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Summary 

Proteolysis is important in bacterial pathogenesis and colonization of animal and plant hosts. 

In this work I have investigated the functions of the bacterial outer membrane proteases, 

omptins, of Yersinia pestis and Salmonella enterica. Y. pestis is a zoonotic pathogen that 

causes plague and has evolved from gastroenteritis-causing Yersinia pseudotuberculosis 

about 13 000 years ago. S. enterica causes gastroenteritis and typhoid fever in humans. 

Omptins are transmembrane β-barrels with ten antiparallel β-strands and five surface-exposed 

loops. The loops are important in substrate recognition, and variation in the loop sequences 

leads to different substrate selectivities between omptins, which makes omptins an ideal 

platform to investigate functional adaptation and to alter their polypeptide substrate 

preferences. The omptins Pla of Y. pestis and PgtE of S. enterica are 75% identical in their 

amino acid sequences. Pla is a multifunctional protein with proteolytic and non-proteolytic 

functions, and it increases bacterial penetration and proliferation in the host. Functions of 

PgtE increase migration of S. enterica in vivo and bacterial survival in mouse macrophages, 

thus enhancing bacterial spread within the host. 

Mammalian plasminogen/fibrinolytic system maintains the balance between coagulation and 

fibrinolysis and participates in several cellular processes, e.g., cell migration and degradation 

of extracellular matrix proteins. This system consists of activation cascades, which are strictly 

controlled by several regulators, such as plasminogen activator inhibitor 1 (PAI-1), α2-

antiplasmin (α2AP), and thrombin-activatable fibrinolysis inhibitor (TAFI).  

This work reveals novel interactions of the omptins of Y. pestis and S. enterica with the 

regulators of the plasminogen/fibrinolytic system: Pla and PgtE inactivate PAI-1 by cleavage 

at the reactive site peptide bond, and degrade TAFI, preventing its activation to TAFIa. 

Structure-function relationship studies with Pla showed that threonine 259 of Pla is crucial in 

plasminogen activation, as it prevents degradation of the plasmin catalytic domain by the 

omptin and thus maintains plasmin stability. In this work I constructed chimeric proteins 

between Pla and Epo of Erwinia pyrifoliae that share 78% sequence identity to find out 

which amino acids and regions in Pla are important for its functions. Epo is neither a 

plasminogen activator nor an invasin, but it degrades α2AP and PAI-1. Cumulative 

substitutions towards Pla sequence turned Epo into a Pla-like protein. In addition to threonine 

259, loops 3 and 5 are critical in plasminogen activation by Pla. Turning Epo into an invasin 

required substitution of 31 residues located at the extracellular side of the Epo protein above 

the lipid bilayer, and also of the β1-strand in the N-terminal transmembrane region of the 

protein. These studies give an example of how omptins adapt to novel functions that 

advantage their host bacteria in different ecological niches. 
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1 Introduction 

This thesis work addresses how two bacterial pathogens, Yersinia pestis and Salmonella 

enterica, interfere with the human fibrinolytic cascade. The significance of proteolysis in 

bacterial pathogenesis is generally approved, and proteolytic activity is widespread among 

pathogens (Travis et al., 1995; Lantz, 1997; Potempa et al., 2000). Bacterial proteases target 

several host factors during infection to gain nutrients, to lyse host tissues directly or 

indirectly, to activate or inactivate host protease cascades, to attenuate host defense, or to 

process other bacterial virulence factors, such as toxins (reviewed in Travis et al., 1995; 

Lantz, 1997). Examples of proteolytic bacteria include Legionella pneumophila, streptococci, 

staphylococci, and species in the genera Neisseria, Clostridium, and Vibrio. Proteolysis has 

also been shown to be important in Y. pestis pathogenesis (reviewed in Lantz, 1997; Degen et 

al., 2007). Proteolytic functions related to pathogenesis of S. enterica have been studied less, 

and S. enterica is usually not regarded as a proteolytic organism (Lähteenmäki et al., 2005a; 

Ramu et al., 2007; Ramu et al., 2008; Yun et al., 2009). Both Y. pestis and S. enterica 

express outer membrane proteases, omptins, on their surface (see chapter 1.4 below), and in 

this study the targets and functions of these and other omptins were investigated.  

Bacterial infection begins when the bacteria come in contact with the host, bypass the host’s 

immune defenses and start to proliferate. Invasive bacterial pathogens pass the first line of 

defense, such as skin or mucosal layers, and migrate from the primary infection site deeper 

into tissues where they multiply. In addition to physical barriers, the mammalian protection 

includes leukocytes, the normal microbial flora, and the complement system. Also the 

haemostatic system, which regulates the balance between coagulation and fibrinolysis, 

participates in the battle: fibrin clots are formed after tissue damage or inflammation, and 

they restrain the migration of the bacteria in the host. Some pathogenic bacteria have evolved 

to utilize the haemostatic system in order to penetrate through host tissue barriers and to 

circumvent the host defense mechanisms (Lähteenmäki et al., 2005b). Also commensal and 

probiotic bacteria have been shown to interact with the haemostatic system, suggesting that 

these interactions provide benefit for these species, possibly by enabling colonization or by 

providing nutrients (Antikainen et al., 2007; Candela et al., 2007; Hurmalainen et al., 2007). 

The interactions of the bacteria with the plasminogen/fibrinolytic system and the role of these 

interactions in bacterial infections are discussed in more detail in chapter 1.3. 
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1.1 Yersinia pestis 

Y. pestis is the causative agent of plague, a disease that has killed millions of humans in three 

pandemics (Justinian, 6th-8th centuries; the Black Death, 14th-19th centuries; modern, 19th 

century onwards) and is still enzootic in the endemic plague areas. According to World 

Health Organization (WHO), there are about 2 000 cases and 200 deaths per year, mostly in 

Africa and Asia, although the actual number may be higher due to the lack of diagnostics and 

statistics in remote areas. Because the occurrence of human cases and local epidemics has 

increased during the last decades, plague has been classified as a re-emerging disease 

(WHO). The genomics of Y. pestis is of broad interest because it is considered a model 

species of rapid evolution of a severe bacterial pathogen (Wren, 2003), discussed more 

detailed below. Also the threat of bioterrorism and identification of strains with antibiotic 

resistance have raised concern and motivated plague research recently (Galimand et al., 1997; 

Inglesby et al., 2000; Galimand et al., 2006; Welch et al., 2007).  

Plague is a zoonosis transmitted mainly by rodents and their fleas. Its endemic reservoirs 

occur in Asian, African, and American rodent populations. Also other mammalian species, 

including humans, are susceptible to plague infection. Mammalians get Y. pestis infection via 

a bite by an infected blood-sucking insect vector, usually flea. The bacteria block the flea’s 

foregut, and in an attempt to suck blood from mammals, the starving flea injects the bacteria 

under the mammalian skin (Bacot & Martin, 1914). Y. pestis penetrates through tissues from 

the primary infection site to lymph nodes where it proliferates, causing bubonic plague. 

Bacterial proliferation causes swollen lymph nodes, called buboes. Another route of infection 

is via respiratory droplets from an infected mammal to another. The bacteria spread to lungs 

within the droplets and multiply causing primary pneumonic plague. The third form of plague 

is primary septicaemic plague, where a flea injects the bacteria directly into a blood vessel 

(Sebbane et al., 2006a). Secondary pneumonic or septicaemic plague occurs if the bacteria 

spread from buboes to lungs or to the blood stream, respectively.  

The main symptoms of bubonic plague are fever, headache, and the formation of buboes. The 

first symptoms of pneumonic plague resemble that of flu. In septicaemic plague the bacteria 

spread in the blood, liver, spleen, and other organs. The symptoms are similar to other Gram-

negative sepsis and finally lead to excessive bleeding. The mortality in untreated septicaemic 

and pneumonic plague is almost 100% and about 50% in untreated bubonic plague. The 

antibiotic treatment with streptomycin, tetracycline, or gentamicin is usually effective if 

started at the early stage of infection. 

The genus Yersinia belongs to the family Enterobacteriaceae and consists of 15 species, of 

which three are human pathogens: Y. pestis, Yersinia pseudotuberculosis, and Yersinia 

enterocolitica. Y. pseudotuberculosis and Y. enterocolitica reside in the environment, and 
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consumption of contaminated food or water causes gastroenteritis, a localized infection that 

rarely requires antibiotic treatment. The evolution of Y. pestis is quite a recent event: Y. pestis 

has diverged from its ancestor, Y. pseudotuberculosis serotype O:1b, only about >13 000 

years ago (Achtman et al., 1999; Skurnik et al., 2000; Achtman et al., 2004; Achtman, 2008). 

Y. enterocolitica is more distantly related to these two species (Achtman et al., 1999). The 

disease outcome, the host range, and the capability to use a flea vector differentiate Y. pestis 

from Y. pseudotuberculosis. Despite the phenotypic differences, the hybridization studies 

showed already thirty years ago that the genomes of these two species are over 90% identical 

(Bercovier et al., 1980). Several Y. pestis and Y. pseudotuberculosis genomes have been 

sequenced to date (Parkhill et al., 2001a; Deng et al., 2002; Chain et al., 2004; Song et al., 

2004; Chain et al., 2006; Eppinger et al., 2007; Garcia et al., 2007; Eppinger et al., 2009; 

Eppinger et al., 2010), and they have revealed that Y. pestis has gained new genes via 

horizontal (or lateral) gene transfer (HGT), and that its genome has undergone 

rearrangements and accumulated several pseudogenes compared to Y. pseudotuberculosis 

(reviewed in Wren, 2003).  

The genome of Y. pestis consists of a chromosome and three virulence plasmids, a 70-kb 

pCD (or pYV), a 96-kb pMT1, and a 9.5-kb pPCP1 (Ferber & Brubaker, 1981). pCD is 

common to all human-pathogenic yersiniae, and it encodes several virulence determinants, 

e.g., type III secretion system (T3SS; reviewed in Cornelis et al., 1998). The other two 

plasmids are Y. pestis-specific and have probably been acquired via HGT; overall, Y. pestis 

has gathered only a few virulence factors and they are mostly encoded in plasmids (Prentice 

et al., 2001; Wren, 2003). Atypical GC content is an indication of the acquisition of DNA via 

HGT (Parkhill et al., 2001a; Song et al., 2004; Liang et al., 2010). pMT1 shares more than 

50% of its sequence with pHCM2, a plasmid of S. enterica serovar Typhi CT18, suggesting 

common ancestry (Parkhill et al., 2001b; Prentice et al., 2001). pMT1 encodes two virulence 

factors: an antiphagocytic F1 capsule and a murine toxin that facilitates colonization of the 

flea (Ferber & Brubaker, 1981; Du et al., 2002). pPCP1 contains genes encoding the 

plasminogen activator Pla, a crucial virulence factor (see chapter 1.4.1), pesticin, and the 

pesticin immunity protein (Ferber & Brubaker, 1981; Sodeinde & Goguen, 1988).  

DNA microarray analysis of 22 Y. pestis and 10 Y. pseudotuberculosis genomes revealed the 

abundance of insertion sequence (IS) elements in Y. pestis genome compared to 

Y. pseudotuberculosis (Hinchliffe et al., 2003). The amount of IS elements in Y. pestis 

genome enables homologous recombination and genomic rearrangements, i.e., insertions and 

inversions, that can make genes nonfunctional (Parkhill et al., 2001a; Deng et al., 2002; 

Radnedge et al., 2002; Chain et al., 2004; Song et al., 2004; Garcia et al., 2007; Gu et al., 

2007; Darling et al., 2008). About 5% of Y. pestis genes have been inactivated by point 

mutations, insertions, or deletions (Chain et al., 2004). For example, inv and yadA, whose 

expression is crucial for invasion and adhesion of Y. pseudotuberculosis, are inactive in 
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Y. pestis: inv contains an IS element and yadA a frameshift mutation (Rosqvist et al., 1988; 

Simonet et al., 1996). Ure operon in Y. pestis contains a premature stop codon in ureD and is 

inactivated; urease is crucial for Y. pseudotuberculosis as it contributes nitrogen production 

from urea (Sebbane et al., 2001). Y. pestis produces rough lipopolysaccharide (LPS) with 

short O side chain, as the O side chain gene cluster in Y. pestis genome is inactivated by 

insertions and deletions (Skurnik et al., 2000; Prior et al., 2001). LPS consists of lipid A, core 

region, and O side chain. Smooth LPS protects several pathogens, including Salmonella, by 

providing serum resistance (Joiner et al., 1982; Rautemaa & Meri, 1999). On the other hand, 

smooth LPS hinders the function of surface proteins, such as Pla (Kukkonen et al., 2004; see 

chapter 1.4.1), and could thus be disadvantageous to Y. pestis. Lipid A provokes the host 

immune response because it is recognized by Toll-like receptor 4 (TLR4; Miller et al., 2005). 

Y. pestis expresses tetra-acylated lipid A at 37 °C, and this type of LPS does not activate 

TLR4; hence inflammatory response is not provoked (Kawahara et al., 2002; Montminy et 

al., 2006; Dentovskaya et al., 2008; Matsuura et al., 2010). Y. pestis has lost several gene 

products as they have become pseudogenes, a typical feature of certain type of pathogens, 

such as Rickettsia prowazekii and Mycobacterium leprae (Andersson et al., 1998; Wren, 

2000; Parkhill et al., 2001a; Moran, 2002; Chain et al., 2004; Song et al., 2004; Tong et al., 

2005; Chain et al., 2006; Pallen & Wren, 2007; Ahmed et al., 2008). Pseudogenes 

accumulate in the genome when the bacterium adapts to new environment and genes that 

become dispensable are spontaneously inactivated; this is abundant in obligate intracellular 

pathogens (reviewed in Wren, 2000). The pseudogene amount in Y. pestis is lower than in 

obligate intracellular bacteria but nevertheless reflects the recent change in the ecological 

niche of this bacterium (Wren, 2000; Wren, 2003).  

Altogether, there are only minor differences in Y. pestis and Y. pseudotuberculosis genomes 

(Wren, 2003). Y. pestis could actually be classified as a subspecies of Y. pseudotuberculosis, 

but due to historical and practical reasons and because their ecological niches and diseases 

they cause are so different, it is still considered a distinct species (Bercovier et al., 1980; 

Achtman et al., 1999).  

Y. pestis has been subdivided into biovars that differ in their abilities to ferment glycerol and 

reduce nitrate to nitrite. The three classical biovars, Antiqua, Medievalis, and Orientalis, are 

thought to be associated with the three plague pandemics (Devignat, 1951; Guiyoule et al., 

1994). However, this remains controversial as novel molecular analyses have shown that 

biovars are not monophyletic and do not directly correlate to molecular groupings that are 

based on synonymous single-nucleotide polymorphisms (SNPs; Achtman et al., 2004; 

Drancourt et al., 2004; Drancourt et al., 2007). Pestoides isolates belong to biovar Antiqua 

and are atypical and ancestral Y. pestis because they can ferment rhamnose and melibose and 

sometimes lack the pPCP1 plasmid (Achtman et al., 2004; Anisimov et al., 2004; Garcia et 

al., 2007; Bearden et al., 2009). There is also a novel fourth biovar, Microtus, which belongs 
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to biovar Medievalis on the basis of glycerol fermentation and nitrate reduction (Song et al., 

2004). However, Microtus differs phenotypically from Medievalis as it cannot utilize 

arabinose and because it is thought to be avirulent for humans (Song et al., 2004). Microtus 

has several large deletions in its genome and a unique pseudogene distribution, and it is 

considered ancient form of Y. pestis (Achtman et al., 2004; Song et al., 2004; Zhou et al., 

2004a; Zhou et al., 2004b; Zhou et al., 2004c). Frequency of SNPs in Y. pestis is low; 

however, the ancient isolates, such as Microtus and Pestoides, contain larger amounts of 

SNPs, indicating that they have longer evolutionary history (Achtman et al., 2004; Eppinger 

et al., 2010).  

Different virulence factors are expressed during the plague life cycle in the flea and in the 

mammal. The temperature shift from the ambient temperature of the flea (20–25 °C) to 

mammalian 37 °C triggers the expression of several virulence factors, in addition to LPS 

alterations. Hemin storage (hms) locus is essential in the formation of a blockage in a flea 

(Hinnebusch et al., 1996). Pigmentation (pgm) locus and a siderophore yersiniabactin (ybt) 

are important in utilization of host iron. T3SS encodes translocation machinery and secreted 

virulence factors LcrV and Yop effector proteins that are injected inside the host cells via the 

machinery. Fibrillar pH 6 antigen (PsaA) that is expressed at 37 °C at acidic pH inhibits 

phagocytosis and adheres to respiratory tract epithelial cells (Huang & Lindler, 2004; Liu et 

al., 2006). Y. pestis is considered facultatively intracellular as it resides mainly extracellular 

during infection, but it can multiply within macrophages at the early stages of infection 

(Cavanaugh & Randall, 1959; Finegold, 1969; Janssen & Surgalla, 1969; Straley & Harmon, 

1984; Charnetzky & Shuford, 1985). Plasminogen activator Pla has an important role in the 

pathogenesis of Y. pestis: it harnesses the mammalian plasminogen/fibrinolytic system in 

multiple ways, and this is dealt in chapter 1.4.1. 

1.2 Salmonella enterica 

Salmonella belongs to the family Enterobacteriaceae along with Yersinia. Both S. enterica 

and Y. pestis are invasive pathogens, and Y. pestis and gastroenteritis-causing Salmonella can 

infect rodents and cats. Both species have been used as bioweapons (Bhalla & Warheit, 

2004). HGT has been an important event in the evolution of Y. pestis and S. enterica 

(Whittam & Bumbaugh, 2002; Porwollik & McClelland, 2003), and as described above for 

pMT1 and pHCM2, S. enterica serovar Typhi and the ancestor of Y. pestis have been partners 

in at least one HGT event, conceivably in a double-infected mammal or in soil. Both Typhi 

and Y. pestis have recently evolved from gastroenteritis-causing bacteria to more severe 

pathogens and can thus be used as paradigms of pathogen evolution. S. enterica and Y. pestis 

possess some virulence strategies in common, e.g., they both inject the effector proteins to 

their host cells through a T3SS (reviewed in Finlay & Falkow, 1997). In contrast to Y. pestis, 
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S. enterica is mainly intracellular during infection (Janssen & Surgalla, 1969; Ohl & Miller, 

2001). 

Genus Salmonella has diverged from the genus Escherichia about 120-160 million years ago 

(Ochman & Wilson, 1987). Salmonella has been divided into two species: S. enterica and 

Salmonella bongori. Only S. enterica is related to human disease; S. bongori is a reptile 

commensal. S. enterica contains six subspecies that are classified into serogroups and over 

2 400 serovars that are divided on the basis of the O (LPS) and H (flagellar) antigens. 

S. enterica ssp. enterica causes 99% of human infections: serovars Typhimurium, Enteritidis, 

Typhi, and Paratyphi are the most common and most studied serovars. S. enterica serovars 

Typhimurium and Enteritidis cause localized gastroenteritis, and serovars Typhi and 

Paratyphi cause typhoid and paratyphoid fever, which are severe systemic infections. 

Serovars are genetically closely related but vary in their host specificities (Edwards et al., 

2002). Gastroenteritis-causing Salmonella is zoonotic, affecting also other species than 

humans, such as pigs, cattle, and chickens (Stevens et al., 2009). On the contrary, serovar 

Typhi is a human-specific pathogen. Serovar Typhi has evolved quite recently, about 10 000-

50 000 years ago (Kidgell et al., 2002; Roumagnac et al., 2006), and its genome has 

accumulated several pseudogenes (5%), inversions, transpositions, and insertions compared 

to non-typhoidal S. enterica (Liu & Sanderson, 1995; Parkhill et al., 2001b; Baker & 

Dougan, 2007; Sabbagh et al., 2010). One important virulence factor present in Typhi but 

absent in the non-typhoidal serovars is the Vi capsule that is responsible for serum resistance 

and inhibition of phagocytosis (Looney & Steigbigel, 1986; Hashimoto et al., 1993).  

S. enterica infection occurs via contaminated water or food, usually eggs or raw meat. 

Especially in a case of typhoid fever the disease can spread in a contact with an infected 

person or an asymptomatic carrier. According to WHO, Salmonella-gastroenteritis affects 

millions of people annually, especially in developing countries, and causes thousands of 

deaths, and Typhi affects 16-33 million people with 216 000 deaths per year. Gastroenteritis 

is usually mild and self-limiting, but the bacteria can spread to distant organs and cause 

systemic infection, particularly in immunocompromised patients (Coburn et al., 2007). 

Typhoid fever requires antibiotic treatment, and vaccines made of attenuated bacteria or of Vi 

capsule are also available (Crump & Mintz, 2010). In mice, serovar Typhimurium causes 

systemic infection and similar symptoms as serovar Typhi in humans, and mice have been 

used to study systemic salmonellosis; however, a mouse model for Salmonella-gastroenteritis 

also exists (Boyle et al., 2007).  

S. enterica infection begins when the bacteria reach the ileum after oral ingestion. In the 

ileum, the bacteria enter the epithelium via M cells, epithelial cells, or dendritic cells. 

Bacteria adhere the cells via adhesins, which include several fimbrial types, and inject 

effector proteins inside the host cells via a T3SS, which is encoded in the Salmonella 
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pathogenicity island 1 (SPI-1; Ochman et al., 1996; van der Velden et al., 1998; Guo et al., 

2007). SPIs are chromosomal regions that encode several virulence factors, and are obtained 

via HGT and flanked by mobile elements, such as prophages (Groisman & Ochman, 1996; 

Vernikos & Parkhill, 2006). Altogether 21 SPIs have been recognized in Salmonella so far; 

SPI-1 is present in both S. enterica and S. bongori, but SPI-2 is lacking in S. bongori genome 

(Ochman & Groisman, 1996; Hensel et al., 1997). There are also differences in SPI 

compositions in different S. enterica serovars (reviewed in Sabbagh et al., 2010). SPI-1 genes 

are expressed in gut lumen, where the osmolarity is high and O2 level is low (Bajaj et al., 

1996). SPI-1 T3SS effectors, such as SipA, SipC, SopB, and SopE, modify the host cell’s 

actin cytoskeleton and disrupt tight junctions, which causes membrane ruffles and affects 

host signaling pathways, leading to bacterial endocytosis (Haraga et al., 2008). SptP is 

responsible for the down-regulation of host signaling pathways and restoration of the actin 

cytoskeleton (Fu & Galán, 1998; Murli et al., 2001), and AvrA inhibits activation of nuclear 

factor κB, hence decreasing the immune response (Collier-Hyams et al., 2002). S. enterica is 

usually not regarded as a proteolytic organism, but increased S. enterica-induced proteolysis, 

caused by host and bacterial proteases, has been observed in infected macrophages and in the 

colon of infected rats (Lähteenmäki et al., 2005a; Rodenburg et al., 2007; Ramu et al., 2008). 

After traversing the epithelial cell barrier, S. enterica is subsequently phagocytosed by 

macrophages. Inside the cells the bacteria form a modified phagosome called Salmonella-

containing vacuole (SCV), where they replicate (reviewed in Gorvel & Méresse, 2001). SPI-

1-encoded PhoP/Q two-component regulatory system is activated inside murine macrophages 

(Alpuche Aranda et al., 1992). PhoQ sensor on the outer membrane senses the acidification 

in phagosomes, which leads to increased expression of PhoP-activated genes and reduced 

expression of PhoP-repressed genes (Alpuche Aranda et al., 1992). Genes encoded in SPI-2, 

e.g., another T3SS, are expressed at this phase of infection, when Mg2+ and phosphate 

concentrations are low (Deiwick et al., 1999). SPI-2-encoded gene products prevent the 

fusion of SCV with lysosomes (Buchmeier & Heffron, 1991), protect the bacteria from 

reactive oxygen and nitrogen species, and hence enable the bacteria to survive and replicate 

inside macrophages and to cause systemic infection (Steele-Mortimer et al., 1999; Gorvel & 

Méresse, 2001; Chakravortty et al., 2002). Finally S. enterica induces the death of the host 

epithelial cells and macrophages by apoptosis and pyroptosis, respectively, releasing the 

bacteria that can then spread further to migrating macrophages. During the extracellular 

phase, the serum resistance caused by several factors, e.g., smooth LPS, and Rck that inhibits 

the membrane attack complex and binds the complement regulatory factor H, protects 

S. enterica from the attack of the complement system (Vandenbosch et al., 1989; Heffernan 

et al., 1992a; Heffernan et al., 1992b; Sukupolvi et al., 1992; Murray et al., 2003; Ho et al., 

2010). S. enterica spreads inside circulating macrophages via blood stream into mesenteric 
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lymph nodes, spleen, liver, and other organs, to cause systemic disease (Brown et al., 2006; 

Mastroeni et al., 2009).  

1.3 Plasminogen/fibrinolytic system and its function in bacterial 
infections 

Human plasminogen/fibrinolytic system regulates blood coagulation and fibrin clot 

degradation after injury, but it also participates in several other processes, such as cellular 

migration, tissue remodeling and repair, ovulation, and embryo implantation (reviewed in 

Rijken & Lijnen, 2009). There is a subtle homeostatic balance between coagulation and 

fibrinolysis: uncontrolled coagulation causes thrombosis, and unrestrained fibrinolysis leads 

to excessive bleeding. The plasminogen/fibrinolytic system consists of activation cascade 

with several proteins that are tightly controlled by specific activators and inhibitors (Fig. 1). 

Also the synthesis of the participating factors is controlled by, e.g., growth factors, hormones, 

cytokines, and cyclic nucleotides (Lijnen & Collen, 1995; Lantz, 1997). The homeostasis of 

this system is disrupted in several cancer types and also during invasive bacterial infections 

(Degen, 1999). 

 
Figure 1. Overview of the plasminogen/fibrinolytic system. Arrow with solid line indicates activation; arrow 
with dashed line indicates inactivation. Cofactor proteins that do not directly participate in fibrinolysis are 
shown in gray. α2AP, α2-antiplasmin; MMPs, matrix metalloproteinases; PAI, plasminogen activator inhibitor; 
TAFI(a), (activated) thrombin-activatable fibrinolysis inhibitor; TIMP, tissue inhibitor of metalloproteinase; 
Tm, thrombomodulin; tPA, tissue-type plasminogen activator; uPA, urokinase-type plasminogen activator; Vn, 
vitronectin. 

1.3.1 Plasminogen and plasmin 

Plasminogen is an abundant precursor of plasmin with a concentration of 2 µM in plasma 

(Rijken & Lijnen, 2009). Plasmin is a broad-spectrum serine protease that participates in 
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degradation of extracellular matrix (ECM) proteins fibrin, fibronectin, vitronectin and 

laminin, and activation of pro-matrix metalloproteinases (proMMPs) to MMPs (Lijnen & 

Collen, 1995; Myöhänen & Vaheri, 2004). MMPs degrade collagens and gelatin in ECM to 

enable cellular migration (Parks et al., 2004). Plasminogen is activated to plasmin in humans 

by two serine proteases, tissue-type plasminogen activator (tPA) and urokinase-type 

plasminogen activator (uPA), by cleavage between R561-V562 peptide bond (Summaria et 

al., 1967a). Fibrin enhances tPA activity, and tPA is the major plasminogen activator in 

fibrinolysis, whereas uPA functions mostly at cell surfaces via uPA receptor that is present in 

several cell types, including monocytes (Hoylaerts et al., 1982; Blasi et al., 1986; Ellis et al., 

1989; Ellis et al., 1991).  

Plasmin consists of two chains that are linked with disulfide bonds: a heavy chain with five 

kringle domains and a light chain containing the catalytic Ser-His-Asp triad (Robbins et al., 

1967; Summaria et al., 1967b; Sottrup-Jensen et al., 1975; Peisach et al., 1999; Wang et al., 

2000). Native plasminogen (Glu-plasminogen) exists in tight conformation, has glutamic acid 

at the N-terminus, and can be converted to Lys-plasminogen that has more relaxed 

conformation and is a preferred substrate for the plasminogen activators (reviewed in 

Castellino & Ploplis, 2005). The kringle domains contain the lysine and aminohexyl binding 

sites that mediate the attachment of plasminogen to fibrin and to cell surfaces (Miles et al., 

1988; Wu et al., 1990). The kringle domains also contain the binding sites for plasmin 

inhibitors, main inhibitor α2AP and α2-macroglobulin (Collen, 1976; Moroi & Aoki, 1976; 

Müllertz & Clemmensen, 1976; Frank et al., 2003). 

Plasminogen/fibrinolytic system is a target for several bacterial pathogens that cause invasive 

infections (reviewed in Lähteenmäki et al., 2005b; Sun, 2006; Bergmann & Hammerschmidt, 

2007; Degen et al., 2007). The bacteria utilize human plasminogen/fibrinolytic system in 

order to penetrate through tissues or to escape from the attack of the immune system (Tillett 

& Garner, 1933; Mullarky et al., 2005; Sun, 2006; Bergmann & Hammerschmidt, 2007; 

Beaufort et al., 2008; Crane et al., 2009; Rijken & Lijnen, 2009; Clinton et al., 2010). 

Bacteria can activate plasminogen either proteolytically or via complex formation, or they 

can bind plasminogen via plasminogen receptors leading to subsequent activation by host 

activators tPA and uPA (Bergmann & Hammerschmidt, 2007; Table 1). Streptococcal 

streptokinase and staphylokinase of Staphylococcus aureus are the most studied bacterial 

plasminogen activators, but in contrast to tPA, uPA, and Y. pestis Pla, they do not cleave 

plasminogen. Instead, streptokinase forms a complex with plasminogen, which induces 

conformational changes that result in activation of other plasminogen molecules (Buck et al., 

1968). Staphylokinase uses similar strategy, but it requires fibrin as a cofactor, and the 

complex is not protected from inhibition by α2AP in contrast to streptokinase (Lijnen et al., 

1992; Lottenberg et al., 1992; Bergmann & Hammerschmidt, 2007). The importance of 

staphylokinase during infection is unclear (Kwiecinski et al., 2010). Most of the bacteria 



16 
 

listed in Table 1 are mainly extracellular during infection, but also Francisella tularensis, a 

mainly intracellular pathogen, has been shown to interact with plasminogen and plasmin, 

which leads to degradation of opsonizing antibodies and to bacterial penetration through 

ECM (Crane et al., 2009; Clinton et al., 2010). In addition to pathogens, also commensal 

species in the genus Lactobacillus express plasminogen receptors on their surface, resulting 

in enhanced tPA-mediated plasminogen activation, which may help colonization and gain of 

nutrients in the intestinal tract (Antikainen et al., 2007; Hurmalainen et al., 2007).  

Table 1. Examples of pathogenic bacterial interactions with the plasminogen/fibrinolytic system. 

Bacterial species Protein Function Reference 

Yersinia pestis Pla Plasminogen activation, 
inactivation of α2AP 

Sodeinde et al., 1992; 
Kukkonen et al., 2001 

Porphyromonas gingivalis Trypsin-like 
protease 

Plasminogen activation, 
inactivation of α2AP and 
α2-macroglobulin 

Grenier, 1996 

Streptococci, 
Staphylococcus aureus 

Streptokinase, 
staphylokinase 

Plasminogen activation Lack, 1948; Davidson, 1960; 
Lottenberg et al., 1992 

Streptococci, Borrelia 
burgdorferi, Escherichia 
coli, Francisella 
tularensis, Haemophilus 
influenzae, Helicobacter 
pylori, Neisseria 
gonorrheae, Neisseria 
meningitidis, Salmonella 
enterica, Staphylococcus 
aureus 

Plasminogen 
receptors 

Plasminogen binding to 
activate plasminogen 

Kuusela & Saksela, 1990; 
Parkkinen et al., 1991; 
Kuusela et al., 1992; Ullberg 
et al., 1992; Fuchs et al., 
1994; Sjöström et al., 1997; 
Kukkonen et al., 1998; 
Pantzar et al., 1998; Clinton et 
al., 2010 

Staphylococcus aureus Aureolysin Activation of pro-uPA, 
inactivation of PAI-1 and 
α2AP 

Beaufort et al., 2008 

Bacillus subtilis Subtilisin NAT Inactivation of PAI-1 Urano et al., 2001 

Pseudomonas aeruginosa LasB (PsE) Activation of pro-uPA 
and proMMP-2, 
inactivation of PAI-1  

Boudier et al., 2005; Beaufort 
et al., 2010 

α2AP, α2-antiplasmin; MMP, matrix metalloproteinase; PAI-1, plasminogen activator inhibitor 1; uPA, 
urokinase-type plasminogen activator 

1.3.2 Plasminogen activator inhibitor 1 

The balance of coagulation and fibrinolysis is critical for normal homeostasis, and therefore 

the plasminogen/fibrinolytic system is strictly controlled by specific activators and inhibitors 

whose function leads to either promotion or inhibition of fibrinolysis (see Fig. 1). As the 

majority of the enzymes involved in the plasminogen/fibrinolytic cascade are serine 

proteases, their inhibitors are serine protease inhibitors, serpins. tPA and uPA are inhibited by 

plasminogen activator inhibitors (PAI) 1-3, of which PAI-1 is the primary inhibitor (Kruithof 

et al., 1984; Rijken & Lijnen, 2009). PAI-1 is synthesized by several mammalian cell types, 
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and its concentration in plasma is 400 pM (Rijken & Lijnen, 2009). In addition to 

fibrinolysis, PAI-1 regulates cell migration by modulating ECM, regulating cell adhesion, 

and modifying the formation of chemoattractant gradients (Deng et al., 1996; Czekay et al., 

2003; Marshall et al., 2003). PAI-1 levels are increased in patients with gastric cancer, severe 

pneumonia, or sepsis (Pralong et al., 1989; Günther et al., 2000; Kaneko et al., 2003; 

Zeerleder et al., 2006). LPS has been shown to upregulate PAI-1 expression in murine lungs, 

leading to neutrophil recruitment (Arndt et al., 2005). PAI-1 expression is also stimulated by 

inflammatory cytokines (reviewed in Kruithof, 2008). 

PAI-1 is a glycoprotein of 50 kDa (43 kDa as a recombinant protein without glycosylation) 

and 379 amino acid residues. Similarly to other serpins, PAI-1 consists of three β-sheets and 

nine α-helices (Gils & Declerck, 1998). PAI-1 exists in three different conformations: active, 

latent, and cleaved form (Hekman & Loskutoff, 1985; Declerck et al., 1992; Mottonen et al., 

1992; Aertgeerts et al., 1995; Sharp et al., 1999; Nar et al., 2000; Stout et al., 2000; Jensen & 

Gettins, 2008; Dewilde et al., 2009). Active PAI-1 inactivates tPA and uPA by inserting its 

reactive center loop (RCL) into the catalytic center of the plasminogen activator and forming 

a covalent 1:1 complex with it. RCL is about 20-amino-acid-long flexible loop that contains 

the reactive site peptide bond R346-M347, which is accessible in the active conformation 

(Sharp et al., 1999; Nar et al., 2000; Stout et al., 2000). Conversion of active PAI-1 into a 

latent, inactive form includes large conformational changes: the N-terminus of RCL inserts 

into a central β-sheet A where the RCL is inaccessible (Mottonen et al., 1992). Latent PAI-1 

can become activated by treatment with denaturing agents (Hekman & Loskutoff, 1985). 

PAI-1 can also become cleaved at RCL between R346-M347 by its substrates, leading to 

conformation that resembles the latent form (Aertgeerts et al., 1995; Dewilde et al., 2009). 

The actual significance of the cleavage is unclear, but it might be related to the regulation of 

PAI-1 (Declerck et al., 1992).  

Active PAI-1 is spontaneously converted to a latent form in only 2-3 hours at 37 °C, but in a 

complex with vitronectin (Vn), PAI-1 is stabilized in its active conformation, and its half-life 

is increased by about 2.5 fold (Declerck et al., 1988; Lindahl et al., 1989). Vn is an abundant 

(4 µM) plasma glycoprotein that exists in a single-chain (78 kDa) and a two-chain (65 kDa 

and 10 kDa) form (Preissner et al., 1985; Preissner, 1991). Vn binds to PAI-1 with the N-

terminal high-affinity binding site somatomedin B domain and the C-terminal hemopexin-

like domain, and the binding site of Vn in PAI-1 is located in the β-strand 1A and the helices 

C and E, at another end of the molecule than the RCL (Lawrence et al., 1994; Nar et al., 

2000; Arroyo De Prada et al., 2002; Jensen et al., 2002; Schroeck et al., 2002; Zhou et al., 

2003; Schar et al., 2008a; Schar et al., 2008b). Vn decreases the latency transition of PAI-1 

by affecting the conformation of RCL so that it is fully exposed and more optimally located 

to cleave tPA and uPA (Li et al., 2008). 
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PAI-1 can be inhibited with antibodies or small-molecule inhibitors, but their affinity is often 

low and many of them cannot inactivate PAI-1 when it is bound to Vn (Gils et al., 2002; 

Crandall et al., 2004; Elokdah et al., 2004; Gopalsamy et al., 2004; Liang et al., 2005; 

Izuhara et al., 2008). PAI-1 inhibitors are of interest because of their potential use in the 

treatment of thrombosis and different cancer types. 

PAI-1 levels are increased in lungs during severe Klebsiella pneumoniae infection in mice, in 

gastric epithelial cells during H. pylori infection, and in Salmonella-infected Caco-2 cells 

(Park et al., 1997; Renckens et al., 2007; Keates et al., 2008; Kenny et al., 2008). PAI-1 

deficiency in knockout mice is related to impaired host defense against K. pneumoniae, and 

overexpression of PAI-1 protects mice from K. pneumoniae (Renckens et al., 2007). Secreted 

bacterial proteases, serine protease subtilisin NAT of Bacillus subtilis, metalloprotease 

aureolysin of S. aureus, and metalloprotease/elastase LasB (PsE) of Pseudomonas 

aeruginosa, have been observed to degrade PAI-I (Urano et al., 2001; Boudier et al., 2005; 

Beaufort et al., 2008; Beaufort et al., 2010). S. aureus thus harnesses the 

plasminogen/fibrinolytic system in several ways: staphylokinase activates plasminogen, and 

aureolysin activates pro-uPA and inactivates PAI-1 and α2AP (Beaufort et al., 2008). Also, 

LasB, a virulence factor of P. aeruginosa, has been shown to interact with the plasminogen 

system in many ways (Boudier et al., 2005; Beaufort et al., 2010). 

1.3.3 Thrombin-activatable fibrinolysis inhibitor  

TAFI, a.k.a. plasma procarboxypeptidase B/R/U, is a 56 kDa glycoprotein with 401 amino 

acids, and belongs to the family of zinc-containing metallocarboxypeptidases (Campbell & 

Okada, 1989; Hendriks et al., 1989; Hendriks et al., 1990; Eaton et al., 1991; Wang et al., 

1994; Bajzar et al., 1995). TAFI is a precursor that in its active form, TAFIa, regulates 

fibrinolysis and participates in inflammatory processes by hydrolyzing bradykinin, 

osteopontin, and complement components C3a and C5a (Shinohara et al., 1994; Myles et al., 

2003; reviewed in Leung et al., 2008). TAFI is synthesized in the liver and circulates in 

plasma at a concentration of 75 nM (Eaton et al., 1991; Rijken & Lijnen, 2009).  

TAFI is converted to active TAFIa by cleavage of the activation peptide between R92-A93, 

and the remaining 309 amino acids form the catalytic domain (Eaton et al., 1991). TAFI can 

be activated by plasmin, thrombin, trypsin and neutrophil elastase (Eaton et al., 1991; Marx 

et al., 2009). The activation of TAFI by thrombin can be accelerated by about 1250 fold with 

thrombomodulin, and this complex is probably the physiological activator of TAFI (Bajzar et 

al., 1996). Thrombin is a procoagulant protein, and thus TAFI represents a link between 

fibrinolysis and coagulation. TAFIa inhibits fibrinolysis by removing C-terminal lysines from 

fibrin (Wang et al., 1998). C-terminal lysines are the binding sites for plasminogen and tPA, 

and their removal prevents plasmin generation by tPA, leading to reduced lysis of fibrin clots 

(Wang et al., 1998). The half-life of TAFIa is about 10 min at 37 °C because of an 
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“instability region” in its structure, and TAFIa is rapidly inactivated to TAFIai by 

temperature-induced conformational change, or proteolytically by plasmin at arginines 302, 

327, and 330 (Wang et al., 1994; Marx et al., 2000; Marx et al., 2002; Anand et al., 2008). 

TAFIa can also be inhibited by lysine and arginine analogs, carboxypeptidase inhibitor, 

chelating and reducing compounds, synthetic inhibitors, and anti- or nanobodies; however, no 

physiological inhibitors are known (Wang et al., 1994; Lazoura et al., 2002; Barrow et al., 

2003; Mao et al., 2003; Polla et al., 2004; Suzuki et al., 2004; Wang et al., 2007; Develter et 

al., 2009; Buelens et al., 2010).  

Not much is known about the role of TAFI in bacterial infections, but TAFI levels are 

decreased in sepsis patients (Zeerleder et al., 2006). In contrast, increased gastric TAFI levels 

have been observed in patients infected with H. pylori, and it has been speculated that TAFI 

may be a protective factor against H. pylori (Ikeda et al., 2009). Streptococcus pyogenes 

binds TAFI on its surface by the collagen-like surface proteins SclA and SclB, which might 

lead to increased fibrin formation and protection of the bacteria from the host immune system 

(Påhlman et al., 2007). 

1.4 Omptin family 

Omptins are widely spread outer membrane proteases of the Gram-negative bacteria. 

Omptins are highly similar in their structures and share at least 40% sequence identity. The 

evolutionary tree of omptins is shown in Fig. 2. Omptin genes are thought to have transferred 

via HGT, as many of the genes identified to date are encoded in plasmids, some in 

conjugative or mosaic plasmids. Of the chromosomal omptin genes, ompT of E. coli is 

located on a prophage and pgtE of S. enterica is flanked by IS elements. ompT is encoded 

also in a plasmid, denoted ompTP, and the mature amino acid sequences of these OmpT 

variants differ by about 25%. 

OmpT of Escherichia coli has been crystallized about ten years ago (Vandeputte-Rutten et 

al., 2001), and the structures of the other omptins have been modeled on the basis of OmpT 

coordinates. The crystal structure of Y. pestis Pla became available during preparation of this 

thesis, revealing that the overall structure is highly similar to OmpT but considerable 

differences are found in the loops (Eren et al., 2010). Omptins are monomeric β-barrels with 

ten antiparallel β-strands, four periplasmic turns and five surface-exposed loops (Vandeputte-

Rutten et al., 2001; Fig. 3). Omptin barrel size is about 70 Å in length, of which 40 Å is 

located above the lipid bilayer, determined by the two girdles of hydrophobic aromatic amino 

acids (Vandeputte-Rutten et al., 2001). Mature omptins have 290-300 amino acids, and they 

have conserved catalytic residues D84, D86, D206, and H208 (Pla numbering) that form the 

active site groove (Kramer et al., 2001; Vandeputte-Rutten et al., 2001).  
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Figure 2. Cladogram of the omptin family (Haiko et al., 2010; published with the permission of the American 
Society for Microbiology). Phylogenetic tree was created with the MEGA4 program (Tamura et al., 2007). The 
evolutionary distances are in the units of the number of amino acid substitutions per site. The most characterized 
omptins are presented with their protein names, the uncharacterized are presented with the names of their host 
bacteria. Different OmpT variants are the chromosomal OmpT of E. coli strains AAEC072 and IHE 3034, and 
OmpTP denotes the plasmid OmpT of IHE 3034. 

The proteolytic mechanism of omptins combines features of serine and aspartic proteases: 

D206-H208 dyad activates nucleophilic water that hydrolyses the scissile peptide bond of the 

substrate, and D84-D86 couple might participate in coordinating the water molecule (Kramer 

et al., 2001; Vandeputte-Rutten et al., 2001). The orientation of D84-D86 couple is similar to 

that in the aspartic proteases, but it participates in activating the water molecule only 

indirectly (Kramer et al., 2001). Omptins also lack the consensus sequence characteristic of 

aspartic proteases, and their protein fold is different from typical aspartic proteases (Kramer 

et al., 2001). The orientation of D206-H208 catalytic dyad resembles that of Ser-His-Asp 

triad of serine proteases, but the proposed catalytic S99 is too far to form the catalytic triad 

with D206 and H208 (Kramer et al., 2001; Vandeputte-Rutten et al., 2001). Although 

omptins were first classified as serine proteases and are nowadays usually regarded as 

aspartic proteases, they do not easily fit into either class on the basis of the OmpT and Pla 

crystal structures, and they probably form a protease class of their own (Kramer et al., 2001; 

Vandeputte-Rutten et al., 2001; Eren et al., 2010). 



21 
 

 

Figure 3. Structure of Pla of Y. pestis, seen as 
a tilted side view. Catalytic amino acids D84, 
D86, D206, and H208 are shown. L1-L5 
denote the surface loops. The structure was 
visualized with the VMD program 
(Humphrey et al., 1996) and is based on the 
crystal structure of Pla D86A (Protein Data 
Bank [PDB] code 2X4M; Eren et al., 2010), 
where A86 was manually substituted to 
aspartate.  

To be active and functional, omptins 

require rough LPS (Kramer et al., 

2000; Kramer et al., 2002; Kukkonen 

et al., 2004; Brandenburg et al., 2005; 

Pouillot et al., 2005; Suomalainen et 

al., 2010). Smooth LPS, which has 

long O side chain, sterically hinders the substrate recognition of the omptin loops as the loops 

protrude just above the core region of LPS (Kukkonen et al., 2004). Pla and OmpT bind LPS 

with Y134, E136, R138, and R171 (Pla numbering), but exactly how LPS induces the activity 

of omptins remains unknown, and LPS binding does not induce considerable conformational 

changes in OmpT or Pla (Kramer et al., 2002; Brandenburg et al., 2005; Eren et al., 2010). It 

has been suggested that LPS binding induces pushing of the β7-strand inward, thus affecting 

the active site geometry in L4 (Eren et al., 2010). 

Omptins studied so far tend to cleave their substrates between basic amino acids (Dekker et 

al., 2001; McCarter et al., 2004; Hwang et al., 2007; Agarkov et al., 2008). OmpT prefers 

arginine or lysine at P1 and P1’ positions, and also residues further from the cleavage site 

contribute to the substrate specificity of OmpT (Dekker et al., 2001; McCarter et al., 2004). 

OmpP is similar in its preferences towards arginine and lysine, but it can also cleave between 

the S-R peptide bond (Hwang et al., 2007). However, the preferred polypeptide substrates of 

omptins differ and their functions are diverse, mainly due to the differences in their surface 

loops (reviewed in Kukkonen & Korhonen, 2004; Hritonenko & Stathopoulos, 2007; Haiko 

et al., 2009). The purported virulence-associated functions identified for the most 

characterized omptins, OmpT of E. coli, Pla of Y. pestis, and PgtE of S. enterica, are listed in 

Table 2. In addition, Pla has been shown to degrade Yersinia outer membrane proteins 

(Yops), but it is unknown whether this is related to virulence (Sodeinde et al., 1988). 

Degradation of antimicrobial peptides is common to all these three omptins: OmpT degrades 

protamine of salmon milt, Pla degrades human LL-37 and also rCRAMP and RBD-1 from rat 

bronchoalveolar lavage fluid, and PgtE cleaves synthetic C18G (Stumpe et al., 1998; Guina 

et al., 2000; Galván et al., 2008). OmpT, Pla, and PgtE also degrade tissue-factor pathway 
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inhibitor (TFPI), an anticoagulant protein (Yun et al., 2009). Some studies have indicated that 

also OmpT is a plasminogen activator (Mangel et al., 1994; Varadarajan et al., 2008), but 

according to studies by our group, it activates plasminogen only poorly (Kukkonen et al., 

2001). Comparison of the crystal structures of Pla and OmpT provides explanation for the 

observed difference: loops 3, 4, and 5 that participate in recognition of plasminogen differ 

markedly between Pla and OmpT (Eren et al., 2010). ompT gene has been shown to be 

present at high frequency in E. coli strains that cause urinary tract infections (Foxman et al., 

1995), but the pathogenetic role of OmpT remains unknown and it has rather been thought to 

be a housekeeping protease (Kukkonen & Korhonen, 2004). The functions of Pla and PgtE 

and their contribution to the virulence of their host bacteria are described in chapters 1.4.1 

and 1.4.2.  

Table 2. Some functions of Pla of Y. pestis, PgtE of S. enterica, and OmpT of E. coli. 

Function Pla PgtE OmpT Reference(s) 

Plasminogen activation + +/− − McDonough & Falkow, 1989; Sodeinde & 
Goguen, 1989; Sodeinde et al., 1992; 
Kukkonen et al., 2001; Kukkonen et al., 2004 

Inactivation of α2AP + + − Kukkonen et al., 2001; Lähteenmäki et al., 
2005a 

Degradation of antimicrobial 
peptides 

+ + + Stumpe et al., 1998; Guina et al., 2000; 
Galván et al., 2008 

Degradation of complement 
components 

+ + − Sodeinde et al., 1992; Ramu et al., 2007; 
unpublished 

Degradation of gelatin − + − Ramu et al., 2008 

Activation of proMMP-9 − + − Ramu et al., 2008 

Degradation of TFPI + + + Yun et al., 2009 

Adhesion to laminin, ECM, and 
eukaryotic cells 

+ + − Kienle et al., 1992; Lähteenmäki et al., 1998; 
Lähteenmäki et al., 2001; Kukkonen et al., 
2004 

Invasion into human endothelial 
and epithelial cells 

+ − − Cowan et al., 2000; Lähteenmäki et al., 2001 

+/−, poor activation; α2AP, α2-antiplasmin; ECM, extracellular matrix; proMMP-9, pro-matrix 
metalloproteinase-9; TFPI, tissue-factor pathway inhibitor 

The functions of the other omptins have been studied less. OmpP of E. coli has been shown 

to degrade SecY, a component of the protein translocation machinery (Matsuo et al., 1999). 

SopA (IcsP) of Shigella flexneri is required for polar localization of IcsA (VirG) on the 

bacterial surface, and is important in intracellular actin-based motility of Shigella (Egile et 

al., 1997). CroP of Citrobacter rodentium increases the resistance of its host to α-helical 

antimicrobial peptides and is regulated by the PhoP/Q system (Le Sage et al., 2009). Leo 

(Lpa) of L. pneumophila slowly activates plasminogen (Vranckx et al., 2007). 

Chromosomally encoded YcoA of Y. pestis has been suggested to be a virulence factor in 

infection of Caenorhabditis elegans (Styer et al., 2005). Epo (PlaA) of a pear blight pathogen 
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E. pyrifoliae is closely related to Pla, and it is encoded on a mosaic plasmid pEP36 that has 

homology to a virulence plasmid pEA29 of Erwinia amylovora, but the functions of Epo are 

unknown (McGhee et al., 2002). 

1.4.1 Yersinia pestis Pla 

Plasminogen activator Pla is a multifunctional virulence factor of Y. pestis. The pla gene is 

carried by the virulence plasmid pPCP1, and pla deletion increases the LD50 value in 

subcutaneously infected mice millionfold (Sodeinde et al., 1992). On the contrary, the 

deletion does not cause detectable change in the LD50 when the mice are infected 

intravenously or intraperitoneally (Sodeinde et al., 1992). This indicates that Pla is important 

at the first stage of infection when the bacteria reach lymph nodes by penetrating through 

tissue barriers (Sodeinde et al., 1992). In primary septicaemic plague Pla is dispensable 

(Sebbane et al., 2006a). During pneumonic plague Pla promotes bacterial replication in 

lungs: proteolytically active Pla is essential in Y. pestis proliferation but unnecessary in 

bacterial dissemination, and thus Pla does not increase bacterial motility in pneumonic plague 

(Lathem et al., 2007). pla deletion mutants cause reduced inflammatory response in mice 

lungs, and the infection does not progress to the pro-inflammatory phase (Lathem et al., 

2007).  

pla is conserved and its predicted amino acid sequence is 100% identical in all pandemic 

Y. pestis branches (Rawlings et al., 2008). pla-encoding pPCP1 is usually absent from 

Pestoides strains; these strains can still disseminate into lymph nodes, but the infection does 

not proceed (Welkos et al., 1997; Worsham & Roy, 2003; Garcia et al., 2007; Revazishvili et 

al., 2008; Eppinger et al., 2010). The sequences of biovar Microtus and an atypical Pestoides 

isolate Angola contain pla whose predicted amino acid sequence has substitution T259I at L5 

(Song et al., 2004; Eppinger et al., 2010). Microtus and Angola are thought to represent the 

ancient Y. pestis branches because their genomic features are highly similar to 

Y. pseudotuberculosis in contrast to modern Y. pestis isolates (Achtman et al., 2004; Song et 

al., 2004; Eppinger et al., 2010).  

Pla exists in a premature form and in three different mature isoforms: α, β, and γ (Sodeinde & 

Goguen, 1988; Sodeinde et al., 1988; Kutyrev et al., 1999). The premature form (ca. 35 kDa 

in SDS-PAGE) is unprocessed and contains the signal peptide that is cleaved when the 

protein is inserted into the outer membrane. The biological relevance of the different mature 

forms is unknown. α-Pla (ca. 33 kDa) and γ-Pla (ca. 31 kDa) are thought to be full-length 

proteins with different conformations, and these isoforms have been observed also with 

OmpT and PgtE (Kramer et al., 2000; Kukkonen et al., 2001; Kukkonen et al., 2004). 

Conformational differences are thought be the reason for the observed different migration of 

unboiled protein samples in the gel, because the β-barrel fold is stable and tolerates 
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detergents (Nakamura & Mizushima, 1976; Kramer et al., 2000). β-Pla (ca. 33 kDa) is the 

cleaved form that has been autoprocessed at K262 at L5 (Kukkonen et al., 2001).  

The functions of Pla include both proteolytic and non-proteolytic functions, as listed in Table 

2. Proteolytic and non-proteolytic activities are distinct, since proteolytically inactive Pla 

mutant, where the catalytic amino acid D206 has been substituted with alanine, retains its 

adhesive and invasive abilities (Lähteenmäki et al., 2001). Pla-mediated adhesion enables the 

bacteria to target tissue barriers, and fibrinolytic actions help the bacteria to penetrate through 

them. Y. pestis harnesses the human plasminogen/fibrinolytic system by using the proteolytic 

functions of Pla. Pla activates plasminogen to plasmin in a similar way as human 

plasminogen activators tPA and uPA, i.e., by cleavage between R561-V562 (Sodeinde et al., 

1992). Pla also inhibits the plasmin inhibitor α2AP. Plasminogen activation and inactivation 

of α2AP lead to uncontrolled plasmin activity. The importance of the 

plasminogen/fibrinolytic system in plague infection is highlighted by the fact that 

plasminogen deficient mice are more resistant to Y. pestis infection, although their general 

health is poor (Goguen et al., 2000; Degen et al., 2007). Fibrinogen deficiency, in contrast, 

does not provide any survival benefit (Degen et al., 2007). Increased fibrin deposition and 

accumulation of inflammatory cells are observed in the lungs and the liver of mice infected 

with pla-negative Y. pestis intranasally or intravenously (Degen et al., 2007; Lathem et al., 

2007). This indicates that the expression of Pla causes degradation of fibrin and decreased 

neutrophil recruitment, which leads to diminished inflammatory response (Degen et al., 2007; 

Lathem et al., 2007). 

The degradation of complement component C3 by Pla may inhibit the chemoattractation of 

leukocytes and increase the serum resistance of Y. pestis; however, also pla-negative Y. pestis 

remain serum resistant (Sodeinde et al., 1992). The inactivation of TFPI and the subsequent 

increase in coagulation were proposed to occur at a different stage of infection than the 

fibrinolysis-promoting functions, and it may protect the bacteria from the human immune 

system at some stage of infection (Yun et al., 2009). Invasiveness might be needed when 

Y. pestis spreads from the infection site to lymph nodes, spleen, and liver, and further to other 

organs (Lähteenmäki et al., 2001). It has not been determined whether binding to laminin 

enhances invasiveness of Pla, and it is not known whether Pla-mediated invasion into 

endothelial cells is polar, i.e., occurs at apical or basolateral surface of the cells. Pla has been 

shown to use DEC-205 receptor to be phagocytosed by macrophages (Zhang et al., 2008). 

Altogether Pla is a multifunctional protease with several targets, and it also possesses various 

non-proteolytic functions. Together these functions increase the proteolysis of host tissues 

that enables bacterial penetration and proliferation. 

Pla expression is transcriptionally regulated by the cyclic adenosine monophosphate receptor 

protein (Kim et al., 2007). Pla is slightly up-regulated at 37 °C compared to 25 °C (Motin et 
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al., 2004; Chromy et al., 2005). Pla is highly expressed inside buboes of infected rats 

(Sebbane et al., 2006b), and although Pla is expressed also at high extent in fleas, the 

proteolytic activity of Pla is higher in cells cultivated at 37 °C compared to cells grown at 

25 °C, and the reason lies at least partly in the LPS structure (Han et al., 2004; Lawson et al., 

2006; Suomalainen et al., 2010; Vadyvaloo et al., 2010). Lower acylation and lower 

substitution of aminoarabinose in lipid A at 37 °C correlate with higher proteolytic activity 

and the isoform pattern of Pla (Suomalainen et al., 2010). Y. pestis is naturally rough, which 

enables the activity of Pla (Skurnik et al., 2000; Prior et al., 2001; Kukkonen et al., 2004). 

Thus, efficient proteolysis by Y. pestis depends on both Pla and LPS. In a mouse model of 

pneumonic plague, expression of Pla is down-regulated after 48 h post infection (Lathem et 

al., 2005).  

1.4.2 Salmonella enterica PgtE 

PgtE (also known as the E protein) of S. enterica shares about 75% sequence identity to Pla, 

and these two proteases belong to the Pla subfamily of omptins together with Epo of 

E. pyrifoliae, Kop (Klebsiella outer membrane protease) of K. pneumoniae, and the omptin of 

Enterobacter sp. (see Fig. 2). PgtE expression has been observed so far only in serovar 

Typhimurium, but conserved pgtE genes with >98% identity at amino acid level have been 

found in the genomes of other S. enterica serovars, including Typhi and Paratyphi (Rawlings 

et al., 2008).  

Similarly to Pla, PgtE displays three mature molecular forms, α (34 kDa), β (17 kDa), and γ 

(14 kDa; Kukkonen et al., 2004). β and γ are not detected with the proteolytically inactive 

PgtE derivatives, and these forms are significantly smaller than the corresponding Pla forms, 

indicating that they are differently processed (Kukkonen et al., 2004). The possible site for 

autoprocessing is R154 in L3: cleavage at this site leads to two peptides with approximate 

sizes of β- and γ-PgtE (Kukkonen et al., 2004). 

PgtE has been shown to increase the survival of S. enterica serovar Typhimurium in mice and 

in human serum and to promote bacterial growth inside vacuoles of murine macrophages, but 

it does not enhance the survival of the bacteria inside human macrophages or dendritic cells 

(Lähteenmäki et al., 2005a; Pietilä et al., 2005; Ramu et al., 2007; Ramu et al., 2008). 

Degradation of the key complement components by PgtE, function shared with Pla, may 

increase serum resistance of the bacteria that are released from macrophages and are not 

protected by smooth LPS (Ramu et al., 2008). PgtE, unlike Pla, is able to promote gelatinase 

activity by directly degrading gelatin and indirectly by activating macrophage-secreted 

proMMP-9 to active gelatinase (Ramu et al., 2008). Activation of proMMP-1, proMMP-8, 

and proMMP-9 has been previously observed also by the proteinases of P. aeruginosa and 

Vibrio cholerae (Okamoto et al., 1997). Degradation of gelatin and increased activation of 

plasminogen might enable S. enterica to spread through tissues during the extracellular phase 
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when the bacteria are released from macrophages (Lähteenmäki et al., 2005a; Ramu et al., 

2008). Enhanced cell migration also increases the likelihood of the contacts between the 

bacteria and macrophages (Lähteenmäki et al., 2005a; Ramu et al., 2008). Activation of 

MMPs may also be related to macrophage apoptosis and modulation of the inflammatory 

responses (Opdenakker et al., 2001; Parks et al., 2004; Tamura et al., 2004). PgtE provides 

resistance to antimicrobial peptides, which is critical during colonization and inside 

macrophages (Guina et al., 2000; Prost et al., 2007; Santos et al., 2009). Hence PgtE 

possesses several functions that are beneficial to S. enterica during its multiplication in the 

SCV, during macrophage migration, and when the bacteria are released from the 

macrophages. 

pgtE belongs to a phosphoglycerate transfer operon, but PgtE is not essential in 

phosphoglycerate transport (Yu & Hong, 1986). The expression of pgtE is under SlyA 

control that is in turn regulated by the PhoP/Q system, and PgtE is highly expressed in SCVs 

inside macrophages (Guina et al., 2000; Eriksson et al., 2003; Lähteenmäki et al., 2005a; 

Navarre et al., 2005). 

For S. enterica, smooth LPS is a virulence factor that protects the bacterium against the 

complement, as deletion of wzz genes that control the length of the O side chain attenuates 

the bacterium (Murray et al., 2003). However, expression of PhoP/Q in the SCV induces 

modifications to the LPS structure: the length of the O antigen is reduced and aminoarabinose 

and 2-hydroxymyristate are added to a phosphate group of lipid A (Groisman et al., 1997; 

Guo et al., 1997; Gunn et al., 1998). These changes in lipid A decrease the 

immunostimulatory effect of LPS and increase resistance to antimicrobial peptides (Guo et 

al., 1997). Inside murine macrophages S. enterica serovar Typhimurium is rough, which 

enables the proteolytic function of PgtE (Guo et al., 1997; Lähteenmäki et al., 2005a). 

1.5 Omptins as evolvable proteases 

Protein evolvability is associated with broad substrate range, catalytic promiscuity, i.e., 

ability to catalyze different types of reactions, and mutational robustness (O'Loughlin et al., 

2006). Robust proteins tolerate mutations and can easily change their function under selective 

pressure (Wagner, 2005; Romero & Arnold, 2009). Because several proteolytic enzymes, 

e.g., Bacillus subtilisin, are important in biotechnology, their catalytic properties have been 

improved in several studies (reviewed in Yuan et al., 2005; Kaur & Sharma, 2006). 

Nevertheless, few studies have been devoted to molecular adaptation of bacterial virulence 

factors. 

Omptins are ideal proteins to study molecular adaptation: they form a large family and have 

diverse functions, suggesting that they are highly evolvable (Tracewell & Arnold, 2009). The 

β-barrel structure is robust and stable: it tolerates large deletions in the loops and periplasmic 
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turns without losing its membrane topology and orientation, as shown with the eight-stranded 

β-barrel OmpA (Ried et al., 1994; Koebnik, 1999a; Koebnik, 1999b). The cleavage 

preference of OmpT of E. coli has been successfully changed from R-R bond towards non-

basic amino acids (Varadarajan et al., 2005; Varadarajan et al., 2008). The polypeptide 

substrate selectivities of the omptins have also been altered by substitutions in the surface 

loops: OmpT has been turned into an efficient plasminogen activator and Pla into a gelatinase 

by creating OmpT-Pla and Pla-PgtE chimeras, respectively (Kukkonen et al., 2001; Ramu et 

al., 2008). 
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2 Aims of the study 

At the beginning of this project it was already known that Pla of Y. pestis and PgtE of 

S. enterica interact with the human plasminogen/fibrinolytic system by activating 

plasminogen and by inactivating α2AP, and PgtE in addition by activating proMMP-9. 

However, very little was known about possible interactions of omptins with the regulatory 

proteins of the plasminogen/fibrinolytic system; such interactions would have considerable 

impact on the infectious processes of Y. pestis and S. enterica. Kukkonen et al. (2001) and 

Ramu et al. (2008) had previously investigated the substrate selectivities and the structure-

function relationships of Pla and PgtE by creating omptin chimeras. MEROPS database 

(Rawlings et al., 2008) has continuously introduced new members for the omptin family, and 

the amount of omptins increases hand in hand with the growing number of finished bacterial 

sequencing projects. Omptins have spread by HGT, but molecular details of their evolution 

remain largely obscure. My studies can provide insight into omptin evolution in different host 

bacteria. 

The goals of this thesis work were  

1) to study the novel functions of omptins within the plasminogen/fibrinolytic system;  

2) to investigate the substrate selectivity of Pla and to identify amino acids or regions of the 

protein that are important for its functions; and  

3) to reveal novel aspects about the evolution of omptins. 
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3 Materials and methods 

3.1 Bacterial strains (I-IV) 

Bacterial strains used in this study are listed in Table 3.  

Recombinant E. coli XL1 with pSE380 vector and its pMRK derivatives were grown at 37 °C 

in Luria Bertani supplemented with ampicillin (100 µg/ml), tetracycline (12.5 µg/ml) and 

glucose (0.2% wt/vol). For the expression of omptins, the strains were cultivated in Luria 

broth supplemented as described above, collected in PBS, and grown overnight on plates 

containing 5 µM isopropyl-β-D-thiogalactopyranoside (IPTG) and antibiotics as above. 

Y. pestis KIM D27 and KIM D34 were cultivated over two nights at 37 °C on brain-heart 

infusion (BHI) plates, inoculated in 10 ml BHI broth supplemented with hemin (40 µg/ml) 

and cultivated twice over two nights at 37 °C. Recombinant Y. pestis strains were cultivated 

over two nights at 37 °C in BHI broth supplemented with hemin as above and with glucose 

and ampicillin as with E. coli. For the expression of Pla, the bacteria were collected and 

plated on BHI plates containing IPTG, hemin, and ampicillin as above, and grown over two 

nights. 

S. enterica 14028R and 14028R-1 were cultivated overnight at 37 °C in PhoP/Q-inducing N-

minimal medium (pH 7.4), supplemented with 38 mM glycerol, 0.1% casamino acids, 

2 mg/ml thiamine, and 8 mM MgCl2. S. enterica 14028R-1 complemented with pSE380 or 

pMRK3 were cultivated overnight at 37 °C in Luria broth supplemented with IPTG and 

ampicillin as above. 

Y. pseudotuberculosis strains were cultivated overnight at 37 °C in 10 ml Luria; PB1 strains 

were supplemented with kanamycin (50 µg/ml). E. coli IHE 3034, K. pneumoniae, and 

S. flexneri were cultivated in Luria Bertani overnight at 37 °C. E. pyrifoliae was cultivated in 

Luria Bertani at 28 °C overnight in broth and over two nights on a plate.  

For the assays, the bacteria were collected in phosphate-buffered saline (PBS; pH 7.1) unless 

otherwise indicated, pelleted, and adjusted to optical density (600 nm) of 1.2 (corresponding 

to ca. 109 cells/ml) or 2.0 (2×109 cells/ml). 
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Table 3. Bacterial strains used in this study. 

Bacterial strain Description Article Reference(s) or source 

Erwinia pyrifoliae Ep1/96 Wild type IV Rhim et al., 1999, 
DSMZ12162 

Escherichia coli IHE 3034 Wild type, meningitis isolate I Pouttu et al., 1999 

Escherichia coli XL1 Blue 
MRF’ 

Δ(mcrA) 183 Δ(mcrCB-hsdSMR-
mrr) 173 endA1 supe44 thi-1 recA1 
gyrA96 relA1 lac [F’ proAB lacIqZΔ 
M15 Tn 10 (tet)], rough LPS 

I- IV Stratagene 

Klebsiella pneumoniae 342 Wild type I Fouts et al., 2008 

Salmonella enterica serovar 
Typhimurium 14028R 

Rough LPS derivative of 14028 I, II Wick et al., 1994 

Salmonella enterica serovar 
Typhimurium 14028R-1 

ΔpgtE derivative of 14028R I, II Lähteenmäki et al., 
2005a 

Shigella flexneri M90T Wild type I Sansonetti et al., 1982 

Yersinia pestis KIM D27 pPCP1+ Δpgm pYV+ derivative of 
Y. pestis KIM-10 

I, II Finegold et al., 1968; 
Une & Brubaker, 1984 

Yersinia pestis KIM D34 pPCP1- Δpgm pYV+ derivative of 
Y. pestis KIM-10 

I, II, III Finegold et al., 1968; 
Une & Brubaker, 1984 

Yersinia pseudotuberculosis IP 
32953 

Wild type I Chain et al., 2004 

Yersinia pseudotuberculosis 
PB1 Δwb pYV+ 

Rough derivative of PB1, with the 
20 kb ddhD-wzz chromosomal 
fragment deleted 

I J. A. Bengoechea 

Yersinia pseudotuberculosis 
PB1 Δwb pYV- 

Rough derivative of PB1, with the 
20 kb ddhD-wzz chromosomal 
fragment deleted, cured of pYV 

I Kukkonen et al., 2004 

3.2 Recombinant DNA techniques (I, III, IV) 

Plasmid constructs used in this study are listed in Table 4. The omptin genes were cloned 

with polymerase chain reaction (PCR) using DNA from E. coli IHE 3034 (ompT), 

E. pyrifoliae Ep1/96 (epo), K. pneumoniae 342 (kop), S. flexneri M90T (sopA), Y. pestis KIM 

D34 (ycoA), and Y. pseudotuberculosis IP 32953 (ycoB) as templates. The omptin mutants 

and hybrids were cloned with recombinant PCR using the internal primer pair including the 

substitutions. The genes were cloned in the pSE380 vector under the IPTG-inducible trc 

promoter and transformed into an appropriate bacterial strain. The nucleotide sequences of 

the plasmid constructs were verified by sequencing. 
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Table 4. Plasmid constructs used in this study. 

Plasmid 
construct 

Description Article Reference 

pSE380 Expression vector, trc promoter, lacO operator, lacI, 
bla 

I- IV Invitrogen 

pMRK1 pla in pSE380 I- IV Kukkonen et al., 2001 

pMRK2 ompT of E. coli AAEC072 in pSE380 I Kukkonen et al., 2001 

pMRK2b Chromosomal ompT of E. coli IHE 3034 in pSE380 I This study 

pMRK2c Plasmid ompT of E. coli IHE 3034 in pSE380 I This study 

pMRK3 pgtE in pSE380 I-III Kukkonen et al., 2004 

pMRK4 epo in pSE380 IV This study 

pMRK7 sopA in pSE380 I This study 

pMRK8 ycoA in pSE380 I This study 

pMRK9 ycoB in pSE380 I This study 

pMRK10 kop in pSE380 I This study 

pPlaT259I Microtus pla in pSE380 III This study 

pMRK111 pla, D206A I, II Kukkonen et al., 2001 

pMRK1.51 pla, 259TIDKN→IIDKT III Ramu et al., 2008 

pMRK31 pgtE, D206A I, II Kukkonen et al., 2004 

pMRK3.51 pgtE, 259IIDKT →TIDKN III This study 

pMRK105  Pla with 5 aa from Epo: 161KGVRV→NQRPG IV This study  

pMRK405 Epo with 5 aa from Pla: 159NQRPG→KGVRV IV This study 

pMRK110 Pla with 10 aa from Epo: 161KGVRV→NQRPG, 
262KN→TI, 268VSIG→ASLD 

IV This study 

pMRK410 Epo with 10 aa from Pla: 159NQRPG→KGVRV, 
260TI→KN, 266ASLD→VSIG 

IV This study 

pMRK117 Pla with 17 aa from Epo: 35ETG→SNA, 
88MNE→QNS, 155YT→SV, 161KGVRV→NQRPG, 
262KN→TI, 268VSIG→ASLD 

IV This study 

pMRK417  Epo with 17 aa from Pla: 33SNA→ETG, 
86QNS→MNE, 153SV→YT, 159NQRPG→KGVRV, 
260TI→KN, 266ASLD→VSIG 

IV This study 

pMRK431 Epo with 31 aa from Pla: 33SNA→ETG, 
86QNS→MNE, 153SV→YT, 159NQRPG→KGVRV, 
260TI→KN, 266ASLD→VSIG, 26KELV→HEML, 
101GTDVNY→ATNVNH, I257T, H79N, D92E, 
S210D, S167N, D219G, E249D, G22S 

IV This study 

pMRK442 Epo with 42 aa (as in pMRK431 and N-terminal amino 
acids 1-45) and the signal sequence from Pla 

IV This study 

Bold text indicates the novel substitutions compared to a previous hybrid; aa, amino acid 
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3.3 Protein and peptide detection 

3.3.1 Detection of proteins with anti-omptin sera (III, IV) 

Expression of Pla, Epo and their derivatives were analyzed from the cell envelope 

preparations or from the whole-cell samples. The cell envelope samples were prepared by 

sonicating the bacteria (109 cells/ml) in PBS on ice with 2.5 mM ethylene diamine tetra-

acetic acid. The remaining cells were pelleted, and the supernatants were centrifuged further. 

The cell envelopes in the supernatants were pelleted and suspended in PBS and SDS-PAGE 

loading buffer. Whole-cell samples were prepared by mixing the bacteria (109 cells/ml) with 

SDS-PAGE loading buffer, and boiled. The samples were run in a 12% (wt/vol) SDS-PAGE 

gel, transferred onto a nitrocellulose membrane, and detected by Western blotting with anti-

Pla-His6-antisera (1:500), anti-Pla loop sera (1:500; Kukkonen et al., 2001), or anti-Epo-His6-

antisera (1:1000), and with alkaline phosphatase-conjugated anti-rabbit IgG (1:1000; Dako) 

and phosphatase substrate. 

3.3.2 Degradation of PAI-1/Vn complex, TAFI, plasminogen, and α2AP (I-IV) 

In general, the protein degradations were studied by mixing the protein with the bacteria in 

PBS (unless otherwise indicated), incubated at 37 °C for 2-8 hours, centrifuged, and analyzed 

the supernatants in 12% SDS-PAGE gels and by Western blotting with appropriate 

antibodies. The detection was done with alkaline phosphatase-conjugated anti-rabbit IgG 

(1:1000) and alkaline phosphatase substrate, except with plasminogen degradations.  

Degradation of PAI-1/Vn complex was assessed as follows: 2.5 µg recombinant active 

human PAI-1 (American Diagnostica) was incubated with 5 µg human plasma Vn (Promega) 

for 1 h at 37 °C. The bacteria (4×107) were added and incubated with the proteins for 2-8 h. 

The detection was done with polyclonal anti-PAI-1 antibody (1:5000; Calbiochem) or with 

polyclonal anti-Vn antibody (1:1000; Calbiochem).  

In TAFI degradation analysed with Western blotting, 820 nM TAFI (purified basically as in 

Marx et al., 2000) was incubated for 2 h with the bacteria (4×107). Detection was done with 

polyclonal anti-TAFI antibody (1:2000; Mosnier et al., 1998). To analyze the degradation in 

SDS-PAGE, 1.9 µM TAFI was incubated with the bacteria, adjusted in Tris-buffered saline 

(TBS, pH 7.4) as above and incubated in 100 mM Hepes/0.01% Tween-20 (pH 8.0). The 

samples were run in 10% SDS-PAGE gel that was stained with Coomassie Brilliant Blue. In 

experiments with ε-aminocaproic acid (ε-ACA; Sigma-Aldrich), its concentration was 5 mM. 

Plasminogen degradation detected with anti-human plasminogen antibody (American 

Diagnostica) was assessed by incubating 2.5 µg human Glu-plasminogen and 4×107 bacteria 

for 2-7 h. The detection was done with polyclonal anti-human plasminogen antibody 

(1 mg/ml, diluted 1:1000), peroxidase-conjugated anti-rabbit IgG (1:2500; GE Healthcare), 
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and enhanced chemiluminescence (ECL) detection reagents (GE Healthcare) according to the 

manufacturer’s instructions. Plasminogen cleavage detected with monoclonal anti-human 

plasminogen catalytic domain antibody (R&D Systems) was performed as above, with the 

following modifications: Glu-plasminogen (3 µg) and 4.8×107 bacteria were incubated for 

3 h, and detected with the monoclonal antibody (500 µg/ml, diluted 1:500), peroxidase-

conjugated anti-mouse IgG (GE Healthcare; 1:1000), and ECL detection reagents.  

Degradation of human α2AP (0.8 µg; Calbiochem) was assayed as detailed earlier (Kukkonen 

et al., 2001; Lähteenmäki et al., 2005a), with 3×107 bacteria and incubation time of 2 h. 

3.3.3 Peptide analysis of degraded PAI-1 and TAFI (I, II) 

The Pla- or PgtE-expressing E. coli XL1 were incubated with PAI-1 or TAFI at 37 °C for 2 h, 

except Pla with TAFI for 5 h. The samples were run in a 12% SDS-PAGE gel. For N-

terminal sequencing the gel was blotted and sequenced by Edman degradation. For mass 

spectrometric analysis the samples were cut from the gel, digested with trypsin, and exposed 

to matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-

TOF-MS). The resulting peptides were analyzed with the Mascot search engine 

(www.matrixscience.com). To determine the exact cleavage site of PAI-1 by Pla and PgtE, 

the degradation products were isolated by reversed-phase chromatography and analyzed with 

MALDI-TOF-MS.  

3.4 Protease activity assays 

3.4.1 PAI-1 activity (I) 

PAI-1 (0.5 μg) and Vn (1.0 μg) were incubated on 96-well microtitre plates (Nunc) in PBS 

for 1 h at 37 °C to form a complex. Bacteria (3.2×107 cells in PBS) were incubated with the 

complex for 4 h. High-molecular weight uPA (160 ng, 12.8 IU; American Diagnostica) was 

added and incubated for 30 min. Chromogenic uPA substrate pyro-Glu-Gly-Arg-p-

nitroaniline hydrochloride (S-2444; 2.1 mg/ml; Chromogenix) was added and A405 nm was 

measured after 3 h. Significances were calculated with Student’s t test. 

3.4.2 TAFIa activation (II) 

TAFI (3 µg/ml with Y. pestis and S. enterica; 10 µg/ml with E. coli; 40 µg/ml in time- and 

dose-dependent assays) was incubated with the bacteria (2×107 or 4×107 in TBS) in 100 mM 

Hepes/0.01% Tween-20 at 37 °C for 2 h. In experiments with ε-ACA, its concentration was 

2.5 mM and TAFI concentration was 40 µg/ml. In plasma assays, 165 nM TAFI was added to 

20 µl of three times diluted TAFI-depleted plasma and incubated with the bacteria (4×109) as 

above. 
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TAFIa activity was measured from the supernatants containing 40 nM TAFI by mixing 8 nM 

thrombin (from Dr. W. Kisiel, University of New Mexico, Albuquerque, NM) and 16 nM 

thrombomodulin (American Diagnostica) in 5 mM CaCl2 and Hepes buffer as above, and 

incubating 15 min at room temperature. Reaction mixture (90 µl) containing 2.7 mM MgSO4, 

10.9 mM KCl, 30 µM H-D-Phe-Pro-Arg-chloromethylketone (Bachem), 2.4 mM 

phosphoenolpyruvate (Biopool AB), 0.5 mM nicotinamide adenine dinucleotide (NADH; 

Biopool AB), 2.7 mM adenosine triphosphate (Biopool AB), 6 mM hippuryl-Arg (Bachem), 

pyruvate kinase (45 µg/ml; Biopool AB), lactate dehydrogenase (15 µg/ml; Biopool AB), and 

excess of arginine kinase, was mixed with 10 µl of activated TAFI. TAFIa activity was 

measured as a loss of NADH absorbance at A340 nm. 

3.4.3 Clot-lysis assay (II) 

TAFI (10 µg/ml; 40 µg/ml in time- and dose-dependent assays) was incubated with the 

bacteria (2×107 or 4×107 in TBS) in 100 mM Hepes/0.01% Tween-20 at 37 °C for 2 h. The 

clot-lysis times were determined from the supernatants using purified system, where 10 nM 

thrombin, recombinant tPA (0.3 µg/ml; Biopool AB), 20 mM CaCl2, and 5 nM 

thrombomodulin were mixed with TAFI (40 nM) in buffer (pH 7.4) containing 25 mM 

Hepes, 137 mM NaCl, 3.5 mM KCl, and 0.1% (wt/vol) bovine serum albumin. Fibrinogen 

(4.5 µM; Kordia Life Sciences) and plasminogen (90 nM) were added, and the turbidity was 

measured at A405 nm. The clot-lysis time was determined as the time difference between the 

half-maximal lysis and the half-maximal clotting. 

3.4.4 Plasminogen activation (III, IV) 

Human Glu-plasminogen (4 µg or 0.4 µg) was mixed with 8×107 bacteria (in PBS). For 

cumulative analysis of initial plasmin formation, chromogenic plasmin substrate H-D-Val-

Leu-Lys-p-nitroaniline dihydrochloride (S-2251; 2.5 mg/ml; Chromogenix) was added, and 

plasmin formation was measured at 37 °C at A405 nm. The time course of plasmin formation 

was analyzed similarly, except that the plasmin substrate was added at time points of 0 h, 1 h, 

2 h, 5 h, 10 h, and 22 h, and the plasmin activity was measured after 15 min incubation. 

3.4.5 Fibrinolysis plate method (III) 

Human fibrinogen (1.73 mg/ml; depleted of plasminogen, von Willebrand factor, and 

fibronectin; Kordia Life Sciences) was suspended in H2O with human Glu-plasminogen 

(5 µg/ml). Bovine thrombin (5 NIH units; MP Biomedicals) in 100 mM sodium borate buffer 

(pH 7.74) was added by gently mixing. The solution was poured onto a six-well plate (Nunc). 

Bacteria (107) in PBS were pipetted on the plate, and the plate was incubated at 37 °C 

overnight (E. coli) or over two nights (Y. pestis). 
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3.4.6 Inactivation of α2AP and plasmin (III) 

In α2AP inactivation, human α2AP (5.75 µg/ml) was incubated with the bacteria (8×107) in 

PBS at 37 °C for 2 h. Human plasmin (0.5 µg; Sigma-Aldrich) was then added and incubated 

for 30 min. In plasmin inactivation, the bacteria were incubated with plasmin for 30 min 

(amounts as above). Chromogenic plasmin substrate was then added, and plasmin activity 

was measured at A405 nm after 90 min. 

3.5 Invasion into eukaryotic cells (IV) 

Endothelial-like cell line ECV304 (T-24 urinary bladder carcinoma cell line; MacLeod et al., 

1999) was cultivated in Medium 199 (Gibco) supplemented with 10% fetal calf serum 

(Gibco) and 2 mM L-glutamine (Gibco) for 3-4 days at 37 °C with 5% CO2. Bacterial 

invasion was studied using the gentamicin protection assay (Tang et al., 1993). ECV304 cells 

were grown at a 24-well plate (Nunc) and washed with PBS. The bacteria (105) in Medium 

199 were added onto the wells. The plate was centrifuged and incubated for 2 h at 37 °C with 

5% CO2. The wells were washed, and the extracellular bacteria were killed with gentamicin 

(100 µg/ml). Eukaryotic cells were lysed with 0.2% Triton X-100, and the number of 

intracellular bacteria was determined by viable counting. The amount of intracellular bacteria 

was compared to the amount of the bacteria incubated with the eukaryotic cells to calculate 

the invasion percentages.  

3.6 Sequence alignment and protein structure models (I, III, IV) 

Pairwise alignment of Pla and PgtE sequences was done with the needle program from the 

EMBOSS package (Rice et al., 2000). The multiple sequence alignment of several omptins 

was done with ClustalW (Chenna et al., 2003), and the secondary structure elements were 

determined on the basis of OmpT structure (Vandeputte-Rutten et al., 2001), or in article IV, 

on the basis of Pla structure (Eren et al., 2010). A cladogram presentation of the omptin 

family sequences was done with the MEGA4 program (Tamura et al., 2007). The amino acid 

sequences were obtained from the NCBI GenBank protein database, and their accession 

numbers are: Pla AAA27667 (Sodeinde & Goguen, 1989); PgtE AAF85951 (Guina et al., 

2000); Epo YP_003208082 (Kube et al., unpublished); Kop YP_002235876 (Fouts et al., 

2008); Enterobacter omptin YP_001176628 (Copeland et al., unpublished); YcoA 

NP_670257 (Deng et al., 2002); YcoB YP_069801 (Chain et al., 2004); E. coli K-12 

(AAEC072) OmpT CAA30008 (Grodberg et al., 1988); E. coli IHE 3034 OmpT ADE89723 

(Moriel et al., 2010); IHE 3034 OmpTP HM210637; SopA AAC45084 (Egile et al., 1997); 

OmpP BAA97899 (Kaufmann et al., 1994); Leo YP_124757 (Cazalet et al., 2004); Vibrio 

fischeri omptin AAW85741 (Ruby et al., 2005); Desulfotalea psychrophila omptin 

YP_066438 (Rabus et al., 2004); Mesorhizobium loti omptin NP_106686 (Kaneko et al., 

2000); CroP YP_003365570 (Petty et al., 2010). 
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The Pla, Epo and Pla-Epo hybrid models were built with the Modeller program (Sali & 

Blundell, 1993) by using the OmpT structure (article I; PDB code 1i78) or Pla structure 

(article IV; PDB code 2x4m) as a template. PAI-1 RCL (residues 340-351) was modeled on 

the basis of the existing structure (PDB code 1dvm). The structures were visualized with the 

VMD program (Humphrey et al., 1996). 
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4 Results 

4.1 Pla and PgtE inactivate the regulators of the fibrinolytic system (I, II) 

Previous studies had shown that Pla and PgtE interact with several proteins involved in the 

plasminogen/fibrinolytic system (Kukkonen et al., 2001; Lähteenmäki et al., 2005a; Ramu et 

al., 2008), which led me to investigate whether these omptins also target the important 

control proteins of this system, i.e., PAI-1, a key regulator of plasminogen activation, and 

TAFI, a regulator of fibrinolysis. Such interactions would disrupt the balance of the system 

and enhance proteolysis at the infection site. 

4.1.1 Inactivation of PAI-1 (I) 

I studied the interaction of PAI-1 with Y. pestis KIM D27, Y. pestis KIM D34, S. enterica 

14028R, and S. enterica 14028R-1 by incubating the bacteria with the PAI-1/Vn complex, 

and detecting the resulting peptides by Western blotting with polyclonal anti-PAI-1 and anti-

Vn antibodies. Y. pestis KIM D27 with pla-encoding plasmid pPCP1 and rough S. enterica 

strain 14028R degraded PAI-1 into smaller fragment that was named PAI-1*. These strains 

also degraded Vn into several smaller fragments. In contrast, S. enterica 14028R-1, where 

pgtE has been deleted, and Y. pestis KIM D34, cured of pPCP1, did not cleave PAI-1 or Vn. 

We also investigated whether an ancestor of Y. pestis, a rough Y. pseudotuberculosis strain 

PB1 Δwb (Achtman et al., 1999; Skurnik et al., 2000) with or without the virulence plasmid 

pYV, degraded PAI-1 or Vn. Both Y. pseudotuberculosis strains were unable to cleave these 

proteins. 

The role of Pla and PgtE in PAI-1 degradation was confirmed with the recombinant E. coli 

XL1 (pMRK1) expressing Pla and E. coli XL1 (pMRK3) expressing PgtE. The bacteria were 

incubated with the PAI-1/Vn complex, and degradation of PAI-1 was detected as above. Pla 

and PgtE seemed to be responsible for the cleavage of PAI-1, as no degradation of PAI-1 was 

observed by the empty vector strain E. coli XL1 (pSE380). In E. coli XL1 background the 

cleavage of PAI-1 by Pla was similar to Y. pestis background, but PgtE in E. coli degraded 

PAI-1 into two smaller fragments of about 25 kDa in addition to PAI-1*, while in S. enterica 

only one degradation product, PAI-1*, was observed.  

The omptin-generated cleavage site in PAI-1 was determined by N-terminal sequencing and 

mass spectrometric analyses. The N-terminus of PAI-1* was intact, and MALDI-TOF-MS 

analysis of the reversed-phase purified PAI-1* gave the sizes of 38 982 Da (Pla-generated) 

and 38 972 Da (PgtE-generated), corresponding to the mass of the PAI-1-fragment V1-R346. 

Also the peptide mass fingerprint analysis of the trypsin-cleaved PAI-1* resulted in 
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sequences from only V1-R346. The cleavage site in PAI-1 by Pla and PgtE was thus located 

at the reactive site peptide bond R346-M347 in the RCL.  

It was next investigated how the degradation of PAI-1 by Pla and PgtE affected its serpin 

activity towards its target protease uPA. When Y. pestis KIM D27 or S. enterica 14028R were 

incubated with the PAI-1/Vn complex, PAI-1 was no longer able to inhibit uPA. On the 

contrary, the serpin activity of PAI-1 remained intact when the PAI-1/Vn complex was 

incubated either with Y. pestis KIM D34 or S. enterica 14028R-1, or without the bacteria. 

E. coli XL1 (pMRK1) and E. coli XL1 (pMRK3) impaired the activity of PAI-1, in contrast 

to E. coli XL1 (pSE380). The protease activity of Pla or PgtE was required for the 

inactivation, because the activity of PAI-1 was not abolished with the protease negative 

mutants, Pla D206A or PgtE D206A, expressed in E. coli XL1.  

I compared Pla and PgtE to other omptins, Epo of E. pyrifoliae, Kop of K. pneumoniae, 

YcoA of Y. pestis, YcoB of Y. pseudotuberculosis, chromosomal OmpT variants of E. coli 

AAEC072 and E. coli IHE 3034, plasmid-encoded OmpTP of E. coli IHE 3034, and SopA of 

S. flexneri. The omptins were expressed in E. coli and the cleavage of PAI-1 was detected as 

above. Only the omptins that belong to the Pla subfamily, including Pla, PgtE, Epo, and Kop 

(see Fig. 2 in the introduction), cleaved PAI-1. No degradation of PAI-1 was observed with 

E. coli expressing the Pla or PgtE mutants with the catalytic site substitution D206A. Yersinia 

chromosomal omptins, YcoA and YcoB that form the Yco subfamily, were negative in PAI-1 

degradation. The members of the OmpT subfamily, including the chromosomally and 

plasmid-encoded OmpT variants and SopA, were unable to cleave PAI-1. Analysis of the 16 

known complete omptin family member sequences and structure modeling revealed plausible 

reasons for this functional difference between the omptin subfamilies: although the catalytic 

groove of the omptins seems to be conserved and suitable for binding a large and basic amino 

acid, such as R346 in PAI-1, distinction at the loop regions could provide explanation for the 

observed differences. The potentially important amino acid differences between the Pla 

subfamily and the OmpT/Yco subfamilies are found in the loops 1, 4, and 5 in residues T36, 

L213, I260, D266 and D273 (Pla numbering).  

4.1.2 Degradation of TAFI (II) 

To determine the effects of S. enterica and Y. pestis to the activatability of TAFI, the bacteria 

were incubated with TAFI, and TAFI was then activated to TAFIa by thrombin-

thrombomodulin complex. Changes in the activatability of TAFI were measured indirectly 

with TAFIa activity. S. enterica 14028R and Y. pestis KIM D27 impaired the activity of 

TAFIa by 85% and 97%, respectively, compared to the maximal activity of TAFIa in the 

buffer. Also S. enterica 14028R (pMRK3), complemented with the pgtE-encoding plasmid, 

clearly reduced the TAFIa activity. S. enterica 14028R-1 or S. enterica 14028R (pSE380) did 
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not cause change in the activity of TAFIa. Y. pestis KIM D34 decreased the activity of TAFIa 

by 59%, clearly less than KIM D27.  

Recombinant E. coli XL1 expressing PgtE or Pla were assayed to confirm that the omptins 

were responsible for the inhibition of TAFIa activity. E. coli XL1 (pMRK3) and (pMRK1) 

reduced TAFIa activity by 80% and 61%, respectively. E. coli XL1 expressing the 

proteolytically negative PgtE D206A (pMRK31) and Pla D206A (pMRK111) decreased the 

activity of TAFIa by about 30%. TAFIa activity was also measured from TAFI-depleted 

plasma supplemented with TAFI. E. coli XL1 (pMRK3) and (pMRK1) reduced the activity 

of TAFIa in plasma by 49% and 60%, respectively, and the proteolytically negative D206A 

mutants decreased the activity by 31%. Clot-lysis assay with recombinant E. coli XL1 

supported results obtained with the TAFIa activity assays. When E. coli XL1 expressing PgtE 

or Pla were incubated with TAFI, the clot-lysis times were reduced, indicating that the anti-

fibrinolytic potential of TAFIa was impaired. D206A mutants had only minor effect on the 

clot-lysis times. Inhibition of TAFIa activity and decrease in clot-lysis times by PgtE- or Pla-

expressing bacteria were dependent on bacterial dose and incubation time.  

I investigated the reason for the inhibition of TAFIa function by PgtE and Pla by Western 

blotting with polyclonal anti-TAFI antibody and by SDS-PAGE. Strains expressing PgtE or 

Pla, S. enterica 14028R, S. enterica 14028R-1 (pMRK3), Y. pestis KIM D27, E. coli XL1 

(pMRK3), and E. coli XL1 (pMRK1), degraded TAFI into smaller molecular weight 

fragments. In contrast, bacteria without pgtE or pla and E. coli XL1 expressing the D206A 

mutants caused only minor degradation of TAFI or no degradation at all. The omptin-cleaved 

TAFI migrated fuzzily in the SDS-PAGE gel as do all glycosylated proteins, and because all 

the N-glycosylation sites of TAFI are located in the N-terminal activation peptide, it was 

hypothesized that the cleavage of TAFI by the omptins occurs at the C-terminus. Addition of 

the lysine analog ε-ACA that restrains plasmin-mediated C-terminal cleavage of TAFI 

prevented the degradation of TAFI by PgtE- or Pla-expressing E. coli XL1 and increased the 

activatability of TAFI to TAFIa in the presence of PgtE or Pla. N-terminal sequencing and 

mass spectrometric analysis also suggested that degradation of TAFI by PgtE and Pla is C-

terminal, although the exact cleavage site remains unknown. 

4.2 Residues critical for plasminogen activation and invasiveness of Pla 
(III, IV) 

It was already known that the loop structures are important for the functions of the omptins 

(Kukkonen et al., 2001; Ramu et al., 2008), so I further analyzed the importance of the 

specific loop regions and amino acids in the plasminogen activation and invasiveness 

mediated by Pla. Synonymous and nonsynonymous single-nucleotide polymorphisms have 

been involved in the evolution of Y. pestis, and I analyzed the effect of a nonsynonymous 

substitution T259I in Pla that differentiates pandemic and ancestral Y. pestis lineages. The 
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functions of common Pla were compared to those of Pla T259I and to those of Epo, whose 

mature protein sequence (290 aa) differs from Pla by 65 amino acids.  

4.2.1 T259 and loops 3 and 5 are important for plasminogen activation (III, IV) 

Ancestral Y. pestis isolates, biovar Microtus and the Pestoides strain Angola, contain 

substitution T259I in their predicted Pla sequences (Song et al., 2004; Eppinger et al., 2010). 

I substituted threonine 259 in Pla of Y. pestis biovar Medievalis to isoleucine, and expressed 

mutated Pla in a pSE380 vector in Y. pestis KIM D34 and E. coli XL1 hosts, and compared 

Pla T259I to wild type Pla in functional assays. I included PgtE in the assays for comparison, 

because PgtE also possesses isoleucine at position 259, and I also included the Pla-PgtE 

hybrids PgtE 259IIDKT/TIDKN (Ramu et al., 2008) and Pla 259TIDKN/IIDKT. 

The amount of Pla expression was similar with Pla and Pla T259I in Y. pestis and E. coli 

backgrounds on the basis of whole cell and cell envelope preparations, but the Pla isoform 

patterns of Pla T259I and Pla 259TIDKN/IIDKT were different from that of wild type Pla: 

autoprocessed β-Pla was detected only with the wild type Pla but not with the mutants. 

Furthermore, wild type Pla was almost completely in the γ-Pla form in the unboiled cell 

envelope sample, whereas the mutants also showed pre- and α-Pla forms. Also, the γ-Pla of 

the mutants migrated faster in the SDS-PAGE gel.  

Y. pestis KIM D34 (pPlaT259I) was less efficient than Y. pestis KIM D34 (pMRK1) in a 

fibrinolysis plate assay with purified components. E. coli XL1 (pMRK1.51) expressing Pla 
259TIDKN/IIDKT, and E. coli XL1 (pMRK3) expressing PgtE exhibited only limited 

fibrinolysis, while E. coli XL1 (pMRK1) efficiently lysed fibrin. In comparison to PgtE, 

E. coli XL1 (pMRK3.51) expressing PgtE 259IIDKT/TIDKN showed minor improvement in 

fibrinolysis.  

The initial, cumulative plasminogen activation was similar with Y. pestis KIM D34 (pMRK1) 

and Y. pestis KIM D34 (pPlaT259I) with the plasminogen concentration of 20 µg/ml, but 

difference in initial plasminogen activation was observed with low (2 µg/ml) plasminogen 

concentration. The same difference between Pla and Pla T259I was observed in E. coli XL1 

background. No plasminogen activation was observed with the negative controls, Y. pestis 

KIM D34 (pSE380) and E. coli XL1 (pSE380). E. coli XL1 (pMRK3) was quite inefficient in 

initial plasminogen activation in both plasminogen concentrations, and the substitution 
259IIDKT/TIDKN in pMRK3.51 clearly improved the plasminogen activation of PgtE. 

Plasmin formation was also measured by incubating the bacteria with plasminogen and 

adding the plasmin substrate at different time intervals in order to find out whether plasmin 

activity is maintained during the incubation. The plasmin activity was lower with Pla T259I 

than with Pla, expressed in Y. pestis or in E. coli. Similar results were obtained with Pla 
259TIDKN/IIDKT. Plasmin activity was very low when plasminogen was incubated with 
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PgtE-expressing E. coli, but substitution 259IIDKT/TIDKN in PgtE caused increase in 

plasminogen activation. 

The reason for the poor plasminogen activation by Pla T259I was reduced plasmin stability: 

plasminogen was activated by Pla T259I and Pla 259TIDKN/IIDKT, but the formed plasmin 

became subsequently inactivated, as observed when the bacteria were incubated with 

plasmin. E. coli XL1 (pMRK3) was the most efficient in plasmin inactivation. In contrast, 

E. coli XL1 (pMRK1) was similar to E. coli XL1 (pSE380); these strains did not inactivate 

plasmin. E. coli XL1 (pMRK3.51) with PgtE 259IIDKT/TIDKN caused only minor 

inactivation, and E. coli XL1 (pMRK1.51) and E. coli XL1 (pPlaT259I) were slightly more 

efficient in inactivation of plasmin. 

Similar plasminogen cleavage patterns were observed with Pla, Pla T259I, Pla 
259TIDKN/IIDKT, and PgtE when expressed in E. coli and detected with polyclonal anti-

human plasminogen antibody that recognizes the kringle structures of plasminogen and 

plasmin. Similar pattern was observed when plasminogen was incubated with uPA. E. coli 

XL1 (pMRK3.51) was weaker than E. coli XL1 (pMRK3) in plasminogen cleavage. In 

contrast, when plasminogen degradation was observed with anti-human plasminogen 

catalytic domain antibody that recognizes the catalytic domain in the plasmin light chain, 

differences between the cleavage patterns by the omptin variants were observed. Plasmin 

light chain was observed when plasminogen was incubated with uPA, E. coli XL1 (pMRK1), 

or E. coli XL1 (pMRK3.51). On the contrary, no plasmin light chain was detected with Pla 

T259I, Pla 259TIDKN/IIDKT, or PgtE. These results correlated well with the plasmin stability 

observed in the stepwise plasminogen activation assay. 

α2AP degradation patterns by E. coli XL1 (pPlaT259I) and E. coli XL1 (pMRK1.51) were 

similar to degradation patterns by Pla and PgtE expressed in E. coli XL1; all these proteins 

efficiently degraded the molecule. PgtE 259IIDKT/TIDKN was weaker in the cleavage of 

α2AP. Inactivation of α2AP was dramatically increased due to T259I substitution: Microtus 

Pla and PgtE were more efficient than Pla in inactivation of α2AP. Surprisingly, Pla and PgtE 
259IIDKT/TIDKN were both at the same level as E. coli XL1 (pSE380) in α2AP inactivation.  

In order to learn more about the interactions of Pla and its substrates, I compared Pla to Epo 

of E. pyrifoliae by expressing the proteins in E. coli. When this study was initiated, Epo was 

the closest homolog of Pla. Despite the similarities in sequences, functional differences 

between Pla and Epo were observed. Epo was found to be a poor plasminogen activator – 

hence the name Epo, Erwinia pyrifoliae omptin, instead of PlaA – and it did not mediate 

invasion either, both of which are functions characteristic of Pla. Epo degraded plasminogen, 

but inefficiently compared to Pla, and Epo did not form detectable amounts of the plasmin 

light chain by Western blotting. However, Epo was found to degrade the serpins α2AP and 

PAI-1. In order to elucidate the regions and amino acids responsible for the different 
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properties of Pla and to study molecular adaptation in the omptin family, I constructed Pla-

Epo chimeras and expressed them in E. coli XL1. The substitutions were selected on the basis 

of the sequence differences and knowing that loop regions are critical for the substrate 

selectivity (Fig. 4 and Table 1). Pla and Epo differ by 65 amino acids, of which 31 are located 

on the extracellular side above the lipid bilayer, and of these, 18 are in the surface loops.  

 

Figure 4. Sequence alignment of the amino acid sequences of Pla (above) and Epo (below). Signal sequence 
consists of 20 (Pla) or 22 (Epo) amino acids. The sequences were aligned with ClustalW (Chenna et al., 2003). 
Secondary structure elements are based on the Pla crystal structure (Eren et al., 2010) and are defined by Stride 
(Frishman & Argos, 1995). L1-L5 denote the extracellular loops. β-strands (β1-β10) are indicated with arrows. 
The gaps in β3 and β7 indicate irregularities in the structure. The 31 differing amino acids that are located at the 
extracellular side above the lipid bilayer are shown with bold face and underlined. 

Results obtained with the Pla-Epo hybrid proteins confirmed the importance of surface loop 

residues in plasminogen activation. Initial plasminogen activation in Epo was obtained by 

substituting five residues, 159NQRPG at L3, in Epo to corresponding residues 161KGVRV of 

Pla (pMRK405). Five reverse substitutions at L3 in Pla in pMRK105 decreased the 

plasminogen activation by Pla dramatically. Further substitutions in Epo at L5, 260TI/KN and 
266ASLD/VSIG, encoded in pMRK410, resulted in plasminogen activation similar to Pla. 

Further cumulative substitutions in Epo in pMRK417 at L1, L2, and L3 (33SNA/ETG, 
86QNS/MNE, 153SV/YT; L4 has only one amino acid difference) slightly enhanced 

plasminogen activation. Reverse 10 or 17 substitutions in Pla (pMRK110 and pMRK117) 
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abolished plasminogen activation completely. Further cumulative substitutions in Epo until 

all the 31 differing residues located at the extracellular surface were substituted (pMRK431; 

see Fig. 4), did not enhance the ability to activate plasminogen. No substantial differences 

were found in the expression levels of the hybrid proteins, as analyzed by Western blotting 

with anti-His6-Pla, anti-His6-Epo, and anti-Pla loop antisera. 

Explanations for the differences of Pla and Epo in plasminogen activation were analyzed by 

comparing the Pla structure (Eren et al., 2010) and the model structure of Epo. It was found 

out that the residues at L3 and L5 interact with L4, which contains the active site residues 

D206 and H208. In Pla, V163 at L3 interacts with residues at L4 and L5, while 159NQR in 

Epo point towards the water phase. These interactions may cause differences in the substrate 

binding pocket and electrostatic properties between Pla and Epo. The only difference at L4 

between Pla and Epo is D212 (S210 in Epo), and it forms a hydrogen bond with N263 at L5 

in Pla. K262 (L5) and R164 (L3) in Pla strengthen the β-barrel by interacting with L4, unlike 

the corresponding residues T260 and P162 in Epo. 

I also tested the chimeric proteins in PAI-1 degradation, and interestingly, proteins encoded 

in the plasmids pMRK405, pMRK410, and pMRK417 degraded PAI-1 more efficiently than 

Pla or Epo. Further substitutions in Epo, encoded in plasmids pMRK431 and pMRK442 

(with 42 substitutions), resulted in similar degradation as observed with Pla and Epo. 

Substitutions in Pla, encoded in pMRK105, pMRK110, and pMRK117, abolished the ability 

of Pla to degrade PAI-1. 

4.2.2 Invasiveness requires several regions in Pla (IV) 

In addition to plasminogen activation, Pla functions as an invasin, and is the only omptin 

studied so far that mediates invasion into human endothelial-like cell line ECV304. Also 

Epo-expressing E. coli XL1 was negative in the gentamicin protection assay that was used to 

study bacterial invasion. The plasminogen-activating Pla-Epo hybrids, expressed in E. coli, 

were tested in the invasion assay, but even when all the differing 31 residues that are located 

at the extracellular part of the protein were substituted in Epo, only a low level of 

invasiveness was detected. However, when the N-terminus of Pla, including the β1-strand, 

was added to this hybrid protein (42 substitutions in total, encoded in pMRK442), the 

invasiveness increased to the level of Pla.  
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5 Discussion 

5.1 Substrate specificities of the omptins 

Differences in the omptin functions with polypeptide substrates have been shown to be 

dictated by sequence variation in their surface loops that restrain or enable the formation of 

the protease-substrate complexes. Overall, evolutionary plasticity of proteins is higher in the 

loop regions than in the core structure (Panchenko et al., 2005), and this holds for omptins as 

well and explains the variation in the polypeptide target selectivity between omptins. In this 

and previous work our group has shown that Pla and PgtE have evolved towards different 

functions: Pla to an efficient plasminogen activator and an invasin and PgtE to a gelatinase 

and a proMMP-9 activator (Lähteenmäki et al., 2001; Ramu et al., 2008). In addition, both 

Pla and PgtE inactivate α2AP (Kukkonen et al., 2001; Lähteenmäki et al., 2001) and PAI-1, 

serpins that regulate plasmin activity. PgtE was more effective than Pla in serpin cleavage, 

and more efficient serpinolytic activity was seen with Microtus Pla. All the tested omptins in 

the Pla subfamily (Pla, PgtE, Epo, and Kop of K. pneumoniae) were able to degrade PAI-1. 

Further, the Epo hybrids with a few amino acids from Pla were more effective in PAI-1 

degradation than either Pla or Epo. These findings are compatible with the hypothesis that 

serpinolytic activity is a property of the progenitor molecule in this subfamily. My results 

further indicate that the effect of PgtE on plasminogen activation is indirect rather than direct, 

while Pla activates plasminogen directly. Although I have shown here that PgtE-mediated 

plasmin activity is transient, it is still possible that in vivo PgtE-generated plasmin is able to 

perform proteolytic functions before its inactivation by PgtE. Interestingly, the consequences 

of the actions of Pla and PgtE are similar: enhanced, uncontrolled proteolysis at host tissues. 

However, the target tissues and pathogenetic consequences differ.  

As Microtus and Angola are thought to represent the ancient Y. pestis branches (Achtman et 

al., 2004; Eppinger et al., 2010), their Pla mutant T259I might represent the ancestral form of 

Pla that has later on evolved into a more efficient plasminogen activator and an important 

factor in plague pathogenesis. On the other hand, it can be speculated that attenuated Y. pestis 

strain with Pla T259I has evolved to not kill its hosts and thus spread more effectively. 

However, this seems unlikely, since mutant Pla is present in the ancient Y. pestis branches, 

not in the pandemic strains. In this work I compared these two Pla mutants and showed that 

this nonsynonymous SNP dramatically changes the protein function. This may also affect the 

virulence of the host bacterium. The reasons why substitution I259T affects the functions of 

Pla – and also PgtE – are unknown. This residue is located near the Pla autoprocessing site 

K262 at L5, and both these residues are situated near the catalytic groove. Substitution of 

T259 with isoleucine causes lack of the autoprocessed β-Pla isoform. However, the functions 
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of β- and γ-Pla are not known. The explanation of the observed functional differences 

between Pla and Pla T259I might lie in the differential recognition of the 

plasminogen/plasmin by these two protein variants, leading to either degradation of the 

catalytic domain of plasmin or formation of undetectable amounts of it by Pla T259I. The 

effect of this substitution in α2AP inactivation was the opposite, indicating that the 

substitution in common Pla diverged its function towards direct plasmin formation. 

I observed that altering the substrate selectivity of Epo towards plasminogen required 

substitution of only a few surface loop residues. Turning Epo into an invasin, on the contrary, 

required substitution of all the 31 differing residues located at the extracellular side on the 

protein, and the N-terminus including the β1-strand. The mechanism how these membrane-

embedded, highly distant residues affect the target recognition remains perplexing. Invasion 

probably consists of various steps, including adhesion and membrane fusion, and may thus 

require several regions in Pla. My results confirm the earlier data that plasminogen activation 

and invasion abilities of Pla are distinct from each other (Lähteenmäki et al., 2001). The 

invasion target of Pla in human endothelial cells is not known, which makes it difficult to 

compare the mechanisms of invasiveness and plasminogen activation. The model system for 

endothelial cell invasion, i.e., the ECV304 cell line, can be questioned: this widely used cell 

line has been shown to be cross-contaminated with the T-24 human urinary bladder 

carcinoma cell line and is thus not a real endothelial cell line (MacLeod et al., 1999). 

Nevertheless, this does not invalidate the differences observed between Pla and Epo. 

E. pyrifoliae is associated with a pear blight disease, and epo is encoded in a mosaic plasmid 

that closely resembles a virulence plasmid pEA29 of E. amylovora (McGhee et al., 2002), so 

it is possible that Epo participates in proteolytic functions and tissue damage that benefit its 

host during infection. The omptins that belong to the Pla subfamily degraded PAI-1, and it 

was concluded that serpin inactivation is a function shared by this subfamily. However, the 

functions of Epo in vivo remain unknown. Plants have serpin homologs with highly similar 

overall structures with the mammalian serpins (Marshall, 1993; Irving et al., 2000; Rawlings 

et al., 2008; Roberts & Hejgaard, 2008; Lampl et al., 2010), and these might be the targets of 

Epo. Plant serpins may inhibit serine and cysteine proteases encoded in plant genomes 

(Roberts & Hejgaard, 2008), but most experiments for the activity of the plant serpins have 

been performed with mammalian serine or cysteine proteases as substrates (Christeller & 

Laing, 2005). Suggested functions of plant serpins are regulation of host immune response 

and programmed cell death, and the protection of storage proteins in seeds from parasites 

(Roberts & Hejgaard, 2008). 

K. pneumoniae is part of human normal microbial flora but can also cause diseases, such as 

pneumonia and urinary tract infections. kop was cloned from a large plasmid pKP187 of 

K. pneumoniae 342. This strain is a plant symbiont, so Kop might have functions that 
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promote symbiosis with the host plant. However, K. pneumoniae 342 can cause urinary tract 

infections and pneumonia in mice, although the infection in lungs is milder than with the 

clinical isolate K. pneumoniae C3091 (Fouts et al., 2008). It is not known whether Kop is 

expressed in other K. pneumoniae strains. PAI-1 levels have been detected to increase during 

K. pneumoniae infection in mice, and PAI-1 seems to protect mice from the disease 

(Renckens et al., 2007). PAI-1 degradation by Kop might thus promote K. pneumoniae 

infection.  

Functions of the Yersinia YcoA and YcoB remain to be discovered. They are 99% identical 

to each other. It is not known whether they are proteolytically active, because the catalytic 

residue D84 (Pla numbering) has been substituted with asparagine. However, YcoA was 

found to promote Y. pestis infection in C. elegans (Styer et al., 2005). 

Sequence alignment and structural modeling of the omptin sequences suggested that some 

amino acid substitutions can prevent or promote the complex formation with the targets, 

leading to completely different outcome in a reaction of different omptins with the same 

substrate. My studies give insight into how the evolution of the omptin family may have 

occurred, and how different functions within a protein family can evolve. To determine in 

detail how omptins target different polypeptide substrates, however, requires structure 

determination of the omptin-substrate complexes. 

5.2 Interactions of Pla and PgtE with the plasminogen/fibrinolytic system 

Pla and PgtE disrupt the control of the plasminogen/fibrinolytic system by inactivating PAI-1 

and by inhibiting the activatability of TAFI to TAFIa, which probably leads to increased 

levels of active plasmin and uncontrolled fibrinolysis and proteolysis of host tissues. This 

may be beneficial when the bacteria penetrate through tissues and spread to distant organs. 

The importance of the plasminogen/fibrinolytic system in plague infection has been widely 

accepted, and it is a clear difference between Y. pestis and its ancestor Y. pseudotuberculosis. 

The significance of the plasminogen/fibrinolytic system in S. enterica infections is less clear.  

Pla and PgtE degrade PAI-1 at RCL between R346-M347. The cleavage site in α2AP by the 

omptins remains to be determined, but it is possible that it occurs at the RCL similarly to 

cleavage of PAI-1. Subtilisin NAT of B. subtilis belongs to a family of subtilisin-like serine 

proteases and degrades PAI-1 at the same site as Pla and PgtE (Urano et al., 2001). Also 

metalloprotease aureolysin of S. aureus and metalloprotease/elastase LasB of P. aeruginosa 

degrade PAI-I (Boudier et al., 2005; Beaufort et al., 2008; Beaufort et al., 2010). Aureolysin 

degrades PAI-1 completely, but LasB cleaves PAI-1 at C-terminus, probably at or near the 

RCL (Beaufort et al., 2008; Beaufort et al., 2010). It thus seems that these bacterial 

pathogens that are associated with different diseases have similar functions but they use 

different catalytic mechanisms to cleave PAI-1.  
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TAFI has been earlier linked to two bacterial pathogens: S. pyogenes that causes skin and 

throat infections binds TAFI, and increased TAFI levels have been observed during the 

infection with H. pylori, a cause of gastric ulcer (Påhlman et al., 2007; Ikeda et al., 2009). 

Both these phenomena lead to activation of TAFI to TAFIa and inhibition of fibrinolysis, 

which has been hypothesized to protect the bacteria from the human immune system 

(Påhlman et al., 2007; Ikeda et al., 2009). On the contrary, my results show that the levels of 

functional TAFIa are decreased due to the degradation of TAFI by Pla and PgtE. This is the 

first time when bacterial proteases have been observed to degrade TAFI and to restrain its 

activation to TAFIa. The mechanism how lysine analog ε-ACA prevents the degradation of 

TAFI by the omptins is not clear, but it refers to the importance of the lysine residues in the 

interaction. The exact cleavage site in TAFI remains to be determined, but it is probable that 

the cleavage occurs at C-terminal arginine or lysine residues.  

Further assays in plasma with PAI-1 and TAFI could reveal more about what happens during 

plague or salmonellosis in vivo. However, as plasma contains several omptin substrates, such 

as plasminogen, α2AP, and complement components, the results of these assays will be 

complicated to interpret. Plasminogen is an abundant protein in plasma, and plasmin activates 

TAFI and subsequently inactivates TAFIa, and the direct effect on TAFI by the omptins is 

difficult to differentiate from the actions of plasmin. The situation is complicated also 

because the D206A mutants, deficient in plasminogen activation, were not completely 

negative in the plasma assays with TAFI; it is possible that they still have activity towards 

some substrates. Ongoing work in our laboratory (H. Tossavainen, unpublished) favors this 

hypothesis. 

My thesis work shows that in addition to plasminogen activation, Pla and PgtE attack the 

plasminogen/fibrinolytic system also in other ways in order to generate uncontrolled plasmin 

activity and proteolysis. Increased Pla-generated plasmin activity and fibrinolysis is 

associated with the observed increase in proteolysis and bacterial proliferation in plague 

in vivo (Degen et al., 2007; Lathem et al., 2007). Monocytes and macrophages have been 

shown to utilize plasmin during their migration, and plasmin can act as a chemoattractant to 

monocytes (Syrovets et al., 1997; Ploplis et al., 1998). Activated macrophages show 

increased plasminogen activation at their surface (Vassalli et al., 1992). Enhanced plasmin 

activity and proteolysis during systemic salmonellosis can thus recruit monocytes to the site 

of infection and improve the migration of macrophages and S. enterica. 
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6 Conclusions 

In this study I have revealed two novel targets for the omptins Pla of Y. pestis and PgtE of 

S. enterica: they degrade and inactivate PAI-1 and degrade TAFI by preventing its activation 

to TAFIa. I have also shown that T259 at L5 is critical for the stability of plasmin formed by 

Pla, and, on the other hand, I259 makes PgtE more active towards α2AP. This is one of the 

few described biological consequences of an SNP in a bacterial pathogen. I have further 

detected that efficient plasminogen activation by Pla is dictated in particular by the surface 

loops 3 and 5, and that plasminogen activation and invasiveness are distinct properties. 

Invasiveness requires both the residues located at the extracellular side on the protein and the 

N-terminal β1-strand of Pla, and it would be fascinating to identify the target of Pla in 

endothelial cells. I have revealed that Epo and Kop function as serpin inhibitors; investigating 

the functions of these omptins and their possible relevance in diseases that their hosts cause 

might be an interesting task. It would be appealing to find out novel functions for the OmpT 

variants and see if they differ from each other in their substrate selectivities.  

Omptins have evolved to different directions to provide proteolytic and non-proteolytic 

functions that benefit their host bacteria during the infectious process. My studies showed 

that acquisition of novel proteolytic functions in the omptin fold occurs easily, as substitution 

of only a few amino acids can change their substrate selectivity, either to improve the existing 

function or to gain novel targets. The omptin fold might offer a promising platform for 

directed enzyme evolution and biotechnological applications. My studies proposed that 

serpinolytic activity could have been the selection advantage in the evolution of the 

progenitor omptin of the Pla subfamily. 

It is likely that the interactions of the omptins with the plasminogen/fibrinolytic system are 

not restricted to molecules detected in this and previous studies, which may well prove a 

fruitful avenue for further studies.  
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