rolipram 275.4 0.8 – 1.0 PDE4 Underwood et al. 1994

Sildenafil 474.6 0.004 PDE5 Ballard et al. 1998

Zaprinast 271.3 0.45 PDE5 Burns et al. 1992

Abbreviations: MW, molecular weight; IC50, concentration of half-maximal inhibition
(expressed as µmol/L).

6.2 Identification of PDE families by sensitivity to cofactors (cGMP and calcium /

calmodulin)

As some PDE families are differently affected by the addition of cGMP and Ca2+/CaM,

assaying the PDE activity in the presence of these cofactors is also a widely used

method in the identification of PDE families. CaM, in the presence of Ca2+ greatly

attenuates the activity of PDE1 family of PDEs, while other PDE families are

practically unaffected by this cofactor (Kakkar et al. 1999). cGMP can be used to

identify PDE2, which activity is greatly enhanced by low concentrations of cGMP.  The

activity of PDE3 is, in contrast, greatly inhibited by low concentrations of cGMP, and

can consequently be used in identification of enzymes of the PDE3 family (Conti et al.

1995, Beavo 1995). 20-50 U/tube CaM, in the presence of 10 µM – 1 mM Ca2+ was
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used to identify PDE1 activity in the PDE profiles. To identify cGMP sensitive activity,

the PDE activity profile was assayed in the presence of 4µM cGMP.  In some

experiments, the peak fractions of the PDE profiles were subjected to PDE activity

assay in the presence of 0 - 64 µM cGMP.

7. Identification of PDE subtypes by reverse-transcriptase PCR

7.1 Isolation of mRNA and cDNA synthesis

Approximately 5 x 106 cells, grown on 100 mm petri dishes, were washed twice with

PBS. The cells were detached by trypsin-EDTA (0.5-0.02%) treatment, and centrifuged

for 4 min. at 250 g. After washing the cells twice with PBS, the mRNA of the cell pellet

was isolated with a mRNA purification kit (QuickPrep Micro, Amersham Pharmacia

Biotech) according to the manufacturers instructions. The isolated mRNA was

precipitated with 0.25 M K Acetate / ethanol and the pellet was finally resuspended in

20 µL DEPC-treated water. cDNA synthesis was performed by incubating 2 µL of the

mRNA in RT reaction buffer, supplemented with 200 U/tube M-MLV reverse

transcriptase, 0.01 mg/ml oligo dT primer, 0.5 mM dNTP and 20 U/tube RNAse

inhibitor, in a final volume of 20µL. The reaction was performed at 37o for 60 min.

Incubations were also performed with reverse transcriptase-free tubes, for the detection

of possible products originating from contaminating genomic DNA.

7.2 Detection of PDE subtypes by PCR amplification

PCR amplification of cDNA was performed in 1 x PCR buffer (Finnzymes), containing

20 U/mL Taq DNA polymerase (Finnzymes), 0.1 mM dNTP (Finnzymes), 0.4 µmol/L of

each primer (except for β-actin when 1 µmol/L of primers was used) and 2µL cDNA, in

a total reaction volume of 25 µL. The PCR reactions were performed in a thermal

cycler, 1 min. at 94o, 2 min. at 55 o and 2 min. at 72 o, for 40 cycles (except for β-actin,

when only 34 cycles were performed). Products were then subjected to electrophoresis

on ethidium bromide stained agarose gels, and photographed under UV light. In each

PCR amplification, tubes containing primers for β-actin were run as positive controls

and to demonstrate equal loading of cDNA.
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RESULTS AND DISCUSSION

1. Hormonal regulation of PDE activity in UMR-106 cells: activation of PDE

activity by parathyroid hormone and ANF

1.1 PTH stimulation of cAMP-PDE activity

In UMR-106 rat osteoblast-like cells, we demonstrated that intact PTH induces a rapid

activation of the cAMP-PDE activity (I). Treating the cells with 10 nM PTH time-

dependently increased the PDE activity. The activation could be seen within 2 minutes

after the onset of the stimulation. Peak values were reached at 15 minutes. The acute

increase in PDE activity remained elevated for at least 60 minutes. The concentration-

effect of the PDE activation was also assayed. At 100 nM PTH the PDE activity was

stimulated over three-fold. The minimal detected effective dose was 0.1 nM. We

examined the signal transduction responsible for mediating the effects of PTH. For these

experiments, the cultures were treated with activators of the cAMP/PKA pathway, and

activators of the Ca2+/ PKC pathway. Bu2cAMP and forskolin, which both are known to

activate PKA, both mimicked the effect of PTH. Phorbol 12-myristate 13-acetate, a

phorbol ester, a known activator of the PKC pathway, and A 23187, a Ca2+ ionophore,

had no effect on the PDE activity. H-8, a synthetic inhibitor of PKA, readily abolished

the stimulating effect of PTH on the PDE activity, suggesting that the route of activation

of the PDE activity by PTH is mediated by PKA. Alkaline phosphatase treatment of the

PTH stimulated samples were deactivated suggesting possible role of phosphorylation

mechanisms in the activation of the PDE activity. Both the basal and stimulated PDE

activity was inhibited by low concentrations of RO 20-1724, a PDE4 selective

inhibitor, suggesting that the PDE enzyme that is activated by PTH belong to the PDE4

family. The effect of RO 20-1724 on PTH and forskolin stimulated cAMP accumulation

was also studied. RO 20-1724 alone did not affect the cAMP accumulation, but

potentiated the PTH stimulated accumulation 7-fold. H-8 also had an effect on both PTH

and forskolin-stimulated cAMP accumulation. H-8 stimulated the cAMP accumulation

about 4-fold, suggesting a functional role of the PTH stimulated PDE activation in the

regulation of cAMP in intact UMR-106 cells.



45

A short-term activation of cAMP-PDE-activity has been shown previously in

several systems. PDE2 activity is stimulated by insulin and ispoproterenol in rat

adipocytes, and by insulin and prostaglandins in human platelets. In FRTL-5 rat thyroid

cell line, thyroid-stimulated hormone activates a PDE4 isoform by cAMP-dependent

phosphorylation (Sette et al. 1994, Conti et al. 1995). In addition to activation by

phosphorylation, the PDE activity has shown to be modulated by binding of cofactors,

such as cGMP, Ca2+/CaM. The PDE activity can also be up regulated by transcriptional

activation, triggered by hormones and growth-factors (Conti, 1995). It has been

suggested that these mechanisms are important for desensitization of the cells to

hormonal stimulation. In bone cells, however there is no previous data describing

possible mechanisms of phosphorylation-mediated or transcriptional regulation of PDE

activity by hormones.

1.2 cGMP-PDE activation by ANF mediated by cGMP

Stimulation of UMR-106 cells with 30 nM ANF caused a 3-fold increase in the PDE

activity of the cells (III). The onset of the activation was rapid; peak activity was

reached within 2 minutes, and the activity levels were maintained high for up to 60

minutes. Significant activation of the cGMP-PDE activity could be seen at 3 nM ANF,

and at 300 nM the activity was more than 3-fold. The same treatment did not affect

cAMP-PDE activity. Bu2cGMP, a cGMP analogue that activates PKG but is a poor

activator of PDE2, could not mimic the ANF-stimulated activation of cGMP-PDE. It

therefore seems likely that the activation of cGMP-PDE activity is mediated by direct

binding of cGMP to PDE2. This hypothesis is also supported by the detection of PDE2

activity in UMR-106 cells. The presence of similar mechanisms in a wide variety of

other cell types has been described. As reviewed above, ANF has been shown to

activate PDE2 activity in adrenal glomerulosa cells (MacFarland et al. 1991). ANF

also decreases cAMP levels in human fibroblasts and in xenopus oocytes, attributable

to a cGMP mediated enhanced cAMP-phosphodiesterase activity (Lee et al. 1988,

Sandberg et al. 1993).
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2. Efflux as a mechanism of cAMP and cGMP inactivation in UMR-106 cells

The efflux of cAMP and cGMP has been shown to require input of energy and to be an

unidirectional movement, that can be potently blocked by prostaglandin A2 and by

probenecid, a non-selective antagonist of anion-transport (Rindler et al. 1978, Barber &

Butcher 1981, Millul et al. 1996). The effects of probenecid were evident also in UMR-

106 cells: probenecid treatment abolished the cAMP and cGMP efflux by up to 90% (II,

III). The blocking of the efflux of both cAMP and cGMP with probenecid had no

measurable effect on intracellular levels of cyclic nucleotides. We could demonstrate

that a linear relationship existed between the intracellular and extracellular levels of

cAMP after stimulation of the cAMP accumulation by PTH for 10 minutes (II). These

results are in line with the observations of Mercapide et al. (1999) that showed a linear

relationship between intracellular and extracellular cGMP levels in aortic smooth

muscle cells. In most cells studied, the outward movement of cyclic nucleotides has

been shown to have a relatively minor effect on the intracellular accumulation of cAMP

and cGMP (Barber & Butcher 1981, Mercapide et al. 1999). This also seems to be the

case in UMR-106 cells where the efflux mechanism seems to be of minor importance

within the first 30 minutes. However, our results do not exclude a role of the efflux

mechanism in inactivating cAMP and cGMP over a longer time-period.

3. Identification of PDE families in UMR-106 cells

The findings that PTH activates PDE4 activity in UMR-106 cells (I) revealed the need

to study the relative contribution of PDE4, and to study the possible presence of other

PDE families in UMR-106 cells. Consequently chromatographic isolation and

biochemical / pharmacological characterization of the PDE activities was employed to

study the PDE profile of the cells. The characterization of the fractions that subsequently

were isolated by anion-exchange chromatography confirmed PDE4 as the largest

cAMP-PDE activity (II). The PDE4 activities separated in three different peaks,

probably reflecting the presence of different PDE4 gene products present in the cells.

There is no data that describes separation of PDE4 family members after

chromatographic separation. However PDE1 subtypes have been shown to separate into

different peaks by similar chromatographic methods (Sonnenburg et al. 1998). The PDE
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subtypes in UMR-106 cells were not identified, but as some isoforms of the PDE4D

subtypes have been shown to be activated by PKA (Sette et al. 1994), the cAMP-

dependent induction of PDE4 activity by PTH indicates the possible presence of the

PDE4D subtype in UMR-106 cells. In addition to PDE4 activity, PDE1 and PDE2

cAMP-PDE activity was detected in smaller amounts (Table V). Although the role of

these activities in cAMP hydrolysis seems to be minor as compared to the PDE4

activity, PDE1, PDE2 and PDE5 were shown to be major activities hydrolyzing cGMP

(Table VI). In line with the identified cGMP-PDE activities, EHNA and zaprinast which

are selective inhibitors of PDE2 and PDE5, potentiated ANF stimulated cGMP

accumulation in UMR-106 cells (III).

4. Identification of PDE families in human osteoblasts and osteosarcoma cells

The cAMP PDE activity of NHOst and SaOS-2 cells separated on Q-sepharose ion-

exchange chromatography in three separate peaks (IV). The peaks were designated A1,

A2 and A3 according to their order of elution from the anion-exchange column. The

peaks were then identified by using selective inhibitors, and by assaying sensitivity for

cGMP and CaM. The first peak to elute of both NHOst and SaOS-2 was identified as

PDE1 by its sensitivity towards 8-MMX, a selective PDE1 inhibitor, and by the

stimulating effect on PDE activity by Ca2+/CaM. The second eluting cAMP-PDE peaks

of NHOst and SaOS-2 cells were insensitive to the addition of high levels of several

tested inhibitors. IBMX however inhibited the activity of the second peak. PDE7, the

cAMP-specific, rolipram insensitive PDE family has been shown to be insensitive to

most known PDE inhibitors, but relatively sensitive to IBMX (Hetman et al. 2000),

suggesting that the most likely candidate for the identity of peak A2 of both NHOst and

SaOS-2 cells is PDE7.

The identity of the third peak was determined by assaying sensitivity to cGMP,

milrinone, rolipram and 8-MMX. The different sensitivity to cGMP and PDE inhibitors

indicated a different identity of A3 peaks of NHOst and SaOS-2 cells. In NHOst cells,

A3 was shown to be sensitive to milrinone, a PDE3 selective inhibitor, but unsensitive

to rolipram, a PDE4 selective inhibitor. Peak A3 of SaOS-2 cells was sensitive to

rolipram, but relatively insensitive to milrinone. The high sensitivity of the third NHOst

peak to cGMP further suggested the NHOst peak A3 activity is a member of the PDE3
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family. The only detected cGMP PDE activity in both NHOst and SaOS-2 cells

consisted of two, closely eluting CaM-stimulated peaks (IV). The first of these peaks

mostly hydrolyzed cGMP, but the second peak, corresponding to the fractions of the

cAMP hydrolyzing peak A1, hydrolyzed both cAMP and cGMP

TABLE V

Summary of cAMP-PDE activities of the studied osteoblasts and osteosarcoma cells.

cell type PDE1 PDE2 PDE3 PDE4 PDE7

UMR-106 + + - ++++ -

SaOS-2 +++ - - ++ +

NHOst +++ - ++ - +

Explanation of symbols: - no activity detected; + activity less than 10 %; ++ activity less
than 20 %; +++ activity over 40 %; ++++ activity over 80% of total cAMP-PDE activity.
PDE1 activity was assayed in the presence of 1 mM CaCl2 / 50 U/tube CaM, and PDE2
activity was assayed with 4 µM cGMP.

TABLE VI

Summary of cGMP-PDE activities of the studied osteoblasts and osteosarcoma cells.

cell type PDE1 PDE2 PDE3 PDE4 PDE5

UMR-106 + +++ - - +++

SaOS-2 ++++ - - - -

NHOst ++++ - - - -

Explanation of symbols: - no activity detected; + activity less than 10 %; ++ activity less
than 20 %; +++ activity over 40 %; ++++ activity over 80% of total cGMP-PDE activity.
PDE1 activity was assayed in the presence of 10 µM CaCl2 / 20 U/tube CaM, and PDE2
activity was assayed with 4 µM cGMP.
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5. Identification of PDE1, PDE3, PDE4 and PDE7 subtypes in human osteoblasts

and osteosarcoma cells

Following the biochemical identification of PDE1 as one of the major PDEs in both

NHOst and SaOS-2 cells, the presence of mRNA transcripts of all the known PDE1

subtypes; PDE1A, PDE1B and PDE1C were examined by RT-PCR (IV). NHOst cells

expressed mRNA transcripts for both PDE1A and PDE1C; SaOS-2 cells only PDE1C.

Of the two PDE3 subtypes PDE3A and PDE3B, PDE3A mRNA was detected in both

NHOst cells, and SaOS-2 cells. The rolipram insensitive / IBMX sensitive cAMP

specific PDE activity detected in NHOst/SaOS-2 cells indicated the presence of PDE7.

This was further examined by assaying the presence of PDE7 subtype mRNA. Two

mammalian members of the PDE7 family, PDE7A and PDE7B, has thus far been

identified (Michaeli et al. 1993, Hetman et al. 2000). mRNA transcripts of both the

PDE7A and PDE7B subtypes were detected in NHOst and SaOS-2 cells (IV). The

presence of mRNA transcripts of all known PDE4 subtypes (PDE4A-4D) were also

examined, following the identification of PDE4 activity in the SaOS-2 PDE activity

profile, and mRNA transcripts of the PDE4A and PDE4B subtypes were found in both

NHOst cells and SaOS-2 cells (IV).

6. Effect of PDE inhibitors on PGE2 stimulated cAMP response

in human osteoblasts and SaOS-2 cells

In line with the different PDE profiles of NHOst and SaOS-2 cells, the PDE4 selective

inhibitor rolipram increased PGE2 stimulated cAMP accumulation in SaOS-2 cells

much more potently than in NHOst cells (IV). The non-selective inhibitor IBMX

increased the cAMP accumulation of both cells similarly, but milrinone, a PDE3

selective inhibitor, increased the cAMP accumulation in NHOst cells, but not in SaOS-2

cells. Only 1 µM rolipram was required to double the cAMP accumulation level of

SaOS-2 cells. This was in contrast with milrinone, which at similar concentrations had

no effects on either cell line. In NHOst cells, however, the effect of 100 µM milrinone

on cAMP accumulation was significant whereas the same treatment did not affect the

cAMP accumulation of SaOS-2 cells. The effects of selective PDE-inhibitors on PGE2

stimulated cAMP accumulation in NHOst and SaOS-2 cells were in line with the
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responses of UMR-106 cells. As the cAMP-PDE activity of UMR-106 cells was shown

to constitute mainly of PDE4, the potentiating effects of the PDE4 selective PDE

inhibitor Ro 20-1724 on PTH stimulated cAMP accumulation, and the lack of effect of

milrinone seems logical (I). In intact osteoblasts, IBMX has usually been used at

concentrations around 0.5 – 1.0 mM in order to achieve a cellular response (Abou-

Samra et al. 1991, Fang et al. 1992, Fluhmann et al. 1998). In SaOS-2 and NHOst cells,

100 µM IBMX was sufficient to achieve a two- to three-fold increase in the PGE2

stimulated cAMP accumulation. However, only 10 µM Ro 20-1724 was required to

produce a 10-fold potentiation of PTH stimulated cAMP accumulation in UMR-106

cells (I), and only 10 µM rolipram induced a 5-fold increase in PGE2 stimulated cAMP

accumulation in SaOS-2 cells (IV). These results show the impact that selective

targeting of cell specific PDE-activity has on cAMP signalling of the studied cells.

CONCLUSIONS

The results in this study suggest that rapid up-regulation of the PDE activity might be an

important means by which osteoblasts regulate their response to hormonal stimulation.

The role of cyclic nucleotide efflux does however not seem to be a major mechanism by

which osteoblasts inactivate cyclic nucleotides.

The identification of multiple PDEs indicates that the regulation of cyclic

nucleotide inactivation is a complexly regulated process in osteoblasts, and that PDE

might be a significant point of cross-talk between separate signalling pathways in

osteoblasts. In both normal human osteoblasts and in the malignant osteosarcoma cell

line SaOS-2, PDE1 was identified as the major PDE family. The results suggest that

hydrolysis by PDE1 is a central mechanism by which cyclic nucleotides are inactivated

in human osteoblasts. The results also imply that calcium/calmodulin play a role in

cyclic nucleotide metabolism in the studied cells. In UMR-106 rat osteosarcoma cells

PDE4 and not PDE1 was the main PDE family.  PDE1 was however also detected in

UMR-106 cells, but only at low levels.

Another main difference in the PDE profiles was the appearant lack of PDE3

activity in UMR-106 and SaOS-2 osteosarcoma cells, while PDE3 contributed to a

large part of the total PDE activity of normal human osteoblasts. The reason for this

difference in the PDE profiles is not known. The osteosarcoma cell lines might
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represent a differentiation stage associated with high levels of PDE4 expression, or the

PDE profile might have shifted during, or after the original transformation of the cells

from the normal to the malignant phenotype.

This study has shown that the effect of different PDE-inhibitors on cAMP and

cGMP accumulation is dependent on the PDE-profile of the treated cells. Inhibitors of

PDEs have recently emerged as a potential treatment for some malignant states of bone

tissue. The identification of PDE families and subtypes in human osteoblasts might

therefore benefit possible future attempts to develop PDE-based drugs that alone, or in

concert with cAMP-elevating agents such as PTH and PGE2 could be used to treat

diseases such as osteoporosis.
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