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ABSTRACT

Lung cancers (LCs) represent a heterogeneous collection of tumors that are characterized

by a large number of abnormalities of both chromosome number and structure. The genetic

alterations displayed by a given tumor are the result  of a combination of changes that are

directly or indirectly caused by inducing factors, such as tobacco carcinogens, and those

that rise up secondarily as a consequence of defects in genes that maintain genomic

stability. Although a number of genes have been identified to be recurrently aberrated in

LCs, numerous genes contributing to lung carcinogenesis are yet to be revealed.

In this thesis, opposite categories of lung tumors were studied using comparative

microarray analyses with the aim of identifying aberrations that are of significance in

distinct types of LCs. Microarrays were used as they provide information about virtually all

of the genes of the subject of the study in a single assay and enable genome wide studies

without a priori information of the affected genes. The studies involved LCs in two

separate themes: those induced by asbestos exposure and those that disseminate into bone

marrow (BM) in the early stages of tumorigenesis. The category specific alterations were

identified by using a differential region finding (DRF) method designed for comparative

studies of DNA and gene expression level high-throughput data that was developed in this

thesis.

The studies carried out for this thesis showed that comparative analyses of opposite tumor

categories are practical in the identification of molecular changes that are characteristic of

sub-categories of LCs. Distinct chromosome regions were found to be more frequently

aberrated in the LCs of asbestos exposed than nonexposed patients. Aberrations of distinct

regions also differentiated lung adenocarcinomas (ACs) from patients with (BM-positive)

and  without  (BM-negative)  evidence  of  disseminated  tumor  cells  (DTCs)  in  their  BM.  In

both study settings, further verifications and characterizations of the findings were

performed on one of the putative sites of preferential aberrations.

In the asbestos related studies, microsatellite and fluorescence in situ hybridization (FISH)

analyses verified that aberrations of 19p, caused by losses, were significantly more frequent

in tumors of the asbestos exposed than of the nonexposed patients. We showed also that

19p aberrations can be induced in vitro by means of a crocidolite asbestos treatment.

Furthermore, a Gene Ontology (GO) analysis revealed a number of differentially regulated

biological processes and molecular functions between the tumor groups with differences in

protein ubiquitination and ion transport especially highlighted.
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In  the  subsequent  dissemination  related  studies,  FISH  analyses  of  the  4q  region  were

performed on both primary LCs and brain metastases of LCs. The connection between the

loss of 4q and the presence of DTCs in BM in ACs could be verified but 4q loss was also

demonstrated to be a common feature of BM-positive tumors across different histological

types of LCs. Losses of 4q were also frequently observed in brain metastases of LCs

indicating that the aberration could be a universal feature of spreading LCs.

The  results  of  this  thesis  imply  that  LCs  that  have  been  influenced  by  asbestos  exposure

and those that disseminate to BM have distinct molecular changes. However, the research

initiated in thesis needs to be continued in order to uncover the target genes of the

preferential aberrations related to asbestos and dissemination.
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ABBREVIATIONS

8-OHdG 8-hydroxy-guanine
ABL c-abl oncogene 1, receptor tyrosine kinase
AC adenocarcinoma
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BAT-26                  “Big A-Tract”, a marker of 26 adenine residues
BCR breakpoint cluster region
BAX BCL2-associated X protein
BER base-excision repair
BM bone marrow
bp base pair
BRAF v-raf murine sarcoma viral oncogene homolog B1
C– without centromere signal
C+ with centromere signal
CCND1 cyclin D1
CDK4 cyclin-dependent kinase 4
CDKN2A cyclin-dependent kinase inhibitor 2A
CGH comparative genomic hybridization
CIN chromosomal instability
Cy3 Cyanine3
Cy5 Cyanine5
Cyt-B cytochalasin-B
DAG directed acyclic graph
DRF differential region finding
DTC disseminated tumor cell
EGFR epidermal growth factor receptor
FHIT fragile histidine triad gene
FISH fluorescence in situ hybridization
FRA3B fragile site, aphidicolin type, common, fra(3)(p14.2)
FRA6E fragile site, aphidicolin type, common, fra(6)(q26)
FRA7H fragile site, aphidicolin type, common, fra(7)(q32.3)
FRA16D fragile site, aphidicolin type, common, fra(16)(q23.2)
FRAXB site, aphidicolin type, common, fra(X)(p22.31) B
GO Gene Ontology
HSR Homogeneously staining region
iGA Iterative Group Analysis
KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
LC lung cancer
LCLC large cell lung carcinoma
LKB1/STK11 serine/threonine kinase 11
LOH loss of heterozygosity
LOWESS locally weighted linear regression
LN lymph node
M-FISH multicolor fluorescence in situ hybridization
MAPK mitogen activated protein kinase
MLH1 mutL homolog 1
MMC mitomycin C
MMR mismatch repair
MN micronucleus
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MSH2 mutS homolog 2
MSI microsatellite instability
MYC v-myc myelocytomatosis viral oncogene homolog (avian)
NER nucleotide-excision repair
NF- B nuclear factor kappaB
NSCLC non-small cell lung carcinoma
PAH polycyclic aromatic hydrocarbon
PCR polymarase chain reaction
PI3K phosphatidylinositol 3-kinase
RAS rat sarcoma viral oncogene homolog
RASSF1A Ras association (RalGDS/AF-6) domain family member 1
RB1 retinoblastoma 1
RMA robust multi-array average
RNS reactive nitrogen species
ROC Receiver Operating Characteristic
ROS reactive oxygen species
SCC squamous cell carcinoma
SCLC small cell lung carcinoma
SNP single nucleotide polymorphism
TGFBR2 transforming growth factor, beta receptor II (70/80kDa)
TP53 tumor protein p53
TSG tumor suppressor gene
UBA1 ubiquitin-like modifier activating enzyme 1
UBA7 ubiquitin-like modifier activating enzyme 7
UPD uniparental disomy
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REVIEW OF LITERATURE

1 CANCER GENETICS

Cancer is a genetic disease of somatic cells that develops through multiple successive

advantageous changes (Nowell 1976). Although the changes occurring in different tumors

may vary, distinct alterations in cell physiology are needed for a tumor to develop. These

are  self-sufficiency  in  growth  signals,  insensitivity  to  anti-growth  signals,  evasion  of

apoptosis, limitless replicative potential, sustained angiogenesis, tissue invasion and

metastasis (reviewed in Hanahan & Weinberg 2000).

Cancer cells originate from a single ancestral cell that gains a selective growth advantage

over its neighboring normal cells (Nowell 1976). Only rare populations of cells within a

tumor  have  been  shown  to  possess  the  potential  to  initiate  and  sustain  cancer  growth

(Lapidot et al. 1994; Al-Hajj et al. 2003; O’Brien et al. 2007) indicating that hierarchy of

the cells persists also in tumors. No single cause can be usually pinpointed for somatic

cancers, but instead, environmental factors and lifestyle choices predispose individuals to

the disease (Weinberg 2007). A heritable predisposition is also known for virtually every

form of cancer (reviewed in Knudson 2002).

From a histological perspective, tumors can be grouped into four major categories on the

basis of their tissue of origin. The epithelium derived carcinomas are the most common

group accounting for 80% of all incidences of cancer. The non-epithelial cancers include

connective tissue derived sarcomas, leukemias and lymphomas derived from blood forming

tissue and neuroectodermal tumors of the central and peripheral nervous systems (Weinberg

2007). The emphasis of this thesis is on carcinomas, particularly lung carcinomas, and

features relevant to this category of cancers are mainly discussed.

1.1 Oncogenes and tumor suppressor genes

Molecular changes in two groups of genes with opposite functions, namely proto-

oncogenes and tumor suppressor genes (TSGs) play a pivotal role in the development of

cancer (Vogelstein 1988; Kim et al. 1994). Proto-oncogenes stimulate cell growth and

inhibit  apoptosis,  whereas  TSGs  inhibit  growth  and  maintain  the  integrity  of  the  cell.

Deregulation of these genes may alter the cell’s capacity for controlled growth and

differentiation (Anderson et al. 1992) and thereby lead to tumorigenic transformation of the

cell.
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Proto-oncogenes were first identified in mammalian cells through homology with retroviral

oncogenes (Stehelin et al. 1976). They function for instance as growth factors, transcription

factors and cell cycle regulators, and can transform into cancerous oncogenes when

activated. The oncogenic change can occur through either regulatory or structural

mechanisms, which include amplifications, point mutations, chromosomal translocations

and loss of methylation, and result in an increase in protein concentration or in the creation

of an altered protein (Roth 1995). One mutated allele is generally sufficient to active the

proto-oncogene.

TSGs can be classified into caretakers and gatekeepers based on gene functions (Kinzler &

Vogelstein 1997) and, contrary to oncogenes, TSGs are inactivated in cancer cells.

Gatekeepers directly inhibit growth or promote cell death and are the most classical group

of TSGs. Caretakers, on their part, are involved in DNA repair and replication, and thereby

in the maintenance of the genomic integrity of the cell. The class includes mismatch repair

(MMR), nucleotide-excision repair (NER) and base-excision repair (BER) genes

responsible for correcting mistakes of normal DNA replication or those induced by

mutagens. Inactivation of a caretaker gene promotes tumor initiation indirectly through an

increased mutation rate of other genes including those involved in tumorigenesis (Kinzler

& Vogelstein 1997; reviewed in Friedberg 2003). Furthermore, a third group of TSGs

called landscapers has been proposed to exist, with contributions to neoplastic

transformation through an abnormal microenvironment (Kinzler & Vogelstein 1998). TSG

inactivation mechanisms include intragenic mutations, losses of wild type chromosomes

and somatic recombinations (Weinberg 2007). Gene inactivation may also occur through

epigenetic changes such as hyper-methylation of CpG islands, histone or chromatin

modifications. These changes hinder the binding of transcription factors and therefore

influence gene expression. Contrary to oncogenes, inactivation of both the maternal and the

paternal alleles of a TSG are generally required to produce a phenotypic effect as initially

proposed by Knudson (1971).

At the time of writing, altogether 367 human genes have been implicated in cancer via

mutation, which accounts for more than 1% of genes in the human genome (reviewed in

Futreal 2004; Cancer Gene Census at http://www.sanger.ac.uk/genetics/CGP/Census/). In

terms of tumor development, the cancer genes seem to possess substitutive roles as no

single gene is known to be activated or deleted from all cancers. However, differences in

mutation rates between cancer genes are substantial. For instance, TP53 is mutated in most

human cancers, e.g. in lung cancers, TP53 mutations are detected in up to 60% of cases

http://www.sanger.ac.uk/genetics/CGP/Census/).
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(Hollstein et al. 1991; Greenblatt et al. 1994), whereas the translocation formed oncogene

BCR-ABL (Rowley 1973), for example, is characteristic of chronic myelogenous leukemias.

1.2 Genetic instability

Normal cells replicate their DNA with exceptional accuracy but carcinomas are genetically

remarkably unstable (Loeb et al. 1974; Loeb 1991; Stoler et al. 1999). This was illustrated

for instance in a recent analysis of 13,023 genes in 11 breast and 11 colorectal cancers,

where an average tumor was shown to harbor about 90 mutated genes (Sjöblom et al.

2006). The increased mutation rate is thought to be related to malfunctions of the genes that

are involved in the maintenance of genomic stability, i.e. have functions such as DNA

repair, replication, chromosomal segregation, and cell cycle regulation (reviewed in

Lengauer et al. 1998; Loeb & Loeb 1999; Bielas & Loeb 2005). The breakdowns of the

maintenance genes necessitate a “mutator phenotype” that facilitates formation of new

aberrations (Loeb 1991). It is, however, still debated whether genetic instability is the

driving force of cancer progression or a result of it (Loeb 1991; Tomlinson et al. 1996;

Sieber et al. 2002).

Genetic instability was proposed to have a role in tumorigenesis already in the 70's (Nowell

1976). The fundamental differences between the aberration profiles detected in cancers

have further indicated that there are two types of genetic instability, microsatellite

instability (MSI) and chromosomal instability (CIN) (Lengauer et al 1997). MSI and CIN

define two distinct pathways for cancer development caused by a failure of the DNA MMR

(Levinson & Gutman 1987; Parsons et al. 1993) and a deficiency of mitotic segregation

(Lengauer et al. 1997; Cahill et al.  1998),  respectively.  One  tumor  may harbor  both  MSI

and CIN but the rare co-existence of the instabilities indicates that tumorigenesis can be

driven by just one of them (Lengauer et al. 1997).

MSI was first reported in colorectal cancers (Thibodeau et al. 1993), but has since been

recognized in various other cancers including that of the lung (Hansen et al. 2003;

Ninomiya et al. 2006). Cancers with MSI accumulate single nucleotide mutations and

length variations in microsatellite sequences (Boland et al. 1998), which are polymorphic

tandem repeats of one to six bases that occur ubiquitously throughout the genome (Tautz &

Renz 1984). Microsatellites situated at critical coding regions expose the corresponding

genes to frameshift mutations induced by mismatch (Malkhosyan et al. 1996) as presented

for instance for TGFBR2 (Wang et al. 1995), BAX (Ionov et al. 2000), and the MMR genes
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themselves. The MSI phenotype is predominantly caused by an inactivation of the MMR

gene MLH1 or MSH2 (Dietmaier et al. 1997), which in lung tumors occurs by promoter

methylation (Wang et al. 2003; Hsu et al. 2005).

In contrast  to the rather small  DNA loci affected in the MSI types of tumors,  CIN driven

tumors display strikingly abnormal karyotypes. This instability is characterized by both

chromosome and chromatid rearrangements, and losses and gains of whole chromosomes

or chromosome segments (Lengauer et al. 1997; reviewed in Lengauer et al. 1998).

Consequently, CIN driven tumors may also display altered ploidy, loss of heterozygosity

(LOH), and uniparental disomy (UPD). The underlying causes of CIN, which are likely to

be  more  heterogeneous  than  that  of  MSI,  are  thought  to  be  related  to  mitotic  defects  that

give rise to chromosome segregating errors (reviewed in Lengauer et al. 1998). Oncogens

and TSGs that disrupt the normal function and numerical integrity of centrosomes have

been suggested to be involved owing to the central role of centrosomes in chromosome

segregation (Fukasawa 2007).

1.3 Genomic alterations

A copy number aberration may involve any size of chromosome material from micro level

changes that are not visible using a regular light microscope to changes of whole

chromosomes. A segment of a chromosome that is amplified many times may be fused in

long arrays within a chromosomal segment forming a homogeneously staining region

(HSR) or be cleaved out of the cell and form an autonomously replicating structure called a

double minute (Weinberg 2007). Alternatively, a chromosome or chromosome fragment

may be excluded from the nucleus if it lacks the ability to travel to the spindle poles during

cell division. The lagging fragment may form its own micronucleus (MN), which resembles

the main nuclei morphologically apart from the size (Fenech 2000). Also, dicentric

chromosomes generated via translocations can end up in an MN through the formation of

nucleoplasmic bridges (Fenech 2000).

In a number of cancers, gene copy number is known to have a significant impact on gene

expression (Hyman et al. 2002; Pollack et al. 2002; Wolf et al. 2004). Particularly, highly

amplified regions have been shown to induce gene expression changes in 20-62% of the

corresponding genes (Hyman et al. 2002; Pollack et al. 2002; Wolf et al. 2004).On the

other hand, the effects on gene expression of low level changes in copy number were

shown  to  be  less  proportionate  but  this  observation  could  also  relate  to  the  difficulty  of
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detecting slight increases in gene expression. A change in gene dosage is not always

proportional to the alterations observed in gene or protein expression. Particularly,

transcriptional regulation is influenced by chromatin structure and accessibility to DNA

binding sites that control transcription, presence of transcriptional activators and repressors,

and post-transcriptional modifications (Berg et al. 2001). Hence, apart from homozygous

deletions that cause a lack of expression, gene or protein expression cannot be deduced

directly from the DNA copy number.

1.4 Fragile sites

Fragile sites are specific chromosomal loci that preferentially exhibit breakage following a

partial inhibition of DNA synthesis (Glover et al. 1984; Durkin and Glover 2007). The sites

are generally categorized into common and rare types based on their population frequency

and pattern of inheritance. At present, the genome database (www.gdb.org) contains 88

common fragile sites present in all individuals and 28 rare fragile sites, which appear in

<5% of individuals and segregate in Mendelian manner (Kremer et al. 1991; reviewed in

Sutherland et al.  1998).  The  breakage  of  the  fragile  sites  is  thought  to  be  related  to  the

presence of sequences that are difficult to replicate, owing, for instance, to secondary

structure formation (Gacy et al. 1995; Hewett et al. 1998).  Replication  of  these  loci  has

been suggested to be especially complicated in the presence of replication inhibitors or with

a deficiency in DNA repair and cell cycle checkpoint pathways (Casper et al. 2002;

reviewed in Arlt et al. 2006).

The fragile sites have been implicated as being loci of frequent rearrangements also in

cancers (Yunis & Soreng 1984; reviewed in Durkin and Glover 2007). Furthermore, LOH

has been reported to occur preferentially at these sites in early lesions (Bartkova et al. 2005;

Gorgoulis et al. 2005). Their significance in cancer is further highlighted by the fact that

several  fragile  sites  span  genes  that  function  as  TSGs and  stress  responders  (reviewed in

Smith et al. 2006). For example, the most unstable fragile site, FRA3B at 3p14, lies within

the tumor suppressor FHIT (Ohta et al. 1996), which has been shown to be inactivated in

60% of human cancers (reviewed in Pekarsky et al. 2002). Other highly breakable fragile

sites include FRA16D at 16q23, FRA6E at 6q26, FRA7H at 7q23.3, and FRAXB at Xp23.3

(Glover et al. 1984). In addition to TSG inactivation, fragile sites may be of relevance in

oncogene activation (Hellman et al. 2002).

http://www.gdb.org
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1.5 Signaling pathways

In normal cells, virtually all aspects of cell behavior are regulated by the signals the cell

receives from its surroundings. The extra-cellular signals are transferred to intracellular

effectors through sequential activation of mediator proteins leading to responses also

governing focal processes such as cell proliferation, differentiation, and apoptosis

(Weinberg 2007). Aberrations of key genes cause perturbations in these systems enabling

the cell to escape normal growth regulation (Anderson et al. 1992).

The signals are transmitted in modules of multilayered signaling cascades (reviewed in

Pawson & Saxton 1999). The pathways exhibit cross-talk and redundancy (Weinberg

2007), building up an intricately connected signaling network. There are fewer signaling

pathways than proteins, and one protein may be involved in several of them. The structure

is extremely robust to alterations in general (Albert et al. 2000) but easily wounded when a

highly connected component such as the TP53 is affected (Vogelstein et al. 2000). TP53

functions primarily as a transcription factor regulating processes such as apoptosis and

DNA damage response (reviewed in Sengupta & Harris 2005) and is, as previously

mentioned, one of the most commonly mutated genes in human cancers.

A signaling pathway can be deregulated in several different ways in tumors (Downward

2006). Interestingly, different cancer types accumulate mutations preferentially in specific

genes of a given pathway, which reflects a functional redundancy of certain mutations

(Ichimura et al. 2000; Eberhard et al. 2005; Suzuki et al. 2006). Mutually exclusive

mutations have been recognized for instance in the RAS signaling cascades that link EGFR

activation to cell cycle progression and survival (reviewed in Downward 2003). RAS

family genes lie downstream of EGFR and interact with several families of effector proteins

such as RAF and PI3K. KRAS mutations are found preferentially in tumors of the pancreas,

whereas melanomas and ovarian cancers show a tendency for BRAF and PI3K mutations

respectively (reviewed in Downward 2003). Lung adenocarcinomas (ACs) develop

mutations both in KRAS and EGFR, but they are preferentially mutated in smokers and

non-smokers respectively (Westra et al. 1993; Kosaka et al. 2004; Shigematsu et al. 2005).

Similarly, the RB pathway can be inactivated through mutations of RB1 itself, as in the

majority of small cell lung cancers (SCLCs) but deregulation can be equally achieved, for

example, through the inactivation of CDKN2A as shown in 30-70% of non small  cell  lung

cancers (NSCLCs), or through the activation of CCND1 or CDK4 (Harbour et al. 1988;

Shapiro et al. 1995; González-Quevedo et al. 2002; reviewed in Wikman & Kettunen

2006). The differences in preferential genetic alterations between tumors of various organs
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and between lung ACs of smokers and non-smokers indicate that the microenvironment

also plays a role in the advantageousness of a given alteration.

The complexity of the signaling systems enables malignant transformation to be driven by a

combination of different sets of genes. Accordingly, the accumulation of mutations in a

distinct group of genes as proposed by the earlier models, e.g. for the development of

colorectal cancer (Fearon & Vogelstein 1990), have proven limited and alternative

pathways for carcinogenesis have been implicated (Smith et al. 2002; Leslie et al. 2003)

instead. Knowledge of the pathways and their affected components are essential in

designing a tailored treatment for a given tumor patient and is also likely to facilitate

diagnostics because different combinations of genetic alterations have an impact on the

tumor phenotype (Conlin et al. 2005).

2 LUNG CANCER

Lung cancer (LC) is the leading category of cancer causing death in men and comes in third

place in women. Overall, it accounts for 20% of deaths caused by cancer in Europe (Boyle

& Ferlay 2005). The overall incidence of LC in the Finnish population has been declining

among men since the early 1980’s, but among women the incidence rate has remained

stable since the beginning of the 2000’s (Finnish Cancer Registry, www.cancerregistry.fi).

The overall five year survival rate for all LC patients is less than 15% (Finnish Cancer

Registry), but it is 60% for patients who show no evidence of lymph node (LN) metastases

at the time of surgery. However, owing to lack of early detection methods and the

asymptomatic  early  stage  of  cancer,  65%  of  patients  are  diagnosed  with  an  advanced

disease (Naruke 2003).

2.1 Histological classification of LC

LCs derive from the epithelial tissue of the central and peripheral lung, but represent a

rather heterogeneous collection of tumors. They are commonly divided into two broad

categories, SCLC and NSCLC. NSCLCs are further classified histologically into

subcategories of which the largest ones are squamous cell carcinoma (SCC), AC, and large

cell lung carcinoma (LCLC) (Travis et al. 1999). ACs and LCLCs usually arise in the

periphery of the lung, whereas SCCs and SCLCs are more centralized. The clinical

features, treatment and prognosis depend on the histological tumor type and the stage of the

disease.

http://www.cancerregistry.fi).
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2.2 Risk factors for LC

Tobacco smoking is the greatest risk factor associated with all histological types of LCs

(Lubin & Blot 1984). 90% of lung cancer deaths in men and about 80% in women are

attributable to smoking (Thun et al. 2002). The lifetime probabilities of dying of lung

cancer by age 85 are estimated to be 15% for male smokers and 8% for females (Thun et al.

2002). For lifelong non-smokers, the probability is about 1%. However, environmental

tobacco smoke also increases the risk of LC (Hackshaw et al. 1997). Cigarette smoke

contains more than 4000 chemical compounds of which over 50, including polycyclic

aromatic hydrocarbons (PAHs) and tobacco specific N-nitrosamines, are known human

carcinogens (Hoffman & Hoffman 1997). Carcinogen metabolic activation leads to

covalent modifications in DNA, i.e. DNA adducts, which can lead to mutations if not

repaired. Also reactive oxygen and nitrogen species (ROS/RNS) are produced, which are

involved in causing various types of DNA and chromosomal damage including 8-hydroxy-

guanine (8-OHdG) adducts, DNA cross-links and single and double strand breaks in DNA

(Janssen et al. 1993; Jaurand 1997; reviewed in Marnett 2000). Genetic factors such as

variations in the DNA repair capacity and in the ability to metabolize carcinogens, may

affect an individual’s susceptibility to cancer (reviewed in Schwartz et al. 2007).

In addition to tobacco smoke, occupational and environmental exposure to other

carcinogenic factors such as asbestos, nickel chromates, radon and uranium contribute to

the risk of lung cancer (Saccomanno et al. 1976; Mossman et al. 1996). Concurrent

exposure to several factors, as in the case of tobacco smoking and asbestos, may act

synergistically to induce cancer (Selikoff et al. 1968; Vainio & Boffetta 1994; reviewed in

Lee 2001).

2.3 Genetic alterations in LC

The molecular mechanisms of lung carcinogenesis are complex and involve a large number

of genetic changes. The tumors may exhibit multiple abnormalities of both chromosome

number and structure (reviewed in Testa et al. 1997),  which  can  affect  any  chromosome

and are mainly unbalanced. Other common features include ploidy alterations in about 50%

of LCs (Mitelman et al. 2007), LOH, promoter methylation (Zöchbauer-Müller et al. 2001;

Liu et al. 2007), isochromosomes and double minutes (Nielsen et al. 1993; reviewed in

Testa et al. 1997). Altogether, the findings indicate high genomic instability, specifically

CIN, which also shows as an increase in aberrations with tumor development. Additionally,
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although MSI of multiple loci has been reported to occur only in 1-10% of all LCs, MSI of

individual markers appear more frequent (Sekido et al. 1998).

A recurrent trend of aberration has been revealed for most chromosome arms in lung

cancers. Irrespective of LC category, losses are frequently detected at 3p, 5q, 6q, 8p, 9p,

13q, 17p, and 18q, whereas 1q, 5p, 7p, 8q, and 20q are commonly gained (Garnis et al.

2006; Balsara & Testa 2002; Coe et al. 2006; Weir et al. 2007). However, the functional

roles of the genes amplified and deleted in LC are still mostly unknown. Known target

genes include TSGs FHIT at 3p14 (Sozzi et al. 1996), CDKN2A at 9p23 (Hayashi et al.

1994), TP53 at 17p13 (Takahashi et al. 1989), and LKB1 at 19p13 in ACs (Sanchez-

Cespedes et al. 2002) in addition to oncogenes MYC at 8q24 (Little et al. 1983), EGFR at

7p12 (Merlino et al. 1985), and KRAS at 12p12 (Pulciani et al. 1985). It is, however,

possible that the regions harbor several genes that contribute to tumorigenesis. Several

aberration hot spots have been identified for instance at the 3p region, the most common

site of aberration in LCs (Hibi et al. 1992; Balsara & Testa 2002), namely 3p25-26, 3p21.3,

and 3p12-14 (Whang-Peng et al. 1982; Kok et al. 1997; Zabarovsky et al. 2002).

Although different histological types of LCs follow the same general overall pattern of

losses and gains, distinct chromosomal regions have been shown to be preferentially

aberrated in certain types (Petersen et al. 1997; Luk et al. 2001; Balsara & Testa 2002; Coe

et al. 2006; Garnis et al. 2006). For example, LOH of 3p has been reported in 69% of SCCs

and in 35% of ACs (Mitsudomi et al. 1996), whereas the region has been found to be lost in

90% of SCLCs (Balsara & Testa 2002). Similar findings have been presented for multiple

other sites, e.g. 1p, 6q, 8p, and 19p (Balsara & Testa 2002; Coe et al. 2006; Garnis et al.

2006).  Differences  between  the  histological  types  of  LCs  are  also  evident  at  the  level  of

single genes and proteins, which is illustrated here by three examples. TP53 is mutated in

about 90% of SCLCs but only in about 50% of SCCs and 40% of ACs (Tammemagi et al.

1999; Le Calvez et al. 2005). Additionally, mutations of the EGFR/RAS pathway genes

KRAS and EGFR are observed in NSCLCs, especially ACs, but infrequently in other LC

types (Kosaka et al. 2004; Shigematsu et al. 2005). The Fhit protein has been found to be

lost in about 90% of SCCs, 60% of ACs, and 40% of SCLCs (Sozzi et al. 1998).

 Changes in LC related to smoking

Differential changes have been recognized in tumors with and without a history of

smoking. Exposure to tobacco smoke may induce specific changes early in carcinogenesis
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as LOH of 3p has been detected already in the normal epithelium of smokers without lung

cancer (Mao et al. 1997; Wistuba et al. 1997). In LCs, 80% of tumors from current

smokers, but only 22% of tumors from patients who have never smoked show LOH at 3p

(Sozzi et al. 1997). Furthermore, TP53 mutations of smokers differ from those in non-

smokers in terms of frequency, hot spots and tendency for distinct transversions (Gao et al.

1997; reviewed in Bennett et al. 1999; Gealy 1999; Husgafvel-Pursiainen et al. 2000; Le

Calvez et al. 2005). KRAS mutations, on the other hand, are almost exclusively detected in

the ACs of smokers (Westra et al. 1993; Gealy et al. 1999; Ahrendt et al. 2001), whereas

EGFR mutations occur particularly in the ACs of non-smokers (Kosaka et al. 2004; Pao et

al. 2004; Shigematsu et al. 2005). Tumors of smokers and non-smokers also display

differences in the methylation patterns of TSGs including CDKN2A and RASSF1A

(Zöchbauer-Müller et al. 2001; Toyooka et al. 2006).

Changes in LC related to asbestos

Another  significant  risk  factor  for  LC  is  asbestos.  The  asbestos  fibers  enter  the  body  by

inhaling or swallowing and are capable of penetrating into the lung, where they are thought

to interact with the lung epithelial cells directly and indirectly (Mossman et al. 1997). The

length, texture, and chemical properties of the fibers contribute to their toxicity. The exact

carcinogenic mechanisms are not fully known, but they are thought to include the formation

of ROS and RNS, alterations in mitochondrial function, and physical disturbance to the cell

cycle (Mossman et al. 1997; Shukla et al. 2003; reviewed in Upadhyay & Kamp 2003).

Asbestos fibers cause DNA breakage and chromosomal damage (Adachi et al. 1994; Kamp

et al. 1995; Ollikainen et al. 1999; Levresse et al. 2000). They also induce changes in

several signaling pathways (Nymark et al. 2007) such as the mitogen activated protein

kinase (MAPK) and nuclear factor kappaB (NF- B) cascades (Mossman et al. 1997, 2006;

Janssen et al. 1995). Particularly, MAPK lies downstream of EGFR, which receptor has

been shown to be activated by oxidative stress induced by asbestos (Zanella et al. 1996;

Mossman et al. 1997). Only limited information is, however, available of the putative

preferential genetic alterations that may be involved in asbestos related carcinogenesis.

Although extensive LOH of 3p21 (Marsit et al. 2004) and mutations of TP53, KRAS, and

FHIT have been suggested to be related with asbestos exposure (Wang et al. 1995; Nelson

et al. 1998, 1999; Husgafvel-Pursiainen et al. 1999; Pylkkänen et  al. 2002), the effects

induced by asbestos have been difficult to decipher. The fact that most asbestos exposed
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LC patients have a definite history of smoking hinders the uncovering of asbestos specific

effects.

3 MICROARRAYS IN CANCER RESEARCH

Recent advances in genomics, most importantly the sequencing of human and other

organisms’ genomes, have provided revolutionary information that enables the

characterization of diseases at the molecular level. This data is elaborately exploited by

DNA microarrays (Schena et al. 1995), i.e. miniature measurement devices that contain

probes for practically all  genes of the study subject and enable genome wide studies of a

given  subject  in  a  single  assay.  Soon  after  the  introduction  of  the  first  arrays  for  gene

expression analysis (Schena et al.  1995),  several  different  modifications  of  the  high-

throughput platform have been introduced, including array comparative genomic

hybridization (array CGH) for DNA copy number (Solinas-Toldo et al. 1997; Pinkel et al.

1998), single nucleotide polymorphism (SNP) array for genotyping (Wang et al. 1998), and

the methylation array for epigenetic (Hatada et al. 2002) assays. Special platforms have

also been designed for protein and cell studies.

DNA microarrays contain nucleotide probes at predefined positions, which, upon

hybridization, bind preferentially with their complementary single stranded nucleotide

sequences. With known probe sequences, genome wide screening studies can be carried out

without a priori knowledge of the affected genes in the condition of interest. The probes are

typically either oligonucleotide (Carvalho et al. 2004), cDNA (Pollack et al. 1999) or

bacterial artificial chromosome (BAC) based sequences (Solinas-Toldo et al. 1997).

Oligonucleotides provide the best resolution due to the short length of oligos and their

independency of coding sequences, whereas longer BACs provide more intense signals

(Pinkel & Albertson 2005). Current arrays may even contain more than two million probes

(NimbleGen HD2 Arrays, http://www.nimblegen.com).

Depending on the array platform, all samples are either hybridized to separate arrays (one-

color array) or each sample and the corresponding reference are hybridized together to a

single array (two-color array). Two-color platforms utilize competitive hybridization of the

sample and a differently labeled reference (Schena et al. 1995), with Cyanine3 (Cy3) and

Cyanine5 (Cy5) being the most commonly used dyes. On the other hand, biotin labeled

samples are used in the Affymetrix one-color GeneChip® system (Affymetrix 2004).

Owing to differences in platform design, the sensitivity, specificity and reproducibility

http://www.nimblegen.com).
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obtainable by various array types varies. Thus considerable divergence of the results across

platforms has been previously reported (Tan et al. 2003; Marshall 2004). The issue has

been recently addressed by a collaborative MicroArray Quality Control (MAQC) project

(MAQC Consortium 2006). On the basis of data from seven different microarray platforms

and about 60 hybridizations per platform, intra- and inter-platform comparability of the

results could be demonstrated (MAQC Consortium 2006).

3.1 Microarray data processing

In the experimental setup, DNA or reverse transcribed mRNA of the sample of interest or

reference is labeled and allowed to hybridize with the probes on the array. After

hybridization, the microarray is scanned with a laser that excites the fluorescently labeled

sample (and reference). A digital image is formed where the intensities reflect the

expression or copy number of the genes. Image analysis techniques are applied to locate,

segment,  and  quantify  the  spot  intensities.  At  the  time  of  segmentation  and  intensity

quantification, the quality of the measurements can be assessed using the spatial features of

the spot, e.g. its shape or size, or by comparing the spot foreground and background

intensity distributions (Ruosaari & Hollmén 2002; Wang et al. 2001; Hautaniemi et al.

2003; Li et al. 2005). Steps in the further analysis cannot compensate for possible sources

of error such as scratches on the slide and therefore image quality needs to be assessed at

this stage.

Prior to further analysis, data preprocessing or normalization is usually performed

(reviewed in Quackenbush 2002). Normalization methods generally calculate a scaling

factor or function to correct for nonbiological effects in the data. No standard procedures

have been defined, and therefore the methods are currently chosen to suit each individual

study. For two-color microarrays, the method can involve simply adjusting the median and

variance of the logarithmic ratios of the sample and reference across the dataset to obtain

similarly scaled data distributions. Locally weighted scatterplot smoothing (LOWESS)

(Cleveland 1979) has become a commonly used option in cases where there is, for example,

a  need  to  adjust  for  the  dye  bias.  To  enhance  the  comparability  of  the  measurements

between the arrays of one-color Affymetrix slides, robust multi-array average (RMA)

(Irizarry et al. 2003), and its derivations such as GC-RMA (Wu et al. 2004), have become

popular. Recently, the standardization of microarray experiments has been addressed and

the Minimum Information About a Microarray Experiment (MIAME) has been established.

It describes the information needed to enable the results of an experiment to be interpreted
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unambiguously and to allow the reproduction of the experiments (Brazma et al. 2001,

2003; Barrett et al. 2005).

Microarray data are commonly presented as a logarithmic ratio of the measurements

between the sample and the reference. Various statistical approaches are available and can

be used to identify changes associated with a specific outcome such as survival or to reveal

global patterns without regard to a given outcome. Comparative studies may be

advantageous when distinct study populations such as different histological types of tumors

of a given organ or tumors of patients exposed and not exposed to a carcinogen, are

investigated. On the other hand, subclasses of a seemingly uniform group of specimens

may also be sought on the basis of their aberration profiles.

The earliest and simplest methods use thresholds to detect changes in gene expression or

copy number, or apply statistical hypothesis testing such as detecting differences in the

means between the conditions of interest with a t-test. Another approach for analyzing the

array data is the Receiver Operating Characteristic (ROC) curve (Swets 1988), which

provides a non-parametric approach for analyzing the diagnostic value of the probes in a

two-group classification setting. The curve displays the relationship between the proportion

of true and false positive classifications, thus the area under the curve yields an estimate of

a  correct  diagnosis  when  the  probe  is  used  to  classify  the  groups.  Past  studies  have,

however, indicated that gene by gene analyses produce discordant results (Cahan et al.

2005) in apparently similar studies (e.g. Bhattacharjee et al. 2001; Garber et al. 2001; Beer

et al. 2002; Takeuchi et al. 2006). Thus, more sophisticated methods have been developed,

that integrate different types of data including measurements of DNA, mRNA and protein

levels from multiple studies (Hanash 2004).

3.2 Pathway analysis of microarray data

One commonly applied data integration approach is to group genes into biologically

meaningful categories and test the categories for deregulation or enrichment of

differentially expressed genes. Categories with biological relevance could represent, for

instance, signaling pathways discussed earlier in this thesis or genes that are involved in the

same cellular processes. Investigations of groups of genes are justified as a change in the

expression of one gene or protein is not an independent event but also influences the

expression of other genes or proteins through the signaling cascades. Indeed, the
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deregulation of a signaling cascade cannot be evaluated based on studies of isolated genes

and therefore holistic studies of the pathways should be performed (Vogelstein et al. 2000).

Whilst high-throughput protein expression measurement techniques are still evolving,

pathway analyses are frequently performed on gene expression data. Yet, pathway analyses

have also been performed on array CGH data (Kaur et al. 2006). Analyses of distinct

groups of genes instead of single genes are practical as moderate changes in a number of

components of one pathway may be enough to indicate differential regulation of the whole

pathway. On the contrary, single gene analyses, e.g. fold change or t-test, require significant

differences in the expression of a gene between the conditions of interest for the change to

be detected. Furthermore, it has been shown that the consistency of analyses across

independent data of a similar kind are remarkably improved by analyzing a defined set of

genes that share a biological function, chromosomal location or regulation instead of single

genes (Subramanian et al. 2005). However, to ensure that a specific finding is significant in

the condition of interest, further verification of the results by studies on independent

populations is always needed (Hayes et al. 2006).

Gene Ontology

The Gene Ontology (GO) project is a collaborative effort that aims at consistent

descriptions of gene products in different databases (Ashburner et al. 2000; Gene Ontology

Consortium 2006). The project has developed controlled vocabularies for describing the

biological processes, molecular functions and cellular locations of genes and gene products

in a species independent manner. Information about the deregulated pathways can be

obtained by testing GO categories for the enrichment of differentially expressed genes. A

common  choice  is  to  apply  the  hypergeometric  test  to  assess  the  representation  of  genes

with a given GO annotation relative to the whole data (Breitling et al. 2004; Subramanian

et al. 2005). The enrichment calculations can be performed on a predefined list of putative,

differentially expressed genes or on rank lists of differentially expressed genes which

include the whole data (Breitling et al. 2004).

The GO terms can be ordered as a directed acyclic graph (DAG), where detailed terms

branch off from the more general terms. The detailed “child” terms are specific descriptions

of  the  more  general  “parent”  terms  indicating  that  a  gene  with  a  detailed  GO description

can also be described by the more general terms of the branch. Figure 1 illustrates the

connections of the GO terms for biological processes related to protein ubiquitination, a
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process of relevance to this thesis. The figure shows that ubiquitination processes may be

described by multiple levels of specificity, which is also a feature of other GO categories.

Figure 1. Gene Ontology illustration of biological processes related to protein
ubiquitination. The GO DAG branches off from the most general term (GO:0008150) and
provides several levels of specificity to describe the ubiquitination process. Most GO terms
have also child terms not shown in this figure due to limited space.

3.3 Combining array CGH and gene expression

Although changes in gene expression can occur through various mechanisms as presented

in Section 1.1, recurring DNA level aberrations are thought to target specific genes that

contribute to tumorigenesis. The microarray technology provides a powerful means for

detecting genes whose expression is affected by the copy number change and which may

thus induce changes at the cellular level also. Indeed, various approaches have been

presented for the integration of high-throughput array CGH and gene expression data

(Pollack et al. 2002; Hautaniemi et al. 2004; Myers et al. 2004; Furge et al. 2005; Berger et
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al. 2006). The approaches generally fall into three categories that share the following

properties.  In the first  category, the two data types are analyzed separately and the results

are combined to identify regions displaying both DNA and expression level changes

(Pollack et al. 2002; Myers et al. 2004; Furge et al. 2005). In the second category, the

regions with copy number changes are determined, enabling the detection of genes whose

expression levels can be explained by the copy number change (Hautaniemi et al. 2004). In

the third category, the array CGH and expression data are combined as such using

transformation algorithms, after which the data projections that correspond to similar

patterns of variations are sought (Berger et al. 2006).

3.4 Considerations related to microarray analyses

Microarray data analysis typically requires the testing of a large number of hypotheses. For

instance, when differentially expressed genes are sought, a statistical test is commonly

performed for all the probes on the array. The testing procedure requires the formulation of

the null and the alternative hypotheses, which are commonly phrased so that the null

represents  no  change  and  the  alternative  is  a  real  effect,  and  a  test  statistic  that  is  able  to

provide an answer to the problem under consideration is used. The test yields a p-value,

which is the probability of obtaining a value of the test statistic that is at least as extreme as

the one observed under the circumstances that the null hypothesis were true.

Based on the outcome, the null hypothesis is either rejected in favor of the alternative

hypothesis or it is accepted at the level of significance of the test. Two types of errors are

associated with the testing: the null hypothesis may be erroneously rejected (Type I) or the

null hypothesis may not be rejected even if it is false (Type II). The level of significance is

specified by setting an acceptable maximum probability of making a Type I error, which

depends on the study setting and, owing to an inverse relation between the error types, also

affects Type II errors.

When multiple hypotheses are tested, the probability that some Type I errors are committed

increases with the number of hypotheses (Shaffer 1995). Hence, when a cutoff of 0.05 is

used to detect over and underexpressed genes from the high-throughput microarray data,

there is a 5% chance of a Type I error. Thus hundreds of the so called significant findings

are expected to have come up by chance alone. Several multiple test correction procedures

such as Bonferroni or Bonferroni-Holm corrections (Holm 1979; Benjamini & Hochberg

1995) have been developed. In the context of gene expression analysis, approaches that
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adjust the p-values by multiplying them with the number of performed tests may, however,

provide too stringent a control. However, the significance of the results can also be assessed

using permutation testing (Good 2000). An empirical probability distribution can be

constructed for any test statistic by randomizing the observed data points, calculating the

outcome, and repeating the process an adequate number of times until a stable distribution

is obtained.

Another consideration regarding gene expression microarrays relates to the use of a limited

number of samples. As a result, the identified molecular signatures, i.e. the subset of genes

found to be most differentially expressed in patients with different outcomes, are unstable

and depend on the selection of the patients in the training set (Michiels et al. 2005). Also

flaws in the statistical design of the experiments (Dupuy & Simon 2007), variability due to

the development stage of the tumor (Beer et al. 2002), differences in patient cohorts and

inadequate validation of the findings (Michiels et al. 2005) can cause variability in the

expression signatures of seemingly similar study populations. Studies on lung ACs by

Bhattacharjee et al. (2001), Garber et al. (2001), Beer et al. (2002), and Takeuchi et al.

(2006) illustrate this variability by showing a lack of consistency in survival gene

expression signatures. However, it is possible that several signatures consisting of different

genes from distinct pathways produce equal classification capability.

Also array CGH has its limitations. Although the aberration breakpoints are powerfully

revealed by array CGH, other factors such as balanced translocations, UPD, ploidy

alterations and micro-level copy number transitions beyond the resolution of the platform

cannot be detected using this system.

3.5 Microarrays in lung cancer

As described in Section 2.3, previous studies using chromosomal CGH and LOH analyses

have indicated that lung tumors harbor specific gains and losses. Array CGH analyses have

confirmed the  trend  of  recurring  gains  and  losses  of  the  chromosome arms  (Tonon et al.

2005; Coe et al. 2006; Garnis et al. 2006; Weir et al. 2007). In addition to confirming

previous findings, the high-resolution techniques have revealed novel regions of frequent

gains and losses overlooked by the gross analysis methods. For instance, Weir et al. (2007)

revealed 31 recurrent focal aberrations of which only six were associated with a known

mutation in LCs. Similarly, Tonon et al. (2005) identified 93 focal copy number alterations.

Also, comparative microarray studies of LCs that represent different histological types have
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uncovered genetic alterations prevalent in different LC subtypes (Coe et al. 2006; Garnis et

al. 2006). On the basis of the recurrent amplification and deletions identified by array

CGH, a few candidate tumor genes have been identified (Tonon et al. 2005; Weir et al.

2007). However, the majority of the genes targeted by the aberrations were recently

suggested as being undiscovered (Weir et al. 2007).

On the gene expression side, various approaches have been taken to identify genes that are

differentially expressed in LCs and likely to be of relevance in lung carcinogenesis. For

instance, gene expression signatures that distinguish lung tumors from normal lung

(Dracheva et al. 2007), separate different histological types of tumors (Coe et al. 2006) or

that partition patients into prognostic groups (Bhattacharjee et al. 2001; Garber et al. 2001;

Beer et al. 2002; Takeuchi et al. 2006) have been presented. Depending on the study, the

presented signatures may include as few as three genes (Lau et al. 2006) but may also

contain more than 100 genes (Coe et al. 2006) that show differences in expression between

the studied subgroups.

Translation of the findings into clinical practice has, however, been problematic owing to

the low concordance of the results. One illustration of this was given by Lau et al. (2006),

who compared the various prognostic gene expression signatures that had been presented

previously for the classification of NSCLC patients. The study showed that the prognostic

gene lists presented in different reports had minimal overlap with only one common gene

that had been identified in four separate studies. Recent results are, however, more

promising and show that microarrays are of value in LC research. Reproducible LC

subtypes could be revealed in a study involving multiple independent patient cohorts with

the subtypes showing correlation to clinically relevant covariates such as stage specific

survival (Hayes et al. 2006).
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AIMS OF THE STUDY

The identification  of  molecular  changes  related  to  LCs  in  two separate  themes  have  been

studied for this thesis. The themes are changes induced by asbestos exposure and those that

disseminate  into  bone  marrow  (BM)  in  the  early  stages  of  tumorigenesis.  Additionally,

methods were developed for microarray data analysis.

The specific aims of this thesis were:

• To study whether an additional DNA binding dye can aid in the image analysis of

gene expression microarrays (I)

• To develop and apply microarray methods in the comparative analyses of distinct

LC subgroups, i.e. those associated with asbestos exposure and those that

disseminate into BM in the early stages of tumorigenesis (II-VI)

• To validate the key findings of the screening using independent methods and

thereby prove the efficacy of the comparative study approach (III-VI)
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MATERIALS

1 STUDY SUBJECTS

Tumors of two distinct groups of LCs were investigated: lung tumors of patients with 1) a

history of asbestos exposure (Publications II-V) and 2) evidence of disseminated tumor

cells (DTCs) in BM (Publication VI). Lung tumors of patients not exposed to asbestos and

without DTCs in BM were, respectively, used as a reference in the respective analyses. The

study protocols had been approved by ethics review boards and the permission to use

diagnostics samples had been granted.

1.1 Asbestos related studies (II-V)

Tumors of asbestos exposed and non-exposed LC patients, who were matched for smoking

history, histological tumor type and stage of disease, were screened for differential

aberrations using microarray methods (Table 1). The main findings were verified on larger

study populations. Representatives of different histological lung tumor types were included

as the goal was to investigate asbestos exposure associated aberrations in LC in general.

Three exposure groups were studied. These were heavily asbestos exposed (referred to as

asbestos exposed in text), moderately exposed, and non-exposed. The samples were

assigned to adequate groups based on their pulmonary fiber counts per gram of dry lung

tissue being above 5 million, between 1 and 5 million, and below 0.5 million for the three

groups respectively (Karjalainen et al. 1994).

1.2 Studies related to disseminating LCs (VI)

Lung tumors of patients, with and without evidence of DTCs in their BM, were screened

for differential aberrations using microarray methods and the main findings were verified

on a larger study population (Table 2). In the microarray analyses, primary AC specimens

were studied, whereas samples of different histological LC types were studied in the

subsequent verifications. Brain metastases of LCs were also analyzed in the subsequent

studies.  The BM status of the patients was determined by means of immunocytochemical

staining (Pantel et al. 1994).
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Table 1. Characteristics of lung tumors used in Publications II-IV.

Asbestos-
exposed

n = 11

Non-
exposed

n = 9

Asbestos-
exposed

n = 14

Non-
exposed

n = 14

Asbestos-
exposed

n = 28

Non-
exposed

n = 25

Moderately
asbestos-
exposed

n = 5

Asbestos-
exposed

n = 25

Non-
exposed

n = 29

Moderately
asbestos-
exposed

n = 8

Age median
(range)

63
(57 – 67)

67
(41 – 72)

63.5
(57 – 67)

65
(41 – 72)

65
(53 –  85)

64
(40 – 81)

64
(58 – 78)

64
(53 – 79)

65
(36 – 81)

69.5
(47 – 79)

Asbestos
fiber count I

median
(range)

10.8
(5.9 – 90)

0.0
(0.0 – 0.5)

11.7
(5.9 – 145)

0.0
(0.0 – 0.5)

10.8
(5.1 – 184)

0.0
(0.0 – 0.5)

2.1
(1.3 – 4.6)

12.8
(5.9 – 8000)

0.0
(0.0 – 0.5)

2.3
(1.2 – 4.3)

Histology AC 4 4 5 6 11 10 2 9 12 4
SCC 4 2 4 4 7 9 2 5 11 3
LCLC 3 2 3 2 5 2 -- 6 2 1
SCLC -- -- 1 1 3 3 1 1 2 --
Others II -- 1 1 1 2 1 -- 4 2 --

CGH Affymetrix FISH Microsatellite

I Pulmonary asbestos fiber count in million per gram of dried lung. II Other types include adenosquamous, giant cell and pleomporhic
carcinomas.

Table 2. Characteristics of lung tumors used in Publication VI.

BM-
positive
n = 14

BM-
negative

n = 16

BM-
positive

n = 7

BM-
negative

n = 9

BM-
positive
n = 22

BM-
negative

n = 21

Brain
metastases

n = 36

Age median
(range)

65
(51 – 75)

59
(49 – 78)

67
(55 – 75)

63
(49 – 76)

58
(48 –  81)

65
(37 – 78)

Histology I AC 14 16 7 9 8 14 14
SCC -- -- -- -- 14 6 10
LCLC -- -- -- -- -- 1 0
SCLC -- -- -- -- -- 0 7

AffymetrixCGH FISH

I Histology information is missing for five brain metastases
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2 MICROARRAY ANALYSIS METHODS

2.1 Three-color image analysis (I)

In this study, an additional dye, SYBR green RNA II, was used to improve the assessment

of spot quality in gene expression microarrays. SYBR green RNA II is a fluorescent dye

with high detection sensitivity and binds non-specifically to all DNA molecules including

ssDNA. If a microarray slide is stained with SYBR, all spots that have nucleotide probes

become labeled with SYBR in contrast to the sample labeling dyes that label spots

depending on the amount of particular mRNA in the sample.

As this study contributes to image analysis, the experimental procedures are not described.

The microarray experiment was performed using cDNA arrays consisting of 16,000 human

cDNAs that have been spotted in duplicates (Human 16K slides, Turku Centre for

Biotechnology, University of Turku, Finland). After the images corresponding to the

sample  and  reference  had  been  obtained,  the  microarray  was  stained  with  SYBR  green

RNA II and rescanned to obtain the SYBR image.

In our approach, microarray image segmentation was performed on the SYBR image and

the results were applied to the corresponding Cy3 and Cy5 images. The spots were

analyzed separately and each spot was assumed to be located within a predetermined size of

pixel block around its center coordinates, which had been obtained from pre-analysis using

QuantArray (Packard Biosciences Technologies). The block size was adjusted to include

both spot and local background pixels, and to allow for some imprecision in the

QuantArray coordinates.

The following approach was applied to segment the spots and to assess the quality of the

spots: 1) Pixels with extreme values, here regarded as those with intensities more than three

times higher than the average of row maxima, were removed. 2) An intensity histogram

was formed and smoothed with a Gaussian filter of length 15 and standard deviation 0.4. 3)

Pixels  with  intensities  within  the  range  of  the  higher  intensity  were  assigned  as  peak,  as

putative foreground pixels. 4) The largest connected component of foreground pixels was

assigned as the spot foreground. A visual representation of the spot segmentation is shown

in Figure 2.

To  identify  faulty  spots,  the  shape  of  the  intensity  histogram  and  spot  features  were

assessed. Spots with one-peaked intensity histograms, with more than one unconnected
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region of foreground pixels of size larger than 50 pixels were labeled faulty. Additionally,

spots larger than 1300 or smaller than 350 pixels or with background borders of less than

180 pixels were labeled faulty. The spots that passed the quality inspection were quantified

for foreground and background intensities in the Cy3 and Cy5 images by using the

segmentation  results  of  the  SYBR  image.  For  evaluation  of  the  SYBR  based  faulty  spot

detection, the results were compared with those obtained using GenePix Pro 6.0 (Axon

Instruments Inc.) with the irregular gridding feature.

Figure 2. (A) Example of the spot on gene expression array. (B) An intensity histogram
was formed from the remaining pixels (dashed line) and the histogram was smoothened
(solid line). (C) If the histogram was two peaked, pixels with intensities in the range of the
higher intensity peak were assigned as putative foreground pixels (white), while the pixels
with lower intensities were assigned as background (black). (D) The largest connected
component of foreground pixels was detected and assigned as the spot foreground. Spots
with several large connected components or abnormal size were discarded. (E) The
borders of the segmented spots are shown (white). Spots at top right did not pass the
quality inspection.

2.2 Array CGH (II, IV & VI)

In Publication II,  array CGH was performed using the Human 1.0 cDNA system (Agilent

Technologies,  Palo  Alto,  CA,  USA)  on  20  LC  samples  (Table  1).  In  Publication  IV,  5

asbestos exposed and 5 non-exposed LCs were selected for high resolution copy number

profiling using oligonucleotide arrays (Human Genome CGH Microarray Kit 44B,

Agilent). Measurements detected as unreliable by Feature Extraction (Agilent

Technologies), i.e. the signal was saturated or the spot was not uniform, were removed

from further analyses. Additionally, owing to a need for further removal of morphologically

ununiform spots from the cDNA arrays, our own image analysis method (Ruosaari &

A                                     B

C                                     D E

A                                     B

C                                     D E
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Hollmén 2002) that discards spots based on the same morphological features as the three-

color analysis presented in Section 2.1 of the Results, was applied. After preprocessing, the

data from each tumor sample was scaled against a common reference consisting of a pool

of normal samples, log2 transformed and LOWESS normalized (Cleveland 1979; Yang et

al. 2001).

In Publication VI, array CGH was performed using an oligonucleotide based array platform

(van den Ijssel et al. 2005) on 30 lung ACs (Table 2). Measurements with a quality flag <1

or the Confidence value <0.1, given by BlueFuse (BlueGnome, Cambridge, USA), and

morphologically ununiform spots defined by our own image analysis (Ruosaari & Hollmén

2002) were removed from further analyses. The data from each patient were scaled with a

common reference consisting of a pool of normal samples to obtain an equal median and

variance for the middle 80 percentiles of autosomes and the log2 transformed.

2.3 Gene expression microarrays (III, V & VI)

In Publication III, the gene expression array experiment was performed using Affymetrix

HG-U133A GeneChips (Affymetrix, Santa Clara, CA, USA) on 28 LC samples (Table 1)

and corresponding normal samples, which were used as a reference. Probe sets with present

calls by the Affymetrix MAS 5.0 software (p-value < 0.04) in at least one third of the

exposed or non-exposed samples were included in subsequent analyses. In Publication V,

the data was preprocessed using the GC-RMA (Wu et al. 2004) and log2 transformed.

In Publication VI, gene expression array experiments were performed using Affymetrix

HG-U133 Plus 2.0 GeneChips (Affymetrix) on 16 lung ACs (Table 2). The data was

preprocessed using the GC-RMA and log2 transformed. The median signal of three normal

patients was used as a reference.

Owing to problems at the probe level in the early annotation files provided by Affymetrix

(Dai et al. 2005), the probe sequences were re-annotated in Publication III by mapping the

probe sequences against human genome build 34. In Publications VI and V, the annotation

information was extracted from updated Affymetrix annotation files, where the probe

positions were given with regard to human genome build 35.
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2.4 Differential region finding method (II, III & VI)

A DRF method was developed in Publication II to identify chromosomal regions that are

preferentially aberrated in either the asbestos exposed or non-exposed group of patients

from array CGH data. Since the DRF was applied successfully in Publication II, it was also

used in Publications III and VI. In these publications, the DRF was also applied to gene

expression data. As an input, the DRF takes genome wide data from two conditions, e.g.

microarray data from tumors of the asbestos exposed and non-exposed or BM-positive or

BM-negative patients. The method detects regions that show preferential copy number or

gene expression level alterations between the conditions and gives the regions as an output.

The phrase preferential alteration covers changes that are specific to either of the compared

conditions or occur more frequently in either of the conditions.

The DRF compares data from two conditions at group level in overlapping segments of 0.5

to 1 Mbp, which are tested sequentially for differences between the conditions. In practice,

a sliding window is used, which moves from the p-arm of each chromosome towards the q-

arm. The window is stopped at the locus of each probe and the probes within a 0.5 Mbp and

1 Mbp window defined by the probe locus are detected. Both window sizes are used owing

to differences in probe distribution along the chromosome and to enable detection of focal

aberrations at probe rich sites. However, a window needs to contain at least five probes to

be included in the testing. The tips of the chromosomes are analyzed by the same procedure

but probes will obviously be detected on the centromeric side of the window.

Next, the performance of the segment in differentiating the given conditions is assessed.

Each probe is used in a classifier, where the minimum number of incorrectly classified

patients is determined. The average number of patients correctly classified by the probes in

the segment is calculated and used as a test statistic. The regions with differences between

the compared groups are identified by hypothesis testing. In the two-tailed testing, the null

and the alternative hypotheses were set as “the two groups do not display differences in the

region" and “the two groups display differences in the region” respectively. The regions

likely to be associated with the condition of interest are identified using a permutation test

with 10,000 permutations of the group labels (Good 2000). The empirical p-values are

calculated by comparing the test statistic to the permutation distribution. Multiple

hypothesis correction is not performed because the method is only used to identify regions

that, according to the p-values, are most likely to have relevance in the condition studied.

The relevance of the findings is verified by using independent laboratory techniques.
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2.5 ROC curves (III & VI)

Differentially expressed genes were identified using ROC curves (Swets 1988) by

measuring the diagnostic value of the probes of the tumors of the asbestos exposed and

non-exposed, and the tumors of the BM-positive and BM-negative patients. The ROC curve

was constructed by sweeping the threshold used to distinguish the conditions to obtain the

fraction  of  true  positives  as  a  function  of  false  positives.  Here  the  area  under  the  curve

corresponding to the probability of correctly diagnosing a patient by the gene expression

measures  was  used  as  the  test  statistic.  For  evaluation  of  the  significance  of  the  findings,

empirical p-values were calculated by comparing the test statistic to the permutation

distribution using 10,000 permutations of the group labels.

In  Publication  VI,  the  p-values  obtained  from  the  ROC  analysis  were  also  used  to

determine whether differentially expressed genes (p < 0.05) were enriched at specific loci.

The  number  of  differentially  expressed  genes  found  at  a  locus  was  determined  and

compared to 10,000 random loci containing the same amount of genes as the test region.

2.6 GO analysis (V)

The gene expression data was combined with GO vocabulary to detect molecular functions,

biological processes and cellular locations that are differentially regulated between

specimens from asbestos exposed and non-exposed lung cancer patients. Data from both

the normal and tumor samples were assessed for both up- and down-regulated pathways

(GO terms). Custom made analysis methods and Iterative Group Analysis (iGA, Breitling

et al. 2004) were used.

First, the genes were rank ordered with respect to differences in gene expression between

the two groups of patients. Both p-values from the t-test and the fold-change between the

medians of the two groups were used in performing the ranking, thus two rank lists were

obtained. iGA was then applied to test the categories defined by GO for enrichment of over

or under expressed genes, separately for the t-test and fold-change based rank lists. iGA

calculates hypergeometric p-values iteratively by considering all possible options for the

number of differentially expressed genes for each category and determines the optimum p-

value. No defining of thresholds for differential expression is thus needed. The significance

of the findings was evaluated by means of hypothesis testing using 50,000 permutations of

the group labels.
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In the second phase, related functions, processes and locations showing deregulation on

different levels of specificity on the GO DAG were sought. Branches that contained at least

three GO terms with permuted p < 0.05 obtained using both t-test and fold change based

ranking were detected. Only branches with significant GO terms of less than 100 genes

were considered in order to identify small categories from which targets for further analyses

can be selected. Multiple hypothesis correction was not performed because the analysis is

used to identify categories that, according to the p-values, are most likely to be

differentially regulated between the asbestos exposed and non-exposed patients. For

verification of the findings, further analysis using independent laboratory techniques is

needed.

3 VERIFICATION METHODS

3.1 Microsatellite analysis of 19p (III)

The allelic balance of the p arm of chromosome 19 (chr19:539869-22271313 bp) was

assessed using 5-19 microsatellite markers on 62 tumor and respective normal samples. The

study specimens included 28 macrodissected tumor samples also used in the gene

expression analyses and microdissected tumor samples from 34 additional cases (Table 1).

Microdissection was performed using the automated Veritas system (Arcturus

Bioscience, Inc., Mountain View, CA, USA) on tissue sections stained with fresh filtered

1% toluidine blue (Sigma-Aldrich, Deisenhofen, Germany) and 0.2% methylene blue

(Merck, Darmstadt, Germany) solution.

The microsatellites were first amplified using FAM or HEX end labeled primer pairs,

which were designed to produce fragments of 80 - 300 bp in length. PCR was performed

with an initial 10 min 95ºC denaturation step followed by 35 cycles at 95ºC for 40 s, 40 s at

the optimized annealing temperature and 1 min at 72ºC. The fragment separation was

performed with a 310 or 3100 Avant Genetic Analyzer (Applied Biosystems). GeneMapper

Analysis  Software  version  3.5  (Applied  Biosystems)  was  used  to  study  the  alleles.  The

determination of allelic imbalance (AI) was performed for heterozygous markers by

calculating the ratio of the peak heights of the tumor and normal alleles with ratios of 1.5 or

higher being scored as AI. Tumors of patients who showed AI in at least one fourth of the

informative microsatellite markers were determined carriers of AI. The markers displaying

emergence  of  novel  alleles  in  the  tumor  tissue  were  scored  as  MSI.  The  mononucleotide

repeat BAT-26 was used to test its correlation with the specimens that harbor MSI.
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3.2 FISH (IV & VI)

In Publication IV, a BAC targeting the telomeric region of chromosomal arm 19p (RP11-

333F10) was used for quantification of 19p copy numbers. The DNA was labeled directly

with fluorescent dUTPs using a Vysis nick translation kit (Vysis, Downers Grove, IL).

Tumor ploidy was assessed by a combination of 2-5 corresponding centromeric probes for

chromosomes 2, 3, 9, 10, and 15. FISH analyses were performed both on fresh frozen

sections and on specimens embedded in paraffin mounted on tissue microarrays obtained

from a total of 58 primary tumors. A specimen with a signal to ploidy ratio  1.3 or with a

signal to ploidy difference  0.9 was considered to carry a gain, whereas a specimen with

signal to ploidy ratio of  0.75 or with a signal to ploidy difference  -0.9 was considered to

harbor a loss. The thresholds were chosen to enable detection of one allele copy number

changes in cells with polyploid genomes.

In Publication VI, a BAC probe targeting 4q21 (RP11-570L13) was used for detecting copy

number changes in 4q. The DNA was labeled by random priming with fluorescent d-UTPs

using the BioPrime Labeling System (Invitrogen). Centromeric probes for chromosome 15

and 17 (Vysis) were used to assess tumor ploidy. FISH analyses were performed both on

fresh frozen sections from 43 primary tumors and on a tissue microarray containing 36

paraffin embedded brain metastases. Tumors containing a signal to ploidy ratio  1.5 were

considered to carry a gain whereas a ratio of < 0.75 was scored as a loss. The thresholds

were  chosen  to  enable  detection  of  one  allele  copy number  changes,  but  in  contrast  with

Publication IV, the tumors were assumed to exhibit less polyploidy owing to an earlier

average stage of the LCs, allowing the use of higher ratios.

3.3 Evaluation of UBA1 and UBA7 levels by Western blotting (V)

Western blotting was performed to study the involvement of UBA1 and UBA7 in exposure

related deregulation of protein ubiquitination. Cytoplasmic and nuclear protein fractions

were extracted from six asbestos exposed and six non-exposed cases with both groups

containing three ACs and three SCCs. Equal amounts of protein were loaded into Tris-HCl

gels and blotting was done onto an Immobilon-P PVDF membrane (Millipore, Billerica,

MA, USA). UBA1 and UBA7 detections were performed using rabbit polyclonal

antibodies to UBA1 (ab16849) and UBA7 (ab12199) (Abcam, Cambridge, UK). Rabbit

polyclonal antibody to GAPDH (ab9485, Abcam) was utilized as an internal control.

Biotinylated anti-rabbit IgG (Vector Laboratories Inc., Burlingame, CA, USA) was used
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together with streptavidin-horseradish peroxidase conjugate (Amersham Biosciences, NJ,

USA). ECL reagent (Amersham Biosciences) was used to detect the signals. ImageMaster

(Amersham  Biosciences,  NJ,  USA)  was  used  to  quantify  the  intensities  of  the  protein

bands.

3.4 Studies on human bronchial epithelial BEAS 2B cells (IV)

Human bronchial epithelial BEAS 2B cells were treated with crocidolite asbestos in vitro to

assess whether 19p was a preferential site of asbestos induced chromosomal breakage. Prior

to  the  studies,  BEAS  2B  cells  were  karyotyped  by  multicolor  FISH  (M-FISH)  on

metaphase spreads to confirm that the cell line had two copies of chromosome 19 and that

significant  changes  in  chromosome  number  and  structure  were  not  present.  For  M-FISH,

24XCyte-MetaSystems 24-colour kit (MetaSystems GmbH, Altlussheim, Germany) was

applied and used as recommended by the manufacturer.

For the exposure, 20,000 cells were plated onto Lab-Tek 2-well chamber slides (Nalge

Nunc International, Naperville, IL) and maintained in the growth medium. At 48 h, one

third of the slides were exposed to 2.0 g/cm2 crocidolite fibers, one third to 250 ng/ml

mitomycin C (MMC) (positive control), and the remaining third received no exposure

(negative control). All cultures were incubated for 48h in the presence of 9 g/ml

cytochalasin-B (Cyt-B), which blocks cytokinesis after nuclear division (Fenech & Morley

1985).

FISH was applied to analyze the contents of MN in BEAS 2B cells treated with crocidolite

fibers and in control cultures similarly to the previous description (Lindberg et al. 2007).

Two probes were used, the BAC probe RP11-333F10 that identifies the telomeric region of

chromosomal arm 19p, used also in studies of tumor specimens (Publication IV), and a

Human Chromosome Pan-Centromeric paint (Cambio), which labels all human

centromeres. To evaluate whether 19p was a preferential site of asbestos induced

chromosomal breakage in crocidolite induced MN in binucleate BEAS 2B cells, MN were

classified as follows: MN with only a 19p signal were classified as having a 19p fragment.

MN with a 19p and a centromere signal were classified as having a whole chromosome 19.

MN without  signal  were  classified  as  having  a  fragment  other  than  19p.  MN with  only  a

centromere signal were classified as having a whole chromosome other than chromosome

19.
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RESULTS

1 THREE-COLOR IMAGE ANALYSIS (I)

An image analysis approach based on the use of an additional dye that is not dependent on

the amount of any particular mRNA in the sample was used to improve the assessment of

spot quality in gene expression microarrays. Owing to the correspondence of the images,

spot segmentation could be performed on the additional, SYBR green II image and the

results could be directly applied to the Cy3 and Cy5 images. The SYBR image allowed

easy detection of the spot foreground pixels and therefore also facilitated estimation of gene

expression in the sample and reference. Additionally, the information provided by the use

of SYBR was taken advantage of in the detection of faulty and missing spots.

The performance of the SYBR based identification of faulty spots was compared with that

of GenePix Pro 6.0. The comparison showed that although the two methods produced

similar estimates for gene expression, the use of an additional dye improved the

performance of identification of spots that had not been printed on the slide for one reason

or another. While the SYBR based method discarded these spots, GenePix was observed to

give high sample to reference ratios to a number of such spots, indicating a possible source

of error in the downstream analyses.

2 DIFFERENTIAL REGION FINDING (II, III & VI)

A DRF method was introduced for detection of aberrations that occur preferentially in a

given subgroup of tumors with respect to another subgroup. The method analyzes

microarray data at group level, i.e. the aberrations are not identified case by case, but

instead regions harboring more than an expected number of probes that are able to separate

the compared groups are revealed. The detected aberrations may be specific to either of the

groups or occur more frequently in either group in comparison to the other.

The DRF was successfully used to define regions with copy number differences between

asbestos exposed and non-exposed patients in Publication II. In Publication III, the method

was extended for gene expression analyses and was used to define regions with differences

in gene expression between the asbestos exposed and non-exposed patients. In Publication

VI, the method was used to locate regions of difference in terms of both copy number and

gene expression between the BM-positive and BM-negative patients. The verification of the
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key results using independent laboratory techniques (in the sections to follow) proved the

efficacy of the approach.

3 ASBESTOS RELATED CHANGES

3.1 Molecular changes of asbestos related tumors (II & III)

Array CGH and gene expression microarray analysis was performed to detect aberrations

that occur preferentially in lung tumors of either asbestos exposed or non-exposed patients.

Exposure related DNA copy number and gene expression changes were detected in18 and

35 regions (p < 0.01, two-tailed test) respectively, using the DRF method. To assess

whether the asbestos related copy number aberrations could be related to the breakage of

fragile sites, an enrichment calculation was performed. We found that 11 of the 125 fragile

sites coincided with the asbestos related DNA level aberrations and calculated whether the

overlap was higher than would be expected by chance. A one-tailed test suggested an over-

representation of the fragile sites within the asbestos related regions (p = 0.08).

Table 3. Chromosome regions with DNA copy number and gene expression alterations
compared between the tumors of asbestos exposed and non-exposed patients. The
positions of the regions are described according to the NCBI Build 34.

Region Position (Mbp)
Size
(Mbp)

Asbestos
exposed

Non-exposed

2p21 45.7 – 47.4 1.7 Gain Loss

3p21.31 48.5 – 49.2 0.6 Loss No aberration

5q35.2 175.8 – 176.4 0.5 Loss No aberration

16p13.3 0.3 – 0.8 0.5 No aberration Gain

19p13.3-p13.11 0.6 – 18.8 18.2 Loss Gain

22q12.3 34.8 – 34.9 0.1 No aberration Gain

The results from the separate DNA and gene expression level analyses were compared to

detect regions that displayed both expression and DNA level changes related to the

exposure status. Altogether, six common regions discriminated the LCs of asbestos exposed

and non-exposed patients (Table 3). Owing to the noise level of the data, judging whether

an aberration had occurred in an individual sample was not feasible for all the specimens.

However, by using the DRF method, relative information about the discriminating

aberrations was obtained. On the basis of these results, regions 3p21.31, 5q35.2, 16p13.3,

19p13.3-p13.11, and 22q12.3 were found to show lower DNA copy numbers and contain
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genes that were less expressed in the asbestos exposed than in the non-exposed group of

tumors. The region 2p21 showed opposite behavior.

3.2 Region 19p in asbestos related carcinogenesis (III & IV)

The  19p  region  was  chosen  as  the  target  of  downstream  studies.  The  objective  of  these

analyses was to both verify the DRF findings and to characterize the aberration site further.

However, as all the six regions appeared to be interesting candidates for further studies on

asbestos related cancers, the selection process was arbitrary. The subsequent analyses

involved use of high-resolution array CGH for detailed analysis of 19p aberrations,

microsatellite analysis for initial verification of the array findings using an independent

laboratory technique, and FISH for determining whether the changes detected using

microsatellite analysis were caused by losses or gains. Additionally, FISH characterization

of asbestos induced micronuclei in human bronchial epithelial BEAS 2B cells was

performed to examine whether asbestos is capable of inducing 19p aberrations in vitro.

19p aberrations revealed by array CGH (IV)

To identify putative micro level aberrations in the 19p region that could remain unidentified

using the cDNA platform that was utilized in the initial screening, high-resolution copy

number  profiling  was  performed.  The  other  objective  of  the  study  was  to  localize  the

aberration break points within chromosome arm 19p. Altogether five asbestos exposed and

five non-exposed LC specimens were analyzed using the Agilent 44B microarrays

containing 44,000 clones.

The aberration break points were localized to the centromeric region of chromosome 19,

but copy number changes smaller than 1 Mbp were not observed. Owing to the presence of

only gross level changes, also detectable by the cDNA arrays used in Publication II, the

results obtained using the cDNA and oligo platforms were combined in order to get data

from additional samples with regard to the 19p aberrations in the LCs. In the combined data

set, losses involving 19p were found to occur more commonly in tumors of the asbestos

exposed than in those of the non-exposed patients (42%; 5/12 vs. 14%; 2/14). Albeit

suggestive, the difference was not statistically significant.
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Microsatellite analysis (III)

Microsatellite analysis was used as an initial independent laboratory technique for

verification of the connection between asbestos exposure and 19p aberrations. Altogether

62 patients’ tumor and normal tissues were analyzed for AI. The analysis involved use of

19 microsatellite markers spanning a 21.7 Mbp region on 19p13.3-p13.11.

The AI degree for individual markers ranged between 50 and 90% in asbestos exposed, 40

and 100% in moderately exposed and 20 and 50% in non-exposed patients’ tumor samples

(only informative markers are taken into account). In most cases, AI seemed to extend

throughout the whole investigated region and no apparent aberration hot spots could be

revealed.

As the whole chromosome arm was found to be involved in the aberration, patients were

categorized as carriers of AI in 19p if at least 25% of the informative microsatellite markers

were AI-positive and otherwise normal. Using this criterion, AI ranging through 19p was

present in 80% (20/25) of the heavily exposed, in 75% (6/8) of the moderately exposed, and

in 45% (13/29) of the non-exposed patients' tumor samples (p < 0.01, Fisher's exact test for

the difference in AI between all exposed and non-exposed patients).

Table 4. Prevalence of allelic imbalance in the 19p region in different histological tumor
types
Histological
tumor type

ASBESTOS EXPOSED
patients with AI in 19p

NON-EXPOSED
patients with AI in 19p

All 79% (26/33) 45% (13/29)

AC 70% (9/13) 67% (8/12)

SCC 75% (6/8) 36% (4/11)

LCLC 86% (6/7) 0% (0/2)

Other types I 100% (5/5) 25% (1/4)

I The other types contained SCLC (1 exposed, 2 non-exposed), adenosquamous
carcinoma (1,1), giant cell carcinoma (1,0), and pleomoprhic carcinoma (2,1).

Differences were also observed in the prevalence of AI between the histological tumor

types included in the study. Among the tumors of asbestos exposed patients, AI of 19p was

detected in tumors of all histological types, whereas in the tumors of non-exposed patients,

AI seemed to be restricted to certain histological types, notably ACs. Of the non-AC types,

85% (17/20) of the exposed and 29% (5/17) of the non-exposed cases showed AI (p < 0.01,

Fisher’s exact test). The results are summarized in Table 4.
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In addition to AI, microsatellite analysis also gives information about MSI occurring in the

microsatellites analyzed. 10% (3/29) of the non-exposed specimens displayed MSI

throughout the 19p region (>50% of the markers MSI-positive), whereas one non-exposed

and  three  moderately  exposed  cases  showed  MSI  in  one  or  two  markers.  MSI  was  also

detected in the BAT-26 marker in two of the three tumors displaying MSI throughout 19p

and in two of the four tumors displaying MSI in single markers.

FISH (IV)

FISH analysis  was  carried  out  to  find  which  types  of  aberrations,  i.e.  gains  or  losses,  the

tumors of the asbestos exposed and non-exposed patients carried in the 19p region. This

information could not be obtained using microsatellite analysis, as the approach utilized in

this thesis provided only semi-quantitative data of the aberrations and was therefore

incapable of distinguishing allelic gains from losses.

The FISH analysis was performed on 58 tumor specimens using a BAC probe targeting the

telomeric region of 19p. As our previous array CGH and microsatellite analyses had shown

that the 19p aberrations typically involve the whole chromosome arm, the 19p aberrations

were defined using only one probe. Additionally, two to five centromeric enumeration

probes were used to assess the ploidy of each specimen. At least 75 cells were scored for

each tumor sample whose average count was used as the estimate of the copy number of the

locus. Specimens with copy number losses and gains were detected by scaling the 19p copy

numbers against the average of the centromeric counts, which served as an estimate of the

ploidy. Results from the moderately exposed samples were combined with the highly

exposed samples owing to the limited number of moderately exposed cases included in the

study (five).

In the asbestos exposed patients’ tumors, losses were detected in 39% (13/33) of the cases,

compared with 12% (3/25) of the non-exposed patients’ tumors (p = 0.04, Fisher’s exact

test). Gains were detected in 18% (6/33) of the exposed and 40% (10/25) of the non-

exposed cases but the difference was not statistically significant. Table 5 shows the results

separately for each histological tumor type.
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Table 5. Prevalence of copy number losses and gains in the 19p region in different
histological tumor types

ASBESTOS EXPOSED NON-EXPOSEDHistological
tumor type 19p loss 19p gain 19p loss 19p gain

All 39% (13/33) 18% (6/33) 12% (3/25) 40% (10/25)

AC 30% (4/13) 23% (3/13) 10% (1/10) 50% (5/10)

SCC 33% (3/9) 11% (1/9) 0% (0/9) 56% (5/9)

LCLC 80% (4/5) 0% (0/5) 0% (0/2) 0% (0/2)

Other types I 33% (2/6) 33% (2/6) 50%(2/4) 0%(0/4)

I The other types contained SCLC (4 exposed, 3 non-exposed), adenosquamous
carcinoma (1,1), and pleomoprhic carcinoma (1,0).

Micronuclei induced by crocidolite asbestos (IV)

After showing that aberrations of 19p, especially losses of the chromosome arm, were more

prevalent in the tumors of the asbestos exposed patients than in those of the non-exposed

ones,  human  bronchial  epithelial  BEAS  2B  cells  were  exposed  to  crocidolite  asbestos  to

assess whether asbestos is capable of inducing 19p aberrations in vitro. Prior to the

treatment, M-FISH analysis was performed to ascertain that the BEAS 2B cell line

harbored two copies of chromosome 19. In the 12 analyzed metaphases, chromosome 19

was  present  in  two  copies,  and  no  rearrangements  affecting  the  chromosome  were

observed.

The positive control substance MMC increased the frequency of binucleate cells harboring

MN with no centromere signals (C–), as expected, and there was a 4.8-fold difference to the

untreated control (p < 0.001, Fisher's exact test). Also, crocidolite induced a 1.7-fold

increase in C– MN (p < 0.01). Binucleate cells harboring MN with centromeres (C+) were

rare  and  their  frequency  remained  fairly  similar  between  the  different  treatments.  The

results indicated that crocidolite and MMC induce MN that harbor chromosomal fragments.

Among C– MN of binucleate cells, fragments of 19p were detected in 3.4% (6/176) in the

crocidolite treatment, 1.4% (2/139) in the MMC treatment, and 0.6% (1/159) in the

untreated control cultures (Table 6). The proportion of MN that contained a 19p fragment

was 5.4 times higher in crocidolite treated cells than in the untreated control (p = 0.079;

Fisher's  exact  test).  When  the  total  number  of  cells  scored  to  obtain  the  numbers  of  MN

shown in Table 6 were considered, the frequency of cells harboring MN with a 19p

fragment was found to be about 10 times higher in the crocidolite treated cultures (about
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6000 cells scored) than in the untreated controls (about 10,000 cells scored; p = 0.01,

Fisher's exact test).

Table 6. Percentage of micronuclei (MN) in BEAS 2B cells found to harbor 19p signals by
FISH. MN with (C+) and without (C–) centromere signals were analyzed separately

MN with 19p amongTreatment
No. MN
scored C– MN C+ MN

Untreated control 177 5.6% (1/18) 0.6% (1/159)

Crocidolite (2.0 g/cm2) 206 3.3% (1/30) 3.4% (6/176)
Mitomycin C (250 ng/ml) 169 0% (0/30) 1.4% (2/139)

3.3 Asbestos related deregulated pathways (V)

We performed a pathway analysis to obtain a wider, mechanistic view of the asbestos

related alterations at the gene expression level than provided by the DRF analysis, which

centered on regions that also displayed aberrations on the DNA level. Biological processes,

molecular functions and cellular localizations defined by Gene Ontology were analyzed for

enrichment of differentially expressed genes between the asbestos exposed and non-

exposed patients. Enrichment analyses were performed on gene expression data from both

normal and tumor tissue samples.

Hundreds of differentially regulated categories were identified both in the normal and

tumor  tissue  between  the  two  groups  when  GO  terms  from  all  levels  of  specificity  were

considered. The findings included changes in the NF- B pathway, DNA repair and

mitochondrial functions that have already been previously implicated in asbestos related

carcinogenesis. However, as selection of targets for subsequent analyses from hundreds of

putatively significant findings is not practical, the results were further processed.

The GO terms were ordered as a directed acyclic graph based on the relations of the terms.

Branches that contained at least three GO terms with permuted p-values <0.05 that were

obtained using both t-test and fold change based ranking, in both the tumor and normal

tissues, were then sought. When only the most specific GO terms were considered, 24 up-

regulated and 8 down-regulated cellular processes and molecular functions between the

asbestos exposed and non-exposed patient samples were revealed. Six out of the 24 up-

regulated processes and molecular functions were ion transport related, whereas three out of

the eight down-regulated terms were related to protein ubiquitination.
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Two proteins, UBA1 and UBA7, involved in the down-regulated ubiquitination processes

were chosen for subsequent analyses. Six asbestos exposed and six non-exposed lung tumor

and respective normal tissue samples were analyzed for differences in the protein levels by

Western analysis. No exposure related differences in UBA1 or UBA7 levels in either the

normal or tumor tissue samples could be detected. In the SCC group, expression of both

UBA1 and UBA7 were significantly lower in the tumor tissue than in the normal tissue, p =

0.02 and p = 0.01 (two-sided t-test) respectively.

4 MOLECULAR CHANGES OF TUMORS WITH DTCS IN BM (VI)

Array  CGH  and  gene  expression  microarray  data  were  analyzed  to  identify  molecular

genetic alterations characteristic of lung ACs with or without DTCs in BM. Similarly to the

asbestos related studies, the DNA and gene expression level data were analyzed separately

using the DRF method. The results of the analyses were compared to discover

discriminating regions that might contain genes with a role in metastasizing.

Table 7 shows the altered regions in the BM-positive and BM-negative cases. Three

regions, i.e. 4q12-32, 10p12-p11, and 10q21-q22, appeared to be lost in the BM-positive

groups of tumors but gained in BM-negative tumors. The gains at 17q21 and 20q11-q13

were more frequent in the BM-positive than in the BM-negative group of tumors. In terms

of prevalence of differentially expressed genes (i.e. ROC permuted p-value < 0.05), the 4q

and 10p regions were found to be the hot spots. 20% of the genes located at these two

regions were found to be differentially expressed between the two groups, whereas on

average, 5% of the genes were differentially expressed.

Table 7. Chromosome regions with DNA copy number and gene expression alterations
between the tumors of BM-positive and BM-negative patients. The positions of the regions
are described according to the NCBI Build 35.

Region Position (Mbp)
Size
(Mbp)

BM-positive BM-negative

4q12-32 53.3 – 160.4 107.1 Loss Gain

10p12-p11 21.1 – 33.5 12.4 Loss Gain

10q21-q22 69.9 – 81.5 11.7 Loss Gain

17q21 35.4 – 46.4 11.0 Gain No aberration

20q11-q13 30.6 – 56.4 25.8 Gain No aberration



47

The 4q region was chosen as the target of further verifications owing to being a hot spot of

differentially expressed genes and because the region coincided with previously reported

metastatic aberration signatures (Petersen et al. 2000; Goeze et al. 2002). Both primary LCs

and brain metastases of LCs were characterized for 4q21 copy number changes using FISH.

4q was frequently lost in the BM-positive group of tumors consisting of both ACs and

SCCs,  while  gains  were  more  common than  losses  in  the  BM-negative  groups  of  tumors

(Table 8). The loss of 4q was significantly associated with the presence of DTCs in the BM

(11/22; 50% vs. 2/21; 10%, p < 0.001, Fisher's exact test). 4q was also lost in 39% (13/36)

of  the  brain  metastases  of  LCs  comprised  of  ACs,  SCCs,  and  SCLCs.  The  results  are

summarized in Table 8.

Table 8. Prevalence of copy number losses and gains in the 4q region in different
histological tumor types.

BM-positive
n=22

BM-negative
n=21

Brain metastases
n=36Histological

tumor type 4q loss 4q gain 4q loss 4q gain 4q loss 4q gain

All 50% (11/22) 5% (1/22) 10% (2/21) 14% (3/21) 39% (13/36) 3% (2/36)

AC 38% (3/8) 0% (0/8) 7% (1/14) 21% (3/14) 36% (5/14) 0% (0/14)

SCC 57% (8/14) 7% (1/14) 17% (1/6) 0% (0/6) 50% (5/10) 10% (1/10)

LCLC - - 0% (0/1) 0% (0/1) - -

SCLC - - - - 43% (3/7) 0% (0/7)

Not known1 - - - - 0% (0/5) 20% (1/5)

1 The information of tumor histology was missing for five brain metastases
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DISCUSSION

1 MICROARRAY ANALYSIS

Microarrays provide an attractive means of conducting genome wide studies of multiple

samples in parallel. Information can be obtained from virtually all genes of the study

subject making the technology especially suitable for studies where the affected genes are

not known a priori. False positive findings can be controlled at different levels, which

include detection of faulty spots by means of image analysis as well as statistical

significance tests and multiple testing corrections and validations of the findings using

independent methods and study specimens. Especially when microarrays of lower quality

are used, analysis of spatial features of the spots should be performed to detect and discard

faulty spots that may otherwise show as noise in the subsequent analyses. As Publication I

showed, spot analysis of gene expression microarrays may be performed with the aid of an

additional dye, which is not dependent on the amount of mRNA in the sample. On the other

hand, image analysis of two-color DNA copy number arrays is likely to succeed without

the use of a third dye, as samples with normal genomes are typically used as the reference.

In this thesis, a differential region finding method was developed for comparative studies of

DNA and mRNA level high-throughput data. The DRF method was designed for

comparative study settings and functions by comparing data from two conditions at group

level, while other region finding methods typically analyze each sample separately (Pollack

et al. 2002; Myers et al. 2004; Furge et al. 2005). The method does not require defining of

thresholds to call aberrations because the putative regions of difference are detected by

means of hypothesis testing. As the output of the method is regions, analysis of array CGH

and gene expression data from different platforms is also enabled, provided that the array

probes have been mapped against the same genome build. Furthermore, the region level

analysis was considered more suitable for our purposes than gene by gene analysis such as

that presented by Berger et al. (2006). To enable gene by gene analyses, the corresponding

probes between different platforms would have had to be determined in the studies of this

thesis. Owing to a lack of one to one mapping between probes from different array

platforms, the region level approach was considered more feasible. We are aware of the fact

that the DRF method may fail to detect micro level changes that discriminate between the

groups under comparison when segments of 0.5-1.0 Mbp in size are used as in this study.

However, use of smaller segments was observed to result in an increase in positive findings
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that, based on visual inspection, appeared to be false positive results brought about by noise

in the data.

This thesis applied the comparative study setting to identify DNA and mRNA level changes

that could be involved in 1) development of asbestos related LCs and 2) dissemination of

tumor cells into BM. The aim was to detect regions where changes in DNA copy number

were  associated  with  gene  expression  alterations  to  identify  genes  with  a  putative  role  in

lung carcinogenesis.

In the following sections, the findings made in this thesis with regard to asbestos related

and dissemination related changes are further discussed.

2 ALTERATIONS INDUCED BY ASBESTOS EXPOSURE

Comparative microarray analyses of lung tumors from asbestos exposed and non-exposed

patients were carried out to investigate whether distinct changes are characteristic of the

asbestos related tumors. Presence of such changes could indicate that some of the driver

genes may be different in the carcinogenic process if influenced by asbestos, which

knowledge is required for better understanding of the disease.

2.1 Aberrations characteristic of asbestos related cancers (II  - IV)

Array CGH and gene expression microarrays were performed on groups of primary

asbestos related and unrelated tumors matched for patient and tumor characteristics. To

detect chromosome regions with both gene copy number and gene expression changes, the

two data types were analyzed using the DRF method and the results were combined. Six

regions were revealed that contained asbestos related copy number and gene expression

changes.  To  verify  the  results  obtained  using  the  DRF  and  to  further  characterize  the

findings, one of the discriminating regions was chosen for subsequent analyses. The

characterizations specified that especially the loss of 19p is related to asbestos exposure.

Despite only a limited number of samples having been analyzed using microarrays,

meaning that the identified putative asbestos related regions could represent random

aberrations, several factors in addition to the successful verification studies of the 19p

region support the importance of the findings in asbestos related carcinogenesis. Firstly, in

accordance with the chromosomal deletions and DNA breakage induced by asbestos fibers

(Adachi et al. 1994; Marczynski et al. 1994; Levresse et al. 2000), only one of the six
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regions showed gains in the tumors of asbestos exposed patients. Secondly, the regions

were identified as changed at both the mRNA and DNA levels, which reduces the

possibility of the findings having been brought about by noise in the data. Thirdly, a change

at the level of gene expression is required for a cellular response (Pinkel & Albertson

2005), indicating that the regions harbor candidate genes for further analysis.

Owing to the genomic instability characteristic of LCs, copy number changes can be

detected throughout the entire tumor genomes. Not surprisingly, the putative asbestos

related regions 2p, 3p, 5q, 16p, 19p, and 22q have also been described in LCs without a

history of asbestos exposure (Luk et al. 2001; Petersen et al. 1997; Balsara & Testa 2002;

Garnis et al. 2006; Coe et al. 2006; Weir et al. 2007). These studies indicate that the 3p

region is among the most typically aberrated regions in LCs and may be aberrated in up to

90% of the tumors. The five other putative asbestos related regions displayed copy number

changes in about 10-50% of LCs, but the aberration frequencies of distinct regions depend

on the tumor types included in the analysis (Luk et al. 2001; Petersen et al. 1997; Balsara &

Testa 2002; Garnis et al. 2006; Coe et al. 2006; Weir et al. 2007). Accordingly, the

asbestos related aberrations revealed in this study are suggested to occur at higher

frequencies among the asbestos exposed than the non-exposed group of tumors, rather than

being exclusively induced by asbestos exposure.

As described in Section 2.3 of the Review of Literature, differential genetic changes have

previously been identified between LCs from smokers and non-smokers. The findings

suggest that different exposures can give rise to their mutation signatures, which are

apparent in the tumor genome. Indeed, in vitro studies have shown that asbestos fibers

cause breaks in chromosomes 1 and 9 (Dopp et al. 1997; Dopp & Schiffmann 1998; Lohani

et al. 2002). Furthermore, monosomy of chromosome 19 has been suggested to have

relevance in the tumorigenic transformation of human bronchial epithelial BEP2D cells

(Suzuki et al. 2001) induced by asbestos. Additionally, one of the only studies where a

chromosome region has been characterized for differences between the asbestos exposed

and non-exposed patients, revealed a connection between extensive LOH of 3p21 and

asbestos exposure (Marsit et al. 2004). The previous findings support our results as we also

detected asbestos related mRNA and DNA level changes at regions 3p21 and 19p.

Furthermore, DNA level changes were detected in chromosomes 1 and 9. Nevertheless, our

study was the first genome wide investigation of asbestos related LCs and was thus

expected to reveal novel candidates for asbestos related target regions.
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The subsequent microsatellite analysis revealed that AI of 19p was related to asbestos

exposure in histological tumor types other than ACs. Interestingly, AI of 19p has

previously been shown to be associated with smoking in lung ACs (Sanchez-Cespedes et

al. 2001). As the tumor samples included in our analyses originated from patients with a

definite smoking history, our results agree with those of Sanchez-Cespedes et al. (2001). It

therefore appears that smoking drives aberrations of 19p in ACs, but exposure to asbestos

does so in non-AC histological types. Further evidence for 19p as a preferential site of

asbestos induced chromosomal breakage was obtained from our in vitro characterizations of

crocidolite induced MN. An increase in the frequency of MN harboring the 19p fragment

was detected already after a 48h treatment, in comparison with the untreated control, which

could imply that loss of 19p occurs early in asbestos related carcinogenesis.

Although no genes located in the 19p region have been associated with asbestos exposure,

the gene targeted by 19p deletions in LCs in general is thought to be the TSG LKB1

(Sanchez-Cespedes et al. 2002). Previously, mutations of LKB1 have been reported to

occur preferentially in lung tumors of smoking males (Matsumoto et al. 2007). This

suggests that loss of 19p and inactivation of LKB1 could belong to an alternative route of

carcinogenesis similar to what has been observed between KRAS and EGFR in lung cancers

of smokers and non-smokers (Ahrendt et al. 2001; Pao et al. 2004; Shigematsu et al. 2005;

reviewed in Sun et al. 2007). Although we did not perform studies on asbestos related

target genes, one of the microsatellite markers that separated the tumors of asbestos

exposed and non-exposed patients the best resided proximal to LKB1. Therefore, LKB1

may be a target gene in asbestos related carcinogenesis also, since the 19p region was found

to be preferentially lost  in tumors of asbestos exposed patients.  If  the loss of 19p and the

inactivation of LKB1 belong to a specific route of carcinogenesis, tumors influenced by

asbestos  could  be  driven  through  this  route.  However,  it  is  possible  that  the  target  of

asbestos related 19p aberrations is another yet unknown TSG because dozens of genes

located at this region were found be down-regulated in tumors of asbestos exposed patients.

Microsatellite analysis also revealed that altogether 11% (7/62) of the tumors showed MSI

in the 19p region, which frequency agrees with previous findings (Sekido et al. 1998).

Tumors of both non-exposed and moderately asbestos exposed patients were found to be

affected, suggesting that asbestos exposure is unlikely to be related to the occurrence of

MSI.  30%  of  the  tumors  displaying  MSI  were  found  to  harbor  triploid  tumors  by  FISH,

indicating simultaneous alterations in both CIN and MSI pathways. Although cell line

investigations have indicated that either instability appears to be sufficient to drive
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tumorigenesis (Lengauer et al. 1997), both of the instabilities may be developed as the

disease progresses.

In  all,  the  studies  of  this  thesis  suggest  that  non-random targeting  of  distinct  loci  such  as

19p occurs in asbestos related lung cancers. Although the thesis is not capable of providing

an explanation for why asbestos exposure drives specific aberrations, the regions detected

in this study could be related to breakage of fragile sites owing to their proximity to fragile

sites. Indeed, although fragile sites have been implicated as being loci of frequent

rearrangements also in cancers (Yunis & Soreng 1984; reviewed in Durkin and Glover

2007), specific conditions are known to induce their breakage (Glover et al. 1984). The

most fragile site, FRA3B located in 3p14 has, for instance, been previously suggested as a

preferential target of tobacco smoke (Sozzi et al. 1997), suggesting that other substances

could also induce similar effects. Further studies should be carried out to further

characterize whether a connection between breakage of the fragile sites and asbestos exists.

2.2 Asbestos related deregulated pathways (V)

The Gene Ontology enrichment analysis provides an attractive means for detecting changes

that have occurred in a biologically related group of genes between two conditions of

interest. Moderate changes in expression may be sufficient to show deregulation of a

category as opposed to single gene approaches that require significant changes.

Furthermore, analyses of groups of genes instead of single genes are justified as alterations

in the expression of genes do not occur as independent events. Also, in contrast to the copy

number driven expression changes sought for in Publication III, the aim of this substudy

was to identify gene expression changes induced by any mechanism.

GO terms were analyzed for enrichment of differentially expressed genes between the

asbestos exposed and the non-exposed lung cancer patients. To enable the selection of

targets for subsequent analyses, the search was narrowed down to those molecular

processes and cellular functions that were deregulated on at least three levels of specificity

in the GO graph. Owing to the child terms being specific descriptions of the parent terms,

related parent and child terms are expected to show deregulation when truly altered. We

focused into the categories that were deregulated in both normal and tumor tissue, because

such findings may imply the early involvement of these mediators in asbestos related

carcinogenesis.
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On the basis of the enrichment scores of related GO terms, down-regulation of protein

ubiquitination and up-regulation of ion channels were considered to be the main findings.

Protein ubiquitination is best known in tagging proteins for degradation (Hershko &

Ciechanover 1998), but ubiquitin modifications have recently been recognized as more

versatile regulators of protein activity in processes related e.g. to cell cycle, transcription,

and DNA repair (reviewed in Haglund & Dikic 2005). Deregulated ubiquitination has been

linked to a variety of diseases including cancers (reviewed in Weissman 2001) including

the asbestos exposure linked mesothelioma (Borczuk et al. 2006; Wali et al. 2007). Also

our recent studies of time dependent gene expression changes of lung derived cell lines

after exposure to asbestos fibers showed down-regulation of ubiquitination, 24h or 48h

after the exposure to asbestos fibers (Nymark et al. 2007). Concordant findings from

several asbestos related studies suggest the importance of protein ubiquitination in asbestos

mediated carcinogenesis albeit the link between protein ubiquitination and asbestos is yet to

be characterized.

UBA1  and  UBA7  were  tested  for  involvement  in  the  asbestos  related  deregulation  of

protein ubiquitination. These enzymes were chosen owing to their roles at the early stages

of ubiquitin and ubiquitin like tagging processes. Additionally, both of these proteins have

been annotated to the ubiquitin cycle, one of the most specific protein ubiquitination related

GO terms that were found down-regulated in this study. Although Western analysis did not

reveal differences in UBA1 or UBA7 expression between the asbestos exposed and non-

exposed patients, the role of protein ubiquitination in asbestos related carcinogenesis cannot

be ruled out, as hundreds of other enzymes are also involved in the process. Future analyses

of a similar kind could thus benefit from more holistic approaches.

As  the  GO  analysis  was  performed  on  the  same  gene  expression  as  the  asbestos  related

regions discussed in Section 2.1 were detected from, the findings are dependent. To unravel

the connection, we examined whether the genes involved in the most specific protein

ubiquitination related GO terms were enriched in the six genomic loci found to be related to

asbestos exposure, but no enrichment was detected. The analysis was, however, crude and

involved all the hundreds of genes annotated to the most detailed ubiquitination related GO

terms. The analysis could be refined, for instance, by assessing only those genes involved

in the ubiquitination process that share a common transcriptional regulator. Promoter

sequence analysis of the differentially expressed genes annotated to the down-regulated

ubiquitination related GO terms could be worth pursuing as it may pinpoint a subgroup of

genes that are affected.
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Despite the fact that the asbestos related deregulation of ubiquitination could not be

verified,  the  GO analysis  indicated  that  the  asbestos  related  and  unrelated  tumors  display

differences at the level of pathways as well. The finding therefore supports the presence of

genetic differences between tumors of patients exposed and not exposed to asbestos, as

implicated in Publications II-IV.

3 ALTERATIONS UNDERLYING DISSEMINATION INTO BM (VI)

After the successful detection of asbestos related aberrations, a similar comparative

approach combining array CGH and gene expression microarrays was used to identify

genetic alterations that may be related to the early dissemination of tumor cells into BM in

LCs.  Lung ACs of BM-positive and BM-negative patients were compared, facilitating the

detection  of  differential  alterations  displayed  by  the  primary  tumors  that  could  provide  a

tumor cell with the capability required in the metastatic cascade. The soundness of the

division is supported by clinical evidence, which suggests that BM-positive tumors are

more likely to relapse after surgery than BM-negative ones (Cote et al. 1995; Pantel et al.

1996; Kubuschok et al. 1999).

The combined gene expression and DNA copy number microarray screening performed in

this thesis revealed five regions, where changes at both the mRNA and DNA levels

associated with the BM status. Although comparative studies have been performed

previously between LCs with and without distant metastases (Petersen et al. 2000; Goeze et

al. 2002),  our  study  was  the  first  one  where  changes  related  to  early  dissemination  were

studied. However, early dissemination and emergence of distant metastases are likely to be

connected phenomena owing to an association between disease relapse and the presence of

DTCs in BM at the time or surgery (Cote et al. 1995; Pantel et al. 1996; Kubuschok et al.

1999). Therefore, division of the metastatic and non-metastatic tumors on the basis of the

BM status is likely to provide a finer separation than the presence of macro-metastases, but

either comparison should reveal predominant metastasizing related changes, provided that

they are displayed by the primary tumors. Indeed, in accordance with our results,

comparative studies of macro-metastatic and non-metastatic LCs have also identified losses

of 4q and 10q among the changes differentiating the tumor groups (Petersen et al. 2000;

Goeze et al. 2002). This gives confidence in our findings.

Further investigations were carried out on the 4q region owing to an overlap with the

previous metastatic aberration signatures (Petersen et al. 2000; Goeze et al. 2002) and
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because the expression of a notable fraction of the genes at the 4q locus (20%) was found to

be influenced by the copy number loss. FISH characterizations validated the array finding

of the connection between the loss of 4q and the presence of DTCs in BM in lung ACs, but

additionally showed that the loss occurred in BM-positive SCCs. Furthermore, losses of 4q

were detected in brain metastases of LCs as commonly as in the primary tumors, i.e. in

about 40% of the cases, and likewise across different histological tumor types. The

aberration thus appears to be commonly carried by spreading LCs and could possibly even

be a more universal characteristic of advanced tumors, as loss of 4q has been shown to be

associated with progression in mesothelioma and esophageal adenocarcinoma also

(Shivapurkar et al. 1999; Sterian et al. 2006).

The recurrence of 4q loss in the metastatic tumor aberration signature suggests that a gene

or genes in the 4q region could confer a capability required in the metastatic cascade.

However, to pass through the metastatic cascade, multiple capabilities are needed (reviewed

in Fidler 2003). Thus, for instance the 4q aberration alone is not likely to provide all the

required abilities, but may, together with other alterations, produce metastasis competent

cells. This could explain why 7% of the BM-negative tumors displayed loss of 4q, i.e. they

lack some of the competencies needed in the dissemination process. Also, BM-positive and

BM-negative breast tumors have been shown to display distinct gene expression alterations

(Woelfle et al. 2003; Naume et al. 2007), indicating that the tendency for dissemination is

likely to be governed by the genetic alterations of the primary tumors.

In all, the results indicate that loss of 4q, and thus the genetic alterations displayed by the

primary tumor, have relevance in the dissemination of LCs. Yet, further knowledge about

the genes targeted by the aberrations is required for improved understanding of the biology

behind metastasizing.
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SUMMARY AND CONCLUSIONS

This thesis aimed to develop and apply microarray data analysis methods suitable for

comparative  studies  of  two  opposite  categories  of  tumors,  and  to  further  characterize  the

main findings using independent laboratory techniques. Two distinct categories of LCs

were studied, those related to asbestos exposure and those with evidence of DTCs in BM.

The DRF method introduced in this thesis was proven efficient in generating hypotheses

about both DNA and mRNA level differences between specimens of two opposite groups,

and is likely to suit future comparative study settings. Yet, further verifications of the

findings are necessary to exclude false positive findings and to confirm the relevance of the

results in the condition being studied.

On the basis of microarray analyses, DNA copy number and gene expression changes in

chromosome regions 2p21, 3p21.31, 5q35.2, 16p13.3, 19p13.3-p13.11, and 22q12.3 are

suggested to have relevance in LCs of patients with a history of asbestos exposure. The

non-random targeting of distinct chromosomal loci indicates that some of the driver genes

may be different in the lung carcinogenesis influenced by asbestos. In subsequent

verification studies, asbestos exposed patients’ tumors were found to display AI in 19p

caused by losses, significantly more frequently than the non-exposed patients’ tumors. The

aberration could occur early in carcinogenesis as BEAS 2B cells treated with crocidolite

asbestos preferentiality showed this chromosomal breakage. In addition to the preferentially

aberrated regions, tumors of asbestos exposed and non-exposed patients were found to

display differential regulation of multiple biological processes and molecular functions,

including protein ubiquitination and ion channels. Altogether, the studies of this thesis

suggest differences in asbestos related and unrelated carcinogenic processes. In the future,

it will be interesting to see whether alternative routes are involved in asbestos related

carcinogenesis, similarly to what has been observed between smokers and non-smokers

(Ahrendt et al. 2001; Pao et al. 2004; Shigematsu et al. 2005; reviewed in Sun et al. 2007).

Comparative  studies  of  patients  with  and  without  evidence  of  DTCs  in  BM  showed  that

regions 4q12-q32, 10p12-p11, 10q21-q22, 17q21, and 20q11-q13 may be of relevance in

the metastatic cascade. In the further characterization of 4q, loss of the region was found a

typical feature of BM-positive primary LCs and brain metastases across different

histological types. The results suggest that loss of 4q has relevance in the dissemination of

LCs and that changes displayed by the primary tumors may assist identification of

aggressive tumors.
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The  results  obtained  in  this  thesis  demonstrate  that  distinct  molecular  changes  are

characteristic of LCs influenced by asbestos exposure and of those that disseminate to BM.

However, although knowledge of chromosomal regions associated with a condition may

facilitate prognosis or assist in the recognition of distinct types of tumors, for example, the

regions as such do not provide accurate information for treating the disease. Further action

should thus be taken to propel research to reveal the genes targeted by the aberrations, as

they may uncover the biology behind the development of lung tumors.
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