
br
ou

gh
t t

o 
yo

u 
by

 
C

O
R

E
V

ie
w

 m
et

ad
at

a,
 c

ita
tio

n 
an

d 
si

m
ila

r 
pa

pe
rs

 a
t c

or
e.

ac
.u

k

pr
ov

id
ed

 b
y 

H
el

si
ng

in
 y

lio
pi

st
on

 d
ig

ita
al

in
en

 a
rk

is
to

https://core.ac.uk/display/14917641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Anu Voho

ACADEMIC DISSERTATION

To be presented, with the permission of Faculty of Biosciences, 
University of Helsinki, for public discussion in the Auditorium 2041 
of Biocenter 2, Viikinkaari 5, Helsinki, on November 25th, 2005, at 
12 o´clock.

Finnish Institute of Occupational Health
University of Helsinki

Genetic Variation - Effect on the Risk of 
Cancers of Lung and Oropharynx



Genetic Variation - Effect on the Risk of 
Cancers of Lung and Oropharynx

Anu Voho

People and Work 
Research Reports 71

Department of Biological and Environmental Sciences
Faculty of Biosciences
University of Helsinki, Finland

Department of Industrial Hygiene and Toxicology
Finnish Institute of Occupational Health
Helsinki, Finland

Helsinki 2005





TABLE OF CONTENTS

ABSTRACT  .............................................................................  5

LIST OF ORIGINAL PUBLICATIONS ...............................................  6

ABBREVIATIONS .......................................................................  7

INTRODUCTION ........................................................................  8

REVIEW OF THE LITERATURE ......................................................  10
 Tobacco-induced cancers .........................................................  10
  Lung cancer ....................................................................  11
  Oral and pharyngeal cancers ..............................................  13 
 Components of tobacco smoke .................................................  14 
  Polyaromatic hydrocarbons ................................................  15 
  N-Nitrosamines ................................................................  16 
  Other compounds .............................................................  17 
 Biological responses to tobacco smoke ......................................  18 
  Biotransformation ............................................................  18
  Chemical carcinogenesis ...................................................  19
 Genetic variation ....................................................................  23
  Genetic susceptibility to cancer ..........................................  24 
 Glutathione-S-transferases ......................................................  25 
  Substrates ......................................................................  27 
  Expression ......................................................................  27 
  GSTM1 and GSTM3 in cancer proneness ..............................  28 
  GSTP1 in cancer proneness ...............................................  31 
  GSTT1 in cancer proneness ...............................................  33 
 Microsomal epoxide hydrolase ..................................................  37 
  Substrates ......................................................................  37 
  Expression ......................................................................  38 
  EPHX1 in cancer proneness ...............................................  38 
 Validity of association studies ...................................................  40 
 Future trends .........................................................................  41 
 Ethical aspects .......................................................................  44

AIMS OF THE PRESENT STUDY ....................................................  46

MATERIALS AND METHODS .........................................................  47 
Study populations ......................................................................  47



  Finnish study populations ..................................................  47
  French oral and pharyngeal cancer study population .............  48 
 Methods ................................................................................  49
  Genotyping analysis .........................................................  49
  Sequencing .....................................................................  50
  Statistical analysis ............................................................  50

RESULTS ..................................................................................  52
 Characteristics of the study populations .....................................  52 
 Finnish study populations ........................................................  52 
  French oral and pharyngeal cancer study population .............  52 
 GSTs and cancer proneness .....................................................  53 
  Distribution of GSTM1, GSTP1 and GSTT1 genotypes in the 
  population controls ...........................................................  53 
  GST genotypes and lung cancer risk ...................................  55 
  GST genotypes and oral and pharyngeal cancer risk ..............  55 
 EPHX1 and cancer proneness ...................................................  57 
  EPHX1 genotyping methodology .........................................  57 
  Distribution of EPHX1 genotypes in the population controls ....  58 
  The EPHX1 genotypes and lung cancer risk ..........................  58 
 Combined effect of GSTs and EPHX1 on lung cancer proneness .....  59

DISCUSSION ............................................................................  61
 GSTs ....................................................................................  61 
  General ..........................................................................  61 
  GSTM1 ...........................................................................  61 
  GSTM3 ...........................................................................  62 
  GSTP1 ............................................................................  63
  GSTT1 ............................................................................  64 
 EPHX1 ..................................................................................  64
 Focusing on pathways .............................................................  66 
 Validity .................................................................................  67 
 Future directions ....................................................................  69

CONCLUSIONS ..........................................................................  71

ACKNOWLEDGEMENTS ...............................................................  72

REFERENCES ............................................................................  74

ORIGINAL PUBLICATIONS ...........................................................  99



5

ABSTRACT

ABSTRACT

Humans are known to diff er from each other in their responses to environmental exposures. 
During recent years these diff erences have been attributed to interindividual variations 
in the genes encoding for enzymes involved in the metabolism of exogenous agents. Th e 
individual variations in metabolic capacity have been suggested to be an important modifi er 
of individual susceptibility to environmentally indused diseases such as cancer.

Tobacco smoking is known to cause many types of malignancies, of which the highest 
relative risks are seen for cancers of lung and the upper aerodigestive tract. Most of the 
carcinogenic chemicals in tobacco smoke need to be metabolized before they can bind to 
cellular macromolecules and exert their harmful eff ects. Cytochrome P450 (CYP) enzymes 
oxidise these chemicals to highly reactive intermediates that can be further metabolised 
by glutathione-S-transferases (GSTs) and microsomal epoxide hydrolases (EPHX1). Th e 
activity of these enzymes modulates the amount of chemical binding to DNA, and poly-
morphisms in their genes have been associated with a modifi ed risk of tobacco-related 
cancers in smokers.

In this study the interplay between tobacco smoke and polymorphism in GSTM1, 
GSTM3, GSTP1, GSTT1 and EPHX1 detoxifi cation enzymes in relation to lung and 
oropharyngeal cancer risk was studied. Th e case-control study populations consisted of a 
Finnish lung cancer study and a French oral and pharyngeal cancer study. In addition, in 
a novel study desing, a large control population distributed in fi ve diff erent age strata was 
used to study the diff erences in genotype frequencies across age groups.

Th e GST genotypes were not associated with increased lung cancer risk when studied 
alone. However, GSTM1 genotype frequencies were diff erent across diff erent age-groups 
and GSTP1 genotypes were aff ected by smoking status. GSTP1 and GSTT1 genotypes 
were associated with marginally increased oral and pharyngeal cancer risk.

Increased lung cancer risk was seen for the carriers of EPHX1 wildtype diplotypes. Th e 
eff ect was stronger in combination with GSTM1 null genotype and showed a response 
to cumulative tobacco consumption. Th e highest risks were seen in heavy smokers. In 
the cancer-free control group, an overpresentation of protective GST genotypes was seen 
in higher age-groups in individuals having high cumulative smoking dose compared to 
lighter smokers. 

Th e results indicate that studied gene polymorphisms enzymes do modulate the cancer 
susceptibility of smokers. However, future studies are needed before any fi rm conclusions 
can be drawn. Th e future seems very interesting but challenging; we are just starting to 
understand the complex interplay between environmental and genetic factors in the indi-
vidual susceptibility to environmentally induced diseases.
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AC adenocarcinoma
ARE antioxidant response element
B[a]P benzo[a]pyrene
BPDE 7,8-diol-9,10-epoxide
BRI biologically reactive intermediate
CI confi dence interval
CDNB 1-chloro-2,4-dinitrobenzene
CNP copy number polymorphism
cSNP coding single nucleotide polymorphism
CYP cytochrome P450
DCNB 1,2-dichloro-4-nitrobenzene
DMBA  7,12-dimethylbenz[a]anthracene
EPHX epoxide hydrolase
GSH glutathione
GST glutathione S-transferase
HNC head and neck cancer
MAPK mitogen-activated protein kinase 
NAT N-acetyltransferase
NNK 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone
NNN  N´-nitrosonornicotine
OR odds ratio 
PAH polyaromatic hydrocarbon
RFLP restriction fragment length polymorphism
ROS reactive oxygen species
rSNP regulatory single nucleotide polymorphism
SCC squamous cell cancer
SCE sister chromosome exchange
SCLC small cell lung cancer
SD standard deviation
SNP single nucleotide polymorphism
TSNA tobacco specifi c nitrosamine
TSO stilbene oxide
UAT upper aerodigestive tract
UDP uridine-5´-diphosphate
XME xenobiotic metabolizing enzyme
XRE xenobiotic response element
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INTRODUCTION

We are now living in the post-genomic era, which off ers huge possibilities for disease 
prevention, identifi cation and treatment. Th ough the fi rst phase of the human genome 
project is completed, further projects are on-going including the validation and clarifi ca-
tion of genetic variation in the human genome. 

Th ere is variation in every 300 bp in almost all of our genes. Most human sequence 
variation is attributable to single nucleotide polymorphisms (SNPs), with the rest being 
attributable to insertions or deletions of one or more bases, repeat length polymorphisms 
and rearrangements (http://www.ncbi.nlm.gov/SNP). Inherited diff erences in DNA se-
quence contribute to phenotypic variation, infl uencing an individual’s risk of disease and 
response to environmental factors.

In most cases, the variations in our genome do not by themselves evoke the disease. 
Instead, the interplay between the genes and the environment leads to variation in an indi-
vidual disease susceptibility. Chemical or radiation exposure, hormones and infl ammation 
can lead to cancer development. For instance, although about 90% of lung cancers are 
attributable to smoking, only 10–15% of smokers will develop lung cancer. Th is implies 
that the exposure alone is not adequate to lead to cancer formation.

In this study we have assessed the eff ect of genetic variation on the risk of tobacco related 
cancers in lung and oropharynx. Tobacco smoke is a complex mixture containing some 
4000 constituents, including about 70 carcinogens.  Th ese carcinogens have been shown 
to play an important role in tobacco-associated cancers. Th e majority of the carcinogenic 
chemicals in tobacco smoke need to be metabolically activated before they are able to bind 
to cellular macromolecules. Xenobiotic metabolism is the main metabolic pathway both 
in activating and inactivating these chemicals. 

A wide interindividual variation has been observed in the eff ectiveness of metabolism, 
in many cases this being attributable to inherited genetic variation. It has been hypothesized 
that it may cause diff erences in the individual risk of cancer. Th e activity of xenobiotic 
metabolizing enzymes (XME) may modulate the amount of chemical binding to DNA and 
to the other cellular macromolecules leading to disruptions in DNA, signaling networks, 
and the control of cell cycle. Th ese events may gradually lead to cancer development. 

One of the goals of genetic research is to identify those genes that contribute to disease. 
Genome-based knowledge may be translated into health benefi ts, e.g., by applying the 
results to the prevention, diagnosis and treatment of disease [1]. However, much still needs 
to be done before this goal can be reached. To date, the results on the disease susceptibility 
cannot be directly linked to disease risk of individuals. Th e complexity and multifactorial 
biological pathways need to be resolved before recommendations can be issued. Th ere are 
also many ethical questions which have to be considered. 
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Figure 1. Human cancer risk is mediated by different factors. The effects of alcohol, 
food, radiation, smoking and infections on individual cancer proneness may be medi-
ated by individual genetic factors.
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Tobacco-induced cancers

Tobacco smoking is an enormous environmental exposure. It has been estimated that there 
are 1200 million smokers in the world [2]. Globally it is estimated that 47% of men and 
12% of women smoke. In the developed countries, the corresponding fi gures are 42% for 
men and 24% for women. In Finland, the respective numbers are 27% for men and 20% 
for women and in France 39% for men and 27% for women [3].

In the developed countries, more than one-third of all deaths of middle-year men 
(35–69 years) are attributable to smoking. For women in the same age range, the respective 
percentage increased from a mere 2% in 1955 to 13% in 1995, and continues to increase 
rapidly [2]. In Finland, about 20% of all male deaths in middle age are caused by tobacco, 
whereas  about 5% of female deaths are attributable to tobacco [2].

For tobacco users, cancer is one of the main causes of death. Tobacco-related cancer 
constitutes 16% of the total annual incidence of cancer cases – and 30% of cancer-related 
deaths – in the developed countries. In populations where cigarette smoking has been 
common for several decades, 90% of lung cancers and 15–20% of other cancers are at-
tributable to tobacco [4–6]. In addition to lung cancer,  cancers of the upper aerodigestive 
tract (UAT), lower urinary tract and pancreas are causally related to tobacco smoking [7]. 
Also the risk of cancers of the kidney, stomach, liver, colon, oesophagus, bone marrow and 
cervix are increased in smokers [3]. Th e relative risk of a smoker to develop cancer when 
compared to never smokers depends on the cancer site (Table 1) [8].

Table 1. Relative risk of different cancer sites in smokers versus non-smoker. 
Modifi ed from [8].

Cancer site Relative risk (men) Relative risk (women)

Lung 22.4 11.9
Cancers of the bladder and other 
urinary organs

2.9 2.6

Pancreatic cancer 2.1 2.3
UAT cancers 24.5 5.6
Oesophageal cancers 7.6 10.3
Kidney cancer 3 1.4
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In addition to its carcinogenic eff ects, tobacco smoke has a number of other pathogenic 
properties. Cigarette smoking is a major independent risk factor for coronary heart disease 
and is an important risk factor for other cardiovascular diseases.  It is also the most important 
cause of cough, sputum production, chronic bronchitis, chronic obstructive pulmonary 
disease and asthma. Smoking increases the risk of peptic ulcer and has detrimental eff ects 
on the gastric mucosa. It is a risk for Crohn´s disease and type 2 diabetes mellitus [3]. 

Lung cancer

Lung cancer is the most common cancer accounting for 12.3% of all cancers and 17.8% 
of all cancer deaths [8]. It is estimated that there are about 1.2 million new cases and 
over one million deaths annually [3, 9]. Lung cancer is almost invariably associated with 
poor prognosis. Tobacco smoking has been proven to be the most important etiological 
factor of lung cancer for both sexes. Th e causal relationship between tobacco and lung 
cancer was established already in the 1950s [3, 10]. Th ere is a strong male predominance 

Figure 2. Figure 3.
Cancer incidence in men and women in  Age-specifi c incidence rate of lung cancer
Finland in 2003. Age-standardized rate.  per 100 000 among men and women in 
(ASR) Finland in (www.cancerregisty.fi ). 2003 (www.cancerregistry.fi ).
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in lung cancer, due to the diff erent smoking habits of men and women. Lung cancer is 
the second most common cancer among men and the sixth most common for women in 
Finland (Figure 2). Th e highest incidence of lung cancer occurs at around 70 years of age 
and incidence declines after 80 years (Figure 3) [11].

Th e lifetime probability of a cigarette smoker to develope lung cancer has increased 
over time. According to the latest calculations, the lifetime probability is 24.1% and 11.0% 
for men and women smokers, respectively [3]. Th e most important parameter related 
to how smoking aff ect the lung cancer risk is the duration of regular smoking. Th e risk 
also increases with the number of cigarettes smoked per day and the depth of inhalation. 
Smoking cessation reduces the risk of lung cancer within 1–4 years of quitting smoking 
and the magnitude of the reduction in relative risk increases with increasing time since 
cessation (Figure 4) [3, 12]. 

Occupational exposure to compounds like asbestos, arsenic, silica and synthetic mineral 
fi bers has been shown to aff ect the risk of lung cancer. Other risk factors for lung cancer 
are radon and ionizing radiation [13].  Evidence from epidemiological studies indicate 
synergistic eff ects between asbestos and smoking and radon and smoking in causing lung 
cancer [3, 14, 15].  Environmental pollution and certain previous respiratory diseases also 
seem to raise the risk of developing lung cancer [3].

Figure 4. Cumulative risk (%) of death of lung cancer in men. Stopping smoking re-
duces the risk of death of lung cancer [3].
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Th ere appears to be no gender diff erences in the susceptibility to lung cancer; when 
the smoking habits among men and women are equivalent, their lung cancer rates are 
also the same [16]. Some ethnic diff erences between lung cancer susceptibility have been 
noted. However, a recent study reported similar risks for blacks and whites when they had 
similar smoking habits [17]. However, there is some evidence that nicotine metabolism 
may contribute to diff erences in the intensity of smoking, this being diff erent between 
Caucasians and Asians. Th us Asians smoke fewer cigarettes per day and thus have a lower 
probability of suff ering lung cancer [18].

Genetic susceptibility may also alter the risk of lung cancer. Th ere is evidence about 
genetic diff erences that aff ect the activity of carcinogen metabolism and tendency to be-
come dependent on nicotine [19]. Th ere is also debate about the role of family history on 
the risk of lung cancer; fi rst-degree blood relatives of people under 59 years of age with 
a history any type of malignant disease have been shown to have increased lung cancer 
risk [20, 21].

Lung cancers can be classifi ed into two major entities based on their clinicopathologi-
cal characteristics. Small cell lung cancer (SCLC) accounts for 15–25%, and non-small 
cell lung cancer (NSCLC) for 75–85% of lung cancers. Th e latter consists of three major 
histologic types of lung cancer, i.e., squamous cell carcinoma (SCC), adenocarcinoma (AC) 
and large-cell carcinoma [9]. Th ere is an association and exposure-response relationship 
between tobacco smoke and all histological types of lung cancer. However, notable shifts 
over time have been observed in the incidence rates of the various histological types of 
lung cancer. In the initial decades of the smoking related epidemic of lung cancer, SCC 
was the most common type of lung cancer among smokers. However, subsequently the 
incidence rate of AC has increased steadily both in the general population and among 
smokers [22–24] Th e reasons for this are unclear; there are no known risk factors other 
than smoking for AC of the lung that might explain the increase in incidence. One possible 
contributory factor may be related to advances in methods to detect tumours in the distal 
airways [3]. Another explanation could be that changes in the formulation of cigarettes 
have led to a shift in histological type og lung cancers [25]. 

Oral and pharyngeal cancers

Th e upper aerodigestive tract (UAT) cancers consist of oral and pharyngeal cancers together 
with larynx and oesophagus cancers.  Th e incidence of oral and pharyngeal cancers varies 
widely throughout the world, France being one of the high risk areas [11].

Risk factors for head and neck cancers (HNC) include tobacco smoking and use of 
any form of smokeless tobacco, heavy alcohol drinking, chewing of betel nut, and human 
papillomavirus infection. Epidemiological studies also suggest a role for diet in this context 
[7, 26]. In Western countries, the main risk factors are tobacco and alcohol consumption, 
which have been shown to account for 75–90% of cases. Th e risk increases rapidly with 
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increasing tobacco and alcohol consumption, with evidence of a synergistic eff ect of these 
two exposures (Figure 5) [3, 26–29]. However, the mechanism of the interaction is unclear. 
An increase in risk has been observed with both duration and quantity of tobacco con-
sumption, and cessation of smoking has been shown to lower the risk [3, 28–31].  Tobacco 
and alcohol cannot explain the large diff erences between diff erent Western countries and 
furthermore only a fraction of exposed individuals develop neoplastic lesions. Other risk 
factors may interact as well as diff erences in genetic susceptibility [30].  

Components of tobacco smoke

Mainstream tobacco smoke is an aerosol containing some 4000 constituents including 
about 70 carcinogens. Th e chemicals in the mainstream smoke are distributed between the 
particulate and vapour phase. Th e particulate matter (tar) of mainstream smoke contains 
some 3500 chemicals of which nicotine is the most abundant [3]. Th e major classes of 
carcinogens in tobacco smoke are polyaromatic hydrocarbons (PAHs), tobacco-specifi c 
nitrosamines (TSNAs), and aromatic amines. Chemicals such as benzene and heavy metals, 

Figure 5. Synergism in the use of alcohol and smoking in the risk of oropharyngeal can-
cer incidence. Effect of alcohol consumption and cigarette smoking compared to those 
not drinking or smoking. Modifi ed from Thun et al. [32].
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independently established as being carcinogenic to humans, are also present in tobacco 
smoke. Strong carcinogens such as PAH, nitrosamines and aromatic amines, occur in 
smaller amounts in tobacco smoke (1–200 ng per cigarette) than weak carcinogens such as 
acetaldehyde (nearly 1 mg per cigarette) [33]. Th e total amount of carcinogens in cigarette 
smoke ranges from one to three mg per cigarette (similar to the amount of nicotine, which 
is 0.5–1.5 mg per cigarette) [33]. Th e country of origin and type of the product play major 
roles in determining the chemical composition of tobacco [3].

Cancer causation by tobacco smoke is not attributable to any one chemical component, 
but an overall eff ect of the complex mixture of chemicals in smoke [8]. However, diff erent 
tissue specifi cities of some chemicals are suggested (Table 2) [33]. 

Polyaromatic hydrocarbons

Tobacco smoke contains numerous PAHs, of which at least ten species are carcinogenic 
[3, 34]. In addition to being present in tobacco smoke, PAHs are found in broiled foods 
and polluted environments. PAHs are diverse group of strong, locally acting carcinogens 
[33]. PAHs are known to induce tumours of the UAT and lung when administered by 
inhalation [35]. Several studies have quantifi ed PAHs in lung tissue and the levels have been 
reported to be higher in smokers than in non-smokers [36, 37]. PAH-DNA adducts have 
been detected in human lung samples, and the fact that mutations in the tumor suppressor 
gene (TP53) can lead to lung and larynx tumours is support for a role for presence of PAH 

Table 2. Carcinogens and tobacco-induced cancers. Modifi ed from Hecht, 2003 [33].

Cancer type Likely carcinogen involvement found in tobacco smoke

Lung
PAH, NNK, 1,3-butadiene, isoprene, ethylene oxide, ethyl carbamate,
aldehydes, benzene, metals

Oral cavity PAH, NNK, NNN

Laryngeal PAH

Nasal Nitrosamines, aldehydes

Bladder Aromatic amines

Oesophagus Nitrosamines

Liver Nitrosamines, furan

Cervical PAH, NNK
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in the development of these cancers [33, 38]. Benzo[a]pyrene (B[a]P) is the best known 
member of the PAHs. It is slowly absorbed by the tracheal epithelium and extensively 
metabolized there, which partially explains its local carcinogenic eff ect on lung [39].

One of the metabolic pathways of B[a]P is shown in fi gure 7. It is ultimately converted 
to a 7,8-diol-9,10-epoxide (BPDE). Th is diol-epoxide is highly carcinogenic and can react 
with DNA to form an adducts. Also other PAHs are activated through a bay-region diol-
epoxide mechanism, representing the main mechanism of carcinogenesis of PAHs [40]. 
Dibenz[a,h]anthracene and 5-methylchrysene have been shown to induce lung tumours in 
mouse [33, 41]. However, the contribution to tobacco components is not so straightforward 
since smoke is a complex mixture of carcinogens, co-carcinogens and other factors. For 
example, low molecular weight PAHs have been shown to inhibit the tumorigenicity of 
higher molecular weight PAHs in the mouse skin-painting model, presumably occupying 
the liver enzymes required for the metabolic activation of the more tumorigenic higher 
molecular weight PAHs [34].

Th e levels of PAHs in cigarette smoke have decreased in parellel to the increase in  
concentrations of nitroamines. Th is is becasue nitrate concentrations in tobacco increased 
over the period from 1959 to 1997 due to the use of tobacco blends that contain higher 
levels of air-cured tobacco, the use of reconstituted tobacco and other factors [33]. Th e 
changing histology of lung cancer, from SCC to AC may be linked to the reduction in 
PAH and increased concentrations of  4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 
(NNK);  B[a]P is thought to induce SCC and NNK primarily AC of the lung [33].

N-Nitrosamines

N-Nitroamines are a large group of carcinogens that induce tumours in a wide variety of 
animal species and tissues [33]. Th ey are present in small amounts in foods and can be 
formed endogenously. Tobacco products are, however, the most widespread and largest 
source of exposure to these carcinogens [3]. Tobacco smoke contains volatile N-nitrosamines 
such as N-nitrosodimethylamine and N-nitrosopyrrolidine as well as TSNAs such as N´-
nitrosonornicotine (NNN) and NNK. NNK and NNN are chemically related to nicotine 
and other tobacco alkaloids and are therefore found only in tobacco products or related 
materials. Th ey can thus be used as biomarkers of tobacco exposure [33].

NNN, NNK, and the derivative of NNK called 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanol (NNAL), are strong carcinogens in commonly used rodents models (i.e. rat, mouse 
and hamster). NNN causes tumours of the oesophagus and nasal cavity in rats, whereas the 
principal target of NNK in rodents is the lung. NNK is the only tobacco smoke carcinogen 
that induce lung tumours systemically in all three commonly used rodent models [3, 42]. 
DNA adducts derived from NNK and NNN are present at higher levels in lung tissue 
from lung cancer patients than in lung specimens from controls [43–45]. NNK as well as 
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B[a]P are considered to be major lung carcinogens [46]. On the basis of animal studies, 
PAH, NNK and NNN are the likely causes of oral cancer in smokers [33]. 

Other compounds

Aromatic amines were fi rst identifi ed as carcinogens in exposed workers in the dye indus-
try. Th ey are also abundant in broiled foods. Tobacco smoke contains four carcinogenic 
aromatic amines [3]. Of these, 4-aminobiphenyl and 2-naphthylamine are well established 
human bladder carcinogens. Aromatic amines are moderately carcinogenic in various tis-
sues, including breast and colon. In laboratory animals, they are known to cause tumours 
at a wide variety of sites [3, 47, 48].

Tobacco smoke contains six species of carcinogenic heterocyclic hydrocarbons, eight 
N-heterocyclic amines, and aldehydes like formaldehyde and acetaldehyde which induce 
respiratory tract tumours in rodents when administered by inhalation. Th ese are weaker 
carcinogens than PAHs and TSNAs, but they are present in thousands of times greater 
abundance in tobacco smoke [3]. Tobacco smoke contains phenolic compound, like 
catechol. Th ere are many volatile hydrocarbons, e.g butadiene and benzene, present in 
considerable quantities in tobacco smoke [3]. Butadiene is a multi-organ carcinogen, which 
is particularly potent in mice, whereas benzene is known to cause leukemia in humans [3, 
47]. Tobacco smoke contains ten carcinogenic miscellaneous organic compounds. Processed 
tobaccos contain numerous metals and more than ten metalloids such as nickel, chromium 
and cadmium that are human carcinogens [3, 47]. 

Cigarette smoke can also cause oxidative damage, probably because it contains free 
radicals such as nitric oxide (NO) and mixtures of hydroquinones, semiquinones and qui-
nones [3, 46, 49–51]. NO is a highly active molecule that can be oxidized or complexed 
with other biomolecules depending on the microenvironment. Cigarette smokers may be 
exposed to an increased burden of free radicals also due the elevated levels of pulmonary 
macrophages and neutrophils; these are cells that can generate reactive oxygen species 
(ROS) which are frequently found in the lungs of cigarette smokers [52].

Tobacco smoke contains tumour promoters (phenolics), co-carcinogens (catechol and 
related compounds), toxic agents (acrolein and other aldehydes) and free radical species 
(nitric oxide and others). Most of the compounds listed above are thought to exert their 
carcinogenic eff ects through classical genotoxic mechanisms, e.g., the formation and per-
sistence of DNA adducts with consequent miscoding. Non-genotoxic (epigenetic) mecha-
nisms such as cytotoxicity, changes in gene expression via hypermethylation and genomic 
instability are other mechanisms of carcinogenesis that could operate after exposure to the 
compounds present in tobacco smoke [3]. Th e many carcinogens in tobacco smoke can 
exert eff ects on both early and late stages of cancer development [8].
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Biological responses to tobacco smoke

Th e relationship between environmental exposure and carcinogenesis involves at least 
three systems; the metabolic pathways, the pathways that control the recognition and 
repair of induced DNA and protein damage and the control of cell cycle checkpoints. 
Tobacco smoke is a complex mixture of compounds and the pathways aff ected by tobacco 
smoke are numerous and interconnected [53]. Smoking can act as a cancer initiator and 
promoter and long-term chronic exposure to tobacco smoke is believed to be necessary 
for carcinogenesis (Figure 6). 

Biotransformation

Metabolism of most environmental carcinogens involves multiple pathways [54]. Metabolic 
activation and detoxifi cation play crucial roles in the metabolism of tobacco carcinogens. 
Xenobiotic metabolism occurs primarily in the liver, but the prerequisite enzymes are pres-
ent in lung and other “target” organs. Th e initial step of metabolic activation of tobacco 
carcinogens is usually carried out by the cytochrome P450 (CYPs)  family of enzymes which 
oxygenate the carcinogenic substrate [55]. Th is reaction may lead to the formation of bio-
logically reactive intermediates (BRIs) that can react with DNA or other macromolecules 
to form covalent binding products known as adducts. BRIs formed by activating enzymes 
can undergo further transformations catalyzed by inactivating enzymes like glutathione-
S-transferases (GSTs), uridine-5´-diphosphate (UDP)-glucuranosyltransferases, epoxide 
hydrolases (EPHX), N-acetyltransferases (NATs) and sulfotransferases which normally 

Figure 6. Simplifi ed role of tobacco smoke in lung carcinogenesis.
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detoxify BRIs to more water-soluble and readily excretable forms [56]. However, the reac-
tions may also act in the other direction to yield BRIs or active radicals [54].

Th e concentrations of BRIs that can attack cellular macromolecules to initiate mutagenic 
or carcinogenic events will be determined by the fi nal balance between the production 
of BRI by activation (phase I) pathways and their elimination by inactivation (phase II) 
pathways. Th e ultimate carcinogenic BRIs usually have a very short half-life. Furthermore, 
the tissue specifi city of a carcinogen is thought to be determined by production of BRIs 
within the target tissue [54]. Th e balance between metabolic activation and detoxifi ca-
tion varies between individuals. Interindividual diff erences in the activities of XMEs are 
therefore likely to aff ect an individual´s cancer risk  [57, 58].

An example of carcinogen metabolism is the conversion of B[a]P to the highly car-
cinogenic BPDE (Fig 7). Also TSNAs, aromatic amines, and many other tobacco com-
ponents are directed to biotransformation [54]. Numerous CYP enzymes participate in 
NNK activation and glucuronidation is thought to be the most important detoxifi cation 
pathway in humans [42].

Tobacco smoke induces several XMEs in human tissues. For instance, expression of 
several CYPs is increased with active cigarette smoking (Figure 7) [59]. Th e induction of 
expression of the diff erent classes of enzymes may depend on the duration of exposure 
[60–64]. 

Chemical carcinogenesis 

DNA adducts

Th e induction of DNA damage, frequently due to the formation of chemically stable 
adducts, is an early and essential step in the sequence of events by which genotoxic car-
cinogens initiate the carcinogenic process. Higher prevalences or elevated concentrations 
of carcinogen-DNA adducts have been found in many human tissues as well as carcino-
gen-protein adducts in the blood of smokers [59, 70–76]. Th e DNA adducts represent an 
integrated marker of exposure to carcinogenic compounds. Th e amount of DNA adducts 
may refl ect the ability of the individual to activate/detoxifi cate carcinogens, and to repair 
DNA damage. 

Smokers exhibit higher levels of PAH- and aromatic-DNA adducts in blood and lung 
tissue than non-smokers [70, 77–81]. Highly carcinogenic BPDE form adducts with 
exocyclic N2 of guanine (dG-N2-BPDE). NNK, on the other hand, forms methyl and 
pyridyloxobutyl DNA adducts. Th e levels of DNA adducts, and specifi cally BPDE-ad-
ducts, are higher in oral tissue and buccal mucosa of smokers compared to non-smokers 
[82–85]. Also, PAH, 4-aminobiphenyl, malondialdehyde, 1,N2-propanodeoxyguanosine 
and 8-hydroxydeoxyguanosine adducts are detected in oral cells [26]. Higher levels of 
adducts formed by PAHs, TSNAs, aromatic amines, ethylene, and benzene have been 
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found in the haemoglobin of smokers compered to non-smokers [3]. Also acetaldehyde, 
the primary metabolite of ethanol, yields a number of unstable and stable adducts with 
proteins and DNA [86, 87]. Higher levels have been observed in heavy alcohol user HNC 
patients compared to controls [30]. Th e amount of adducts has been negatively associated 
with the consumption of fruit and vegetables [88, 89].

Figure 7. Outline of some cellular responses to B[a]P. B[a]P mediates XME induction 
through an AhR-dependent pathway. After diffusing into the cell, B[a]P binds with AhR 
and is translocated into the nuclei, where B[a]P-AhR heterodimers form complexes with 
Ah receptor nuclear translocator (Arnt) proteins [65, 66]. The complex then transacti-
vates the CYP genes via an interaction with xenobiotic response element (XRE) in the 
promoter region of the genes. B[a]P is oxidized by CYPs [67, 68] and epoxide hydrolas-
es (EPHX1s) to highly reactive diol epoxides, such as BPDE, as well as phenol epoxides 
which can form DNA adducts. GSTs participate in a detoxifi cation pathway making the 
compounds more water-soluble and readily excretable. Modifi ed from Hecht, 2002 and 
Luch, 2005 [25, 69].
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Oxidative damage

Reactive oxygen and nitrogen species formed in cigarette smoke and the cigarette tar pro-
moted neutrophil induction are the primary causes of the DNA strand breaks. ROS can 
induce DNA single-strand breaks (SSB) and formation of 8-OHdG adducts in cultured 
human lung cells and in rodents [90–96]. Th e mean level of 8-OHdG in lung tissues was 
signifi cantly higher in smokers than in non-smokers [97]. Higher levels of oxidized proteins 
have also been found in smokers than in non-smokers [98]. Reactive nitrogen species have 
been shown to be involved in the formation of DNA lesions  [99]. However, the role of 
oxidative damage in development of specifi c-tobacco induced cancer remains unclear. 

DNA repair

Cells have DNA repair systems that can remove adducts and restore DNA to its normal 
structure. At least four pathways of DNA repair operate on specifi c  types of damaged DNA 
[100]. For example BPDE-induced DNA damage is eff ectively removed by the nucleotide 
excision repair (NER) pathway. Alcohol derived acetaldehyde adducts, on the other hand, 
are removed through base-excision repair (BER). However, the DNA repair systems are 
not completely error-free, some adducts escape repair and persist in DNA [101, 102]. A 
preferential accumulation of the mutation on the non-transcribed strand of DNA is the 
consequence of the repair of adducts on the transcribed strand and not in nontranscribed 
strand by transcription-coupled repair systems (TCR) [103]. Th is phenomenon results 
in the accumulation of certain types of mutation on the non-transcribed strand, such as 
G-T transversions in lung cancer [104]. DNA repair enzyme levels can be also aff ected by 
recent exposure [105], for example some tobacco smoke constituents may inhibite repair 
enzymes [3]. Smokers have been shown to have lower levels of folic acid than nonsmokers 
which may impact on the repair capacity [106]. Interindividual diff erences in the capacity 
for DNA repair have also been observed [100]. Th ese persistent adducts can cause mis-
coding and lead to mutations which can activate oncogenes such as KRAS or inactivate 
tumor-suppressor genes such as TP53 [80, 107–109].

Genetic changes

Many genetic abnormalities occur during the process of lung cancer induction, including 
loss of heterozygosity, microsatellite alterations, mutations in RAS oncogenes, MYC ampli-
fi cation, BCL-2 expression, mutations in TP53, RB, CDKN2 and FHIT tumor suppressor 
genes, expression of telomerase activity etc. [3]. In head and neck cancers, mutations in 
RB and CDKN2 genes frequently occur as does cyclin D1 amplifi cation [30].

Mutations in the smoking-associated tumours have been identifi ed both in oncogenes 
and in tumor suppressor genes. Th e gene most frequently found to be mutated in smok-
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ing-associated lung tumours is TP53 [104, 110]. Th e TP53 mutation seems to occur at an early 
stage in many types of cancer that are caused directly by exogenous carcinogens [3, 111]. Th e 
frequency of TP53 mutations bears a direct correlation with the number of cigarettes smoked. 
Mutations in KRAS and TP53 result directly from the reaction of these genes with metaboli-
cally activated carcinogens. For instance, the B[a]P metabolite BPDE has been shown to infl ict 
mutations in the TP53 gene [38, 109, 112]. Th ere is also evidence that endogenous oxyradicals 
and nitrogenoxyradicals have an impact on the TP53 mutation spectra [111].

Th irty percent of TP53 mutations in lung tumours of smokers are GC→TA transver-
sions. Th is is the primary class of base substitution induced by PAHs that form bulky 
DNA adducts [113–115]. Th ere is a precise correlation between the mutational hot spots 
and sites of DNA adducts remaining after the cells have been exposed to BPDE and other 
diol epoxides, and have subsequently undergone a period of DNA repair [109, 116]. Th ese 
mutations are targeted at methylated CpG sites [117]. Most of the mutations are found 
in the nontranscribed DNA strand resulting from preferential binding and slow repair of 
the BPDE adducts formed on the nontranscribed strand [118]. 

Mutations at the KRAS gene occur in about 30% of the lung adenocarcinomas of 
smokers and are primarily GC→TA transversions [118]. In HNC patients, an intermedi-
ate TP53 mutation profi le between tobacco-related and non-related cancers occurs. Th e 
degree of similarity with tobacco-related cancers increases from the oral cavity to the 
pharynx and larynx [30].

Deletions and other genome rearrangements are associated with carcinogenesis and 
inheritable diseases. Th e fractional allelic loss or gain occurred at a much higher frequency 
in lung tumours of smokers (48%) than in those of nonsmokers (11%). Th is indicates that 
diff erent genetic alterations  play a role in the development of smoking associated lung 
cancer compared to those implicated in the development of lung cancer in non-smokers 
[3, 119]. Also microsatellite instability in colon tumours [120] and chromosome 9 altera-
tions in bladder tumours [121] have been associated with cigarette smoking. 

Th e frequency of sister chromatid exchanges (SCEs) in peripheral lymphocytes is higher 
in smokers than in nonsmokers [3]. It is suggested that PAHs and the neutral fractions 
and weakly acidic, semivolatile components of cigarette-smoke condensate were the most 
potent inducers of SCE [122, 123]. Th e acid fraction included phenolic compounds such 
as catechol and hydroquinone, compounds known to generate free radicals. PAHs alone 
were not adequate for the mutagenic activity of the condensate [124, 125]. Exposure of 
rodents to cigarette smoke has been consistently shown to produce micronuclei in bone 
marrow, blood and in pulmonary alveolar macrophages [126–128].

Epigenetic changes

Epignetic refers to a heritable change in gene expression without any alterations in the 
primary DNA sequence of the gene. For example, methylation usually silences gene 
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expression. Normally, about 70% of all CpG dinucleotides in the mammalian genome 
are methylated. Hypomethylation across the genome or hypermethylation in the CpG 
islands are a hallmark of most cancers. Th e major epigenetic aberration occurring in cancer 
development is the silencing of tumor suppressor genes through the hypermethylation of 
the CpG islands in the promoter regions [129, 130].

Knudson`s two hit hypothesis proposes that two successive genetic hits are needed to 
transform a normal cell into a tumour cell [131], that is, two inactivating hits are required 
to cause loss of function of tumor suppressor genes. Th e functional signifi cance of tumor 
suppressor gene hypermethylation has been highlighted in several studies showing that 
tumor suppressor gene hypermethylation can act as the second inactivating hit of a tumor 
suppressor gene following the fi rst-hit gene mutation [132]. However, epigenetic changes 
can occur in the absence of a genetic lesion and also biallelically if the coding sequences 
are unaltered. Genes aff ected by epigenetic silencing in cancer include genes related to 
cell-cycle control, DNA repair, apoptosis, and metastatic potential. Th e patterns of CpG 
methylation are non-random and show distinct tumour-type specifi cities, suggesting that 
each tumour may display a distinguishable methylation subtype in the genome [130].

B[a]P has been shown to interact with SAM-dependent methyltransferases like glycine 
N-methyltransferase (GNMT). GNMT enzyme activity was reduced by nearly 50% in 
the presence of B[a]P. B[a]P may thus aff ect DNA methylation via interactions with DNA 
methyltransferases and in this way contribute to a carcinogenic pathway [133]. 

Cancer initiation

Mutations that activate oncogenes or inactivate tumor suppressor genes accumulate during 
the development of cancers of the oropharynx  [30] and lung [25]. Th ese changes lead to 
self-suffi  ciency in growth signals, insensitivity to anti-growth signals, evasion of apoptosis, 
tissue invasion and metastasis, sustained angiogenesis and limitless replicative potential 
[3, 134]. Th e disruption can occur through genetic or epigenetic changes. Smoking is as-
sociated with some of the genetic and epigenetic changes aff ecting these major pathways. 
Th us the eff ects of tobacco smoke as a carcinogen can be viewed as the result of both 
genetic and epigenetic changes. Epigenetic changes can trigger a complex suppressive cel-
lular stress response and genetic changes may endow some cells with a capacity to escape 
normal immunosuppression [3]. 

Genetic variation

Even though the DNA sequence of any two people is 99.9 percent identical, a tremendous 
amount of variability exists in the human genome. Inherited diff erences in the sequence 
of DNA among individuals are called genetic variation. Genetic variation accounts for 
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diff erences between people, such as eye color and blood group. It also plays a role in deter-
mining how an individual responds to the environment, and in that way the individuals 
risk of developing a disease [135]. 

Single DNA base diff erences that occur at a frequency of >1% in the population are 
called single nucleotide polymorphisms (SNPs). SNPs account for 90–95% of all variant 
sites in human genome [135]. SNPs can be intronic, exonic, or can be located upstream 
or downstream from the gene, i.e., in the 5´- fl anking region and 3´-untranslated region, 
respectively. Other types of genetic variation include deletions, insertions and repeat 
variants. Recently variation in the gene copy number was also found to be widespread in 
human genome. Th is phenomenon is called copy number polymorphism (CNP) [136]. 
Th e variation in DNA can alter the function of the protein, or expression, or have a gene-
dosage eff ect thus producing changes in phenotype.

It is estimated that there are approximately 11 million SNPs in the human genome 
with a minor allele frequency of 1% and approximately 5 million SNPs at the 10% minor 
allele frequency [135].  One common SNP (q ≥ 0.10) occurs every 500–600 bases, and 
one polymorphic SNP (q ≥ 0.01) occurs, on average, every 150–250 bases [135]. Many 
of these SNPs remain to be discovered.

Many public data bases gather data about genetic variation and many programs are 
working to confi rm, identify, characterize and quantify the genetic variation [137, 138].
Th e dbSNP database currently includes 10 million human SNPs which have been mined 
from diff erent libraries and individual DNA samples (http://www.ncbi.nlm.nih.gov/proj-
ects/SNP/). 

Genetic susceptibility to cancer

Given that tobacco-related cancers develop in only a small fraction of the individuals 
exposed to tobacco smoke, it is tempting to hypothesize that genetic factors may render 
some smokers more susceptible to cancer. Genetic factors may modify the individual 
susceptibility in the risk of tobacco-related cancers via eff ects on smoking behaviour, car-
cinogen metabolism and detoxifi cation, DNA repair, cell cycle control and other cellular 
responses (Figure 8) [139]. Th e strong linkage of alcohol in the development of HNCs 
mean that it is advisable to search for inherited changes related to the propensity to drink 
as well as to alcohol biotransformation in any examination of the role of genetic variation 
in the risk of these cancers [26].

In general, cancer susceptibility genes can be divided to high-penetrance genes, in 
which specifi c genetic changes are associated with high disease risks, and to low-penetrance 
genes in which the risk attributable to the genetic change is low. Although the individual 
risk associated with the at-risk genotypes of low-penetrance genes is much lower than that 
of the high-penetrance genes, the prevalence in the population of low-penetrance alleles 
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is much higher the and consequently also the proportion of cancer cases attributable to 
low-penetrance alleles is anticipated to be much larger than that of high-penetrance  al-
leles [140]. 

Th e existence of functional genetic polymorphisms of XMEs that have a signifi cant 
impact on the expression and catalytic activity of the enzymes has been documented. It 
has also been demonstrated that either inhibition of XME-catalyzed carcinogen activa-
tion or induction of XME-catalyzed carcinogen inactivation may result in a reduction of 
tumour occurrence. To date, the bulk of data exists points to the existence of many XME 
genes as being potential modifi ers of lung and oropharyngeal cancers. Th ese XMEs  in-
clude CYP1, CYP2 and CYP3 genefamilies, members of the GST genefamily, NATs and 
alcohol metabolizing enzymes like alcohol and aldehyde dehydrogenases [30, 141, 142]. 
Th e genes and their products have been shown to act as eff ect-modifi ers with respect to 
dietary elements, tobacco use, occupation, other exposures and other genes [143].

Coding region SNPs (cSNPs) and and regulatory region SNPs (rSNPs) are considered 
to be the most important SNPs in disease susceptibility. cSNPs are located in the coding 
exon regions of the gene and they may change the structure of the protein e.g an enzyme, 
to increase/decrease the activity or change the interaction with other  proteins. Th ere 
are an estimated 50,000 non-synonymous cSNPs and 20,000 non-conservative cSNPs 
genome-wide that are potentially functional variants [135]. rSNPs aff ect gene expression 
throught various signaling pathways and molecules. Regulation regions of a gene, and thus 
rSNPs, can be located up to 10kb upstream of the gene, in intron regions and within or 
near the 3´ ends of genes [144]. An unknown number of SNPs in non-coding rSNP may 
be functional variants [135].

Glutathione-S-transferases

GSTs, which were described already in the early 1970s [145], are crucial enzymes in the 
protection of nucleophilic centres in DNA and protein from modifi cation by electrophiles 
[145, 146]. GSTs catalyze the conjugation of reduced glutathione (GSH) with electophilic 
groups of a wide variety of compounds, neutralizing their electrophilic sites, and rendering 
the products more water-soluble [147]. GST conjugates are transported to the kidneys, the 
glutamate and glycine residues are removed and the amino group of cysteine is acetylated 
before the resulting mercapturic acid is excreted in urine [54]. In some cases, however, 
glutathione conjugation can lead to the formation of conjugates that may be more toxic 
or reactive than the parent compounds  [148–151].

GSTs are a superfamily of ubiquitous, multifunctional enzymes currently consisting of 
close to 20 human cytosolic forms, and fi ve membrane bound forms. Based on sequence 
homology and immunological crossreactivity, human cytosolic GSTs have been grouped 
into eight families, designated as Alpha, Kappa, Mu, Omega, Pi, Sigma, Th eta, and Zeta  
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[152, 153]. It is possible that GSTs have arisen from a single common ancestor and their 
substrate specifi cities and diversities have been reshaped by gene duplication, gene recom-
bination and accumulation of mutations. Th ese proteins have been found in virtually all 
living species examined, including plants, animals and bacteria [154]. GST composition 
varies among tissues and the particular combination of GSTs expressed in a tissue may 
infl uence its detoxifying capability [155]. 

Figure 8. Genetic factors may modify the individual susceptibility to the risk of tobacco-
related cancers via various pathways. Differences in smoking behaviour may be medi-
ated by genes participating in nicotine metabolism. Metabolic capacity may modulate 
via the differences in metabolic genes which may specify the amount of internal dose 
and thus the DNA adduct formation and the amount of DNA damage. DNA repair gene 
polymorphim may defi ne the amount of mutations and differences in cell cycle control 
genes may defi ne further alterations. Modifi ed from Brennan and Boffetta [30].
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Soluble GSTs exist as dimeric proteins, with subunit molecular weights of approxi-
mately 25 kDa. Each subunit of a dimeric enzyme has an active site composed of two 
distinct functional regions: a hydrophilic G-site, which binds the physiological substrate 
glutathione, and an adjacent H-site which provides a hydrophobic environment for the 
binding of stucturally diverse electrophilic substrates [156].

Substrates

GSTs catalyze the general function: GSH + R-X → GSR + HX. Th e enzyme brings the 
substrate into close proximity with GSH by binding both GSH and the electrophilic 
substrate to the active site of the protein, and allowing the activation of the sulhydryl 
group on GSH, thereby facilitating the nucleophilic attack of GSH on the electrophilic 
substrate (R-X) [145, 155]. Th e electrophilic functional center of the substrates can be 
a carbon, nitrogen or sulfur. A large number of diverse chemicals serve as substrates for 
GSTs. Several reactive endogenous molecules derived from prostaglandin metabolism and 
lipid peroxidation serve as substrates for certain GSTs [154]. Chlorinated nitrobenzenes 
(1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB)) have 
been used as standard substrates to measure GST activity. However, theta class GSTs do 
not catalyze these reactions and the specifi c activities towards CDNB and DCNB varies 
between the diff erent isoforms.

Many epoxide carcinogens are detoxifi ed by GSTs. Th e carcinogenic epoxide of B[a]P 
(BPDE) is effi  ciently detoxifi ed by GSTs, with especially high and selective activity exhib-
ited by GSTP1 [157]. Th e trans-isomer of stilbene oxide (TSO) is exclusively conjugated 
by GSTM1. GSTT1 catalyzes the activation of small bifunctional electrophilic molecules 
such as dichloromethane, ethylene bromide, and butediene diepoxide [158, 159]. Certain 
quinone metabolites of endogenous molecules may also be substrates for GSTs [155]. 
GSTs are also involved in the metabolism of lung cancer chemopreventive agents such as 
isothiocyanates [160].

Expression

GSTs are expressed in rather large amounts, accounting for as much as 4% of total soluble 
protein in the liver. GSTM1 is most strongly expressed in the liver and to a much lower 
extent in lung and colon. It is also expressed in lymphocytes, heart, liver, stomach, adrenal 
gland and kidney [161–164]. Also GSTT1 is highly expressed in liver. It is also found 
in erythrocytes, lung, kidney, brain, skeletal muscles, heart, small intestine and speen. 
Unlike other GSTs, the activity of GSTT1 is undetectable in lymphocytes [165, 166]. 
GSTP1, the dominant GST present in the lung, is also widely expressed in other types of 
epithelial tissue and in lymphocytes [162]. GSTM3 is expressed in testis, brain, lung and 
lymphocytes [162, 167, 168].
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Induction of GSTs by xenobiotics is mediated via several diff erent transcriptional 
mechanisms. Most of the functional studies have been conducted in animals. Th e rat 
GSTA2 gene contains a glucocorticoid-response element (GRE), a xenobiotic response 
element (XRE), and an antioxidant-response element (ARE) [169]. Th e GRE mediates 
induction by glucocorticoids, the XRE by planar aromatic hydrocarbons, and the ARE 
by phenolic antioxidants [155].

In humans, GSTs and glutathione synthesis have been shown to be up-regulated by elec-
trophiles through the Nfr2 transcription factor via the cis-acting ARE [170]. Compounds 
that up-regulate GSTs via this pathway have been shown to possess anticarcinogenic proper-
ties [171–173]. Since many naturally-occurring plant products (phytochemicals) are known 
to induce GSTs, the role of dietary induction of GSTs has been studied as a mechanistic 
explanation for the anticarcinogenic eff ects of fruits and vegetables [174]. Chemopreventive 
compounds have been shown at low concentrations to activate mitogen-activated protein 
kinase (MAPK) pathways leading to induction of phase II detoxifying enzymes and other 
cellular defense enzymes via the ARE. However, at higher concentrations, these agents 
activate the MAPK and caspase pathways leading to apoptosis [175]. 

Th e expression of GSTP1 is signifi cantly increased in many human tumors and human 
cell lines resistant to chemotherapeutic agents. It can be induced by oxidative stress, prob-
ably via the NFκB response element [154]. Both transcriptional; functional AP-1 and SP1 
response elements have been identifi ed in the 5´-regulatory region of human GSTP1 gene 
[176] repressors [177] and post-transcriptional mechanisms are involved in the regulation 
of human GTSP1 protein levels [178]. Also the methylation status of a CpG island in 
the regulatory region of the gene may modulate the expression of the GSTP1 [179]. Th e 
regulation of mu and theta class GSTs is poorly understood. 

Th ere is no clear evidence of GST induction by tobacco smoke [3, 180]. Regulation of 
GST expression varies between diff erent tissues. However, due to the modulation of expres-
sion by diet and xenobiotics and due to the fact that some individuals lack the GSTM1 
and GSTT1 gene it has been diffi  cult to predict accurately the extent of expression of any 
single GST gene in a given tissue [155]. However, there is some information on the rela-
tive expression of diff erent GST classes in various tissues. Alpha class GSTs are relatively 
highly expressed in liver, kidney, and testis; GSTP1 is expressed in lung and brain; GSTM1 
is expressed at high levels in the liver; GSTM2 is expressed at the highest level in brain; 
GSTM3 is expressed in testis; GSTT1 is expressed predominantly in liver and kidney and 
to a lesser extent in other organs [154, 168, 181].

GSTM1 and GSTM3 in cancer proneness

GSTs have been considered as being important in cancer development because of their 
critical role in providing protection of DNA against damage and adduct formation [182, 
183]. Th e mu family of GSTs consists of fi ve members called GSTM1–GSTM5. Th e GSTM 
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enzymes have multiple substrates, including epoxides of PAH such as BPDE, acrolein and 
other unsaturated carbonyls generated by lipid peroxides and oxidative damage to DNA as 
well as constituents of plant foods, e.g., isothiocyanates [184, 185]. In addition to having 
diff erent specifi c activities toward substrates and partially diff erent tissue specifi c expression 
patterns, these enzymes also have overlapping substrate specifi cities [162, 186].

In humans, the Mu class genes are clustered together on chromosome region 1p13.3 
and are arranged as 5’ - GSTM4 - GSTM2 - GSTM1 - GSTM5-3´ (plus strand) and 3´-
GSTM3 -5´ in the inverted direction (minus strand). Th e GSTM1 gene consists of eight 
exons encoding a protein consisting of 217 amino acids [187–190]. Th e GSTM3 gene 
consists of nine exons encoding a protein of 224 amino acids, sharing 72% amino acid 
sequence similarity with the GSTM1 [191].

Homozygous deletion of the GSTM1 gene (null genotype) results in total lack of 
enzyme activity in  about 50% of Caucasians [192]. Th e frequency of the null genotype 
is similar in Asians, but lower in Africans (about 30 %) [193]. Th e GSTM1 gene deletion 
is most likely caused by a homologous recombination involving the two almost identical 
4.2-kb regions fl anked by the GSTM1 gene [194]. Th e frequency of the positive allele is 
about 0.23 in Caucasians and 0.41 in African-Americans [195].

In addition to deletion polymorphism, a total of 50 SNPs spanning the GSTM1 gene 
region are currently listed in NCBI dbSNP database (http://www.ncbi.nlm.gov/SNP). Two 
of these SNPs are non-synonymous changes. One of these changes is the Lys173Asn amino 
acid replacement (SNP; rs 1065411) resulting from a C to G base change in exon 7. Th e 
variant allele was previously desingnated as GSTM1*B. Th e amino acid change does not 
appear to aff ect the enzyme function [196]. One other SNP is the Th r210Ser change (SNP; 
rs 449856) resulting from an A to T nucleotide substitution in exon 8. Th is SNP is pos-
sibly a database error as the same change has been observed in the GSTM2 gene [197]. A 
total of 14 SNPs are in the promoter region, 21 are located in the intron regions, four are 
synonymous, and the remaining nine are located in the 3´-untranslated region (http://www.
ncbi.nlm.gov/SNP). A duplication of the GSTM1 gene has also been observed in Saudi 
Arabians. Th ese subjects exhibited a ultrarapid GSTM1 enzyme activity [198]. 

To date, 26 SNPs in GSTM3 gene region have been listed in the dbSNP database (http://
www.ncbi.nlm.gov/SNP). Two non-synonymous changes, Asn128Lys (SNP; rs1803687) and 
Val224Ile (SNP; rs7483), have been reported. Th e frequency of the former one is not known 
while the frequency of the minor allele (Ile224) of the latter is about 0.3 in Caucasians. Th e 
Val224Ile change is located in the last exon of the gene. In experimental analysis, the Ile224 
variant (GSTM3*C) tended to show increased specifi c activity and catalytic effi  ciency with 
CDNB [197]. Four of the SNPs are in the putative promoter region. One of these SNPs, 
A/C (SNP; rs1332018) is located 63 bp upstream of the translation start site and it has 
recently been shown to have a strong eff ect on gene expression [199]. Fourteen of the SNPs 
are located in the 3´-untranslated region, one of the SNPs is synonymous, and fi ve are in 
the intron regions. One of these SNPs is the deletion of 3 bp (-/AGG)  in intron 6 (SNP; 
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rs1799735), resulting in the formation of a recognition sequence for the YY1 transcrip-
tion factor in the latter [200]. Th is polymorphism has been designated as GSTM3*B allele 
[200]. Th e minor allele frequency is about 0.15 in Caucasians [201–203].

Multiple lines of evidence from molecular epidemiological studies suggest that GSTM1 
is involved in cancer susceptibility [143, 204–206]. An association between GSTM1 null 
genotype and lung cancer has been found in many populations [207–211], although 
some studies have also failed to fi nd any signifi cant association between the GSTM1 
null genotype and lung cancer risk [212]. Th e fi rst meta-analysis (Table 3) comprising 
of 12 studies showed a moderate increase in the risk of lung cancer, with an odds ratio 
of 1.41 (95% CI, 1.23–1.61). Th e risk was somewhat lower when only the results from 
genotyping analysis were considered 1.34 (95% CI, 1.16–1.55) [206]. In a subsequent 
meta-analysis of 23 studies, the lung cancer risk associated with the GSTM1 null genotype 
was 1.13 (95% CI, 1.04–1.25). Th e results were based on the genotype data from 3098 
cases and 5580 controls [143]. Th e most recent meta-analysis of 43 studies including over 
18000 individuals shows a similar eff ect, i.e., an OR of 1.17 (95% CI, 1.07–1.27) [213]. 
However, results from pooled analysis of 3940 cases and 5515 controls did not support 
the role of GSTM1 null in lung cancer proneness (OR 1.08; 95% CI, 0.98–1.18) [213]. 
Diet seems to modulate the results; a weaker association between years of smoking and 
lung cancer risk was observed in GSTM1 null carriers who were subjeted to α-tocopherol 
supplementation than in those without supplementation [214].

In interpreting the GSTM1 genotype data, it has to be borne in mind that GSTM1 is 
only weakly expressed in pulmonary tissue [146, 162, 215], the major mu class enzyme 
in the lung is GSTM3. Interestingly, the expression of GSTM3 has been shown to be 
greater in GSTM1 positive than in GSTM1 null smokers [216]. Th erefore it has been 
hypothesized that the GSTM1 gene has two eff ects on lung cancer, one direct through its 
expression in liver and its eff ects on the hepatic metabolism of tobacco smoke carcino-
gens and the other indirect, due to an eff ect of the GSTM1 genotype on expression of 
pulmonary GSTM3 [216]. However, a recent study does not support the theory that the 
GSTM1 polymorphism plays an important modifying role in GSTM3 expression [199]. 
Although linkage dysequilibrium has been noted between the GSTM1*A and GSTM3*B 
alleles [200, 217], no association between GSTM3*B polymorphism and lung cancer has 
been observed [201, 217, 218].

Th e combination of the CYP1A1 and GSTM1 variant genotypes has been of great 
interest, since the combined eff ect of increased activation and decreased detoxifi cation 
of PAH has been hypothesized to pose a particularly high lung cancer risk. An increased 
risk of lung cancer with the combination of variant CYP1A1 and GSTM1 genotypes has 
been observed in many populations; the strongest eff ects have been shown in Asians [63, 
219–221]. A pooled analysis among Caucasian non-smokers, detected no risk for GSTM1 
alone, but this mutation was associated with an increased lung cancer risk when it occurred 
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in combination with CYP1A1 Ile/Val polymorphism (OR 4.67; 95% CI, 2.00–10.09) 
[222].

A meta-analysis of 26 studies on HNC including oral, pharyngeal and laryngeal cancers 
found an increased risk for GTSM1 null carriers (OR 1.23; 95% CI, 1.06–1.42) [223]. 
Pooled analysis comprising 2334 cases and 2766 controls pointed to a somewhat higher 
cancer proneness for GSTM1 null carriers (OR 1.32; 95% CI, 1.07–1.62) [223]. Decreased 
[203, 224, 225] and increased [226] risks of UAT cancers associated with GSTM3*B/B 
genotype have been observed.

GSTP1 in cancer proneness

Th e GSTP1 enzyme has been of particular interest as a lung cancer susceptibility marker 
due to its high expression in the lung, and its role as one of the main detoxifi ers of the 
highly carcinogenic compound, BPDE [157, 162, 227].

Table 3. Meta and pooled analysis on lung cancer and GSTM1 genotype.

First authors 
year

Case/
Control (n)

Type of 
study

Number 
of studies 
included

Study 
population

OR (95% CI) for GSTM1

McWilliams, 
1995 [206] 

1593/2135

phenotyping
304/312 

Meta-
analysis

12 Caucasians
Japanese

All 1.41 (1.23-1.61)
Caucasian 1.17 (0.98-1.40)
Japanese 1.60 (1.25-2.13
Phenotyping All 1.80 (1.29-2.50)
Genotyping All 1.34 (1.16-1.55)

Houlston, 
1999 [143]

3593/6131

phenotyping
495/551

Meta-
analysis

23 Caucasians
Asian
African-
Americans
Mexican-
Americans

Phenotyping 2.12 (1.43-3.13)
Genotyping 1.13 (1.04-1.25)
Caucasian genotyping 1.08 (0.97-
1.22)
Asian genotyping 1.38 (1.12-1.69)

Benhamou, 
2002 [213]

7463/10789 Meta-
analysis

43 Caucasians 
Asians
mixed 
others

All 1.17 (1.07-1.27)
Caucasian 1.10 (1.01-1.19)
Asian 1.33 (1.06-1.67)

3940/5515 Pooled 
analysis

21 Caucasians 
Asian

1.08 (0.98-1.18)
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Th e GSTP class appears to contain only one or two distinct genes in most species. Th us 
it is less complicated than the mu class multi-gene family. In humans, GSTP1 is mapped to 
chromosome 11q13. Th e translated protein of 209 amino acids is the product of a single 
gene. Th e gene is 2.8 kb long  and contain seven exons [228]. 

To date, a total of 62 variants in the GSTP1 gene region have been described (http://
www.ncbi.nlm.gov/SNP). Th ese variants include fi ve non-synonymous SNPs, of which 
the Ile105Val (SNP; rs947894) resulting from an A to G base change in exon 5, is the most 
common. Th e frequency of the minor allele Val105 as (GSTP1*2) is about 0.20. Th e Ile105Val 
amino acid change aff ects substrate specifi city to the point of distinguishing between planar 
and nonplanar substrates [228–232]. Th e eff ect of this polymorphism appears to depend 
on which substrate is present. A GSTP1*2 homozygotes have been reported to be more 
susceptible to the eff ects of carcinogens that share a structural similarity to CDNB but less 
susceptible to the eff ects of PAH diol epoxides [232–234]. Th e residue at site 105 appears 
to defi ne the geometry of the hydrophobic substrate-binding site such that enzyme activity 
toward small substrates will be greater with isoleucine at 105 where a larger substrates such 
as PAH have better access when valine is at position105 [229–231, 235]. 

Th e Ala114Val polymorphism (SNP; rs1799811) results from a C to T transition in exon 
6. Th e frequency of minor allele Val114 (GSTP1*3) is about 0.10 in Caucasians. GSTP1*2 
and GSTP1*3 alleles have been shown to be in linkage disequilibrium. Ala114Val polymor-
phism may modify the enzyme activity in the presence of Val105 allele [232]. However, no 
clear eff ects on enzyme activity have been described [233].

Th e rest of the non-synonymous SNPs in GSTP1 either have not been validated or 
have a very low frequency. Th e gene also contains fi ve synonymous SNPs. Twenty three of 
the SNPs are located in the 5´-untranslated region and fi ve in the 3´-untranslated region. 
Th e rest of the SNPs are located in the intron regions.

Th e data on the association between the GSTP1 polymorphism and lung cancer risk 
has been confl icting (Table 4). Most of the studies haave detected no statistically signifi -
cant associations [201, 217, 218, 236–245]. However, a few studies have indicated that 
the GSTP1*2 allele is a risk factor for lung cancer [210, 246, 247] and many studies have 
observed increased risk linked to GSTP1*2 allele when it is present in combination with 
other GST gene polymorphisms [201, 210, 218, 238, 246].

Th e GSTP1*2 allele has been associated with an increased risk of UAT cancers in some, 
but not all, studies. Meta-analysis of nine studies on HNC including oral, pharyngeal and 
laryngeal cancers did not show an increased risk for GSTP1*2 allele-carriers, OR 1.10 (95% 
CI, 0.92–1.31) [223]. Pooled analysis comprising 2334 cases and 2766 controls showed 
similar results, OR 1.15 (0.86–1.53) [223]. However, in combination with GSTM1 and 
GSTT1 null genotypes, the OR was 2.06 (95% CI, 1.11–3.81) [223].
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GSTT1 in cancer proneness

Th e human GST theta subfamily includes two members, GSTT1 and GSTT2. GSTT1 
is a homodimeric enzyme consisting of protein of 239 amino acids encoded by a single 
gene [151, 250–252].

GSTT1 exhibits diff erent catalytic activity compared with the other GSTs. Th e dif-
ferences between GSTT1 and other GSTs derive from its early evolutionary divergence. 
GSTT1 is suggested to be the ancient progenitor GST gene [159]. GSTT1 uses GSH at 
higher concentrations and the rate of enzymatic activity is many times higher than is the case 
with the other GSTs. It also has lower affi  nity for glutathione-conjugates and also releases 
the products easily. GSTT1 can dehalogenate and biotransform molecules to mutagenic 
electrophilic compounds. It shows also activity towards molecules with epoxide groups, 
and has peroxidase activity towards hydroperoxides.

Like GSTM1, GSTT1 exhibits genetic polymorphism due to a null allele, resulting from 
gene deletion [151].  Th ere are two 18 kb regions, HA3 and HA5, with >90% homology 
fl anking the GSTT1 gene. HA3 and HA5 contain two identical 403-bp repeats, which 
were identifi ed as deletion/junction regions of the GSTT1 null allele [253]. Th e GSTT1 
null allele has been thus most likely caused by a homologous recombination involving the 
left and right 403-bp repeats. About 20% of Caucasians are homozygous for a GSTT1 
null allele. From 49% to 65% of Asians but less than 10% of Mexican-Americans lack 
the gene [254, 255]. Determination of GSTT1 enzyme activity in erythrocytes showed 
a trimodal phenotypic distribution corresponding to the positive/positive, positive/null, 
null/null genotypes. Th e frequency of the null allele is about 0.43 [253]. 

In addition to deletion polymorphism, a total of 32 SNPs spanning the GSTT1 gene 
region are currently listed in NCBI dbSNP database (http://www.ncbi.nlm.gov/SNP). 
Five of these are non-synonumous changes. Th ese SNPs have not, however, been validated 
or are present at very low frequencies. Eight SNPs have been described in the promoter 
region, but none of these have been validated. 14 are located in the intron regions, two are 
synonymous and the reamining three are located in the 3´-untranslated region.

In addition to two functional genes a pseudogene has been identifi ed in humans for 
GSTT2. Th e genes are found on chromosome 22q11.2 [159].  Both genes have fi ve exons 
with identical intron/exon boundaries but share only 55% amino acid identity.

Th e GSTT1 null genotype has been suspected to confer either decreased or increased 
risk of cancer in relation to the source of environmental exposure [159]. Th is is possible 
since GSTT1 is involved in the metabolism of monohalomethanes and ethylene oxide 
found in tobacco smoke. PAHs are likely to be minor substrates for GSTT1. No changes 
in the level of BPDE-adducts have been observed in GSTT1 null individuals [256]. Fur-
thermore, no support for any association between GSTT1 genotype and lung cancer risk 
has been observed (Table 5) [201, 218, 239, 241, 243–246, 257–262]. A recent meta-
analysis of 21 studies on HNC including oral, pharyngeal and laryngeal cancers reported 
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Selected studies on  null genotype and lung cancer risk. 

Deakin, 1996 [265] 
108/509 
Caucasian 

100/51 15.7/18.5 1.9 (1.3-2.8) 

Kelsey, 1997 [259] 

60/146 
Mex-American 
108/132 
African-American 

ND
17/12 

25/22 

1.5 (0.7-3.5) 

1.2 (0.7-2.2) 

El-Zein, 1997 [260] 
54/50 
ND

100/100 22/14 1.75 (0.56-5.52) 

To-Figueras, 1997 
[257] 

160/192 and 120 98/ND and 100 24/19.2 and 22.5 
1.4 (0.8-2.3) and 
1.1 (0.6-2.1) 

Jourenkova, 1997 and 
1998 [218, 261] 

150/172 
Caucasian 
hospital 

100/100 18.0/15.7 1.2 (0.6-2.3) 

Malats, 2000 [258] 
122/121 
mixed 

31.1/21.7 
26/36 0.6 (0.3-1.2) 

Kiyohara, 2000 [245] 
86/88 
Japanese 

68.6/45.5 54.6/44.3 2.0 (0.8-5.1) 

Risch, 2001 [201] 
389/353 
Caucasian 
hospital 

88.9/66 12.8/18.8 0.70 (0.45-1.09) 

Stücker, 2002 [246] 
251/264  
Caucasian 
hospital 

97/97 19.4/15.1 0.80 (0.4-1.3) 

Lewis, 2002 [239] 
94/165 
Caucasian 
hospital 

98/87 21.8/19.6 1.15 (0.60-2.21) 

Wang, J 2003 [241] 
112/119 
Chinese 

42.9/40.3 47.3/45.4 1.08 (0.63-1.83) 

Nazar-Stewart, 2003 
[243] 

274/501 
>95% Caucasian  

96/72.2 19.0/18.0 1.07 (0.73-1.65) 

Schneider, 2004 
[244] 

446/622 
Caucasian 
hospital 

89.3/75.4 16.8/18.5 0.88 (0.59-1.32) 

Alexandrie, 2004 
[262] 

524/530 
Caucasian 

94.1/56.2 13.0/14.0 0.85 (0.5-1.4) 

Sorensen, 2004 [217] 
256/269 
Caucasian 

97.3/96.6 14.6/6 2.40 (1.31-4.41) 
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a borderline increased risk in GSTT1 null carriers, OR 1.17 (95% CI, 0.98–1.40) [223]. 
Pooled analysis comprising 1929 cases and 1830 controls pointed to a somewhat higher 
cancer proneness for GSTT1 null carriers, OR 1.25 (95% CI, 1.00–1.57) [223].

One of the early studies found that with high isothiocyanate consumption levels, the 
GSTT1 null genotype was protective against lung cancer [263]. Th e protective eff ect was 
increased in combination with GSTM1 null genotype. Conversely, when the isothiocya-
nate consumption was low GSTT1 null genotype appeared to pose an increased risk of 
lung cancer [263, 264], and the risk was higher in combination with GSTM1 null geno-
type. Th is is an example of how dietary factors can modulate the role of genes in cancer 
proneness. However, did not allow make any statement on the role of GSTT1 in cancer 
susceptibility.

Microsomal epoxide hydrolase

Epoxides are organic three-membered oxygen compounds that arise from oxidative metabo-
lism of endogenous, as well as xenobiotic compounds via chemical and enzymatic oxidation 
processes. Epoxide hydrolases catalyze the hydration of epoxides to their corresponding 
dihydrodiol products. In general, this hydration leads to the formation of more stable 
and less reactive intermediates. In humans, sytosolic (EPHX2) and microsomal (EPHX1) 
epoxide hydrolases participate in the metabolism of xenobiotics. EPHX1 substrates are 
generally quite specifi c for this hydrolase, with little or no activity being exhibited towards 
the other epoxide hydrolases [266]. 

EPHX1 is a smooth endoplasmic reticulum enzyme. It is expressed relatively ubiq-
uitously in most tissues and in many species [267, 268]. Th e location of this enzyme on 
hepatic ER membrane is known to be similar to the P450 enzymes; the N-terminal region is 
anchored to the membrane and almost the entire protein molecule is located in the cytosol 
[269–271]. It is probable that CYP and EPHX1 enzymes cooperate via protein-protein 
interactions, meaning that a metabolite produced by CYP can be directly transferred to 
the other enzymes participating in the subsequent metabolism [272, 273].

Substrates

EPHX1 plays an important role both in the activation and detoxifi cation of exogenous 
chemicals. It catalyzes the hydrolysis of reactive epoxides generated by CYP enzymes to 
trans-dihydrodiols which are more water-soluble dihydrodiol derivatives [266, 272]. In 
certain instances, the initial trans-dihydrodiol metabolites are further activated by CYP to 
form highly electrophilic and reactive dihydrodiol-epoxides that form covalent adducts 
with DNA [274]. Biotransformation of B[a]P is an example of that kind of reaction. 
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B[a]P is fi rst oxidized by CYP enzymes and then further transformed by EPHX1 and 
CYP enzymes to BPDE, which is the ultimate carcinogen of B[a]P. 7,12-dimethylbenz 
[a]anthracene (DMBA) is a prototype for the PAH class of carcinogens. Similarly to BaP, 
DMBA is activated in conjunction with CYPs to the ultimate carcinogenic metabolite 
[275]. In experimental analysis, EPHX1 null mice were found to be highly resistant to 
DMBA-induced carcinogenesis, which indicates that EPHX1 may be a critical enzyme in 
the pathway leading to carcinogenic activation of PAHs [276].

Expression

Th e EPHX1 gene is expressed in many human tissues. However, its activity levels are much 
lower in lymphocytes than in liver or lung [277]. In rabbits, a heterogenous expression 
pattern of EPHX1 among various cell types of lung have been observed [278]. Alternative 
promoters probably defi ne the basis of tissue-specifi c expression for EPHX1 [279]. 

Th e EPHX1 core promoter region has several putative transcription factor binding 
sites [280]. EPHX1 steady-state expression levels are likely to refl ect a variation in the 
interindividual response capacity [281]. Th e EPHX1 constitutive expression is possibly 
regulated by CCAAT/enhancer binding protein alpha (C/BPalpha) interacting with 
DNA bound nuclear factor Y (NF-Y). Th e EPHX1 core promoter region also contains a 
putative binding site for Nrf2 on the ARE that may be involved in the inducible expres-
sion of EPHX1 by xenobiotics, possibly with a similar model of induction as takes place 
with the CYP enzymes [282, 283]. However, the mechanism of EPHX1 expression is not 
completely defi ned. Prototypic chemical agents did not markedly perturb levels of mRNA 
for these enzymes. 

EPHX1 in cancer proneness

EPHX1 activity has been shown to vary between individuals. Because of its participation 
in B[a]P activation and its strong expression levels  in bronchial epithelial cells [277], the 
high activity EPHX1 variants of the EPHX1 gene are thought to pose an increased lung 
cancer risk. However, the dual role of the EPHX1 enzyme in activation and detoxifi cation 
makes its role in disease susceptibility more complex and the eff ect may depend on which 
of the many environmental agents the individual is exposed. 

Th e EPHX1 gene is located in chromosome 1q42.1 [284]. Th e gene contains nine 
exons, eight of which are coding [285]. Th e translated protein of 455 amino acids is the 
product of a single gene [286], although alternatively spliced non-coding regions of exon 
1 have been reported [287]. 

A total of 111 SNPs spanning the EPHX1 gene region are currently listed in the NCBI 
dbSNP database (http://www.ncbi.nlm.gov/SNP). Eight of these are non-synonumous 
changes, while most of the SNPs are located in the intron regions. Th e most common of 
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the validated non-synonymous changes is the T to C substitution located in exon 3, and 
resulting in a Tyr113His amino acid change (SNP; rs1051740). Th e frequency of the His113 
minor allele is about 0.3 in Caucasians [288–290]. Th e second of the validated common 
SNPs is the His139Arg amino acid change in exon 4 (SNP; rs2234922) resulting in an A 
to G substitution. Th e frequency of the Arg139 minor allele is 0.2 in Caucasians [192]. 
Th e rest of the non-synonymous SNPs either have not been validated or have a very low 
frequency. 

Of the synonymous changes, Lys119Lys (SNP; rs2292566), resulting from a G to A 
substitution, has a minor allele frequency of 0.12 in Caucasians (A allele) [291]. Th is SNP 
has not any functional consequences, but the close proximity to Tyr113His polymorphism 
has been shown to cause erroneous genotyping results for the Tyr113His locus with con-
ventional PCR-RFLP -methods. A linkage between the codon 119 A allele and the Tyr113 
allele has been observed [291, 292].

Functional consequences of the Tyr113His and His139Arg polymorphism have been 
widely studied in experimental settings [293–296]. In the fi rst evaluation, the activity of 
four EPHX1 constructs was measured in microsomal S9 fraction [293]; the activity was 
greatest in the Tyr113/Arg139 construct. Th e higher activity levels were based on the higher 
amount of enzyme. However, the RNA expression levels were almost identical in all of the 
constructs. Th is indicated that the stability of the enzyme variants were diff erent and that 
the Tyr113/Arg139 protein exhibits the highest enzyme activity. However, the most recent 
study measuring spesifi cally the EPHX1 enzyme activity, found the highest activity for the 
Tyr113/His139 protein [295]. RNA and protein levels were not measured. Activity assays in 
the liver microsomal samples revealed no diff erencies in the activity of the diff erent alleles 
[294, 295]. Predicted activity categories based on the results of the fi rst study have been 
used in the evaluation of the role of EPHX1 activity on the disease proneness [293, 297]. 
Th e EPHX1 activity was measured in lymphocytes and the activity was highest in the 
putatively high activity group [296].

Th e association between lung cancer and EPHX1 polymorphism has been studied in 
several studies (Table 6).  Most of the studies that evaluated the Tyr113His polymorphism 
with the appropriate genotyping methods have found a decreased risk for His113 allele 
[288–290]. In most of the previous studies, however, the Tyr113His polymorphism has been 
analyzed with a method which is disturbed by the synonymous Lys119Lys polymorphism and 
thus they may have overestimated the numbers of homozygotes for His113 [292, 297–304]. 
Th is artefact may well have aff ected the outcome of a meta-analysis of seven published 
studies comprising of 2078 cases and 3081 controls that did not indicate an association for 
Tyr113His polymorphism; the results were based mostly on incorrect genotyping analyses 
[305]. A pooled analysis, however, found a decreased risk for homozygous His113 genotype 
(OR 0.70; 95%CI 0.51–0.96) [305].

Results from studies on the His139Arg polymorphism have been inconsistent (Table 6). 
Only three studies found a signifi cant association between His139Arg polymorphism and 
lung cancer risk. Two of these studies indicated the Arg139 allele was a risk factor [303, 304] 
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but one found it to be a protecting factor for lung cancer [289]. Th e results from meta- and 
pooled analysis did not indicate any association for His139Arg polymorphism [305].

High predicted EPHX1 activity has been associated with increased lung cancer risk 
(Table 6) in some [288, 297, 304], but not in all studies [288, 289, 298, 301–303]. In a 
meta-analysis, the predicted EPHX1 activity levels was not associated with an increased 
risk of lung cancer [305]. Similar results were observed in a pooled analysis [305]. 

An interaction between the EPHX1 polymorphism and cumulative smoking exposure 
has been observed; the higher activity genotypes, compared with the very low activity 
genotype, were protective against lung cancer in nonsmokers but represented a signifi cant 
risk factor in heavy smokers [301]. An additive eff ect of NAT2 and EPHX1 genotypes in 
modifying lung cancer risk has also been observed [302], as well as a joint eff ect betwen 
the GSTP1 and EPHX1 genotypes; subjects who are homozygous for both GSTP1*1 and 
EPHX1 Tyr113 alleles have been shown to exhibit an increased risk of lung cancer (OR 
2.34; 95%CI 1.21–4.52) [289].

An increase in the risk for upper aerodigestive tract cancers was observed for subjects 
with the Tyr113 variant in two studies [306, 307], while no signifi cant association was 
found in another two studies [308, 309]. No association was found for the His139Arg 
polymorphism [306–309]. 

Th e predicted high activity genotypes were signifi cantly increased in oropharyngeal 
and laryngeal cancers and a positive interaction was found between the EPHX1 activity 
and GSTM3 genotype in susceptibility to laryngeal cancer [307]. And increased risk in 
heavy smokers with predicted high activity phenotype was observed in one study [306]. 
But no association was found in two other studies [308, 309]. 

Validity of association studies

Th e basic approach used in an association study is straightforward; to test the involvement 
of a SNP in a specifi c condition, allele frequencies are compared in aff ected and un-aff ected 
individuals. Individuals to be associated with the genetic component should be matched for 
their exposure to environmental factors to enable proper assessment of the risk. However, 
the reproducibility of the association studies has been low. Th ere is still much work to be 
done in optimizing epidemiological, statistical and laboratory approaches to achieve more 
credible outcomes [312].

Meta-analyses have many potential biases, including inconsistent outcomes from the 
individual studies [143, 206, 213, 313]. Th e potential sources of bias include; variation 
in  the distribution of histological types of lung cancer among the studies, diff erences in 
the racial distribution between case and control groups among the studies and diff erences 
in the determination of genotypes (or phenotypes) among studies. Errors in genotype de-
termination can lead to bias in the estimation of genotype eff ects and gene-environment 
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interactions [314]. Other potential sources of bias include variation in gender distribution 
among studies, variation in age or no data on the age provided in the studies as well as 
variation in exposure between studies. 

In many cases, lifetime exposure to tobacco exposure is imprecisely quantifi ed. Although 
the duration and intensity of smoking have been shown to infl uence risk,  most molecular 
epidemiologic studies still classify tobacco exposure crudely as ´ever´ versus ´never´ or 
according to pack-years (PYs) smoked and e.g. not considering the important eff ects of 
cessation on the risk of tobacco-related cancers [32].

Variation in the source of (cases and) controls may aff ect the results. Also a publication 
bias is likely to occur. More valid and precise conclusions regarding a particular exposure-
disease relation are expected in pooled analysis because of their use of common defi nitions, 
coding, cutpoints for variables and adjustment for the same confounders [213]. However, 
the factors mentioned above also infl uence pooled analysis.

Studies conducted thus far have been quite small. Th e need for larger studies is recog-
nized, and larger individual studies have been initiated and consortiums of several institu-
tions have been created to conduct collaborative studies. However, the undertaking use of 
these studies on a large scale is very expensive since the amount of SNPs in the genome is 
massive. Future association studies will involve genotyping of many markers and evalua-
tion of many individuals. Large studies might, however, include population admixtures, 
which can lead to false positive results [315].

Quite often inadequate emphasis on a priori hypothesis is observed. In some early mo-
lecular epidemiology studies, there was a lack of careful consideration linking the candidates 
XME with the existence of specifi c environmental carcinogens [54]. Future studies should 
therefore focus on a pathway-based approach rather than focusing on a few genotypes; carci-
nogenesis is a multifactorial and multistage process and it is unlikely that a single gene have 
a major eff ect on phenotype [19]. Th e polygenic model for cancer susceptibility indicates 
that most of the genetic susceptibility to common cancers results from the combined eff ects 
of many genetic variants, each of which has a modest eff ect individually.

Future trends

At present it is known that the genome contains a huge amount of genetic variation. Th is 
gives us new opportunities but also challenges. Th e major challenges for the next few years 
are the evaluation of the functionality of coding variants and the role of the variation in 
the regulatory regions. Th e selection of the XMEs and the genetic polymorphisms that 
are most relevant for cancer molecular epidemiological studies also remain a major chal-
lenge [19]. 

Recently computational [316–318] and experimental approaches have been developed 
to select the target SNPs that most likely aff ect phenotypic diff erences [319–321]. Th e 
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advantages of combined genotyping and phenotyping assays should not be forgetten; new 
phenotyping assays have appeared [19], and molecular phenotyping may be very important 
for studying the expression of the human genome sequence [135].

One novel approach is to focus on haplotypes [135]. Haplotype is defi ned as a group 
of associated SNPs that do not segregate randomly. Th e number of haplotypes for a given 
gene is strongly correlated with the number of SNPs [322]. Even the haplotype blocks may 
contain a large number of SNPs and a few SNPs may be suffi  cient to uniquely identify 
the haplotypes in a block. 

Th e specifi c SNPs that identify the haplotypes are called tag SNPs [323]. Th e haplotype 
map should be valuable in reducing the number of SNPs required to examine the entire 
genome for association with a phenotype from the 10 million SNPs that are known to 
exist to roughly 500,000 tag SNPs. Th is will make genome scan approaches to fi nding 
regions with genes that aff ect diseases much more effi  cient and comprehensive, since eff ort 
will not be wasted typing more SNPs than necessary and all regions of the genome can be 
included [323]. However, this can be make the biology more diffi  cult to analyse since all 
the SNPs in the associated blocks need to be analyzed [135]. Haplotypes have inherent 
advantages when the contributing SNPs are not directly observed and when there is no 
additive phenotypic eff ect of consecutive SNPs. However, it is not known if the haplotypes 
off er a convenient way to defi ne variation. Currently we do not know how large are the 
diff erencies in the haplotype structures between populations.

Functionality and validation of polymorphism reported in the databases must be 
evaluated before conducting future studies. It is clear that many of the SNPs reported in 
the SNP databases do not represent real polymorphism. A recent study on the SNPs in 
GSTM class genes failed to confi rm many of the polymorphisms reported in the databases 
[197]. It is also unknown how many of the SNPs remain to be discovered and how much 
information is lost using the known SNPs [324].

Current approaches are based on the ´common disease: common variant´ hypothesis, 
in which common polymorphism or haplotypes are tested. It may, however, be possible 
that much of the cancer risk is due to rarer alleles. Virtually all susceptibility alleles identi-
fi ed so far have frequencies of less than 1%. Th ese include both high-penetrance and low 
penetrance variants [324].

Ethical aspects

Th e completion of the Human Genome Project has drasmatically expanded the knowledge 
of our genome [325]. A great number of gene tests can be developed based information in 
the public domain. However, a discussion of the ethics in both scientifi c and public forums 
should be encouraged. As the human molecular epidemiology studies include genetic 
research among healthy people, a discussion of the ethical implications is necessary.
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Th e declaration of Helsinki (www.wma.net) and other guidelines and recommendations,  
like UNESCOs `Universal Declaration on Human Genome and Human Rights´ (www.
unesco.org), are guidelines for genetic research in humans. Informed consent, a individual 
written specifi c consent for a particular study, is obligatory in these studies. In Finland, 
the legislation also demands provision of informed consent (Medical Research Act No. 
488/1999, www.fi nlex.fi ). Th e consent form should include information of the background 
of the study, the purpose of the study, methods and procedures, potential general benefi ts 
as well as benefi ts for the person in question. It provides the individual with an unequivocal 
autonomy in his/her decision whether or not to participate in the study [326].

On the other hand, determination of the putative individual susceptibility could protect 
people from potential health risks and help them to seek early diagnosis, treatment and 
preventive therapy. Defi ning genetic susceptibility to environmental cancer may aid in the 
decisions about the level of acceptable daily intake -value (ADI) for a carcinogen and to 
protect also the most sensitive individuals in a population [326].

Predictive testing has diff erent implications depending on the age of individual and 
the potential to be able to treat the disease [326]. As the intervention strategies may be 
limited, the psychological and social consequences of genetic-testing for later-onset diseases 
need to be discussed. Genetic discrimination, like the denial of health or life insurance 
or employment, based on individuals´s genetically-determined risk of developing serious 
diseases is a major threat [327–329]. Family members carrying a predisposing allele may 
also suff er from increased anxiety and depression from being made aware about this in-
herited trait [8]. Other limitations in the analysis of susceptibility are the poor predictive 
value of most tests. Currently, most methods are also still in the developmental phase and 
cannot be used in screening for individual susceptibility [326].

Presently, the genetic testing for lung cancer susceptibility does not alter patient man-
agement; at the moment psysicians recommed smoking cessation for all patients. Th erefore 
genetic tests cannot be recommended before intervention methods are available [330].
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AIMS OF THE PRESENT STUDY

Th is study was undertaken to study the role of polymorphic GST and EPHX1 genes in 
relation to tobacco-induced cancer. Special emphasis was directed to:

• study the frequency of GSTM1 and GSTT1 gene deletions and GSTP1 polymorphism 
in cancer-free Finnish Caucasian population in diff erent age groups;  

• study the role of GSTM1 and GSTT1 gene deletions and GSTP1 polymorphism as a 
susceptibility factor for cancer with and without smoking exposure;

• examine whether the genetic polymorphisms of  GSTM1, GSTM3, GSTP1 and GSTT1 
genes modulate individual susceptibility to smoking-related lung and oropharyngeal 
cancers, either separately or in combination;

• examine whether the genetic polymorphisms of the EPHX1 gene modulate individual 
susceptibility to smoking-related lung cancer alone or in combination with GSTM1, 
GSTT1 and GSTP1 genotypes.
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Study populations

Finnish study populations

Lung cancer patiens

Th e Finnish lung cancer patients analysed in Papers I, IV and V were admitted to Helsinki 
University Central Hospital during a 8-year period (1988–1997) for surgical pulmonec-
tomy or lobectomy for suspected, operable cancer. All consecutive patients from two of 
the three surgical units of the Department of Th oracic and Cardiovascular Surgery were 
included. All the patients were Finnish Caucasians. 

Both lung tissue and blood samples were collected from the patients and they were 
personally interviewed to obtain detailed smoking and occupational histories. Th eir  prob-
ability of being occupationally exposed to asbestos was classifi ed according to work history 
[331]. From the surgical lung specimens of the lung cancer patients, the histological type 
of lung tumour was classifi ed according to the WHO classifi cation. SCC accounted for 
43.0%, AC for 35.6%, all other types present 21.4% of the cases. Details of the popula-
tion are shown in Table I in Paper I.

Population controls

Th e Finnish population controls analysed in Paper I consisted of 294 healthy working-
aged blood donors from the Finnish Red Cross Transfusion Service (Paper I, Table I). All 
the controls were males. To protect the privacy of the blood donors, only sex, age, and 
smoker/non-smoker data were available for them.

Finnish population controls

Th e cohort study (Paper III) and the population controls used in Papers IV and V consisted 
of 2155 non-cancer individuals (1069 men, 1086 women) from a survey conducted by 
the Social Insurance Institution of Finland, Research and Development Centre. Th e study 
subjects were recruited to the health examination from the random list, which was based 
on a population register. Altogether 3252 subjects were contacted, 66% of whom (n=2155) 
attended the examination. Th e population controls were all Finnish Caucasians without 
previous or current malignant disease. Th ey had been living either in the city of Turku or 
in some rural and urban communities in southwestern Finland. Th e sampling aimed at 
roughly equal numbers of subjects of both gender in each of fi ve age strata (27, 37, 47, 57 
and 67 years old).  Forty-nine subjects had been diagnosed with some form of malignant 
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(cancerous) disease. One subject was excluded because of missing basic information. After 
these exclusions the fi nal study population consisted of 2105 subjects (1051 men, 1054 
women). Blood samples were collected into EDTA tubes. 

Th e participants were asked about their health habits and health status, including 
their smoking history and diseases that had been diagnosed by a physician. Smokers were 
classifi ed into current, occasional, and ex-smokers. Detailed information on smoking was 
obtained only from the current smokers, defi ned as those who had smoked within the 
year prior to the study. Th is approach was chosen because it was thought that detailed 
information on cumulative smoking would not be reliably obtained from ex-smokers or 
those who had smoked only occasionally. Selected characteristics of the study population 
are shown in Table I in Papers III and IV.

French oral and pharyngeal cancer study population

Oral and pharyngeal cancer patients

Oral and pharyngeal cancer cases were analysed in Paper II. Th e study was drawn from a 
case-control study performed in France from 1988 to 1992. Th e cases were recruited in 10 
private or public hospitals, nine of which are located in Paris. Th ey were Caucasians with 
histologically confi rmed squamous primary cancers of the oral cavity and pharynx. 

All cases were regular smokers, defi ned as people having smoked at least fi ve cigarettes 
(or cigars or pipes) per day for at least fi ve years. Blood samples were available for 121 
patients (95%) with cancers of the oral cavity of pharynx. Th ey were recruited by seven 
trained study interviewers. Detailed information on tobacco use, alcohol consumption and 
occupational exposures was recorded during a personal interview. Th e main characteristics 
of the study population are shown in Table I in Paper II.

Hospital controls

Th e French control group comprised of eligible Caucasian patients without previous or 
current malignant disease. Th ey were admitted into the same hospital and recruited ac-
cording to the age, sex and hospital distributions observed in cases. Th e main medical 
diagnoses in the control population were rheumatological (33%), infectious and parasitic 
(10%), respiratory (9%), cardiovascular (8%), and digestive (6%). Only regular smokers 
were included.

Th e controls were interviewed by the same interviewers as the cases. Detailed infor-
mation on tobacco use, alcohol consumption and occupational exposure was recorded. 
Selected characteristics of the study population are shown in Table I in Paper II.



49

MATERIALS AND METHODS

Methods

Genotyping analysis

For genotyping analyses, the DNA was isolated from peripheral blood samples collected 
into EDTA tubes and stored at -20°C until use. One hundred ng of DNA was used as a 
template in all PCR-RFLP analysis and 30 ng in TaqMan analysis. To ensure laboratory 
quality control in genotyping tests, two independent individuals interpreted the results. 
Any sample with ambiguous results was re-tested, and a random selection of 10% of all 
samples was re-tested. No discrepancies were discovered upon replicate testing within a 
method used.

Genotyping of GST genes

Th e GSTM1 genotypes were determined in Paper I using a PCR-based method as described 
earlier [208, 209], except that β-globin primers were added to the amplifi cation reaction 
to produce the internal control fragment. Similarly, the GSTT1 genotype was analysed as 
previously described [151], but the vitamin D receptor specifi c primers were included to 
produce an internal control fragment [332].

In Papers II, III and V, a multiplex PCR-method was used for determination of the 
GSTM1 and GSTT1 genotypes. Briefl y, GSTM1 and GSTT1-specifi c primer pairs were 
used together with a third primer pair for β-globin in a multiplex polymerase chain reaction 
(PCR) analysis. Th e absence of the GSTM1 and/or GSTT1-specifi c PCR-product indicated 
the corresponding null genotype whereas the β-globin specifi c fragment confi rmed proper 
functioning of the reaction [333, 334]. 

In the GSTM3 genotyping analysis (Paper I and II), a restriction enzyme digestion 
with MnlI was performed subsequent to the PCR reaction; the presence of the digestion 
site revealed the GSTM3*B variant allele [200]. 

Th e GSTP1 genotyping analysis (Paper I, II, III and V) was performed according to a 
protocol developed by Dr. Chirstian Malaveille at IARC as described in detail in Paper I. 
Briefl y, the variant alleles containing a base substitution at the nucleotide 313 (GSTP1*2 
and GSTP1*3) resulting in Ile105Val amino acid change were diff erentiated from the wild 
type allele (GSTP1*1) by SnaBI restriction enzyme digestion subsequent to a PCR ampli-
fi cation. Ala114Val polymorphism present only in the GSTP1*3 allele, was diff erentiated 
from the wild type with BstUI restriction digestion.
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Genotyping of EPHX1 gene

Genotyping of Tyr113His and His139Arg polymorphisms using PCR-RFLP assay (Papers IV 
and V)

Th e EPHX exon 3 Tyr113His polymorphism was detected for lung cancer cases by RFLP 
assay using the method published previously identifying the presence of AspI site [335]. 
Th e His139Arg polymorphism at exon 4 was identifi ed through the presence of the RsaI 
restriction site [336].

Genotyping of Tyr113His  polymorphism  using TaqMan assay (Papers IV and V)
All the samples in Paper VI and V were analysed for Tyr113His polymorphism using a 

TaqMan allelic discrimination assay. Following PCR amplifi cation, end-point fl uorescence 
was read with Applied Biosystems 7700 instrument and genotypes were assigned using 
Allelic Discrimination software (Applied Biosystems SDS Software v1.7) [337]. 

Sequencing 

From eight samples (Paper IV) the EPHX1 gene exon 3 area was sequenced by a standard 
manner to evaluate the role Lys119Lys polymorphism in the analysis of Tyr113His polymor-
phism (Table 7). Fordward primer 5´-CTT GAG CTC TGT CCT TCC CAT CCC-3´ and 
reverse primer 5´-CTC TGG CTG GCG TTT TGC-3´ were used for PCR amplifi cation. 
PCR reactions were run in an agarose gel and the DNA was extracted from the gel using 
the Gel Extraction Kit (QIAGEN). Sequencing reactions were undertaken using Big Dye® 
v3.1 Terminator Cycle Sequencing Kit (Applied Biosystems), 1.6 pmol of forward primer 
and 5 ng of DNA. Dye-terminators were removed using DyeEx Spin Kit (QIAGEN) and 
the reactions were purifi ed in a standard manner using EtOH. Sequences were read in an 
automatic sequencer ABI PRISM 377 (Applied Biosystems).

Statistical analysis

In Paper I, the odds ratios (OR) and 95% confi dence intervals (CI) were calculated using 
the two-sided Mantel-Haenszel method, in paper II by unconditional logistic regression 
using Statistical Analysis Software (SAS, Cary, NC, version 6.11), and in papers III to V 
by Statistical Package for Social Sciences (SPSS, version 11.5 and 12.0). Th e interactive 
eff ects between genotypes and smoking exposure (Papers II-V) or between genotype and 
age (Paper III) were assessed by the likelihood ratio test to compare the goodness of fi t 
of the model with the interaction term to that of the model including the main eff ect 
variables and the adjusting variables mentioned within each paper. All presented p-values 
are two-sided. 

When calculating the pack-years (PYs) (20g/day for one year = 1 PY) the daily consump-
tion of each type of tobacco was expressed in g/day (1 g for cigarette, 2 g for cigar, and 3 
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g for pipe) [7]. Th e predicted EPHX1 activity categories were in Paper IV based on the 
classifi cation established by Benhamou et al. [297]. In Paper V a new categorization was 
used which was based on a recent functional analysis by Hosagrahara et al.  [295]. Due to 
their small numbers, the GSTM3 *A/*B and *B/*B genotypes, as well as the GSTP1*1/*2 
and *2/*2 genotypes, were combined in most analyses. Also EPHX1 Tyr113/His113 and His113/
His113 genotypes and the EPHX1 His139/Arg139 and Arg139/Arg139 genotypes were combined 
in the analyses to increase statistical power.

In Paper II, the interactive eff ects between either any two GST genotypes or each GST 
genotype were studied. Sex, age (<50, 50–54, 55–59, 60–64, 65+), daily consumption of 
tobacco in g/day (< 20, 21–30, 31+), duration of smoking in years (<25, 26–34, 35+), 
smoking status (former/current smoking), exlusive cigarette smokers (no/yes), daily con-
sumption of alcohol in g/day (< 40, 41–80, 81–120, 121+) were used as adjusting variables 
in the analysis. Th e cut-off  points were defi ned so that suffi  cient numbers of individuals 
were included in each subgroup. Th ose values for duration of smoking were defi ned ac-
cording to approximate tertiles in the control population.

In paper III, chi-square test and logistic regression were used to compare the distri-
butions of GSTM1, GSTP1 and GSTT1 genotypes between the age groups. When the 
concurrent eff ect of all three GST genes was examined, the combination of the most 
favorable genotypes of these genes was compared to all other genotypes. Th e eff ect of PYs 
was evaluated only for the two oldest age categories in which a meaningful portion of the 
subjects could be expected to have a cumulative smoking dose exceeding the cut off  point 
of 40 PYs.

In Paper IV, risk estimates for the association between EPHX1 polymorphisms and lung 
cancer were adjusted for age, sex, and smoking habits (never/ex/current smoker). Th ose 
analyses restricted to current smokers were additionally adjusted for PY.

A possible joint eff ect of EPHX1 and GST genotypes in lung cancer proneness (Paper 
V) were examined calculating multivariate adjusted ORs for the combinations of one and 
two at-risk genotypes or diplotypes. Th e reference group consisted of individuals with the 
putatively most advantageous combinations of genotypes.
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Characteristics of the study populations

Finnish study populations

Th e Finnish lung cancer studies included 230 lung cancer cases (Paper I, IV and V), 294 
healthy working-aged blood donors to the Finnish Red Cross Blood Service (Paper I) and 
2105 (Paper IV-V) cancer-free population controls living in southwestern Finland. Infor-
mation from the control population studied in paper I was restricted to age (mean 41, SD 
11), sex (all men) and smoker/non-smoker status (23%/77%) (Table 7). 

Th e distribution of men and women was 79.1% and 20.9%, and 49.9% and 50.1%, 
in the cancer group and in the cancer-free population control group, respectively. Th e 
mean age among lung cancer cases was 61.4 (SD 10.2, range 18-81) and among controls 
47 (SD 14.0, range 27-67). Current smoking was more common among cases (65.2%) 
than among controls (29.4%). PYs were calculated only for current smokers because the 
smoking habits of ex-smokers were not collected for controls. Among the cases, the mean 
PYs were 45.0 ± 20.3 and among controls 21.4 ± 19.4. Fourtythree percent of the lung 
cancer patients were diagnosed with SCC, 35.6% with AC, 5.7% with large cell carcinoma, 
5.7% with small cell carcinoma, and 10% with other lung carcinomas.

More detailed characteristics of the Finnish cancer-free population controls are given 
in Paper III (Table I). Current smoking was more common among men (27.7%) than 
among women (18.4%). Th e prevalence of current smokers decreased with age in both 
men and women; in the youngest age group (27 years of age) 37.2% of men and 28.6% of 
women were current smokers, whereas in the oldest age group (67 years of age) the respec-
tive percentages (14.4% and 6.4%) were considerably lower. At the same time, 51.5% of 
67 year old men were ex-smokers. Th is eff ect was not seen among women; only 8.3% of 
67 year olds were ex-smokers. In the 67 year olds the current daily tobacco consumption 
was lower in both sexes than in the younger age groups. Th is also aff ected the calculated 
PYs, which were lower in the 67 year olds than in the 57 year olds. 

French oral and pharyngeal cancer study population

Among the cancer patients 55% had oral cavity cancer, 41% had pharyngeal cancer and 
3% had some unspecifi ed or unclassifi able cancer of the oral cavity or pharynx. Th e mean 
age was similar in cases (54.4, SD 10.2) and controls (54.9, SD 11.1). Most of the subjects 
were male in both groups (93% of cases and 95% of controls). Th e smoking and alcohol 
related parametres were also very similar in both groups; parametres are defi ned in greater 
detail in table 1 in Paper II.
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GSTs and cancer proneness

Distribution of GSTM1, GSTP1 and GSTT1 genotypes in the 
population controls

Th e overall prevalences of the GSTM1 and GSTT1 null genotypes in the study population 
were 47.5% and 12.4%, respectively (Table 7 and Paper III, Table 3). Th e distribution of 
GSTM1 and GSTT1 genotypes did not diff er between men and women; the GSTM1 gene 
was lacking from 47.7% of men and from 47.3% of women (p=0.844). Th e respective 
numbers for the GSTT1 null genotype were 12.5% and 12.3% (p=0.888). Th ere were 
no statistically signifi cant overall age-related deviations in the distribution of the GSTM1 
and GSTT1 genotypes, but when the sexes were considered separately, the GSTM1 geno-
type distribution appeared to diff er signifi cantly between the diff erent age groups in men 
(χ2=14.20; df=4; p=0.007). 

Th e frequencies of GSTP1*A and GSTP1*B alleles were 71.8% and 28.2%; the 
frequency of the GSTP1*A/*A, GSTP1*A/*B and GSTP1*B/*B genotypes was 51.9%, 
39.8% and 8.3% respectively in the total study population (Table 7). Th ese frequencies 
were in agreement with those predicted under Hardy-Weinberg equilibrium (p=0.44). No 
diff erences were seen in the distribution of GSTP1 genotypes, either in men and women 
(p=0.491) nor were the frequencies diff erent between the age groups in the whole study 
population (χ2=8.20; df=8; p=0.414).

When the genotype frequencies were examined by smoking history, no diff erences were 
seen in the distributions of GSTM1 and GSTT1 genotypes in the diff erent age groups. 
However, for the GSTM1 null genotype, a signifi cant interaction (p=0.003) was found 
between gender and age among never smokers. Since a GSTM1 positive genotype has been 
shown to be over-represented in old smoking controls [338], we compared the prevalence 
of GSTM1 positivity in the highest age group (67 years old) with that in the younger age 
group (27–57 years old). In this comparison, current smokers in the oldest age group tended 
more likely to exhibit the functional GSTM1 gene (OR 1.34, 95%CI 0.71–2.56).

Th e GSTP1 genotype frequencies were signifi cantly diff erent between the age groups in 
current smokers (χ2=17.08; df=8; p=0.029). A signifi cant interaction was found between 
gender and genotype (p=0.029). When stratifi ed by gender, a signifi cant deviation in the 
distribution was observed in women (χ2=17.50; df=8; p=0.025). Current smoking men 
tended to be less likely (OR 0.57, 95%CI 0.31–1.03), whereas current smoking women 
were more likely (OR 1.70, 95%CI 0.97–2.97) to be homozygotes for the GSTP1*B allele 
when compared with never smokers.

In the oldest age group (67 years old) the GSTP1*B allele carriers were more preva-
lent among current smokers, as compared with the never-smokers (OR 3.84, 95%CI 
1.47–10.05). Th is fi nding appeared to be mainly confi ned to women (p for interaction 
between genotype and gender 0.017). However, due to the small numbers of subjects, this 
association could not be evaluated in detail.
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We did not fi nd any associations between tobacco smoking and the GSTT1 genotype 
distributions in the diff erent age groups (data not shown). However, current smoking 
women were more likely to lack the GSTT1 gene compared to the never smokers (OR 
0.55, 95%CI 0.35–0.87), whereas no such association was seen in men (OR 1.04, 95%CI 
0.66–1.66) (data not shown). 

When the combined genotype distributions were examined, no overall diff erence was 
observed for the GSTM1/GSTT1 null genotype combination between the diff erent age 
groups (χ2=10.81; df=12; p=0.545) (data not shown). However, there was a signifi cant 
interaction between gender and age among never smokers (p=0.045).  When this was 
stratifi ed by gender, the distribution was signifi cantly diff erent in men (χ2=25.89; df=12; 
p=0.011). Th is fi nding was mainly attributable to never smokers (χ2=21.71; df=12; 
p=0.041). Moreover, when the so-called GSTM1, GSTT1 and GSTP1 at-risk genotypes 
were combined, the distributions did not diff er between the diff erent age groups (χ2=23.08; 
df=28; p=0.729), but again, a signifi cant interaction was found between gender and age 
among never smokers (p=0.013).

Unfortunately, due to the small number of subjects in each category, we were not able 
to analyse the distribution of combined genotypes according to smoking history across 
the age groups.

When the data was stratifi ed by PYs, according to our a priori hypothesis the putative 
protective GST genotypes were over-represented in subjects who had smoked over 40 
PYs compared to lighter smokers. Th e diff erence was greater when two or three protective 

Table 7. Characteristics of the control populations and distribution of GST poly-
morphism.

Study 
popula-
tion

Size Sex
men/
women

Mean
age

Smoking status
(%)

GST

M1 
null

T1 
null

P1 
*1/*1

P1 
*1/*2

P1 
*2/*2

(n) (%) (SD) never    ex current (%) (%) (%) (%) (%)

Finnish 
(Paper I)

294 100/- 41 (11) 78 22 46.6 13.3 52.6 38.2 9.2

Finnish 
(Paper 
III-V)

2105 50/50 47 (14) 47 24 29 47.5 12.4 51.9 39.8 8.3

French
(Paper II)

150 95/5 55 (11) - 33 67 52.3 15.7 50.0 37.2 12.8
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genotypes were combined. Th is fi nding was more pronounced and statistically signifi cant 
in subjects concurrently carrying the GSTM1 and GSTT1 positive genotypes (OR 2.50, 
95%CI 1.12–5.58), GSTT1 positive and GSTP1*A/*A genotypes (OR 2.44, 95%CI 1.09–
5.45), or all the three putative protective GST genotypes (OR 2.80, 95%CI 1.10–7.12), 
when compared with all the other genotype combinations of the respective genes.

GST genotypes and lung cancer risk

Th e prevalence of the GSTM1 null genotype was similar in lung cancer cases (48.1%) and 
population controls (46.6%)(OR 1.06; 95%CI 0.74–1.51) (Table 8). When the cases were 
considered according to cancer type, the GSTM1 null genotype was slightly over-repre-
sented in the SCC patients (53.2%)(OR 1.30; 95%CI 0.82–2.07) and somewhat under-
represented in AC patients (41.5%)(OR 0.81; 95%CI 0.49–1.33) compared to controls. 
However, the diff erencies were not statistically signifi cant. Lung cancer risk associated with 
heterozygous and homozygous GSTM3*B carriers was 1.32 (95%CI 0.86–2.02) and 0.66 
(0.17–2.61), respectively, when compared to carriers of the homozygous wild type GSTM3 
gene. Th e prevalence of the GSTM3*B allele carrying genotypes was quite similar in cases 
and controls (OR 1.25; 95%CI 0.83–1.89) when compared to the GSTM3*A carriers.

Th e prevalence of GSTT1 null lung cancer cases (13.3%) was comparable to that found 
in the healthy controls (12.7%)(OR 0.96 95%CI 0.56–1.63). Similarly to the fi ndings for 
GSTM1, a non-signifi cant over-representation of the GSTT1 null genotype was observed 
among patients with SCC (16.5%) (OR 1.29; 95%CI 0.67–2.47). 

OR for the carriers of heterozygous and homozygous variant GSTP1 genotypes was 
1.10 (95%CI 0.76–1.59) and 0.96 (95%CI 0.50–1.85), respectively, when compared to 
homozygous GSTP1*1 carriers. For carriers of at least one GSTP1 variant allele it was 
1.15 (95%CI 0.81–1.65). 

When the joint eff ect of all GST genes was examined, those subjects simultaneously 
defi cient in GSTM1 and GSTT1 were not an overall incresed lung cancer risk (OR 1.49; 
95%CI 0.70–3.16) but showed a borderline increased risk for SCC (OR 2.35; 95%CI 
0.98–5.65) when compared to GSTM1 and GSTT1 positive subjects. No other gene 
combinations exhibited any interactive eff ects (data not shown).

GST genotypes and oral and pharyngeal cancer risk

No association between GSTM1 null genotypes and oral or pharyngeal cancers were 
observed (Table 9) (OR 0.8; 95%CI 0.4–1.4 and OR 1.3; 95%CI 0.6–2.6, respectively). 
Furthermore, neither of the variant GSTM3 genotypes were also nor associated for these 
cancers; OR for GSTM3*A/*A genotypes compared to genotypes carrying GSTM3*B allele 
was 1.4 (95%CI 0.7–3.0) for oral cancer and 1.0 (95%CI 0.5–2.2) for pharyngeal cancer. 
Smoking and alcohol exposure did not modify the cancer risk. 
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Gene Genotype Cancer 
type

Cases 
n (%)

Controls 

n (%)

OR (95 % CI)

GSTM1 positive All lung 108 (51.9) 157 (53.4) 1
null 100 (48.1) 137 (46.6) 1.06 (0.74-1.51)

positive SCC 44 (46.8) 157 (53.4) 1
null 50 (53.2) 137 (46.6) 1.30 (0.82-2.07)

positive AC 48 (58.5) 157 (53.4) 1
null 34 (41.5) 137 (46.6) 0.81 (0.49-1.33)

GSTM3 *A/*A All lung 146 (72.6) 226 (76.9) 1
*A/*B 52 (25.9) 61 (20.7) 1.32 (0.86-2.02)
*B/*B 3 (1.5) 7 (2.4) 0.66 (0.17-2.61)
*B-carrying 55 (27.4) 68 (23.1) 1.25 (0.83-1.89)

GSTP1 *1/*1 All lung 101 (49.0) 154 (50.8) 1
*1/*2 88 (42.7) 122 (40.3) 1.10 (0.76-1.59)
*2/*2 17 (8.3) 27 (8.9) 0.96 (0.50-1.85)
*2-carrying 105 (51.0) 139 (45.9) 1.15 (0.81-1.65)

GSTT1 positive
null

All lung 178 (87.3) 255 (86.7) 1

26 (12.7) 39 (13.3) 0.96 (0.56-1.63)

positive SCC 76 (83.5) 255 (86.7) 1
null 15 (16.5) 39 (13.3) 1.29 (0.67-2.47)

GSTM1 positive All lung 96 (85.7) 134 (89.9) 1
and GSTT1 null 16 (14.3) 15 (10.1) 1.49 (0.70-3.16)

GSTM1 positive SCC 38 (79.2) 134 (89.9) 1
and GSTT1 null 10 (20.8) 15 (10.1) 2.35 (0.98-5.65)

Table 8. Associations between GST genotypes and lung cancer risk.

Th e frequency of the GSTT1 null genotype was higher in cancer patients (21.5%) than 
in controls (15.7%); OR for the oral and pharyngeal cancer was 2.0 (95%CI 1.0–4.0). In 
a separate analysis according to the cancer site, an increased risk was seen for oral cancer 
(OR 2.4; 95%CI 1.0–5.5) but not for pharyngeal cancer (OR 1.4; 95%CI 0.6–3.7). 
When examined by smoking exposure, the risk was increased only among smokers with 
a history of more than 30 years of smoking (OR 3.3; 95%CI 1.3–8.1) but not among 
smokers with a shorter history (OR 0.8; 95%CI 0.3–2.6). No interactions were observed 
between alcohol consumption and GSTT1 genotypes (data not shown).
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Th e frequency of the GSTP1 (*1/*2 or *2/*2) genotype was higher in cancer cases 
(58.7%) than in controls (50.0%). A borderline increased risk was seen for GSTP1 (*1/*2 
or *2/*2) genotypes associated with oral and pharyngeal cancers (OR 1.6; 95%CI 1.0–2.8). 
Th ere was an increased cancer risk (OR 2.0; 95%CI 1.0–3.9) in long time smokers (over 30 
years) associated with GSTP1 variant genotypes though this was not observed in smokers 
with a shorter history (OR 1.0; 95%CI 0.5–2.3). No interactions were observed between 
alcohol consumption and GSTP1 (data not shown).

No signifi cant interactive eff ects between diff erent GST genotypes on the risk of cancers 
of the oral cavity and pharynx were observed (data not shown). Nor was any association 
found within the control group between genotypes and the main medical diagnoses (data 
not shown).

EPHX1 and cancer proneness

EPHX1 genotyping methodology

In an early stage of our studies we observed that the genotype results of the EPHX1 
Tyr113His locus obtained with the PCR-RFLP did not fully match with these from the 
TaqMan assay. To clarify the reason for these inconsistencies we sequenced eight samples 
that had previously been genotyped with the two methods. Th e results from the diff erent 
analysis are shown in Table 10. Four of those samples detected in the RFLP analysis as 
homozygotes for the EPHX1 His113 allele, were actually heterozygotes when sequenced and 
genotyped using the TaqMan method. Th ese subjects were heterozygotes also for codon 
119 polymorphism. One subject was a true homozygote for the EPHX1 His113 allele and 
was also a homozygote for G at codon 119. In the other analysis, the results were similar 
in all analyses, i.e., in RFLP, sequencing and TaqMan analysis. 

When all lung cancer cases were analysed using the RFLP method (Paper IV), a total 
of 22 individuals were determined as homozygotes for the EPHX1 His113 allele (9.7% of all 
cases). In the TaqMan assay 13 of these were confi rmed to be “true” EPHX1 His113 homo-
zygotes (5.7% of all cases).  Th e silent polymorphism of G to A at codon 119 (Lys119Lys) 
was therefore shown to disturb the PCR analysis. Th e allele with A at codon 119 is not 
amplifi ed in the presence of G allele, because the primers are more likely to bind to the 
sequence with G. Since A is in linkage with the Tyr113 (T), this leads to false genotype 
designation only in the case of His113/His113. 

It appears that the substitution of G to A at codon 119 clearly disturbs the amplifi cation 
of the EPHX1 Tyr113 allele in heterozygotes also with the primers designed by Lancaster et 
al. [292, 339]. Th us it seems evident that the results obtained with the traditional PCR-
RFLP assay for the EPHX1 Tyr113His polymorphism need to be verifi ed by an appropriate 
method taking into account the silent polymorphism in codon 119.
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Distribution of EPHX1 genotypes in the population controls

Th e EPHX1 genotype frequencies in the control population were in agreement with those 
predicted from Hardy-Weinberg equilibrium (p=0.71 for both genotypes). Th e frequencies 
of EPHX1 His113 and Arg139 alleles were 0.298 and 0.176, respectively. We did not observe 
any age-related changes in the EPHX1 Tyr113His genotype distributions (p=0.988). In 
contrast, the distributions of EPHX1 His139Arg genotypes in the diff erent age groups were 
signifi cantly diff erent (p=0.034). However, there was no signifi cant trend and when the rare 
homozygotes were combined with heterozygotes, this diff erence disappeared (p=0.127).

EPHX1 genotypes and lung cancer risk

Th e EPHX1 His113 allele-carrying genotypes tended to pose a decreased lung cancer risk; 
the OR was 0.68 (95% CI, 0.49–0.94) when compared with the homozygous wild-type 
EPHX1 Tyr113/Tyr113 genotype. When considering only current smokers the cancer risk 

Table 9. The EPHX1 exon 3 genotype results achieved by different analysis 
methods.

PCR-RFLP TaqMan Sequencing

codon 113 codon 119

Amino acid change Nucleotide change

Sample Tyr113 to His113 T to C G to A

1 Tyr113/Tyr113 Tyr113/Tyr113 T G

2 Tyr113/Tyr113 Tyr113/Tyr113 T G and A

3 Tyr113/His113 Tyr113/His113 T and C G

4 His113/His113 Tyr113/His113 T and C G and A

5 His113/His113 Tyr113/His113 T and C G and A

6 His113/His113 Tyr113/His113 T and C G and A

7 His113/His113 Tyr113/His113 T and C G and A

8 His113/His113 His113/His113 C G
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associated with the EPHX1 His113 allele-carrying genotypes was 0.59 (95% CI, 0.37–0.95) 
compared with the homozygous wild-type genotype. Th e results obtained for the exon 4 
polymorphism conversely revealed a decreased risk for the putative fast EPHX1 Arg139 al-
lele-containing genotypes; the OR was 0.64 (95% CI, 0.43–0.93) for the variant EPHX1 
Arg139 allele-containing genotypes compared with the homozygous wild-type EPHX1 
His139/His139 genotype. 

When the EPHX1 exon 3 and 4 genotype data was combined to predicted low, inter-
mediate and high activity categories as proposed by Benhamou et al., [297], a tendency 
for decreased risk was seen for both low and high activity phenotypes compared to the 
intermediate activity phenotype (OR, 0.75; 95% CI, 0.53–1.07 and OR, 0.65; 95% CI, 
0.38–1.19, respectively). However, when the EPHX1 genotypes were grouped to diplo-
types based on the recent functional analysis which suggested that the highest activity was 
attributableto the wild type EPHX1 Tyr113His139 haplotype [295], then the homozygous 
wildtype EPHX1 Tyr113His139 haplotype was associated a doubled lung cancer risk (OR, 
1.95; 95% CI, 1.22–3.12).

Th e age did not modify the association between variant genotypes and lung cancer 
risk (data not shown). Nor could we detect any interaction between smoking and the 
EPHX1 genotypes.

Combined effect of GSTs and EPHX1 on lung cancer 
proneness

In Paper V, the EPHX1 haplotypes were assessed from the genotype results and grouped to 
diplotypes. When grouped based on the recent functional analysis the homozygous wild 
type diplotype represent the highest activity group and conversely homozygous variant 
diplotypes are the lowest activity group [295]. 

When the combined genotype eff ects were examined (Table 11), the concurrent pres-
ence of the EPHX1 wildtype diplotype and GSTM1 null genotype possed an OR of 2.48 
(95% CI, 1.29–4.77). Th e risk did not change when only current smokers were considered 
(OR 2.30; 95%CI, 0.94–5.62). However, individuals having smoked over 40 PYs were at 
a clearly elevated risk of lung cancer (OR, 8.89; 95% CI, 1.75–45.13), especially of SCC 
(OR, 13.33; 95% CI, 1.47–120.71).

Th e EPHX1 diplotypes and GSTT1 genotypes exhibited a signifi cant interaction 
(p=0.022 for interaction term). Th e highest risk was seen for carriers of the homozygous 
wildtype EPHX1 diplotype in combination with GSTT1 positive genotype (OR, 2.47; 
95% CI, 1.47–4.13). Th e risk was only moderately increased in current smokers (OR, 
2.56; 95% CI, 1.25–5.27).

Th e GSTP1 genotypes did not interact with EPHX1 diplotypes, and when the joint 
eff ects were studied, no additional risk compared to EPHX1 diplotypes alone were seen. 
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Th e age did not signifi cantly aff ect the risk between variant genotypes and lung cancer. 
When age-related diff erences were examined in our control population, no deviations in 
genotype distributions between diff erent age groups were seen either for EPHX1 genotypes 
or diplotypes or for GSTM1, GSTT1 and GSTP1 genotypes (data not shown). No gene-
environment interactions between combined genotypes and smoking related variables 
were found (data not shown).
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DISCUSSION

Cancer is a global disease having an incidence of about 10 million new cases worldwide. 
Tobacco-related cancers comprise 30% of all malignant tumours of which lung cancer 
is globally the most common and a leading cause of cancer-related death. Lung cancer is 
largely due to exposure to the chemical carcinogens in tobacco smoke. Around 15% of all 
heavy smokers develop lung cancer. Cancer risk is either increased or decreased by genetic 
risk factors as well as by several other environmental factors [8].

Living beings are faced with a continuous attack of reactive chemical species by endog-
enous and exogenous agents. BRIs modify the chemical integrity of DNA and in turn change 
its informational content. Tobacco exposes the individual to a mixture of compounds, 
some of which are established carcinogens, and these are thought to be involved in cancer 
initiation as well as non-genotoxic carcinogens that facilitate carcinogenesis by stimulat-
ing cell division. Other environmental and nutritional factors may modulate responses to 
tobacco smoke via the genetic host factors and thus the risk of neoplasm formation. In 
this thesis the role of polymorphic GSTs and EPHX1 genes in individual susceptibility to 
lung cancer was explored in Finnish and French study populations.

GSTs

General

GSTs are detoxifi cation enzymes involved in the metabolism of tobacco derived BRIs. Th ey 
inactivate chemical carcinogens into less toxic or inactive metabolites, and are thought to 
have an essential role in chemical carcinogenesis by reducing their capacity to infl ickt DNA 
damage [340]. DNA adduct formation is generally considered to be necessary for tumour 
formation [341]. Th ere is evidence that PAH-induced DNA damage is one of the causes 
of lung cancer which derives from studies showing higher-levels of PAH-adducts in cancer 
cases than controls [57]. Metabolic modulation without reducing levels of chemical exposure 
has been shown to reduce the formation of DNA adducts and cancer risk [342]. 

GSTM1

Epoxides of PAHs like BPDE are substrates for GSTM1 [184], which is probably the 
most studied of the GST genes in disease susceptibility. Since, it is believed that deletion 
of the entire gene will completely eliminate the enzyme activity, this is thought to have 
signifi cant eff ects on carcinogen metabolism. Consequently the GSTM1 polymorphism 
has been extensively studied in lung [213], head and neck [223, 343], colon [344, 345], 
gastric [346], breast [347–349], prostate [350], and bladder cancers [351, 352]. Associa-
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tions have been found in several tobacco-related cancers like lung, head and neck, and 
bladder cancers [213, 223, 343, 352]. In our study a tendency of increased risk was seen 
in lung SCC patients having GSTM1 null genotype. Th is fi nding agrees with most studies, 
which show a modest eff ect of GSTM1 null on lung cancer proneness [213]. However, no 
associations between GSTM1 genotypes and oropharyngeal cancer risk were observed.

Although the GSTM1 null genotype was only weakly associated with lung cancer risk 
in our study, multiple lines of evidence from molecular epidemiological studies do indicate 
that GSTM1 is involved in cancer susceptibility. Th e GSTM1 genotypes have been related 
with intermediate biomarkers of exposure; BPDE-DNA adducts were not found in GSTM1 
positive individuals exposed to PAHs, while 93% of the GSTM1 null individuals showed 
detectable adducts [182]. Also early phenotyping studies on TSO, a specifi c substrate of 
GSTM1, indicated that fewer smoking related cancers occurred in the group exhibiting 
GSTM1 activity [353]. Th e GSTM1 expression has also been shown to be lower in cancer 
cases than in controls [354].

Our novel study design employing a large control group in diff erent age groups revealed 
some evidence of the role of GSTM1 null genotype in cancer proneness. Our hypothesis 
was that the advantageous genotypes are over-represented in older controls compared to 
younger controls; other genotypes are suspected to have been eliminated from the study 
population because of tumour formation or death.

In this study setting, the overall prevalence of the GSTM1 null (47.5%) genotype 
was in good agreement with previous observations in Finns [355] and other Caucasian 
populations [192]. However, when the age-related diff erences in genotype distribution 
was studied signifi cant deviations were observed among men. Th e GSTM1 null genotype 
appeared to be somewhat less prevalent among the oldest (67 years old) current male smok-
ers (38.1%) as compared with the younger (27–57 years old) current smokers (47.3%) 
(p=0.260). Although failing to reach statistical signifi cance, this fi nding agrees with some 
previous observations of lower prevalence of GSTM1 null genotypes among older controls 
[338, 356, 357]. More GSTM1 null individuals have also been observed in never smokers 
compared to ever smokers [238]. Since the prevalence of GSTM1 genotypes may be sig-
nifi cantly aff ected by gender, age and smoking status [358] it is very important to control 
for these factores in the study design.

GSTM3

Th e GSTM3 gene has been less frequently studied in association studies. GSTM3 enzyme 
is detected in human lungs and the low expression levels of GSTM3 have been suggested 
to result in an increased risk of lung malignancies. In our study, however, the GSTM3 
genotypes were not associated with lung cancer risk, a fi nding which is in agreement with 
other studies [201, 217, 218]. Furthermore, it was not associated with oral or pharyngeal 
cancer risk. Th ere is limited previous evidence of a role for GSTM3 genotypes in UAT 
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cancers. Decreased [203, 224, 225] and increased [226] risk of UAT cancers associated 
with GSTM3*B/B genotype have been observed. 

Although it is possible that the infl uence of genotypes may only be exerted in certain 
regions of the upper aerodigestive tract, the function of the GSTM3 polymorphism studied 
is not clear but a recent fi nding of promoter region polymorphism [199] aff ecting signifi -
cantly on expression levels may explain the negative fi ndings. Th e GSTM3 gene is still a 
promising susceptibility gene in cancers of the aerodigestive tract and it is interesting to 
see the results from future studies taking into account other polymorphic sites.

GSTP1

GSTP1 is known to metabolize BPDE, a highly carcinogenic metabolite of B[a]P. In addi-
tion, the high expression level in lung has made it particularly interesting as a susceptible 
factor for cancers of this site. Th e association of the common polymorphism (Ile105Val) and 
lung and head and neck cancers has been extensively studied. Th e other polymorphism 
(Ala114Val) has only been studied to some extent. Functionally both alleles in the Ile105Val 
locus seem to have some advantages. Compared with the GSTP1*1 (Ile105) allele, the 
GSTP1*2 (Val105) allele exhibits a decreased activity towards CDNB but a greater activity 
towards PAH diolepoxides [229, 230, 232].

In our case-control study we did not see any eff ect in lung cancer risk for the GSTP1 
polymorphism, when the genes were studied separately. Th is is in agreement with most of 
the previous studies which have not detected any signifi cant associations [201, 217, 218, 
236–245]. However, a few studies have indicated that the GSTP1*2 allele is a risk factor 
for lung cancer [210, 246, 247]. Th e most extensive study thus far on GSTP1 and lung 
cancer proneness found an increased risk for current smokers with the risk being increased 
with increasing PYs [247]. Th is supports our fi nding in the control population, showing 
that GSTP1 may interact with smoking. Also in our study of oropharyngeal cancers, the 
variant GSTP1 genotypes carried an increased cancer risk and the eff ect was higher in long 
term smokers. However, meta- and pooled analysis on HNC did not fi nd any increased 
risk in GSTP1*2 carriers [223].

In our control study setting smoking appeared to have an eff ect on the distribution of 
the GSTP1 genotypes; the GSTP1 genotype distribution deviated signifi cantly between 
the diff erent age-groups in current smokers. Moreover, a signifi cant gender-related eff ect 
was observed; current smoking men tended to be less likely and current smoking women 
more likely homozygotes for the GSTP1*2 allele when compared with never smokers. 
Th ere is one previous observation that current smoking controls are less likely to have the 
GSTP1*2 allele than never smoking controls [238].

None of the GSTP1 genotypes evaluated have shown have any major eff ect on the 
function of the protein, and no clear evidence for diff erent expression levels have been 
observed [227]. However, a signifi cant association between the GSTP1*1/*1 genotypes and 
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increased overall GSTP1 expression, and the GSTP1*1/*2 genotypes and reduced overall 
GSTP1 expression has been observed in clinical cancer [359]. It is also speculated that 
the heterozygote GSTP1*1/*2 genotypes are associated with improved outcome because 
the enzyme expressed may provide a better balance between the eff ects of detoxifi cation 
of carcinogens and the ability to metabolize chemoprevention agents [359].

As many genetic variants have been described to be present in the GSTP1 gene region 
it may be possible to identify those SNPs which may aff ect the expression levels of GSTP1. 
As the gene is divided into the two linkage blocks it would be advantageous to study one 
hypothetical SNP in regulatory regions in addition to the Ile105Val polymorphism. Since 
the Ala114Val polymorphism has been shown to be in linkage disequilibrium with Ile105Val 
polymorphism, and the SNP has not been shown to aff ect functionality, it is not reasonable 
to include this SNP in candidate gene studies.

GSTT1

GSTT1 metabolizes monohalomethanes, ethylene oxide and to a lesser extent, the PAHs 
found in tobacco smoke. About 12% of the Finnish population lack the entire GSTT1 
gene and therefore do not exhibit the respective enzyme activity. Th e GSTT1 gene was 
not associated with lung cancer risk in our study, but the GSTT1 null genotype conferred 
an increased factor for oral cancer. In heavy smokers, a 3-fold increased risk for oral and 
pharyngeal cancers was seen. No diff erences were seen in the distribution of GSTT1 geno-
types in diff erent age-groups in our control study setting. Th e role of GSTT1 in cancer 
proneness thus remains unclear. In many studies it seems that the GSTT1 null genotype 
is more protective than GSTT1 positive genotype. Th is discrepancy cannot be explained 
solely by the role of GSTT1 in the generation of toxic compounds [150].

EPHX1

EPHX1 null mice were found to be highly resistant to DMBA-induced carcinogenesis [276]. 
Th is points to an important role for EPHX1 in the activation of PAHs such as DMBA 
and B[a]P. In humans, wide interindividual diff erences in the EPHX1 activity have been 
observed. A 1.6-fold range of in vivo enzyme activities was observed in a healthy Caucasian 
population [360]. However, in in vitro experiments, the EPHX1 activity has been shown 
to exhibit an individual variation ranging from 2.5- to 63-fold, depending on substrate 
and the source and handling of liver tissue [361, 362]. Tissue diff erences in the expression 
of EPHX1 have also been detected. Th e enzyme is very abundant in liver and lung and 
much lower levels have been detected in lymphocytes. Th e genetic polymorphism detected 
thus far covers part of the detected variation in activity. Individuals with the Tyr113/Arg139 
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genotype exhibit the highest amount of enzyme [293], abut those with the Tyr113/His139 
combination possess the highest enzyme activity [295].

Most of the association studies done so far have determined the EPHX1 Tyr113His 
genotype detected with a PCR-RFLP method [297, 301, 304, 305], which has been shown 
to be disturbed by an additional polymorphic nucleotide at codon 119 [291, 363]. Th is 
polymorphism leads to false genotype designation in the case of EPHX1 His113/His113.

In our study, the lung cancer risk was signifi cantly decreased in both EPHX1 His113 
allele-carrying and EPHX1 Arg139 allele-carrying genotypes, when studied separately. Th e 
results were not aff ected by smoking status. Th e fi ndings related to EPHX1 Tyr113His 
polymorphism were in good agreement with a recent pooled analysis of 986 cases and 
1633 controls [305]. However, the EPHX1 His139Arg polymorphism has not yielded clear 
results in previous studies. In a recent meta- and pooled analysis of EPHX1 His139Arg 
polymorphism, no eff ect was seen on lung cancer risk [305].

When exon 3 and 4 genotype data were combined to predict phenotype categories as 
established from the fi rst functionality studies, no clear association with lung cancer was 
seen. Th is agrees with the results from the pooled analysis [305] although in some indi-
vidual studies, the high activity phenotype has been suggested to be a risk factor for lung 
cancer [297, 301, 304]. Th e validity of previous interpretation, however, is questioned 
by the fact that most of these studies employed the defective RFLP-PCR method for the 
determination of the EPHX1 Tyr113His genotypes. Th is may have caused some bias in the 
combined analysis.

Initial studies on the functionality of EPHX1 genetic variation suggested increased 
activity to EPHX1 Tyr113 and Arg139 alleles due to diff erences in the stability of the enzymes 
encoded [293]. Th e EPHX1 activity was reduced in lymphocytes of individuals carrying 
at least one His113 allele and somewhat higher for individuals possessing at least one Arg139 
allele [296]. However, the most recent study attributes the highest activity to the wild type 
EPHX1 Tyr113His139 haplotype [295].

In our study, we detected a decreased lung cancer risk for both EPHX1 His113 and 
EPHX1 Arg139 alleles. Since the His113 allele is thought to exhibit low enzyme activity and 
the Arg139 high enzyme activity, the results fi rst appeared to be rather confl icting. However, 
in a recent functionality study, the Tyr113/His139 combination exhibited the highest enzyme 
activity [295]. Diplotypes formed according to this study showed an increased lung cancer 
risk for homozygous EPHX1 Tyr113His139 haplotypes. EPHX1 is involved in the activation 
of B[a]P to the highly carcinogenic BPDE and thus low enzyme activity can be thought 
to generate to a lower amount of reactive compounds and a lower cancer risk. However, 
it should be kept in mind that EPHX1 has a dual role in carcinogenesis; normally it is 
considered as a detoxifi cation enzyme taking part in the hydration of reactive and toxic 
epoxides to their corresponding dihydrodiol products. Th us its role may depend on which 
environmental substrates the enzyme is metabolizing.
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Focusing on pathways

Carcinogenesis is a multifactorial and multistage process that is dependent on a myriad 
of mechanisms and pathways that are under genetic control. At the moment an increas-
ing number of genes are implicated as being relevant to carcinogenic outcome [135]. It 
will therefore be diffi  cult to detect subtle diff erences in phenotype related to only a single 
polymorphism of a single gene [19].

In the current study in a separate analysis, only the EPHX1 genotypes were signifi cantly 
associated with lung cancer risk.  In the joint analysis of the three GST genes, concurrent 
defi ciency of GSTM1 and GSTT1 genes was associated with an increased risk of lung SCC 
in light smokers. No combined eff ect of GSTM1, GSTP1 and GSTT1 genotypes were 
detected. Joint analysis on EPHX1 and GST genes focused on their role in heavy smokers 
and expecially in the development of SCC which emphasizes their role in the metabolism 
of PAHs; PAHs are thought to be crucial in the development of SCC cancer type of lung 
[364]. An eight-fold risk was seen for heavy smokers having a combination of the GSTM1 
null and EPHX1 homozygous Tyr113His139. Th e EPHX1 and GSTT1 genotypes showed a 
signifi cant interaction. 

Since GSTs have overlapping substrate specifi cities, a defi ciency of an individual GST 
isoenzyme may be compensated by other isoforms. Th erefore, it is thought that simul-
taneous determination of all GST genotypes is a prerequisite for reliable interpretation 
of the role of the GST family in cancer development. However, recent studies have not 
found any clear evidence that the functional GSTs could compensate for a defective GST. 
Although the GST superfamilies exhibit some redundancy in their activities, the overlap 
in substrate specifi city of individual isoenzymes may not be as extensive as originally was 
thought [365]. Information about tissue-spesifi c expression of GSTs is relatively scant. 
More information about GST distribution in man is therefore required to evaluate the 
types of disease processes that these enzymes may infl uence [204].

Experimental studies has shown that the lowest level of hydrophobic DNA adducts was 
found among patients with GSTM1 positive and GSTP1*1/*1 genotypes and the highest 
level was found in the group with combination of GSTM1 null and GSTP1*2/*2 genotype 
[210]. However, the reports of the association between GSTM1 and P1 and DNA adducts 
have also been mixed, with results varying by type of tissue, laboratory methods, and specifi c 
adducts measured [366]. Since tobacco smoke is a very complex mixture of chemicals, it 
is possible that when one tries to construct haplotype profi les, these alleles can both have 
advantages and disadvantages, depending on the composition of other genes in the profi le. 
Th e diff erent results of the published studies may thus be attributed to diff erences in the 
study populations and their exposure to environmental or dietary factors.

In the control population (Study III), the heaviest smokers were more likely to have 
the most protective combination of the GST genotypes. Th e risk increased somewhat 
but not statistically signifi cantly when two or three genes were combined. Th is may be a 
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consequency of the low statistical power to detect the eff ect. It may also be linked to lack 
of overlapping substrate specifi cities or substantially diff erent expression patterns of GSTs 
in diff erent tissues. 

An alternative hypothesis is that the GSH depletion to about 20–30% of total glutathi-
one levels can impair the conjugation defence against the toxic actions of such compounds 
and become detrimental to cellular processes. Th us, the combined conjugation activities of 
all GSTs may lead to GSH depletion and in that way even be counterproductive. Instead 
of providing protection, the GSTs collectively may expose the cell to injurious eff ects such 
as oxidative DNA damage and associated mutagenic lesions [367].

Activity in phase I and II enzymes may aff ect the balance of produced BRIs and their 
eff ective detoxifi cation. Th e BPDE-DNA adducts levels were modulated by CYP1A1 and 
GSTM1 polymorphism [182]. Another possible joint eff ect may derive from CYPs and 
EPHX1 genes. It is probable that CYPs and EPHX1 cooperate via protein-protein interac-
tions for fast metabolism [272, 273]. Certain CYP subfamilies have a quantifi able affi  nity 
for EPHX1. Th e CYP2C11 enzyme exhibits a higher activity for EPHX1 in rats than 
other the P450s, consistent with the ability of CYP2C11 to enhance the EPHX1-catalyzed 
hydrolysis of styrene oxide and B(a)P-oxide; B(a)P is activated in rats by CYP2C11 but 
not by CYP1A1 or CYP2B1.

As tobacco smoke infl uences a variety of biological processes (enzyme induction, 
oxidation, signal transduction) and contains multiple carcinogenic compounds, it is not 
suffi  cient to study only one pathway. Major carcinogens such as TSNAs and aromatic 
amines are metabolized by CYPs as well as the detoxifi cation enzymes like NATs and 
UDPs. Multi-pathway interactions are also likely to occur between diff erent carcinogenic 
pathways e.g. those involved in DNA repair and cell cycle control. Th e liability to suf-
fer a disease is a complex interplay between the environment and genetic variation in 
several genes. At the moment there is an intense debate about gene-gene interactions. It 
is claimed that the interactions between genes and between genes and the environment 
are the most critical factors to explain why single gene studies produce such inconsistent 
results [368].

Validity

Th e results of studies on the eff ect of polymorphisms on lung and oropharyngeal cancer 
risks have been largely confl icting. Th e likelihood of a specifi c SNP being associated with 
altered cancer risk will depend on relevant environmental exposures. Th e lack of detailed 
information about the exposure may be one reason for the inconsistent results. Interactions 
between dietary and other environmental factors and SNPs in specifi c genes also may ex-
plain some of the interindividual variation in cancer experience and provide a mechanistic 
explanation for the lack of evidence of eff ect.
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Th e careful measurement of strong confounders and eff ect modifi ers as well as measure-
ments of the exposure and disease variables and biomarkers are important in association 
studies. As many previous studies have had small study numbers and a lack of stringent 
study design, it is understandable that the results have been confl icting.

In the study design, all possible confounding factors and eff ect modifi ers which are 
thought to modify the levels of enzymes, should be taken into account. For example, 
cruciferous vegetables are known to induce the expression of GSTs [369, 370]. GST 
induction may improve detoxifi cation and excretion of potentially harmful compounds. 
Furthermore, the elevation of the activity of phase II detoxifi cation enzymes may provide 
protection against neoplasia. Dietary factors are also likely to be critical because of their 
eff ect on DNA damage, mutation and repair. However, these is one hypothesis that GSTM1 
null individuals may experience greater exposure to dietary chemoprotective agents that 
are typically deactivated by GSTM1. In this case, the null genotype could be protective 
against lung cancer [204, 371–373].

More emphasis should be placed on the actual functional consequences of the genetic 
variation. For instance, the eff ects in the activity of diff erent variants of EPHX1 and 
GSTP1 genotypes are relatively weak. Careful control of the factors infl uencing expression 
and protein levels should therefore be included in any future studies. It is thought that 
interindividual variation in activity, e.g., in phenotype, is a result of the combination of 
induction, inhibitory, and genetic factors.

For statistical reasons, the gene-dosage eff ect is often ignored. Larger study designs 
could enable investigation of, the role of heterozygous and homozygous GSTM1 positive 
genotypes. We genotyped the study subjects with a method which allowed only the identi-
fi cation of homozygous defi cient GSTM1 and GSTT1 carriers. However, it is, known that 
the activity of these enzymes exhibit a trimodal phenotypic distribution, corresponding to 
the positive/positive, positive/null, null/null genotypes [374, 375].

An other possible source of bias is the diff erences in control groups. In many case-control 
studies, hospital controls are used. Sometimes this may carry an inherent source of bias. 
For instance, in one study, the control group consisted of hospital controls whose main 
diagnoses were chronic obstructive pulmonary disease (COPD). To illustrate this quandry, 
the EPHX1 genotypes have been suggested to have opposite roles in the development of 
lung cancer and COPD [201].  

Exposure assessment is another important issue to be considered. In many cases the 
lifetime exposure to tobacco exposure is imprecisely quantifi ed. Although the duration and 
intensity of smoking have been shown to infl uence cancer risk, most molecular epidemio-
logic studies still classify tobacco exposure crudely as ´ever´ versus ´never´ or according 
to PYs smoked, and do not consider, e.g., the important eff ects of cessation on the risk of 
tobacco-related cancers [32]. In our studies we examined only current smokers, or col-
lected detailed data on smoking only from the current smokers, defi ned as those who had 
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smoked within the year prior to the study. From the rest of the subjects the information 
on smoking was limited to that needed to classify them as never-smokers, ex-smokers, or 
occasional smokers. Th is approach was chosen because it was thought that detailed infor-
mation on cumulative smoking could not be reliably obtained from ex-smokers or those 
who had smoked only occasionally.

Finally, statistical methods should be further developed to be able to take account of 
all of the factors which are thought to aff ect cancer susceptibility [368, 376].

Future directions

DNA has a limited chemical stability and the maintenace of its integrity is a major goal of 
cells. Most cancers are known to be polygenic and multifactorial cancers are an output of 
the combination of two, usually dozens or perhaps even hundreds of genes and exogenous 
factors [135]. Carcinogenesis is a multifactorial and multistage process that is dependent 
on a myriad of mechanisms and pathways regulating absorption, metabolic activation and 
excretion, DNA repair, control of the mitotic cycle, hormonal stimulation of cell growth, 
infl ammatory responses, and many other local or distant events that themselves are under 
genetic control [19]. For this reason it will be diffi  cult to detect subtle diff erences in phe-
notype as the result of a single polymorphism of a single gene in a very complex pathway. 
It may necessary to evaluate the functional relevance of SNPs by concurrently genotyping 
a comprehensive list of SNPs in each pathway to test them globally as genetic risk fac-
tors for tobacco-related cancer and carefully consider the putative genetic and epigenetic 
pathways involved for the relevant agent and organ system [19].

To highlight the complexity of the topic, in one experiment two inbred strains of 
mice with diff erent susceptibilities to lung cancer were interbred, and the phenotype and 
genotype was characterized in the progeny of the cross. In this experiment, at least 30 loci 
and many genetic interactions were associated with strain-specifi c cancer susceptibility 
[377]. Th is example demonstrates the tremendous genetic complexity associated with 
disease susceptibility.

Genomes are dynamic, fl uctuating entities which have evolved by duplicating and 
by inducing variation when they duplicate. Th e recently completed determination of the 
whole human genome sequence provides a priceless research tool, which could ultimately 
enable analysis and understanding of human gene-interaction networks. Investigation of 
the role of hereditary factors and their interaction with environmental agents in the causa-
tion of human cancer will be of assistance in case-control studies aimed at identifying the 
specifi c genes that cause elevated cancer risk and help in the design of studies to examine 
their interaction with environmental risk factors. Th ey will also investigate and develop the 
optimal epidemiological designs and statistical methods for analyzing the data generated 
from the aforementioned activities. Th e greatest challenges in human genetics, however, are 
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still ahead. Many genes, SNPs, CNPs and haplotypes have patterns of variation that diff er 
considerably among populations. Th is emphasizes the need for rigor in the ascertainment 
of population origin when conducting association studies.

Th e implementation of the results to health benefi ts is also a major challenge for the 
future. Benefi ts would include being able to identify those smokers at the highest risk for 
developing cancer. Th ese subgroups could be targeted for the most intensive smoking 
cessation interventions, could be enrolled into chemopreventive trials and might be suit-
able for more aggressive screening programmes that are not appropriate for the general 
population [26].
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CONCLUSIONS

Most cancers show a complicated dependence on environmental factors. Individual diff er-
ences in the ability to metabolize carcinogens modify the eff ects of environmental exposures 
and thereby can also aff ect the consequent cancer risk. In this study, the GSTM1, GSTP1 
and GSTT1 polymorphisms were not associated with increased lung cancer risk, when 
studied alone. Th e GSTP1 and GSTT1 polymorphisms were associated with borderline 
increased oral and pharyngeal cancer risk, while no association with GSTM1 was seen. 
Similarly the studied GSTM3 polymorphism was not associated with lung or oral and 
pharyngeal cancer risk. However, since the recent fi ndings of a functional SNP in the 
promoter region were not taken into account in this study, the GSTM3 gene should still 
be considered as a potential candidate gene in future association studies.

Th e EPHX1 His113 and Arg139 genotypes were associated with increased lung cancer risk 
and the risk was higher when the EPHX1 and GSTM1 genotypes were combined. Th ese 
two genes showed an additive mode of interaction. Although the EPHX1 and GSTT1 
genes showed a synergistic interaction, no signifi cant combined eff ect on lung cancer 
susceptibility was observed. Th e above eff ects of genotypes in lung cancer susceptibility 
were seen to be mostly attributable to SCC. Th is is biologically plausible since the stud-
ied enzymes participate in metabolism of PAHs, which are thought to play an important 
role in development of SCC. However, due to the limited study size, these results remain 
speculative.

Our studies in the large control population stress that major emphasis should be put 
on the origin of the control population in association studies. Th e frequency of GSTM1 
genotypes was signifi cantly diff erent in males in the age groups studied. Moreover, the 
frequency of GSTP1 genotypes diff ered in males and females and was aff ected by smoking 
status. Furthermore, when studying the combined eff ect of GST genes, overpresentation of 
GST protective genotypes was observed in cancer-free heavy smokers compared to lighter 
smokers in the oldest age groups studied.

Taken together, our results point to a modulating role of XME gene polymorphism 
on cancer proneness. However, as the knowledge on the variation on human genome is 
increasing exponentially, new methods to evaluate the role of these genes in cancer prone-
ness need to be developed.
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