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Summary

1  Introduction

Plants and herbivorous insects comprise a major part 
of terrestrial biodiversity: as much as 70% of all known 
species on Earth are either insects or plants (Wilson 
1992), and current estimates of the total diversity of 
plant-feeding insects reach a staggering 4-10 million 
species (Ødegaard 2000, Novotny et al. 2002). These 
insects form important nodes in many food webs. For 
example, some plant populations are suppressed by 
their insect herbivores (Louda 1982, Crawley 1989, 
1997, Maron & Gardner 2000, Maron & Crone 
2006), and phytophagous insects are the food source 
for a high diversity of secondary consumers (Askew & 
Shaw 1986, Hawkins & Lawton 1986, Godfray 1994, 
Hawkins et al. 1997). From a human perspective, 
herbivorous insects cause a large amount of damage 
as pest species on crops and forest trees (Barbosa & 
Schultz 1987, Speight & Wainhouse 1989, Dent 2000, 
Harausz & Pimentel 2002). Not surprisingly, research 
on herbivorous insects has developed into major fields 
within both the biological and agricultural sciences. 
But while some insect populations reach very high 
densities, a fundamental question in ecology still is 
why most herbivorous insects do not reach pest status 
despite seemingly plentiful food resources, and why 
insects are often absent from potential host plant 
individuals. A wide range of mechanisms have been 
proposed to explain the patchy distribution and 
typically “low” abundances of insect herbivores:

Insect populations are sometimes considered to 
be strongly influenced by abiotic factors such as 
weather and climatic conditions (Andrewartha & 
Birch 1954, Milne 1957, DeBach 1958, Dempster 
1983). In recent decades, the ecology of herbivorous 
insects has increasingly been examined from a 
trophic perspective. In this context, the distribution 
and dynamics of herbivorous insect populations 
is thought to match variation in plant quality and 
predation pressure (e.g. Hairston et al. 1960, Lawton 
& McNeill 1979, Denno & McClure 1983, Strong et 
al. 1984, Hunter et al. 1992, Hawkins 2001, Agrawal 
2004, Schoonhoven et al. 2005). Nevertheless, many 
studies of herbivorous insects conducted within 
the realm of trophic interactions (notably the ones 
examining the effects of plant quality) adopt a highly 
non-spatial view on the world. This contrasts with 
another paradigm: that of spatial ecology.

During the past few decades, ecology has become 
increasingly permeated by the notion that everything 
takes place within a spatial context, and that the 
distribution of habitat may strongly influence the 
distribution, dynamics, and evolution of natural 
populations (e.g. Hanski & Gilpin 1997, Tilman & 
Kareiva 1997, Hanski & Gaggiotti 2004). Thus, even 
in a hypothetical world without local variation in 
plant defences, natural enemies and environmental 
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conditions, we would hardly find insects on all 
plant individuals. At small spatial scales (within the 
movement range of the herbivore), the distribution 
of plants might influence the likelihood that the 
insect individual will find the plants, and the foraging 
decisions made by the insect (Root 1973, Singer & Wee 
2005). At larger scales, the dispersal ability of the insect 
may interact with landscape structure to cause local 
absences on isolated plants (e.g. Eber & Brandl 1996, 
Hanski 1999, Doak 2000, Menendéz & Thomas 2000). 
Thus, at the landscape level, the spatial distribution 
of host plants may blur the importance of abiotic  
conditions  and trophic interactions, or decouple 
herbivore distribution and abundance from local 
habitat quality (cf. Pulliam 1988, Thomas et al. 1996).

Despite the potentially important roles of both local 
habitat quality and intra-specific spatial processes, 
little is known about how their relative importance 
compares in different situations and settings. This 
thesis uses the leaf-mining moth Tischeria ekebladella 
(Box 1), a specialist herbivore of the pedunculate oak, 
Quercus robur, as a case study to disentangle trophic 
interactions from spatial population dynamics. The 
overall objective has been to assess how local “habitat 
quality” (in the form of host quality and predation 
pressure) compares to “landscape structure” (the 
spatial distribution of oak trees) in influencing 
the local and regional distribution, dynamics, and 
evolution of this insect herbivore. The conceptual 
context of the thesis is described in Box 2.

 

2  Outline of the thesis

The thesis has seven chapters. The first chapter (I) 
sets the stage for the rest of the thesis by providing 
an overview of means and processes by which spatial 
variation in abiotic conditions, trophic interactions 
and landscape structure may influence herbivorous 
insects.

Chapters II-IV examine spatial and temporal 
variation in host quality and its potential implications 
for the evolution of herbivore host use. In chapter II 
we ask how similar individual oaks are as habitat for 
T. ekebladella, and how large the variation within trees 

is compared to that between trees. In chapter III, we 
assess how static or dynamic the spatial patterns of 
habitat quality are in time: Is a tree, branch or shoot 
that is favourable at one point in time likely to be so 
later, or does the relative ranking of resource units shift 
through time? Chapter IV tests hypotheses spurred 
by results from the two preceding chapters. Based on 
the documented spatial and temporal patterns, we 
investigate whether female resource selection matches 
spatial patterns of local habitat quality, whether 
females adjust their oviposition behaviour in response 
to plant traits commonly assumed to signal “quality”, 
and whether females select the resources on which 
their offspring perform best.

Chapters V-VII examine how the patterns of host 
quality described in II-III combine with other trophic 
interactions and with patterns of host distribution 
to structure the regional population of Tischeria 
ekebladella. In chapters V and VI we explore large-
scale patterns of habitat quality and assess the role of 
trophic interactions in creating regional patterns of 
insect distribution. More specifically, we ask whether 
patterns of leaf miner distribution and abundance at 
the landscape level reflect spatial patterns of larval 
mortality incurred by the host plant (V, VI) or by 
natural enemies (VI).

In the final chapter (VII), we compress all that we 
have learnt in chapters II-VI into a metapopulation 
model. Here, the aim is to achieve a comprehensive 
understanding of the system, to assess the relative 
importance of local and regional processes on the 
tree-specific moth dynamics, and to make predictions 
about the degree of interaction between moths 
originating from different trees.

3  Methods

The thesis builds on data collected across several 
spatial and temporal scales. For details on sampling 
and experimental designs I refer to the “Material 
and Methods” sections of the individual chapters. 
Here I will briefly summarize the range of responses 
measured, and the spatial scales addressed.
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Box 1. �e study system: Tischeria ekebladella on oak trees

Several features of both the plant and the insect render the oak-Tischeria ekebladella system ideal for studies of plant-
insect interactions in a spatial context. In this system, the host has a long life span, and thereby o�ers a relatively stable 
landscape for many herbivore generations. �e oak is also highly conspicuous. While mapping the distribution of 
potential habitat would be challenging for an insect species associated with, for example, an annual herb, it is easily 
achieved for a herbivore feeding on a single tree species. Moreover, as the oak has a scattered distribution throughout 
the Finnish landscape, it is possible to identify trees of varying degree of isolation (Fig. 1).

500 m

Fig. 1. To address some of the study questions of 
this thesis, I mapped the location of all oak trees on 
the island of Wattkast in south-western Finland. 
�e fact that the system is closed (an island) makes 
it ideal for studies on metapopulation dynamics, 
as it will be minimally in�uenced by external 
processes.

�e moth Tischeria ekebladella is highly host-speci�c, and in Finland it will only feed on oak trees. Hence, 
a map of oaks constitutes an adequate map of its landscape. �e leaf-mining habit of T. ekebladella and the 
conspicuousness of the leaf mines (Fig. 2) also enable an accurate assessment of the distribution and abundance 
of the insect – a task that would hardly be feasible if the larvae were free-feeding. As a study species, T. 
ekebladella is highly cooperative and experimental manipulation of the system is possible. Moths can easily be 
reared from larvae collected in hibernating leaf mines. By enclosing adult moths into bags attached to the trees, 
it is possible to transfer the species to foliage of our choice (Fig. 3). Finally, the species can be experimentally 
removed from (small) trees by picking o� all mined leaves.

Fig. 2. Oak leaf mined by Tischeria ekebladella.

Fig. 3. Bags used for experimental introductions. �e 
success rate of introductions is generally high. For 
example, in the experiment described in chapter VI, eggs 
were found in 291 of the 329 bags into which we added 
adult moths.
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Box 2. Conceptual context of the study

�is thesis does clearly not address all factors a�ecting the abundance and distribution of Tischeria 
ekebladella – that is prevented by the complexity of nature. Herbivorous insects like T. ekebladella may 
form part of intricate food webs, where interactions with other species may in�uence both the ecology 
and evolution of the focal species. In addition to being directly a�ected by vertical forces acting bottom-up 
(properties of their host plants) and top-down (various types of natural enemies), herbivorous insects are 
also in�uenced horizontally through interactions with other herbivore species and plant pathogens (Faeth 
1987). To complicate things further, some e�ects that appear to be vertical may in fact be indirect and 
mediated by species at the same trophic level (Ohgushi et al. 2007). Both vertical and horizontal, as well as 
direct and indirect e�ects have been recorded in leaf miners (e.g. Bultman & Faeth 1986, Sato & Higashi 
1987, Masters & Brown 1992, Bylund & Tenow 1994, Fisher et al. 2000, Riihimäki et al. 2003, Morris et al.
2004). Chapter I provides an overview of these e�ects, and how they may vary in a spatial context.

�e agents causing direct and indirect bottom-up and top-down e�ects on herbivores are many and 
diverse. Numerous host plant traits have been identi�ed as important for leaf miners, such as leaf nutrition 
(De Bruyn et al. 2002, Cornelissen & Stiling 2006), host plant phenology (Mopper & Simberlo� 1995, 
Eber 2004), early leaf abscission (Faeth et al. 1981, Preszler & Price 1993), and secondary chemisty 
(Hunter 1997). Similarly, the natural enemies causing top-down e�ects on leaf miners are highly diverse 
and represent several feeding guilds (e.g. Owen 1975, Sato & Higashi 1987, Lewis et al. 2002). 

�e general complexity of the target system calls 
for very explicit decisions in terms of what to address 
in the study and what to leave out. To disentangle 
trophic e�ects on T. ekebladella from the kind of 
e�ects which may arise from intra-speci�c spatial 
population processes, I have therefore made a 
conscious choice in terms of responses addressed. 
In selecting single components of a complex 
network, I explicitly assume that other factors le� 
unaddressed do not introduce any systematic bias 
in the relations actually examined.

Another consequence of the complexity of 
matters is that not every detail of the mechanisms 
can be addressed. As an important corollary to 
the chosen level of resolution, this thesis examines 
trophic interactions without attempting to identify 
whether they are direct or indirect (Fig. 4; see also 
Fig. 1 in I). Since T. ekebladella shares its host 
with a large number of other herbivore species, it 
is indeed possible that some of the bottom-up and 
top-down e�ects might in part be mediated by 
other herbivores through processes like induced 
defences (Karban & Baldwin 1997) and apparent 
competition (van Veen et al. 2006). Only further 
studies dissecting individual components of the 
sketch drawn here will resolve these issues.

Constitutive host quality

Abiotic factors

Direct predation and parasitism

Direct inter-specific
competition

Induced defences

Apparent competition

Intra-specific 
competition II-VI

TOP-DOWN VI

BOTTOM-UP II-VI

Population turnover VII

Migration V, VII

SPATIAL POPULATION
DYNAMICS

Fig. 4. Picture showing factors of potential importance 
for the ecology and evolution of Tischeria ekebladella.
Among these trophic and non-trophic  factors, I have 
focussed my studies on top-down and bottom-up 
factors, on intra-speci�c competition, and on intra-
speci�c spatial population processes (population 
turnover and migration). In this schematic drawing, the 
direct and indirect e�ects of host quality and natural 
enemies are grouped to depict “realized”  bottom-up 
and top-down e�ects (shaded areas). �e box delineates 
factors in�uencing the spatial population dynamics of 
the species. Note that several of the factors may interact 
with each other.
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3.1 Measuring local habitat quality

In previous studies of plant-insect interactions, the 
“quality” of plants has been assessed in many ways. 
While plant quality is sometimes considered as an 

“absolute” trait (such as the concentration of secondary 
compounds in the leaf tissue), it is becoming increasingly 
clear that “quality” is something more complex, and 
something specific to each insect-plant interaction 
(Haukioja 2003). Therefore, I have supplemented 

“absolute” traits of the host plant (chemical measures of 
oak leaf contents;  II-IV, Box 3) with straight-forward 
measures of how the moth larvae grow (II) and survive 
(II-VI). Among many potentially important traits, the 
choice of these particular measures seems well justified: 
Leaf phenolics are considered key elements in the 
plant chemical defence system (e.g. Harborne 1994, 
Waterman & Mole 1994, Box 3), and larval growth 
and survival are central components of insect fitness 
(e.g. Reavey & Lawton 1991).

3.2 Assessing spatial patterns

Throughout the thesis, “space” is dealt with using several 
approaches: In chapters II-IV, the spatial context is 
implicit but mostly covers spatial scales that could be 
covered by an individual moth during its lifetime. To 
assess spatial patterns of variation in oak leaf chemistry 
and leaf miner performance, we used a hierarchical 
sampling protocol, which enabled us to partition the 
total variation into variation among, for example, trees, 
branches, shoots, and leaves (see Fig. 1 in chapter II). 
In the remaining chapters (V-VII), where the spatial 
scale is larger and the spatial context explicit, we build 
on georeferenced data.

To assess the effects of host tree distribution on the 
distribution and dynamics of T. ekebladella, and on 
the spatial structuring of the moth population, the 
location of all oak trees on the island of Wattkast in 
south-western Finland was mapped (Fig. 1 in Box 
1). Data collected within this setting were analysed 
using multiple methods of spatial analysis. We used a 
structural connectivity measure to describe the degree 
of host tree isolation (V), K-function statistics to 
explore gradients in larval survival rates through the 
landscape (VI), and a spatially explicit metapopulation 
model to assess spatial structuring of the regional moth 
population on Wattkast (VII).

4  Main results and discussion

This thesis shows that both trophic interactions and 
metapopulation-level processes may form important 
facets of the ecology of T. ekebladella, but that their 
importance will vary with the scale examined. Below, 
I identify and discuss the most important findings.

At any given time, differences among trees are 
small

When oak trees were compared at any one point in 
time, the average differences among tree individuals 
were minor compared to the large amount of 
variation within individual tree crowns (II, III, V). 
Although the exact patterns of hierarchical variation 
differed between the traits examined, the overall 
pattern is clear: From the perspective of Tischeria 
ekebladella, trees form units of extremely high internal 
heterogeneity. This finding has several important 
implications.

In the study of arboreal insects, the prevailing view 
has long been that the tree individual – the genet – is 
the relevant unit upon which the interplay between 
trees and insects takes place (e.g. Edmunds & Alstad 
1978, Mopper et al. 1984, 1995, 2000, Weis & 
Campbell 1992, Hanks & Denno 1994, Memmott et 
al. 1995, Ruhnke et al. 2006). Nevertheless, our results 
suggest that we may need to shift our focus to smaller 
spatial scales. With most of the variation in larval 
performance found within individual tree crowns (II), 
insects might primarily respond not to host quality at 
the tree level, but rather to variation at smaller spatial 
scales, such as the shoot and leaf levels. With only 
minor variation at the tree level, ignoring variation in 
tree-specific “habitat quality” will also seem justified 
when examining insect population dynamics within a 
metapopulation framework (cf VII).

 … and resource quality changes through time

Our results show that any spatial patterns that occur 
at some point in time are only moderately stable 
through time (III). When examined within a season, 
trees were only partly consistent in their relative 
rankings in terms of phenolic chemistry and insect 
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Fig. 5. A selection of hydrolysable tannins  found in oak leaves (sampling date 29 May). �e pie charts show the 
proportion of leaf dry weight consisting of respective compound. �e total content of hydrolysable tannins and 
�avonoid glycosides amounts to an impressive 19% of the total dry weight of an oak leaf.

Box 3. Phenolic contents as a measure of host quality

Among the myriads of chemical compounds found in plant tissue, we have chosen leaf phenolics in general, 
and hydrolysable tannins and �avonoid glycosides in particular, as a measure of host quality. �is choice was 
based on several considerations: Phenolics are both common and widely distributed among plant species (e.g. 
Harborne 1994, Waterman & Mole 1994), and especially in oaks, their concentration is extremely high (e.g. Fig. 
5). Due to their in�uence on both the distribution, performance and community structure of insect herbivores, 
phenolics have o�en been considered an important part of the chemical defence system of oak trees (e.g. Feeny 
1970, Rossiter et al. 1988, Abrahamson et al. 2003, Tikkanen & Julkunen-Tiitto 2003, Forkner et al. 2004). 
According to the paradigm prevailing at the outset of our study (Feeny 1970), the concentration of phenolics 
in general and tannins in particular would also increase during the course of the summer, and reach particularly 
high levels during the larval period of T. ekebladella.

While many ecologists have described phenolic contents by rough-and-ready summary measures, we opted 
to analyze them on a compound-speci�c basis (Fig. 5). �is decision was motivated by two facts: di�erent 
phenolic compounds have very di�erent biological activities (Zucker 1983, Ayres et al. 1997, Kraus et al. 2003), 
and the total concentration of phenolics does not adequately re�ect the concentration of individual compounds 
(Salminen et al. 2004).

During the course of my study, we realised that concentrations of most measured phenolic compounds 
actually peak in the early season (Fig. 1 in III), and decrease dramatically in late summer (cf. Salminen et al. 
2004). �is observation alters the prevailing view on seasonal variation in oak phenolics, and suggests that the 
measured compounds may be less likely to a�ect feeding by late-season leaf miners than we �rst thought. In 
hindsight, it might then have been equally motivated to focus our studies on some other aspects of leaf quality 
such as water content (Scriber 1984), nitrogen content (Mattson 1980, White 1993), or leaf toughness (Coley 
1983, Howlett et al. 2001), which might still turn out to be more important determinants of foliage quality 
than mere phenolics. Nevertheless, I stress that di�erent factors may interact in complex ways to determine 
plant quality (Kause et al. 1999), and that no single trait will su�ce to explain insect performance.
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survival. When insect abundances and survival rates 
were examined on the very same trees, branches 
and shoots in several consecutive years, the level of 
consistency was – at  best – intermediate.

Temporal shifts in the rankings of tree individuals 
will make tree-to-tree differences even more subtle 
than if spatial patterns were stable in time. Within a 
season, the observed spatiotemporal variation might 
render it difficult for developing larvae to keep up 
with the changing conditions: a site that is optimal 
at one point in time might be unfavourable at a later 
stage of larval development (see Ruusila et al. 2005). If 
the within-crown mosaic is changing in time (which 
might also be the case within a season; cf. Yamasaki 
& Kikuzawa 2003), female moths may fail to select 
resources optimal for offspring development (IV).

Spatiotemporal resource heterogeneity may 
hamper female choice

Indeed, female preference does not match patterns 
of offspring performance: Larvae did not survive 
any better on shoots and trees particularly favoured 
by ovipositing females (IV). Nevertheless, patterns 
of female oviposition did not match our a priori 
expectation of low discrimination between individual 
trees (cf. II, V): despite little variation between 
trees compared to large variation within individual 
tree crowns (II, III, V), ovipositing females clearly 
discriminated between leaves from different trees 
(IV).

The reason for the lack of preference-performance 
coupling in this system can possibly be attributed 
to spatiotemporal resource heterogeneity (III). If 
resource units (e.g. trees, branches and shoots) 
commonly change their relative “quality rankings”, 
ovipositing females may fail to predict the fate of their 
developing offspring. Under such circumstances, the 
females might need to adopt a risk-spreading strategy 
to cover themselves against the risk of complete failure 
(den Boer 1968, Hopper 1999). Even if this is the case, 
the clear discrimination by females between different 
trees will still require an explanation. According to 
a tentative hypothesis outlined in chapter IV, the 
mismatch between the spatial scales of female choice 
and larval performance may be due to temporal shifts 

in hierarchical patterns of variation. At the time of 
female choice, trees would then appear more different 
from each other than they are during the time of larval 
feeding. We do not know what traits females respond 
to when selecting foliage for offspring development. 
If leaf phenolics are important, that could explain 
female discrimination between trees (II; see also 
Salminen et al. 2004).

Host plant quality fails to explain leaf miner 
distribution…

When scaling up to the landscape level, there is again 
no detectable link between leaf miner distribution 
and performance. Experimentally introduced larvae 
sheltered from natural enemies survived just as well 
on trees from which the species was naturally absent 
as on trees that hosted wild leaf miners (V, VI). Thus, 
larval mortality incurred by the host tree does not 
suffice to explain the distribution and abundance of 
Tischeria ekebladella across the landscape.

Nevertheless, host-induced mortality seems low 
overall (III, V, VI), and hence this factor may be of 
secondary importance compared to other factors, 
such as mortality incurred by natural enemies.

… and so do natural enemies…

Mortality induced by natural enemies is very high: 
in one experiment, the survival rate of introduced 
larvae exposed to parasitoids and predators was below 
10% (VI). Nevertheless, tree-specific differences in 
larval survival rates also fail to explain landscape-level 
patterns of distribution and abundance in Tischeria 
ekebladella. In the presence of natural enemies, the 
survival of transplanted larvae was unrelated to the 
abundance of wild mines on a tree, and the survival 
of introduced larvae was in fact higher on trees that 
were unoccupied by the species than on trees which 
sustained a population of wild individuals (VI).

Thus, although trophic influences (host quality and 
natural enemies) on larval survival rates may be locally 
important, they cannot be the prime determinants 
of leaf miner distribution and abundance across the 
landscape (V, VI).
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… hence, the key is in spatial processes

While trophic interactions fail to account for patterns 
of leaf miner incidence across trees, the likelihood of 
a (small) tree being occupied by Tischeria ekebladella 
does depend on its spatial location in the landscape. 
On small oak individuals, leaf mines are more likely 
to be present on trees surrounded by other oak trees 
than on isolated oak individuals (V, VII). This is 
probably due to metapopulation processes (e.g. 
Hanski 1998, 1999). In this context, limited moth 
dispersal combined with the relative instability of 
small populations will cause the species to be absent 
from some of the small, isolated oaks (V, VII). The 
importance of regional processes on local leaf miner 
abundance has previously been demonstrated by 
Connor et al. (1983), who experimentally showed 
that the recruitment of leaf miners on individual oak 
trees – albeit much larger than the small trees in our 
study – is largely dependent on immigration form 
surrounding trees. 

As a whole, our results also show that the regional 
population of T. ekebladella on Wattkast cannot be 
assigned to any strictly defined “metapopulation 
category” (cf. Harrison & Taylor 1997). The 
dispersal ability of the moth interacts with the 
spatial distribution of oak trees on Wattkast to 
create a continuum of tree-specific “population 
types”, ranging from populations where local 
processes dominate (isolated trees) to populations 
where regional processes override the local ones 
(well-connected trees and small trees; VII). Thus, it 
is only on the small trees that we will observe the 
extinction-colonization dynamics typical of “classical 
metapopulations” (Hanski 1998, 1999).

Adaptive deme formation is context-dependent 
and unlikely

As a consequence of the processes described 
above (and in chapter VII), the strength of gene 
flow between tree-specific moth populations will 
strongly depend on the spatial context (Slatkin 
1987, Hastings & Harrison 1994, Harrison & 
Hastings 1996, Whitlock 2004). The likelihood of 
an insect population adapting evolutionarily to local 
conditions may thus be strongly influenced by the 

spatial setting. On tree individuals surrounded by 
conspecifics, adaptive deme formation at the level 
of the tree individual (Edmunds & Alstad 1978, 
Mopper et al. 1995, 2000) seems highly unlikely. In 
contrast, local moth populations on isolated trees 
would have a greater potential of becoming adapted 
to the traits of their host (but see Morgan et al. 2005). 
Nevertheless, detecting local adaptations of moths 
even to very isolated trees seems rather unlikely in 
this particular system, since the differences in “local 
habitat quality” provided by different tree individuals 
are small (II, V) and temporally inconsistent (III).

5  Perspectives 

All ecological communities contain species with 
different ecological characteristics, and what we 
observe in one system may not apply to another. 
Based on the results of this thesis, how much can we 
infer about patterns and processes in other systems?

Clearly, the documented spatial patterns of 
habitat quality may be restricted to the oak-Tischeria 
ekebladella system. In studies where substantial tree-
to-tree differences in insect performance have been 
reported, phenological variation (such as variation 
in the timing of budburst) has commonly been 
advocated as an important causal factor (e.g. Crawley 
& Akhteruzzaman 1988, Mopper & Simberloff 
1995, Tikkanen & Julkunen-Tiitto 2003, Mopper 
2005). Thus, one potential explanation for the small 
differences in larval performance between trees 
in our study system might be the fact that larval T. 
ekebladella feed on mature oak leaves. At the time 
of larval feeding, the tree-to-tree differences in, for 
example, phenolic chemistry will be much smaller 
than at the early stage of leaf development (Salminen 
et al. 2004). Species feeding earlier – especially the 
ones that have to time their feeding with bud break – 
may then perceive larger among-tree differences than 
T. ekebladella. Before we can resolve whether the 
pattern found in our study system is common or not, 
we will need more studies – preferably on a range of 
insect species with different phenologies – describing 
hierarchical patterns of resource variation.
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When it comes to the role of spatial processes in 
population dynamics, I expect processes similar to 
the ones described here to operate in many other 
systems: Many insect herbivores are host specific 
(Claridge & Wilson 1981, Bernays & Graham 1988, 
Schoonhoven et al. 2005), many tree species have a 
patchy distribution (e.g. Condit et al. 2000, Frost & 
Rydin 2000, Atkinson et al. 2007), and many insects 
have a limited dispersal ability (Tscharntke & Brandl 
2004). Hence, I would expect to find similar spatial 
structuring at the landscape-level in many other 
insect populations. Nevertheless, the results from 
the oak-T. ekebladella system must not be uncritically 
applied to other systems. Specialist insect herbivores 
associated with trees form a large and diverse group 
of species, and in this respect no single study system 
will serve as an ideal “model system” for all tree-
insect interactions. Among leaf miners of oaks, T. 
ekebladella is one of the species with the highest local 
abundances. This may render it an extreme among the 
types of spatial population structures encountered 
among insects on oaks. Studies have shown that even 
closely related species sharing the very same habitat 
network may respond very differently to its spatial 
structure (Gutierrez et al. 2001, Roslin & Koivunen 
2001, van Nouhuys & Hanski 2002). In systems 
where tree-to-tree differences are larger, these might 
also impose some further structuring on the insect 
population (see above). 

5.1 Applications

Research is often driven by the needs and interests 
of society (Ford 2000). While T. ekebladella is 
neither threatened nor a pest species (but see Jordan 
1995), our results might have some applied value 
in other systems, primarily in the context of insect 
conservation. In particular, the current findings 
support one fundamental insight: that human impact 
on a landscape may affect a local population – even 
when the focal population itself is left undisturbed. 
This is likely to be true whenever the local presence 
and dynamics of a species are highly influenced by 
the surrounding landscape (I, V, VII). Yet, it is not 
sufficiently acknowledged in current conservation 
practises (which often focus on preserving local 
populations without considering their surroundings 
or internal relations).

5.2 Key priorities for future studies

While this thesis provides insights into the spatial 
ecology of a tree-insect interaction, it also leaves 
many questions open for future work. Some of these 
challenges are identified in the individual chapters, 
but I would here like to emphasize three topics where 
future research might prove particularly fruitful:

First, spatiotemporal variation in resource quality 
deserves closer examination. So far, rather few studies 
have assessed how spatial and temporal variation in 
resource quality interact, and how it affects herbivore 
host use and evolution. Results from the studies 
available so far (e.g. Yamasaki & Kikuzawa 2003, 
Riipi et al. 2004, Ruusila et al. 2005, III) suggest that 
spatiotemporal variation might indeed be a powerful 
mechanism preventing herbivores from utilizing their 
host plants efficiently. More studies covering a range 
of spatial and temporal scales will be needed before 
we can resolve how common the phenomenon is, and 
what consequences it has for the herbivores.

Second, given the great interest in the “adaptive 
deme formation hypothesis” (Edmunds & Alstad 
1978), it seems rather surprising that adaptation 
of insect herbivores to their host trees has not yet 
been examined from an explicitly spatial perspective. 
While general theory addresses these issues (e.g. 
Slatkin 1987, Gandon & Michalakis 2002, Morgan 
et al. 2005), generalizations about the type of systems 
and situations facilitating local adaptations have so 
far focused exclusively on traits of the insects and the 
plants (van Zandt & Mopper 1998, Mopper 2005). 
The next step will be to examine how gene flow among 
local insect populations will affect the strength of 
local adaptation (VII).

Third, the effects of the spatial population dynamics 
of herbivores on other species in the community 
merits further study. Since herbivores interact with 
species at the same trophic level, and at both lower 
and higher trophic levels, the effects of landscape 
structure may extend well beyond those on the 
herbivore itself. The spatial dynamics of herbivores 
has already been shown to influence species at higher 
trophic levels (van Nouhuys 2005). To my knowledge, 
little is known about how the spatial population 
dynamics of herbivores feed back to affect the quality, 
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evolution and dynamics of the host. Moreover, 
while assemblages of insect herbivores on trees offer 
fascinating models for studies of metacommunity 
dynamics (Leibold et al. 2004, Holyoak et al. 2005), 
there are few field-based studies so far. A rough 
analysis reveals pervasive effects of the spatial context 
of an oak tree on local species richness (Fig. 6) and 
opens up many interesting possibilities for future 
research. I am therefore pleased to see that this kind 
of work is already being conducted in the context of 

food webs sustained by oaks (R. Kaartinen and A.Tack, 
in preparation). There are plenty of hypotheses to 
be tested (I), and I look forward to seeing the field 
of spatial ecology firmly integrated into the study of 
plant-insect interactions.    

Tomas Roslin, Bob O’Hara, Julia Koricheva and 
Pekka Niemelä provided helpful comments on the 
summary chapter.

Fig. 6. The number of oak-specific leaf-mining and galling insect species on each of 167 small oak trees (surveyed 
in 2004) in relation to the structural connectivity of the tree. The connectivity measure used is described in 
chapter V. The curve is based on results from a generalized linear model (log link, Poisson distributed errors) of 
the number of species as a function of host connectivity (χ²1=57.5, P<0.0001).
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