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ABSTRACT 

Background: Despite of the amount of work on the meningococcal serogroup B bacteria and 

immunity to disease caused by them, a satisfactory vaccine for these important pathogens is 

still missing. Several group B meningococcal vaccines based on outer membrane protein 

vesicles (OMV) or complexes have been evaluated in phase II and III clinical trials. Although 

the antibody responses in connection with these phase III clinical protection trials and 

separate immunogenicity trials have been analyzed extensively by enzyme immunosorbent 

assay (EIA) and by assays for serum bactericidal (SBA) and opsonophagocidal activity, the 

specificity and the functional activity of antibodies providing protection against serogroup B 

disease is still partly open. The lack of reliable laboratory correlates or surrogates for 

protection has hampered vaccine development against this important pathogen.  

Study aims: The main aim of the present study was evaluate the applicability of an infant rat 

protective activity (IRPA) assay to assess meningococcal serogroup B OMV vaccine 

responses induced in humans. To this end, pre- and post-vaccination serum samples from 

teenagers immunized with two doses of either the Norwegian OMV vaccine (MenBvac™), 

the Cuban OMV vaccine (VA-MENGOC-BC™), or the serogroup A/C capsular PS control 

vaccine during a previous immunogenicity trial in Iceland were analyzed for IRPA, and the 

results compared to SBA and EIA data obtained with the same serum set and vaccine efficacy 

data obtained earlier in different study populations. We also studied the specificity and 

functional activity of natural antibodies conferring protection in this animal model. Well-

characterized Mabs were used to assess the influence of antibody specificity and isotype on 

protection, and complement component C6 deficient animals to evaluate the importance of 

complement-mediated bacterial lysis on protection. 

Results and conclusions: As compared to the results from rises in anti-OMV IgG levels 

measured by EIA and to a lesser extent also in SBA titres, the numbers of vaccine responders 



detected in IRPA assay were only modest. Thus, although likely to be useful for the pre-

clinical evaluation of candidate MenB vaccines, the IRPA assay, as described herein, is 

probably less suitable for large-scale evaluation of serogroup B OMV vaccine responses in 

clinical samples. Despite this limitation, the IRPA assay seemed to give some additional value 

over the SBA assay in that many SBA negative pre-vaccination sera were often IRPA positive 

though many SBA positive sera remained IRPA negative. In sera taken before vaccination the 

IRPA against strain 44/76-SL was mainly mediated by serogroup B capsular specific IgM 

antibody and was independent of complement-mediated bacterial lysis as evident from the 

lack of SBA in vitro and equal protective activity of normal human sera in complement 

sufficient and C6 deficient animals. Studies with serogroup B capsular specific antibody of 

mouse origin confirmed the latter finding. These findings were in contrast to PorA protein 

specific IgG antibodies whose protective activity in C6 deficient animals was severely 

impaired. A clear connection between the acquisition of natural B-PS specific IgM antibodies 

and IRPA was also indicated. These results suggest that importance capsular PS specific 

antibodies on protective immunity against serogroup B disease may have been 

underestimated. 

Keywords: Neisseria meningitidis B, OMV vaccines, infant rat infection model 
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TIIVISTELMÄ 

Tausta: Tällä hetkellä ei ole olemassa tyydyttävää rokotetta B-ryhmän meningokokin 

aiheuttamia vakavia infektioita vastaan. Useita ulkokalvoproteiinirokotteita on kehitteillä ja 

näistä osan suojatehoa on jo tutkittu kliinisissä faasi II ja III kokeissa. Vaikka rokotteiden 

aikaansaamien vasta-aineiden määrällisiä ja laadullisia ominaisuuksia on tutkittu eri 

menetelmillä, kuten ELISA-menetelmällä, bakterisidia- ja fagosytoosi-testeillä, on suojaavien 

vasta-aineiden spesifiteetti sekä se, miten vasta-aineet aineet suojaavat B-ryhmän 

meningokokkitaudeilta, vielä osin selvittämättä. Kliinisen suojatehon laboratoriokorrelaatin 

puuttuminen on vaikeuttanut rokotekehitystyötä.  

Tavoitteet: Tämän tutkimuksen tarkoituksena oli selvittää, voidaanko rotanpoikasen 

suojatestiä käyttää B-ryhmän meningokokin ulkokalvoproteiinirokotteiden rokotteiden 

suojatehon mittaamiseen immunisoimalla rotanpoikaset passiivisesti ennen rokottamista ja 

rokotuksen jälkeen otetuilla ihmisseerumeilla, ja mittaamalla, kuinka hyvin ne suojaavat 

kokeelliselta meningokokki-infektiolta. Tutkimusrokotteina käytettiin norjalaista 

(MenBvac™) ja kuubalaista (VA-MENGOC-BC™) ulkokalvoproteiinirokotetta ja 

kontrollirokotteena meningokokin A/C-polysakkaridirokotetta. Näin saatuja suojatuloksia 

verrattiin ELISA- ja bakterisidia-testeillä saatuihin tuloksiin sekä tutkimusrokotteiden 

kliiniseen suojatehoon. Lisäksi tutkimme, mikä on rotanpoikasen infektiomallissa suojaavien 

luonnollisten vasta-aineiden spesifiteetti ja mahdolliset toimintamekanismit käyttäen apuna 

komplementin C6-komponentin suhteen puutteellisia eläimiä. Selvitimme myös, onko eri 

spesifiteetin omaavilla tai eri IgG alaluokan vasta-aineilla eroja niissä mekanismeissa, miten 

ne suojaavat kokeelliselta meningokokki-infektiolta.  

Tulokset ja johtopäätökset: ELISA- ja bakterisidia-testiin verrattuna rotanpoikasen 

suojatestin kyky mitata rokotevasteita jäi alhaiseksi. Näin ollen se ei näytä soveltuvan 

sellaisenaan rokotteiden suojatehon arvioimiseen. Sen sijaan se näytti antavan lisäarvoa 



bakterisidia-testiin verrattuna siinä, että monet bakterisidia-testissä negatiiviset näytteet 

osoittautuivat rotanpoikasen suojatestissä positiivisiksi, joskin päinvastaistakin havaittiin. 

Kun ennen rokottamista otettuja seerumeja tutkittiin tarkemmin, havaittiin, että niiden antama 

suojavaikutus rotanpoikasen suojatestissä oli B-ryhmän meningokokin kapselia vastaan 

olevien IgM-luokan vasta-aineiden välittämää. Tämä suoja-vaikutus näytti olevan 

riippumatonta vasta-aineiden aikaansaamasta, komplementin välittämästä bakteerien 

hajoamisesta koska osa suojaavista ihmisten seerumeista jäi bakterisidia-testeissä 

negatiivisiksi. Normaaliseerumit myös suojasivat yhtä hyvin niin komplementin suhteen 

normaaleissa kuin komplementin C6-komponentin suhteen puutteellisissa eläimissä. Tämä 

havainto vahvistettiin hiirestä peräisin olevalla kapseli vasta-aineella, joka toisin kuin testatut 

eri IgG alaluokkien PorA-proteiini vasta-aineet suojasi niin komplementin suhteen normaalit 

kuin C6-puutteelliset rotat kokeelliselta taudilta. Osoitimme myös ajallisen yhteyden 

luonnollisten kapseli-vasta-aineiden kehittymisen ja rotanpoikasen suojamallissa mitattavan 

suojan välillä. Nämä tulokset viittaavat siihen, että luonnollisilla kapseli vasta-aineilla saattaa 

olla tärkeä rooli puolustuksessa myös B-ryhmän meningokokkitauteja vastaan, toisin kuin on 

tähän asti yleisesti ajateltu. 

Avainsanat: Neisseria meningitidis B, ulkokalvoproteiinirokotteet, rotanpoikasen 

infektiomalli 
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ABBREVIATIONS 

Ab  Antibody 

Al-B-PS Aluminum hydroxide gel-bound B-PS  

Al-C-PS Aluminum hydroxide gel-bound C-PS  

BA  Bactericidal activity 

B-PS  Group B polysaccharide 

CDC  Centers for Disease Control and Prevention 
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GMC  Geometric mean concentration 

HmbR  Hemoglobin-binding OMP 

HMW  High molecular weight 
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IgE  Immunoglobulin class E 
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IgM  Immunoglobulin class M 

i.n.  Intranasal 

i.p.  Intraperitoneal 
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Mab  Monoclonal antibody 
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PI  Protection index 
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TbpA  Transferrin-binding protein A 
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1 INTRODUCTION 

Meningococcal disease is one the most feared infections due to rapidity of onset, propensity 

to affect infants and young adults, high mortality, serious sequelae, and tendency to spread, 

sometimes globally. Though the causative organism, Neisseria meningitidis or 

meningococcus, can cause a spectrum of illnesses, two clinically overlapping syndromes, 

purulent meningitis and sepsis, are by far the most common and most serious presentations.  

Meningococci are divided into 12 serogroups on the basis of differences in the structure and 

antigenicity of their capsular polysaccharides (PSs). Serogroups A, B, and C account for 

approximately 90% of all cases of meningococcal disease worldwide, group B and C 

meningococci being the predominant causative agents in industrialized countries. Natural 

immunity against meningococcal disease develops with age, associated with an increase in 

serum bactericidal activity (SBA). Thus, induction of bactericidal antibodies has been 

regarded as evidence of the potential efficacy of putative vaccines. Indeed, because of the lack 

of an animal model, vaccine candidates considered promising on this basis have been directly 

subjected to efficacy trials in humans.  

Currently, there are capsular PS or conjugate vaccines to combat disease caused by serogroup 

A, C, Y and W135 meningococci, but no corresponding vaccine is available for serogroup B 

meningococci. This is due to poor immunogenicity of its capsular PS. Thus, vaccine research 

against serogroup B disease has focused on non-capsular antigens, mainly outer membrane 

proteins in the form of outer membrane vesicles (OMVs), or purified recombinant proteins, of 

which OMV vesicle vaccines have been evaluated in clinical efficacy trials. 

The development of serogroup B meningococcal vaccines has been hampered by the lack of 

reliable laboratory correlates or surrogates for protection. Although the antibody responses in 

connection with efficacy and separate immunogenicity trials have been analyzed extensively, 

there is still much uncertainty about the specificity and functional mechanisms of antibodies 

providing protection against serogroup B disease. In particular, despite the good predictive 

value of SBA for the protective efficacy of serogroup A and C capsular PS based vaccines the 

importance of SBA for protection against serogroup B disease remains partly open.  
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This thesis consists of a series of consecutive studies that have addressed the applicability of 

an infant rat model of serogroup B meningococcal infection for the assessment of 

meningococcal serogroup B OMV vaccine responses induced in humans. In the search for 

vaccine candidates capable of inducing SBA responses, natural immunity to serogroup B 

meningococcus has been less studied. Thus, the specificity and mechanisms of natural 

antibodies conferring protective activity to infant rats were also evaluated, and the importance 

of bacterial lysis on protection afforded by antibodies of different specificity or isotype 

assessed. 
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2 REVIEW OF LITERATURE 

2.1 Meningococcal disease 

2.1.1 The bacterium 

Neisseria meningitidis (the meningococcus) is an aerobic, gram-negative, non-motile, non-

sporulating coccus that occurs in pairs of cells (diplococcus). It is oxidase and catalase 

positive and produces acid from glucose and maltose.  

Of the genus of Neisseria, only N. gonorrhoea (the gonococcus) is always considered to be an 

invader in man, requiring eradication by chemotherapy. The other species occurring in man 

are regarded as more or less frequently isolated commensals, of which N. meningitidis is most 

often isolated from clinical samples and with gonococcus being the only species with 

potential to cause severe systemic disease in otherwise healthy individuals. N. lactamica

shares the nasopharyngeal colonization site with meningococci though they are not associated 

with invasive disease. Due to severity of meningococcal disease and especially the capability 

to epidemic spread, in most countries the notification of cases of systemic meningococcal 

disease to Public Health Authorities is obligatory. Together with collection and 

characterization of corresponding meningococcal isolates, clinical notifications form the basis 

for local, national and global epidemiology and disease control. 

Traditionally, the characterization of meningococcal strains has been based on bacterial 

phenotype, i.e. the recognition meningococcal surface structures by monoclonal or polyclonal 

antibodies raised in experimental animals (mice and rabbits) for these purposes. Thus, the 

antigenic variability of the capsular polysaccharide (PS) defines the serogroup, class 2/3 or 

porin B protein (PorB) the serotype, class 1 or porin A protein (PorA) the serosubtype, and 

lipooligosaccharide (LOS) the immunotype of a meningococcal strain (Frasch et al. 1985, 

Abdillahi and Poolman 1987). Due to the emergence of new PorB and especially PorA 

variants not recognized by currently available serotyping and serosubtyping reagents, DNA 

sequencing of variable regions of the respective porB and porA genes is currently replacing 

serological typing methods (Russell et al. 2004). Other molecular typing methods, indexing 

more slowly evolving variation in bacterial genome, namely multilocus enzyme 
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electrophoresis (MLEE) and more recently, multilocus sequence typing (MLST) (Maiden et 

al. 1998), are used to assign meningococcal strains into clonal complexes and have proven 

useful tools for long-term and global epidemiology.  

2.1.2 Epidemiology 

Meningococci are divided into 12 serogroups (A, B, C, H, I, K, L, W135, X, Y, Z, 29E) on 

the basis of differences in the structure and antigenicity of their capsular PS. Serogroups A, B, 

and C account for approximately 90% of all cases of meningococcal disease worldwide, 

group B and C meningococci being the predominant causative agents in industrialized 

countries. From an epidemiological perspective, meningococcal disease is a pleomorphic 

disease, with incidence rates, serogroup distribution, and the age groups most affected varying 

according to geographic location and time. 

It has been estimated that (excluding epidemics) approximately 500,000 cases of invasive 

meningococcal disease occur annually worldwide, with over 50,000 deaths (WHO 1998). In 

most countries, the annual attack rates vary from < 1 to 5 per 100,000 populations but may 

increase up to 1000 or more especially during serogroup A epidemics (WHO 1998). The 

disease is most common among infants and young children under 5 years of age, with a 

secondary smaller peak occurring among adolescents 15-19 years of age; approximately one-

third of the cases of sporadic meningococcal disease occur in adults >19 years of age (EU-

IBIS 2002). Epidemics tend to shift the age distribution, with older children, teenagers and 

young adults also affected (Peltola et al. 1982).  

The risk of epidemic disease differs between serogroups through mechanisms that are poorly 

understood. Serogroup A meningococcus has historically been the main cause of large 

epidemics and is still the dominating serogroup during both endemic and epidemic periods in 

sub-Saharan Africa in the so called African meningitis belt extending from Senegal in the 

west to Ethiopia in the east. In this area, epidemics caused mainly by serogroup A 

meningococci, and more recently serogroup W135 (Taha et al. 2002), occur in irregular 

cycles every 8 to 12 years, last for two to three dry seasons, fading away during the 

intervening rainy seasons (WHO 1998). Since the epidemic in Finland during 1973-74, 

serogroup A disease has been extremely rare in Europe though recently, a rise in the number 
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of cases of serogroup A meningococcal disease in Moscow has been reported (Lawrence and 

Handford 2003).  

Serogroup C typically causes smaller outbreaks or epidemics, and with serogroup B 

meningococcus is the prevalent cause of endemic disease in most industrialized countries. 

During last years, high or increasing proportions of group C strains, mainly belonging to 

hypervirulent ST-11/ET-37 clonal complex first identified in Canada in 1986 (Ashton et al.

1991), have been reported from several European countries including Belgium (De Schrijver 

and Maes 2003), the Czech republic (Krizova and Musilek 1995), the Netherlands (de Greeff

et al. 2003), Republic of Ireland (Fogarty 1997), Spain (Alcala et al. 2002) and the United 

Kingdom (Kaczmarski 1997, Ramsay et al. 1997). This lead to nationwide vaccination 

campaigns in several countries and the accelerated introduction of the newly developed 

serogroup C conjugate vaccine (Miller et al. 2001, de Greeff et al. 2003, De Schrijver and 

Maes 2003, Salleras et al. 2003).  

Serogroup B meningococci differ from serogroups A and C in disease epidemiology. In 

contrast to serogroup A and C epidemics, which usually resolve in 1 to 3 years, serogroup B 

epidemics begin more slowly, usually reach lower country-wide rates of 5 to 20 cases per 100 

000 population per year and may persist for 5 to 10 years or longer, as seen in past decades in 

Cuba (Sierra et al. 1991), Norway (Lystad and Aasen 1991), Brasilia (Sacchi et al. 1998a), 

areas of Chile (Cruz et al. 1990), and more recently, in New Zealand (Baker et al. 2001).  

2.1.3 Carriage

It has been estimated that approximately 10% of the population carry meningococci in their 

nasopharynx (Cartwright et al. 1987); yet only a minority of carriers develop invasive disease. 

Carriage is most common in young adults, less so in young children and relatively rare in 

adult populations (Cartwright et al. 1987). In infants and toddlers, the carriage of N.

lactamica, a related non-pathogenic organism, predominates (Gold et al. 1978, Cartwright et 

al. 1987, Bakir et al. 2001).  

Meningococcal carriage is a dynamic process, with high rate of turnover and apparently 

multiple carriage periods occurring throughout the life (Ala'Aldeen et al. 2000). The duration 

of carriage is also highly variable (Ala'Aldeen et al. 2000), with the median time of 
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approximately 4 months (Gold et al. 1978). If systemic meningococcal disease occurs, it 

usually manifests within days after the acquisition of a new N. meningitidis strain in 

nasopharynx (Edwards et al. 1977) thought longer carriage period before development of 

invasive disease has also been reported (Ala'Aldeen et al. 2000). Despite the increased risk of 

invasive meningococcal disease after the acquisition of meningococci in the nasopharynx, at 

population level the fluctuations in overall carriage rates have not proven very useful in the 

prediction of outbreaks or emerging epidemics. This reflects the fact that in sharp contrast to 

meningococcal strains isolated from patients that belong to few hyperinvasive lineages only, 

the majority strains isolated from carriers are highly diverse, comprising genotypes rarely or 

never recovered from patients and having thus limited pathogenic potential (Caugant et al.

1988, Jolley et al. 2000, Yazdankhah et al. 2004). During circulation in human populations, 

new lineages of meningococci with increased capacity to cause invasive disease occasionally 

arise from carriage strains thorough genetic recombination and mutation, with capacity to 

spread, sometimes globally (Caugant et al. 1986). 

2.1.4 Adhesion, colonization of human nasopharynx, and invasion 

Humans are the only known reservoir of meningococci. Thus the pathogen is transmitted only 

by aerosol or direct contact with respiratory secretions of patients or healthy human carriers. 

After access to respiratory track, meningococci adhere selectively to microvilli of non-ciliated 

columnar epithelial cells and colonize the nasopharynx (Stephens et al. 1983). The initial 

attachment of meningococci is mediated by long filamentous pili (Stephens and McGee 1981, 

Virji et al. 1992) that specifically recognize complement regulatory protein CD46 (or 

membrane cofactor protein, MCP) on the apical surface of human epithelial cells (Källström

et al. 1997). This interaction between the pathogen and human host is highly specific, as 

evidenced by the inability of piliated strains to bind cells of non-human origin (Virji et al.

1993b). Adhesion of meningococci to host cells leads to down-regulation of pili and capsular 

polysaccharide synthesis (Deghmane et al. 2002). This allows a more intimate contact to host 

cells to be established by colony opacity-associated outer membrane proteins Opa and OpcA 

which both facilitate meningococcal attachment to and invasion of human cultured epithelial 

and endothelial cells but only when present in un-encapsulated background (Virji et al.

1993a). Transient carriage with mild or no symptoms rather than meningitis and/or septicemia 

is the most common outcome of meningococcal infection. The illness results when the 
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organism penetrates the respiratory mucosa and enters the bloodstream of a susceptible host. 

Once entered the blood stream, the bacteria gains access to other parts of body and central 

nervous system by crossing the blood-brain barrier. The mechanisms by which meningococci 

cross the blood-brain barrier composed of tight junction forming epithelial and/or endothelial 

cells are poorly understood but similar to initial contact with nasopharyngeal epithelial cells, 

the interaction between pili and CD46 receptor is likely to be involved (Pron et al. 1997). 

2.1.5 Clinical aspects 

Systemic meningococcal infection is a bacteremic disease often associated with secondary 

infection of skin, meninges and other parts of the body. Though meningococci can cause a 

spectrum of illnesses, two clinically overlapping syndromes, purulent meningitis and 

bloodstream infection (meningococcemia), are by far the most common presentations, septic 

shock with extremely rapid onset being the most devastating form of the disease (Cartwright 

and Ala'Aldeen 1997, Munro 2002). Other manifestations include septic arthritis, pneumonia, 

purulent pericarditis and conjunctivis. Most untreated cases of meningococcal meningitis and 

especially septicemia are fatal. Despite efficient anti-microbial treatment and intensive 

supportive care the case fatality rate from invasive disease has not significantly improved 

during past decades, and the mortality from meningococcal disease has stabilized to about 7-

9% overall, varying from 2-3% in uncomplicated meningitis to 50% or more in septic shock 

(Cartwright and Ala'Aldeen 1997). A nearly equal number of survivors (5%) sustain 

permanent neurological sequelae, mainly deafness (Cartwright and Ala'Aldeen 1997).  

Meningococcal disease is typically of rapid onset and thus treatment should commence as 

soon as the diagnosis is suspected. In most parts of world, meningococci are still highly 

susceptible to penicillin, which is usually the choice of antimicrobial drug for treatment. 

Other drugs such as rifampicin are required to eradicate nasopharyngeal colonization and 

thus, to prevent relapse. As the risk of secondary cases among close contacts such as family 

members is relatively high, chemoprophylaxis combined with vaccination, if available, is 

usually recommended. There are capsular PS or conjugate vaccines against serogroups A, C, 

Y and W135 meningococci, but no vaccine available for serogroup B meningococci.  
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The factors that affect the balance between asymptomatic carriage and bacterial invasion are 

poorly understood. From the bacterial side, the virulence of the colonizing strain and from the 

host side, the state of innate and specific, i.e. adaptive immunity are the most obvious ones 

likely to be involved. Additional factors such as interference by viral infections or 

environmental factors such climatic conditions or smoking that damage integrity of the 

respiratory mucosa, and hence, its effectiveness as a barrier to invasion, may also predispose 

the host to systemic infection (Moore et al. 1990, Fischer et al. 1997, Scholten et al. 1999).  

2.1.6 Genetic factors associated with disease susceptibility 

It has been estimated that host genetic factors contribute to approximately one third of the 

increased risk of disease in siblings of affected cases compared with the risk of disease in 

general population (Haralambous et al. 2003) but the genetic polymorphisms behind this 

finding has not been systemically studied. Variation in host genetic factors may contribute to 

disease at different stages, affecting susceptibility, severity, and/or outcome of infectious 

disease (Emonts et al. 2003). From genetic association studies, defects in sensing, 

recognizing, opsonophagocytic, and lytic pathways, such Toll-like receptor 4 polymorphism 

(Smirnova et al. 2003), hypogammaglobulinemia (Salit 1981), congenital IgM deficiency 

(Hobbs et al. 1967), certain Fc  receptor genotypes (Platonov et al. 1998, van der Pol et al.

2001, Domingo et al. 2002), and especially, defects in classical, alternative, or lectin 

complement pathways (Ross and Densen 1984, Hibberd et al. 1999) are the most obvious 

factors involved in genetically established susceptibility to and/or severity of meningococcal 

infections.  

2.2 Meningococcal surface structures: virulence factors and potential 
vaccine antigens 

Apparently the most important virulence factor of meningococcus is its enormous genomic 

plasticity that allows the pathogen to adapt to different ecological niches and resist varying 

non-specific and specific host defense mechanisms it encounters at different stages of 

infection. Not only the antigenic structure but also the expression of a number of 

meningococcal surface components thought to be of importance for virulence varies through 

processes of transformation, mutation and phase variation (Maiden 1993, Feil et al. 1999, 

Snyder et al. 2001). This variety presents the most important challenge to serogroup B 
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meningococcal vaccine development against which efforts to develop capsular PS-based 

vaccines has been unsuccessful (Wyle et al. 1972).  

2.2.1 Antigenic and phase variability 

Meningococci are transformable, i.e. naturally competent for DNA uptake, enabling a 

mechanism for inter-strain or even inter-species horizontal genetic exchange and antigenic 

variability. This process is the primary mode of DNA change in Neisseria (Feil et al. 1999) 

and has been implicated in the acquisition of sodC from Haemophilus influenzae (Kroll et al.

1998), alteration of penA resulting in penicillin resistance (Spratt et al. 1992), antigenic 

variation of PorA (Feavers et al. 1992a) and Opa proteins (Hobbs et al. 1994), and capsular 

switching (Swartley et al. 1997). Mutations in coding regions provide additional variability 

and are responsible for the micro-heterogeneity of OMPs, such PorA and PorB protein minor 

variants.  

In addition to antigenic variability, many neisserial genes involved in host-parasite 

interactions are subject to phase variation (Tettelin et al. 2000, Snyder et al. 2001), which can 

be defined as high frequency (10-2 to 10-4/cell/generation), reversible on-and-off switching of 

gene expression, contributing to both transmissibility and invasiveness of the organism (de 

Vries et al. 1996). By comparative whole-genome analyses, over 100 putative phase-variable 

genes in the pathogenic Neisseria species has been identified (Snyder et al. 2001). These 

include the genes for pilus (Rytkönen et al. 2004), opacity proteins (Kawula et al. 1988), 

capsular PS (Hammerschmidt et al. 1996b), LOS (Jennings et al. 1999) and HmbR, a 

hemoglobin-binding outer membrane protein (Richardson and Stojiljkovic 1999). The genetic 

basis for this variation depends on the presence of iterative DNA motifs, especially 

homopolymeric tracts, which act as sites of hypermutation. Mutations in tracts situated within 

promoters can alter the degree of gene expression by regulating transcription (e.g. PorA and 

OpcA) while mutations in tracts within coding regions result in on-off switching (e.g. Opa) of 

gene expression at translation level depending on whether the downstream sequences are 

moved in or out of frame for expression. Depending on genes in question, the latter may result 

in on-and-off switching of protein expression or in the case of multiple genes involved in 

LOS biosynthesis, alteration of LOS structure.   
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2.2.2 General characteristics of the cell envelope 

As a typical gram-negative bacterium, the meningococcal cell envelope is composed of three 

layers: an inner phospholipid cytoplasmic membrane, a thin middle peptidoglycan layer, and 

an outer membrane (OM) composed of phospholipids, LOS and numerous proteins embedded 

on it (Fig. 1). In pathogenic strains, isolated from systemic infections, the OM is further 

surrounded by a capsule composed of high-molecular weight anionic polysaccharide. Most 

research has been focused on the capsule and OM components since these are the sites where 

meningococcus interacts with the human host and potential vaccine antigens as well as 

antigenic variability exist.  

Figure 1. Structure of meningococcal cell envelope. Reprinted from Vaccine, Vol 20, Morley SL and Pollard 

AJ. Vaccine prevention of meningococcal disease, coming soon? Pages 666-687, Copyright (2001), with 

permission from Elsevier. 

2.2.3 Polysaccharide capsule 

Capsule is the major virulence factor of meningococcus. With the exception of serogroup A 

meningococci, all the disease associated serogroups B, C, Y and W135 have sialic acid (N-

acetyl neuraminic acid) in their capsular polysaccharides. This confers the organism 
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resistance to host alternative complement pathway mediated attack through mechanisms that 

are not fully understood (Jarvis and Vedros 1987, Ram et al. 1999), partly due to the presence 

of another potentially sialylated molecule, i.e. LOS, on bacterial surface. In vitro, sialic acids 

of both capsule and LOS are prerequisite for bacterial survival in normal human serum (Vogel

et al. 1997, Kahler et al. 1998) and confer resistance to phagocytosis (Estabrook et al. 1992). 

Likewise, in an animal model of meningococcal infection, expression of both sialic acids has 

been reported to be indispensable for bacterial survival (Vogel et al. 1996).  

Like many other virulence factors, the expression of capsular PS is phase variable 

(Hammerschmidt et al. 1996a, Hammerschmidt et al. 1996b), allowing the bacteria to vary 

from adherent, serum sensitive, un-encapsulated phenotype to less-adherent, serum resistant 

encapsulated phenotype. Colonization is favored by the absence of the capsule, un-

encapsulated mutants adhering to human buccal epithelial cells or nasopharyngeal organ 

cultures in greater numbers than the encapsulated parent (Stephens et al. 1993). This is in 

strict contrast to systematic spread: encapsulation is a prerequisite for bacterial survival in the 

blood. In contrast to case isolates that are frequently encapsulated, approximately 40-50% of 

the strains isolated from carriers lack capsule and hence are not serologically groupable 

(Caugant et al. 1988, Ala'Aldeen et al. 2000, Yazdankhah et al. 2004).  

In serogroup B and C meningococci, the capsular PSs are a homopolymers of N-acetyl-

neuraminic acid. The major difference between these two PS lies in the linkage between the 

sialic acid residues, which is 2-8 in serogroup B and 2-9 in serogroup C meningococci. The 

serogroup C PS (C-PS) is also usually O-acetylated (Borrow et al. 2000) whereas the 

serogroup B PS (B-PS) is always de-O-acetylated (Jennings et al. 1977). These differences 

are sufficient to alter the immunological properties of B-PS profoundly. Thus, by contrast to 

C-PS, the purified B-PS is only poorly immunogenic in man (Wyle et al. 1972). This has been 

attributed to immunologic tolerance arising from structural and antigenic similarities between 

B-PS and polysialosyl glycopeptides in fetal and adult neural and extra-neural tissues (Finne

et al. 1983a), and exemplifies another mechanism by which pathogenic bacteria may 

circumvent host immunity, i.e. molecular mimicry.  
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2.2.4 Lipooligosaccharide (LOS) 

LOS is the major constituent of the outer leaflet of the meningococcal OM and responsible for 

the physical integrity and proper functioning of the membrane. It is a glycolipid composed of 

three portions: i) an innermost lipid moiety called lipid A, ii) an inner core oligosaccharide 

structure composed 2-keto-3-deoxy-octulosonic acid and heptoses, the latter sugars being 

variably substituted with iii) short polysaccharide side chains but lacking an O-antigen 

characteristic to enteric gram-negative bacteria. The lipid A portion anchors the LOS into the 

outer leaflet of OM, and is responsible for the toxicity of this molecule due to its ability to up-

regulate a number of inflammation mediators either directly or indirectly, leading ultimately 

to septic shock accompanied by disseminated intra-vascular coagulation and multiple organ 

failure (Brandtzaeg et al. 2001). The inner core OS structure is common to most if not all 

immunotypes, with most of the variability lying in the short polysaccharide side chains 

(Griffiss et al. 1987) and forming the basis of division of meningococci into 12 different 

immunotypes (ITs) (Verheul et al. 1993). ITs L1 thorough L9 are found within group B and C 

meningococci and ITs L8 through L11 within group A meningococci, with ITs L10 and L11 

most often associated with the latter serogroup (Verheul et al. 1993).  

Similarly to many other meningococcal genes, the lgt genes responsible for LOS biosynthesis 

are subject to phase variation, most strains having potential to express several alternative 

terminal LOS structures (Jennings et al. 1999, Berrington et al. 2002). In contrast 

nasopharyngeal isolates that usually express the L8 IT, invasive isolates express lacto-N-

neotetraose (LNnT) containing LOS IT (Jones et al. 1992). This structure, antigenically 

identical to carbohydrate moieties of glycosphingolipids present in many human cells 

(Mandrell et al. 1988), is present on many ITs, including L2, L3, L5, L7, and L9, and can be 

endogenously (Mandrell et al. 1991) or exogenously sialylated (Estabrook et al. 1997). 

Besides its suggested role for virulence through molecular mimicry (Mandrell and Apicella 

1993, Moran et al. 1996), sialylation of LNnT confers the organism resistance to killing 

through all the three complement pathways, irrespective of capsular phenotype (Estabrook et 

al. 1997, Vogel et al. 1997, Jack et al. 1998, Jack et al. 2001).  
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2.2.5 Major outer membrane proteins (OMPs) 

Meningococci express a number of major and minor OMPs, some of which can serve as 

targets for bactericidal, opsonic and/or protective antibodies (Saukkonen et al. 1989) and are 

thus important serogroup B vaccine candidates. On the basis of differences in molecular 

weights, five different classes (1 to 5) of major OMPs, named so because of their abundance 

in OM, are recognized (Tsai et al. 1981).  

Class 1 or porin A (PorA) proteins are porins with slight cation selectivity (Tommassen et 

al. 1990). They are present in the OM as trimers, and function as pores through which small 

hydrophilic solutes can pass in a diffusion-like process (Nikaido 1992). PorA proteins are 

generally present in most meningococcal strains but the expression of this protein varies 

considerably (van der Ende et al. 1995, van der Ende et al. 2000); occasionally, the protein 

may be absent (Newcombe et al. 1998, van der Ende et al. 1999). Recently, an outbreak of 

meningococcal disease caused by PorA-deficient C meningococci has been described (van der 

Ende et al. 2003).  

The porA genes responsible for expression of PorA protein in meningococci of different 

subtypes have been cloned and sequenced (Barlow et al. 1989, McGuinness et al. 1990, 

Maiden et al. 1991). On the basis of nucleotide sequence, a 16-stranded -barrel topology 

model has been proposed, with eight hydrophilic loops (L1-L8) exposed to the cell surface 

(van der Ley et al. 1991, Derrick et al. 1999) (Fig. 2). Most of the structural diversity is 

confined to two discrete variable regions (VR1 and VR2) in the predicted surface-exposed 

loops 1 and 4 (Maiden et al. 1991, van der Ley et al. 1991), respectively. The major structural 

differences in these two variable regions independently generate two separate subtype-

specific antigenic determinants and form the basis of the serosubtyping (Frasch et al. 1985, 

Abdillahi and Poolman 1988) and PorA VR typing scheme (Russell et al. 2004). Within these 

schemes, the PorA is assigned by the prefix “P1.”, followed by numbers separated by commas 

that describe the subtype designation. Thus, a meningococcal strain with B:15:P1.7,16 

phenotype has subtype determinants P1.7 and P1.16 in the VR1 and VR2, respectively.  
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Figure 2. Topology model of meningococcal PorA protein. Amphipathic -sheets form the outer membrane 

spanning regions, with eight hydrophilic loops exposed to cell surface. Reprinted from Meningococcal Disease, 

Cartwright K ed. Surface structures and secreted products of meningococci, Poolman JT et al. Pages 21-34, 

Copyright (1995), with permission from John Wiley & Sons Ltd. 

PorA is immunogenic in humans following infection (Mandrell and Zollinger 1989, 

Guttormsen et al. 1994, Wedege et al. 1998) or vaccination (Wedege and Froholm 1986, 

Rosenqvist et al. 1995, Tappero et al. 1999) and the antibodies induced exhibit both 

bactericidal (Rosenqvist et al. 1995, Milagres et al. 1998, Tappero et al. 1999) and opsonic 

functions (Lehmann et al. 1999) thought to be of importance for host protection against 

systemic disease. However, due considerable inter-strain antigenic variation, a multivalent 

vaccine is needed to increase vaccine coverage if PorA is to be used as a single vaccine 

antigen. 

Class 2/3 or porin B (PorB) proteins are the most abundant proteins of the OM, where they 

function as anion-selective porins (Tommassen et al. 1990). They are structurally related to 

PorA proteins, with eight surface-exposed hydrophilic loops separated by conserved 

membrane spanning -sheets (van der Ley et al. 1991, Derrick et al. 1999). All 



31

meningococcal strains stably express either of the two mutually exclusive PorB proteins (Tsai

et al. 1981), PorB2 or PorB3, encoded by alternate alleles present at the porB locus. In 

Europe, majority of current serogroup B disease isolates express PorB3 (EU-IBIS).  

The porB genes responsible for expression of PorB protein in meningococci of different 

serotypes have been cloned and sequenced (Feavers et al. 1992b, Bash et al. 1995, Sacchi et 

al. 1998b). Most of the structural diversity is confined to four discrete variable regions (VR1 

through VR4) in the predicted surface-exposed loops 1, 5, 6, and 7, respectively (Feavers et 

al. 1992b, Bash et al. 1995), of the proposed porin structure, and forms the basis of division 

of meningococci into different serotypes (Frasch et al. 1985) and PorB VR types (Sacchi et 

al. 1998b).  

PorB protein is highly immunogenic in humans following infection and vaccination 

(Guttormsen et al. 1993, Delvig et al. 1997, Wedege et al. 2000) but the protective activity of 

these antibodies may be limited due to poor accessibility of especially PorB3 epitopes on 

intact, live bacteria (Michaelsen et al. 2001). Indeed, by contrast to allelic PorB2 and the 

PorA protein (Brodeur et al. 1985, Saukkonen et al. 1987, Saukkonen et al. 1989), 

monoclonal antibodies to PorB3 are less frequently bactericidal and failed to confer protection 

in vivo in an infant rat model of meningococcal infection (Saukkonen et al. 1987, Saukkonen

et al. 1989).  

Class 4 or reduction modifiable protein (Rmp) differs from other major OMPs in terms that 

it is both constitutively expressed as well as antigenically invariable (Lytton and Blake 1986). 

It is a structural, periplasmic protein involved in the maintenance of cell envelope integrity by 

stabilizing the oligomeric forms of a number of OMPs (Jansen et al. 2000, Prinz and 

Tommassen 2000) and linking outer membrane to peptidoglycan layer (Grizot and Buchanan 

2004). As might be predicted from its periplasmic location, antibodies to Rmp are neither 

bactericidal nor opsonic (Rosenqvist et al. 1999), making it less attractive candidate for 

meningococcal vaccines.  

Class 5 or colonial opacity-associated Opa and OpcA proteins are a group of heat-

modifiable proteins that are functionally related but genetically and structurally distinct. Both 

proteins mediate meningococcal adhesion to and invasion of epithelial and endothelial cells, 
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Opa proteins mainly by binding to members of the carcinoembryonic antigen-related cell 

adhesion molecule (CEACAM) family (Virji et al. 1996) while OpcA protein interacting 

indirectly via vitronectin with -integrins on endothelial cells (Virji et al. 1994) and directly 

with heparan sulphate proteoglycans on epithelial cells (de Vries et al. 1998).  

Opa proteins are encoded by a family of three to four genes that undergo high-frequency on-

off phase (Stern and Meyer 1987, Kawula et al. 1988, Woods and Cannon 1990) and 

antigenic variation of expression (Hobbs et al. 1994, Malorny et al. 1998), a single strain of 

N. meningitidis being able to express from none up to several distinct Opa proteins due to 

genetic rearrangements within the pentameric repeat units in coding region of the amino-

terminal leader peptide (Stern and Meyer 1987). On the basis of nucleotide sequence, a two-

dimensional eight-stranded -sheet topology model has been proposed, with four hydrophilic 

loops (L1-L4) exposed to the cell surface (Malorny et al. 1998). Loops 2 and 3 are highly 

variable in sequence (Malorny et al. 1998) and involved in the interaction with CEACAM 

receptors on host epithelial cells (Virji et al. 1996, de Jonge et al. 2003).  

OpcA protein (formerly know as 5C or Opc) differs from Opa proteins in terms of that only 

one functional gene (opcA) is present in meningococcal genome (Zhu et al. 1999); in some 

epidemic clones it may be absent (Seiler et al. 1996). By contrast to highly variable opa 

genes, opcA shows only limited sequence variability (Seiler et al. 1996). Nevertheless, due to 

variation in the length of a polycytidine strecth in the promoter region, the expression of 

OpcA is hypervariable at transcriptional level, leading to bacteria with different OpcA levels 

on their OM (Sarkari et al. 1994). On the basis of nucleotide sequence, a two-dimensional 

eight-stranded -sheet topology model has been proposed, with 10 transmembrane strands and 

five hydrophilic loops (L1-L5) exposed to the cell surface (Merker et al. 1997). In the crystal 

structure, the loops protrude from the -barrel and form a positively charged crevice that have 

been suggested to be the binding site to negatively charged host proteoglycan polysaccharide 

(Prince et al. 2002).   

Although the Opa and especially the OpcA protein have been shown to be highly 

immunogenic and able to induce bactericidal antibodies in humans following infection or 

vaccination (Rosenqvist et al. 1993, Danelli et al. 1996, Milagres et al. 1998), the high degree 
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of phase and/or antigenic variability has been considered the major impediment to vaccine 

application. 

The minor OMPs are discussed later in the “Other serogroup B vaccine candidates” section.  

2.2.6 Other surface structures 

Pili are long filamentous multimeric proteins protruding from the OM to bacterial surface. In 

encapsulated strains, pili are essential for adhesion of meningococci to human epithelial and 

endothelial cells (Stephens and McGee 1981, Virji et al. 1991). Similarly to a number of other 

meningococcal surface structures, also pili undergo extensive antigenic and phase variation 

(Tinsley and Heckels 1986, Nassif et al. 1993, Rytkönen et al. 2004), and hence, are 

considered less attractive vaccine candidates.   

2.3 Immunity and host defense mechanisms 

A variety of host defense mechanisms are involved in protection against meningococcal 

disease. Similarly to other pathogens colonizing the upper respiratory tract, at mucosal sites, 

non-specific and specific factors inhibiting the attachment, colonization and penetration of 

bacteria through the respiratory epithelium provide the first line defense. If penetration of 

bacteria through the respiratory epithelium and entrance to bloodstream occurs, humoral and 

cellular components of blood and associated tissues provide the last phase of host defense to 

prevent excessive intra-vascular bacterial multiplication and the development of 

overwhelming disease. With this respect, specific antibody (IgG or IgM) and the complement 

system play the most critical role (Goldschneider et al. 1969a). Acquired or genetic absence 

of either of these serum factors predisposes individual to at risk for systemic meningococcal 

infection (Hobbs et al. 1967, Salit 1981, Figueroa et al. 1993). 

2.3.1 Development of immunity 

Natural antibodies against meningococci develop with age and are associated with an increase 

in serum bactericidal activity (SBA) (Goldschneider et al. 1969a, Goldschneider et al. 1969b). 

Infants are thought to be protected from disease through the acquisition of maternally derived 

antibody during gestation and lactation. With the weaning immunity, the incidence of 
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meningococcal disease peaks at 6 months to 2 years of age, followed by progressive decrease 

up to 12 years of age when the attack rate has declined to adult level and natural immunity 

developed (Goldschneider et al. 1969a). Although poorly understood, this natural 

immunization is thought to occur through prolonged or intermittent colonization at the 

mucosal surface by non-pathogenic meningococci or commensal Neisseria such as N. 

lactamica (Goldschneider et al. 1969b, Gold et al. 1978, Robinson et al. 2002, Troncoso et al.

2002). Both capsular and sub-capsular antigens seem to participate in generation of systemic 

immune response (Goldschneider et al. 1969b, Jones and Eldridge 1979, Wedege et al. 2003, 

Jordens et al. 2004) thought to be of major importance for host immunity against invasive 

disease. While beneficial for systemic immunity, the carriage does not, however, always seem 

to prevent re-colonization with either the homologous or heterologous meningococcal strains 

(Ala'Aldeen et al. 2000).  

The contribution of carriage of non-related species to development of immunity is less clear. 

Nevertheless, serological cross-reactions, also between meningococci and species of other 

genera (Robbins et al. 1972, Kasper et al. 1973, Glode et al. 1977, Bøvre et al. 1983, Devi et 

al. 1991), are quite common  and thus likely to be an important mechanism by which majority 

of humans develop natural immunity against meningococci.  

The importance of mucosal immunity to protection against meningococcal disease has been 

less studied but as the portal of entry is likely to play an important role on host protection. 

After meningococcal carriage, an increase in specific salivary IgA concentration has been 

detected (Robinson et al. 2002). Whether this carriage-induced mucosal immunity protects 

against invasive meningococcal disease remains to be determined. 

2.3.2 Complement

The complement system appears to have a unique role in the protection of host from 

meningococcal infection, as highlighted by the high frequency of complement deficiencies in 

patients with systemic meningococcal disease (Ross and Densen 1984, Figueroa et al. 1993) 

and a number of mechanisms that pathogenic Neisseria has evolved to combat this powerful 

defense mechanism (Ram et al. 1999, Jarva et al. 2005). It is a part of the innate immune 

system consisting of over 30 soluble or membrane bound proteins, and acts in defense against 
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infection directly by its inflammatory, opsonic and lytic activities, and indirectly by 

enhancing antibody responses against invading pathogens (reviewed in (Erdei et al. 1991, 

Frank and Fries 1991, Kinoshita 1991)). Three pathways of complement cascade activation 

have been described: the classical pathway, the alternative pathway, and the lectin pathway 

(Fig. 3). Although initiated by different recognition mechanisms, all these pathways converge 

at C3 level, leading to deposition of opsonically active C3b and iC3b fragments on bacterial 

surface and, through the continuation of complement activation through the common terminal 

pathway (C5-9) and deposition of membrane attack complex (MAC) to outer membranes of 

gram-negative bacteria, target cell lysis. 

Figure 3. Three pathways of complement cascade activation. Reprinted from Microbes and Infection, Vol 1, 

Mold C.  Role of complement in host defense against bacterial infection. Pages 633-638, Copyright (1999), with 

permission from Elsevier. 

Acquired or genetic deficiency in any of these complement pathways predisposes individual 

to at increased risk for systemic meningococcal infection, with the preponderance of 

meningococcal infections among individuals with C3 (C3, factors H and I), alternative 

pathway (properdin, factor D), and especially, late complement component deficiencies 

(LCCD; C5 to C9) (Ross and Densen 1984). With the exception of C5 deficiency, 
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deficiencies in any other components (C6 through C9) of the terminal pathway predispose 

individual to meningococcal infections solely due to inability to assemble the MAC into 

bacterial membrane and hence, to express complement mediated serum bactericidal activity.  

2.3.3 Serum bactericidal activity (SBA) 

Due to inverse relationship between the age-related decrease in the incidence of 

meningococcal disease with the acquisition of SBA (Goldschneider et al. 1969a) and the 

preponderance of neisserial infections among patients with LCCD (Figueroa et al. 1993), 

SBA has been considered as the functional requirement of utmost importance for protection 

against meningococcal disease. Sialic acid containing encapsulated meningococci, in contrast 

to their un-sialylated, un-encapsulated counterparts, activate complement poorly and are 

therefore relatively resistant to bactericidal activity of normal human serum (Vogel et al.

1997, Kahler et al. 1998). Thus, specific antibodies and hence, the recruitment of the classical 

pathway is necessary for lysis of encapsulated organisms. IgG antibodies to serogroup A and 

C capsular PS (Goldschneider et al. 1969b, Williams et al. 2003) as well as certain OMPs, 

especially the PorA and OpcA proteins, seems especially efficient with this functional respect 

(Saukkonen et al. 1987, Rosenqvist et al. 1993) and mouse antibodies against these proteins 

has been further shown to be highly protective in vivo in experimental animal models of 

meningococcal infection ((Saukkonen et al. 1987, Saukkonen et al. 1989, Toropainen et al.

2001) and our unpublished observations). The mechanisms by which specific antibody 

augments bacterial lysis are not fully understood but for PorA antibody this seems to be due 

to re-targeting of MAC from non-lytic to lytic loci rather than an increase in the total amount 

of MAC formed (Drogari-Apiranthitou et al. 2002). 

2.3.4 Opsonophagocytic activity (OPA) 

Besides SBA, several reports suggest that also OPA is an important defense mechanism 

against meningococcal infections, especially those caused by serogroup B organisms (Ross et 

al. 1987, Schlesinger et al. 1994, Platonov et al. 1998). While SBA is dependent on the 

deposition MAC to bacterial membranes through activation of the whole complement 

cascade, IgG-mediated phagocytosis is not. IgG-mediated phagocytosis is however amplified 

by complement activation but only requires deposition of opsonically active C3 split products 
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(C3b, iC3b, C3dg) on the bacterial surface. IgG and deposited C3 fragments can therefore 

function in concert as opsonins, targeting the invading pathogen for ingestion and killing by 

professional phagocytes through binding to Fc (FcR) and complement (CR) receptors. 

Increased OPA by polymorphonuclear leukocytes (PMNLs) has been shown in human sera 

taken at convalescence and after vaccination with serogroup B outer membrane vesicle 

(OMV) vaccine (Roberts 1970, Halstensen et al. 1984, Sjursen et al. 1987, Halstensen et al.

1989, Lehmann et al. 1999). As for SBA, antibody to both capsular as well as sub-capsular 

antigens (Roberts 1970, Halstensen et al. 1984, Lehmann et al. 1999) seems important with 

this functional respect. The relative contribution of antibody induced complement-mediated 

bacterial lysis and phagocytosis to host immunity against meningococcal infections remains 

open.

2.3.5 Effect of antibody specificity on functional activity 

To opsonize or initiate complement-mediated bacterial lysis, the first step is the binding of 

antibody to bacterial surface. As the main and outermost surface component, the capsular PS 

is the main target for protective antibodies against encapsulated bacteria, including 

meningococcus.  

For serogroup A and C meningococci, the importance antibodies to capsular PS as the 

mediators of SBA and OPA has been clearly shown (Goldschneider et al. 1969b, Roberts 

1970, Andreoni et al. 1993, Schlesinger et al. 1994, Williams et al. 2003), and vaccines based 

on either plain PS or PS conjugated to a protein carrier are highly effective against disease 

caused by these serogroups (Artenstein et al. 1970, Wahdan et al. 1973, Peltola et al. 1977, 

Ramsay et al. 2001). This does not hold true for serogroup B meningococci against which 

SBA and OPA has been attributed to be primarily against non-capsular antigens (Zollinger 

and Mandrell 1983, Williams et al. 2003), and the purified capsular PS of which is poorly 

immunogenic (Wyle et al. 1972). Nevertheless, antibodies to B-PS, predominately the IgM 

isotype, are naturally present in the majority of the adult population (Leinonen and Frasch 

1982, Granoff et al. 1995). Specific immune responses to B-PS have been observed in the 

majority of adults and in 30% of children recovering from serogroup B meningococcal 

disease (Griffiss et al. 1984, Granoff et al. 1995, Andersen et al. 1997). Due to the relatively 

low avidity (Mandrell and Zollinger 1982) and the poor bactericidal activity of anti-B-PS 
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antibodies, especially in the presence of human complement (Zollinger and Mandrell 1983), 

their contribution to protective immunity against serogroup B meningococci has been 

challenged. 

2.3.6 Effect of antibody class and subclass on functional activity 

Not all antibody classes and subclasses are equally effective in mediating bacterial lysis or 

phagocytosis. Of the five immunoglobulin-classes in humans (IgG, IgM, IgD, IgA, IgE), IgG 

and IgM constitute the bulk of serum antibodies and play the most important role in 

protection against systemic meningococcal disease.   

IgM antibodies constitute the major component of natural antibodies and are the first class of 

antibodies produced in a primary response to antigen. Due to their pentavalent structure, they 

are extremely potent activators of complement and hence mediate both efficient SBA and/or 

OPA by binding to complement receptors on fixed and peripheral phagocytes and possibly 

also by binding to more recently discovered IgM receptors (Fc / R) on macrophages 

(Shibuya et al. 2000).

Of the four human IgG subclasses (IgG1-4) in humans, IgG1 and IgG3 are the predominant 

subclasses produced against protein antigens such as serogroup B OMV vaccines (Wedege 

and Michaelsen 1987, Sjursen et al. 1990, Naess et al. 1999). They are potent complement 

activators and interact with all known three human Fc RI-III receptors, thereby mediating 

both efficient SBA and phagocytosis. IgG2, the main subclass produced by B-cells upon 

polysaccharide vaccination and capable of binding effectively to Fc RII receptor only, has 

been reported to be effective at high epitope density only while IgG4 is relatively ineffective 

with both functional respects (Aase and Michaelsen 1994).  

To study the effect of antibody isotype on SBA and OPA, a panel of mouse-human chimeric 

Mabs of all the four human IgG subclasses with identical variable (V) genes against the P1.16 

epitope on PorA protein has recently been generated and characterized for their effector 

functions in vitro (Vidarsson et al. 2001). While the IgG1-3 subclasses mediated efficient 

bacterial lysis (relative activity IgG1 = IgG3 > IgG2) and phagocytosis (relative activity IgG3 

> IgG1 >> IgG2), IgG4 was unable to do so. How these differences in functional activities in

vitro are reflected to protection in vivo is not known. 
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2.4 Meningococcal vaccines 

Since the recognition of the importance of humoral immunity for protection against 

meningococcal disease, attempts to prevent this devastating disease through vaccination has 

been practiced for nearly 100 years.  

2.4.1 Early vaccines 

With the encouraging results obtained by whole-cell vaccines against typhoid fever, the first 

efforts to develop vaccines against meningococcal disease using similar approach began as 

early 1910s (reviewed in (Frasch 1995)). The field trials with these early vaccines based on 

whole, heat-killed bacteria yielded mixed but generally poor results. Further, side effects, 

probably caused by high amount of endotoxin (LOS), were common and often severe. Thus, 

serum therapy (reviewed in (Casadevall and Scharff 1994)) remained as the only choice for 

treatment to late 1930s until the newly discovered antibiotics sulfonamide and, later on, 

penicillin replaced it.  

2.4.2 Capsular polysaccharide (PS) vaccines 

During the Second World War, several outbreaks caused by serogroup A and C meningococci 

among army recruits prompted early attempts to produce vaccines from purified capsular PS 

(reviewed in (Frasch 1995)). Three major breakthroughs had accounted the interest in 

capsular PS as the vaccine candidate. The first was the demonstration (Rake 1933), and later 

on, the purification and chemical characterization (Scherp and Rake 1935), of the capsular PS 

from freshly isolated meningococcal isolates. The second was the description of the first 

reliable and reducible animal model of meningococcal infection model (Miller 1933) that 

allowed the protective activity of experimentally raised meningococcal anti-sera to be reliably 

evaluated (Miller and Castles 1936). Finally, using this model, Scherp and Rake demonstrated 

that the protection afforded by anti-serogroup A meningococcal horse serum was directly 

proportional to the amount of anti-capsular PS antibody it contained (Scherp and Rake 1945). 

With the encouragement of these studies and the contemporary success in the development of 

pneumococcal PS vaccines (MacLeod et al. 1945), the first human studies with 

meningococcal vaccines based on purified capsular PS were conducted in 1940s (Kabat et al.

1945). However, the results were not satisfactory, and with the beginning of antibiotic era, the 
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interest in meningococcal research and vaccine development waned until the first sulfonamide 

resistant strains emerged in early 1960s. 

With the first outbreaks caused by sulfonamide resistant strains among the U.S. army recruits 

during the Vietnam War (Millar et al. 1963), the development of first consistently 

immunogenic meningococcal vaccines based on capsular PS started at the Walter Reed Army 

Institute of Research at late 1960s. A major breakthrough in meningococcal vaccines 

development took place when Goldschneider et al. (Goldschneider et al. 1969a, 

Goldschneider et al. 1969b) in a series of seminal studies indicated the importance 

bactericidal anti-capsular antibody for protection and developed a method for the purification 

of capsular PS in a high molecular weight form (Gotschlich et al. 1969); to be consistently 

immunogenic in man, PS must have molecular weights > 100 000. The first clinical trials with 

the new, high molecular weight serogroup C capsular PS vaccine conducted in late 1960s to 

early 1970s among military recruits showed an excellent efficacy (about 90%) which, as 

expected, was limited serogroup C meningococci (Artenstein et al. 1970, Gold and Artenstein 

1971). Later on, using same purification method for serogroup A meningococci, successful 

efficacy trials with serogroup A PS vaccine were conducted in epidemic situations in Finland 

(Peltola et al. 1977) and Africa (Wahdan et al. 1973), leading to international licensing of 

serogroup A and C capsular PS based vaccines.  

Currently, there are two types of PS vaccines, the bivalent serogroup A/C and the tetravalent 

A/C/Y/W135, in routine clinical use for controlling outbreaks and epidemics caused by 

serogroups covered by them. A drawback of PS vaccines limiting their utility in routine 

childhood immunization programs has been their limited efficacy (of especially serogroup C) 

and the short duration of protection among infants and young children, primarily arising from 

the T-cell independent nature of the immune response that PS antigens induce. A T-cell 

dependent immune response, and hence, induction of immunological memory, can be 

achieved through conjugation of PS antigen to a protein carrier. Thus, new generation glyco-

conjugate vaccines have and are currently being developed using the same, successful 

principal as was used to develop effective childhood vaccines against meningitis caused by 

Haemophilus influenzae type B (reviewed in (Mäkelä and Käyhty 2002)) and which led to 

nearly complete disappearance of this disease in countries that incorporated it to infant 

vaccination schedule. In 1999, UK became the first country that introduced meningococcal 
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group C vaccine into national childhood immunization program, followed by several 

European countries including Ireland, Iceland, Luxemburg, the Netherlands and Spain (EU-

IBIS 2002). More recently, a new quadrivalent serogroup A/C/Y/W135 polysaccharide 

diphtheria toxoid conjugate vaccine was licensed in the U.S. (Mitka 2005).  

No PS based vaccine exists to prevent disease caused by serogroup B meningococci. By 

contrast to serogroup A and C PS, the purified B-PS is only poorly immunogenic (Wyle et al.

1972), even when conjugated to carrier proteins such as tetanus toxoid (Jennings and 

Lugowski 1981). As stated earlier, this has been attributed to antigenic similarity of the B-PS 

to sialic acid moieties in human tissues (Finne et al. 1983b). To overcome the poor 

immunogenicity and the concerns of safety raised over B-PS based vaccines (Finne et al.

1983b), Jennings et al. substituted the N-acetyl groups of the sialic acid residues with N-

propionyl groups prior to its conjugation to a carrier protein (Jennings et al. 1986). While 

promising experimental animals (Jennings et al. 1986, Ashton et al. 1989, Granoff et al.

1998), including non-human primates (Fusco et al. 1997), such vaccines have failed to induce 

a functional antibody responses in man (Bruge et al. 2004). Further, even when using N-

propionyl conjugates, a subset of antibodies show auto-reactivity with host polysialic acid 

(Granoff et al. 1998). Considerable attention has therefore been given to non-capsular 

antigens, mainly OMPs either in the form of outer membrane vesicles (OMVs) (Fredriksen et 

al. 1991, Sierra et al. 1991, Peeters et al. 1996) or complexes (Boslego et al. 1995) or more 

recently, purified recombinant proteins (Muttilainen et al. 1995, Martin et al. 1997, West et 

al. 2001), as alternative strategies for serogroup B vaccine development.  

2.4.3 Serogroup B outer membrane vesicle (OMV) vaccines 

Attempts to develop vaccines against serogroup B disease have been ongoing since the late 

1970’s; none has yet been fully successful (reviewed by (Frasch 1995)). While the protective 

efficacy of single component vaccines, such as diphtheria toxoid, tetanus toxoid, 

pneumococcal and meningococcal serogroup A and C capsular PS, has often been very good, 

for serogroup B vaccine development this approach was not rational due to lack of knowledge 

on the specificity of potentially protective sub-capsular antigens. Thus, vaccines based on 

multiple rather than single bacterial component were considered the most relevant choice.  
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The first attempts to develop vaccines against serogroup B disease were based on relatively 

crude OMP preparations from which majority of the LOS responsible for side effects was 

removed by extraction of bacterial cells with appropriate detergents (Frasch and Robbins 

1978). The OMPs were then separated from detergents with ethanol precipitation and 

subsequently re-suspended in sodium chloride. While promising in animal studies (Frasch and 

Robbins 1978, Craven and Frasch 1979), the vaccines failed to induce protective immune 

response in man (Frasch et al. 1982); this was later on attributed to the loss of protein tertiary 

structure due to precipitate nature of the preparations (Frasch and Peppler 1982).  

The next step was then to try producing a soluble vaccine in which the proteins would be 

displayed in more native conformation, and hence, capable of inducing protective immune 

response. When grown in liquid culture, meningococci release into medium so called blebs, 

i.e. outer membrane vesicles (OMVs) complete with outer membrane proteins, LOS and 

lipids in their native form (DeVoe and Gilchrist 1973). The OMVs are relatively simple to 

purify from liquid cultures or to produce artificially by extracting bacterial cells with suitable 

detergents. With the subsequent, selective depletion of LOS by appropriate detergent 

treatment, soluble OMV vaccines with satisfactory safety profile and immunogenicity can be 

relatively easily gained (Frasch and Peppler 1982, Frasch et al. 1982); adsorption to 

aluminum salts (Frasch et al. 1988) or non-covalent complexing to capsular PS (Peppler and 

Frasch 1982) was further shown to increase OMV vaccine immunogenicity. Since then, a 

number of efficacy trials with serogroup B OMP vaccines, composed mainly of class 1 

(PorA), class 2/3 (PorB), and class 5 major OMPs, have been conducted in response to 

prolonged serogroup B epidemics, with variable results (Table 1).  

2.4.4 Efficacy trials of serogroup B OMP and OMV vaccines 

The first efficacy trial with a serogroup B OMP vaccine was conducted in 1981 in Cape 

Town, South Africa where 4 440 children aged from 4 months to 5 years were enrolled 

(Frasch et al. 1983). The vaccine was based on OMPs prepared from an un-encapsulated 

mutant of the group B serotype 2a strain M986 complexed to an equal amount of purified 

high molecular weight group B capsular PS and contained no adjuvant. While immunogenic 

in all age groups, the number of study participants was too small to draw definite conclusion 
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about vaccine efficacy (2 cases in OMP vaccine versus 4 cases in serogroup A/C vaccine 

group) (Frasch et al. 1983).  

The second vaccine efficacy trial was conducted in Cuba in 1987-1989 (Sierra et al. 1991). 

The study vaccine (VA-MENGOC-BC™), prepared at the Finlay Institute, Havana, Cuba, 

was composed of LOS depleted OMVs extracted from a clinical disease isolate (Cu385, 

B:4:P1.19,15) representative of the local epidemic that was subsequently enriched with un-

characterized “high molecular weight protein complexes” (Sierra et al. 1991). This 

preparation was subsequently conjugated non-covalently in 1:1 proportion to serogroup C 

capsular PS, and finally absorbed to aluminum hydroxide. In this double-blind, placebo 

controlled, cluster randomized efficacy study, about 106 000 10-14 years old students from 

197 boarding schools were enrolled. During 16 months of follow-up, 4 cases occurred among 

the vaccine recipients compared to 21 cases among those given placebo, and a good efficacy 

of 83% (95% CI 42-95) against serogroup B disease was detected (Sierra et al. 1991). In an 

attempt to control a prolonged serogroup B epidemic in Brazil caused by a variety of 

serogroup B strains including the B:4:P1.15 phenotype, two large separate case-control 

studies with Cuban vaccine were subsequently conducted in Sao Paolo (de Moraes et al.

1992) and Rio de Janeiro (Noronha et al. 1995). With a total of 4 million children aged 3 

months to 9 years enrolled, an efficacy of about 70% was detected for children 4 years or 

older but was much lower for younger children and absent in infants (de Moraes et al. 1992, 

Noronha et al. 1995). There was also a trend to better protection during the first than the 

second half-year observation period, suggesting that protection could be of short duration 

(Noronha et al. 1995).  

The next efficacy trial was conducted in Iquique, Chile, from 1987 to 1989 (Boslego et al.

1995). The vaccine, developed at the Walter Reed Army Institute of Research (WRAIR), 

Washington, DC, differed from the Cuban and Norwegian (see below) OMV vaccines in 

several respects (Boslego et al. 1995). First, in the extraction of OMPs from a clinical disease 

isolate (8257, B:15:P1.3) representative of the Iquique outbreak, a zwitterionic detergent 

Embigen BB rather than deoxycholate was used.  Second, the OMPs were not in the form of 

vesicles but consisted primarily of multimeric membrane subunits that were essentially free of 

LOS. Finally, the vaccine contained no class 5 or other low molecular weight OMPs. 

Similarly to the Cuban vaccine, the OMPs were conjugated non-covalently to serogroup C 
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capsular PS, and finally absorbed to aluminum hydroxide.  In this double-blind, placebo 

controlled, randomized efficacy trial, approximately 40 000 volunteers of ages of 1-21 years 

were enrolled (Boslego et al. 1995). After 20 months of follow-up a good efficacy of 70% 

(95% CI 3-93) was detected for older children ( 5 years); in younger children (1-4 years) no 

protection was observed (Boslego et al. 1995). 

In a double-blind, placebo controlled, cluster randomized efficacy study conducted in Norway 

in 1988-1991, around 172,000 secondary school students aged 14-16 years were enrolled 

(Bjune et al. 1991a, Bjune et al. 1991b). The study vaccine (MenBvac™), developed at the 

Norwegian Institute of Public Health (NIPH), Oslo, Norway, was composed of LOS depleted 

OMVs extracted from a clinical disease isolate (44/76, B:15:P1.7,16) representative of the 

local epidemic, absorbed aluminum hydroxide (Fredriksen et al. 1991). In contrast to the 

Cuban and WRAIR vaccines it contained no meningococcal capsular PS. After a relatively 

long follow-up period of 29 months, an efficacy of 57% (lower confidence limit 28%) was 

observed (Bjune et al. 1991a, Bjune et al. 1991b). Similar to the efficacy trial with the Cuban 

vaccine in Rio de Janeiro (Noronha et al. 1995), there was evidence of better protection 

during the first than the second half observation period (Holst et al. 2003). In retrospective 

calculations, an efficacy of 87% was calculated for the first 10-month observation period 

whereas it was as low as 30% for the last 10 months (Holst et al. 2003).  

Currently, a “tailor made” OMV vaccine (MeNZB™) (Holst et al. 2005, Oster et al. 2005) is 

undergoing a clinical trial in New Zealand (Ameratunga et al. 2005) to combat to a prolonged 

and intense group B meningococcal disease epidemic (Baker et al. 2001). The vaccine was 

produced in collaboration of NIPH with Chiron (Sienna, Italy) from a local epidemic strain 

B:4:P1.7b,4 (Martin et al. 1998). 
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While not satisfactory with all respects, the main importance of these efficacy trials conducted 

with two-dose schedules was the demonstration that vaccines based on non-capsular antigens 

do provide significant protection against serogroup B disease (50% to 80%), encouraging 

further vaccine development in this field to improve their immunogenicity and the persistence 

of protection especially amongst the youngest children who are most vulnerable to serogroup 

B disease. As the protection seemed relatively short-lived (Noronha et al. 1995, Holst et al.

2003), it has been suggested that a third dose given 6-8 months after the primary 

immunization series could be beneficial (Frasch 1995).   

2.4.5 Immunogenicity trials of serogroup B OMV vaccines  

One important issue hampering the development of serogroup B meningococcal vaccines has 

been the lack of reliable laboratory correlates or surrogates for protective immunity, 

necessitating the use of long-lasting, laborious, and expensive efficacy trials. Although the 

antibody responses in connection with these efficacy trials have been analyzed extensively 

(Høiby et al. 1991, Rosenqvist et al. 1991, Sierra et al. 1991, Holst et al. 2003, Wedege et al.

2003), there is still much uncertainty about the specificity and functional mechanisms of 

antibodies providing protection against serogroup B disease. In particular, despite the good 

predictive value of SBA for the protective efficacy of serogroup A and C capsular PS based 

vaccines the importance of SBA for protection against serogroup B disease remains partly 

open. Thus, additional immunogenicity trials with the Norwegian and the Cuban OMV 

vaccines have been conducted later in Iceland (Perkins et al. 1998) and Chile (Tappero et al.

1999), assessing immune responses in different age groups (infants, toddlers, and adults in 

Chile and teenagers in Iceland).  

In the randomized, double-blind, placebo-controlled trial with the Norwegian and the Cuban 

OMV vaccines carried out among Icelandic teenagers in 1992-93, the main focus was at the 

evaluation of SBA and antibody concentrations measured by enzyme immunoassay (EIA) as 

potential correlates for vaccine efficacy (Perkins et al. 1998). As described above, both 

vaccines had been previously shown to be efficacious for older children and adults in large 

separate efficacy trials (Bjune et al. 1991b, Sierra et al. 1991). In contrast to results from 



47

these efficacy trials, the proportion of SBA and EIA responders, defined as individuals with a 

4-fold rise in bactericidal antibody titer or anti-OMV IgG antibody level compared with pre-

vaccination level, was found to be generally lower among the Cuban vaccine recipients than 

the Norwegian vaccine recipients (Perkins et al. 1998). Six weeks after the second dose, 25% 

and 54% of the Cuban vaccine recipients, and 71% and 74% of the Norwegian vaccine 

recipients showed a response in SBA and EIA, respectively, against their homologous vaccine 

strains. Based on these results it was concluded that SBA and EIA activities might not be 

optimal correlates for serogroup B OMV vaccine efficacy (Perkins et al. 1998).  

Another issue related to vaccines based on OMPs from a single meningococcal strain that 

remains to be settled is the specificity of antibodies and hence, the extent of protection they 

induce. In the Brazilian and Norwegian efficacy trials, no evidence for serosubtype- or strain-

restricted protection for the Cuban and the Norwegian OMV vaccines was detected (de 

Moraes et al. 1992, Wedege et al. 1999), suggesting that both vaccines can provide some 

protection against heterologous strains as well. In line with these results, in the Chilean and 

Icelandic immunogenicity trials, adults, teenagers and children aged 2 to 4 years were able to 

develop SBA response against both the homologous, i.e. vaccine type, and heterologous 

strains (Perkins et al. 1998, Tappero et al. 1999) though against heterologous strains much 

lower responses were detected. This was in contrast to infants younger than 1 year among 

whom SBA responses were mainly directed to homologous PorA protein and no post-

vaccination SBA response against the heterologous strains was detected (Tappero et al. 1999).

To overcome possible limitations of OMV vaccines arising from the variability of PorA 

protein, yet exploiting its good immunogenicity and ability to induce bactericidal antibody 

responses, a hexavalent PorA vaccine (HexaMen) has more recently been developed at the 

Netherlands Vaccine Institute, NVI (formerly National Institute of Public Health and the 

Environment, RIVM), in the Netherlands. This vaccine is composed of OMVs from two 

genetically engineered trivalent strains, each expressing three different PorA proteins 

(Claassen et al. 1996), together covering approximately 80% of the prevalent strains in the 

UK  (Cartwright et al. 1999). Clinical phase I and II studies have shown this vaccine to be 

safe and immunogenic in infants, toddlers and school children, and SBA responses against all 

of the six PorA subtypes included in the vaccine have been detected (Cartwright et al. 1999) 

(de Kleijn et al. 2000). However, multiple doses of vaccine were required to induce 
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significant rise in SBA and differences were found in the magnitudes of SBA responses to 

different PorAs, suggesting intrinsic differences in their immunogenicity. To provide even 

broader protection, a nonavalent vaccine, containing the nine most common PorA subtypes in 

the industrialized countries, is currently being developed in collaboration of NVI with Wyeth 

(NJ, USA).

More recently, a new experimental approach to broaden immunity of the conventional OMV 

vaccines has been described. In this approach, sequential immunization with three doses of 

microvesicles (MVs) or OMVs prepared from three antigenically different strains rather than 

one meningococcal strain is used (Moe et al. 2002). The rationale behind this approach is that 

sequential immunization with MVs or OMVs prepared from antigenically different 

meningococcal strains would direct the immune response from immunodominant, serotype or 

serosubtype specific one to more conserved, broadly protective antigens that normally are 

poorly immunogenic when repeated injections are given with OMVs prepared from one 

strain.

2.4.6 Other serogroup B vaccine candidates 

In addition to major OMPs in the form of OMVs, a variety of methods have been developed 

to express a number of major OMPs in heterologous expression systems. After purification 

and refolding in the presence of artificial membranes (liposomes) or appropriate detergent 

micelles, good antibody responses in mice against PorA (Muttilainen et al. 1995, Idänpään-

Heikkilä et al. 1996, Ward et al. 1996, Christodoulides et al. 1998), PorB (Wright et al.

2002), and OpcA (Jolley et al. 2001) proteins with bactericidal and infant rat protective 

activity have been gained, indicating the feasibility of these methods. The main advantage of 

these approaches is that the vaccine antigens are being presented without of irrelevant 

bacterial components, thus directing the immune response to epitopes thought to induce 

protective antibodies also in humans. 

Besides major OMPs, either in the form of OMVs or recombinantly produced, purified and 

refolded antigens, also LOS (Plested et al. 1999, Plested et al. 2003) and a number minor 

OMPs have been considered as vaccine antigens. These include the constitutively expressed 

OMP of unknown function, Neisserial surface protein A (NspA) (Martin et al. 1997, Moe et 
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al. 2001), and a number environmentally regulated proteins thought to be essential for 

bacterial survival through their involvement in iron acquisition pathways, such as transferrin-

binding proteins TbpA and TbpB (Schryvers and Morris 1988, Ala'Aldeen et al. 1994b), a 70 

kDa protein FetA (formerly known as FrpB) (Ala'Aldeen et al. 1994a) and a 37 kDa ferric 

binding protein FbpA (Mietzner et al. 1984).

More recently, as a part of completed meningococcal serogroup B genome sequence project 

(Tettelin et al. 2000), a large number of novel proteins have been discovered (Pizza et al.

2000). Some of these are conserved in sequence, likely to be expressed constitutively, surface 

exposed on encapsulated meningococcal strains, able to elicit bactericidal, opsonic and/or 

animal protective antibody responses in mice, and hence, considered promising as vaccine 

candidates (Comanducci et al. 2002, Masignani et al. 2003, Welsch et al. 2003, Welsch et al.

2004). 

The utilization of the cross-reactivity between N. meningitidis and N. lactamica (Troncoso et 

al. 2002) has also been recently explored (Oliver et al. 2002). Despite the lack of bactericidal 

antibodies, antigens from N. lactamica have been shown protect mice against experimental 

meningococcal infection (Oliver et al. 2002). 

2.5 Search for serological correlates of protection 

Besides SBA assay, a variety of other techniques, such as opsonophagocytic (Aase et al.

1998, Naess et al. 1999) and whole-blood assays for functional antibodies (Morley et al.

2001), non-functional assays (Naess et al. 1998, Perez et al. 2001, Wedege et al. 2003), and 

assessment of active (Sifontes et al. 1997) or passive protection in animal models (Infante et 

al. 1994) have been evaluated for providing additional information about the mechanisms of 

protective immunity or even for providing better correlates for efficacy of serogroup B 

meningococcal vaccines.   

2.5.1 Assays to measure immunity to serogroup B meningococcus

Of the non-functional assays, the enzyme immunoassays (EIA) have been most widely used 

to determine not only the magnitude and persistence but also the isotype distribution of anti-

meningococcal antibodies. Both OMVs containing multiple OM antigens and purified OMPs, 
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LOS, or capsular PS have been used as the coating antigen. In several studies, relatively good 

correlations between anti-OMV IgG levels and SBA titers have been found (Rosenqvist et al.

1988, Aase et al. 1995, Rosenqvist et al. 1995, Naess et al. 1999) while in others, only poor 

association between these two assays have been detected (Milagres et al. 1994, Boslego et al.

1995), probably reflecting the great variety how these methods are performed in different 

laboratories. A multi-laboratory evaluation of both assays would be needed to establish the 

reason for these discrepancies.  

Besides antibody quantity and isotype, there is strong evidence that also other qualitative 

characteristics of antibodies, namely their avidity, may be important to protection against 

meningococcal disease (Harris et al. 2003a, Welsch and Granoff 2004). Recently, a modified 

EIA, using sodium thiocyanate as a chaotropic agent, has been described to measure the 

avidity of anti-OMV antibodies (Longworth et al. 2002, Vermont et al. 2002). Due to scarcity 

of studies measuring avidity indices (Longworth et al. 2002, Vermont et al. 2002, Vermont et 

al. 2004), its value as a marker of protective activity and immunological memory following 

serogroup B OMV vaccination remains to be established.   

While being of great value for the detection of antibody kinetics following OMV vaccination, 

the EIAs do not provide information about the specificity of antibodies induced unless well-

defined, purified proteins or other surface structures in right conformation are used as the 

target antigens. Thus, to get a more thorough picture about specificity of antibodies, an 

immunoblotting method capable of discriminating antibody binding to different OM antigens 

(OMPs and LOS) is needed (Wedege and Froholm 1986, Wedege et al. 1998). Due to 

denaturizing conditions during antigen preparing, a duplicate sample treated with appropriate 

detergent to partially refold the proteins and hence, to detect antibody binding also to 

conformation-dependent epitopes, is generally included (Wedege et al. 1988). In sera from 

patients and vaccinees antibody responses to several OM antigens are generally detected 

(Wedege and Froholm 1986, Rosenqvist et al. 1995, Wedege et al. 1998, Wedege et al.

2000). Following three doses of the Norwegian serogroup B OMV vaccine, antibody to class 

1, class 5, 80kDa protein and LOS all contributed significantly to SBA against the vaccine 

strain (Rosenqvist et al. 1995). 
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Of the functional assays, the SBA has most widely used to assess antibody responses in large 

clinical trials. In this assay, meningococci are incubated with human sera in the presence of 

suitable human or, if applicable, animal complement, and the bactericidal activity of serum 

expressed as the reciprocal of serum dilution yielding  50% or 90% killing as compared to 

the number of target cells present before incubation with serum and complement. As the 

species of complement source may greatly affect the SBA titers (Zollinger and Mandrell 

1983), for serogroup B SBA assay human complement is strongly recommended. By contrast 

to serogroup A and C SBA assays (Maslanka et al. 1997), the serogroup B SBA assay has not 

been standardized yet and slightly different protocols are used in different laboratories. This 

makes the inter-laboratory comparisons somewhat complicated. Since the seminal work of 

Goldschneider et al. (Goldschneider et al. 1969a, Goldschneider et al. 1969b), a SBA titer of 

4 has been generally used as the threshold of protection. Most studies, however, have not 

relied on absolute SBA titers as a cut off but instead used  4-fold rise in SBA titer compared 

to pre-vaccination level to estimate the potential efficacy of serogroup B meningococcal 

vaccines. There is some evidence that SBA assay correlates with serogroup B OMV vaccine 

efficacy (Milagres et al. 1994, Boslego et al. 1995, Holst et al. 2003). However, further 

studies using SBA as a marker of OMV vaccine responses are required to gain a more 

comprehensive view of the value of this assay as predictor of both natural and serogroup B 

vaccine induced immunity. 

In addition to SBA, it has been suggested that also OPA is an important defense mechanism 

against meningococcal infections, especially those caused by serogroup B organisms (Ross et 

al. 1987), and a variety of techniques have been developed to measure this activity. In these 

assays, live or killed bacteria are first opsonized with human sera in the presence or absence 

of endogenous or exogenous complement source. After incubation with effector cells, usually 

freshly isolated human PMNLs, the amount of phagocytosis is measured by viable counts 

(Schlesinger et al. 1994), flow cytometry (Sjursen et al. 1989, Lehmann et al. 1998) or 

chemiluminescence (Halstensen et al. 1989, Sjursen et al. 1992). Increased OPA against 

meningococci of different serogroups has been detected following vaccination and disease 

(Roberts 1970, Halstensen et al. 1984, Sjursen et al. 1987, Halstensen et al. 1989, Schlesinger

et al. 1994, Lehmann et al. 1999). 
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A whole blood assay (WBA) has also been developed to measure the total killing capacity of 

human blood after infection or vaccination (Ison et al. 1995, Ison et al. 1999). In this assay 

heparinized venous blood collected from subjects is inoculated with meningococci, and after 

incubation, the percentage of bacterial killing given relatively to initial bacterial load. It has 

been suggested that this assay is more sensitive than the SBA, with WBA activity detected in 

some individuals lacking SBA (Ison et al. 1999). However, the WBA is unlikely to be 

suitable for large scale evaluation of clinical samples because of the requirement for large 

volumes of fresh blood and difficulties in the standardization of the assay.  

2.5.2 Animal models of meningococcal infection 

An alternative mean to study the protective efficacy of existing and candidate vaccines would 

be an animal model, in which the protection would depend on the same effector mechanisms 

as in human disease. Such a model should cover both the complement-mediated killing of the 

bacteria and their phagocytosis, as well as complex interactions of multiple humoral and 

cellular factors of the host.  

Since the first isolation of causative agent of meningococcal meningitis at the late 19th 

century, a variety of animal species from chicken embryos to monkeys and different routes of 

infection (intranasal, intraperitoneal, and intrathecal) have been tried to establish a 

reproducible experimental meningococcal disease in animals, with varying success (reviewed 

in (DeVoe 1982, Arko 1989)).  Of the animal models evaluated, the mouse model requiring 

exogenous iron load (Gorringe et al. 2001) and the infant rat model without enhancers 

(Saukkonen 1988) have proven most useful and used widely for active and/or passive 

protection studies.  

Mouse models 

Since its first description in 1933 (Miller 1933), the iron-dependent mouse infection model 

with intraperitoneal (i.p) bacterial inoculation has survived with only minor modifications to 

the present time. In this model, log-grown meningococci are mixed with exogenous iron 

source to enhance bacterial virulence, originally hog gastric mucin (Miller 1933), later iron 

dextran (Holbein et al. 1979) or human transferrin  (Holbein 1981a), and 105-107 colony 

forming units (cfu) of appropriate organisms injected i.p. to 6-8 weeks old mice (Gorringe et 
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al. 2001). This model seems to detect differences in virulence between carrier and disease 

strains (Holbein et al. 1979, Holbein 1981b) and has been used widely in active (Sifontes et 

al. 1997, Oftung et al. 1999) and passive (Moreno et al. 1983, Brodeur et al. 1985, Perez-

Ramirez et al. 1997) immunization studies. In protection studies, reduction in mortality rates 

and/or bacteremia levels has been used as the end point.  

Mouse colonization models with intranasal (i.n.) inoculation of infant (Salit et al. 1984, 

Mackinnon et al. 1992) or adult mice (Yi et al. 2003) have also been described. In these 

models meningococci are mixed with exogenous iron source and 107-1010 cfu of appropriate 

organisms given i.n. to mice; an i.p. injection of iron dextran is given prior to and after 

infection to further enhance infection. While i.n. models appear useful for studying the early 

pathogenesis of infection and the role of mucosal immunity, they are less suitable for large-

scale assessment of protection because of the low and variable rate of invasive disease despite 

consecutive iron injections. Further, by contrast to human host, a preceding lung colonization 

was necessary for the development of bacteremia (Mackinnon et al. 1992). 

More recently, an i.n. mouse model without exogenous iron supplementation has been 

described. In this sequential, influenzae A virus (IAV)-N. meningitidis serogroup C infection 

model, adult BALB/c mice are infected i.n. with mouse-adapted IAV, followed by co-

infection with meningococci seven days later (Alonso et al. 2003). Fatal meningococcal 

pneumonia and bacteremia occurred in mice challenged at seven but not ten days after IAV 

infection. Susceptibility to lethal infection correlated with IAV induced peak in interferon-

production, suggesting that transient IAV-induced modulation of host innate immunity 

predisposed mice to systemic meningococcal infection (Alonso et al. 2003).  

To more accurately mimic host-pathogen interaction in the human host, a meningococcal 

infection model in transgenic mice expressing human CD46 with human-like tissue 

specificity (Mrkic et al. 1998) has been recently developed (Johansson et al. 2003). As 

described earlier, in the human host, the expression CD46 is thought to be essential for 

meningococcal virulence by serving as a receptor for pilus-mediated attachment of 

encapsulated meningococci to epithelial and endothelial cells of nasopharynx and blood-brain 

barrier (Källström et al. 1997). While clearly enhancing the development of bacteremia and 

meningitis following i.p. infection, after i.n. infection with piliated serogroup W135 
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meningococci only a slight although significant increase in mortality rates was observed, with 

15% (4/27) of the CD46 transgenic mice compared to none (0/27) of the non-transgenic 

C57BL/6 mice used as the control succumbing to infection. Expression of pili was necessary 

for the virulence of bacteria as non-piliated isogenic strain caused no signs of disease in either 

mouse strain. Though the colonization rates were not reported, the authors suggested that this 

only relatively modest increase in mortality rates was due to the expression of CD46 mainly 

on the basolateral rather than apical surface of the respiratory epithelial cells (Johansson et al.

2003), and hence, opposing the situation in the human host (Varsano et al. 1995, Sinn et al.

2002). Pre-treatment of animals with antibiotics to diminish normal bacterial flora prior to i.n. 

inoculation was also necessary, all un-treated CD46 transgenic mice surviving infection. 

While having potential as a more natural model for human infection, an increase in infection 

rate is clearly needed for protection studies.  

The major advantage of mouse models is that a number of different inbred strains with 

deficiencies in innate and adaptive immunity are available to elucidate host-pathogen 

interactions and the mechanisms protection. However, due to extremely low lytic activity of 

mouse serum relative to humans and rats (Ong and Mattes 1989), and the multiple effects of 

both iron overload (Mencacci et al. 1997, Hor et al. 2000, Walker and Walker 2000) as well 

as dextran (Sahu et al. 1994) on phagocyte and complement function, the relevance of mouse 

models for assessment of protection remains to be fully elucidated.   

Infant rat model 

With the success in establishing reproducible infection models for other encapsulated gram-

negative bacteria in infant rats, namely Haemophilus influenzae type b and Escherichia coli

K1, efforts to develop such model also for meningococci began at KTL in late 1980’s, with 

successful results (Saukkonen 1988).  

In this model, 103-107 cfu of log grown organisms are injected intraperitoneally to 5-7 day-old 

infant rats, and the development of bacteremia and meningitis is followed by cultivating blood 

and cerebrospinal fluid samples taken at appropriate time-points (Saukkonen 1988, Welsch et 

al. 2003). Meningococci of all the major serogroups A, B, and C, are infective (Saukkonen 

1988, Welsch and Granoff 2004, Welsch et al. 2004). The course of infection is reproducible 

and predictable: a localized peritoneal inflammation is followed by invasion of the bacteria 
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into the bloodstream. The outcome of disease varies from transient bacteremia to lethal 

bacteremia and meningitis depending on the challenge strain and dose used (Saukkonen 

1988). Importantly, no artificial enhancing factors such as mucin or iron compounds that may 

have multiple and poorly definable effects on both the bacteria and the host are needed. 

Though the short period of susceptibility of infant rats to infection (Salit et al. 1984) prevents 

active immunization studies, a large litter size (8-12 pups/litter) guarantees the availability of 

a large number of animals for short-term experiments such as the passive immunization 

studies. Later on, the model has been successfully used to identify antigens involved in 

protection and also to test the protective activity of antibodies elicited by candidate vaccines 

(Saukkonen et al. 1987, Saukkonen et al. 1989, Idänpään-Heikkilä et al. 1995, Welsch et al.

2003, Welsch et al. 2004). Like in mouse protection studies, reduction in mortality rates 

and/or bacteremia levels has been used as the assay end points.
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3 AIMS OF THE STUDY 

An important question for vaccine development was whether the infant rat infection model 

could also be used to test the protective activity conferred by human immune sera collected 

after OMV vaccination, and thus, as a surrogate assay for serogroup B OMV vaccine efficacy. 

Such a use would need careful validation of the assay conditions for sensitivity and 

repeatability. In the search for vaccine candidates against serogroup B disease, the specificity 

and the functional activity of natural antibodies has been less studied. Relatively little was 

also known about the in vivo functional activity of antibodies of different specificity or 

isotype. To this end, the aims of this thesis were:  

- to adapt and standardize the infant rat protection assay for the evaluation of human 

sera for protective immunity to group B meningococci (I, II) 

- to assess the reproducibility of the infant rat protective activity (IRPA) assay (I, II) 

- to assess IRPA of sera taken before and after vaccination of Icelandic teenagers with 

the Norwegian and the Cuban serogroup B meningococcal OMV vaccines, and to 

compare the results of the IRPA assay to those obtained by SBA assay and anti-OMV 

EIA (II) 

- to assess the specificity and functional activity of natural antibodies responsible for 

IRPA against 44/76-SL strain (III) 

- to assess the influence of antibody specificity (capsular versus sub-capsular antibody), 

isotype, and the importance of complement-mediated bacterial lysis on protection in 

the IRPA assay (III, IV) 
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4 MATERIALS AND METHODS 

4.1 Serum samples and monoclonal antibodies used in IRPA assays 

In study I, three post-vaccination sera collected from adult volunteers vaccinated twice with 

the Norwegian meningococcal serogroup B OMV vaccine (Bjune et al. 1991b) and one 

normal human serum from an unvaccinated person with no history of meningococcal disease 

were used. These sera were selected from a large panel of sera available at the Norwegian 

(formerly National) Institute of Public Health (Einar Rosenqvist, NIPH, Oslo, Norway). 

In study II, pre- and post-vaccination serum samples from 92 teenagers who had received two 

doses of either the Norwegian OMV vaccine (B:15:P1.7,16), the Cuban OMV vaccine 

(B:4:P1.19,15), or the serogroup A/C capsular PS control vaccine (Aventis Pasteur, Lyon, 

France) during a previous immunogenicity trial in Iceland (Perkins et al. 1998) were used. Of 

the 92 study participants, 20 (22%) had received the control (A/C), 37 (40%) the Norwegian, 

and 35 (38%) the Cuban vaccine. The sera were selected at the Centers for Disease Control 

and Prevention (Brian Plikaytis, CDC, Atlanta, GA) by criteria described (II) to represent a 

25% sample of vaccine responders and non-responders in the original study (Perkins et al.

1998). Serum samples were sent frozen to National Public Health Institute (KTL, Helsinki, 

Finland) from CDC and stored at -20°C until analyzed. 

In study III, a representative set (26/92; 28%) of pre-vaccination sera from Icelandic teenagers 

(Perkins et al. 1998) with convergent or divergent IRPA and SBA data (II) against strain 

44/76-SL was used. The sera were selected on the basis of the availability of > 0.2-ml 

volumes and analyzed for functional and specific antibodies as described. In addition, in study 

III, normal human sera (NHS; n=20) collected from healthy Finnish children of four different 

age groups (7, 14 and 24 months, and 10 years) were used. These sera had been collected in 

connection with previous immunogenicity studies (Mäkelä et al. 2003) and stored frozen at –

20°C until used. Informed consent and approvals from the ethics committees covered the use 

of these sera in this study. 

In study IV, a panel of mouse-human chimeric Mabs of all the four human IgG subclasses 

(IgG1-4) with identical variable genes against the P1.16 epitope on the PorA protein 
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(Vidarsson et al. 2001) were used. The production and in vitro characteristics of these 

antibodies have been described elsewhere (Vidarsson et al. 2001). The parental mouse P1.16 

specific IgG2a antibody MN12H2 (Jiskoot et al. 1991) was received from Betsy Kuipers 

(NVI, Bilthoven, The Netherlands). 

The B-PS specific IgG2a antibody Nmb735 (formerly Mab735) (Frosch et al. 1985) was a 

gift from H-P Harthus (Dade Behring, Marburg) and was used as a positive control for 

protection (dose of 2 μg/pup) throughout the IRPA studies (I-IV).  

4.2 Depletion of B-PS specific antibodies 

NHS collected from healthy Finnish children were absorbed with aluminum hydroxide gel 

(Alhydrogel 2%, Brenntag Biosector, Denmark) bound B-PS to deplete B-PS specific 

antibodies as described (III).  

4.3 Bacterial strains and growth conditions 

Three N. meningitidis strains were used. Strain IH5341 (I) was a cerebrospinal fluid isolate of 

a human patient and had the phenotype of B:15:P1.7,16 (Käyhty et al. 1989). The mother 

strain 44/76 (II, III, IV) for the Norwegian OMV vaccine (Fredriksen et al. 1991) (44/76-SL) 

was first isolated by Holten from a fatal case of meningococcal disease (Holten 1979) and had 

a phenotype of B:15:P1.7,16. The Cuban vaccine strain Cu385 (II, III) was their local clinical 

isolate and had a phenotype of B:4:P1.15 (Sierra et al. 1991). 

For IRPA studies (I-V), the strains were rat-passaged (Saukkonen 1988) 3-5 times and stored 

in skimmed milk at -70°C. In SBA assays performed at KTL (III, IV), rat-passaged 44/76-SL 

strain was used. In other assays, including SBA (I, II, III) and OPA (I, III) assays performed 

elsewhere, un-passaged strains were used. The expression of different surface antigens in un-

passaged and rat-passaged 44/76-SL and Cu385 strains was verified by SDS-gels performed 

at NIPH and whole-cell EIAs preformed at KTL (Toropainen et al. 2001) with monoclonal 

antibodies described below.  

Inoculum for IRPA and SBA assays performed at KTL was prepared from broth-grown, early 

log phase bacteria essentially as previously described (Saukkonen 1988). Inoculum SBA and 



59

OPA assays performed elsewhere was prepared from plate-grown, log-phase bacteria as 

described (I (Høiby et al. 1991), II, III (Perkins et al. 1998), III (Aase et al. 1998). 

4.4 Monoclonal antibodies used for strain characterization 

Monoclonal antibodies used for bacterial strain characterization are listed in Table 2. 

Table 2. Monoclonal antibodies (Mab) used for bacterial strain characterization. 

Mab Specificity Source 

Mab 95/750 Group B PS NIBSC 
8B55G9 Serotype P3.15 NIBSC 
MN14G21 Serotype P3.4 NIBSC 
MN14C11.6 Serosubtype P1.7 NIBSC 
MN3C5C Serosubtype P1.15 NIBSC 
MN5C11G Serosubtype P1.16 NIBSC 
MN4A8B2 L3,7,9 NVI 
MN43F8.10 L8 NVI 
154,D-11 OpcA NIPH 
NIBSC, National Institute for Biological Standards and Control, Potters Bar, UK 
NVI, Netherlands Vaccine Institute, Bilthoven, The Netherlands 
NIPH, Norwegian Institute of Public Health, Oslo, Norway 

4.5 Whole-cell EIA 

Whole-cell EIA was performed at KTL as described (Toropainen et al. 2001) using heat 

inactivated (56 ºC, 30 min) bacteria as coating antigen and peroxidase-conjugated rabbit 

antibodies to mouse immunoglobulins as the second antibody (Dako A/S, Denmark). 

4.6 OMV EIA 

IgG antibodies to strain IH5341 (I) were measured by EIA as described (Idänpään-Heikkilä et 

al. 1995) using a meningococcal capsular PS-depleted whole-cell preparation of strain 

IH5341 as the coating antigen and peroxidase-conjugated rabbit antibodies to human 

immunoglobulin G (IgG) as the second antibody (Dako A/S, Denmark). The results were 

expressed as titers, i.e. reciprocals of serum dilutions giving an optical density (O.D.) of 0.3 

measured at 450 nm. 
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Anti-OMV IgG antibody concentrations for the Icelandic study sera (II, III) were obtained 

from B.D. Plikaytis. As reported previously (Perkins et al. 1998), these data were obtained at 

the NIPH and the Finlay Institute, respectively, using OMVs from their respective vaccine 

preparations as solid-phase antigen in their OMV EIA (Rosenqvist et al. 1991, Ferriol 

Marchena et al. 1999). The results were expressed as arbitrary units (U/ml). A vaccine 

responder was defined as an individual with a  4-fold and a non-responder as an individual 

with a < 4-fold rise in anti-OMV IgG level. 

4.7 B-PS EIA 

Antibodies to meningococcal group B capsular polysaccharide (B-PS) (III) were measured by 

EIA essentially as described previously (Arakere and Frasch 1991), using B-PS non-

covalently complexed to methylated human serum albumin as coating antigen and 

peroxidase-conjugated rabbit antibodies to human immunoglobulin IgG or IgM (Dako A/S, 

Denmark) as the second antibody. The results were expressed as titers, i.e. reciprocals of 

serum dilutions giving an O.D. of 0.3 measured at 450 nm. The sera were assayed starting at 

1:50 dilution. Negative samples were assigned a titer of 1:10. 

4.8 SBA assay 

SBA data for the sera received from the NIPH (I) were obtained from E. Rosenqvist (NIPH) 

and for the Icelandic sera (II and III) from Dr. B.D. Plikaytis (CDC). SBA was measured at 

the NIPH (Høiby et al. 1991) and CDC (Perkins et al. 1998) according to their SBA assay 

protocols, respectively, using 25% human plasma as the exogenous complement source.  

SBA of sera from Finnish children (III) or monoclonal antibodies (IV) were determined at 

KTL using human serum from an individual without bactericidal antibodies to strain 44/76-

SL (III, IV) or serum from 5-6 day-old HsdCpb:WU (III), HsdBrlHan:WIST (IV) or 

PVG/OlaHsd (IV) rat pups (Harlan, The Netherlands) as exogenous complement source at a 

final concentration of 20%.  

The results were expressed as the reciprocal of the highest serum dilution giving 50% killing 

of the inoculum (I, II, III) or the lowest antibody concentration giving 90% killing of the 

inoculum (IV). Sera with titer of <4 were considered SBA negative and those with titer of 4
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SBA positive (I-III). A vaccine responder was defined as an individual with a  4-fold and a 

non-responder as an individual with a < 4-fold rise in SBA titer. 

4.9 OPA assay  

OPA (I, III) was measured at NIPH as respiratory burst (RB) by flow cytometry with 

polymorphonuclear leukocytes (PMNLs) as the effector cells and ethanol fixed (I) (Aase and 

Michaelsen 1994) or live 44/76-SL cells grown on plates to log phase (III) (Aase et al. 1998) 

as the target cells. Human serum without any antibody activity against the target strain was 

used as complement source at a final concentration of 10%. The percentage of effector cells 

that had undergone RB was determined, and the results expressed as the reciprocal of the 

highest serum dilution giving RB above the cut-off line of 15% cells. Sera with titer of < 2 

were considered OPA negative and those with titer of  2 OPA positive. 

4.10 Quantification of IgG by flow cytometry 

Anti-meningococcal IgG antibodies were quantified (III) at NIPH with live, log grown 44/76-

SL cells by flow cytometry as described (Aase et al. 1998). Two-fold dilutions of a reference 

plasma (quantified by EIA against OMVs) was used as an internal standard to create a 

standard curve with concentration (range 0.07-9.0 mg/ml) on the abscissa and median 

fluorescence intensity (MFI) on the ordinate to which the MFI of test samples were 

interpolated.   

4.11 Immunoblotting 

Immunoblotting (I and III) was carried out at NIPH as described (Wedege et al. 1998) with 

deoxycholate extracted OMVs (Fredriksen et al. 1991) from strain 44/76-SL as antigen. Strips 

loaded with OMV antigens were incubated with 1:200 dilutions of human sera in the absence 

and presence of 0.15% Empigen BB to detect antibody binding to conformation-dependent 

epitopes (Wedege et al. 1988). The intensities of IgG binding to different OMV antigens 

[Omp85, FetA (FrpB of mol.wt. 70 kDa), P1.7,16 PorA, P3.15 PorB, Rmp (class 4 protein), 

OpcA, OpaJ (class 5.5 protein), LOS of immunotypes L3 and L8, and unidentified antigens 

with higher mol. wt. around 50 kDa (HMW) or in the lower range 20-25 kDa (LMW)] were 

determined visually. By visual determination, the immunoreactive bands were scored on a 
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scale from 0 to 4, where scores between 0 and 1.5, between 2 and 2.5, and between 3 and 4 

represented no or weak binding, medium binding, and strong binding, respectively.  

4.12 Experimental animals 

In passive protection studies, 4-7 days old, outbred albino Wistar rat pups (HsdCpb:WU or 

HsdBrlHan:WIST) and inbred PVG (PVG/OlaHsd) rat pups with normal (designated 

PVG/c+) or C6 deficient complement (designated PVG/c-) were used.  

HsdCpb:WU rats (I, II, III) were purchased as specific pathogen-free from Harlan Nederland 

(Horst, The Netherlands), bred locally at the Helsinki University Animal Centre (Helsinki, 

Finland) up to 3 generations until timed-mated to get the litters, and allowed to deliver in the 

animal facilities of KTL. 

For study IV, timed-pregnant female HsdBrlHan:WIST and PVG/OlaHsd rats were purchased 

from Harlan Nederland (Horst, The Netherlands) and allowed to deliver in the animal 

facilities of KTL. Conventionally bred complement component C6 deficient PVG rats 

(designated PVG/c-) (Leenaerts et al. 1994) were received from M.R. Daha (Department of 

Nephrology, Leiden University Medical Center, Leiden, The Netherlands). They were 

subsequently purified by hysterectomy, propagated up to 5 generations until timed-mated to

get the litters and allowed to deliver in the animal facilities of KTL. 

As the effect of C6 deficiency on bacterial virulence in non-immune infant rats was not 

known, in preliminary studies several challenge doses (102 to 106 cfu/pup) of strain 44/76-SL 

were tested and the resulting bacteremia levels (cfu/ml) in C6 deficient PVG/c- rats were 

compared to those of complement sufficient HsdBrlHan:WIST and PVG/c+ rats. No 

significant differences between complement sufficient and C6 deficient rats were found.  

4.13 Infant rat protection assay 

The passive protection experiments (I-IV) were done as described previously (Saukkonen 

1988). In brief, 4-7-day-old rat pups (average weight 12 g) were randomly redistributed in 

groups of 5-6 animals and injected intraperitoneally (i.p.) with appropriately diluted, heat-

inactivated (56ºC, 30 min) human serum or monoclonal antibodies, in a final volume of 0.1 

ml. Saline served as a negative and a monoclonal mouse antibody Nmb735 to serogroup B PS 
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(Frosch et al. 1985) as the positive control for protection. One to two hours later a bacterial 

challenge of 104 to 107 cfu/pup was injected i.p. in a final volume of 0.1 ml. Development of 

meningitis (I) and/or bacteremia (I-IV) was assessed by culturing blood and cerebrospinal 

fluid (CSF) samples taken at appropriate time-points after bacterial challenge. The limit of 

detection was 1×102 and 1×103 cfu/ml for CSF and blood cultures, respectively. Animals with 

sterile cultures were assigned a value of 0.3× the detection limit, i.e. 30 and 3×102 cfu/ml for 

CSF and blood cultures, respectively.  

In all studies (I-IV), reduction in bacteremia levels was used as the main protection assay end-

point. In studies II and III, a protection index (PI) was generated based on the reduction in 

geometric mean concentration (GMC) of bacteria in blood (cfu/ml). PI was equivalent to fold 

decrease in GM cfu/ml in each experimental group of animals relative to the control group of 

the same day. For each serum PI was calculated as follows: GM cfu/ml for control animals / 

GM cfu/ml for serum treated animals. Sera with PI < 1 were assigned a value of 1. A PI of 10 

(i.e. a 10-fold reduction in GM cfu/ml blood in the experimental group compared to the 

control group) was used as cut-off value of protective activity. Thus sera with PI <10 were 

considered IRPA negative and those with PI 10 IRPA positive. A vaccine responder was 

defined as an individual with at least 10-fold rise in PI (post-vaccination serum PI/pre-

vaccination serum PI). 

All experimental protocols were reviewed by the Institutional Laboratory Animal Committee 

and finally approved by the Provincial Board. 

4.14 Statistical methods 

In statistical analysis, log transformed data was used. For inter- and intra-assay comparisons, 

the data were subjected to one-way analysis of variance (SPSS Inc., Chicago, Illinois). 

Statistical differences between GMs (or fold-increases in GMs) in different groups were 

calculated with two-tailed t test assuming equal variances, and differences between pre- and 

post-vaccination GMs with paired-samples t test. Pearson correlation coefficients were 

calculated with SPSS software. Fisher’s exact test was used to analyze differences in vaccine 

responder rates (SPSS). For all comparisons, a P value of 0.05 was considered significant. 
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5 RESULTS

5.1 Adaptation of IRPA assay for use with human sera (I) 

For a large-scale evaluation of clinical samples, a sensitive and repeatable assay is needed.  

Thus, our first aim was the adaptation and standardization of the infant rat protective activity 

(IRPA) assay for use with human sera (I), paying special attention to the choice of challenge 

dose and serum dilution used.  

5.1.1 Choice of challenge dose 

In preliminary studies, several challenge doses (104-107 cfu/pup) of strain IH5341 

(B:15:P1.7,16) were tested, and the development of bacteremia and meningitis was monitored 

in rat pups (6 animals/group) pre-injected with either saline (control group) or with a 

monoclonal antibody to the group B capsular polysaccharide (Nmb735) used as a positive 

control for protection.   

The dose of 104 cfu/pup did not result in a satisfactory development of either bacteremia or 

meningitis. Only half of the animals in the control group (3/6) were bacteremic at six hours. 

The GMC of bacteria in the blood was 9.2×103 cfu/ml; none of the animals developed 

meningitis (I; figure 1). Prolonging the experiment overnight did not increase the infection 

rate: three of the six animals were bacteremic and only one had bacteria in the CSF. All 

subsequent experiments were terminated at six hours, like in previous studies (Nurminen et 

al. 1992, Idänpään-Heikkilä et al. 1995). 

With the higher challenge doses of 105 to 107 cfu/pup, all saline treated animals were 

bacteremic at six hours (I; figure 1). The bacterial counts in the blood increased with 

increasing challenge dose from a GMC of 5.7×105 cfu/ml with the dose of 105 to 2.3×107

cfu/ml with the dose of 107. These higher bacterial loads also resulted in high rates of 

meningitis, varying from 67 to 100% (I; figure 1). However, with the highest dose the 

sensitivity of the detection of protection decreased. Although highly protective against 

challenge doses of 104-106 bacteria, the Nmb735 failed to show any IRPA against challenge 

with 107 meningococci. On the basis of these results, doses of 105 and 106 cfu/pup were 

selected for subsequent studies with human sera.  
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5.1.2 Choice of serum dilution 

Four sera, three collected from adults immunized with the Norwegian serogroup B 

meningococcal OMV vaccine and one from a non-vaccinated person with no history of 

meningococcal disease, were used for adaptation of the IRPA assay for use with human sera. 

The sera were first tested at the dilution of 1:10, and then, if protective, at dilutions of 1:30 

and 1:100. Most assays were repeated once or twice in separate experiments with a different 

batch of animals to assess the repeatability of the assay.  

As in preliminary experiments, the development of bacteremia and meningitis in saline 

treated control animals was highly constant with both challenge doses. The non-immune 

serum had low activity in EIA measuring IgG antibodies to sub-capsular antigens and 

negligible reaction in immunoblots; it showed no functional activity in vitro in SBA assay or 

OPA assay. When tested for protective activity against a challenge dose of 105 in the IRPA 

assay, the rates of bacteremia were the same as in the control animals in both experiments at 

the serum dilution 1:10 and the one experiment at dilution 1:30. In one experiment, at dilution 

of 1:10, the bacterial counts in the blood were reduced to 6.5% (P = .03) of the value in the 

control group, and there was also a reduction in the rate of meningitis. However, in the other 

experiments at serum dilutions 1:10 and 1:30 there was no indication of protective activity (I; 

Table 2). Against the higher dose of 106, no protective activity was detected (I; Table 3). 

The post-vaccination sera were, as a rule, protective in the IRPA assay and their IRPA could 

be further quantified by testing different serum dilutions and by varying the challenge dose. 

With the challenge dose of 105, all the three post-vaccination sera were IRPA positive at 1:10 

and 1:30 dilutions, whereas the dilution 1:100 gave no protection (I; Table 2). With the higher 

dose of 106 cfu/pup, two sera were IRPA positive at 1:10 dilution; one was still protective at 

the 1:30 dilution (I; Table 3). These two sera also had the highest SBA titers (1:32 and 1:64) 

and one of them high but the other one moderate OPA (1:128 and 1:32). By contrast, the 

serum with low SBA (1:4) but high OPA (1:64) failed to reproducibly show IRPA against the 

higher challenge dose of 106 cfu/pup. In one experiment, at dilution of 1:10, the bacterial 

counts in the blood were reduced to 3.8% (P <0.05) of the value in the control group, and 

there was also a reduction in the rate of meningitis. However, in the other two experiments at 

dilution 1:10 and in the three experiments at dilution 1:30 there was no indication of IRPA (I; 
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Table 2). Thus, similar to results obtained with group B capsular specific Mab Nmb735, with 

the higher challenge dose of 106 cfu/pup the sensitivity of IRPA assay to detect protection 

decreased.   

The sensitivity of IRPA assay varied also depending on the criterion used. With the challenge 

dose of 106 (I; table 3), a statistically significant reduction in the rate of bacteremia was seen 

in only 63% (5/8) of cases in which the GMC of bacteria in the blood was significantly 

reduced. For the dose of 105 (I; Table 2), this proportion was even lower (54%, 7/13). When 

the rate of meningitis was compared with GMC of bacteria in the blood, highly consistent 

results were obtained in terms of protection: when the serum prevented the development of 

bacteremia, it also inhibited meningitis. However, because of small number of animals per 

experimental groups (n=6) and, for the challenge dose of 105, a relatively low rate of 

meningitis even in the saline treated control animals (3/6-4/6), the reductions in the rates of 

meningitis rarely reached statistical significance (P < .05). Therefore, for sensitivity, the most 

relevant parameter of protection appeared to be the reduction in the bacteremia level.  

A strong positive correlation between blood and CSF bacterial counts in both saline and 

serum treated animals was observed, suggesting that the bacterial concentration in the blood 

was the direct determinant of their penetration to the CSF. If there were 107 bacteria in the 

blood, all animals had bacteria in the CSF. Vice versa: when the bacteremia level was <104

cfu/ml, the CSF was always culture-negative (I; Fig. 2). 

We concluded that IRPA assay was entirely feasible for use with human sera, warranting 

further studies with a larger serum set from a clinical trial. Using bacteremia level as the 

IRPA assay endpoint, a serum dilution of 1:10 combined with a bacterial dose of 105 cfu/pup 

seemed the most optimal choice in terms of assay sensitivity.   

5.2 Assay reproducibility (I, II)  

The reproducibility of the IRPA assay is of major importance for large-scale studies. This was 

assessed by analyzing the repeatability of bacteremia in saline treated control group animals 

in each of the total of 42 passive protection experiments conducted with the Norwegian 

vaccine strain 44/76-SL and 29 experiments conducted with the Cuban vaccine strain Cu385 

(II).
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For both strains, bacteremia levels remained similar throughout the whole one-year and nine-

month study period (II; Fig. 1). All (n=252) control animals were bacteremic 6 hrs after i.p. 

challenge of approximately 106 cfu/pup with strain 44/76-SL (GM 5.6×106, range 1.7-

8.2×106). The bacteremia levels ranged from 8.7x104 to 1.1x107 cfu/ml with a GM of 1.1×106

cfu/ml (95% CI 0.8-1.6×106) and coefficients of variation (CV) of 15% (range 5-27%) for 

intra-assay and 21% for inter-assay comparisons. After a similar challenge dose (GM 7.2×106,

range 5.8-9.3×106) with strain Cu385, 83-100% of the control animals were bacteremic after 6 

hrs. The bacteremia levels ranged from 3.8×104 to 3.0×106 cfu/ml with a GM of 2.3×105

cfu/ml (95% CI 1.6-3.3×105) and CV of 15% (range 2-30%) for intra-assay and 19% for inter-

assay comparisons. Thus, similar to the smaller study (I), the reproducibility of IRPA assessed 

by the development of bacteremia in saline-treated control animals, was found satisfactory. 

This held generally true also for reproducibility of the protection assays but in 2 cases out of a 

total of 12, the results of the protection assays, using at least 10-fold reduction in GM 

bacteremia level as the criterion of protection, were contradictory (I).  

5.3 Serogroup B OMV vaccine responses in IRPA assay (II) 

To assess the value of IRPA assay as a correlate of OMV vaccine induced protection in 

humans, a large-scale evaluation of clinical samples was needed. To this end, pre- and post-

vaccination serum samples taken from 92 teenagers who had received two doses of either the 

Norwegian OMV vaccine, the Cuban OMV vaccine, or the serogroup A/C capsular PS 

control vaccine during a previous immunogenicity trial in Iceland (Perkins et al. 1998) were 

analyzed for IRPA and the results compared to SBA and anti-OMV IgG data obtained earlier 

elsewhere (Perkins et al. 1998).  

In each of the total of 71 passive protection experiments, 1 to 5 paired samples, i.e. sera taken 

before immunization and six weeks after the second immunization, were assayed for IRPA in 

an experimental unit of six animals/serum. Based on our earlier study (I), 1:10 serum dilution 

was used. IRPA was defined as fold decrease in geometric mean (GM) cfu/ml blood in each 

experimental group of animals relative to the control group of the same day, expressed by 

protection index (PI). A PI of 10 was used as a cut-off value of protective activity, and a 

vaccine responder defined as an individual with at least 10-fold rise in PI compared to pre-

vaccination level. All sera were tested against both the Norwegian (44/76-SL, B:15:P1.7,16) 
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and the Cuban (Cu385, B:4:P1.19,15) vaccine strain as in previous SBA and EIA studies 

(Perkins et al. 1998).

5.3.1 Selection of challenge dose 

As the adaptation of the IRPA assay for human sera had been done using another strain (I), a 

series of preliminary experiments was carried out to adjust the assay conditions for 44/76-SL 

strain and Cu385 strain that had been previously used in SBA assay (Perkins et al. 1998). To 

this end, both strains were first rat-passaged three times and the reproducibility of bacteremia 

assessed in rat pups (6 animals / group) at six-hour post-infection with 105 to 107

meningococci. As in the previous study, saline was used as the negative and Nmb735 as the 

positive control for protection. Most assays were repeated three to five times in separate 

experiments to assess the repeatability of the assay.  

By contrast to 44/76-SL strain, the Cu385 strain proved to be poorly virulent in infant rats. 

Even with the highest challenge dose of 8×107 cfu/pup tested, no reproducible infection could 

be obtained. Thus modified growth methods (early-log, mid-log, late-log, and stationary 

phase, broth-grown bacteria) were tested to increase its virulence. As the results were not 

satisfactory, several additional invasive disease isolates of the same phenotype (B:4:P1.19,15) 

and a Cuban vaccine strain, previously received from another source (FDA), were tested. 

Finally, the four-times rat-passaged Cu385 received from FDA was found adequately virulent 

and chosen as the challenge strain. For a bacterial challenge a dose of approximately 106

cfu/pup was chosen as the lowest dose giving satisfactory development of bacteremia with the 

Cu385 strain. A similar challenge dose was selected for strain 44/76-SL. 

5.3.2 Strain characterization 

The expression of different OM components and capsular PS in un-passaged strains used in 

SBA assays and rat-passaged strains used in IRPA assays was studied by SDS-gels and 

whole-cell EIAs. In strain 44/76-SL, no effect of rat-passage on expression profiles was 

detected (III; Table 2). The Cu385 strain used in IRPA assays differed from that used in SBA 

assays (Perkins et al. 1998) in two ways. First, it expressed more OpcA protein. Second, it 

had lost L8 after rat-passage.  
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5.3.3 Vaccine responses against strain 44/76-SL 

As compared to the results from 4-fold rises in anti-OMV IgG levels and to a lesser extent 

also in SBA titers, the numbers of vaccine responders in IRPA assay were only modest (II; 

Table 4).  

Altogether 46% (42/92) of the pre-vaccination sera were IRPA positive (PI 10) with strain 

44/76-SL (II; Table 3), compared with 50% (46/92) in the SBA assay (titer 4). Six weeks 

after the second dose, 51% (19/37) of the sera from the Norwegian and 40% (14/35) from the 

Cuban vaccine recipients were IRPA positive (II; Table 3). Twenty-two percent (8/37) of the 

Norwegian and 11% (4/35) of the Cuban vaccine recipients had responded in IRPA assay, 

compared with 65% (24/37; P<0.05) and 37% (13/35; P<0.05) in SBA assay, and 81% 

(30/37; P<0.05) and 11% (4/35) in EIA measuring anti-OMV IgG antibodies (II; Table 4). In 

neither of the two OMV vaccine groups was the proportion of IRPA responders significantly 

higher compared to the controls (II; Table 3). GM PI increased by 1.9-fold in the Norwegian 

and by 1.4-fold in the Cuban vaccine recipients (II; Table 3); in neither group was the 

difference between pre- and post-vaccination PIs statistically significant. In the control group, 

15% (3/20) of the vaccinees showed an IRPA response compared to none in SBA assay or 

EIA, but the number of IRPA positive sera and the GM PI showed a slight, non-significant 

decrease. 

5.3.4 Vaccine responses against strain Cu385 

Altogether 12% (11/92) of the pre-vaccination sera were IRPA positive with strain Cu385 (II; 

Table 3), compared 34% (31/92; P<0.05) in SBA assay. Six weeks after the second dose, 49% 

(18/37) of the sera from the Norwegian and 26% (9/35) from the Cuban vaccine group were 

IRPA positive (II; Table 3). Thirty percent (11/37) of the Norwegian and 14% (5/35) of the 

Cuban vaccine recipients had responded in IRPA assay, compared to 35% (13/37) and 29% 

(10/35) in SBA assay, and 51% (19/37; P<0.05) and 59% (20/34; P<0.05) in EIA. In the 

Norwegian OMV vaccine group the proportion of IRPA responders was significantly higher 

compared to the control group (II; Table 3). GM PI increased 3.5 and 2.2-fold in the 

recipients of the Norwegian and Cuban vaccines, respectively (II; Table 3); in both groups the 

difference between pre- and post-vaccination PIs was statistically significant (P<0.05). None 

of the control vaccinees showed a response in IRPA or SBA assay.  
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5.3.5 Effect of pre-vaccination IRPA on detection of responses 

To study whether PI of the pre-vaccination sera affected the detection of vaccine responders 

in general, the IRPA data were analyzed also separately for the recipients of the Norwegian 

and Cuban vaccines who were IRPA negative (PI < 10) at the time of enrollment. With both 

strains, the results were similar to those for all vaccines, implying that pre-vaccination IRPA 

activity did not measurably hinder the detection of vaccine responses. 

5.3.6 Correlation of IRPA, SBA, and anti-OMV IgG levels: pre-vaccination sera 

For both strains, there was a statistically significant positive correlation between SBA titers 

and anti-OMV IgG levels (II; Fig. 2A and 2B). The correlation coefficients between PI and 

anti-OMV IgG levels (II; Fig. 2C and 2D) or PI and SBA titers (II; Figures 2E and 2F), were 

noticeably lower and significant only for the strain Cu385.  

On the average, SBA titers were significantly higher in IRPA-positive (PI ≥10) than in IRPA-

negative (PI < 10) sera (II; Fig. 2E and 2F). However, 43% (18/42) of the sera positive with 

strain 44/76-SL had SBA titers <4 and one third (14/42) had titers < 2 (II; Fig. 2E). Only 11 

pre-vaccination sera were IRPA positive against strain Cu385, but the respective proportions 

were similar: 45% (5/11) of the IRPA positive sera had SBA tires <4 and 27% (3/11) had 

titers <2 (II; Fig. 2F). On the other hand, 48% (22/46) and 81% (25/31) of the sera with SBA 

titer of ≥4 against 44/76-SL and Cu385 strains, respectively, were IRPA negative (II; Fig. 2E 

and 2F). Thus, while the GM SBA titers were significantly higher among the IRPA positive 

than the IRPA negative pre-vaccination sera, many individual samples were IRPA positive 

with strain 44/76-SL without having bactericidal activity (SBA titer <4), and vice versa.

5.3.7 Correlations of IRPA, SBA, and anti-OMV IgG levels: post-vaccination sera 

Similar to the pre-vaccination sera, for both OMV vaccine groups there was a statistically 

significant positive correlation between SBA titers and anti-OMV IgG levels with strain 

44/76-SL (II; Fig. 3A and 3B), and a moderate correlation with strain Cu385 (II; Fig. 4A and 

4B). The correlation coefficients between PIs and anti-OMV IgG levels (II; Fig. 3C, 3D, 4C 

and 4D) or PIs and SBA titers (II; Fig. 3E, 3F, 4E and 4F) were lower but in most cases 

statistically significant and with the homologous strains, higher than the corresponding pre-
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vaccination values, indicating a vaccine response. Despite the vaccine-induced increase in 

correlation coefficients with the homologous target strains, a significant portion of the SBA 

positive sera (SBA titer 4) remained IRPA negative (PI<10). 

To conclude, as compared to 4-four fold rises in anti-OMV IgG and also in SBA titers, the 

sensitivity of IRPA assay to detect vaccine responders was generally only modest. With pre-

vaccination sera, similar numbers of positive sera were detected in IRPA and SBA assays 

with strain 44/76-SL (46% versus 50%), while with strain Cu385 the sensitivity of the IRPA 

assay was less than the SBA assay (12% positive in IRPA assay compared to 34% in SBA 

assay). The correlation between IRPA PIs and SBA titers (or anti-OMV IgG concentrations) 

with strain 44/76-SL was only modest. A significant portion of IRPA positive pre-vaccination 

lacked SBA (43%; 18/42), and vice versa (48%; 22/46). 

5.4 Specificity of natural antibodies conferring IRPA (III) 

A significant proportion of IRPA positive pre-vaccination sera with strain 44/76-SL lacked 

SBA and vice versa (II). Thus, our next aim was to assess the specificity and functional 

activity of natural antibodies responsible for IRPA with 44/76-SL strain, especially among 

IRPA positive but SBA negative sera. To this end, four subsets of pre-vaccination sera (6-7 

sera/subset) of Icelandic teenagers with convergent or discrepant SBA and IRPA results 

(Table 3) were analyzed for total, specific and functional antibodies by EIA, immunoblotting, 

IgG quantitation against live meningococcal cells by flow cytometry and OPA assay. Normal 

human sera (NHS), collected from healthy Finnish children of different ages, were used to 

verify the findings obtained with Icelandic study sera and a rat strain C6 deficient 

complement to assess the importance of complement-mediated bacterial lysis for protection. 
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5.4.1 IgG to OMVs 

The OMV IgG EIA data of the Icelandic pre-vaccination sera resembled closely the data 

obtained by SBA assay: no significant differences in anti-OMV IgG concentrations between 

IRPA positive, SBA positive category I and IRPA negative, SBA positive category II sera, or 

IRPA positive, SBA negative category III and IRPA negative, SBA negative category IV sera 

were found (Table 3). Highest IgG levels were found for category I. Category II sera showed 

similar, albeit approximately 1.7-fold lower levels than category I sera while SBA negative 

category III and IV sera showed negligible IgG levels. 

5.4.2 OPA

To find out whether other mechanisms than SBA might be responsible for protection of 

Icelandic sera in IRPA, OPA of the sera was evaluated with PMNL as effector cells and live 

44/76-SL cells as the target. Again, the results were similar to those obtained with SBA assay 

(Table 3, III; Fig. 1c) with no significant differences between categories I and II, or III and 

IV, respectively. 

5.4.3 IgG to viable meningococci  

IgG antibody binding to live 44/76-SL bacteria was determined by flow cytometry. Again, the 

results were similar to those obtained with the SBA assay (Table 3, III; Fig. 1d). No 

significant differences in antibody levels between IRPA positive and IRPA negative category 

I and II sera, or category III and IV sera, were found. 

5.4.4 Antibody specificity on immunoblots 

The possible association between antibody specificity and IRPA was analyzed by blotting the 

sera against OMV from strain 44/76-SL followed by evaluation of the IgG binding intensity 

to several outer membrane components. Most sera (19/26, 73%) showed medium or strong 

signals to one or more of the antigens. Although large individual variations in the antibody 

specificities were observed, all sera in category I and II (n=12) demonstrated such signals, 

thus roughly resembling the findings of SBA and IgG levels. Among the 14 SBA negative 
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sera in category III and IV, only one serum showed strong signals, six gave medium signals 

and the remaining seven sera no or negligible signals. No differences in the antigen binding 

patterns between IRPA positive and IRPA negative category I and II sera, or category III and 

IV sera were detected that could account for a specific protective activity. 

5.4.5 IgG and IgM antibody to serogroup B capsular polysaccharide 

As antibodies against capsular polysaccharide cannot be detected by immunoblots, B-PS 

specific IgG and IgM antibodies were measured by EIA. With the exception of three 

individual sera with titers > 1,000 (one individual in category I and 2 individuals in category 

II), the IgG titers to B-PS were very low in all categories (GM IgG titer range 36-127), with 

15/26 (58%) of the sera having a titer 100 and 22/26 (85%) a titer  200. No significant 

differences in titers between IRPA positive and IRPA negative category I and II sera, or 

category III and IV sera that could explain protection were found (Table 3, III; Fig. 1e). In 

contrast, IgM titers to B-PS were significantly (P=0.006) higher among the IRPA positive, 

SBA positive than the IRPA negative, SBA positive category, and among the IRPA positive, 

SBA negative category than the IRPA negative, SBA negative category (P=0.013) (Table 3, 

III; Fig. 1f). No significant differences in IgM titers between SBA positive and negative sera 

were found. 

5.4.6 Correlation of IRPA and in vitro antibody measurements against strain 44/76 

To confirm the importance B-PS IgM antibodies for protection, the results of functional and 

quantitative antibody measurements were subjected to correlation analysis. Only IgM 

antibody to group B capsular polysaccharide (B-PS) correlated positively (r=0.76, P<0.001) 

with IRPA against strain 44/76-SL (III; Fig. 2f). Studies with NHS collected from Finnish 

children of different ages (7, 14, and 20 months, and 10 years) confirmed this finding (III; 

Fig. 4) and showed a clear, age-related increase in B-PS specific IgM antibody that coincided 

with age-related increase in PI (III; Fig. 3).  

5.4.7 Assessment of IRPA in complement component C6-deficient rats 

To confirm further the importance of B-PS specific IgM antibody to protection against strain 

44/76-SL, two IRPA positive NHS from 10 year-old Finnish children were absorbed with 
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aluminum hydroxide gel-bound B-PS (Al-B-PS) and the non-absorbed and absorbed sera 

assayed for IRPA after verification of anti-B-PS IgM depletion. To assess whether protection 

afforded by these sera was independent on direct bacterial lysis, as suggested by the lack of 

SBA using human or infant rat serum as the complement source, a rat strain with a deficiency 

in the terminal part of the complement pathway (C6-deficiency), i.e. in the generation of the 

membrane attack complex, was used.  

The non-absorbed sera were equally protective in both rat strains. As expected, absorption 

with Al-C-PS did not reduce protective activity. This was in contrast to absorption with Al-B-

PS that completely abolished protective activity. (III; Fig. 5).  

To conclude, these results strongly suggested that the IRPA conferred by non-immune sera 

against serogroup B 44/76-SL meningococci was mainly mediated by anti-B-PS IgM 

antibody. The protection seemed independent of direct bacterial lysis as evident from the lack 

of SBA in vitro and equal protective activity of NHS in complement sufficient and C6 

deficient animals. 

5.5 Importance of antibody specificity, isotype and complement-mediated 
bacterial lysis on protection (IV) 

As stated above, in sera from un-immunized individuals IRPA against 44/76-SL strain was 

mainly mediated anti-capsular IgM antibodies. To verify that antibodies of human origin to 

non-capsular antigens are in general able to confer passive protection in the infant rats, and to 

study the effect of antibody specificity and isotype to protection in more detail, the parental 

mouse P1.16 PorA specific mIgG2a Mab (Jiskoot et al. 1991), the human IgG1-4 isotypes 

derived from it (Vidarsson et al. 2001), and a monoclonal mouse IgG2a Mab with specificity 

to B-PS (Nmb735 (Frosch et al. 1985)) were studied for IRPA. Like in the previous study 

(III), C6 deficient rats were used to assess the importance of complement mediated lysis on 

protection.

5.5.1 Bactericidal activity (BA)  

The BA of the Mabs was first reassessed using human and infant rat serum collected from 

HsdBrlHan:WIST rats as the exogenous complement source. As previously, the B-PS specific 
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Nmb735 and the parental PorA specific mouse IgG2a were the most potent antibodies in this 

assay, followed by human IgG isotypes in the order of activity of IgG1=IgG3>IgG2; the IgG4 

failed to show any bactericidal activity at the concentrations up to 20 g/ml tested (Table 4, 

IV; Table). Approximately 3-fold higher Mab concentrations were needed for BA (  90% 

killing of the inoculum) with human compared rat complement but this difference did not 

reach statistical significance (P=0.06, paired one-sided t-test).  

5.5.2 IRPA assays with complement sufficient rats 

Similar to our previous studies (I and (Toropainen et al. 2001)), the B-PS specific Mab 

Nmb735 (IV; Fig 1a) and the parental PorA specific mouse IgG2a (mIgG2a, IV; Fig. 1b) 

were highly protective in complement sufficient rats. The lowest dose of 0.02μg/pup of the 

former and 0.5μg/pup of the latter reduced blood bacterial counts in HsdBrlHan:WIST rats 

significantly as compared to control animals receiving saline (Table 4). As compared parental 

PorA specific mIgG2a, the human IgG1 (Table 4, IV; Fig. 1c) and IgG3 (Table 4, IV; Fig. 1e) 

exhibited approximately similar activity while a 4-fold higher antibody dose (2 compared to 

0.5 μg/pup) of IgG2 was needed for equal protective activity (Table 4, IV; Fig 1d). The non-

bactericidal human IgG4 (Table 4, IV; Fig. 1f) failed to show significant protective activity at 

any antibody doses up to 20 μg/pup tested.   

Table 4. Bactericidal and infant rat protective activities of monoclonal antibodies (Mab). 

 90% killing* Passive protection**
Mab Human  

complement
Infant rat  
complement

HsdBrlHan:WIST PVG/c+ PVG/c- 

Nmb735 0.08 0.027 0.02  0.02 0.02 
mIgG2a 0.08 0.027 0.5  0.5 5.0 
hIgG1 0.74 0.25 0.5 5.0 >20 
hIgG2 2.2 0.74 2.0 ND >20 
hIgG3 0.74 0.25 0.5 ND >20 
hIgG4 >20 >20 >20 ND >20 

* Lowest antibody concentration (μg/ml) needed for 90% killing of the 44/76-SL 
(B:15:P1.7,16) bacteria in the presence of human or infant rat (HsdBrlHan:WIST) 
complement. 
** Lowest antibody dose needed for passive protection in the infant rats against challenge 
with approximately 106 cfu of 44/76-SL bacteria. Protection was defined as a significant 
(P<0.05) reduction in geometric mean bacteremia level (cfu/ml blood) compared to control 
animals given saline. 
ND, not determined. 
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Due to difficulties of the breeder to supply us with complement sufficient partner (PVG/c+) 

for the C6 deficient rat strain, only the B-PS specific Mab Nmb735, the parental PorA 

specific mIgG2a, and the human IgG1 isotype could be tested in this rat strain. With the B-PS 

and PorA specific mouse IgG2a Mabs, similar results were obtained in both complement 

sufficient rat strains (Tabel 4, IV; Fig. 1a and 1b). This was in contrast to the PorA specific 

human IgG1 isotype of which a 10-fold higher antibody dose (5 versus 0.5 μg/pup) was 

needed for equal protection in PVG/c+ compared to HsdBrlHan:WIST rats (Table 4, IV; Fig. 

1c). To study the possibility that rat strain specific differences in complement activity might 

have explained the lower protective activity of the human IgG1 in PVG/c+ compared to 

HsdBrlHan:WIST rats, the in vitro BAs of the parental PorA specific mIgG2a and the human 

IgG1 isotype were reassessed using pooled serum from either rat strain as the exogenous 

complement source. No rat strain specific differences in the lytic activity were detected. 

5.5.3 IRPA assays with complement component C6 deficient rats 

Of the PorA specific antibodies (Table 4, IV;Figs 1b-f), only the parental mIgG2a (Fig 1b) 

conferred protection in C6 deficient PVG/c- animals, requiring a 10-fold higher antibody dose 

(5 versus 0.5 μg/pup) for protection as compared to complement sufficient HsdBrlHan:WIST 

or PVG/c+ animals. This was in contrast to anti-B-PS antibody NmB735 was equally 

protective in all rat strains (Table 4, IV; Fig 1a).  

To conclude, the PorA specific parental mouse IgG2a and the human IgG1-3 isotypes all 

induced efficient bactericidal activity in vitro in the presence of human or infant rat 

complement and augmented bacterial clearance in complement sufficient animals while the 

IgG4 was unable to. In C6 deficient animals augmentation of bacterial clearance by anti-PorA 

antibodies was severely impaired, suggesting that protection afforded anti-PorA antibody was 

mainly dependent on the activation of the whole complement pathway and subsequent 

bacterial lysis. This was in contrast to anti-B-PS antibody NmB735 that was equally 

protective in all rat strains, confirming our previous findings with natural IgM anti-capsular 

antibodies of human origin (III). 
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6 DISCUSSION 

6.1 Methodological and study design aspects 

The development of serogroup B meningococcal vaccines has been hampered by the lack of a 

reliable animal model for predicting their protective efficacy. Although passive protection in 

animal models has been widely used to evaluate the protective activity of monoclonal 

antibodies or immune sera raised in experimental animals, no attempts have been made to 

study their applicability and validity to assess vaccine responses using human sera. 

The purpose of this thesis that includes four consecutive studies (I-IV) was twofold. First, we 

wanted to evaluate the applicability of the infant rat protection assay to assess natural and 

serogroup B outer OMV vaccine induced immunity in humans against N. meningitidis

serogroup B in general. To this end, after careful adaptation of the assay for use with human 

sera (I), pre- and post-vaccination serum samples from teenagers immunized either of the 

current two efficacious meningococcal serogroup B OMV vaccines (Bjune et al. 1991b, 

Sierra et al. 1991) during a previous immunogenicity trial in Iceland (Perkins et al. 1998) 

were analyzed for IRPA (II), and the results compared to SBA data obtained with the same 

serum set (Perkins et al. 1998). This comparison was necessary, as the SBA assay has been 

regarded as the “gold standard” surrogate of protection also against disease caused by 

serogroup B meningococci (Holst et al. 2003). Second, we wanted to look more closely the 

specificity and functional activity of antibodies conferring protection in this model. In these 

studies, two approaches were used. First, the specificity of antibodies conferring protection in 

Icelandic study pre-vaccination sera was determined (III). Second, the protective activity 

well-characterized Mabs of different specificity or antibody isotype was studied (IV). In the 

last two studies, complement component C6 deficient animals were used to evaluate the 

importance of complement-mediated bacterial lysis in protection.  

In the adaptation of the IRPA assay for use with human sera (I), four human sera were used. 

Three of them were collected after immunization of adult volunteers with the Norwegian 

meningococcal serogroup B OMV vaccine (Bjune et al. 1991b) and one was normal human 

serum from an unvaccinated individual with no history of meningococcal disease 

(representing pre-vaccination serum). These sera were selected from a large panel of sera 
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available at NIPH on the basis of differences in their antibody profiles measured by 

immunoblotting and functional activities (SBA and OPA) measured in vitro. Because one of 

the main aims of this study was to examine the reproducibility of the assay by repeating the 

same assay (same serum dilution, same challenge dose) on several days, for practical and 

ethical reasons, concerning the use of experimental animals, the number of sera assayed in 

this study was restricted to four. Thus, the effect of antibody specificity as well functional 

activity on protection could not be reliably addressed. 

To evaluate the applicability of the IRPA assay to detect serogroup B OMV vaccine responses 

in humans, pre- and post-vaccination serum samples from 92 teenagers, representing a 25% 

subset of sera from subjects who had received two doses of either the Norwegian OMV 

vaccine based on strain 44/76-SL (B:15:P1.7,16) (Fredriksen et al. 1991), the Cuban OMV 

vaccine based on strain Cu385 (B:4:P1.19,15) (Sierra et al. 1991), or the serogroup A/C 

capsular PS control vaccine during a previous immunogenicity trial in Iceland (Perkins et al.

1998), were used (II). Concerning the use of experimental animals, testing of larger number 

of sera was considered neither ethically justifiable nor practical. Due to stratified sample 

selection (25% sample drawn from vaccine-responders as well as non-responders), the 

percentages of SBA responders reported in the original study (Perkins et al. 1998) were 

roughly retained in the present serum subset (II; Table 1). Samples taken after the second dose 

were selected for this study because the efficacy trials with these vaccines had been 

performed with a two-dose schedule (Bjune et al. 1991b, Sierra et al. 1991) and because in 

the original study plan comparison of IRPA data with available efficacy data was also 

included, even though the latter data was obtained from different study populations (Bjune et 

al. 1991b, Sierra et al. 1991).  

In study III, a representative set (26/92; 28%) of pre-vaccination sera from Icelandic teenagers 

(Perkins et al. 1998) with convergent or divergent IRPA and SBA data (II) against strain 

44/76-SL was used to characterize the specificity and functional activity of natural antibodies 

conferring IRPA with strain 44/76-SL. The sera for this study were selected on the basis of 

pre-existing IRPA (II) and SBA data (Perkins et al. 1998) and the availability of adequate (> 

0.2-ml) volumes. NHS (n=20) collected from healthy Finnish children of different ages (7, 14 

and 24 months, and 10 years) were used to verify the findings obtained with sera from 

Icelandic teenagers and to assess the development of IRPA. These sera had been collected in 
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connection with previous immunogenicity studies (Mäkelä et al. 2003) and were randomly 

selected from samples available at KTL.  

In study IV, a mouse P1.16 PorA specific mIgG2a Mab (Jiskoot et al. 1991), the human 

IgG1-4 isotypes derived from it (Vidarsson et al. 2001), and a monoclonal mouse IgG2a Mab 

with specificity to B-PS (Nmb735 (Frosch et al. 1985)) were used as model antibodies to 

assess the effect of antibody specificity (sub-capsular versus capsular antigen), antibody 

isotype (human IgG1-4), and the importance of complement-mediated bacterial lysis on 

protection. These Mabs were selected on the basis of their availability, which for the PorA 

protein well reflects the general interest and importance of this antigen as vaccine candidate 

against serogroup B meningococcal disease (Muttilainen et al. 1995, Claassen et al. 1996, 

Idänpään-Heikkilä et al. 1996, Christodoulides et al. 1998). In the original study plan, testing 

of class-switched B-PS specific IgG1 and IgM Mabs of human origin (Raff et al. 1988, Raff

et al. 1991) was also included but due to their poor availability, this plan could not be 

executed.  

For a bacterial challenge strain to adapt the IRPA assay for use with human sera (I) we chose 

strain IH5341, a CSF isolate from a patient with invasive meningococcal disease (Käyhty et 

al. 1989). This strain, phenotypically homologous (B:15:P1.7,16) to the clone that had in the 

past decades caused long-drawn epidemics in Northern Europe (Poolman et al. 1986), was 

chosen for a challenge strain largely based on our previous experience on it in this model 

(Nurminen et al. 1992, Idänpään-Heikkilä et al. 1995). It was also homologous to the strain 

44/76, from which the vaccine that the donors of the human post-vaccination sera received 

was made. 

In studies with the Icelandic study sera (II, III) and Mabs (IV), the Norwegian vaccine (44/76-

SL; B:15:P1.7,16) and the Cuban vaccine (Cu385; B:4:P1.19,15) strains were used. As one of 

our aims was to compare the IRPA data with SBA data (II), a natural choice for the challenge 

strains used in IRPA studies would have been the exactly same strains that had previously 

been used to generate the SBA data (Perkins et al. 1998). Unfortunately, this was not possible 

for the Cu385 strain due to poor reproducibility of bacteremia, and the Cu385 received from 

another source was considered the best choice. As expected, this strain was phenotypically 

similar to the strain received from CDC and used in their SBA assay except for a higher 
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expression level of the outer membrane OpcA protein and the loss of L8 expression after rat-

passage (II; Table 2). Due to these differences, the results of IRPA and SBA assays were not 

entirely comparable. Both the Norwegian and the Cuban OMV vaccine lots administered in 

the Icelandic trial contained the OpcA protein (Griffiths et al. 1994).  

In passive protection studies rat-passaged strains were used. Criticism has been raised over 

this procedure (Gorringe et al. 2001) as it presumably selects meningococcal variants better 

adapted to the animals and hence, in theory, moves the animal model one step away from the 

human disease. We have however found this procedure useful to increase the repeatability of 

the IRPA assay, which is of utmost importance for large-scale passive protection studies. 

While mechanisms for increased repeatability of infection after rat-passage are not fully 

understood, it is probably due to more homogenous inoculum. Interestingly, similar to 

previous studies in an intranasal mouse model of meningococcal infection (Mackinnon et al.

1993), in the Cu385 strain a switch from L3,7,8 immunotype to L3,7 immunotype after rat-

passage was detected (II; Table 2), confirming the importance of LOS IT as a virulence 

determinant (Jones et al. 1992). In the 44/76-SL strain, lacking L8 expression already before 

rat-passages, no change in antigen expression after rat-passage was detected. 

For a bacterial challenge dose with the Icelandic sera (II, III), a dose of approximately 106

cfu/pup was selected as the lowest dose giving reproducible bacteremia with the Cuban 

vaccine strain Cu385. For consistency, a similar challenge dose was selected for strain 44/76-

SL even though our previous results (I) suggested that this might somewhat decrease IRPA 

assay sensitivity.  

In IRPA studies with Icelandic study sera (II, III), a PI of 10, equivalent to one-log reduction 

in GM blood bacterial density in an experimental group of animals (n=6), and at least 10-fold 

rise in PI of paired sera were used as end-points. With the intra- and inter-assay CVs of 

approximately 20%, a lower threshold was considered inappropriate. The IRPA data were 

analyzed by several different approaches, including comparison of responder percentages, 

GM PIs and the proportion of vaccinees achieving a threshold PI of 10. A 10-fold rise in PI 

was also analyzed separately for study participants without detectable IRPA activity (PI < 10) 

at study enrolment. In general, all methods gave similar results.  
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Similarly to previous studies (Goldschneider et al. 1969a, Milagres et al. 1994, Holst et al.

2003, Welsch and Granoff 2004), in SBA assays a titer of 4 was used as the threshold of 

protection. Although a threshold SBA titer that would predict protection against 

meningococcal disease at an individual level has not yet been established and will apparently 

be difficult if not impossible to define, it has been suggested that at population level this 

threshold correlates well with the Norwegian serogroup B OMV vaccine efficacy (Holst et al.

2003).   

It is well recognized that the use of complement from heterologous species (especially 

rabbits) may greatly enhance the SBA of meningococcal anti-PS antibodies compared to their 

activity with human complement (Griffiss and Goroff 1983, Zollinger and Mandrell 1983, 

Mandrell et al. 1995). Thus, to avoid mistaken conclusions about the protective activity of 

human antibodies measured in vivo in the presence of rat complement (and phagocytes) 

compared to SBA measured in vitro in the presence of human complement (II, III), we used 

both human and infant rat serum as the exogenous complement source in bactericidal assays

in vitro with NHS (III) and mouse-human chimeric Mabs (IV). Similar activities were found 

with both complements, suggesting that the discrepancies between IRPA and SBA data (II, 

III) were not due to species-specific differences in the efficiency of complement to lyse 

antibody-targeted bacterial cells. 

To find out whether OPA might had explained protection in IRPA positive but SBA negative 

sera, the OPA of the Icelandic study sera was evaluated as respiratory burst by flow cytometry 

using human PMNLs as effector cells and live 44/76-SL bacteria as the target cells (III). 

PMNLs of human origin were used because we wanted to compare IRPA assay with a 

previously established and standardized OPA assay (Aase et al. 1998) and because it would 

have been very difficult to obtain sufficient amount of PMNLs from infant rats due to their 

small size.

6.2 Adaptation of IRPA assay for use with human sera (I) 

An important question for vaccine development was whether the IRPA assay could be used to 

test the protective activity conferred by human immune sera and thus possibly as a surrogate 

assay for vaccine efficacy. Such a use would, however, need careful choice of the assay 
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conditions for sensitivity and repeatability, with the additional need arising from ethical 

considerations of the use of experimental animals to keep the number of animals needed 

small. Therefore, the aim of our first study was the adaptation and standardization of the 

infant rat infection model for use with human sera. 

From previous studies (Saukkonen 1988) we knew that a high challenge dose will lead to a 

predictable and consistent development of bacteremia and meningitis; on the other hand, in 

protection assays it is usually easier to prevent an infection caused by a small rather than a 

large challenge dose. Therefore, in preliminary studies several challenge doses of strain 

IH5341 were tested, aiming at reproducible infection and sensitive detection of protection 

with little inter-assay variability. For ethical reasons, early sampling, before the animals get 

very ill, was desirable. In previous passive protection studies an observation period of six 

hours after challenge had been used with good results (Saukkonen et al. 1989, Nurminen et al.

1992). Considering that a longer time of observation might allow the use of a smaller 

challenge dose and consequently possibly increase the sensitivity of the protection assay 

(Harris et al. 2003a, Harris et al. 2003b), we also assessed the outcome 24 hours after 

challenge with the lowest dose of 104 cfu/pup. However, the results were not satisfactory, and 

six hours was chosen as the standard assay time. 

In the six-hour assay, the development of disease with doses of 105 to 107 cfu/pup was highly 

constant whether comparing the rates or the levels of bacteremia and meningitis whereas the 

lower dose of 104 was unsatisfactory in terms of consistency and predictability. Although 

lower challenge doses would probably mimic better the course of natural infection, the doses 

105 and 106 appeared more suitable for protection studies: the development of disease was 

predictable and reproducible while still allowing a reliable and sensitive detection of 

protection with a relatively low number of animals per study group (6 pups/group). 

For a potential routine test keeping the serum consumption as low as possible is desirable. 

Thus, it was good to note that 1:10 dilution gave protection; in serological surveys it would 

not be feasible to use less diluted sera since one assay, with six animals per group, will 

require a minimum volume of approximately 800 μL of the dilution, e.g. 80 μL of serum. All 

the post-vaccination sera tested were still protective at the dilution 1:30 against challenge with 

105 meningococci; the levels but more rarely the rates of bacteremia were reduced as 
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compared with controls. In contrast, dilution 1:100 gave no protection. On the basis of these 

results, a 1:10 dilution was chosen for evaluation of OMV vaccine induced IRPA assay 

responses (II). 

As expected, also the challenge dose was an important determinant of the outcome of the 

IRPA assay. Although highly protective against the lower challenge doses, the Mab Nmb735 

showed no protection against challenge with 107 meningococci. Similarly, one post-

vaccination serum that effectively protected the animals challenged with 105 bacteria failed to 

reproducibly show protection against the higher dose of 106. Thus, for passive protection 

studies the lower bacterial dose of 105 seemed more useful, providing that predictable and 

reproducible infection is obtained. 

We found the most consistent and interpretable findings when using a reduction in GM blood 

bacteremia level (cfu/ml) as the end-point of protection. Moreover, the observation that the 

rate of meningitis was dependent on the level of bacteremia also in the protection studies 

suggested that an adequate indicator of protection can be achieved by measuring the bacterial 

counts in the blood only: when the serum prevented the development of bacteremia, it also 

inhibited meningitis. 

6.3 Assay reproducibility 

Due to innate nature of infection studies in experimental animals, they are expectedly subject 

to considerable biological variability arising form the genetic variability of both the animal 

host as well as bacterial species in question. In the present studies, the reproducibility of 

IRPA assay, assessed by the development of bacteremia in saline treated control group 

animals, was found satisfactory, with coefficients of variation (CV) of approximately 15% 

(range 5-27%) for intra-assay and of approximately 20% for inter-assay comparisons. 

 To avoid bias due to uncontrolled (random) variation, a careful allotment of treatments to 

subjects at random and a strict compliance with standard assay conditions is of major 

importance. Especially, precautions should be taken to maintain the preparation of the 

bacterial inoculum (growth phase, method of dilution) and inoculation techniques as closely 

standardized as possible. To reduce the chance of differences arising due to intrinsic 

variability of the experimental animals, a high quality of animals used and their uniformity 
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with respect to age and weight are important. Although the use of genetically defined inbred 

or F1 hybrid strains of animals would further increase the uniformity of the stock and 

consequently might reduce intra- as well as inter-experimental variability, we have preferred 

commercially available outbred Wistar rats (Hsd:WU; I-III or HsdBrlHan:WIST; IV) of 

specific pathogen free-quality to inbred strains: because of their prolific breeding, large 

numbers of pups of a suitable age (4-6 days at experiment) are easily available at short notice.  

6.4 Serogroup B OMV vaccine responses in IRPA assay (II) 

To evaluate the applicability of the IRPA assay to assess serogroup B OMV vaccine 

responses, paired pre- and post-vaccination serum samples collected from young adults 

immunized with the Norwegian or the Cuban OMV vaccine during the previous 

immunogenicity trial in Iceland were used (Perkins et al. 1998). 

As discussed by Perkins et al. (Perkins et al. 1998), in the Icelandic trial the proportions of 

SBA and EIA responders among the Cuban vaccine recipients were much lower than would 

be expected from the vaccine efficacy estimate. In the present study, the proportions of IRPA 

responders were generally lower than those found in SBA and EIA with the homologous 

strains, and thus even farther from the point estimates of efficacies in the Norwegian (57%) 

and the Cuban (83%) efficacy trials (Bjune et al. 1991b, Sierra et al. 1991) (II; Table 4). 

Thus, the expectation that animal models might shed more light on the poor relationship 

between SBA activity and protection (Perkins et al. 1998) was apparently not fulfilled by our 

IRPA studies. Further, at best, the correlation between IRPA and SBA or anti-OMV IgG 

concentrations measured by EIA was only modest. Despite OMV vaccine induced increase in 

correlation between IRPA and SBA with the homologous strains, a significant portion of the 

SBA positive sera (SBA titer 4) remained IRPA negative (PI<10). 

The bacterial challenge dose used to infect the animals is of great importance to the outcome 

of protection studies and in this study a dose of approximately 106 was used combined with 

1:10 dilution of human sera. Taking into account the lower number of vaccine responders in 

IRPA compared to SBA and EIA, the sensitivity of IRPA may not have been optimal. If the 

serum volume is not a limiting factor, use of less diluted sera, or, alternatively, a lower 

bacterial dose, as used in other studies (Welsch and Granoff 2004), might have provided 
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means for better sensitivity. In the present study, the former was not possible because of 

limited serum volumes and the latter because of the relatively low virulence of the Cu385 

strain.

Natural immunity to meningococcal disease develops with age, which, at population level, is 

associated with the prevalence of SBA (Goldschneider et al. 1969a). For serogroup A and C 

meningococci, the value of SBA as a correlate of protection is well-established. SBA has also 

been used widely as a surrogate marker for protective immunity and vaccine efficacy against 

serogroup B disease, although the relevant antigens have been thought to be protein rather 

than polysaccharide by nature (Zollinger and Mandrell 1983, Williams et al. 2003).  It was 

therefore of interest to compare the protection measured by IRPA with SBA. An interesting 

finding relevant to the recently suggested use of a mean SBA titer of 4, as the threshold 

predicting protection against invasive serogroup B disease (Holst et al. 2003), was that 

although SBA correlated to some extent with IRPA, many individual samples, especially 

among the pre-vaccination sera, were strongly protective with strain 44/76-SL without having 

bactericidal activity (SBA titer <4), and vice versa. This is in accordance with the recently 

published IRPA study with serogroup C meningococci showing that naturally acquired anti-

capsular antibodies against serogroup C meningococci can confer protection in the infant rats 

even in the absence of measurable SBA (Welsch and Granoff 2004).  

An important question that remains to be solved is why a significant portion of the SBA 

positive (titer 4) pre-vaccination sera (48% for strain 44/76-SL, 81% for Cu385) compared 

to only 11% for the serogroup C strain in the study by Welsch and Granoff (Welsch and 

Granoff 2004) failed to show protection in IRPA. Besides intrinsic differences between the 

strains, the reason could also lie in the intrinsic differences between these two IRPAs, 

especially in the serum dilution (1:4 compared 1:10 in our study) and the bacterial challenge 

dose (0.8-1.4×103 compared 1.7-9.3×106 in our study) used. Unfortunately, insufficient 

volumes of the Icelandic sera prevented further testing of these parameters. 

To conclude, although likely to be useful for the pre-clinical evaluation of candidate MenB 

vaccines (Saukkonen et al. 1987, Saukkonen et al. 1989, Idänpään-Heikkilä et al. 1995, 

Welsch et al. 2003, Welsch et al. 2004) and natural immunity (Welsch and Granoff 2004), the 
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IRPA, as described herein, seemed less suitable for large-scale evaluation of serogroup B 

OMV vaccine responses in clinical samples.  

6.5 Specificity of natural antibodies conferring IRPA (III) 

In the search for vaccine candidates, natural immunity to serogroup B meningococcus has 

been less studied. Thus, we evaluated pre-vaccination sera from Icelandic teenagers with 

convergent or discrepant SBA and IRPA data with 44/76-SL strain for specific and functional 

antibodies and could clearly show that natural IgM antibodies to B-PS are able to confer 

protection against serogroup B disease in an infant rat model of meningococcal infection. 

Studies with normal human sera from healthy Finnish children of different ages (7, 14 and 24 

months, 10 years) confirmed this connection. This finding is in contrast with the general 

conception of the minor importance of B-PS specific antibodies for protection against 

serogroup B meningococcal disease. Due to the low avidity, especially of IgG (Mandrell and 

Zollinger 1982), and the poor bactericidal activity of B-PS specific antibodies in SBA assays 

with human complement (Zollinger and Mandrell 1983), their role in protection against 

meningococcal infection has been challenged. 

Interestingly, the protection afforded by B-PS specific IgM seemed to be independent of 

direct lysis of the bacteria, as demonstrated by the inability of the half of the IRPA positive 

Icelandic sera and the majority (13/14) of the Finnish NHS to promote in vitro bacterial 

killing in the SBA assay (titer <4). This finding was not an artifact arising from intrinsic 

differences in the ability of rat compared to human complement to augment bactericidal 

activity of anti-B-PS antibodies as similar, negligible in vitro bactericidal activities in NHS 

were obtained with both complements. In support of these findings, the NHS showed equal 

protective activity in a complement-sufficient rat strain and in a rat strain with a deficiency 

(C6 deficiency) in the generation of the membrane attack complex.  

Somewhat surprisingly, OPAs with human PMNLs as the effector cells did not, however, 

explain the protective activity of the IRPA positive but SBA negative Icelandic sera as 5/7 

(71%) of these sera were also OPA negative (titers < 2). Thus, the mechanism of protection 

conferred by B-PS specific antibodies remain to be fully evaluated. Possibly, in the infant 

rats, the macrophages of the mononuclear phagocyte system (Frasch et al. 1976) rather than 
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PMNLs might have been responsible for bacterial clearance. It is well recognized that Fc and 

especially C3 receptors on macrophages play a crucial role in the clearance of other well-

opsonized encapsulated bacteria from the bloodstream (Rogers 1960, Brown et al. 1983a, 

Bohnsack and Brown 1986, Pelkonen and Pluschke 1989, Noel et al. 1990).  

With NHS from Finnish children, a clear age-related increase in B-PS specific IgM antibodies 

was found that closely coincided with the development of IRPA. The origin of anti-B-PS IgM 

antibody remains open but could be due to carriage of non-virulent serogroup B bacteria or 

cross-reactive bacteria from other genera, such as E. coli K1 or Moraxella nonliquefaciens.

All these three species share an immunochemically identical polysialic acid capsular 

polysaccharide (Bøvre et al. 1983, Devi et al. 1991).  

6.6 Importance of antibody specificity, isotype and complement-mediated 
bacterial lysis on protection (IV) 

While there is evidence supporting the importance of both antibody mediated BA 

(Goldschneider et al. 1969a, Goldschneider et al. 1969b) and opsonophagocytosis (Ross et al.

1987) for protection against serogroup B meningococcal disease, due heterogeneity of 

antibody responses following disease or serogroup B OMV vaccination with respect to both 

antibody specificity and subclasses, their relative contribution to protective immunity has 

been difficult to be delineated. In this study, we addressed this question by assessing the 

protective activity of the parental mouse P1.16 PorA specific mIgG2a Mab (Jiskoot et al.

1991), the four human IgG isotypes (IgG1-4) derived from it (Vidarsson et al. 2001), and a 

monoclonal mouse IgG2a Mab with specificity to B-PS (Nmb735 (Frosch et al. 1985)) in 

complement sufficient and C6 deficient (Leenaerts et al. 1994) infant rats.  

Our results showed clearly that while the parental PorA specific mouse IgG2a and the human 

IgG1-3 isotypes derived from it efficiently enhanced bactericidal activity in vitro and 

augmented bacterial clearance in vivo in complement sufficient animals, in C6 deficient 

animals the augmentation of bacterial clearance was severely impaired. This was in contrast 

to a bactericidal, B-PS specific mouse IgG2a antibody that conferred similar protective 

activity irrespective of the rat strain used, thus confirming our previous findings with non-

bactericidal B-PS specific IgM antibody of human origin (III).  
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Why antibody to meningococcal capsular compared to sub-capsular antigen is more efficient 

in conferring protection in C6 deficient animals and also opsonophagocytosis in vitro

(Andreoni et al. 1993) is not clear but has been suggested to arise from the more superficial 

location of the anti-capsular antibody and/or C3 fragments deposited by it on bacterial surface 

(Brown et al. 1983b), where they are readily recognized by phagocytic cell FcRs and/or CRs. 

We found the relative protective activity of human IgG isotypes to be 

IgG1=IgG3>IgG2>>>IgG4 in complement sufficient HsdBrlHan:WIST rats, a result 

consistent with the in vitro bactericidal activity data in the presence of human (Vidarsson et 

al. 2001) or infant rat complement (IV) but the complete lack of protection by IgG1 and IgG3 

in C6 deficient rats being somewhat at variance with the previous phagocytic activity data 

obtained using human PMNLs as the effector cells and heat-killed 44/76-SL bacteria as the 

target or measuring respiratory burst with live bacteria (Vidarsson et al. 2001). With the 

parental mouse mIgG2a, a 10-fold higher antibody dose was needed for protection in 

complement deficient PVG/c- than the isogenic, complement sufficient PVG/c+ rat strain. 

Possibly, higher antibody doses than the 20μg/pup tested would also have been needed for the 

human IgG isotypes to confer protection in the PVG/- rat strain.  

With the B-PS specific and the parental PorA specific mouse IgG2a Mabs, similar protective 

activities were detected in both complement sufficient rat strains (HsdBrlHan:WIST and 

PVG/c+) used. This was in contrast to PorA specific human IgG1 isotype of which a ten-fold 

higher antibody dose (5.0 compared to 0.5 g/pup) was needed for passive protection in 

PVG/c+ compared to HsdBrlHan:WIST animals. As no rat strain specific differences were 

observed in the BA of the human IgG1 isotype using serum from HsdBrlHan:WIST or 

PVG/c+ rat as complement source, the reason for the lower protective activity of this Mab in 

PVG/c+ animals remains to be fully evaluated. Two possibilities exist to explain this 

difference between in vitro BA and in vivo protection assays. First, the sensitivity of the BA 

assay (using 20% infant rat serum as exogenous complement source) may not have been 

satisfactory to detect rat strain specific differences in complement activity. Second, there may 

be rat strain differences in the ability of rat phagocyte FcR to bind antibody of human origin. 
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7 CONCLUSIONS AND FUTURE CONSIDERATIONS 

Development of meningococcal serogroup B vaccines has been hampered by the lack of 

suitable animal models to test their protective efficacy.  In the present study, we addressed 

this question by assessing human sera taken before and after serogroup B OMV vesicle 

vaccination for protective activity in the IRPA assay, and by comparing the results with data 

obtained with previously established laboratory assays (SBA assay and EIA) and with vaccine 

efficacy data obtained earlier in different study populations. Since the specificity and the 

mechanisms of antibodies providing protective immunity are also far from resolved, we also 

looked more closely the specificity and functional activity of natural antibodies conferring 

protection in this animal model. Well-characterized Mabs were used to assess the influence of 

antibody specificity and isotype on protection, and complement component C6 deficient 

animals to evaluate the importance of complement-mediated bacterial lysis on protection.  

Although likely to be useful for the pre-clinical evaluation of candidate MenB vaccines, 

natural immunity, and assessment of mechanisms of protection, the IRPA assay, as described 

herein, is probably less suitable for large-scale evaluation of serogroup B OMV vaccine 

responses in clinical samples. First, the percentages of IRPA assay responders were much 

lower than the vaccine efficacies observed in the two large protection trials and also generally 

lower than the number of responders in the SBA assay that is widely used as “gold standard” 

assay reflecting protection. Thus, even after careful application of the method for human sera, 

the assay did not seem to serve as a robust surrogate for vaccine-induced protection. In future 

studies, efforts to more sensitive animal models are thus needed.  

Second, the IRPA assay is very laborious, time- and, most importantly, laboratory animal-

consuming. For the new generation mono- and multivalent MenB vaccines developed, 

designed to confer protection to multiple MenB strains, the number of target strains for the in

vitro and in vivo assays to evaluate their immunogenicity is likely to increase. With a serum 

set as large as in this study, this would require an enormous effort to be achieved in the IRPA 

assay.
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Third, when using IRPA assay for serogroup B OMV vaccine testing, differences in the 

virulence of test strains have to be carefully considered. In our hands, the Cuban vaccine 

strain used in the previous SBA assays was not applicable in IRPA due to poor and variable 

rate of disease the infant rats. At present, the only tools to overcome the problems of low 

virulence are to try consecutive rat-passages or, if not successful, replace the non-virulent 

strain with an acceptable virulent one. Apparently, the prerequisites of a meningococcal strain 

suitable for in vivo assays are more complicated than for in vitro SBA assays. Thus, studies 

assessing meningococcal virulence factors in animal models are desperately needed. 

Even with these limitations, the IRPA assay seemed, however, to give some additional value 

over the SBA assay in that many SBA negative pre-vaccination sera were often IRPA 

positive. Interestingly, in sera taken before vaccination, IRPA seemed to be mainly mediated 

by serogroup B capsular PS specific IgM antibodies. A clear connection between the 

acquisition of natural B-PS specific IgM antibodies and IRPA was also indicated. Even taking 

the limitations arising from the measurement of the protective activity of human antibodies in 

the presence of complement and phagocytic cells from heterologous species, our results argue 

that importance capsular PS specific antibodies on protective immunity against serogroup B 

disease may have been underestimated. Considering the typically rapid onset of invasive 

disease following infection, such antibodies could be of critical importance for protection at 

the early stages infection when antibody production to other bacterial surface structures has 

not yet efficiently started. In the future, the origin of natural B-PS specific antibodies as well 

as their mechanism of protection in the IRPA assay would be important to investigate to 

assess the relevance of these findings to protection in humans.  

The IRPA assay seemed also to possess potential to study the mechanisms how antibodies of 

different specificity afford protection. Using complement sufficient and C6 deficient rat 

strains, it was clearly shown that basic differences existed in the mechanisms how antibodies 

to sub-capsular and capsular meningococcal antigens confer protection. For the former, 

complement-mediated bacterial lysis seemed a prerequisite for protection while for the latter 

other mechanisms such as opsonophagocytosis were more likely to be involved.  

To conclude, in the future more effort should be put to study the relevance meningococcal 

infection models to assess protection afforded by antibodies of human origin in general.  
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Although the basic immunology and defense mechanisms operating in human and rodents can 

be assumed to be quite similar and in our studies no major differences in the lytic activity of 

infant rat serum compared to human serum were detected, caution should be exercised when 

interpreting results obtained from animal models to protection in humans. This could be even 

more important to take into account when dealing with microbes as strict human pathogens as 

meningococci – due to species-specific differences in innate and adaptive immunity, the 

interplay between the microbe and host can be profoundly different depending on species in 

question. Taking into consideration the importance of both complement and phagocytes for 

immunity against meningococcal disease and the variety of mechanisms that this human 

pathogen has evolved to counteract these immune mechanisms, a more careful comparison of 

the rat or mouse and human innate and adaptive immune systems is needed before the 

relevance of the current and future animal models developed to predict protection in humans 

can be established. 
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