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SUMMARY 

 
The type III secretion system (T3SS) is an essential requirement for the virulence of 

many Gram-negative bacteria which infect plants, animals and mankind. Pathogens 

use the T3SS to deliver effector proteins from the bacterial cytoplasm to the 

eukaryotic host cells, where the effectors subvert host defenses. The best candidates 

for directing effector protein traffic are the bacterial type III-associated appendages, 

called needles or pili. 

In plant pathogenic bacteria, the best characterized example of a T3SS-associated 

appendage is the HrpA pilus of the plant pathogen Pseudomonas syringae pv. tomato 

DC3000. The components of the T3SS in plant pathogens are encoded by a cluster of 

hrp (hypersensitive reaction and pathogenicity) genes. Two major classes of 

T3SS-secreted proteins are: harpin proteins such as HrpZ which are exported into 

extracellular space, and avirulence (Avr) proteins such as AvrPto which are 

translocated directly to the plant cytoplasm. 

This study deals with the structural and functional characterization of the 

T3SS-associated HrpA pilus and the T3SS-secreted harpins. By insertional 

mutagenesis analysis of HrpA, we located the optimal epitope insertion site in the 

amino-terminus of HrpA, and revealed the potential application of the HrpA pilus as a 

carrier of antigenic determinants for vaccination. By pulse-expression of proteins 

combined with immuno-electron microscopy, we discovered the Hrp pilus assembly 

strategy as addition of HrpA subunits to the distal end of the growing pilus, and we 

showed for the first time that secretion of HrpZ occurs at the tip of the pilus. The pilus 

thus functions as a conduit delivering proteins to the extracellular milieu. By using 

phage-display and scanning-insertion mutagenesis methods we identified a conserved 

HrpZ-binding peptide and localized the peptide-binding site to the central domain of 

HrpZ. We also found that the HrpZ specifically interacts with a host bean protein. 

Taken together, the current results provide deeper insight into the molecular 

mechanism of T3SS-associated pilus assembly and effector protein translocation, 

which will be helpful for further studies on the pathogenic mechanisms of 

Gram-negative bacteria and for developing new strategies to prevent bacterial 

infection. 
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A. INTRODUCTION 
 

In Gram-negative bacteria, the cell envelope consists of an inner membrane (IM), 

periplasm, cell wall, and an outer membrane (OM). Often the transport of water and 

small nutrient molecules between the cytoplasm and extracellular milieu is relatively 

easy due to the semi-permeable membrane, but the transport of large proteins such as 

toxins and enzymes are much more complex. However, the translocation of protein 

across biological membranes is a fundamental part of cellular life. The secretion of 

proteins from the cytoplasm through the IM, and in some cases through the OM to the 

extracellular space, requires dedicated machineries, which are classically divided into 

five categories: type I, II, III, IV, and V secretion pathway (Thanassi & Hultgren, 

2000; Table 1). The pathways differ from each other mainly by the presence or 

absence of a signal peptide on the secreted protein and by the characteristics of 

different translocation steps (reviewed by Fath & Kolter, 1993; Pugsley, 1993; 

Salmond & Reeves, 1993). Protein secretion across the two membranes takes place 

either in one continuous step (for type I and type III protein secretion pathways, and 

for T-DNA transfer of type IV secretion pathway), or in two separate steps (for type II 

pathway and pertussis toxin secretion of type IV pathway). In the two-step secretion 

pathways, transportation of protein across the IM and OM requires separate protein 

machineries, and periplasmic intermediates occur between the two protein 

translocation steps (reviewed by Henderson et al., 2004; Wandersman, 1996). 

 

Transportation of the precursor protein from cytoplasm to or across the IM is often 

referred to as protein export. In the literature, the term “export” also often refers to 

protein secretion. In this thesis, “protein secretion” denotes the process where protein 

is translocated across the OM to the extracellular space in Gram-negative bacteria. 

 

1. Protein export across the bacterial inner membrane 

Prokaryotes contain two parallel pathways for the export of proteins across the 

cytoplasmic membrane, the Sec-dependent pathway and the Tat (twin-arginine 

translocation) pathway. 
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1.1. Sec-dependent protein export pathway 

The Sec pathway is found in prokaryotes, archaea and eukaryotes, and it is needed for 

the translocation of proteins across the cytoplasmic membrane or endoplasmic 

reticulum (ER) membrane. The amino terminal signal peptide of the preprotein is 

about 20-30 amino acids long and composed of mainly hydrophobic amino acid 

residues. The core elements of the Sec system, composed of SecYEG (Sec61αβγ in 

the case of archaea and eukaryotic organelles), are well conserved and are likely to 

have functionally equivalent roles in the translocation process. In Escherichia coli, 

during or shortly after synthesis, the chaperone SecB binds the pre-protein, maintains 

it in a translocation-competent state, and targets it to the SecYEG-bound SecA located 

in cytoplasmic membrane. Subsequently, the pre-protein is translocated through the 

SecYEG pore using the energy from ATP hydrolysis and the proton-motive force 

which drives the pre-protein into and across the membrane. Signal peptide of the 

preprotein is cleaved on the periplasmic side by leader peptidase, encoded by LepB in 

E. coli, releasing the mature protein from the Sec machinery to periplasmic space or 

integrated in cytoplasmic membrane (reviewed by Economou, 1999; de Keyzer et al., 

2003; Mori & Ito, 2001; Pugsley, 1993; Rusch & Kendall, 2006; Stephenson, 2005).  

 

1.2. Tat pathway for transporting folded proteins 
The Tat pathway is found both in eukaryotes for proteins transported across the 

chloroplast thylakoid membrane (Settles et al., 1997) and in many bacteria such as E. 

coli and Pseudomonas aeruginosa for proteins translocated into or across the IM 

(Berks et al., 2000; Thomas et al., 2001; Voulhoux et al., 2001; Wu et al., 2000). This 

pathway differs from the Sec pathway in terms of its remarkable ability to transport 

fully folded proteins, and the amino-terminal signal peptides of the Tat-dependent 

proteins possess a SRRxFLK consensus motif. In E. coli, the simplest Tat system 

consists of three protein components: TatA, TatB, and TatC (Sargent et al., 1998). 

During the export process, Tat secretion substrates are initially bound by the TatBC 

complex while the TatC binds to the consensus motif of the signal peptide. The 

TatBC-substrate complex then moves to the TatA channel and associates with it. By 

utilizing the proton-motive force, the substrate is transported to the periplasm and the 
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signal peptide is cleaved off by the signal peptidase in the periplasm. 

 

The coexistence of Tat and Sec export pathways as well as different secretion 

pathways in one organism has been found in many bacterial systems. Andre Filloux’ 

group reported for the first time that in P. aeruginosa the secretion of phospholipase 

C is Tat-dependent while the secretion of exotoxin A is Sec-dependent (Filloux et al., 

1998, Voulhoux et al., 2001). The virulence contribution of the Tat pathway in the 

plant pathogen Pseudomonas syringae pv. tomato DC3000, has also been reported 

(Bronstein et al., 2005). 

 

2. Protein secretion pathways in Gram-negative bacteria 

As mentioned previously, there are at least five different secretion systems present in 

Gram-negative bacteria (Figure 1 & Figure 2), each of them will be introduced briefly 

below, except the type III secretion system (T3SS). Since T3SS is the main focus of 

current study, it will be described in more detail in Section 2.6. Pathogenic bacteria 

use various virulence factors to invade and survive in their host, and may eventually 

destroy the host cell. Hence, extracellular secretion of proteins is often a major 

virulence mechanism in bacterial infection (Table 1).  

 

2.1. Type I protein secretion pathway 

One of the strategies used by Gram-negative bacteria to secrete proteins across the 

entire envelope is the type I secretion system (T1SS), also known as the ATP-binding 

cassette (ABC) transporter. E. coli α-hemolysin (HlyA) was the first protein shown to 

be secreted through the T1SS (Goebel et al., 1982). The HlyA is a toxin protein 

interacting with the target cell and causing pore-formation in the host cell plasma 

membrane. Another example is the antibacterial toxin colicin V encoded by the cvaC 

gene, which is a small substrate with 103 residues and secreted via the CvaAB/TolC 

machinery in E. coli (Gilson et al., 1990). The largest known protein secreted through 

the T1SS is the Pseudomonas fluorescence LapA, containing more than 8000 amino 

acid residues. LapA is known to be involved in adhesion and biofilm formation 

(Hinsa et al., 2003). The secretion of other proteins, such as metalloproteases 

(Erwinia chrysanthemi, P. aeruginosa and Serratia marcescens proteases), 

haemophores (Serratia marcescens HasA and P. aeruginosa HasAp haemoproteins), 

lipases (S. marcescens LipA) and S-layer proteins, are all T1SS-dependent. Although 
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these proteins vary greatly in size, from 78 to 8682 residues, they are generally very 

acidic and often enzymatic or toxic to host cells (Delepelaire, 2004). Most proteins 

are rich in the glycine-repeated motif GGXGXD close to the carboxyl terminus. The 

secretion signal is typically located within the last 50-60 residues of carboxyl 

terminus of the secreted protein and is not cleaved as they cross the membrane. The 

three-dimensional structure of the metalloprotease of P. aeruginosa shows that the 

repeats form a 'parallel beta roll' structure that is believed to facilitate the passage of 

the secreted protein (Baumann et al., 1993). 

 

The T1SS machinery is composed of three membrane proteins (Figure 1), which are 

all required for secretion (reviewed by Wandersman, 1996). The first is an inner 

membrane ATP-binding cassette (ABC) protein which typically comprises a 

nucleotide-binding domain and a transmembrane domain. The ABC protein restricts 

the substrate binding and ensures that only T1SS specific substrates are recognized 

via their secretion signal. The second protein is a membrane fusion protein which 

contains a short cytoplasmic domain, an inner membrane anchor, and a large 

periplasmic domain. It is believed that the membrane fusion protein links the inner 

membrane and outer membrane components of the T1SS and is responsible for the 

binding of the substrate on the cytoplasmic side. The third protein is a pore forming 

outer membrane protein. The T1SS machinery spans the entire cell envelope and the 

protein is secreted from cytoplasm directly to extracellular medium in a single step. 

Proteins secreted by the ABC transporter lack the N-terminal cleavable signal 

sequences typical for proteins exported by Sec system (Delepelaire & Wandersman 

1990; Ghigo & Wandersman 1994; Mackman et al., 1986; Pugsley, 1993). 

 



Type V Pathway 
 

Character 

 
Type I 

 
Type II 

 
Type III 

 
Type IV  

AT 
 

TPS

 
Chaperone/usher 

Sec-dependent no yes 
(or Tat-dependent) 

no yes (pertussis toxin) 
/no (all others) 

yes yes yes 

Amino-terminal  
signal sequence 

no yes Yes (non-cleavable) Yes／no yes yes yes 

Number of genes encoding 
secretion system 

3 12-16 >20 ≥11 1 2 2 

Contact-dependent 
secretion 

no no yes no no no no 

Surface appendage 
(Prototype) 

no Type IV pili Hrp pili 
Needle complex 

T pilus 
F pilus 

no no P pili  
Type 1 pili 

Secretion  
Representative 
 

HlyA PulA 
Exotoxin (ETA) 

Phospholipase (Plc) 

HrpZ  
Avr proteins 

Pertussis toxin (Ptx) 
 T-DNA 

IgAp ShlA
FHA

PapD/PapC 
FimC/FimD 

Location of 
Secretion-system proteins 

IM, OM CP, IM, OM CP, IM, OM CP, IM, OM PP, OM PP 
OM 

PP 
OM 

ATP-dependent 
in translocation  
across the OM 

yes yes yes yes no no no 

AT: autotransporter; TPS: two-partner secretion; CP: cytoplasm; IM: inner membrane; OM: outer membrane; PP: periplasm; IgAp: the neisserial IgA1 protease; ShlA: cytolysin 
of S. marcescens; FHA: filamentous hemagglutinin of B. pertussis. 

Table 1. Comparison of the protein secretion pathways in gram-negative bacteria (Modified from Salmond & Reeves, 1993; Thanassi et al., 1998; and Henderson et al., 
2004)  
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2.2. Type II protein secretion pathway 

Type II protein secretion system (T2SS) is widely distributed among most 

Gram-negative bacteria for secretion of extracellular degradative enzymes and toxins 

(reviewed by Johnson et al., 2006). Before the discovery of existence of Tat export 

system, it was regarded as the main branch of the general secretion pathway (GSP) as 

an extension of the Sec export pathway. Secretion of proteins through T2SS occurs in 

two separate steps. In the first step, the protein precursors are exported through 

cytoplasmic membrane to the periplasm using either the Sec-dependent pathway or 

Tat pathway, depending on the nature of the signal peptide. As discussed in Section 

1.1 and 1.2, the signal sequence is cleaved off by a periplasmic signal peptidase when 

it reaches the periplasm and the mature protein is released. In the second step, the 

proteins are secreted from the periplasm through the outer membrane to the 

extracellular space using T2SS apparatus, which are encoded by approximately 12 to 

16 genes (Filloux, 2004; Sandkvist, 2001). Based on experimental data with P. 

aeruginosa T2SS component proteins (Bally et al., 1992; Voulhoux et al., 2001), a 

type II secretion apparatus model formed by the multi-protein complex that spans the 

entire cell envelope has been proposed and shown in Figure 1. 

 

T2SS was first discovered in Klebsiella pneumoniae, where it was found to be 

required for secretion of lipoprotein pollulanse (d’ Enfert, et al., 1987). The 

conservation of T2SS was then identified in many Gram-negative bacteria such as E. 

coli, Erwinia carotovora, Yesiniae entrocolitica, and so on (reviewed by Filloux, 

2004). The genes encode type II secreton components are usually clustered (reviewed 

by Pugsley, 1993). So far the precise functions of individual component proteins are 

not very well characterized. It is clear that mutations in most of the T2SS component 

genes result in abortion of the secretion process and accumulation of the protein in the 

periplasm (Andro et al., 1984). The T2SS apparatus spans entire cell envelop without 

extracellular filamentous appendage, the only exception is the type IV pilus as 

indicated in Table 1. 

 

Various experimental approaches have been used for studying the secretion signal of 

the protein secreted through T2SS, and it turns out that the multiple sites in the 

T2SS-secreted proteins are, instead of being treated as secretion signal, needed for 

recognition of and targeting to the T2SS apparatus (reviewed by Palomäki, 2003). 



Figure. 1. Schematic representation of the type I, II, III, and IV protein secretion systems. The type I pathway is exemplified by Escherichia coli HlyA 
secretion; the type II pathway is exemplified by Pseudomonas aeruginosa exotixin A (ETA, Sec exported) and phospholipase (PlcTat exported) secretions; the 
type III pathway is exemplified by Pseudomonas syringae HrpZ harpin secretion; the type IV pathway is exemplified by Agrobacterium tumefaciens VirB 
secretion system [Adopted from Backert & Meyer, 2006 (T4SS); Hueck, 1998 (T1SS); Voulhoux et al., 2001 (T2SS)]. 
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Several T2SS-dependent proteins have been shown to induce plant defense responses, 

including hypersensitive response-like reactions. Bacterial pathogens can suppress 

these defense responses, and the recent results indicate that suppression is mediated 

by proteins secreted through the type III secretion system (reviewed by Jha et al., 

2005). 

 

2.3. Type IV protein secretion pathway 

The Type IV protein secretion system (T4SS) is widely distributed in the following 

biological aspects: the conjugation of plasmid and other mobile DNA (Christie & 

Vogel, 2000; Lai, et al., 2000; Lessl & Lanka, 1994); the translocation of effector 

molecules into target cells; the uptake of DNA; and the release of DNA-protein 

complex and effector protein into the extracellular milieu (reviewed by Backert & 

Meyer, 2006). 

 

T4SS has been ancestrally related to bacterial conjugation systems, through which 

plasmids or other mobile DNA elements are transferred between different cells. 

Agrobacterium tumefaciens T-DNA transfer is one of the best characterized T4S 

systems. It is also a unique system for trans-kingdom DNA transfer. In the Ti system, 

pilin are associated with T4SS, and it is believed to form a conduction channel. 

Although the morphology and the function of the Agrobacterium T-pilus appear very 

similar to the type III secretion system-associated pili (see Section 3.3.3), there is no 

sequence similarity at all between the two systems. The T4SS-dependent VirB/D4 

machinery consists of 11 proteins encoded by virB1-11 and the so-called coupling 

protein VirD4. The T-pilus is built up with the VirB2 as the major subunit and VirB5 

as the minor subunit which was found only in the tip of the T-pilus. In association 

with the OM protein VirB9 and by consuming ATP energy, the conformational 

adaptation and stabilization of the two inner membrane associated proteins, VirD4 

and VirB11, takes place. VirB7 is an OM-associated lipoprotein which forms a 

disulfide-bonded heterodimeric complex with VirB9, and this complex stabilizes 

other VirB proteins (reviewed by Christie, 2004; Figure 1). 

 

Like the type III secretion system, T4SS is used by many pathogens to deliver effector 

proteins to eukaryote cells during infection. In Helicobacter pylori, CagA is 

translocated through the T4SS. In host cells CagA interferes with actin cytoskeletal 
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rearrangement and induces proinflammatory response (Brandt et al., 2005; Selbach et 

al., 2003). Bordetella pertussis toxin (Ptx), the causative agent of whooping cough, is 

composed of five protein subunits named as S1-S5. The toxin is also secreted through 

T4SS, but instead of directly entering a target cell like most of other effector proteins, 

it is translocated into the extracellular medium. Once secreted, Ptx itself mediates host 

cell binding and delivery of the catalytic S1 subunit into host cytosol. Thus, protein 

secretion and host cell translocation of the effector are not linked in this particular 

T4SS (Weiss et al., 1993). Unlike single step DNA transfer through T4SS, The 

translocation of Ptx across the OM was found to be Sec-dependent two-step process 

as mentioned in Table 1 (reviewed by Christie, 2004). 

 

2.4. Type V protein secretion: Autotransporter and Two-partner secretion 

pathways 

Both autotransporter and two-partner-secretion systems are present in a wide range of 

Gram-negative bacteria for transportation of large virulence proteins across the OM. 

Many proteins secreted by these two systems have an amino-terminal extension of 

about 25 amino acid residues located in the otherwise typical Sec-dependent signal 

peptide. The precise function of the amino-terminal extension is not known but it may 

aid in the co-translational translocation of the precursors across the inner membrane 

(Chevalier et al., 2004; Henderson et al., 2004). After the Sec-dependent precursors 

are exported across the inner membrane, the autotransporter-dependent and 

two-partner-secretion-dependent passengers reach the periplasm before being further 

translocated across the outer membrane. The periplasmic intermediates have to be 

kept unfolded or partly unfolded at low abundance until they reach the outer 

membrane (Klauser et al., 1990; Klauser et al., 1992). Resident periplasmic 

chaperones may help the proper folding and insertion of the passenger domain in the 

OM. 

 

2.4.1. Autotransporter pathway 

Autotransporter (AT) pathway is probably the simplest protein secretion system since 

all the necessary secretion components are included in one polypeptide which 

typically consists of three domains: cleavable amino-terminal signal sequence which 

is needed for the preprotein translocation across the IM, a C-terminal translocator 

domain (β-domain) which inserts in the OM and serves as a channel for the third part 
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of AT, and an internal passenger domain. The passenger domain includes an 

amino-terminal translocation activity part and a C-terminal auto-chaperone part which 

are necessary for translocation to the OM (Figure 2). However, the nature of the 

passenger domain does not seem to be important, as it can be substituted by foreign 

proteins and be subsequently secreted (Klauser et al., 1990; Suzuki et al., 1995). As 

there is no ATP as an energy source in the periplasm, the driving force for the protein 

translocation across the OM comes not only from the release of autochaperone from 

the secreted protein but possibly also from either the folding of the passenger domains 

as they reach the cell surface or the folding of the β-domain in the OM (reviewed by 

Jacob-Dubuisson et al., 2004). After translocation, according to the biological 

function of the mature proteins, the final localization can be either the cell surface as 

adhesins, or in extracellular space as the case of most proteases. 

 

The neisserial protease IgA1 (IgAp) was the first identified AT protein (Pohlner et al., 

1987). Many other IgA-like proteins have since been discovered. Numerous 

AT-dependent proteins are adhesins such as Hsf of H. influenzae, pertactin (Prn) of B. 

pertussis, YadA of Y. enterocolitica and Y. pseudotuberculosis. Two AT-dependent 

proteins are major constituents of bacterial surface structures: S-layer forming rOmpB 

of Rickettsia typhi (Sleytr & Messner, 1983) and Hsr of Helicobacter mustelae 

(Forester et al., 2001; Schauer & Fox, 1994). 

  

Recently, a subfamily of AT-dependent proteins, with YadA and the H. influenzae 

Hia as prototypic examples, were found to require trimerization in order to promote 

their secretion. They are termed AT-2 secretion system (Roggenkamp et al., 2003; 

Surana et al., 2004). 

 

The AT system has been widely used as a tool for surface display of peptides and 

proteins, for vaccine development and other biological purposes. It can display small 

peptides of 10-15 amino acids to full length protein of 613 amino acids long 

(reviewed by Rutherford & Mourez, 2006). 

 

2.4.2. Two-partner secretion pathway 

Two-partner secretion (TPS) pathway is functionally similar to the AT secretion 

system, except that two independent polypeptides encode the passenger TpsA and 
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translocator TpsB (Figure 2). The genes encoding these two proteins tend to be 

located within the same operon. With the similar function as AT β-domain, TpsB 

protein is predicated to form a channel with β-barrel in the OM (reviewed by Thanassi 

et al., 2005). The secretion of the filamentous haemagglutinin (FHA) of B. pertussis, 

adhesins HMW1 and HMW2 of H. influenzae, and the haemolysin ShlA of S. 

marcescens have been extensively studied and are often referred to as the TPS model 

systems (reviewed by Henderson et al., 2004). 

 

2.5. The chaperone/usherpathway 

The chaperone/usher pathway (CU) is dedicated to the assembly and secretion of a 

superfamily of adhesive virulence-associated filamentous structures on the surface of 

Gram-negative bacteria (Thanassi et al., 1998). The proteins secreted through this 

pathway typically assemble into a rod-shaped fiber, termed fimbriae. The prototypes 

of the CU pathway are the adhesive type 1 and P pili expressed by uropathogenic E. 

coli, but some capsular proteins such as F1 subunits of Y. pestis F1-capsule (a major 

protective antigen with an antiphagocytic role) are also secreted through this pathway. 

 

The components of this pathway consist of a periplasmic chaperone and an integral 

outer membrane protein termed usher (Figure 2). During transportation, the substrates 

are exported across the inner membrane via the Sec system, followed by the 

immediate binding of the chaperone; then the amino-terminal signal sequences of the 

substrates are cleaved off and the substrates are released into the periplasm. The 

protein folds in the periplasm before the translocation across the outer membrane. The 

chaperone-substrate complexes then target the outer membrane usher assembly sites. 

The targeting of the complexes to the usher triggers chaperone dissociation from the 

substrate, and induces the opening of the usher channel, which is about 2-3 nm in 

diameter. The narrow usher channels would allow the partly folded fimbrillin but not 

the helical rod form to pass. The final conformation is established when the substrate 

reaches the cell surface (reviewed by Thanassi & Hultgren, 2000). 
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Figure. 2. Schematic representations of the autotransporter (AT), two partner secretion (TPS) and chaperone/usher (CU) protein secretion systems. The 
polyproteins are exported through the IM via the Sec machinery. Once in the periplasm, the signal sequences are cleaved, the β domains of both AT and 
TPS insert into the OM and form a pore, the passenger domains insert into the pore and are translocated to the cell surfaces. For protein secreted through 
the CU pathway, exemplified by P pili, the periplasmic chaperone binds to each subunit to keep their proper folding and to prevent premature 
subunit-subunit interactions. Chaperone-subunit complexes then migrate to the OM usher, the folded subunits (liner fiber) are translocated through the 
usher and the pilus is assembled on the cell surface [adopted from Henderson et al., 2004; Jacob-Dubuisson et al., 2004; Thanassi & Hultgren, 2000]  



2.6. Type III protein secretion pathway 

The type III secretion system (T3SS) was first discovered by Guy Cornelis’ group 

from the study of the animal bacterial pathogen Yersinia outer proteins in early 1990s 

(Michiels et al., 1990). Soon after, researchers found similar secretion mechanisms 

existing in many Gram-negative bacterial pathogens from both animals and plants 

(reviewed by Alfano & Collmer, 1997; He, 1997; Hueck, 1998; Keen, 1990; 

Romantschuk et al., 2001). Agrobacterium is about the only genus of Gram-negative 

phytopathogens in which this system has not been found. This system functions as a 

molecular syringe delivering bacterial virulence proteins, termed effectors, from the 

cytoplasm directly into the extracellular milieu or the cytosol of host cells. However, 

in Rhizobium spp. this system was found to serve no pathogenic but as symbiotic 

purposes (Viprey et al., 1998). T3SS is the most complex protein secretion system in 

bacteria judged by the number of proteins constituting the secretion apparatus, and it 

is distinguished from the other secretion systems by several features. First, unlike the 

cleavable signal peptide for Sec-dependent protein secretion, the non-cleavable amino 

terminal secretion signal is localized either in the mRNA of or directly on the secreted 

protein (Anderson & Schneewind, 1997; Lloyd et al., 2001). Secondly, specific 

chaperones are needed for the secretion of many effectors. Thirdly, the secretion 

apparatus consists of two parts: the cylindrical base, which spans the entire cell 

envelope, and the extracellular filamentous appendage, which is termed needle in 

animal pathogens and pilus in plant pathogens. The cylindrical base is genetically and 

morphologically similar to the bacterial flagellar secretion machinery but, unlike the 

flagellum, filamentous appendage facilitates host cell contact (reviewed by He, 1997; 

Knutton, et al. 1998; Kubori et al., 1998). 

 

Although T3SS is called the ‘contact-dependent’ protein secretion system (Aldon et 

al., 2000; Ginocchio et al., 1994; Pettersson et al., 1996; Zierler & Galan, 1995), the 

secretion of many T3SS-dependent proteins can be artificially induced in vitro by 

mimicking host environmental conditions (Demers et al., 1998; He et al., 1993; 

Michiels et al., 1990; Vallis et al., 1999). However, the secretion and translocation of 

some bacterial effector proteins are strongly induced only upon contact with target 

cells. So far this ‘contact-dependent’ phenomenon has been shown for animal 

pathogens Shigella spp., Yesinia spp. and P. aeruginosa (Pettersson et al., 1996; 
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Watarai et al., 1995) and only one plant pathogen Ralstonia solanacearum (Aldon et 

al., 2000). 

 

2.6.1. Ysc-Yops 

The Yersinia secretion-Yersinia outer proteins (Ysc-Yops) system is the best studied 

T3SS example. In Yersinia spp., the T3SS is encoded on a virulence plasmid. 

Mutations in any of the ysc genes can abolish the secretion of Yops. The secretion of 

Yops into the extracellular space can be induced artificially by incubation of the 

bacteria in the culture medium in the absence of Ca2+ at 37°C. However, purified 

secreted Yops have no cytotoxic effect on cultured cells, indicating that physical 

contact of Yersinia with the target cells and translocation of Yops into the host cytosol 

is required for Yersinia pathogenesis in vivo (reviewed by Cornelis, 1998; Hueck, 

1998). 

 

Translocation of effector Yops into host cytosol requires coordination between 

T3SS-dependent needle complex and the translocon comprised of YopB, YopD, and 

LcrV. The function and assembly of the T3SS needle complex will be described in 

more detail in a separate paragraph below. Upon contact with the target cell, YopB 

and YopD were found to form a translocation pore in the host cell plasma membrane 

(Tardy et al., 1999). LcrV was found to be required for the pore assembly and pore 

size control (Holmstrom et al., 2001). LcrV is localized to the distal tip of the needle 

and it forms a bridge that connects the needle with the translocon (Mueller et al., 

2005). In the absence of any of the translocon components, Yops are secreted out of 

the bacteria but fail to enter the host cell (Lee & Schneewind, 1999; Pettersson et al., 

1999). 

 

2.6.2. Secretion signal and T3SS-substrate-specific chaperones 

Yops and other proteins destined for secretion through T3SS are generally composed 

of two domains: the secretion signal domain and the translocation domain, which 

specifically target the secretion apparatus. The secretion signals of the T3SS-secreted 

proteins are either located on the 5’ end of mRNA or within the first 15-20 amino 

acids of the secreted proteins. In contrast to the Sec-dependent signal, the putative 

T3SS signal domain has no clear consensus sequence on either the 5’ end of the 

mRNA or amino acid level, and no cleavage of amino terminus or carboxyl terminus 
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occurs. The T3SS-specific chaperones facilitate the secretion of protein by binding to 

their amino termini within the first 140 amino acids, guiding them to the 

T3SS-dependent apparatus and holding them in unfolded state prior to secretion. The 

chaperones are generally small (around 15 kDa) acidic proteins without sequence 

similarity among them, and act as dimers, typically binding only to its partner protein 

(reviewed by Ghosh, 2004). 

 

2.6.3. Structure and length of T3SS appendage  

The macromolecular structure of T3SS apparatus in animal pathogenic bacteria is 

composed of two distinct parts: the needle complex and the translocon. The needle is 

anchored to a base that spans the inner and outer bacterial membranes. The base itself 

consists of two sets of ring complexes embedded in each of the two membranes 

(Kubori et al., 1998; Tamano et al., 2000). The translocon proteins, in contrast, are 

secreted through the needle complex and associate with the host cell membrane, 

where they function to transfer proteins into the cytosol of the host cell (Blocker et al., 

2001; Cordes et al., 2003; Davis & Mecsas, 2007). 

 

The needle structures of Yersinia, Salmonella, Shigella, and E. coli are each primarily 

composed of a single protein (YscF, PrgI, MxiH, and EscF, respectively) (Blocker et 

al., 1999; Hoiczyk & Blobel, 2001; Kubori et al., 1998; Sekiya et al., 2001), which 

polymerizes to form a tube. The needle proteins from different species are all small (7 

to 10 kDa) and are mostly alpha helical in structure, but share only between 20 and 

30% sequence identity (see also Section 3.3 for T3SS of plant pathogens). 

 

Needle length varies from 45 to 80 nm in different bacterial species. However, in 

plant pathogenic bacteria, the length of the T3SS-associated pilus can extend to 

several micrometers. The length of the needle is controlled by a specific protein in 

each system, for example, by YscP in Yersinia, Spa32 in Shigella, and InvJ in 

Samonella. In Yersinia, export of the Yersinia needle subunit continues until the 

needle reaches the length of the extended YscP protein. YscP then switches the 

secretion process from the needle subunit to the effector. The precise length of the 

needle is adjusted according to the dimensions of the other structures on the host cell 

surface and on the bacterial cell surface (reviewed by Cornelis 2006; Galan & 

Wolf-Watz, 2006). However, the T3SS in EPEC (enteropathogenic E. coli) and EHEC 
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(enterohemorrhagic E. coli) is unique. The needle complex encoded by EscF is 

extended by an additional larger structure, the EspA filament (Crepin et al., 2005; 

Daniell et al., 2001). 

 

3. Phytopathogens 

3.1. The cause of plant disease and plant innate immunity 

Plant disease can be caused by either biotic or abiotic factors. The abiotic factors 

include environmental extremes, mineral deficiencies or toxicities, imbalance of 

essential nutrients, or chemical pollutants. Physiological disorders in plant are often 

followed by invasion of the real pathogens: fungi, bacteria, viruses, nematodes, 

protozoa, and viroids. Development and establishment of infectious disease depends 

on the combination of the pathogen, the host, and the environmental condition, which 

are referred to as the “disease triangle” (reviewed by Agrios, 2005). Various 

pathogens invade plant hosts in different ways and to different extents. Fungi invade 

and grow directly through or between the host cells by producing mycelium. Viruses 

and viroids invade plant cells intracellularly through wounds or by the help of vectors 

and also move from cell to cell in tissues. Bacteria and most nematodes generally 

invade plant tissues intercellularly. Bacterial infection of a plant is the main focus of 

this thesis and will be discussed in more detail below. 

 

In the long history of co-evolution of plants and pathogens, plants have developed 

various defense mechanisms against potential pathogens. The innate immunity or 

non-host resistance mechanisms in plants can result from successful passive defenses, 

such as structural and metabolic (biochemical) defenses. These include constitutive 

barrier structures such as wax and cuticle that cover the epidermal cells and 

thick-walled cells, also, inhibitory substances such as phenolic compounds, tannins, 

cell wall-degrading enzymes like glucanases and chitinases, toxic phytoalexins, 

defensins and reactive oxygen species (reviewed by Agrios, 2005; Nurnberger et al., 

2004). Non-host resistance can also result from active defenses induced upon 

pathogen recognition. For example, upon inoculation with necrosis-inducing 

pathogens or various nonpathogenic root-colonizing Pseudomonads, or treatment with 

salicylic acid (SA), plants acquire enhanced resistance to a broad spectrum of 

pathogens, and the induced resistance occurs not only at the site of the initial 

treatment but also in distal, untreated plant parts, which is called the 
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systemic-acquired resistance. Induced defense responses are regulated by a network of 

complex signal transduction pathways in which the hormonal signals SA, jasmonic 

acid (JA) and ethylene play major roles. The various induced resistance phenomena 

are all associated with an enhanced capacity for the rapid and effective activation of 

plant cellular defense responses to pathogens (He et al., 2006; Melotto et al., 2006). 

These responses include the hypersensitive reaction (HR), cell-wall strengthening, the 

oxidative burst and the expression of various defense-related genes. The HR 

resembles the programmed cell death of animal cells and aims at preventing the 

spread of disease into healthy tissues (Dangl & Jones, 2001). The combination of 

different plant innate defenses eliminates many of the potential pathogens and 

prevents plant from disease.  

 

3.2. Gram-negative bacterial pathogen 

Pseudomonas, as well as four other Gram-negative bacterial genera, Xanthomonas, 

Ralstonia, Erwinia, and Agrobacterium, are the main Gram-negative bacterial 

pathogens in plant. The bacteria infect plants by invading plant tissues through natural 

openings such as stomata or wounds, multiplying in the intercellular space outside of 

the plant cell wall (Beattie & Lindow, 1994; Boureau et al., 2002; Romantschuk & 

Bamford, 1986; Wilson et al., 1999), and producing virulence factors which 

contribute to the formation of symptoms. Different plant pathogenic bacteria can 

cause a wide range of different kinds of symptoms, for example, soft rots caused by 

Erwinia carotovora and E. chrysanthemi, vascular wilts of solanaceous plants by 

Ralstonia solanacearum, foliar spots and blight of pepper and tomato by 

Xanthomonas campestris, bacterial speck by Pseudomonas syringae and tumors 

caused by Agrobacterium tumefaciens. 

 

3.2.1. Host specificity of P. syringe 

P. syringae is a host-specific pathogen that is capable of infecting the aerial parts of 

its host plant. There are more than 40 different P. syringae pathovars classified on the 

basis of their host range. Many pathovars including P. syringae pv. syringae (Pss), P. 

syringae pv. tomato (Pst), and P. syringae pv. phaseolicola (Pph) have been widely 

used as model organisms to study bacterial pathogenesis in plant (reviewed by Hirano 

& Upper, 2000). Particularly, Pst DC3000 is a well-studied plant pathogen of tomato 

and Arabidopsis thaliana, the model organism of the plant kingdom. Pst DC3000 
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causes bacterial speck on tomato, and is taxonomically quite divergent from pathovar 

syringae (Manceau & Horvais, 1997). The total genome sequence of Pst DC3000 has 

been determined (Buell et al., 2003). Hence, it has gained a special status as the main 

model strain for genetic and molecular studies of the plant pathogenicity of P. 

syringae. 

 

3.2.2. Virulence factors of P. syringae that contribute to plant pathogenesis 

Nearly all bacterial virulence factors are located on the bacterial surface or are 

secreted to the extracellular milieu or inside the plant cell. Therefore, bacterial protein 

secretion systems are important virulence determinants. P. syringae pathovars 

produce a large number of protein and non-protein virulence factors that are directly 

or indirectly toxic to plant cells or protect from plant defenses, such as phytotoxins, 

extracellular polysaccharides, and other effectors. They have been considered to be 

virulence factors, since their production results in increased disease severity (reviewed 

by Bender et al., 1999). For example, extracellular polysaccharides like alginate may 

protect the bacterium from oxidative stress and promote tissue colonization (Keith et 

al., 2003). Phytotoxins (coronatine, syringomycin, syringopeptin, tabtoxin, and 

phaseolotoxin) inhibit specific enzymes surrounding the host cells. These substances 

suppress some host defense and facilitate movement and multiplication of the 

pathogen in the host. However, functions of these substances in pathogenesis all 

depend on their secretion from bacteria and contact with plant cells. The bacterial 

secretion system and cell surface structures, like pili, fimbriae and flagella, are 

important virulence factors both in human and plant pathogens (reviewed by Finlay & 

Falkow, 1997). The plant pathogenic bacterial T3SS-associated pili are believed to 

contact the host cell and mediate the movement of virulence and avirulence proteins 

into the host cells. The function of T3SS-dependent proteins is to suppress the host 

defense and thus promote bacterial survival and multiplication inside the host tissue 

(Mudgett, 2005). Analysis of the Pst DC3000 genome has revealed that there may be 

more than fifty T3SS-secreted effectors in one single strain (reviewed by Greenberg 

& Vinatzer, 2003). T3SS effectors define the host range of a certain P. syringae 

pathovar (see Section 3.3.4). 
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3.3. Hrp secretion system of P. syringae 

In plant pathogenic bacteria, the T3SS is called the Hrp secretion system and is 

encoded by the hrp gene cluster. The hrp genes are so named because they are 

involved in plant pathogenic bacteria to elicit hypersensitive reaction in resistant 

plants and to cause disease (pathogenesis) in susceptible host plants. Genetic analysis 

of several plant pathogenic bacterial genomes has shown that pathogens are 

distinguished from their non-pathogenic relatives by presence of a so-called 

pathogenicity island (PAI) encoding T3SS and pathogenesis related genes (Alfano et 

al., 2000; Jackson et al., 1999). Related pathogens harbor similar clusters of T3SS 

effector genes, earlier termed avr, which are often located in or adjacent to the hrp 

gene cluster. The proteins encoded by avr genes and some hrp genes are secreted 

through T3SS (reviewed by Lindeberg et al., 2006). Recently, a unified nomenclature 

for P. syringae T3SS-secreted proteins was established (reviewed by Lindeberg et al., 

2005). The detailed naming system can be found in the website: 

www.pseudomonas-syringae.org. 

 

So far the hrp genes have been described in P. syringae, X. campestris, R. 

solanacearum, E. amylovora (reviewed by Collmer, 1998), E. carotovora (Rantakari 

et al., 2001), and R. solanacearum (Arlat et al., 1992; Van Gijsegem et al., 1995). The 

hrp gene clusters are either located in the chromosome or in a plasmid. Based on the 

degree of conservation of their encoded protein components, the hrp clusters can be 

divided into two groups: group I contains hrp gene clusters of E. amylovora and P. 

syringae, and group II for hrp gene clusters of X. campestris and R. solanacearum 

(Alfano & Collmer, 1997). 

 

3.3.1. The organization of hrp genes and function of Hrp proteins in P. 

syringae 

The first report on hrp genes in plant pathogenic bacteria was made over 20 years ago 

(Lindgren et al., 1986). Typically the hrp genes in P. syringae pathovars are clustered 

in a single 25 kb chromosomal region containing up to 27 hrp genes organized in 7 

operons encoding either regulatory, secretory, or effector proteins (Figure 3). A 

cosmid carrying this region is sufficient to enable nonpathogenic E. coli and P. 

fluorescence to elicit HR in planta (Huang et al., 1988). 
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Figure 3. The hrp gene cluster of Pst DC3000 and their functions. The cluster contains 27 hrp genes 
and the hrmA gene. Arrows indicate the direction of transcription. Regions sequenced in DC3000 are 
indicated by lines beneath the hrp cluster of P. syringae [adopted from Galan & Collmer, 1999; He et 
al., 1997]. 

 

There are about 20 Hrp proteins that are involved in the protein secretion apparatus 

indicated by the genes colored with red and purple in Figure 3. Nine of the hrp genes 

are conserved among diverse bacterial pathogens of plants and animals and have been 

renamed hrc (HR and conserved) according to homology with Yersinia ysc genes 

(Gough, et al., 1992; Winans, et al., 1996). These hrc genes are hrcC, hrcJ, hrcN, 

hrcQ, hrcR, hrcS, hrcT, hrcU, and hrcV (Bogdanove et al., 1996; Figure 3). Eight of 

these hrc encoded proteins show high similarity to flagellar basal body components. 

These Hrc proteins are located in the inner membrane surface and form a conserved 

core resembling the flagellar basal body. It has been suggested that the core could be 

involved in the recognition of a universal secretion signal (Anderson et al., 1999). 

However, hrcC is the only exception not homologous with flagellar genes as it 

belongs to the so called secretin family and functions as a pore forming protein in the 

outer membrane (reviewed by Alfano & Collmer, 1997). 
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3.3.2. Regulation of hrp gene expression and secretion 

Expression of hrp/hrc genes is tightly controlled. They are expressed at a very low 

level in vitro in nutrient-rich media but can be induced in infected plant tissues 

(Boureau et al., 2002) or in artificial Hrp-inducing minimal media that mimic the in 

planta conditions, that being a minimal medium with low osmotic strength and a pH 

of about 5.8, supplemented with simple sugar such as fructose or sucrose (Huynh, et 

al., 1989; Salmeron & Staskawicz, 1993; Xiao et al., 1992). The maximal induction 

conditions, however, vary from species to species, between different pathovars and 

even from one hrp gene or operon to another. Activation of hrp gene expression in 

planta occurs within 2-3 hours after inoculation (Boureau et al., 2002; Wei, et al., 

1992; Xiao et al., 1992). 

 

Three intracellular positive regulatory proteins HrpR, HrpS and HrpL are required for 

expression of hrc/hrp genes. These proteins appear to function in a regulatory cascade 

in which HrpS and HrpR consist of two-component regulator system and activate the 

expression of HrpL in vivo in response to a signal present in host tissue or in vitro in 

Hrp-inducing minimal medium (Xiao et al., 1994). HrpL is a sigma factor that 

activates all hrp and avr genes by recognizing a 26 bp conserved sequence 

GGAACC-N16-CCAC, the so called hrp-box, present in the upstream regions of 

many hrp and avr genes (Deng et al., 1998; Innes et al., 1993; Shen & Keen, 1993). 

 

HrpV was found to be a negative regulator of the hrp regulon (Preston et al., 1998). In 

Hrp-inducing minimal medium, overexpression of the hrpV gene down-regulates 

hrp/hrc gene expression whereas hrp/hrc gene expression is elevated in a hrpV mutant. 

Recent studies by Alfano and co-workers (Fu et al., 2006; Petnicki-Ocwieja et al., 

2005) have revealed that HrpK1 and HrpJ encoded by the genes on the neighboring 

operons of the hrp gene cluster of P. syringae act as translocators, comparable to the 

role of YopN in Yersinia, for the proper translocation of the T3SS-dependent 

accessory protein and effectors. 
 

3.3.3. Hrp pilus structure & function 

The HrpA pilus of Pst DC3000 is 6-8 nm in diameter and its assembly on the bacterial 

surface depends on the T3SS (Roine et al., 1997a). It is required for Pst DC3000 to 
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cause disease in Arabidopsis and tomato, and HR in tobacco. The HrpA is a 

113-amino-acid protein, and it has been shown that HrpA alone is sufficient for the 

formation of the filament structures, indicating that HrpA is the sole or main structural 

protein of the Hrp pilus (Roine et al., 1997a). The Hrp pilus has been suggested to act 

as the physical pipeline directing proteins across the plant cell wall into the plant 

cytoplasm (He, et al., 1997; Roine, et al., 1997a; Roine et al., 1997b). Wei and 

colleagues (2000) showed that the Hrp pilus is an integral component of a protein 

secretion structure. Brown and colleagues (2001) showed the Hrp pilus enables Pst 

DC3000 to translocate virulence proteins at the right place and time during bacterial 

infection of plant. Wei and colleagues showed that the functional HrpA protein is 

required for secretion of HrpW harpin and AvrPto in culture (Wei et al., 2000). They 

also showed that a hrpA mutation affected the transcript level of the two positive 

regulatory genes hrpR and hrpS, and the full expression of all core hrc/hrp gene 

operons as well as hrpW and avrPto that reside outside the core hrc/hrp gene cluster. 

 

By transposon mutagenesis analysis of the hrpA gene of Pst. DC3000, our group 

found previously that most of the insertions, as well as deletions of a large portion in 

the N-terminal half of the pilin, were tolerated without affecting protein secretion, 

pilus assembly and pathogenicity to plants (Taira et al., 1999). On the other hand, 

almost all the insertions in the C-terminal half abolished pilus formation while protein 

production and secretion was not affected. These observations indicate that it is the 

C-terminal half that is involved in and essential for pilus assembly. All insertions 

between the promoter and start codon as well as one insertion in codon 10 resulted in 

mutants that did not produce pilin at all. However, further analysis revealed that lack 

of pilin production was due to a failure in mRNA transcription or instability of the 

messenger RNA (Taira et al., 1999). Further research in our group has revealed that 

the secretion signal of HrpA, as with many other T3SS-secreted proteins, is in the first 

15 codons of mRNA or in the 15 amino-terminal amino acids of the protein 

(Hienonen et al., 2002). 

 

Morphologically Hrp pili appear to be flexible whereas needles of T3SS in animal 

pathogens (see section 2.6) appear to be rigid. The length of the Hrp pilus of Pst 

DC3000 is much longer than the needle (generally less than 80 nm), which is 

probably a necessary feature for phytopathogens in traversing the thick (>100 nm) 
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plant cell wall. Unlike needles, which are dispersed over the entire bacterial surface, 

the Hrp pilus of Ralstonia solanacearum was found to emanate only from one pole 

(Van Gijsegem et al., 2000). 

 

Despite the similar biological functions, the Hrp pilin genes of different plant 

pathogenic bacteria are much less conserved than the other genes involved in the Hrp 

secretion systems. For example, HrcC proteins of P syringae pvs. tomato and syringae 

share 80% sequence similarity (Deng et al., 1998). In contrast, HrpA from Pst 

DC3000 has only 30% identity to HrpA from Pss or Pph, and HrpA from these 

pathovars has about 20% sequence similarity to YscF (reviewed by Ghosh, 2004). 

Furthermore, the major subunit of E. amylovora Hrp pilus shares only 30% identity to 

HrpA of Pst DC3000 (Jin et al., 2001), whilst the structure protein of R. 

solanacearum Hrp pilus have no detectable similarity with other Hrp pilus proteins 

(Van Gijsegem et al., 2000). 

 

3.3.4. Proteins secreted through the Hrp secretion system 

The Hrp secretion system of P. syringae has been shown to secrete two major families 

of proteins. The first family includes harpins such as HrpZ and HrpW (encoded within 

PAI) that are secreted in the apoplast (intercellular space). Harpins can elicit HR in 

non-host plants when administered extracellularly in high concentrations. The second 

family consists of effector/Avr proteins (such as AvrPto, AvrRpt2 and AvrB of P. 

syringae) that function inside the plant cells and are believed to contribute to 

pathogenicity in susceptible host plants (reviewed by Alfano & Collmer, 2004). Some 

Avr proteins are thought to suppress host defenses by interaction with intracellular 

targets (Leach & White, 1996; Tsiamis et al., 2000).  

 

Harpin proteins 

Harpins are heat-stable, acidic, glycine-rich proteins. They are secreted into culture 

medium when the Hrp system is expressed, and elicit HR when infiltrated into the 

leaves of tobacco and several other non-host plants (Krause & Durner, 2004; Wei et 

al., 1992). Although harpins are expressed by different plant pathogens, the genes 

encoding the harpins do not appear to be highly conserved among different genera, 

which is indicated by the dissimilarity of the harpin-encoding-genes like hrpN and 

HrpW of E. carotovora and E. amylovora, hrpZ and hrpW of Ps. syringae, hrpF of X. 
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campestris, hpaG of X. axonopodis pv. glycines, and popA of R. solanacearum. The 

amino acid sequences of harpins do not share significant homology with other known 

proteins either. Harpin was initially defined as elicitors of HR in non-host plant as 

mutations in some harpin genes abolished the induction of HR (Alfano et al., 1996; 

Bauer et al., 1995; Ham et al., 1998). Nevertheless, mutations of the hrpZ harpin gene 

in various P. syringae strains has little or no effect on HR elicitation on reisitance host 

plants, whereas a double mutant of hrpZ and hrpW retains part of the virulence 

(Alfano et al., 1996; Charkowski et al., 1998). Therefore, the natural function of 

harpins in pathogenesis as well as their ability to elicit the HR when introduced 

artificially into the apoplast of plant is unclear. HrpZ of P. syringae, HrpF of X. 

campestris and PopA of R. solanacearum have been shown to bind to the plant 

plasma membrane and form ion-conducting pore in artificial lipid bilayers (Buttner et 

al., 2002; Lee et al., 2001a; Lee et al., 2001b; Racape et al., 2005), suggesting that it 

would function on the host plasma membrane. HrpZ has been also shown to form 

multimers in solution (Chen et al. 1998). Therefore, it is possible that HrpZ could 

function as a membrane-associated complex. The HrpN harpin produced by Erwinia 

spp. (Wei et al. 1992) was shown to affect plasma membrane ion channels in A. 

thaliana suspension cells (El-Maarouf et al., 2001). Surprisingly, the association of 

either HrpZ or HrpN harpin with plant cell membrane seems to be a reversible event 

(Lee et al. 2001b; Pike et al. 1998). These findings suggest that the harpins could be 

involved in the release of nutrients from the host cell, or they could be a putative 

secretion system accessory protein and function in the modification of the plant cell 

wall during transport of Avr proteins (Collmer et al., 2002). 

  

Interestingly, some evidence indicated that harpins functioned as signaling molecules 

with multiple functions, and most importantly, the group of proteins could induce 

plant systematic resistance (Bauer et al., 1997; Dong et al., 1999; Jang et al., 2006; 

Qiu et al., 1997; Wei & Beer, 1996; Zitter & Beer, 1998). Therefore, it seems that 

harpins have dual or multiple roles in the interaction process with plant cells. 

 

Effector/Avr proteins 

Avr proteins represent another family of secreted Hrp-dependent proteins. A typical P. 

syringae strain contains multiple avr genes located not only in the hrp/hrc gene 

cluster but also in the area adjacent to it (Alfano et al., 2000; Lorang & Keen, 1995). 
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Avr genes have no phenotype when expressed in hrp mutant pathogens or in 

non-pathogenic bacteria like E. coli which lacks the Hrp system (Gopalan, 1996; 

Pirhonen et al., 1996). The purified avirulence proteins have no effect on plant when 

it was infiltrated into plant tissue, whereas HR was induced when it was delivered 

through Hrp system and expressed inside the host cells (Scofield et al., 1996; Tang et 

al., 1996), indicating that a functional Hrp system is needed for full activation of the 

Avr proteins. 

 

Many Hrp-dependent effectors appear to suppress host defence responses by 

inhibiting PCD elicited by other effectors (Abramovitch et al., 2003; Jamir et al., 

2004). Some effectors target host cell GTP-binding proteins (GTPases) by mimicking 

eukaryotic enzymes and therefore are able to alter cellular signalling pathways 

(Aepfelbacher & Heesemann, 2001). Some effectors interfere with host signalling 

pathways and possess cysteine protease activity (Buttner & Bonas, 2003; Shao et al., 

2002). Some effectors are proposed to target the host transcription machinery in the 

plant cell nucleus based on the presence of active nuclear localization signals (NLS) 

(Szurek et al., 2002; Van den Ackerveken et al., 1996; Yang & Gabriel, 1995). 

 

Gene-for-gene interaction 

Plants have evolved genetically controlled resistance against their true pathogens by 

matching their R (resistance) genes with the avr (avirulence) genes possessed by the 

pathogen in the so-called “gene-for-gene interaction” manner (Flor, 1971; Fig. 4). Avr 

proteins contribute to bacterial virulence when lacking a cognate R gene in the host 

(reviewed by Cook, 1998; Van den Ackervaken & Bonas, 1997). The most studied 

gene-for-gene interaction is the defense through HR at the pathogen entry sites, where 

plant cells die rapidly (programmed cell death) and local necrotic lesions are formed 

in response to bacterial attack. More and more studies indicated that plant disease 

resistance proteins do not interact directly with their cognate T3SS-secreted effectors 

in a simple receptor-ligand manner. In resistant plants, when pathogen-derived 

elicitors are recognized by plant cells, a complex signaling cascade is triggered in the 

host, which results in gene activation, de novo protein synthesis, the production of 

antimicrobial compounds, and cell death at the infection sites (Leister & Katagiri, 

2000; Scofield et al., 1996; Tang et al., 1996). 
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R: Resistance, Avr: Avirulence 
Figure 4. Schematic representation of gene-for-gene interaction between plant and pathogen. 

Many plant resistance proteins contain a nucleotide binding (NB) motif and a 

leucine-rich repeat (LRR) at the carboxyl terminus and a Toll-like receptor at the 

amino terminus. NB-LRR proteins are structurally similar to human proteins 

containing NOD (nucleotide binding and oligomerization domain)-Toll-like receptor 

(NLRs) which are involved in innate immunity in response to reorganization of 

PAMPs or MAMPs (pathogen or microbe-associated molecular patterns) including 

LPS, flagellin, harpin, and so on (da Cunha et al., 2006; Dangl &Jones 2001; Inohara 

et al., 2001). Functional NB-LRR proteins recognize the presence of specific bacterial 

T3SS-secreted effectors during bacterial infection, and trigger the defense responses 

that are nearly always associated with HR at the infection site (reviewed by Belkhadir, 

et al., 2004). 
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B. AIMS OF THE STUDY 
 

The Gram-negative bacterial T3SS system is the pathogenic determinant in both 

animal and plant pathogens, and it has been extensively studied in animal pathogenic 

bacteria for the last 20 years. Many effector proteins have been shown to be 

translocated to the host cytosol through the T3SS needle complex. However, at the 

time when this project started, there were still open questions related to the 

mechanisms of needle complex assembly. The studies involving plant pathogenic 

bacterial T3SS-dependent secretion were few due to the difficulty in monitoring 

protein secretion in plant tissue. Very little was known about the assembly of the Hrp 

pilus, the function of harpin in pathogenesis, and the dedicated function of many 

effectors. The main goals of this study were the following:  

 

1. Characterization of the structure and the mechanism of assembly of the Hrp pilus 

2. Genetic dissection of the HrpA topology of the Hrp pilus  

3. Biotechnological applications of HrpA pilus 

4. Characterization of the translocation of effector proteins through the pilus 

5. Searching the plant target of harpin by studying in vitro protein–protein interaction 

using phage display method 

6. Functional domain analysis of harpin by studying transposon mutagenized hrpZ 

insertional mutants 
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C. MATERIALS AND METHODS 

 
The bacterial strains and plant materials used in this study are listed in Table 2, and 

plasmids and constructs used are listed in Table 3. The experimental methods are 

described in detail in the original publications and manuscripts, and are summarized 

in Table 4. 

 
Table 2. Bacterial strains and plant materials used in this study 

Bacterial Strains/   Origin or relevant characteristics   Reference 

 

Escherichia coli 

Escherichia coli DH5α   hsdR,recA,lacZYA,Δ80dlacZΔM15   Gibco BRL 

Escherichia coli BL21(DE3)  expression vector      Studier et al., 1990 

Escherichia coli K91    KmR         Smith & Scott, 1993 

Pseudomonas syringae 

Pst DC3000     Wild type (wt) RifR      Cuppels, 1986 

DC3000 hrpA-     RifRKmR        Roine et al.,1997a 

DC3000 hrpZ-     RifRKmR        Alfano et al., 1996 

DC3000 hrpA-/phrpA259   phenotype as wt DC3000  Rif RTcRKmR  Taira et al.,1999 

DC3000 hrpA-/phrpA221   phenotype as wt DC3000  Rif RTcRKmR  Taira et al.,1999 

DC3000 hrpA-/phrpA256   phenotype as wt DC3000  Rif RTcRKmR  Taira et al.,1999 

DC3000 hrpA-/phrpA222   phenotype as wt DC3000  Rif RTcRKmR  Taira et al.,1999 

Plant material 

Tobacco (Nicotiana tabacum cv. Samsun) 

Tomato (Lycopersicon esculentum cv. Agriset) 

Bean (Phaseolus vulgaris cv. Red Mexican) 

Parsley (Petroselinum crispum cv. Hamburger Schnitt)  

Arabidobsis thaliana (var.Colombia) 
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Table 3. Plasmids and constructs used in this study 

Plasmid (construct)  Property or description      Reference 

 

pDN18   Broad-host-range RK2-derived cloning vector   Nunn et al. 1990 

with lacZα and MCS from pUC18 (pDN18), TcR

pDN18-N   The original NotI site on pDN18 was removed, TcR  Taira et al.,1999 

pRK2013   Conjugation helper plasmid, KmR     Figurski & Helinski, 1979 

pJC40    Expression vector, AmpR       Clos & Brandau, 1994 

pSYH10   Expression vector, AmpR       He et al., 1993 

pBBR1MCS  Broad-host-range cloning vector, TcR    Kanter-Smoler et al., 1994

pTPT11   Pmer and merR of R100 in pPP      Petänen et al., 2001 

driving of lucGR, RifR, TcR 

pFLAG-A15  Φ (flag-hrpA15) in pDN18-N, TcR     This study 

p FLAG-A23  Φ (flag-hrpA23) in pDN18-N, TcR     This study 

p FLAG-A24  Φ (flag-hrpA24) in pDN18-N, TcR     This study 

p FLAG-A48  Φ (flag-hrpA48) in pDN18-N, TcR     This study 

pMerFLAGHrpA Plasmid harboring mercury inducible promoter   This study 

driving FLAG-tagged hrpA, RifR, TcR 

pMerFLAGHrpZ Plasmid harboring mercury inducable promoter  This study 

driving FLAG-tagged hrpZ, RifR, TcR

p Men-A23  Φ (Men-hrpA23) in pDN18-N, TcR     This study 

p Men-FLAG-A23 Φ (Men-flag-hrpA23) in pDN18-N, TcR    This study 

p ST-A28   Φ (serine/threonine-hrpA28) in pDN18-N, TcR   This study 

p GFP-A28  Φ (gfp-hrpA28) in pDN18-N, TcR     This study 

p ∆A(15-53)-A15 Φ (∆A15-53-hrpA15) in pDN18-N, TcR     This study 

p ∆A(15-57)-A15 Φ (∆A15-57-hrpA15) in pDN18-N, TcR     This study 

p ∆A(15-79)-A15 Φ (∆A15-79-hrpA15) in pDN18-N, TcR     This study 

p ∆A(15-84)-A15 Φ (∆A15-84-hrpA15) in pDN18-N, TcR     This study 

p ∆A(15-88)-A15 Φ (∆A15-88-hrpA15) in pDN18-N, TcR     This study 
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AmpR, ampicillin-resistant; KmR, kanamycin-resistant; RifR, rifampicin-resistant; TcR, 

tetracycline-resistant; Φ, fusion; ∆, deletion; aa, amino acid.  

Men: a fragment of Neisseria meningitides B gene, encoding the surface loop IV of the porin PorA of 

N. meningitidis B:12:P1.7,16.  

ST: serine/threonine-rich epitope.  

GFP: The first β-hairpin fragment of the green fluorescent protein. 

 

Table 4. Methods used in this study 

Method         Used & described in 

 

Conjugations        I, II 

DNA sequencing and sequence analysis   I, II, III 

ELISA         II 

Gene fusion        I, II 

Genetic complementation analysis    I, II 

HR assay         II, III 

Immunoblotting       I, II, III 

Immuno fluorescence microscopy    I, II 

Immuno electron microscopy     I, II 

Molecular cloning techniques     I, II, III 

Phage display        III 

Plant proteins extraction      III 

Protein expression & purification    I, II, III 

Transmission electron microscopy    I, II 

Transposon mutagenesis      II 

Virulence tests        I, II, III 
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D. RESULTS AND DISCUSSIONS 

D.1. The optimal epitope insertion site in HrpA is the middle part of the 

N-terminal region (I & II). 

The previous studies in our group have shown that the carboxyl-terminal part of the 

HrpA pilin is responsible for pilus assembly, whereas the amino terminus tolerates 

short, 15 amino acid insertions and large deletions (Taira et al., 1999). Therefore, the 

amino terminus, between codons 15 to 57 of HrpA, is a putative region for inserting 

heterologous amino acid sequences. A FLAG epitope was cloned at four different 

amino terminus-encoding sites, at amino acids 15, 23, 24 and 48 in the hrpA gene. 

Complementation of P. syringae DC3000 hrpA- with pDN18 derivatives encoding the 

tagged pilins showed that a FLAG insertion at all four sites permitted pilin secretion, 

pilus assembly and function in planta. The immunofluoresence microscopy study 

illustrated that the Hrp pili with a FLAG tag immediately downstream of positions 23 

and 24 were well labeled with anti-FLAG monoclonal antibodies, while the pili with 

the tag in positions 15 and 48 were much less efficiently labeled (II, Figure 1), 

suggesting that the FLAG epitopes tagged at codon 23 and 24 are surface exposed. 

Hence the middle part of the amino terminal region of HrpA is optimal for displaying 

epitopes on the pilus surface. 

 

D.2.  HrpA pilus is assembled in vivo by adding HrpA subunits to the distal 

end of the growing pilus (I). 

The molecular mechanism of T3SS needle/pilus assembly has been studied for a long 

time. By pulse-expression of FLAG-tagged pili, we managed to follow the 

development of Hrp pili using transmission electron microscope. Pst DC3000 

harboring a FLAG-tagged hrpA construct driven by a mercury inducible promoter 

(pMerFLAGHrpA, both FLAG-HrpA and wild type HrpA were designed to be 

expressed and secreted in this construct) was grown for 8 h in hrp inducing minimal 

medium before induction of FLAG-HrpA by addition of HgCl2. At time points 15, 30 

and 60 min after mercury induction, the samples were collected, fixed, and then 

examined. Few pilus–associated gold particles were observed at the distal end of the 
 39



appendage at the first time point, 15 min after mercury induction. Immuno-gold 

labeling of the pilus increased only at the distal end of the pilus at later time points (I, 

Figure 3). The time-course also allowed determination of the rate of pilus extension 

to be around 50 nm/min (I, Figure 4). The results clearly demonstrated rapid growth 

of the pilus by the incorporation of HrpA subunits at the tip of the filament and 

suggest that HrpA monomers are translocated acropetally through the growing pilus. 

Distal extension of the Hrp pilus indicates that the mechanism of pilus assembly is 

simililar to that of the bacterial flagellum, since newly made flagellin subunits are also 

added to the tip of the flagellum (Emerson et al., 1970). The flagellar apparatus has 

been suggested to be a member of the T3SS family (Macnab, 1999) and the flagellin 

subunits travel through the flagellar hollow structure (Namba et al., 1989). Our 

observation supports the idea of a common evolutionary origin of the flagellum and 

the Hrp pilus. 

 

D.3. The effector protein HrpZ is secreted through the Hrp pilus (I). 

The translocation of T3SS-dependent effector proteins through Hrp pilus has been 

proposed long time ago. We next addressed the possibility that effector proteins may 

also travel through the pilus. As Avr and Vir proteins are secreted in vitro with low 

efficiency (Jackson et al., 1999; Jin et al., 2001), we used the harpin protein HrpZ as a 

model. We cloned the hrpZPph gene under the control of the mercury promoter and 

transformed the resulting plasmid, pMerHrpZ, into DC3000∆hrpZ. The bacteria were 

grown on electron microscopy grids as described above. When the mercury induction 

was performed 8 h after Hrp induction, newly made HrpZ was first detected at the tip 

of the pilus, and along time shifting HrpZ coated the distal portion of the growing 

appendage (I, Figure 5A & 5B). All parts of the emerging pilus were decorated with 

the HrpZ antiserum when bacteria were exposed to HgCl2 throughout the incubation 

(I, Figure 5C). As observed with HrpA, a secretion route through the pilus was 

demonstrated. Our finding is in accordance with that the extrusion model of effector 

protein AvrPto from the Hrp pilus tip of P. syringae (Jin & He, 2001). 
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D.4. Hrp pilus, as a carrier of antigen for vaccination (II). 

As described in D.1., the amino terminal part of HrpA can well bear the insertion. We 

then studied the possibility to use the Hrp pilus as an epitope display tool. The 

advantages of the Hrp pilus, compared with conventional fimbrial epitope display 

tools, are that the pili can auto-assemble in vitro and can be strongly expressed in a 

noncomplex minimal medium, and the plant pathogen P. syringae is not pathogenic to 

humans. In this study, various peptides were inserted into the pilin subunit, and the 

secretion, assembly and surface properties of the modified pili were monitored (II, 

Table 2 & Figure 2). We concluded that the outwards-projecting N-terminal region 

of the pilin can tolerate insertions of up to 43 amino acids without losing the assembly 

and protein translocation competence, adding the Hrp pilus display system to a list of 

potential vaccine display tools.  

 

The Hrp pilus of P. syringae has an external diameter of 6-8 nm (Brown et al., 2001; 

Roine et al., 1997b) and it is likely that the internal diameter is as narrow as a Yersinia 

needle, that being 2 nm (Hoiczyk & Blobel, 2001). Considering pilus dimensions, 

proteins destined for secretion would be expected to be at least partially unfolded to 

enter and travel through Hrp pilus. As discussed previously, chaperones play an 

important role in keeping the protein unfolded prior to secretion. For HrpA, such a 

chaperone has not been described. Given that HrpA pilin can auto-assemble to form 

filaments ín vitro (Roine et al., 1997b), it seems that HrpA itself has an inbuilt ability 

to stay in an unfolded form prior to secretion. However, the three-dimensional 

structure of the epitope may restrict the use of the pilus as an epitope display tool. 

Since the epitope forming a β-hairpin structure impaired the secretion of HrpA (II, 

Figure 2).  
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D.5. Interaction of HrpZPph harpin with a host protein (III) 

D.5.1. HrpZPph binds to a defined peptide sequence. 

As discussed previously, HrpZ probably exerts its function as an integral membrane 

protein. Therefore, the possible interactions between HrpZ and host proteins are likely 

to take place within a lipid environment. Thus, the putative interactions might be 

hidden by the lipids and hard to detect directly. We chose an indirect method to study 

the protein-binding characteristics of HrpZ involving the affinity of random peptides 

displayed on phage particles. Phage clones carrying a peptide with affinity to HrpZPph 

were sequenced. The sequences were found to encode only eight peptides (III, Table 

1), which are strikingly similar, all containing a hydrophobic amino acid motif with 

tryptophan and leucine, the consensus being W(L)ARWLL(G/L). A similar strategy 

with HrpZPto was performed, and the sequences of phage-binding peptides were found 

to be similar to HrpZPph phage binding peptides. The similarity of the HrpZPph-binding 

peptide sequences suggests that HrpZPph has a binding site for a protein and not just 

for any hydrophobic molecule, and the protein-protein interaction was confirmed by a 

similar approach with HrpZPto. However, no sequences with a perfect match to the 

consensus peptide were found in the available sequence databases. 

 

D.5.2. Peptide-binding site maps in the middle of the HrpZPph sequence. 

To locate the peptide-binding site within HrpZPph, a library of randomly distributed 

5-amino-acid insertion mutations on HrpZPph was constructed. We found that 12 out 

of 276 mutants were distinct non-binding mutants (III, Figure 1A). Sequence analysis 

revealed that all of the inhibiting mutations resided in the central part of HrpZPph, 

between amino acids 86 and 194. However, several non-inhibiting insertion mutations 

were localized in the non-binding domain between the inhibiting mutations (III, 

Figure 1B). The peptide-binding site was also mapped within the central domain of 

HrpZPto by using same mapping strategy. 

 

A 69-85 amino acid long homology domain, which is common to all of the HrpZ and 

HrpN harpins, was found within the non-binding region (III, Figure 2A). In addition 
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to this conserved region, both HrpZPph and HrpN have a domain with a 

low-complexity amino acid sequence rich in glycine, which is characteristic for 

harpins. In the HrpZPph sequence, the glycine-rich domain is downstream of the 

conserved region, whereas the glycine-rich domain is at the amino terminal side of 

HrpN. Thus, HrpZPph and HrpN seem to have two similar domains but in a reverse 

order (III, Figure 2B). 

 

D.5.3. HrpZPph binds to an acidic, heat-sensitive, host-specific protein of bean. 

To test the specificity of HrpZPph-binding-peptides, the binding affinity of 

phage-displayed peptide-1 and peptide-3 was assayed for HrpZPst, HrpZPss, and 

HrpNEcc harpins. The result (III, Figure 3) suggests that HrpZPph harpin binds 

specifically to a peptide, which would probably be an HrpZPph-interaction region on 

host protein. 

 

When plant protein samples were probed with antiserum raised against the HrpZPph 

-binding peptide-3, the antiserum recognized small and acidic proteins in bean, tomato, 

parsley, and Arabidopsis leaf protein samples on both SDS-PAGE blots (III, Figure 

4A) and native IEF gel blots (III, Figure 4B). HrpZPph did not bind to denatured 

proteins (data not shown) but did bind to an acidic bean protein under non-denaturing 

conditions (III, Figure 4B). Furthermore this interaction was strengthened after 

extraction of the lipids from the bean sample, but HrpZPph did not bind the non-host 

proteins purified from tomato, parsley, and Arabidopsis under non-denaturing 

conditions (III, Figure 4B). These data further support our conclusion that HrpZPph 

binds to a host protein. 

 

From our results we conclude that HrpZPph binds in a host-specific manner to a small 

and acidic plant protein containing a peptide-3-like epitope. 
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E. CONCLUDING REMARKS 

 

This thesis work reveals the route for construction of the Hrp pilus and delivery of the 

protein HrpZPph to host cells. The interaction of HrpZPph with the host cell target and 

the molecular mechanisms of its function have also been partly addressed. By 

answering the fundamental and longstanding question concerning the molecular 

mechanism of the inter-kingdom protein traffic and the bacterial pathogenicity, it will 

help us to eventually reveal new approaches for development of disease control. 

 

The finding that the FLAG-tag is displayed on the pilus surface led us to investigate 

the possibility to use the Hrp pilus as a general epitope display tool. Our results 

clearly show that the Hrp pilus has potential to be used as an epitope display carrier, 

although there are some size and conformation limitations. The auto-assembling 

nature of the pilus also allows combination of different epitopes in the same 

polymeric structure. This could be an additional advantage of the Hrp pilus as an 

epitope carrier, compared with the traditional fimbrial and flagellar epitope display 

tools. In addition, the changing of the pilus surface properties after adding epitopes 

should help future structural studies of the pilus. 
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