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SUMMARY

Tooth development is regulated by sequential and reciprocal interactions between 
epithelium and mesenchyme. The molecular mechanisms underlying this regulation are 
conserved and most of the participating molecules belong to several signalling families. 
Research focusing on mouse teeth has uncovered many aspects of tooth development, 
including molecular and evolutionary specifi cs, and in addition offered a valuable 
system to analyse the regulation of epithelial stem cells. In mice the spatial and temporal 
regulation of cell differentiation and the mechanisms of patterning during development 
can be analysed both in vivo and in vitro.

Follistatin (Fst), a negative regulator of TGFβ superfamily signalling, is an important 
inhibitor during embryonic development. We showed the necessity of modulation of 
TGFβ signalling by Fst in three different regulatory steps during tooth development. 
First we showed that tinkering with the level of TGFβ signalling by Fst may cause 
variation in the molar cusp patterning and crown morphogenesis. Second, our results 
indicated that in the continuously growing mouse incisors asymmetric expression of Fst 
is responsible for the labial-lingual patterning of ameloblast differentiation and enamel 
formation. Two TGFβ superfamily signals, BMP and Activin, are required for proper 
ameloblast differentiation and Fst modulates their effects. Third, we identifi ed a complex 
signalling network regulating the maintenance and proliferation of epithelial stem cells 
in the incisor, and showed that Fst is an essential modulator of this regulation. FGF3 
in cooperation with FGF10 stimulates proliferation of epithelial stem cells and transit 
amplifying cells in the labial cervical loop. BMP4 represses Fgf3 expression whereas 
Activin inhibits the repressive effect of BMP4 on the labial side. Thus, Fst inhibits 
Activin rather than BMP4 in the cervical loop area and limits the proliferation of lingual 
epithelium, thereby causing the asymmetric maintenance and proliferation of epithelial 
stem cells. In addition, we detected Lgr5, a Wnt target gene and an epithelial stem cell 
marker in the intestine, in the putative epithelial stem cells of the incisor, suggesting that 
Lgr5 is a marker of incisor stem cells but is not regulated by Wnt/β-catenin signalling in 
the incisor. Thus the epithelial stem cells in the incisor may not be directly regulated by 
Wnt/β-catenin signalling. 

In conclusion, we showed in the mouse incisors that modulating the balance between 
inductive and inhibitory signals constitutes a key mechanism regulating the epithelial 
stem cells and ameloblast differentiation. Furthermore, we found additional support for 
the location of the putative epithelial stem cells and for the stemness of these cells. In the 
mouse molar we showed the necessity of fi ne-tuning the signalling in the regulation of 
the crown morphogenesis, and that altering the levels of an inhibitor can cause variation 
in the crown patterning.



1

1. Ectodermal organ development in 
the vertebrates

Vertebrates have many different ectodermal 
organs, such as teeth, hair, feathers, 
scales and beaks. Many exocrine glands, 
such as mammary and sweat glands, are 
also ectodermal organs. The similarities 
between different ectodermal organs are 
mostly visible in the placode and bud 
stage, but when the morphogenesis begins 
the similarities diminish. The interactions 
between epithelium and mesenchyme 
initiate the development. The first 
signal inducing differentiation comes 
from the mesenchyme in all ectodermal 
organs except the tooth where the signal 
originates in the epithelium (Pispa and 
Thesleff, 2003). After the initiation step 
the interaction between epithelium and 
mesenchyme is reciprocal and continuous, 
leading to complex structures of functional 
organs. 

The first sign of ectodermal organ 
development is the thickening of the 
epithelium. Thickening forms a placode, 
a signalling centre, beneath which the 
mesenchymal cells condense. The forming 
structure begins to bud into or out of the 
mesenchyme, as the epithelium folds 
and branches at the end constructing the 
final structures of the organ. Regular 
arrangement of placodes, visible especially 
in the hair and feather follicle formation, 
is controlled by lateral inhibition as the 
concentrations of placode activating and 
inhibiting signals specify the location and 
formation of new placodes (Plikus and 
Chuong, 2008). The placode forms within 
a region where the level of activators 
is high and exceeds the effects of the 
inhibitor according to reaction diffusion 
model (Schlake and Sick, 2007). In 
tooth development the location of dental 

placodes are suggested to be determined 
by a balance between Fibroblast growth 
factor (FGF) and Bone morphogenetic 
protein (BMP) (Neübuser et al., 1997; 
Mandker and Neübuser, 2001).

Most of the organs are maintained 
by tissue turnover, repair and renewal 
throughout life. Self-renewing stem cells 
are responsible for this maintenance, thus 
they are distributed in almost every tissue. 
Stem cells have the ability to go through 
many cell divisions in an undifferentiated 
state and also the capacity to give rise 
to differentiated cell types, supplying 
new cells to the renewing tissue. Tissue 
turnover, for instance in the skin, can occur 
constantly, emphasizing the importance 
of the regulation of balance between 
proliferating and degradating cells. When a 
tissue is injured the healing processes, such 
as wound healing and scar formation, are 
initiated immediately in order to repair the 
tissue. Some organs renew cyclically, for 
instance hairs and feathers. In amphibians 
even whole complex organs, for instance 
limbs, can be regenerated. 

2. Morphology and mechanisms of 
tooth development

Teeth are typical organs for the 
vertebrates, although in some species 
they have been lost during the evolution. 
The essential steps in tooth development 
include formation of the placode, budding 
of the epithelium into the underlying 
mesenchyme, condensation of the 
mesenchyme interacting with the bud, 
and folding and growth of the epithelium, 
which will fi nally create the shape of the 
tooth crown (Thesleff, 2006). 

In many animals new teeth develop 
throughout life. In mammals teeth develop 
only once, as in rodents, or twice, as in 
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humans, forming primary and secondary 
dentition. Recently several researchers 
have sought to find a suitable model 
organism to study the formation of the 
secondary dentition, for instance ferrets, 
and enlighten the mechanisms of the 
regulation behind the secondary dentition 
(Järvinen et al., 2008, 2009). Fish, like 
other non-mammalian vertebrates, have 
continuous renewal and replacement of 
teeth, thus creating another kind of model 
extending understanding of control of the 
tooth development (Stock, 2007). Birds, 
on the other hand, are an example of 
toothless vertebrates. They lost their teeth 
over 80 million years ago but the genes 
regulating the tooth development still 
exist in the jaws, and transplanted mouse 
neural crest derived cells can induce tooth 
development in the chicken (Francis-
West et al., 1998; Schneider et al., 1999; 
Mitsiadis et al., 2003, 2006).

Rodents have two kinds of teeth, 
molars and incisors, separated by a 
toothless area, the diastema. Thus rodents 
lack both the canines and premolars, which 
are typical for many other mammals. 
While premolar development occurs 
during the early stages of development, 
it is arrested at the bud stage and the bud 
is removed apoptotically (Keränen et 
al., 1999; Peterkova et al., 2002). Some 
mutant mouse lines have an extra tooth 
in front of the fi rst molar, in the area of 
prospective premolars. For instance 
overexpressing Ectodysplasin (Eda) 
under Keratin14 promoter (K14-Eda) or 
disrupting balance of FGF signalling by 
knocking down Sprouty2 (Spry2) or Spry4 
expression leads to the formation of extra 
molar within the diastema (Mustonen et 
al., 2003; Klein et al., 2006).

The tooth can be structurally divided 
to a crown and a root. The morphology 
of the crown is strictly regulated during 

the development, leading to complex 
cusp patterning especially in the molars. 
The cusps form as a result of folding of 
the dental epithelium, which is regulated 
by enamel knots, the epithelial signalling 
centres (Jernvall et al., 1994; Vaahtokari et 
al., 1996). However, the teeth in fi sh and 
reptiles are mostly conical and lack cusps, 
and mammalian incisors and canines 
also lack the multicuspal structure. The 
morphological differences between 
incisors and molars become evident during 
the late stages of development. 

The patterning of the molar crown, 
i.e. the regulation of the cusp formation, 
is strictly regulated by activators 
and inhibitors.  According to the 
morphodynamic model activators induce 
the formation of an enamel knot, whereas 
inhibitors prevent the differentiation of the 
enamel knot, instead promoting growth 
(Salazar-Ciudad and Jernvall, 2002). 
The morphodynamic model predicts 
concentration peaks of activators and 
inhibitors which correspond to the gene 
expression patterns detected in the teeth. 
Suggested activator factors are BMPs, and 
inhibiting factors include FGFs and sonic 
hedgehog (Shh) (Salazar-Ciudad and 
Jernvall, 2002).  

The tooth crown is covered with 
enamel and dentin. Mesenchymal cells 
adjacent to the inner dental epithelium 
begin to differentiate into dentin forming 
odontoblasts, and the remaining dental 
papilla cells form the dental pulp. Enamel 
depositing ameloblasts differentiate 
from the inner dental epithelium. 
Epithelium differentiates also into the 
stellate reticulum, surrounded by stratum 
intermedium and inner or outer dental 
epithelia. Ameloblast and odontoblast 
differentiation is regulated by interactions 
between epithelium and mesenchyme. 

Review of the Literature
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The completion of crown formation 
is an onset of root development. The 
epithelial cervical loops lose stellate 
reticulum and the remaining epithelium, 
comprising only from inner and outer 
dental epithelia and the basal lamina, 
forms Hertwig’s epithelial root sheath 
(HERS). HERS guides root development 
and induces the formation of dentin and 
cementum, formed by cementoblasts 
differentiating from dental follicle cells. 
Later the HERS fractures and forms 
epithelial cell rests of Malassez (ERM) 
(Nanci, 2008). Recent results suggest that 
in some exceptions HERS is not necessary 
for the formation of ERM, and regulation 
between crown and root fate is flexible 
(Tummers and Thesleff, 2008). In addition 
to the roots, other supporting tissues are 
needed for the fi rm attachment of the tooth. 
Periodontal ligaments (PDL), alveolar 
bone, gingiva and cementum play a role in 
tooth attachment. The dental follicle gives 
rise to fi broblasts which synthesize fi bers 
and several other substances, eventually 
forming PDL. PDL are responsible for 
attaching the tooth to the alveolar bone, 
but they also act as sensory innervations 
(Nanci, 2008, pp. 261).   

In several mammalian species, such 
as rabbits and rodents, certain teeth grow 
continuously. Mice have continuously 
growing asymmetrical conical incisors but 
certain sibling vole has also continuously 
growing molars (Tummers and Thesleff, 
2003). The beginning of the growth and 
differentiation of the continuously growing 
molar and incisor resemble that of the root 
forming molar, but expression of several 
signalling molecules, which are lost when 
the root development begins in the molar, 
are maintained in continuously growing 
teeth (Tummers and Thesleff, 2003). 
However, the typical gene expression 
pattern for continuously growing teeth was 

maintained in the in vitro cultured mouse 
molar and it is suggested that epithelium 
of the molar still has the capacity to grow 
continuously depending on the regulation 
of surrounding environment (Tummers et 
al., 2007). 

2.1 Initiation of tooth development 

Tooth development is regulated by 
reciprocal and sequential interactions 
between the mesenchyme and epithelium. 
These interactions regulate proliferation, 
differentiation and apoptosis, and they are 
common among all organs formed from 
epithelium and mesenchyme, thus in most 
of the organs. 

The dental lamina (also called 
odontogenic band), a horseshoe shaped 
thickening of the epithelium (Figure 1), 
forms from epithelial cells derived from 
the fi rst branchial arch and is supported 
by underlying neural crest derived 
mesenchymal cells. Teeth develop only 
within the dental lamina, and even the 
development of the extra teeth, present in 
several different mutant mice, is restricted 
to the dental lamina. Although continuous 
activation of Wnt/β-catenin signaling 
in the oral epithelium induces ectopic 
teeth and continuous tooth formation in 
mice, the teeth in most of the mutants 
developed within the dental lamina 
(Järvinen et al., 2006; Kuraguchi et al., 
2006; Liu et al., 2008). However, recent 
results in Adenomatous polyposis coli 
(Apc), a member of a protein complex 
targeting β-catenin to degradation, loss-
of function mouse teeth indicated that in 
certain cases teeth can develop outside the 
lamina (Wang et al., 2009). Tooth placodes 
begin to form within the dental lamina at 
embryonic day (E) 11. The fi rst signals to 
initiate the tooth development come from 
the epithelium (Mina and Kollar, 1987). 
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Nevertheless, the mesenchyme also has to 
be competent to react to the signals. Later, 
after the initiation stage, the odontogenic 
potential shifts to the dental mesenchyme 
(Mina and Kollar, 1987). 

3. Signalling pathways regulating 
ectodermal organ development

Interactions between cells and tissues can 
be transported through signalling pathways 
and cell-cell contacts. The signalling 
pathways consist of a signalling molecule, 
a receptor and usually an intracellular 

signalling cascade. The signalling 
molecules, ligands, are secreted from the 
cell or attached to the cell membrane. The 
ligands induce an activation of a receptor 
in a target cell. The activation of the 
receptor usually initiates an intracellular 
signalling cascade, including several 
modulators, which eventually leads to the 
regulation of a target gene. The ligand 
can be an autocrine factor and interact 
with the secretory cell itself or a paracrine 
factor and interact with neighbouring cells 
(Figure 2). When the signalling requires a 
cell-cell contact between signalling cells 

E11 E12

Dental lamina

Incisor placode
Molar placode

Tongue

Figure 1. 
The expression pattern of Pitx2 
indicating the dental lamina in 
a mouse mandible at E11 and 
E12. Figure drawn according to 
Maria Jussila’s pictures.

ligand

Regulation of target genes

receptor

activation of the 
receptor by the ligand 
leads to the activation 
of an intracellular 
sigalling pathway

autocrine signalling paracrine signalling juxtacrine signalling

A B

transcription 
factors

an inhibitor can 
also act in an 
intracellular 
level

the signal is 
transported to the 
nucleus

recruitment of 
transcription 
co-activators

an inhibitor can 
bind to a ligand 
or a receptor

Figure 2.
A. A hypothetical signalling pathway showing different steps of a signalling cascade. A ligand 
binds to a receptor which leads to activation of intracellular signalling pathway fi nally regulating 
the target genes. 
B. Different types of signalling; autocrine, paracrine and juxtacrine signalling. Autocrine 
signalling activates the secretory cell itself whereas paracrine signalling requires the secretion of 
signalling molecules from one cell to induce the activation in the neighbouring cell. Juxtacrine 
signalling requires cell-cell contacts between interacting cells.
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the interaction is called juxtacrine. The 
signalling requires intensive control and 
fine-tuning because even small changes 
in signal activity can lead to drastic 
changes during development. Although 
the expression and function of ligands, 
receptors and intracellular signalling 
pathway modulators are tightly regulated, 
signalling still needs to be adjusted by 
inhibitors at various steps. Inhibitors can 
antagonise the signalling by inhibiting 
the functions of the ligand, the receptor, 
the intracellular pathway or the gene 
expression in the nucleus. The inhibitors 
bind specifi cally to their target molecules, 
and they are introduced later in detail 
together with the pathways they interact 
with. 

Another mechanism of regulation, 
microRNAs (miRNAs), has also been 
shown to participate in fi ne-tuning of the 
signalling. miRNAs are conserved and 
abundant class of small RNAs that do 
not code proteins, but instead function 
as regulatory molecules silencing their 
target genes at the posttranscriptional 
level (Bartel, 2009). In mammals miRNAs 
function usually by inhibiting translation 
by pairing to their target mRNAs but they 
can also degrade mRNAs (Bartel, 2004). 
miRNAs are involved in many processes, 
for example stem cell differentiation and 
in cell fate decision (Houbaviy et al., 2003; 
Hatfi eld et al., 2005; Karp and Ambros, 
2005; Zhang et al., 2007; Jevnaker and 
Osmundsen, 2008). 

The genes regulating development 
in different organs are conserved among 
vertebrates. The expression of genes is 
regulated spatially and temporally. The 
initiation and development of ectodermal 
derived organs is triggered by the temporal 
recruitment of highly conserved signalling 
molecules such as Transforming growth 
factor β (TGFβ), FGF, Wnt, SHH, Notch 

and Eda signalling. All of these signalling 
pathways are activated by secreted 
ligands except Notch pathway, in which 
ligands are bound to the cell membrane. 
The signalling pathways are complex, 
including transmembrane receptors and 
usually several different intracellular 
signalling pathways. 

3.1 TGFβ superfamily 

The TGFβ  superfamily, including 
BMPs, TGFβs, Activins and Inhibins, 
has important roles in patterning of the 
embryo and tissue homeostasis, as well 
as in controlling many different functions 
such as proliferation, differentiation and 
apoptosis of the cells (Balemans and van 
Hul 2002; Kitisin et al., 2007; Wu and 
Hill, 2009). During the early gastrulation 
TGFβ family ligands have an essential 
role determining the dorsoventral 
pattern of the mesoderm. BMPs and 
Activins are important molecules in axes 
formation and patterning during the early 
stages of development. They operate 
as morphogens, forming concentration 
gradients and regulating development in 
a dose-dependent manner (Wu and Hill, 
2009). The TGFβ superfamily signalling 
pathways include heteromeric receptors, 
several different intracellular pathways, 
Smad complexes, and proteins interacting 
with receptors or Smads. Signalling 
pathways are even regulated by many 
extracellular or intracellular inhibitors, 
such as Follistatin (Fst), Noggin, 
Sostdc1 (also called Ectodin), Chordin, 
Cerberus, Smurf and BAMBI (Wu and 
Hill, 2009). The functions of inhibitors 
are in many occasions redundant, for 
instance Fst, Noggin, and Chordin have 
to be simultaneously depleted in Xenopus 
embryo to cause the loss of embryonic 
dorsalisation, whereas single mutations 
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cause only moderate changes (Khokha et 
al., 2005). 

3.1.1 Receptors and intracellular 
signalling pathways 
The TGFβ superfamily receptors are 
serine – threonine kinase transmembrane 
receptors formed from two subunits, type I 
and II receptors (Wu and Hill, 2009). TGFβ 
ligand binds to the type II receptor which 
then phosphorylates the type I receptor. 
The phosphorylation of type I receptor 
activates the kinase activity leading to 
the activation of intracellular downstream 
pathway and determining the specifi city 
of intracellular signal (Figure 3). Several 
different downstream pathways are known, 

of these Smad dependent pathway is the 
best characterized. The TGFβ pathway can 
also signal at least through ERK and JNK 
pathways (Derynck and Zhang, 2003; 
Miyazono et al., 2005). 

Four different type II receptors 
and seven type I receptors have been 
identified (Kitisin et al., 2007). The 
specifi city of the intracellular signals is 
principally determined by type I receptors 
(Miyazono et al., 2005). A phosphorylated 
type I receptor activates the intracellular 
signalling cascade by phosphorylating 
Smads (Figure 3) (Derynck and Zhang, 
2003; Feng and Derynck, 2005). There 
are three different kinds of Smad 
transcription factors: receptor activated 

Figure 3.
BMP and Activin signalling pathways. In both pathways ligand binds to a type II receptor (RII) 
which phosphorylates a type I receptor (RI) leading to the activation of intracellular Smad 
signalling. BMP signalling activates R-Smads 2 and 3 whereas Activin signalling activates 
R-Smads 1, 5 and 8. Co-Smad, Smad4, can form a complex with R-Smads from both pathways. 
Complete Smad complex is translocated into the nucleus where it regulates transcription. Smad6 
and Smad7 antagonise the intracellular signalling by inhibiting the activation of R-Smads and 
Smad4.
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embryonic development and essential 
regulatory functions in many occasions, 
for instance in tissue homeostasis (Nohe 
et al., 2004; Gilbert, 2006, pp. 153). In 
early embryogenesis BMP4 functions as 
a morphogen regulating other genes in a 
concentration dependent manner and is 
an important ventraliser of the tissues in 
addition to functioning in left-right axis 
formation. BMPs induce ectoderm to 
become epidermal, and in order to enable 
nervous system to differentiate from the 
ectoderm BMPs need to be inhibited. 
During early gastrulation, a cocktail of 
inhibitors secreted by the node regulate 
BMPs. In addition, BMPs induce somite 
development and they are important in 
patterning, for instance anterior-posterior 
axis of digits. In several tissues, including 
teeth, BMPs function as inhibitors of 
differentiation, and instead promote 
growth.

Although there are more than 20 
different BMPs, only three type I and 
type II receptors are known to mediate 
BMP signalling (Nohe et al., 2004; Nie 
et al., 2006; Kitisin et al., 2007). Various 
Bmp knockout mice have emphasized the 
essential role of BMP signalling in the 
development. For instance, Bmp2-/- and 
Bmp4-/- mice die during early stages of 
embryogenesis, and Bmp7-/- are perinatally 
lethal (Winnier et al., 1995; Zhang and 
Bradley 1996; Luo et al., 1995; Dudley et 
al., 1995). 

   3.1.3 Activin
Activins are morphogens and important 
regulators during early embryogenesis 
(Green and Smith, 1990). Activin 
induces mesodermal tissues, for instance 
development of muscles and notochord, 
and depending on the Activin gradient 
genes regulate development of different 
mesodermal tissues in Xenopus embryo 

Smads (R-Smads), common mediator 
Smads (co-Smads) and inhibitory Smads 
(I-Smads). R-Smads are specifi c for BMP, 
Activin or TGFβ signalling. Receptor 
activated Smad1, Smad5 and Smad8 are 
phosphorylated by BMPs and Smad2 and 
Smad3 are activated by Activin (Feng and 
Derynck, 2005). The phosphorylated type 
I receptor phosphorylates R-Smad, which 
is then released and moves to interact with 
co-Smad. In mammals there is only one 
co-Smad, Smad4, which, after forming a 
complex with two R-Smads, translocates 
to the nucleus and regulates transcription 
(Nohe et al., 2004). Inhibitory Smad6 and 
Smad7 negatively regulate signalling of 
TGFβ superfamily members by preventing 
the activation of R-Smad and co-Smad 
(Feng and Derynck, 2005). 

TGFβ superfamily members have 
many different inhibitors. Negative 
regulation of BMP signalling during 
the early embryogenesis is essential for 
development of dorsal-ventral axis and 
induction of nervous system formation. 
Inhibitors of BMPs are expressed by 
the organiser of the gastrulation during 
Xenopus development, and include 
Noggin, Chordin, Nodal-related protein 
3 and Fst (Gilbert, 2006, pp. 328). 
Variability between TGFβ superfamily 
inhibitors is created through different 
binding properties. For instance Fst has 
higher affi nity in binding to Activin than 
to BMPs, but Noggin specifi cally binds 
and inhibits only BMPs (Nohe et al., 2004, 
Harrison et al., 2004).

3.1.2 BMPs
BMPs were fi rst identifi ed as molecules 
stimulating cartilage and bone formation, 
and indeed they participate in most of 
the processes associated with skeletal 
morphogenesis. Later BMPs were 
found to also have a significant role in 
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(Smith et al., 1990; van den Eijnden-
Van Raaij et al., 1990). Activins also 
participates in cell fate determination and 
left-right axis formation by inhibiting Shh 
expression and activating Fgf8 expression 
on the right side of the embryo. Activins 
have also other important functions 
in tissue growth, differentiation and 
maintenance. Activins are secreted dimers, 
consisting of different subunits (Sulyok et 
al., 2004; McDowall et al., 2008). Mice 
defi cient in ActivinβA have severe defects 
in the craniofacial region and die within 
24 hours of birth (Matzuk et al., 1995a). 
In contrast, mice defi cient in ActivinβB 
are viable but have defects in eyelid 
development and reproduction (Schrewe 
et al., 1994; Vassalli et al., 1994). Mice 
homozygous to both ActivinβA and 
ActivinβB had combinatorial phenotypes 
of single Activin mutants but no additional 
defects, indicating that ActivinβA and 
ActivinβB are not functionally redundant 
(Matzuk et al., 1995a). Activin induces 
the expression of Fst, the inhibitor of 
both Activin and BMPs, thus forming a 
negative feedback loop leading to tightly 
controlled Activin expression (Michel 
et al., 1993; Hemmati-Brivanlou et al., 
1994; De Winter et al., 1996; Iemura et al., 
1998). 

3.1.4 Follistatin - inhibitor of Activin 
and BMPs
Fst is the most studied Activin inhibitor 
(Nakamura et al., 1990; Patel, 1998; 
McDowall et al.,  2008). Fst also 
inhibits BMPs and is an important 
negative regulator already during early 
embryogenesis (Michel et al., 1993; De 
Winter et al., 1996; Iemura et al., 1998; 
Fainsod et al., 1997). In Xenopus embryos 
Fst is an essential inhibitor of BMP during 
neural induction (Hemmati-Brivanlou et 
al., 1994). However, loss of Fst in mouse 

does not cause neural or mesodermal 
defects due to the redundant functions of 
other inhibitors (Matzuk et al., 1995b). 
Fst is a secreted molecule with different 
isoforms formed by alternative mRNA 
splicing at the 3’ end (Sugino et al., 1993). 
Activin binds to Fst with higher affi nity 
than to Activin receptor, thus Fst is a 
powerful inhibitor of Activin (Schneyer et 
al., 1994; Thompson et al., 2005). Fst has 
two different mechanisms for inhibiting 
Activin, either by binding to Activin to 
inhibit binding between Activin and its 
receptor, or by binding to Activin on the 
membrane followed by internalization and 
degradation of the Fst-Activin complex 
(McDowall et al., 2008; deWinter 1996; 
Harrington et al., 2006). The inhibition of 
BMP occurs when Fst binds both the ligand 
and BMP type I receptor simultaneously 
(Iemura et al., 1998). Loss of Fst causes 
serious developmental problems, resulting 
in perinatal lethality in Fst-/- mice due to 
lung problems (Matzuk et al., 1995b). In 
addition, Fst-/- mice have defects in the 
hard palate and in the skin, the growth is 
retarded, and the whiskers are abnormal 
(Matzuk et al., 1995b). Overexpression 
of Fst under Keratin14 promoter (K14-
Fst) causes reduced body weight, larger 
ears and longer tails than in the wild type 
littermates, and wound healing is also 
severely delayed (Wankell et al., 2001).

3.2 FGF pathway

FGFs i   nduce many different responses 
including proliferation, differentiation, 
migration and inhibition of apoptosis 
(Bates, 2006). Over 20 FGF ligands 
have been found in vertebrates and 
their functions are adjusted by several 
inhibitors and feedback loops (Katoh and 
Katoh, 2006; Orniz and Itoh, 2001). The 
structure of FGFs in conserved among 
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the vertebrates and they all share a high 
affi nity for heparin sulfate proteoglycans 
(HSPG). Heparin and HPSG interact 
with ligand and receptor to enhance the 
formation of the complex (Ornitz and Itoh, 
2001).

FGF receptors (FGFr) are single 
transmembrane tyrosine kinase receptors. 
They can be tissue specific, either 
expressed in the epithelium, as FGFr1IIIb 
and FGFr2IIIb, or in the mesenchyme 
as FGFr1IIIc and FGFr3 (Kettunen et 
al., 1998). Hitherto four different genes 
encoding FGFr have been identified, 
and three of these can produce multiple 
receptor isoforms through alternative 
splicing (Bates, 2006). The receptors form 
from two subunits which are induced to 
dimerize upon ligand binding leading to 
autophosphorylation and activation of the 
intracellular pathways (Thisse and Thisse, 
2005). FGFs signal through three different 
intracellular pathways, of which the best 
characterised is Ras-ERK MAP kinase 
(Itoh, 2007). 

One level  of FGF signall ing 
regulation occurs through Sproutys (Spry) 
which inhibit the receptor tyrosine kinases 
interacting with Ras-ERK MAP kinase 
signalling (Mason et al., 2006). Sprys are 
induced by FGFs, thus interactions result 
a negative feedback loop. According to the 
current view Sprys need to be bound to the 
membrane in order to function (Kim and 
Bar-Sagi, 2004). Out of four known Sprys 
three have been detected in the developing 
tooth (Klein et al., 2006). 

The phenotypes of various Fgf 
knockouts vary from embryonic lethality 
to minor changes in adults. Fgf4-/- mice are 
early embryonically lethal, and Fgf9-/- and 
Fgf10-/- mice die shortly after birth (Colvin 
et al., 2001; Feldman et al., 1995; Min et 
al., 1998; Sekine et al., 1999). Fgf3-/- mice 
are viable with mild defects in the inner 

ear and some skeletal problems (Alvarez 
et al., 2003). In many cases FGFs are 
functionally redundant (Ornitz and Itoh, 
2001). 

3.3 Wnt pathway

In early Xenopus embryogenesis Wnt 
signalling participates in inducing muscle 
formation, specification of neural cells, 
generating polarity, and it regulates 
dorsal axis. Wnt signalling pathway has 
been indicated to participate in cell fate 
specifi cation, proliferation, differentiation 
and it has been connected with and 
extensively studied in the context of cancer 
and stem cells (Chu et al., 2004;  Gordon 
and Nusse, 2006; Blanpain et al., 2007; 
Haegebarth and Clevers, 2009). Until 
now, 19 Wnt ligands have been described 
in mammals. 

Wnt pathway consists of several 
different intracellular signalling pathways 
activated by Wnt ligands, including 
Wnt/β-catenin pathway and several 
pathways previously referred as non-
canonical pathways including planar cell 
polarity (PCP), Ca2+ related pathways and 
signalling mediated through receptors Ror2 
or Ryk (Gordon and Nusse, 2006). Several 
pathways share molecules (He et al., 1997; 
Holmen et al., 2002; Liu et al., 2005; 
Mikels and Nusse, 2006). Complexity 
of signalling is also formed when same 
ligands can activate different intracellular 
pathways depending on the receptors 
and the identity of the cell receiving the 
signal, leading to a situation where the 
pathways are not easy to distinguish 
(Clevers, 2006; van Amerongen et al. 
2008; Gordon and Nusse, 2006). Earlier 
the ligands were thought to regulate which 
intracellular pathway was activated. For 
instance Wnt5a was first identified as 
non-canonical ligand, but recently it was 
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shown to activate or inhibit Wnt/β-catenin 
pathway depending on the context (Mikels 
and Nusse, 2006). 

The best characterized pathway for 
the present is the Wnt/β-catenin pathway 
(Figure 4). The activation of the Wnt/β-
catenin pathway occurs when the Wnt 
ligand binds to Frizzled, a transmembrane 
receptor, and a lipoprotein receptor related 
protein (LRP) 5/6 co-receptor activates the 
interaction between receptor complex and 
intracellular Dishevelled. This is followed 
by the inactivation of the degradation 
protein complex and accumulation of 
β-catenin in the nucleus where it interacts 
with members of Lymphoid enhancer 
factor (LEF)/ T cell factor (TCF) family 
of transcription factors and activates 

gene expression (Clevers, 2006). When 
Wnt ligands are absent and the pathway 
is inactive, β-catenin is phosphorylated 
and targeted to degradation by a protein 
complex consisting of several molecules 
including Axin, APC, CK1, and Glycogen 
synthase kinase 3 (GSK3).

Less characterized pathways include 
PCP, Ca2+ related pathways and signalling 
mediated through receptors Ror2 or Ryk 
(van Amerongen et al., 2008). Wnt/PCP 
and Wnt/Ca2+ pathways are mostly known 
to participate in the regulation of cell 
movements and orientation (Moon et al., 
1993; Ungar et al., 1995; Slusarski et al., 
1997; Jaffe, 1999). Activation of Wnt/PCP 
pathway leads to Dishevelled mediated 
activation of c-jun N-terminal kinase 
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Figure 4.
Wnt/β-catenin signaling pathway is activated when β-catenin binds to Frizzled receptor and 
together with LRP5/6 co-receptor activates Dishevelled (Dsh). This leads to the disintegration 
of cytoplasmic destruction complex, thus stabilized β-catenin accumulates to the nucleus and 
activates its target genes.
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(JNK) which affects the cytoskeletal 
dynamics (Yamanaka et al., 2002). Also 
Frizzled has a role in Wnt/PCP pathway. 
However, although at least several 
essential molecules participate both in 
Wnt/β-catenin and Wnt/PCP pathway, the 
pathways are considered to be separate 
and several key Wnt/β-catenin pathway 
molecules, such as LRP, TCF and β-catenin 
do not participate in Wnt/PCP pathway 
(van Amerongen et al., 2008). Wnt 
binding to Wnt/Ca2+ signalling pathway 
leads also to Frizzled mediated activation 
of intracellular signalling, the release of 
Ca2+ in the cells and  the activation of 
Ca2+ dependent molecules (Slusarski et 
a., 1997; Kühl et al., 2000). There is some 
controversy over whether Wnt ligands are 
always or at all needed for the activation of 
Wnt/Ca2+ pathway, and the same question 
has also arisen concerning the Wnt/PCP 
pathway activation (van Amerongen et 
al., 2008; Seifert and Mlodzik, 2007; 
Hendrickx and Leyns, 2008). Two new 
receptors have recently been connected 
with Wnt signalling, an atypical tyrosine 
kinase Ryk and receptor tyrosine kinase 
Ror2. Ryk and Ror2 have Wnt binding 
domains and they can interact at least with 
Wnt1, Wnt3a and Wnt5a (Kikuchi et al., 
2007; Nusse, 2008)

The Wnt pathway is closely regulated 
by several inhibitors. Dickkopf1 (Dkk1), 
Dkk2 and Dkk4 antagonise Wnt signalling, 
but the role of the fourth Dkk family 
molecule, Dkk3, remains controversial 
(Caricasole et al. 2003; Hoang et al. 2004; 
Niehrs, 2006; Fliniaux et al., 2008; Lee et 
al. 2008). Dkks inhibit Wnt signalling by 
binding to LRP6 and preventing Wnt from 
binding to the receptor. As co-receptor 
Kremen binds to Dkk the receptor complex 
is internalized through endocytosis 
(Niehrs, 2006). Sostdc1 inhibits Wnt 
signalling by binding to LRP6 (Itasaki 

et al., 2003). Cerberus, Wnt inhibitory 
factor (Wif) and Secreted Frizzled related 
protein (Sfrp) family molecules are also 
Wnt inhibitors (Hsieh et al., 1999; Jones 
and Jomary, 2002; Kawano and Krypta, 
2003). 

The Wnt signalling pathway has 
many different mouse models, and knock 
out mice have been constructed of almost 
all Wnt ligands. The phenotypes are often 
severe and in many cases cause massive 
defects in early gastrulation, defects in axis 
formation for instance (Liu et al., 1999). 
In humans heterozygotic loss of Wnt10a 
or Axin2 causes ectodermal defects and 
colorectal cancer (Adaimy et al., 2007; 
Lammi et al., 2004).

3.4 Notch pathway

Notch pathway can activate or inhibit 
many different regulatory events such 
as cell-fate termination, boundary 
formation, stem cell maintenance and cell 
proliferation, and it is often connected with 
inhibition of cell differentiation (High and 
Epstein, 2007). An important function of 
Notch signalling during embryonic cell-
fate termination is lateral inhibition, i.e. 
the mechanism how Notch can cause two 
identical cells to adopt different fates (Doe 
and Goodman, 1985). In mammals, the 
Notch pathway consists of fi ve ligands and 
four receptors. The ligands belong to two 
different families, Jagged and Delta-like 
(Dll). Although Dll3 is structurally similar 
to other Dlls it is unclear whether Dll3 
functions as Notch ligand (Chiba, 2006). 
The ligands are transmembrane proteins, 
thus they only activate adjacent cells. 

The Notch receptor is activated 
following ligand binding and leads to 
consecutive cleavages of the receptor and 
the cleavage of Notch intracellular domain 
(NICD) by γ-secretase. NICD is then 
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transferred into the nucleus where it forms 
a complex with co-activators leading to 
the activation of the transcription (Fortini, 
2009). Recent results also suggest that 
cellular context has an influence on the 
amplitude and duration of Notch signalling 
activity (Kopan and Ilagan, 2009). 

Notch signalling can be modulated 
by several molecules acting either 
antagonistically or synergistically 
depending on the cellular and receptor 
context. Fringe proteins can enhance or 
inhibit signalling, and Numb, which often 
antagonise Notch signalling, can in some 
cases function also synergistically with 
Notch (Kopan and Ilagan, 2009). 

Most of the mouse mutants with a gene 
knocked out from the Notch signalling 
family have phenotype indicating that not 
much redundancy exists between Notch 
pathway genes. Mice defi cient in a single 
Notch pathway gene can either have 
minor phenotype defects or die during the 
development. For instance mice defi cient 
in Notch1, Notch2, Dll1 or Jagged1 
are embryonically lethal, but Jagged2 
defi cient mice die perinatally (Swiatek et 
al., 1994; Conlon et al., 1995; Hamada 
et al., 1999; Xue et al., 1999; Jiang et al., 
1998). Notch3 or Notch4 knock out mice, 
however, are viable and fertile (Krebs et 
al., 2000, 2003). 

3.5 Shh pathway

The Hedgehog (Hh) family consists 
of three known molecules, Desert 
hedgehog (Dhh), Indian hedgehog (Ihh), 
and Sonic hedgehog (Shh). Hedgehog 
molecules have essential roles in left-
right asymmetry, formation of the organs, 
in patterning of the limbs and in stem 
cell maintenance. During development 
Hh molecules act as gradient depending 

morphogens controlling distinct cell fates 
(Ingham and McMahon, 2001). 

Shh is the only Hh molecule 
expressed in the developing tooth (Bitgood 
and McMahon, 1995). Shh binds to the 
multipass transmembrane receptor Patched 
(Ptc) thereby releasing another multipass-
transmembrane protein, Smoothened, from 
the suppression of Ptc. This leads to the 
activation of the intracellular signalling 
cascade through serine threonine kinase 
3 (STK3) and stabilisation of Gli family 
members (Katoh and Katoh, 2006). 
Intracellular signalling is mediated by Gli 
transcription factors and the end result 
can be either activation or inhibition 
of the target gene. In the absence of Ptc 
activation, Glis are ubiqutinated and 
partially degraded.   

3.6 Ectodysplasin pathway 

The Ectodysplasin (Eda) pathway is one 
of the Tumor Necrosis Factor (TNF) 
superfamily members. Eda is essential for 
the development of many ectodermally 
derived organs, and defects in its signalling 
pathway causes a syndrome called 
hypohidrotic ectodermal dysplasia (HED) 
in humans. Eda pathway is activated when 
the Eda ligand binds to a Eda receptor 
(Edar) and modulates the cytosolic adaptor 
molecule Edar-associated death domain 
(Edaradd) (Mikkola and Thesleff, 2003). 
The binding of Edar to Edaradd leads to 
interaction with other adaptor molecules, 
for example Traf6 in vivo. This complex 
activates an intracellular signalling cascade 
leading to the activation of the canonical 
Nuclear factor-κB (NF-κB) pathway 
(Mikkola, 2009). Eda has several known 
target genes. For instance, it regulates 
the expression of two BMP antagonists, 
connective tissue growth factor (Ccn2/
ctgf) and Fst, as well as Dkk4, a Wnt 
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only for a short while, and at E12.5 the 
potential shifts to the mesenchyme, which 
then becomes the regulator of further tooth 
development (Kollar and Baird 1970; Mina 
& Kollar 1987; Vainio et al., 1993; Chen et 
al., 1996). After the shift the mesenchyme 
is also capable of inducing nondental 
epithelium to develop and form a tooth 
(Kollar & Baird1969; Ruch1987; Vainio 
et al., 1993). The formation of epithelial 
thickenings, or placodes, within the 
dental lamina, indicates the beginning of 
the tooth development at E11. Signalling 
centers within the placodes express many 
molecules regulating tooth development 
and induce condensation in the underlying 
mesenchyme (Åberg et al., 1997; Dassule 
and McMahon, 1998; Keränen et al., 
1998; Sarkar and Sharpe, 1999). The 
epithelial placodes express Bmp4, and 
BMP4 induces the expression of several 
genes, including Msx1, Msx2, Bmp4 and 
Lef1, in the condensing mesenchyme 
(Vainio et al., 1993; Kratochwil et al., 
1996; Bei and Maas, 1998). Defi ciency in 
several different genes for instance both 
Msx1 and Msx2, Pitx2 or p63 arrests tooth 
development in the initiation stage, (Lin et 
al., 1999; Satokata et al., 2000; Laurikkala 
et al., 2006). Schematic presentation of 
molar and incisor development is in Figure 
5.

4.2 Bud stage

The tooth bud begins to form as an 
invagination of the epithelium at E11.5. 
The epithelial cell population at the tip 
of the bud forms a new signalling centre 
at the late bud stage, the primary enamel 
knot, which begins to express wide variety 
of signalling molecules belonging to many 
different signalling families, including 
Fgfs, Bmps, Shh, and Wnts (Thesleff, 
2003). The primary enamel knot, 

inhibitor (Pummila et al., 2007; Fliniaux 
et al., 2008). 

Mouse models deficient in Eda, 
Edar or Edaradd arose by spontaneous 
mutations, but the genetic basis of the 
pathway was discovered only several 
years ago (Kere et al., 1996; Srivastava 
et al., 1997; Yan et al., 2000; Headon et 
al., 2001). The phenotypes of these mouse 
mutants are similar and malformations can 
be seen for instance as reduced number of 
hairs, missing and misshapen teeth and the 
total absence of sweat glands (Mikkola 
et al., 2009). In humans HED causes 
phenotypic characteristics resembling 
that of the mouse phenotype. Eda has 
been shown to promote placodal cell fate 
but it is not the fi rst signal to trigger fate 
decision (Mustonen et al., 2004).

 
4. Molecular regulation of tooth 
development

4.1 Initiation and tooth identity

BMPs and FGFs, expressed in the 
epithelium, are essential participants in 
the initiation of tooth development. FGF8 
induces mesenchymal expression of 
transcription factor Pax9 in the branchial 
arch mesenchyme at E10, while BMP4 
inhibits Pax9 expression (Neubüser et al., 
1997). In Pax9-/- mice, tooth development 
arrests at the bud stage, due to the lack of 
mesenchymal expression of Bmp4, Msx1 
and Lef1, regulated by Pax9 (Peters et al., 
1998). Pitx2 and Shh are fi rst expressed 
restrictedly in the dental lamina and later in 
the tooth placodes (Keränen et al., 1999). 
During the initiation of tooth development 
the odontogenic potential is situated in 
the epithelium, thus the fi rst signal comes 
from the epithelium and regulates the 
mesenchyme. However, the odontogenic 
potential remains in the epithelium 
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consisting of condensed non-proliferating 
epithelial cells, is essential in regulating 
proliferation and the continuation of the 
tooth development, and it remains to direct 
the tooth development through the cap 
stage and regulate formation of secondary 
enamel knots (Jernvall et al., 1994). Msx2 
and p21, which are induced by BMP4 from 
the mesenchyme, are the early markers of 
the enamel knot (Jernvall et al., 1998). 
p21, a cyclin-dependent kinase inhibitor 
associated with cessation of proliferation 
and beginning of terminal differentiation, 
might be involved with the differentiation 
of enamel knot cells (Bloch-Zupan et al., 
1998; Jernvall et al., 1998).

The transition stage between bud and 
cap stage is an important step triggering 
the development of the tooth crown 
morphology, and in many mice defi cient 
in a certain gene tooth development 
is arrested at this step. For instance in 
Fgfr2b-/-, Pax9-/-, Lef1-/-, Msx1-/- and 
Bmpr1A-/-  mice tooth development is 
arrested at the bud stage (van Genderen 
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et al., 1994; Chen et al., 1996; Peters et 
al., 1998; De Moerlooze et al., 2000). In 
ActivinβA-/- mouse the development of 
incisors and mandibular molars is arrested 
at the bud stage, but the maxillary molars 
are unaffected, indicating that some 
other signalling pathway must regulate 
the development of maxillary molars 
(Ferguson et al., 1998). 

4.3 Cap stage and development of tooth 
crown morphology

The transition from the bud to cap stage 
begins as the bud starts to grow and 
surround condensed mesenchyme, the 
dental papilla. The tips of the flanking 
epithelium surrounding the dental papilla 
form cervical loops which later participate 
in root development. Development of 
the cervical loop, comprised of stellate 
reticulum, stratum intermedium and inner 
or outer dental epithelium, is initiated by 
the primary enamel knot, but while the 
flanking epithelium continues to grow 

Figure 5.
Embryonic development of mouse teeth. The early stages of molar and incisor development 
are similar. The fi rst signal of the tooth development comes from the epithelium and the early 
signalling centre begins to regulate the underlying mesenchyme. The differences between molar 
and incisor begin to arise during the cap stage and the characteristic shapes and structures of both 
teeth are distinct at the bell stage. Enamel knot, an epithelial signalling centre appears at the cap 
stage to regulate the tooth development. Epithelium is in dark grey and mesenchyme in light grey. 
Abbreviations: ide, inner dental epithelium; ode, outer dental epithelium.
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the regulatory role of the enamel knot is 
lost. Typical characteristics of the cap 
stage, regulated by primary enamel knot, 
are rapid cell proliferation and folding of 
the epithelium, which lead to the changes 
in crown morphogenesis (Jernvall et 
al., 1994). The primary enamel knot is 
a transient structure and it is removed 
by BMP4 induced apoptosis during 
the transition from cap to bell stage 
(Vaahtokari et al., 1996; Jernvall et al., 
1998). During the bell stage the shape of 
the crown is determined and the variable 
morphologies of the teeth begin to take 
shape under strict regulation. The primary 
enamel knot controls the localisation of 
secondary enamel knots, which arise in 
area of the future cusp tips and as signalling 
centres regulate the tooth morphogenesis 
and cusp patterning (Jernvall et al., 
1994). According to the morphodynamic 
model, activators, presumably BMPs, and 
inhibitors, presumably FGFs and Shh, are 
expressed in the primary enamel knot and 
regulate the formation and localisation 
of secondary enamel knots (Salazar-
Ciudad and Jernvall, 2002). The activator 
promotes cell differentiation by inducing 
the formation of an enamel knot, but the 
inhibitor promotes growth and inhibits 
differentiation. The dynamics of the 
activator and inhibitor regulate the area 
where enamel knots are formed and cell 
differentiation occurs. Tooth shape varies 
widely between different mammalian 
species, and even the different teeth within 
a species are variable. The variability 
between tooth morphologies is regulated 
by the same set of genes indicating the 
importance of fine tuning of the gene 
network. The secondary enamel knots 
express many signalling molecules, for 
instance Fgf4, Fgf9, Shh, Bmp4, Wnt10b, 
p21, Lef1 and Msx2 (Keränen et al., 1998; 
Kettunen and Thesleff, 1998). 

4.4 Bell stage and cell differentiation

The differentiation of the distinct dental 
cell types, which is also regulated by 
epithelial mesenchymal interactions, 
begins at the early bell stage. Many aspects 
concerning the cell differentiation still 
remain unclear due to the complicated and 
reiterative nature of this signalling. During 
the bell stage odontoblasts and ameloblasts 
differentiate and begin to form dentin 
and enamel, covering the tooth crown. 
Secondary enamel knots disappear at the 
late bell stage after the cusps are initiated 
(Vaahtokari et al., 1996). Slit3, marker 
of primary and secondary enamel knots, 
remains in several cells of the secondary 
enamel knot after the histological 
structures of the knot are lost (Løes et al., 
2001; Luukko et al., 2003). Later Slit3 
is detected in a cluster of epithelial cells 
remaining next to the enamel free area of 
the molar cusps, suggesting a presence 
of tertiary enamel knot (Luukko et al., 
2003). 

Odontoblasts differentiate from 
the dental papilla mesenchymal cells 
adjacent to the inner dental epithelium. 
The differentiation of the odontoblasts 
begins from the tips of the cusps next 
to the secondary enamel knots which 
presumably participate in odontoblast 
differentiation (Thesleff et al., 2001). The 
cells in a single cell layer aligning the 
inner dental epithelium fi rst differentiate 
into cuboidal preodontoblasts, which 
elongate into columnar odontoblasts and 
become polarised. Shh is necessary for 
the organisation and polarisation of the 
odontoblast cell layer, although it is not 
needed for cellular differentiation (Dassule 
et al., 2000). Odontoblasts produce 
dentin matrix, consisting mainly of type I 
collagen. Mesenchymal pulp cells are able 
to maintain the dentin by differentiating 
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to odontoblasts and regenerating dentin in 
case of injury, for example caries (Nanci, 
2008, pp.103, 205). 

Several molecules have been shown 
to induce odontoblast differentiation in 
vitro, including members of the TGFβ 
signalling family and FGFs (Vaahtokari et 
al., 1991; Cam et al., 1992; Bègue-Kirn et 
al., 1992, 1994). A combination of either 
BMP2 and TGFβ1 or FGF1 and TGFβ1 
induce the differentiation of odontoblasts 
in the isolated dental papilla (Bègue-Kirn 
et al., 1992; Unda et al., 2000). Bmp4 
is expressed in the preodontoblasts but 
it is downregulated in the odontoblasts 
where Bmp2 expression, nonetheless, is 
upregulated (Nakashima 1994; Nakashima 
and Reddi, 2003, Yamashiro et al., 2003). 
BMP2 and BMP4 stimulate odontoblast 
differentiation in vitro (Vainio et al., 
1993). These results suggest that BMPs 
have an essential role in the odontoblast 
differentiation. In addition, BMP2, 
BMP4 and BMP7 induce odontoblasts to 
produce dentin, and BMP2 recombinant 
protein induces differentiation of dental 
pulp stem cells into odontoblasts in vitro, 
indicating that BMPs also participate 
in the regeneration of odontoblasts 
(Nakashima, 1994; Rutherford et al., 
1994; Iohara et al., 2004). Wnt signalling 
has also been indicated as a participant in 
dentin formation. Continuous stabilisation 
of β-catenin in the mesenchyme disrupts 
the differentiation of both odontoblasts 
and ameloblasts (Chen et al., 2009). In 
addition, Wnt10a is expressed in the 
secretory odontoblasts together with 
dentin sialophosphoprotein (Dspp), and 
it is suggested to be upstream regulator 
of Dspp, and to participate in dentin 
mineralization (Yamashiro et al., 2007).

Ameloblasts are columnar and 
polarised cells differentiating from the 
inner dental epithelium and forming an 
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organised cell layer lining the basement 
membrane. Ameloblast differentiation 
can be divided in three consecutive 
stages, presecretory, secretory and 
maturation, which are responsible for 
different functions. The ameloblast 
layer is characterised by strong cell-cell 
adhesion, especially during secretory 
stage. Ameloblasts synthesise and secrete 
proteins specific to enamel, eventually 
forming enamel, the most highly 
mineralized tissue in the vertebrates. 
Unlike odontoblasts, ameloblasts are 
removed by apoptosis after maturation of 
the enamel or at the eruption of the tooth. 
Thus, after the enamel is formed it cannot 
be regenerated anymore. As the structure 
of the enamel is highly mineralized and 
organised, it partially compensates for this 
limitation on regeneration.     

The differentiation of ameloblasts 
requires signals from the functional 
odontoblasts and predentin or dentin, 
but ameloblasts themselves also express 
many genes presumably participating in 
cell differentiation and enamel formation 
(Zeichner-David et al., 1995). Enamel 
secretion begins once dentin mineralization 
has started. To date several genes, most 
of them participating also in odontoblast 
differentiation, have been suggested to 
regulate ameloblast differentiation, for 
instance BMPs and FGFs. Bmp2, Bmp4, 
Bmp5 and Bmp7 are expressed in the 
epithelium and ameloblasts, suggesting a 
contribution to ameloblast differentiation 
(Åberg et al., 1997; Heikinheimo 
et al., 1998). Upregulation of BMP 
inhibitor Noggin under keratin14 (K14-
Noggin) cause abnormal differentiation 
of ameloblasts and defective or lost 
enamel layer (Plikus et al., 2005). In 
addition, Bmp2 and Tgfβ1, expressed 
by odontoblasts, induce ameloblast 
differentiation in vitro (Coin et al., 1999). 
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The role of FGFs is shown in the mouse 
incisor where unbalanced FGF signalling 
results ectopic ameloblast differentiation 
(Klein et al., 2008). 

Amelogenesis imperfecta (AI) is a 
heterogenous group of inherited defects 
in enamel formation. The variability in the 
enamel defects in many cases is caused 
by the timing of amelogenesis disruption. 
Changes in several ameloblast specific 
genes, in Amelogenin, Ameloblastin, 
Enamelysin, Kallikrein-related peptidase-4 
and Fam83H, are known to cause defects in 
the enamel, (Gibson et al., 2001; Caterina 
et al., 2002; Paine et al., 2003; Fukumoto 
et al., 2004; Hart et al., 2004; Kim et al., 
2008). Similarly, many different genes 
have been reported to cause defects in the 
enamel in various mouse mutants, either 
in loss of function or gain of function 
situations. For instance, overexpression 
of Eda, Wnt3 or Tgfβ1 causes aberrant 
or lost enamel layer (Haryuama et al., 
2006; Millar et al., 2003; Mustonen et 
al., 2004). Shh, expressed both in the 
preameloblasts and ameloblasts, has a 
role in ameloblast differentiation and 
proliferation, as shown through loss of 
function experiments (Dassule et al., 
2000; Gritli-Linde et al., 2002). In Msx2 
defi cient mice, ameloblasts reach secretory 
stage and the secreted enamel is abnormal, 
indicating that Msx2 controls ameloblast 
terminal differentiation (Bei et al., 2004). 
Mutations in Distal-less homeobox 3 
(Dlx3) are associated with tricho-dento-
osseous syndrome in humans causing for 
instance hypoplasia in the enamel (Price 
et al., 1998). Defi ciency of T-box 1 (Tbx1) 
causes loss of ameloblasts and enamel in 
mouse (Catón et al., 2009). Upregulated 
FGF signalling induces ectopic expression 
of Tbx1 and Amelogenin, indicating the 
signalling interaction (Mitsiadis et al., 
2008a; Catón et al., 2009). The phenotype 

in Chicken ovalbumin upstream promoter 
transcription factor-interacting protein 
2 (Ctip2, also called Bcl11b) deficient 
mice show unpolarised ameloblasts in 
the unorganised ameloblast cell layer, but 
surprisingly also ectopic ameloblasts in 
the lingual side of the incisor (Golonzhka 
et al., 2009).        

4.5 Continuously growing mouse 
incisors 

Mouse incisors grow continuously to 
replace the wear of the tooth on the 
apical end. The maintained asymmetrical 
cervical loops, which harbour epithelial 
stem cells, and asymmetric ameloblast 
differentiation and enamel deposition 
are two characteristics responsible for 
the distinct structures of incisor. The 
deposition of enamel only on the labial 
side, and thus lingual side covered 
predominantly with dentin, keeps the teeth 
sharp as the upper and lower incisors are 
gnawed against each others. However, 
due to the asymmetric enamel distribution 
incisors are also more susceptible to wear, 
and continuous regeneration is required for 
tooth maintenance. Due to the morphology 
the lingual side of the incisor is called the 
root analogue and the labial side, covered 
by enamel, is called the crown analogue. 
The molecular mechanisms regulating 
the formation of asymmetric structures of 
the incisor began to be uncovered in this 
thesis work. 

The initial morphological differences 
between molar and continuously growing 
mouse incisors arise early in the cap 
stage. In the cap stage incisor the fl anking 
epithelium, which is beginning to surround 
the condensed mesenchyme, starts to 
proliferate and grow asymmetrically, 
leading to different sized lingual and labial 
cervical loops (Figures 5 and 6). Labial 
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cervical loop cells proliferate effi ciently 
and the labial epithelial tissue becomes 
larger than the lingual cervical loop. The 
cervical loop area consists of the loose 
stellate reticulum cells surrounded by a 
denser cell layer of stratum intermedium. 
The outermost epithelial cell layer is the 
basal layer, which on the tooth papilla side 
is called the inner dental epithelium and on 
the follicle side outer dental epithelium. 

The differences between lingual 
and labial cervical loops of the incisor 
increase after cell differentiation begins. 
Odontoblast differentiation begins on the 
both sides, but ameloblast differentiation 
occurs only on the labial side (Figure 
6). As development continues dentin is 
secreted around the incisor but enamel is 
restricted on the labial side. Ameloblasts 
in different consecutive stages can be 
visualised from the proximal to apical 
end on the labial side of an incisor, as 
newly differentiated, pre-secretory stage 
ameloblasts reside in the proximal area 
and the ameloblasts in the maturation 
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stage reside in the apical area. During the 
late bell stage of molar development the 
stellate reticulum of the cervical loop is 
lost and the tissue begins to differentiate 
to the HERS. However, in the incisor the 
stellate reticulum is sustained, consisting 
of only a few cells on the lingual side 
but on the labial side harbouring large 
compartment of loose cells. The cervical 
loop comprises the epithelial stem cells 
of the incisor, which are responsible for 
continuous ameloblast differentiation and 
enamel formation (Harada et al., 1999). In 
the molar HERS initiates root formation 
and the fragments of HERS give rise to 
ERM. However, on the lingual side of the 
continuously growing mouse incisor, in the 
continuously growing roots of sloth molar 
and in K14-Eda mice incisors epithelium 
fragments and forms ERM although HERS 
is not formed, thus questioning whether 
HERS is always necessary for root 
formation (Tummers and Thesleff, 2008). 
I will discuss the molecular mechanisms 
regulating incisor development later. 

Figure 6. 
The structure of a continuously growing mouse incisor during the late bell stage. Labial and 
lingual cervical loop have distinguished structures. Lingual cervical loop consists only of inner 
and outer dental epithelium whereas labial cervical loop includes additionally large stellate 
reticulum harbouring epithelial stem cells. Odontoblasts differentiate and dentin is formed on 
both labial and lingual side but ameloblast differentiation and enamel formation is restricted to 
the labial side.
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but sometimes differentiated cells can 
transdifferentiate into some other kind of 
cell type. During embryonic development 
transdifferentiation occurs, for example, 
in neural crest cells which are originally 
epithelial cells but transdifferentiate into 
mesenchymal cells before migrating 
to the branchial archs (Gilbert, 2006). 
Recently, induced pluripotent stem (iPS) 
cells were induced from embryonic and 
adult fi broblast cells, and they share many 
characteristics typical to embryonic stem 
cells, most importantly the potential to 
differentiate into tissues from all three 
germ layers (Takahashi and Yamanaka, 
2006; Maherali et al., 2007; Meissner et 
al., 2007; Wernig et al., 2007; Yamanaka 
et al., 2007). iPS cells may be in the 
future a source of stem cells for tissue 
engineering, substituting the embryonic 
stem cells and thus resolving ethical 
problems concerning the use of embryonic 
derived stem cells. The iPS cells are 
induced using Oct3/4, Sox2, c-myc and 
Klf4 (Takahashi and Yamanaka, 2006). 
Proto-oncogene c-myc is a probable cause 
of tumorigenic characteristics typical to 
some of the iPS cells, thus substituting 
molecules have been under search, the 
newest results showing that hypoxia may 
be a solution (Yoshida et al., 2009). Thus, 
many characteristics of iPS cells and 
the technique of cell induction still need 
to be analysed precisely before clinical 
applications can be tested.      

Another typical character of stem 
cells, slow proliferation, is thought to 
occur to avoid accumulating mutations. 
In mammals stem cells are usually in a 
quiescent state or cell cycle is extremely 
slow (Cheshier et al., 1999; Melton and 
Cowan, 2004). However, recent results 
have indicated that stem cells are not 
always quiescent (Barker et al., 2007). 
Stem cells and the surrounding tissue 
together create a niche (Ohlstein et al., 
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5. Stem cells
  
In addition to their role in embryogenesis, 
stem cells are needed to maintain tissue 
homeostasis in normal cell turnover and 
in case of injury in the adult. Defi ning a 
stem cell is complicated due to different 
characters and variable amount of 
plasticity identified in undifferentiated 
cells. During early embryonic development 
cells can be totipotent and are able to 
differentiate into all kinds of cells of the 
body. Later stem cell plasticity diminishes 
and different characteristics between 
stem cells and differentiated cells become 
more ambiguous. A remarkable amount 
of plasticity remains in some adult stem 
cells, for instance a mammary gland or a 
crypt of the intestine can be rebuild from 
a single cell (Shackleton et al., 2006; Sato 
et al., 2009). 

5.1 Characteristics of stem cells

Stem cells can be defi ned as self-renewing, 
slowly proliferating, having potency to 
differentiate into a single or several type 
of differentiated cells and forming more 
stem cells out of a single cell (Melton 
and Cowan, 2004; Slack, 2009). During 
proliferation the stem cell generates two 
daughter cells with similar characteristics 
to the stem cell or one daughter cell that 
is identical to the stem cell and another 
committed cell beginning to differentiate 
and thus having more restricted plasticity 
(Molofsky et al., 2004; Mitsiadis et al., 
2007). The committed cell can give 
rise to increasingly committed cells 
with less plasticity and which might 
show some kind of differentiation. 
The differentiation capability of the 
stem cell diminishes gradually and 
it is regulated by the surrounding 
environment. Usually, committed cells 
cannot return to less committed stage, 
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2004; Moore and Lemischka, 2006). The 
niche is often responsible for keeping the 
stem cells in an undifferentiated state and 
maintaining their stemness, thus inhibiting 
differentiation in an environment 
consisting of differentiated cells. Several 
molecules participating in the regulation 
of stem cells have been uncovered. For 
instance, addition of BMP to the serum in 
vitro induces downstream target Inhibitor 
of differentiation (Id), which maintains 
the undifferentiated state of the stem 
cells and inhibits neuronal differentiation 
(Ying et al., 2003). Also ActivinA is 
capable for maintaining the self-renewal 
and pluripotency of human embryonic 
stem cells in vitro by inducing several 
molecules including Oct4, Nanog, Wnt3 
and Fgf8, and suppressing BMP signal 
(Xiao et al., 2006). 

Identifying a stem cell is complicated 
because common molecules for stem cells 
still remain unrecognised and may not 
even exist, and in many tissues a specifi c 
stem cell marker is unknown. Most known 
stem cell markers identify only one or few 
types of different stem cells. This suggests 
that stem cell niches in different tissues 
are regulated by variable signalling. One 
typical feature of stem cells, the slow 
cycling velocity, has been used as an 
identifying character. Long term label-
retention method labels slowly cycling 
cells and it has been used to label stem 
cells for instance in the hair follicle and 
intestine (Cotsarelis et al., 1990; Potten et 
al., 1974). However, recently new results 
concerning the localisation of stem cells 
in the intestine and the validity of stem 
cell recognition by label retaining method 
have been questioned. The +4 cells in the 
intestine were recognized as stem cells 
because of their status as label retaining 
cells (LRC). Conversely to this, recent 
experiments, done with a stem cell marker, 

identifi ed the stem cells among crypt base 
cells (Barker et al., 2007). These cells are 
actively proliferating cells, indicating that 
occasionally slow proliferation cannot be 
utilised as a character identifying stem 
cells. An overview of common or proposed 
stem cell markers in epidermis, feathers, 
hairs, intestine, bone marrow and mouse 
incisors is in Table1. 

5.2 Stem cell niche

The current hypothesis is that the stem 
cells are located in particular stem cells 
niches in the tissues. The niche is a 
compartment that maintains stem cells in 
an undifferentiated stage and regulates 
proliferation (Melton and Cowan, 
2004; Ohlstein et al., 2004; Moore and 
Lemischka, 2006; Mitsiadis et al., 2007; 
Fuchs, 2009). It consists of stem cells and 
the surrounding tissue, comprised of both 
differentiated cells and extracellular matrix 
(Tumbar et al., 2004). The combination of 
intrinsic stem cells factors and the niche 
maintains the undifferentiated stage of 
stem cells and regulates proliferation. The 
microenvironment surrounding the stem 
cells forms a barrier against differentiation 
inducing signalling and, simultaneously, 
the stem cells in the niche express genes 
that maintain the quiescence. When the 
stem cells are removed from the niche 
they show a high degree of plasticity by 
proliferating and differentiating actively, 
thus demonstrating the importance of 
the niche as a regulatory environment 
(Watt and Hogan, 2000). The stem cell 
niche is a unique environment which 
varies in different tissues, and in addition, 
the development of the stem cells and 
niches remains unknown. However, it is 
not evident that stem cells always need 
a niche. For instance, in the mammalian 
intestine stem cells are located between 
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Table1. 
An overview of regulatory genes or signalling networks and proposed or common markers of 
several stem cells.
Stem cell 
tissue

Regulatory genes/
signalling networks 
of stem cells

Proposed/common 
marker genes

References for 
signalling networks

References for 
marker genes

Incisor 
epihtelium 
(cervical loop)

FGF10, Notch1, 
FGF3*, BMP4*, 
Activin*, Fst*, Spry, 
Shh

Identifi ed as label 
retaining cells, Lgr5*

Harada el al., 1999; 
Dassule et al., 2000; 
Tummers and Thesleff, 
2003; Klein et al., 2008

Harada et al., 1999

Tooth 
mesenchyme 
(papilla)

Notch, BMP2 Recognition with 
similar group of 
markers as bone 
marrow stem cells, 
single-colony selection, 
Notch1, Nestin

Mitsiadis et al., 1999; 
Iohara et al., 2004

Gronthos et al., 
2000; Seo et al., 
2004; Morsczeck 
et al., 2005a; 
Sonoyama et al., 
2006

Hair follilce 
(bulge)

Wnt/β-catenin, 
BMP2, BMP4, 
TGFβ, Shh, Notch, 
FGFs, p63

Integrinα6, CD34, 
Lgr5 (during telogen), 
Keratin15, Keratin14, 
p63, Tcf3

van Genderen et al., 
1994; Zhou et al., 
1995; St-Jaques et al., 
1998; Kratochwil et al., 
1996; DasGupta and 
Fuchs, 1999; Blanpain 
et al., 2004; Kobielak 
et al., 2003, 2007; Andl 
et al., 2004; Vauclair et 
al., 2005

Li et al., 1998; Lyle 
et al., 1998; Mills 
et al., 1999; Yang 
et al., 1999; Kaur 
and Li, 2000; Liu et 
al., 2003; Trempus 
et al., 2003; Jaks et 
al., 2008 

Epidermis Notch, mitogen-
activated protein 
kinase (MAPK), 
nuclear factor-κB, 
Wnt/β-catenin, 
BMP, Shh, Id, p63

 Integrinβ1 Seitz et al., 1998; Fan 
and Khavari, 1999; 
Yang et al., 1999; 
Rangarajan et al., 
2001; Nickoloff et al., 
2000; Koster et al., 
2004; Tumbar et al., 
2004; Mou et al., 2006; 
Blanpain et al., 2006; 
Senoo et al., 2006 

Barrandon and  
Green, 1987; Jones 
and Watt, 1993; 
Jones et al., 1995 

Feather Wnt1, Wnt3a, 
Wnt11, Dkk, Shh, 
BMP2, BMP4, 
Notch

Identifi ed as label 
retaining cells

Jung et al., 1998; 
Viallet et al., 1998; 
Morgan et al., 1998; 
Scaal et al., 2002; 
Chang et al., 2003

Yue et al., 2005

Intestine 
(crypt)

Wnt/β-catenin 
signaling, BMP, 
PTEN, Notch

Lgr5, Prominin1, Bmi1 Korinek et al., 1998; 
Jensen et al., 2000; 
Pinto et al., 2003; 
Kuhnert et al., 2004; 
Ireland et al., 2004; 
Haramis et al., 2004; 
van Es and Clevers, 
2005; Fevr et al., 2007; 
He et al., 2004, 2007 

Barker et al., 2007; 
Sangiorgi and 
Capeachi, 2008; 
Montgomery and 
Shivdasani, 2009

Bone marrow Bmi1, GATA2, 
Gfi 1, Lmo2, Runx1, 
Scl/tal1, Tel, Mll, 
Jagged1, Notch, 
CXCR4

Recognition for 
example with high 
levels of c-Kit 
(CD117), Sca1, CD34 
and CD150; low levels 
of CD244, CD48, 
B220, CD3, CD4, 
CD5, CD8, Mac1, 
GR1, Ter119 and 
NK1.1 

Calvi et al., 2003; 
Sugiyama et al., 2006; 
Begley et al., 1989; 
Boehm et al., 1988; 
Miyoshi et al., 1991; 
Golub et al., 1995; 
Ellisen et al., 1991; 
Collins and Rabbitts, 
2002; Lessard and 
Sauvageau, 2003; Park 
et al., 2003

Menichella et al., 
1999; Murray et al., 
1995; Pearce et al., 
2004; Yamamoto 
et al., 1996; Wang 
et al., 2001; Kiel et 
al., 2005

*These are discussed later in the chapter Results and discussion (III and IV)
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differentiated cells (Barker et al., 
2007). The signalling regulating the 
choice between undifferentiation and 
differentiation within the progeny of a 
stem cell is not very well known. Several 
prominent mechanisms suggest that the 
fate of the progeny cells can be regulated 
by asymmetric compartmentalization of 
intracellular molecules during the division 
of a cell or the asymmetric division of a 
cell in the line of basement membrane 
(Wilson and Kotton, 2008). The epithelial 
stem cell niches in the crypt of the 
intestine and in the epidermis have been 
studied intensely, but also epithelial stem 
cell niches in continuously growing mouse 
incisor, hair and feather follicles have been 
under active research. The localisation of 
different epithelial stem cell niches are 
indicated in Figure 7. An overview of 
regulatory genes or signalling networks 
in several stem cell niches, including 
epidermis, feathers, hairs, intestine, bone 
marrow and mouse incisors is in Table 1.

Hematopoetic stem cells (HSCs) 
are among the most studied and best 

characterized stem cells. HSCs reside 
in the bone marrow of adults and can 
differentiate into all blood cell lineages 
(Orkin and Zon, 2008). The mature blood 
cells are short lived, thus the proliferation 
of the progenitors has to be effective, 
although HSCs are mainly quiescent. 

5.3 Epidermal, hair follicle and feather 
stem cells 

During adult homeostasis epidermis is 
mainly maintained by inter follicular 
epidermis (IFE) stem cells, residing in the 
basal layer (Ito et al., 2005). Stem cells 
responsible for hair follicle regeneration 
are located in a niche in the hair follicle 
bulge (Cotsarelis et al., 1990; Tumbar 
et al., 2004). However, after a wound 
hair follicle stem cells participate in the 
repairing of both epidermis and sebaceous 
glands (Morris et al., 2004; Levy et al., 
2005; Levy et al., 2007). Single, cultured 
hair follicle stem cell can differentiate into 
all cell lineages of epidermis, thus they are 
able to reconstitute whole IFE (Blanplain 
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Figure 7. 
Epithelial stem cell niches in a continuously growing incisor, in a crypt of intestine, in a hair 
follicle and in a feather follicle. The niches or stem cells are indicated by arrows. The epithelial 
stem cells of the incisor are located in the labial cervical loop. In the hair follicle stem cells are in 
the bulge and in the feather follicle they are in the collar bulge. The intestinal stem cells are the 
crypt basal cells.

Hair follicle 
bulge

Crypt of 
Intestine

Continuously 
growing incisor

Feather follicle
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et al., 2004; Rochat et al., 1994; Claudinot 
et al., 2005). In addition, progenitors of the 
isthmus and sebaceous glands are situated 
in the outer root sheath between the bulge 
and sebaceous gland (Ghazizadeh and 
Taichman, 2001; Nijhof et al., 2006). 

Hair and feathers undergo continuous 
cycling maintained by stem cells, but 
they use different types of strategies to 
preserve their stem cells during moulting. 
Hair follicle stem cells migrate from the 
bulge to bulb during the growth stage and 
begin to proliferate (Cotsarelis et al., 1990; 
Tumbar et al., 2004). Stem cells give rise 
to all epithelial layers of the follicle during 
growth (Cotsarelis 2006; Fuchs, 2007). 
The activation and fate decision of the 
hair follicle stem cells are regulated by 
Wnts while BMP signalling functions as a 
regulator of quiescent (Table 1) (DasGupta 
and Fuchs, 1999; Blanpain et al., 2004; 
Kobielak et al., 2003, 2007; Andl et al., 
2004). 

Feathers do not have structure similar 
to the hair follicle bulge. Instead feather 
stem cells, identifi ed as LRCs, are located 
in the collar bulge in the growing follicle 
and in the papilla ectoderm in the moulting 
follicle (Yue et al., 2005). Cell migration 
patterns between hair and feather are 
different and feather LRCs are not as 
quiescent as hair stem cells (Kopan et al., 
2002; Morris et al., 2004; Yue et al., 2005). 
The more active proliferation in feather 
stem cells might be due to faster growth 
rate in the feather follicle compared to 
in the hair follicle. The localisation of 
LRCs also plays an essential role in the 
formation of radial symmetry in feathers 
(Yue et al., 2005).  

5.4 Intestinal stem cells

Wnt, Shh and BMP signalling participate 
in the regulation of crypt development in 

the intestine. Recently several potential 
epithelial stem cell markers have been 
identified in the intestine, including 
Leucine rich repeat containing G-protein 
coupled receptor 5 (Lgr5), Prominin1 
(also called CD133) and Bmi1 (Barker et 
al., 2007; Sangiorgi et al., 2008; Snippert 
et al., 2009). The common feature between 
these molecules is that they were already 
known as tumour associated genes.  

Lgr5, an orphan G protein-coupled 
receptor, is a Wnt downstream target gene 
and was recently found to be a molecule 
specifi cally recognising the population of 
intestinal stem cells and the hair follicle 
stem cells (McDonald et al., 1998; Hermey 
et al, 1999; van der Flier et al., 2007; 
Barker et al., 2007; Jaks et al., 2008). 
The analyses of the crypt cell population 
in the intestine marked by Lgr5 showed 
that the cells had many characteristics of 
the stem cells including self-renewal and 
multipotency, but, surprisingly, the cells 
proliferated actively (Barker et al., 2007). 
However, the Lgr5 positive stem cells 
were crypt basal cells (CBCs) and not 
the +4 positioned cells earlier identifi ed 
as stem cells. Recent results indicate that 
Lgr5 positive stem cells differentiate into 
four different cell types, and a single Lgr5 
expressing cell can generate all these cell 
types and form villus-like domains (Sato 
et al., 2009). 

 
6.  Stem cells in teeth

Albeit nearly all tissues have stem 
cells maintaining the normal tissue 
homeostasis, stem cells in the teeth, 
excluding continuously growing teeth, 
are only located in the mesenchyme, thus  
mesenchymal tissues are regenerated. The 
mesenchymal stem cells can differentiate 
for instance into odontoblasts, but 
the molecular mechanism regulating 
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differentiation remains unsolved despite 
many recently obtained advances. 
Epithelial stem cells are not maintained in 
most teeth and enamel forming ameloblasts 
are lost when the tooth erupts into the oral 
cavity. Although enamel is not replaced, 
the structure of the enamel as the hardest 
tissue of the mammalian body makes the 
tooth capable to endure plenty of exertion. 
None but continuously growing teeth 
maintain epithelial stem cells (Thesleff 
and Tummers, 2008).   

Damage to or even loss of the 
teeth during a lifetime is common. The 
methods to repair the damage and replace 
the teeth artificially are nowadays well 
developed. However, even more natural 
and functionally superior alternatives are 
continuously under research, and new 
bioengineering methods have recently 
been developed. For instance, teeth 
can be cultured from dissociated and 
then recombined dental epithelial and 
mesenchymal cells in vitro and in vivo, 
and eventually they form a complete 
functional tooth (Nakao et al., 2007; Ikeda 
et al., 2009). Regeneration of a tooth can 
be manipulated with different stem cells 
together with dental structures in vivo 
(Duailibi et al., 2004). The regeneration 
of a certain tissue or even the whole tooth 
for clinical use has been the main goal in 
research concerning tooth stem cells. This 
goal can only be reached when further 
understanding of the stem cells has been 
uncovered.    

Several different mesenchymal 
dental stem cells have been identified, 
including dental pulp stem cells (DPSCs), 
periodontal ligament stem cells (PDLSCs), 
dental follicle precursor cells (DFPCs) 
and apical papilla stem cells (SCAP) 
(Gronthos et al., 2000; Seo et al., 2004; 
Morsczeck et al., 2005a; Sonoyama et al., 
2006). In addition, easily accessible stem 

cells from human exfoliated deciduous 
teeth (SHED) were isolated from pulp of 
human deciduous incisor and showed high 
plasticity in differentiation (Miura et al., 
2003). 

DPSCs were isolated from the pulp 
of the adult human teeth but their exact 
location and whether the stem cells are 
located in the exact niche or not remains 
unknown (Gronthos et al., 2000). The 
DPSCs have signifi cant plasticity and are 
able to differentiate into odontoblasts as 
well as into several other mesenchyme 
derived pulp cells (Gronthos et al., 2002). 
Notch signalling has been suggested to 
have a role in mesenchymal stem cell 
regeneration (Mitsiadis et al., 1999). In 
vitro, BMP2 can induce differentiation of 
dental pulp stem cells into odontoblasts 
(Iohara et al., 2004).   

Mesenchymal dental stem cells were 
also found from periodontal ligaments 
(PDL) (Seo et al., 2004). PDLSCs not 
only regenerate PDL, they also participate 
in the regeneration of alveolar bone and 
cementum. PDLSCs can differentiate 
for instance into cementoblast-like cells 
and adipocytes, and in transplantation 
experiments in rat molars PDLSCs formed 
a layer of cementum and collagen fi bers 
(Seo et al., 2004). 

DFPCs were isolated from the dental 
follicle and were able to differentiate into 
osteoblast, cementoblast, adipocyte and 
some even to neuronal like cell types 
(Morsczeck et al., 2005a; Morsczeck et al., 
2005b; Ernst et al., 2009). DFPCs share 
some similar characteristics and behave 
similarly when induced to differentiate in 
vivo as PDLSCs (Morsczeck et al., 2005a; 
Morsczeck et al., 2005b). Recently, a 
population of mesenchymal stem cells 
from the root apical papilla (SCAP) 
were recognised in the human third 
molar (Sonoyama et al., 2006). SCAP 
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differentiate into odontoblast like cells 
which secrete dentin in transplantation 
experiments, as well as into adipocytes, 
and share some similar characteristics with 
DPSCs (Sonoyama et al., 2006). Evidence 
suggesting that SCAP are the source of 
odontoblasts responsible for formation 
of root dentin but SCAP might also play 
a role in dentin regeneration because 
they have better capacity for dentin 
regeneration than DPSCs (Sonoyama et 
al., 2006; Sonoyama et al., 2008).  

6.1. Epithelial stem cell niche in the 
mouse incisors

The epithelial stem cell niche of a 
continuously growing mouse incisor 
is located in the stellate reticulum of 
the cervical loop (Harada et al., 1999). 
The labial cervical loop in a wt incisor 
is presumably enlarged due to the 
requirements for the active proliferation 
and differentiation of ameloblasts 
(Tummers and Thesleff, 2008). In the 
molar the stellate reticulum within the 
cervical loop is not maintained, the 
epithelial structures form HERS and 
the epithelial stem cells are lost. In the 
mouse incisor the stellate reticulum and 
the epithelial stem cells are maintained, 
and root formation does not occur. 
However, the two sides of the incisor are 
different, labial side covered with dentin 
and enamel, and lingual side with dentin 
and cementum. Nonetheless both labial 
and lingual cervical loop harbour stellate 
reticulum, albeit different sized, indicating 
that the HERS does not form (Tummers 
and Thesleff, 2008). 

Epithelial stem cells in the incisors 
were identifi ed within the labial cervical 
loop by LRC techniques, BrdU and DiI 
labelling. Five days after injection of 
fl uorescent DiI to the centre of the labial 

cervical loop the cells containing the label 
had extended to the inner dental epithelium 
and were seen in the transient amplifying 
cells and differentiating ameloblasts 
(Harada et al., 1999). BrdU labelling 
indicated the label retaining cells in the 
cervical loop after seven days chase period 
(Harada et al., 1999). The localisation was 
confirmed with Notch expression in the 
slowly dividing cells in the cervical loop 
(Harada et al., 1999). However, although 
the epithelial stem cells were located in 
the cervical loop the exact site of the stem 
cell niche still remains unclear.  

According to the current hypothesis, 
after the asymmetric proliferation of a 
stem cell one of the daughter cells will 
relaminate into the inner dental epithelium. 
In the inner dental epithelium the cell 
begins to proliferate actively and is hence 
named as a transient amplifying cell. 
After several proliferations the transient 
amplifying cell begins to differentiate 
first into a preameloblast and later into 
an ameloblast. Continuous production of 
ameloblasts in the proximal end and loss 
of matured ameloblasts in the apical end 
transfer the ameloblasts from proximal 
to apical direction, and the surrounding 
microenvironment regulates different 
functional stages of the ameloblast. 

The epithelial stem cell niche in 
the cervical loop structurally resembles 
two other stem cell niches, the crypt of 
intestine and the hair follicle bulge (Moore 
and Lemischka, 2006). The crypt and the 
bulge, similar to the stellate reticulum 
in the cervical loop, form an epithelial 
compartment which is surrounded by 
mesenchymal tissue regulating the 
epithelium. Many stem cells can nowadays 
be recognised by specifi c marker genes but 
epithelial stem cells in the incisor still lack 
an identifi ed marker gene. 
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6.2 Molecular regulation of epithelial 
stem cells in the incisors

The molecular regulation of continuously 
growing incisors resembles that of the 
molar, but expression of several signalling 
molecules, which are lost in the root 
forming molar, are maintained in the 
continuously growing incisor. These 
molecules are thought to participate in 
the maintenance of stellate reticulum 
and epithelial stem cells. FGF3, FGF10 
and Notch1 have been suggested to be 
among these key molecules (Tummers 
and Thesleff, 2003). Notch signalling has 
been reported in association with stem 
cell regulation in many other tissues. In 
addition, the expression pattern of Bmp4, 
identical to Fgf10 expression, suggests 
that it has a role in stem cell regulation 
(Tummers and Thesleff, 2003). Fgf3, Fgf10 
and Notch1 expression are downregulated 
in the molar when crown development 
fi nishes and the root development begins, 
but their expression is maintained in the 
incisors and continuously growing sibling 
vole molar (Tummers and Thesleff, 
2003).

In the incisor cervical loop Notch 
signalling pathway genes are expressed in 
a localised manner. Notch1, Notch2 and 
Hairy and enhancer of split 1 (Hes1), the 
downstream target of Notch signalling, 
are expressed in the stellate reticulum and 
stratum intermedium, and Jagged1 in the 
differentiating ameloblasts (Mustonen 
et al., 2002). In addition, Notch2, 
Notch3 and Notch4 are expressed in the 
epithelium (Mitsiadis et al., 1998). In the 
molar Notch2 and Lunatic fringe (Lfng) 
signalling are maintained in P10 and P14 
molars, but many other Notch pathway 
genes are downregulated in the cervical 
loop area (Tummers and Thesleff, 2003). 
Notch signalling is usually associated with 

keeping the cells quiescent, whereas FGFs 
stimulate proliferation. The role of Notch 
signalling in epithelial stem cell regulation 
in the incisor remains unknown but recent 
results suggest that inhibition of Notch 
signalling leads to decreased proliferation 
in the stellate reticulum and shrinkage 
of the cervical loop (S. Felszeghy, 
personal communication). However, this 
phenomenon can be reversed when the 
inhibition of Notch signalling is removed. 
Thus several results suggest that Notch 
signalling has an essential role in the stem 
cell regulation in the incisor. 

Regulation of the epithelial stem cells 
can originate in the mesenchyme. Fgf3 
and Fgf10, expressed in the mesenchyme 
surrounding the cervical loop, induce 
the proliferation of the epithelium, and 
their receptor, Fgfr2b, is expressed in the 
epithelium of the cervical loop (Harada 
et al., 1999). FGF10 is suggested to be 
an essential regulator of epithelial cell 
as well as stem cell proliferation in the 
cervical loop because incisor development 
in Fgf10-/- mice is disrupted and the typical 
labial cervical loop structure is missing 
(Harada et al., 2002). Fgf10-/- mice die 
at birth due to absence of lungs, hence to 
analyse post natal incisor development the 
teeth were grown under a kidney capsule 
for three weeks (Sekine et al., 1999; 
Yokohama-Tamaki et al., 2006). The labial 
cervical loop in these incisors had lost the 
stellate reticulum and stem cells, and the 
HERS had formed (Yokohama-Tamaki et 
al., 2006). Thus, Fgf10-/- incisors grown 
under kidney capsule had lost the typical 
features of continuously growing incisors 
and resembled the molars, which have 
only limited growth period. In addition, 
when the level of FGF10 is increased in 
the molars the cervical loop structures 
are maintained (Yokohama-Tamaki et 
al., 2006). However, in K14-Eda incisor, 
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where the enamel is missing, both Fgf3 and 
Fgf10 expressions were present, although 
the labial cervical loop was diminished 
and the structure began to resemble 
root structures, suggesting that the root 
development can occur simultaneously as 
stem cells are maintained (Tummers and 
Thesleff, 2008). Analyses of K14-Noggin 
mice indicated that the size of the cervical 
loop of the incisor does not necessarily 
signify the capability of epithelial stem 
cells to differentiate into ameloblasts 
(Plikus et al., 2005). Inhibition of BMP 
signalling in K14-Noggin incisors caused 
enlarged cervical loops and over activated 
proliferation on both labial and lingual 
sides but the ameloblast differentiation 
was prevented. When another BMP 
inhibitor and modulator of Wnt signalling, 
Sostdc1, is lost, an extra incisor occurs 
(Murashima-Suginami et al., 2007; Munne 
et al., 2009).   

In Spry2+/-; Spry4-/- incisors lingual 
cervical loop is enlarged and ectopic 
ameloblast differentiation and enamel 
formation occurs on the lingual side at 
pn14 (Klein et al., 2008). A large lingual 
cervical loop is visible at E16.5 in Spry2+/-; 
Spry4-/- and Spry4-/-, and ectopic Fgf 
expression is detected close to the lingual 
cervical loop resembling the situation 
on the labial cervical loop (Klein et al., 
2008). In the embryonic stage ameloblasts 
are detected in the incisor of both Spry2+/-; 
Spry4-/- and Spry4-/-, indicating that 
even minor unbalance of Fgf signalling 
causes lingual ameloblast differentiation. 
However, lingual ameloblasts are lost 
during the post natal development of 

Spry4-/-, hence the lingual enamel is 
lost progressively (Boran et al., 2009). 
The ablation of Spry4 is necessary for 
emergence of lingual ameloblasts, because 
downregulation of other Spry genes does 
not cause lingual ameloblasts (Klein et al., 
2008). Tissue specifi c ablation of Fgfr2 
causes a diminished labial cervical loop 
and a lack of ameloblasts in the maxillary 
incisor, and also affects the odontoblast 
differentiation (Lin et al., 2009). Tbx1 
has been associated with FGF signalling 
and defi ciency in Tbx1 causes a reduced 
labial cervical loop and ameloblast 
differentiation does not occur (Mitsiadis 
et al., 2008a; Catón et al., 2009). These 
results indicate the importance of correct 
balancing of FGF signalling during 
cervical loop formation and epithelial stem 
cell maintenance.     

Recently, several other molecules 
were suggested to participate in the 
maintenance of stellate reticulum and 
epithelial stem cells. Defi ciency of Ctip2, 
an enhancer of transcriptional repression, 
causes a diminished labial cervical loop 
in addition to defects in ameloblast 
differentiation (Golonzhka et al., 2009). 
Heparin-binding cytokines midkine (MK) 
and Heparin-binding growth-associated 
molecule (HB-GAM), which are associated 
with epithelial-mesenchymal interactions 
during development, are expressed close 
to or in the cervical loops during tooth 
development (Mitsiadis et al., 2008b). In 
addition, both MK and HB-GAM induce 
proliferation in the cervical loop area, and 
MK and HB-GAM interact with several 
molecules, for instance BMPs and FGFs.  
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Aims of the Study

AIMS OF THE STUDY

The aim of this thesis was to analyse the molecular mechanisms regulating tooth devel-
opment and especially the regulation of epithelial stem niche in the incisor. The specifi c 
aims were:

1.  To examine the role of TGFβ signalling during molar and incisor development using 
mice with loss of function and gain of function of Fst. 

2.  To study the function of TGFβ signalling and Fst in the regulation of epithelial stem 
cells in the continuously growing mouse incisor.

3.  To localize Wnt pathway gene expression and Wnt/β-catenin activity in the epithelial 
stem cells of the incisor.
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MATERIALS AND METHODS

Mouse strains

Strain Used in article Purpose

NMRI I, II, III, IV Analyse the expression patterns of indicated genes

Follistatin-/- I, II, III Analyse the role of Follistatin deficiency in teeth 
development

K14-Follistatin I, II, III Analyse the role of Follistatin overexpression under 
Keratin14 promoter in teeth development

Fgf3-/- III Analyse the teeth phenotypes of Fgf3 defi cient mice

Fgf10+/- III Analyse the teeth phenotypes of Fgf10 heterozygote 
mice

Fgf10-/- III Analyse the teeth phenotype of mice defi cient for both 
Fgf3 and Fgf10 

K14-Noggin III Analyse the expression pattern of indicated gene

BATgal IV Active Wnt/β-catenin signaling analysis
TOPgal IV Active Wnt/β-catenin signaling analysis
Axin2LacZ/LacZ IV Active Wnt/β-catenin signaling analysis

Methods used in articles I-IV

Method Article
Histology I, II, III, IV
Genotyping by PCR I, II, III
Analysis of adult phenotype (skeletal preparation) I, II, III
Radioactive in situ hybridization on sections I, II, III, IV
Whole mount in situ hybridization I, II, III
Tissue culture and bead experiments I, II, III
Immunohistochemistry I, II
Cell proliferation assay (BrdU) I, III
LacZ staining IV

Materials and Methods
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Probes
The following probes were used for in situ hybridisation.

Probe Reference Used in article
ActivinA Erämaa et al., 1992 I, II, III
Alk3 Dewulf et al., 1995 III
Alk4 Verschueren et al., 1995 III
Ameloblastin Lee et al., 1996 II
Axin2 Lammi et al., 2004 IV
Bmp2 Åberg et al., 1997 I, II, III
Bmp4 Åberg et al., 1997 I, II, III
Bmp7 Åberg et al., 1997 I, II, III
Dkk1 Andl et al., 2002 IV
Dkk2 Diep et al., 2004 IV
Dkk3 Fjeld et al., 2005 IV
Dkk4 Fliniaux et al., 2008 IV
dspp D’Souza et al., 1997 II
Edar Laurikkala et al., 2001 I
Fgf3 Kettunen et al., 2000 III
Fgf4 Jernvall et al., 1994 I
Fgf10 Kettunen et al., 2000 III
Follistatin Wankell et al., 2001 I, II, III
Gdf11 Gift from Anne Calof (Univ. California) I
Lef1 Kratochwil et al., 1996 IV
Lgr5 Barker et al., 2007 IV
Lrp4 Fliniaux et al., 2008 IV
mmp20 Gift from Dr. Jan Hu (Univ. of Texas) II
p21 Jernvall et al., 1998 I, II
Shh Vaahtokari et al., 1996 I
Tcf1 James et al., 2006 IV
Wnt2b M. James IV
Wnt3 Sarkar and Sharpe, 1999 IV
Wnt3a M. James IV
Wnt4 Sarkar and Sharpe, 1999 IV
Wnt5a Sarkar and Sharpe, 1999 IV
Wnt5b Sarkar and Sharpe, 1999 IV
Wnt6 Sarkar and Sharpe, 1999 IV
Wnt7a M. James IV
Wnt7b Sarkar and Sharpe, 1999 IV
Wnt10a Wang and Shackleford, 1996 IV
Wnt10b Wang and Shackleford, 1996 IV
Wnt11 Sarkar and Sharpe, 1999 IV

Materials and Methods
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RESULTS AND DISCUSSION

Follistatin has a role in the 
morphogenesis of the molars (I)

Follistatin (Fst) is an extracellular inhibitor 
of several TGFβ superfamily members, 
including BMPs and Activin (Nakamura 
et al., 1990; Iemura et al., 1998; Balemans 
and Van Hull, 2002). We studied the 
role of Fst during molar development by 
analysing two mouse models, loss of Fst 
function using Fst-/- mice and gain of Fst 
function using mice overexpressing Fst 
under a Keratin14 promoter (K14-Fst) 
(Matzuk et al., 1995b; Wankell et al., 
2001). 

In situ hybridisation analyses of 
Fst, Bmp2, Bmp4 and Bmp7 expressions 
at E14 and E16 indicated overlapping 
expression patterns in the primary and 
secondary enamel knots. Fst, Bmp4 and 
ActivinβA were also expressed in the 
papilla mesenchyme. BMPs participate 
in ameloblast (II; Coin et al., 1999) 
and odontoblast differentiation (Bègue-
Kirn et al., 1992; Vainio et al., 1993). 
E18 differentiation stage expression of 
Bmp2, Bmp4 and Bmp7 was detected 
in the mesenchyme, most intensely in 
the preodontoblasts and odontoblasts, 
and weakly in the preameloblasts. The 
expression of Fst was restricted to the 
papilla mesenchyme in the vicinity of 
the follicle mesenchyme and cervical 
loops, while ActivinβA was expressed 
was exclusively in the follicle. Our results 
show that the expression patterns of Fst, 
Bmps and ActivinβA were intense and 
partially overlapping during the molar 
development. The restricted expressions 
suggest important roles for Fst in the 
enamel knots and the development of 
tooth morphology.

The histological analyses of Fst-/- 
molars revealed that although the cap 
stage molar at E14 showed a normal 
tooth structure, in the early bell stage 
at E16 folding of the epithelium was 
already abnormal in both mandibular and 
maxillary molars. Because the primary 
enamel knot regulates the localisation of 
secondary enamel knots it is probable that 
the primary enamel knots were functioning 
already abnormally. The morphological 
differences between the wild type (wt) 
and Fst-/- molars were evident in crown 
morphology by E18. The cusps of the 
wt had become deep and had distinct 
anterior-posterior orientation, whereas the 
Fst-/- cusps were disoriented with shallow 
and aberrant cusp patterning, indicating 
abnormal folding of the inner dental 
epithelium. In addition, cell differentiation 
was affected. Differentiated odontoblasts 
were detected both in wt and Fst-/- molars 
at E18 but predentin formation had 
begun only in the wt. Ameloblasts had 
differentiated in the wt, but in the Fst-/- 
molars the cells of inner dental epithelium 
remained cuboidal and unpolarised. In 
addition, the usual, normally extensive 
extracellular tissue was missing from 
stellate reticulum, and instead the tissue 
was composed of closely packed cells. 
The analyses of inner dental epithelium 
proliferation by 5-bromo-2’-deoxyuridine 
(BrdU) labelling at E18 indicated that 
the amount of proliferating cells was 
diminished and the proliferating cells 
were irregularly distributed in the Fst-/- 
molar compared to the regular patterning 
of proliferation in the wt. To analyse the 
post natal phenotype of the Fst-/- molar 
we had to culture tissues in vitro because 
Fst-/- mice die shortly after birth (Matzuk 
et al., 1995b). Molars were dissected for 
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culturing at E17 and after 7 days culture, 
Fst-/- molars sustained the shallow and 
aberrant cusp pattern. However, ameloblast 
differentiation had proceeded, indicating 
that cell differentiation occurs, although 
delayed, even when Fst is lacking.    

To further analyse the aberrant 
folding of the inner dental epithelium in 
Fst-/- molars we studied the secondary 
enamel knots. p21, a cyclin-dependent 
kinase inhibitor and enamel knot marker, 
was expressed in two secondary enamel 
knots in Fst-/- at E16. One of the enamel 
knots was enlarged, and folding of the 
inner dental epithelium was abnormal. 
The abnormal expression of p21 and the 
affected cusp patterning in Fst-/- molar 
resembled that of Sostdc1-/- molar, with 
expanded expression in the enamel knot 
and altered cusp patterning (Kassai et al., 
2005). In the primary enamel knot the 
analysed markers were expressed similarly 
both in the wt and Fst-/-. However, the 
altered expression of secondary enamel 
knot marker as well as abnormal folding 
of the inner dental epithelium indicate 
that the function of the primary enamel 
knot was already altered resulting in 
defects in the formation and function of 
the secondary enamel knots. Both BMP4 
(Jernvall et al., 1998) and ActivinA can 
induce p21 expression in isolated dental 
epithelium in vitro. Our results suggest 
that Fst participates in the formation of 
secondary enamel knots by regulating the 
functions of BMPs and Activin. 

In two month old K14-Fst mice cusp 
patterning was severely affected, showing 
aberrant cusp patterning or whirled 
occlusal surface in the most affected 
teeth, and worn enamel. The severity of 
the phenotype varied between different 
molars. The fi rst molar showed less altered 
crown patterning than the second molar. 
In addition, the K14-Fst third molars were 
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missing both from the upper and lower 
jaws. This may be caused by varying 
levels of Fst expression driven by K14 
promoter, or by differing sensitivity of the 
teeth to signalling regulated by Fst. 

The primary enamel knot determines 
the localisation of the secondary enamel 
knots and thus participates in the 
formation of crown morphology (Jernvall 
and Thesleff, 2000). In the epithelium 
Fst was expressed in the area of both 
primary and secondary enamel knots, 
suggesting a role in enamel knot formation 
or functioning. At least in an in vitro 
situation both BMP4 (Jernvall et al., 1998) 
and ActivinA indeed induced enamel 
knot marker p21 expression in isolated 
dental epithelium. p21, associated with 
cessation of proliferation and beginning of 
terminal differentiation, affects apoptosis 
of differentiated cells in the enamel knot 
(Jernvall et al., 1998). Activin regulates 
the expression of Fst in the dental 
epithelium and Edar in the enamel knot 
region (Ferguson et al., 1998; Laurikkala 
et al., 2002). Tooth development of 
ActivinβA-/- mice arrests at the bud stage, 
whith the exception of the upper molars, 
around the time the primary enamel 
knot is formed (Ferguson et al., 1998). 
This indicates that ActivinβA is essential 
for the transition from bud to cap stage. 
Although Fst-/- molar development did not 
arrest, our results show that Fst nontheless 
affects the primary enamel knot function 
because localisation of secondary enamel 
knots were abnormal, resulting in irregular 
and diminished proliferation and aberrant 
folding of inner dental epithelium. 

Overexpression of Fst caused the 
loss of the third molar in both mandible 
and maxilla. The third molar is lost also 
at least in Eda-/- (Tabby) mutants, in 
mice producing low levels of Pax9, and 
in K14-Noggin mice (Pispa et al., 1999; 
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Kist et al., 2005; Plikus et al., 2005). 
In addition, overexpression of Noggin, 
an inhibitor of BMP signalling, caused 
abnormal ameloblast and odontoblast 
differentiation and altered crown 
pattern (Plikus et al., 2005). In addition, 
inhibition of Bmp4 function by antisense 
oligodeoxynucleotide against Bmp4 in 
vitro caused abnormal cusp pattern and 
mildly affected ameloblast differentiation 
in the molar (Tabata et al., 2002). The 
absence of Pax9 leads to downregulation 
of Bmp4 in the mesenchyme at the bud 
stage and hypomorphic Pax9 expression 
results in hypoplastic or missing lower 
incisors and third molars (Peters et al., 
1998; Kits et al., 2005). The phenotype 
becomes increasingly severe with 
different forms of oligodontia as the level 
of Pax9 expression is diminished. In 
addition to the loss of the third molar, the 
Eda-/- mutant mouse has abnormal cusp 
patterning resulting from downregulation 
of several essential genes expressed in the 
enamel knot, including Bmp4 (Grüneberg, 
1971; Pispa et al., 1999). These results are 
consistent with ours (I, II) and confirm 
the important role of BMP signalling in 
the development of crown morphology. 
We suggest that the third molars in K14-
Fst failed to form due to defects in dental 
tissue committed to the molar fi eld, which 
then affected the last developing molar 
most severely. The same explanation was 
suggested for why the last teeth to develop 
are most often the missing teeth in humans 
(Nieminen et al., 2001, Nieminen, 2009). 
In contrast to the loss of molars, some 
mutations cause development of an extra 
molar, for example K14-Eda, Spry2-/- and 
Spry4-/- (Mustonen et al., 2003; Klein et 
al., 2005). The loss of Sostdc1, an inhibitor 
of BMP and modulator of Wnt signalling, 
induces the formation of both an extra 
molar and incisor (Kassai et al., 2005; 
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Munne et al., 2009). Thus the unbalancing 
of BMP signalling can cause extra molars 
when its inhibition is absent, and a loss of 
molars when its inhibition is enhanced.

Our results show that Fst is an 
important regulator of cusp patterning 
and crown morphology, and that it has a 
role also in ameloblast differentiation. The 
complex phenotypes of Fst-/- and K14-
Fst mutant mice indicate that negative 
regulation by Fst is essential in several 
different stages of tooth development. 
Both loss of Fst and overexpression of Fst 
cause aberrant crown morphology, albeit 
in different ways. Epithelial proliferation 
was downregulated, and differentiation 
and function of both odontoblasts and 
ameloblasts was delayed in Fst-/- mutants, 
indicating that the fine tuning of the 
signalling by inhibitor regulates different 
levels of tooth development. We suggest 
that Activin, expressed in the mesenchyme 
under the inner dental epithelium, induces 
Fst expression in the epithelium, and that 
Fst inhibits both Activin and BMPs, thus 
balancing and modulating enamel knot 
formation and crown morphogenesis. We 
have shown that Fst negatively regulates 
the differentiation of ameloblasts and that 
it modulates the morphogenesis of crown 
epithelium during molar development.

Follistatin regulates the asymmetric 
formation of enamel in the mouse 
incisors (II)

The morphology of a mouse incisor is 
distinctively different compared to the 
molar. Mouse incisors grow continuously 
throughout the animal’s life to compensate 
for the wearing of the tooth, and the 
sharpness of the incisor tip is maintained 
by the asymmetric deposition of hard 
enamel. Ameloblasts differentiate and 
enamel is formed exclusively on the 
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labial side of the tooth, called the crown 
analogue, while the lingual side is covered 
by dentin and is called the root analogue. 

Fst is an important regulator of cusp 
patterning and ameloblast differentiation 
in the molar, as we showed (I). The 
phenotype of the incisors in K14-Fst 
mouse at 1 month of age suggested that 
ameloblast differentiation and enamel 
formation are also altered in the incisor, 
although the phenotypes of the incisors 
were variable with different levels of 
severity. In the most severe cases the 
incisors were smaller and chalky white, 
with worn mandibular incisors and broken 
or overgrown maxillary incisors. The 
ground sections revealed loss of enamel 
from the entire incisor. The embryonic 
analyses of K14-Fst mice showed small 
and symmetric incisors. At E18 ameloblast 
differentiation had occurred on the labial 
side of the wt incisors, but the K14-Fst 
incisors lacked a polarised ameloblast 
layer. The odontoblast layer and dentin 
matrix was seen on both labial and lingual 
sides in wt and K14-Fst incisor. Because 
Fst-/- mice die perinatally (Matzuk et al., 
1995b) the phenotypic characterisation 
of incisor was done at E18 stage. The 
ameloblast differentiation occurred on 
the labial side of Fst-/- incisor as in the 
wt, but in addition polarised ameloblasts 
were detected also on the lingual side 
together with enamel. The occurrence 
of lingual ameloblasts in Fst-/- incisors 
and the loss of ameloblasts in K14-Fst 
incisors were confirmed by analysing 
the expression patterns of several 
ameloblast marker genes. Although the 
lingual epithelial cells in Fst-/- incisor 
were confirmed as ameloblasts both 
histologically and functionally, the cell 
layer was not as well organised as the 
labial ameloblast layer. Since only partial 
rescue of lingual ameloblasts occurred in 

the Fst-/- mice, it is probable that another 
inhibitor of ameloblast differentiation 
exists on the lingual side, hence the partial 
compensation for the effects of Fst in Fst-/- 
incisor. 

It has been shown previously that 
ameloblast differentiation can be induced 
in vitro by TGFβ1 and BMP2 (Coin et al., 
1999), and that Fst is an inhibitor of BMPs 
and Activin (Nakamura et al., 1990). 
The distinct ameloblast differentiation 
phenotypes in Fst-/- and K14-Fst incisors 
suggest that Fst negatively regulates 
ameloblast differentiation. To confi rm the 
role of Fst in ameloblast differentiation we 
analysed whether beads soaked in BMP2, 
BMP4, BMP7 or ActivinA protein can 
induce differentiation of ameloblasts in 
isolated incisor at E15 after 24hrs culturing 
in vitro. The differentiation of ameloblasts 
was verified by the expression of p21, 
which marks the cells differentiating into 
odontoblasts and ameloblasts (Bloch-
Zupan et al., 1998), and by ameloblastin, an 
ameloblast marker gene in the epithelium. 
BMP2, BMP4 and BMP7 induced the 
expression of p21 in the dental epithelium, 
but ActivinA had only weak stimulatory 
effect. In addition, BMP2, BMP4 and 
BMP7 induced epithelial expression of 
ameloblastin, whereas ActivinA induced 
only slight enhancement of endogenous 
expression of ameloblastin. Noggin, the 
specific inhibitor of BMP signalling, 
consistently caused downregulation of 
ameloblastin expression. The simultaneous 
exposure of the cultured incisors to 
Fst and BMP protein releasing beads 
caused downregulation of endogenous 
ameloblastin, and isolated K14-Fst incisor 
cultured with BMP4 bead showed reduced 
or loss of ameloblastin expression. 
Analyses of Fst induction confirmed 
that unlike BMP4, ActivinA induces Fst 
expression in E15 or E16 incisor after 
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24hrs of culturing. These experiments 
suggest that BMPs are the main inducers 
of ameloblast differentiation and that Fst 
is a negative regulator, thus inhibiting 
ameloblast differentiation on the lingual 
side. 

To further investigate the roles of 
Fst, Activin and BMPs in ameloblast 
differentiation we analysed their expression 
patterns at E16 and E18. Fst was expressed 
at E16 in the epithelium on both labial and 
lingual sides. However, the expression 
was slightly asymmetric and became 
even more asymmetric at E18, when 
lingual side dental epithelium intensely 
expressed Fst, but in the labial side the 
expression was restricted to the outer 
dental epithelium and in the ameloblasts 
in the transitional stage. Fst expression 
was also detected in the P4 mouse molars 
in the tips of the cusps where ameloblast 
differentiation does not occur. ActivinβA 
and Bmp4 expressions were restricted to 
the mesenchyme, and were especially 
intense in the papilla mesenchyme lining 
the cervical loop at E16. Bmps were also 
intensely expressed in the odontoblasts. 
Comparisons of the expression patterns 
of Fst, ActivinβA, Bmp2, Bmp4 and Bmp7 
in the incisor suggested close interaction 
between Fst and ActivinβA or BMPs, 
and, consistent with our earlier results, 
indicated that Fst is a negative regulator of 
ameloblast differentiation.

The continuously growing mouse 
incisor is an interesting model in which 
to study ameloblast proliferation and 
differentiation because ameloblasts at 
different developmental stages can be 
followed from proximal to distal area 
of incisor. Our results in mouse incisors 
suggest that Fst inhibits ameloblast 
differentiation in the lingual side. When the 
inhibition is lost in Fst-/-, the asymmetry 
of ameloblast differentiation and enamel 

deposition is lost and enamel is formed on 
both labial and lingual side. Consistent with 
this is the loss of ameloblast and enamel 
on the labial side of the incisor in K14-Fst. 
Thus Fst negatively regulates ameloblast 
differentiation and is responsible for 
the asymmetric enamel deposition only 
on the labial side of the incisor. The 
regulation of ameloblast differentiation 
occurs through the inhibition of BMP 
function, but not through Activin, because 
the targets of negative regulation by Fst 
during ameloblast differentiation are 
BMPs. The variable phenotype in K14-Fst 
incisors suggests that a high level of Fst 
is needed to achieve the severe phenotype. 
Fst binds Activin with higher affi nity than 
BMP, suggesting that the inhibition of 
BMPs requires higher Fst expression than 
Activin inhibition. Although ameloblasts 
differentiated and formed enamel on the 
lingual side of Fst-/- incisor, the ameloblast 
layer was disorganised, suggesting that 
another inhibitor partially compensates Fst 
function on the lingual side. Our results 
suggest that the dental follicle, in addition 
to dental epithelium and dental papilla, 
plays a role in ameloblast differentiation. 
Activin, expressed in the dental follicle, 
induces Fst in the dental epithelium. This 
indicates that dental follicle has a role in 
regulation of dental epithelium, which has 
not been demonstrated earlier. 

Tissue recombination experiments 
have shown that the lingual dental 
epithelium looses the competence to 
differentiate into ameloblasts (Amar et 
al., 1989), and we showed that Fst is 
responsible for this. If Fst expression is 
lost, as in Fst-/- incisor, lingual epithelium 
is also competent to differentiate into 
ameloblasts. In humans, a heterogenous 
group of inherited defects in the enamel 
called Amelogenesis imperfecta (AI) 
can be caused for example by changes in 
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ameloblast specifi c genes (Gibson et al., 
2001; Fukumoto et al., 2004). In addition, 
there are examples of animals lacking 
dental enamel, such as the sloth, and 
several known mutations in mice cause 
the absence of enamel in incisors, such as 
K14-Eda, K14-Edar, K14-Noggin, K14-
Wnt3 and Tbx1-/- (Mustonen et al., 2003; 
Pispa et al., 2004; Tucker et al., 2004; 
Plikus 2005; Millar et al., 2003; Mitsiadis 
et al., 2009; Tummers and Thesleff, 2008). 
In K14-Noggin incisors the BMP pathway 
is inhibited, thus resembling the situation 
in K14-Fst mice. However, K14-Fst 
incisors are slightly smaller than wt, while 
K14-Noggin incisors are enlarged (Plikus 
et al., 2005). Despite the size difference, 
both mouse mutants lack incisor enamel, 
supporting the role of BMPs in inducing 
ameloblast differentiation. In K14-Eda 
incisors the enamel is lost but in Tabby 
mice the enamel is accumulated on 
wider area (Tummers and Thesleff, 2008; 
Risnes et al., 2005). In addition, Eda can 

inhibit BMP4 function by stimulating the 
expression of Fst together with another 
BMP antagonist, Ccn2 (CTGF) in the 
incisor (Pummila et al., 2007). On the 
other hand, unbalancing FGF signalling 
in Spry4-/- and Spry4-/-;Spry2+/- incisors 
causes ectopic ameloblast differentiation 
and enamel deposition on the lingual side 
(Klein et al., 2008). Thus BMP signalling, 
and especially BMP4, is a key inducer of 
ameloblast differentiation, through many 
molecules, at least Eda, Wnts and FGFs, 
participate in fi ne tuning of the regulation. 

Based on our results, we have 
identifi ed a regulatory network directing 
the formation of asymmetric ameloblast 
differentiation and enamel formation in the 
incisor. Three dental tissues participate in 
the interaction; the follicle mesenchyme, 
the dental epithelium and the papilla 
mesenchyme. The mesenchymal tissues 
have opposite effects on the epithelium, 
where the regulation of ameloblast 
differentiation occurs. Activin from the 
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Figure 8.
Asymmetric expression of Fst regulates ameloblast differentiation in the incisor. On the labial 
side BMP from the dental papilla induces expression of p21and differentiation of ameloblasts. 
However, on the lingual side Activin from the dental follicle induces Fst expression in the 
epithelium and Fst inhibits BMP. Thus, BMP cannot induce ameloblast differentiation.
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dental follicle induces Fst expression 
in the epithelium, and Fst inhibits the 
inductive signalling of BMP derived from 
the papilla to the epithelium (Figure 8). 
Thus Activin inhibits BMPs to induce 
ameloblast differentiation indirectly 
through Fst induction. This occurs on 
the lingual side, and results in lack of 
ameloblast differentiation and enamel 
formation. On the labial side, Activin 
expression becomes restricted mainly to 
the dental follicle at E18, leading to Fst’s 
limited expression in the outer dental 
epithelium, and its inability to inhibit 
BMPs in the dental papilla. This enables 
BMPs to induce ameloblast differentiation, 
and the formation of asymmetric enamel 
deposition in the incisor. 

A signalling network consisting of 
BMPs, Activin, FGFs and Follistatin 
regulates the epithelial stem cell niche 
in the incisor (III)

The continuous growth in the mouse 
incisors is maintained by stem cells. The 
epithelial stem cells in the incisor have 
been shown to reside in the proximal 
part of the incisor, in the cervical loop 
(Harada et al., 1999). The labial cervical 
loop maintains actively proliferating 
cells which differentiate into ameloblasts 
within a large stellate reticulum, whereas 
lingual cervical loop is small with less 
proliferation and fewer cells. During our 
analyses of ameloblast differentiation in 
K14-Fst incisor we noticed that in addition 
to the small size and loss of ameloblasts 
from the labial side, the incisors had lost 
the labial lingual asymmetry of the size 
of the cervical loops. K14-Fst incisor 
resembled the phenotype seen in Fgf10-/- 
incisors, and in addition FGF10 signalling 
has been closely associated with epithelial 

stem cell regulation (Harada et al., 1999; 
Harada et al., 2002). 

Histological analysis of proximal 
area of K14-Fst incisor at E18 showed 
that in addition to small size and lack of 
enamel, the typical large stellate reticulum 
compartment in the labial cervical loop 
was absent and the cervical loop was 
diminished. Surprisingly, in the Fst-/- 
incisor the lingual cervical loop was 
enlarged and contained stellate reticulum 
and differentiating ectopic ameloblasts, 
thus resembling of labial cervical loop 
in wt incisor. Proliferation analyses with 
BrdU indicated that in the wt incisor the 
proliferating cells were most abundant in 
the inner dental epithelium on the labial 
side cervical loop, whereas on the lingual 
side proliferation was sparse. However, in 
K14-Fst the proliferation was decreased 
in the labial cervical loop and in Fst-/- 
proliferation on both lingual and labial 
cervical loops was increased. These results 
suggest that Fst has an important role in 
the proliferation of dental epithelial cells 
in the cervical loops and in regulating the 
formation of an asymmetric structure.

FGF signalling has been connected 
with the regulation of epithelial stem 
cells (Harada et al., 1999; Harada et al., 
2002). Mainly FGF10 has been suggested 
to regulate epithelial proliferation, but 
expression pattern analyses have shown 
that Fgf10 is expressed symmetrically 
in the papilla at E18 aligning both the 
labial and lingual cervical loops (Harada 
et al., 1999). However, Fgf3 expression 
is asymmetric and the expression is 
restricted to the papilla next to the labial 
cervical loop, partially overlapping with 
Fgf10 at E18. We analysed the expression 
patterns of Fgf3 and Fgf10 in K14-Fst 
and Fst-/- incisors. In K14-Fst incisor 
Fgf3 expression was downregulated. 
Conversely in Fst-/- incisors ectopic 
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expression was detected in the papilla 
close to the enlarged lingual side cervical 
loop. Fgf10 expression was similar in the 
mutants and wt. Proliferation analyses in 
vitro confi rmed that in addition to FGF10, 
FGF3 can induce proliferation in the dental 
epithelium. According to these results 
Fst inhibits the expression of lingual 
Fgf3 in the wt and indirectly affects the 
proliferation of the dental epithelium. 

FGF signalling is an essential 
regulator of epithelial proliferation in the 
incisor. Downregulation of Fgf signalling 
in Fgf10+/- mouse teeth does not cause a 
phenotype differing from the wt, but in 
Fgf10-/- incisor the labial cervical loop 
is hypoplastic (Harada et al., 2002). We 
analysed Fgf3-/- and Fgf3-/-; Fgf10+/- 

compound mutant incisors and detected 
differentiated ameloblasts at P1. However, 
the labial cervical loop in Fgf3-/-; Fgf10+/- 
incisor was slightly smaller than in 
wt and Fgf3-/-. At 5 weeks of age both 
Fgf3-/- and Fgf3-/-; Fgf10+/- incisors had 
distinct phenotype differing from the wt. 
Incisors in both mutants were white, but 
Fgf3-/-; Fgf10+/- incisors were also smaller 
and broken in several mice suggesting 
defects in the enamel. Ground sections 
of the incisor confirmed that in Fgf3-/-; 
Fgf10+/- enamel was missing, and although 
enamel was seen in Fgf3-/- incisor, the 
white colour of the incisor and the worn 
cusps of the molars suggested defects 
in the enamel. FGF3 and FGF10 seem 
to function cooperatively during tooth 
development, because the greater the 
number of alleles lost, the more severe the 
enamel phenotype. Consistent with this is 
the molar phenotype of Fgf3-/-; Fgf10-/-, 
in which development arrests at the bud 
stage. 

Ectopic expression of Fgf3 was 
seen in the Fst-/- incisor, suggesting 
interaction of pathways at some level. 

To further study these interactions we 
analysed the expression of Fgf3, Fst, 
ActivinβA, Bmp2, Bmp4 and Bmp7 in 
the developing incisor from E14 to E16. 
Fgf3 expression became asymmetric in 
the papilla mesenchyme close to the labial 
cervical loop at E16. ActivinβA expression 
was already asymmetric at E15, when 
expression also became intense also next 
to the labial cervical loop. Thus Fgf3 and 
ActivinβA had overlapping expression 
patterns at E15. Bmp4 was expressed in 
the mesenchyme symmetrically around 
both labial and lingual cervical loops, and 
in the preodontoblasts. Fst was extensively 
expressed in the lingual dental epithelium, 
but in the labial epithelium expression 
became restricted to the outer dental 
epithelium at E16. The expression pattern 
of Fst suggests that the inhibitory effect 
of Fst to the papilla is more prominent 
on the lingual side than on the labial side 
due to distance from the papilla. Activin 
and BMP receptors Alk3 and Alk4 were 
expressed in the epithelium, indicating 
that BMP and Activin signalling regulate 
the epithelium.   

Fst functions as an inhibitor of Activin 
and BMPs, and we showed that BMP4 
induces ameloblast differentiation and Fst 
negatively regulates its induction (II). In 
addition upregulation or downregulation 
of Fst altered FGF signalling. Because 
of these results we were interested in 
analysing the role of BMPs and Activin in 
FGF signalling in the incisor. Surprisingly 
beads soaked in BMP4 inhibited Fgf3 
expression in incisors isolated at E16 and 
cultured for 24hrs. However, BMP4 had 
no effect on Fgf10 expression. Noggin 
caused ectopic expression of Fgf3 in the 
papilla mesenchyme on the lingual side 
next to the epithelium. A similar pattern of 
Fgf3 expression was also detected in K14-
Noggin mice, as well as in Fst-/- incisors. 
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These results confi rm that BMP4 inhibits 
Fgf3 expression. Thus both Fst and BMP4 
inhibit the expression of Fgf3, functioning 
synergistically unlike in ameloblast 
differentiation, where Fst and BMP4 
have antagonistic effects (II). The search 
for antagonistic signal for BMP4, hence 
inducing Fgf3 expression on the labial 
side in wt incisor and regulated by Fst lead 
us to study the effects of Activin on Fgf3 
expression. In vitro cultures revealed that 
similar to Noggin, ActivinA was also able 
to induce ectopic Fgf3 expression on the 
lingual side papilla mesenchyme next to 
the dental epithelium, albeit not so strongly 
as Noggin. Cell proliferation analyses by 
BrdU confirmed that ActivinA induces 
the proliferation of dental epithelium in 
the isolated incisor, and when endogenous 
Activin/TGFβ signalling was prevented 
by selective inhibitor of ALK receptors 
(SB431542) the labial cervical loop was 
diminished containing few epithelial 
cells. However, the effects became 
signifi cant only after 4d of culture. These 
results indicate that Activin and BMPs 
antagonistically regulate Fgf3 expression 
in the mesenchyme and the proliferation 
of epithelial cells, including stem cells, in 
the cervical loops. 

To analyse the mechanisms regulating 
the expression of Activin and Fgf3 in 
the dental mesenchyme we cultured 
the incisors at E14 or E15 for 24hrs. 
Neither Fgf3 nor Activin was expressed 
in the separated dental mesenchyme, 
but placing dental epithelium beside 
the separated mesenchyme induced 
mesenchymal expression of both Fgf3 and 
Activin. However, the expression of both 
genes was restricted in the mesenchyme 
aligning the epithelium. Direct regulation 
between Activin and FGF3 in the isolated 
mesenchyme did not occur, thus Activin 
was not able to induce Fgf3 or vice versa 

in the dental mesenchyme, indicating that 
the regulation occurs through the dental 
epithelium. However, FGF9, expressed 
in the dental epithelium, was able to 
induce the expression of both Activin 
and Fgf3. Nonetheless, it is unlikely that 
FGF9 could be exclusively responsible 
for the restricted expression patterns of 
both Activin and Fgf3 beginning from 
the E15 and E16, because Fgf9 becomes 
asymmetrically expressed only after E18 
(Kettunen and Thesleff, 1998). 

We showed earlier that Fst negatively 
regulates ameloblast differentiation by 
inhibiting BMP signalling on the lingual 
side of the incisor, thus causing the labial-
lingual asymmetry in enamel formation 
(II). The interaction occurred between 
follicle mesenchyme, dental epithelium 
and papilla mesenchyme, indicating 
active epithelial mesenchymal interaction. 
Our results concerning the regulation of 
epithelial stem cells in the cervical loops 
also showed interaction between these 
tissues, emphasizing the essential role 
of epithelial mesenchymal interaction. 
Epithelial stem cells in the incisors have 
been located in the cervical loop but the 
exact stem cell population remains unclear 
(Harada et al., 1999). Several genes 
have been suggested to participate in the 
regulation of incisor stem cells, such as 
FGF10, FGF3, BMP4 and Notch1 (Harada 
et al., 1999, 2002; Tummers and Thesleff, 
2003). 

According to our results FGF3 
together with FGF10 maintain the epithelial 
stem cell pool in the labial cervical loop. 
Asymmetric Fgf3 expression is not 
necessary for the formation of cervical 
loop but it seem to cause the epithelial 
proliferation and larger stellate reticulum 
in the labial cervical loop than in the 
lingual side. This can be confi rmed by the 
ability of FGF3 to induce proliferation in 
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the dental epithelium, and the asymmetric 
expression pattern of Fgf3, consistent with 
the labial lingual asymmetric structure. 
Besides, when Fst is downregulated in 
the Fst-/- incisor, ectopic Fgf3 expression 
is detected lingually next to the enlarged 
cervical loop. Our results suggest that 
whereas moderate proliferation of lingual 
cervical loop is maintained by FGF10 
signalling, the active proliferation and 
maintenance of stem cells of labial 
cervical loop is regulated by cooperative 
function of both FGF10 and FGF3. 
Thus the role of FGF10 might be in the 
maintenance of basal level of stem cells 
essential for continuous growth. In Fgf10-/- 
the labial cervical loop is diminished 
and stellate reticulum is missing, but 
ameloblast differentiation had occurred at 
E19 (Harada et al., 2002). However, after 
three weeks of growth under the kidney 
capsule the ameloblast layer was lost, most 
likely due to loss of the stellate reticulum 
and stem cells leading to absence of 
ameloblast layer maintenance (Yokohama-
Tamaki et al., 2006). The defects in the 
cervical loop structure in K14-Fst are 
more severe than in Fgf3-/-, suggesting that 
Fst affects other molecules in addition to 
FGF3. Also, in Tbx1-/- mouse incisor the 
ameloblasts are not differentiated and 
the labial cervical loop is small missing 
the stellate reticulum resulting from the 
down regulated proliferation (Catón et al., 
2009). FGF can induce Tbx1 expression in 
the preameloblasts and in Spry2+/-;Spry4-/- 
incisors Tbx1 expression is detected 
not only on the labial side epithelium 
as in wt but ectopically on the lingual 
side epithelium as well, thus linking 
FGF and Tbx1 signalling (Mitsiadis 
et al., 2008; Catón et al., 2009). When 
Ctip2, an enhancer of transcriptional 
repression, is defi cient in the incisor, the 
labial side ameloblast layer is defective 

and the stellate reticulum is diminished 
(Golonzhka et al., 2009). Surprisingly, 
ameloblast differentiation also occurs on 
the lingual side and epithelial expansion 
was detected. The mice die soon after 
birth and the incisor phenotype after 
eruption remains unclear (Wakabayashi 
et al., 2003). Table 2 presents the genes 
which have been suggested to have a role 
in epithelial stem cell regulation or have 
been shown to cause a phenotype in the 
incisor. The genes are divided according 
to whether they were known before or 
have been found after the article III was 
published and also our results from the 
article III are mentioned.   

Our results suggest that FGF, 
BMP, Activin and Fst are integrated in 
the signalling network balancing the 
proliferation of dental epithelial stem 
cells and transient amplifying cells in the 
stellate reticulum of labial cervical loop. 
Mesenchymal FGF3 and FGF10 are the 
inducers of epithelial cell proliferation. 
BMP4, expressed in the mesenchyme 
next to both the labial and lingual 
cervical loops, did not have any effect on 
Fgf10 expression, but Fgf3 expression 
was repressed. This suggests that FGF 
signalling regulated by BMP and Activin 
exists only through FGF3. The fi rst sign 
of a signalling network is seen at E15, 
when ActivinβA becomes expressed 
asymmetrically in the mesenchyme, 
intensive expression detected close to 
the labial cervical loop. Activin might 
antagonise the effects of BMP4 and thus 
causing the labial expression of Fgf3 to 
remain after E16, when Fgf3 expression 
is downregulated elsewhere in the 
papilla mesenchyme. This indicates that 
two TGFβ signalling family members 
antagonistically regulate epithelial stem 
cell proliferation through the regulation of 
Fgf3 expression. Fst negatively regulates 
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Table 2.
Potential incisor epithelial stem cell fate regulators. The upper part of the table shows the earlier 
found molecules and their effects as well as the results presented in the article III. The lower part 
of the table shows the molecules which have been recognised after the article III was published.

Participating 
signals Role References Results in article III

Notch1 Regulation of stem cell 
proliferation

Harada et al., 1999; 
Tummers and 
Thesleff, 2003

 

Notch2 Regulation of stem cell 
proliferation

Harada et al., 1999  

FGF3 Expression patterns suggest 
a role in epihtelial stem cell 
regulation

Tummers and 
Thesleff, 2003

Induces the proliferation 
of epihtelial stem cells

FGF10 Induces proliferation in the 
cervical loop

Harada et al., 1999; 
Tummers and 
Thesleff, 2003

 

BMP4 Expression patterns suggest 
a role in epihtelial stem cell 
regulation

Tummers and 
Thesleff, 2003

Inhibits epithelial 
stem cell proliferation 
through antagonizing 
the expression of Fgf3 

Activin   Antagonizes the 
inhibitory effect BMP4 
has on Fgf3 expression

Fst   Regulates proliferation 
of epithelial stem cells 
by antagonising Activin 
signalling

Participating 
signals Role References

Spry2, Spry4 Downregulation of FGF 
inhibition causes an 
enlarged lingual cervical 
loop

Klein et al., 2008

Tbx1 Loss of Tbx1 causes a 
reduced labial cervical loop

Catón et al., 2009

Ctip2 Loss of Ctip2 causes a 
reduced labial cervical loop

Golonzhka et al., 
2009

MK Induces proliferation in the 
cervical loop area

Mitsiadis et al., 
2008b

HB-GAM Induces proliferation in the 
cervical loop area

Mitsiadis et al., 
2008b
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Activin on the lingual side, thus enabling 
BMP4 to inhibit Fgf3 expression in the 
mesenchyme. However, on the labial 
side Fst expression is restricted in the 
outer dental epithelium and the distance 
to papilla, where Activin is expressed, 
confines the negative regulation by Fst. 
This allows Activin to counteract BMP4 
and thus enable strong Fgf3 expression. 
This signalling network explains the 
formation of labial lingual asymmetry 
in the cervical loops and the increased 
number of labial epithelial stem cells. 

Several experiments indicated that 
the regulation of Fgf3 by Activin and 
BMP is indirect and functions through the 
epithelium. Tissue culture experiments 
showed that Fgf3 was lost in the separated 
mesenchyme, and that expression was 
maintained if mesenchyme and epithelium 
were recombined. ActivinA was not able 
to rescue Fgf3 expression in the separated 

mesenchyme and was only able to induce 
epithelial proliferation after 4 d of culture. 
In addition, the expression pattern of Fgf3 
in the cultured incisor, detected in the 
mesenchyme underlying lingual epithelium 
and not that surrounding the bead, 
suggests that the epithelium is essential 
and that signalling proceeds through 
epithelium. Convergent with this is the 
analysed expression patterns of Activin 
and BMP receptors, which were detected 
only in the epithelium. These results show 
that Activin induces Fgf3 expression 
but the regulation functions through the 
epithelium (Figure 9). BMP4 inhibited 
the expression of Fgf3 in the cultured 
incisor, but the expression was rescued by 
ActivinA. In addition to ActivinA inducing 
ectopic expression close the lingual dental 
epithelium, inhibition of BMP by Noggin 
was able to mimic this phenomenon. 

Figure 9.
A signalling network regulating epithelial stem cells in the mouse incisor. Fgf3, which together 
with FGF10 regulate epithelial stem cell proliferation, is expressed in the dental papilla on the 
labial side. BMP4 inhibits Fgf3 expression, but Activin antagonises this effect, thus Fgf3 is 
expressed and epithelial stem cell proliferation is maintained on the labial side. However, on 
the lingual side Fst negatively regulates Activin and BMP4 is able to inhibit Fgf3 expression, 
therefore the amount of stem cells is limited.
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Consistent with this is the phenotype of 
K14-Noggin incisor where proliferation 
is increased in both labial and lingual 
dental epithelia (Plikus et al., 2005). 
Schematic pictures of different incisor 
phenotypes of several mouse mutants 
are in Figure 10. Our results suggest that 
BMP4 inhibits Fgf3 expression, but that 
Activin can counteract the inhibition and 
hence Fgf3 is expressed. This occurs on 
the labial side, while on the lingual side 
Fst inhibits Activin, which allows BMP 
negatively regulate Fgf3 expression and 
the epithelial proliferation remains low in 
the lingual cervical loop. Both BMP and 
Activin regulate Fgf3 expression indirectly 
through the epithelium. The signalling that 
induces the expression of Fgf3 and Activin 
remains unsolved. One candidate, FGF9, 
is expressed particularly in the epithelium 
in the cervical loop, and it is able to 

induce both Activin and Fgf3 expression 
in the separated mesenchyme. However, 
some other signal is needed in addition to 
FGF9 because the asymmetric expression 
of Activin and Fgf3 is formed before Fgf9 
expression becomes asymmetric and 
restricted only in the labial cervical loop. 
It is possible that another FGF could be a 
participant, because FGFs are functionally 
redundant.

Expression of Wnt pathway genes and 
Wnt/β-catenin activity in the incisors 
indicate absence of Wnt/β-catenin 
signalling in the epithelial stem cells 
(IV)
The Wnt signalling family, an essential 
family known to participate in tooth 
development, has not been analysed 
much during the incisor development, 
although it is known to have important 

Figure 10. 
Several mouse mutants display different phenotypes in the size of stem cell niches of the cervical 
loops. A wild type incisor presents a typical asymmetry with a large labial cervical loop as well 
as labial distribution of enamel. In K14-Fst incisor this asymmetry is lost, thus labial and lingual 
cervical loops are equally sized and enamel is absent. Asymmetry is absent also in Fst-/- incisor, 
where lingual cervical loop is enlarged and enamel is formed on both labial and lingual side. 
In Fgf3-/-; Fgf10+/- incisor labial cervical loop is hypoplastic but is able to maintain ameloblasts 
and enamel formation for a short period. When FGF signalling is increased in Spry2+/-; Spry4-/- 
incisor differences between labial and lingual cervical loops decrease and enamel is formed on 
both sides. When BMP signalling is inhibited in K14-Noggin incisor the asymmetry is lost; both 
labial and lingual cervical loops are enlarged and enamel is missing. Dental epithelium in dark 
grey, enamel in white.

wt K14-Fst Fst-/-

K14-NogginFgf3-/-; Fgf10+/- Spry2+/-; Spry4-/-
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roles in stem cell maintenance or in the 
proliferation and differentiation of stem 
cells, depending on the context. We 
analysed the expression patterns of 12 
Wnt ligands as well as several inhibitors, 
signal mediators and targets, in the 
incisor at E16 and E18. The analysed Wnt 
ligands were Wnt2b, Wnt3, Wnt3a, Wnt4, 
Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, 
Wnt10a, Wnt10b and Wnt11, of which 
Wnt2b and Wnt3 were not detected in the 
incisor. Most Wnt ligands were detected 
in the dental epithelium at E16 and /or 
E18, and some were strongly expressed 
in the differentiating odontoblasts and 
ameloblasts. The expression patterns 
varied but unexpectedly none of the Wnts 
were expressed in the labial cervical 
loop, where putative epithelial stem cells 
reside. However, Wnt4 and Wnt6 were 
detected in the lingual cervical loop and 
Wnt5a was intensely expressed in the 
mesenchyme aligning lingual cervical loop 
but only weakly around the labial cervical 
loop. Wnt3a, Wnt4, Wnt6 and Wnt10a 
were expressed in the preameloblasts 
and ameloblasts. At E18 Wnt6 and 
Wnt10a were intensely expressed in the 
odontoblasts.

The analysed Wnt pathway mediators 
and inhibitors included transcription 
factors Lef1 and Tcf1, three antagonists of 
the Wnt/β-catenin pathway Dkk1, Dkk2 
and Dkk4, and two as of yet functionally 
controversial genes Lrp4 and Dkk3 
(Behrens et al., 1998; Ohazama et al., 
2008; Caricasole et al. 2003; Hoang et 
al. 2004; Niehrs, 2006; Lee et al. 2009). 
Dkk4 expression was not detected in the 
incisor, although it was present in the 
molar (Fliniaux et al., 2008). Also Dkk1, 
Dkk2 and Dkk3 are expressed in the molar 
(Fjeld et al., 2005). None of the analysed 
Wnt mediators or inhibitors was detected 
in the epithelium of the labial cervical 

loop. The expressions were mainly seen 
in the mesenchyme, except Lrp4 and Dkk3 
expression, which were seen in the dental 
epithelium. Lef1 and Tcf1 were expressed 
in the mesenchyme close to the labial 
and lingual cervical loops, and Tcf1, Lrp5 
and Dkk1 were expressed intensely in the 
odontoblasts. Axin2, a negative regulator 
and downstream target of Wnt/β-catenin 
signalling, was expressed in the lingual 
epithelium and weak expression was also 
seen in the preameloblasts and ameloblasts 
in the labial side. In the mesenchyme 
Ax in2  exp re s s ion  was  i n t ense , 
detected close to the labial and lingual 
cervical loops and in addition to in the 
preodontoblasts and odontoblasts at E16 
and E18. To further study Wnt signalling 
in developing incisor we analysed active 
Wnt/β-catenin signalling with three 
different Wnt reporter mouse lines, 
BATgal, TOPgal and Conductin/Axin2lacZ/

lacZ (DasGupta and Fuchs, 1999; Lustig et 
al, 2002; Maretto et al., 2003). BATgal and 
TOPgal lines have several mulitimerised 
TFC/Lef binding sites and siamois or 
c-fos minimal promoter driving LacZ 
expression (DasGupta et al., 1999; Maretto 
et al., 2003). The reporter lines indicate 
active Wnt signalling by expressing the 
enzyme β-galactosidase from LacZ gene 
in cells where the transgene is activated. 
Axin2 expression and BATgal and TOPgal 
reporter activity were all missing from the 
labial cervical loop. In addition, reporter 
activity was missing from the entire dental 
epithelium, thus the reporter activity 
was slightly different although partially 
overlapping with the Axin2 expression and 
some variability was seen also between 
the reporter lines. BATgal reporter was 
detected in the papilla, but most intensely 
in the preodontoblasts and odontoblasts, 
and also in the cells surrounding cervical 
loops. TOPgal was also active in the 
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odontoblasts, and in the cells underlying 
odontoblast layer. The expression of 
Axin2 was intense and distributed more 
widely than the reporter line activities in 
the mesenchyme. Axin2 expression was 
also seen in the dental epithelium. These 
observations indicate that reporter activity 
was variable but partially overlapping, 
and Axin2 expression was seen even in 
the wider areas. Similar observations 
have been made  in other tissues as well, 
suggesting that the reporter lines might 
show different activity depending on the 
transgene and fail to locate low levels 
of Wnt/β-catenin signalling (Boras-
Granic and Wysolmerski, 2008; Barolo, 
2006). Wnt signalling might participate 
in preodontoblast and odontoblast 
differentiation and functioning, but it does 
not seem to have a role in the maintenance 
of epithelial stem cells in the incisor. 

Lgr5, a Wnt target gene associated 
with intestinal and hair stem cells (Barker 
et al., 2007; Jaks et al., 2008), was 
expressed in the incisor both at E16 and 
E18. The expression pattern was localised 
in the epithelium of the cervical loop, 
in a small compartment of cells within 
the stellate reticulum of labial cervical 
loop. The area corresponds to the site 
where putative epithelial stem cells are 
thought to reside. This was the only site 
of expression in the incisor at these stages. 
Because no Wnt activity was seen in the 
Lgr5 expressing cells it is possible that in 
the incisor Lgr5 is not a direct Wnt target 
gene.    

Wnt signalling has an essential role 
the tooth development. Alterations in 
Wnt signalling affect tooth development 
already in the early stages. Inhibition 
of Wnt signalling, as in Lef-/- mice, 
arrests tooth development at the bud 
stage because mesenchymal β-catenin is 
essential for transition from bud to cap 

stage (van Genderen et al., 1994; Chen et 
al., 2009). On the other hand, continuous 
activation of Wnt/β-catenin signalling in 
the oral epithelium induces ectopic teeth 
and continuous tooth formation (Järvinen 
et al., 2006; Liu et al., 2008). Our results 
show that analysed Wnt ligands, inhibitors 
or mediators are expressed extensively in 
the incisor, but nonetheless all of them are 
absent from the labial cervical loop where 
epithelial stem cells reside. In addition, 
active Wnt/β-catenin signalling was 
missing from the epithelium. However, 
Lgr5, an epithelial stem cell marker in the 
intestine and hair follicle was expressed 
in the labial cervical loop, suggesting this 
as the location of the epithelial stem cell 
niche.

We detected the expression of 10 
Wnt ligands in the developing incisor at 
the cell differentiation stage at E16 and 
E18, possibly participating in the cellular 
differentiation. However, although 
expressions of different Wnts were seen 
in the epithelium, Wnt/β-catenin activity 
was detected only in the mesenchyme. 
Consistent with this, Lef1 and Tcf1, Wnt 
signalling mediators, were missing from 
the epithelium. Nonetheless, Wnts do 
not signal only through Wnt/β-catenin 
pathway, but several non-canonical 
pathways also exist. Some of the analysed 
ligands can activate non-canonical 
pathways, resulting in a more complex 
structure for the signalling pathway as well 
as complicating the analyses. Thus, the 
reporter lines, which indicate only active 
Wnt/β-catenin signalling, might not reveal 
all active Wnt signalling in the incisor. 
For instance, Wnt5a, often associated as 
a non-canonical Wnt ligand, is intensely 
expressed in the mesenchyme next to 
the lingual cervical loop, suggesting 
that it might have a role in the negative 
regulation of epithelial stem cells.  

Results and Discussion
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Wnt reporter activity overlapped and 
was intense in the odontoblasts in all the 
three reporter lines. Wnt6 and Wnt10a are 
intensely expressed in the odontoblasts 
and epithelium aligning the odontoblasts, 
and epithelium is known to regulate 
odontoblast differentiation (Thesleff et 
al., 2001), suggesting that these genes 
affects the regulation of odontoblast. 
Wnt10a has also been proposed to 
participate in odontoblast differentiation 
in the molars (Yamashiro et al., 2007). 
However, stabilisation of β-catenin in the 
mesenchyme leads to the disruption of 
ameloblast and odontoblast differentiation, 
suggesting that Wnt/β-catenin signalling 
has to be strictly balanced during cellular 
differentiation (Chen et al., 2009). 
Recently heterozygotes of the same 
Axin2LacZ/ LacZ mouse line we analysed were 
also used to study active Wnt/β-catenin 
signalling in the post natal tooth. Reporter 
activity was detected in the odontoblasts 
before terminal differentiation and in 
the developing roots (Lohi et al., 2009). 
Active Wnt/β-catenin might be necessary 
only during certain stages of odontoblast 
differentiation and constant activation 
might lead to disruption of the cells. In 
the epithelium reporter activity was seen 
only in the enamel free zones, in the tips 
of both molars and incisor, and on the 
lingual side of the incisor (Lohi et al., 
2009). These results are in line with our 
results in analysing the reporter activity 
of Axin2LacZ/ LacZ in the embryonic incisor 
where the ameloblast were devoid of 
active Wnt/β-catenin signalling (data not 
shown). Nevertheless weak expression 
of Axin2 mRNA was detected in the 
preameloblasts and ameloblasts. Wnt/β-
catenin signalling may have a role in the 
inhibition of ameloblast differentiation as 
indicated by intense expression of Axin2 
in the lingual epithelium. The weak Axin2 

mRNA level detected on the labial side 
could be negatively regulated or might not 
be intense enough to inhibit ameloblast 
differentiation.

Lack of active Wnt signalling in 
the presumptive epithelial stem cells in 
the labial cervical loop of the incisor 
was unexpected. Only Axin2 expression 
suggested Wnt signalling in the epithelium. 
Axin2 was expressed in the preameloblasts 
and ameloblasts, but the level of expression 
was low. In the lingual cervical loop of the 
incisor, where ameloblast differentiation 
is inhibited, Axin2 expression was 
intense. This suggests that Wnt signalling 
participates in the inhibition of epithelial 
stem cell proliferation. In hair follicle stem 
cells Wnt/β-catenin signalling is weak but 
its upregulation in the transit amplifying 
cells suggesting that β-catenin stabilization 
enhances the transition from the stem cells 
to the transit amplifying cells in the hair 
follicle (Lowry et al., 2005).

Overexpression of Wnt3 in the 
epithelium under K14 promoter causes 
progressive loss of ameloblasts postnatally 
(Millar et al., 2003). Progressive loss of 
ameloblasts might be due to depletion 
of stem cells and/or inhibition of stem 
cell proliferation and differentiation. 
Our results suggest that Wnt signalling 
is associated with negative regulation of 
stem cells and absence of ameloblasts. It 
is not possible to conclude which stage in 
ameloblast differentiation was affected in 
the ameloblasts of K14-Wnt3 incisor. 

The exact location of epithelial stem 
cells in the cervical loop is still unsolved. 
The current knowledge of the stem cells 
comes from several different experiments 
which nonetheless have not solved exactly 
which cells are the stem cells in the 
cervical loop. Lgr5 is a stem cell marker 
in the intestine and hair follicle, which 
have the stem cell niches morphologically 
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resembling the incisor niche (Thesleff 
and Tummers, 2009). We detected Lgr5 
expression in the cervical loop, within the 
restricted population of epithelial cells, 
suggesting that they might be stem cells. 
However, we did not fi nd any Wnt activity 
in the proximity of Lgr5 positive cells, 
suggesting that different mechanisms 
regulate Lgr5 in the incisor compared to 
the intestine and hair follicle. Nevertheless, 
the expression pattern suggests that Lgr5 
in the incisor indicates the location of 
stem cells and that the function of Lgr5 
might be conserved in different epithelial 
stem cells. Lgr5-/- mice die at birth 
(Morita et al., 2004), thus the phenotype 
of adult Lgr5-/- and the adult stem cells is 
uncharacterised.   

Our results suggest that Wnt/β-catenin 
signalling does not directly regulate 
the epithelial stem cells of the incisor. 
However, the expression patterns of Wnt 
pathway genes together with the analysis 
of reporter activity indicate that Wnt 
signalling is active in the mesenchyme 
surrounding or adjacent to the cervical 
loops, especially the lingual cervical 
loop, suggesting that Wnts may have an 
indirect role in the regulation of cervical 
loop epithelial cells. The more prominent 
activity detected on the lingual side 
suggests that mesenchymal Wnt/β-catenin 
signalling might have an inhibitory role in 
epithelial stem cell maintenance.  

Results and Discussion
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Concluding Remarks

CONCLUDING REMARKS

Changes in the balance of signalling 
regulating the development can cause 
prominent changes in developing tissues 
and organs. This study showed that 
changes in the activity of a negative 
regulator, Fst, resulted in major changes 
in the development of tooth, including 
abnormal crown morphology, alterations 
in enamel patterning and the capacity of 
teeth to grow and renew. 

The different dental characters are 
fl exible and they are regulated by repetitive 
use of signalling molecules. In mammals, 
the complexity of dentition has expanded 
as changes in morphology of tooth rather 
than as increased number of teeth (Jernvall 
and Salazar-Ciudad, 2007). Tooth shape 
show extending morphological diversity 
in mammals and especially in the molars 
the characteristics of cusp patterning are 
varied. The formation of cusps inducing 
enamel knots is regulated by a competition 
between activator and inhibitor factors, 
and alterations in positioning enamel knots 
can lead to drastic changes in the crown 
patterning (Salazar-Ciudad and Jernvall, 
2002). When the balance of Fst signalling 
was altered either by loss or gain of 
function, the molar cusp pattern became 
aberrant. These results suggest that Fst 
modulates enamel knot formation and 
thereby crown morphogenesis, and that 
this regulation occurs through inhibition 
of Activin and BMP signalling. Hence, 
this is another example that the balance of 
the regulators must be strictly fi ne-tuned 
because subtle modifications can cause 
major changes in the crown patterning.

We ident i f ied  the  molecular 
mechanisms responsible for asymmetric 
enamel patterning of continuously growing 
incisor. Ameloblast differentiation and 
enamel formation are altered when 

signalling of two TGFβ family members, 
BMP and Activin, are modulated by Fst. 
The reciprocal interaction occurs between 
three tissue layers, follicle and papilla 
mesenchyme and dental epithelium 
between them. We demonstrated that 
BMP4 regulates differentiation of epithelial 
stem cells into ameloblasts, which are 
responsible for enamel formation. The 
restricted enamel deposition on labial side 
resulted from the asymmetric expression 
of Fst, which is regulated by Activin, and 
indicated that Fst is a negative regulator of 
ameloblast differentiation. On the lingual 
side Fst inhibits BMP4 and ameloblast 
differentiation, but on the labial side 
inhibitory signal is absent from the zone 
of differentiating preameloblasts and 
ameloblasts, thus BMP4 is able to induce 
differentiation. These results indicate 
the importance of BMP as an inductive 
signal of ameloblast differentiation. The 
ameloblast differentiation is suggested 
to be both non cell-autonomous and cell-
autonomous. Shh, together with TGFβ1, 
may be one of the cell-autonomous signals 
regulating ameloblasts (Gritli-Linde et 
al., 2002; Haryuama et al., 2006). Our 
results uncover a new signalling pathway 
regulating ameloblast differentiation.  

Regenerative medicine has advanced 
remarkably during the last decade and 
stem cells are likely to become a valuable 
tool for it. Still many problems remain, and 
understanding the precise mechanisms of 
stem cell maintenance and differentiation, 
tissue morphogenesis and molecular 
mechanisms regulating these phenomena 
need to increase before tissue engineering 
can become effi cient treatment for clinical 
use. We identified a signalling network 
regulating epithelial stem cell proliferation 
in the cervical loops of the incisor. Due to 
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iterative use of molecules and pathways in 
different tissues during the development 
this network may elucidate characteristics 
of other regulatory networks. Our results 
indicate that a complex signalling 
interaction between Activin, BMP, FGF 
and Fst controls the stem cells. FGF3 
induces epithelial stem cell proliferation 
and BMP4 inhibits Fgf3 expression. 
Activin can inhibit the repressive effects 
of BMP4, but it only occurs on the labial 
side because asymmetrically expressed Fst 
antagonises Activin signalling, and thus 
limits the number of lingual stem cells. 

Although stem cells have been under 
vigorous research they have remained 
elusive in many tissues due to the absence 
of tools of recognition. Also in the mouse 
incisors, markers of stem cells are still 
lacking. Studies concerning stem cells in 
epidermal organs have been focusing on 
bulge in the hair follicle and in crypt of the 
intestine, and several stem cell markers 

for these niches have been identified, 
including Lgr5 (Barker et al., 2007; Jaks 
et al., 2008). The epithelial stem cell 
niche in the mouse incisor shares some 
resemblance with these two niches, but 
whether the Lgr5 expressing cells which 
we detected in the incisor are stem cells 
or not remains to be further analysed. The 
exact location of incisor stem cells is still 
debatable, although the first evidences 
of the stem cell niche location in the 
cervical loop were achieved already a 
decade ago (Harada et al., 1999). One 
challenge for clinical use of stem cells 
has also been how to obtain the cells. 
However, recently a method was reported 
to reprogram cells into pluripotent cells 
(iPS), indistinguishable from embryonic 
stem cells, thus giving a possibility to use 
patient´s own cells for tissue engineering 
(Takahashi and Yamanaka, 2006; 
Takahashi et al., 2007).

Concluding Remarks
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