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SUMMARY

Integrins are heterodimeric adhesion receptors at the cell membrane that transmit signals bidirectionally
acrossthe plasmamembrane. LFA-1 isthe major leukocyteintegrin and it is of fundamental importance for
the function of the immune system. LFA-1 mediates several different functionsin the immune system, like
adhesion between T cell sand antigen presenting cells, emigration of leukocytesinto the sitesof inflammation,
and costimulation of immune cells. The adhesive activity of leukocyte integrins must be tightly regulated,
ensuring that adhesive interactions with ligands occur only after cell activation. This process, known as
“insde-out” signalling, modulatesintegrin adhesiveness. This occursthrough two maodes; affinity modulation,
whereligand-binding isaltered by conformational changes, and avidity modulation, which modifiesintegrin
diffusion and clustering in the membrane that is mediated by cytoskeletal interactions. Different modes of
activation seem to use different mechanisms at the molecular level.

The short intracellular tails of integrins are devoid of cataytic activity, but are important for adhesion and
signalling. Integrins probably work through the cytoplasmic proteins that modify or bind to the integrin
cytoplasmictails. Phosphorylationisacommon mechanismfor the regulation of the surface receptor functions
and has al so been suggested for integrin regulation. LFA-1 is phosphorylated on both thea and the b-chain,
the a-chain being constitutively phosphorylated, while b-chain phosphorylation becomes detectable after
inside-out stimul ation of theintegrin. Integrin phosphorylation may be amechanism that regul ates molecular
interactions between integrins and cytoplasmic molecules.

Inthisstudy, different phosphorylation eventsregulating L FA-1 have been examined. Lck, aproteintyrosine
kinase, has been identified asanovel component of theinside-out signaling involved in regulating LFA-1-
dependent adhesion and cell aggregation. In addition, site-specific LFA-1 phosphorylation has been
characterized. We have shown that phosphorylation of both cytoplasmic domain of LFA-1 mediates different
modes of integrin activation. a-chain phosphorylation on Ser1140 isneeded for the conformational changes
in the extracdlular domain of integrin. In contrast, the b-chain Thr758 phosphorylation mediates selective
binding to the 14-3-3 proteins, resulting in cytoskeletal rearrangements and adhesion strengthening. These
results indicate that the different phosphorylation events play distinctive roles in integrin activation. This
givesthe possibility for regulation of both fast and transient adhesive events by affinity changes and long-
term adhesion strengthening by avidity changes.

Theidentification of componentsof theregulatory network and theinvestigation of the mechanism of integrin
regulation isimportant, sinceleukocyte adhesi on regulates most aspects of theimmune system, and deregulation

of LFA-1 function leads to autoimmune disease and fundamental defects of the immune system.



REVIEW OF THE LITERATURE

1. LEUKOCY TEFUNCTION-ASSOCIATED ANTIGEN-1

1.1. Introduction

Integrins are cell-surface receptors that mediate adhesion to cells and to the extracellular matrix (ECM). In
addition, integrins make transmembrane connections to the cytoskeleton and activate many intracellular
signalling pathways. Thus, the term “integrins’ was coined to reflect the capacity of members of thisfamily
tointegratethe extracellular and intrace lular environment (Hynes 1987). Integrinsare present in all metazoans,
and the number of integrinsin the genome generally increases with the complexity of the organism (reviewed
in Bokal and Brown, 2002). They play central role in cell adhesion, cell migration and control of cell
differentiation, proliferation and programmed cell death. Integrins are heterodimeric receptors formed by
the non-covalent association of a and b subunits. Mammals contain 18 a and 8 b subunits that combine to
produce at least 24 different heterodimers, each of which can bind to a specific repertoire of cell-surface,
ECM or soluble protein ligands. Each subunit is a type | transmembrane glycoprotein that has arelative
large (>700 residue) extracellular domain and, with the exception of the b4 subunit, a short cytoplasmic
domain (reviewed in Hynes, 2002).

Leukocytes can express at least 12 of the 24 known integrin heterodimers, and the expression pattern
depends on the subset and the maturation state of the cell (Hynes, 2002). They express four leukocyte-
specificb2integrins(aLb2, aMb2, aXb2, aDb2); aLb2 or leukocyte function-associated antigen-1 (LFA-
1) being the most abundant and widespread in expression (Gahmberg et al, 1997). L eukocytes al so express
the two b7 integrins (a4b7 and aEb7) and, in common with many other cell types, the ECM-binding b1
integrins (al-a6bl). LFA-1 has an essential role in various processes, including leukocyte attachment to
endothelial cellsand antigen-presenting cells (APC), cytotoxic killing, and migration acrossthe endothelium
both during normal recirculation through lymph nodes and in response to inflammatory signals (Scheeren et
al, 1991, Davignon et al, 1981, van Eppset al, 1989, Kavanaugh et al, 1991). Furthermore, LFA-1 hasarole
in the “immunol ogical synapse”, which forms between the T cell and the APC during an immune response
(Grakoui et al, 1999). Thus, the LFA-1 interaction with itsligands must betightly regulated.

On leukocytesintegrins are usually in an inactive state meaning that these receptors do not bind all thetime
to their ligands. Two mechanisms have been proposed to explain how leukocyte integrins become able to
bind ligand (Figure 1) (reviewed in Dustin et al, 2004). Firstly, the integrin can undergo conformational
changesthat increase the affinity of individual integrinsfor their ligands. Secondly, stimulation of leukocytes
causes clustering of integrins, resulting inincreased avidity and providing stronger adhesion at sites of cell-
cell contact. Importantly, because affinity regulation and avidity regulation are distinct processes, they are

not mutually exclusive and can often occur at the same time.



Affinity regulation

gy Figure 1. Models of integrin affinity and avidity.
i The upper pand shows different conformations of
the integrins: the bent (low affinity) and the extended
a-chain B-chain conformation (high affinity). Thelower panel shows
—_—> clustering of integrins on the surface of a cell.
Extracellular
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Avidity regulation
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1.2. LFA-1 binds to ICAMs

LFA-1 mediatesleukocyte adhesion to cellsby binding to any of fiveintercellular adhesion molecules (ICAM-
1-5), which play important rolesin inflammation, immune responses, and also in tumour progression (reviewed
in Gahmberg, 1997, Cavallaro and Christofori, 2004). The |CAM molecul es bel ong to theimmunoglobulin
superfamily (1g-SF), consisting of two to ninetandem Ig domains. These |g domains form the extracellular
portion of the protein. Despite their structural similarity and integrin-binding capacity, the ICAMs have
distinct patterns of expression, functionsand cell signalling capacities (reviewed by Hayflick et al, 1998).
ICAM-1, the most widely distributed ICAM, is expressed constitutively only at low levels on avariety of
both haematopoietic and non-haematopoietic cells, including leukocytes and endothelial cells(Rothleinet a,
1986, Patarroyo, et al, 1987), and expression level s can be upregul ated by anumber of inflammatory mediators
such as interleukin-1, tumour necrosis factor a and interferon y (Dustin et al, 1986, Pober et al, 19863,
1986b). It is composed of five Ig domains, and because of a 90° bend between domains three and four,
ICAM-1 monomersare L-shaped (Kirchhausen et al, 1993). ICAM-1 probably organizesinto non-covalent
homodimers on the cell surface (Miller et a, 1995, Rellly et a, 1995). Thelink isformed vialg domain 4
interactions, which can then bring together domains 1, resulting in W-shaped tetramers (Casasnovas et a,
1998). ICAM-1 plays an important role in immune and inflammatory responses, in the devel opment of the
nervous system and in embryonic development (Springer, 1990, Tessier-Lavigne and Goodman, 1996).
Additionaly, ICAM-1 has been shown to act asaco-stimulatory ligand that bindsto LFA-1, thereby promoting
the T cellsactivation, and it caninitiate several intracellular signalling pathways viadimerization (Lebedeva
et al, 2005).

ICAM-2, a second LFA-1 ligand, is expressed constitutively at low levels on resting lymphocytes and

monocytes and at higher levels on vascular endothelial cells, and expression is refractory to inflammatory
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mediators (de Fougerolleset al, 1991, Nortamo et a, 1991). ICAM-2 mediates|eukocytetrafficking (Staunton
et a, 1989, Gerwin et a, 1999), and recent data indicate that ICAM-2 also play arole in angiogenesis
(Huang et al, 2005). Furthermore, it acts as a stimulatory molecule of LFA-1 mediated adhesion (Li et a,
1993, Kotovuori et al, 1999).

Many evidences suggest that the third ligand of LFA-1, ICAM-3, may beinvolved intheinitial steps of the
immune response. It shows a high constitutive expression in resting T lymphocytes (de Fougerolles and
Springer, 1992), co-stimulatory activity in T cells (Hernandez-Caselles et al, 1993, Juan et al, 1994, Bleijs et
al, 1999, Montoyaet al, 2002), and a capacity to induce L FA-1-mediated adhesion (Campanero et al, 1993).
Moreover, ICAM-3 enhancesthe T lymphocyte adhesion to endothelial cellsand ECM, praobably by inducing
the activation of b1 and b2 integrins (Bleijs et a, 2000). ICAM-3 has also been suggested to contribute to
angiogenesisand cancer cell proliferation (van Buul et al, 2004, Kim et al, 2005).

The two other ICAM molecules also have been shown to bind to LFA-1: ICAM-4 (or LW blood group
antigen) and ICAM-5 (or telencephalin) (Bailly et al, 1995, Mizuno et al, 1997, Tian et al, 1997). Their
expressions are more restricted; ICAM-4 is expressed only on the red cell lineage of haematopoietic cells
(Bailly et al, 1994) and ICAM-5inthe brain (Yoshiharaet al, 1994). The physiological functions of ICAM-
4 and ICAM-5 remain to be determined; however, ICAM-4 might play somerolein red cell turnover and
ICAM-5 seemsto beinvolved in neurite outgrowth by homophilicinteractions (Gahmberg et al, 1997, Tian
et a, 2000).

Additionally, LFA-1 may bind to afew other proteins. Interactions have been shown with E-selectin (K otovuori
etal, 1993), typel collagen (Garnotel et al, 1995) and junctional adhesion molecule 1 (JAM-1) (Ostermann
et al, 2002).

1.3. Biology of LFA-1

LFA-1 is involved in several fundamental biological processes

Many lymphocyte functions are dependent on adhesiveinteractions. T lymphocytes useintegrinsto migrate
in and out of lymph nodes during normal recirculation (“homing”) and, following infection, to move into
infected tissues. LFA-1 aso participates in the immunological synapse (1S) formed between T lymphocyte
and APC that isneeded for T cell cytotoxicity and the antibody production process. In addition, LFA-1also
playsakey rolein signalling although it has no enzymatic activity (reviewed in Hogg et a, 2003).
Leukocytemigration into target tissue isasequentia processthat involvestethering and rolling of leukocytes
ontheblood-vessd wall, firm adhesion and crossing through the endothelial barrier (Figure 2A) (reviewedin
Worthylake and Burridge, 2001). Activated endothelial cells participate in the process by expressing an
array of important molecules, such as selectins, chemokines and integrin ligands on their surface. Initia
attachment (tethering and rolling) of leukocytesto the endotheliumis mainly mediated by theinteraction of
selectins with their ligands. L-selectin on T cells binds to its glycosylated ligands on the endothelium or,
aternatively, E- or P-selectin expressed on stimulated endothelium bind to ligands on the T cell surface
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(McEver, 2002). Also a4 integrins (a4bl and a4b7) are ableto support rolling (Alon et al, 1995, Berlinet al,
1995). LFA-1 molecules cannot on their own mediate rolling, but importantly, they can contribute to the
rolling processtogether with selectinsor a4 integrins (Perry and Granger, 1991, Henderson et al, 2001). The
next step of leukocyte migration isthe firm attachment of leukocytesto the endothelium. The most important
molecules in this process are LFA-1, a4bl and a4b7 that bind to their ligands expressed on chemokine
activated endothelium cells(Andrew et a, 1998, Berlin-Rufenach et al, 1999). Before cell migration leukocytes
undergo polarization, with the formation of alamellipodium at the leading edge and auropod at thetrailing
edge (reviewed in Vicente-Manzanares and Sanchez-Madrid, 2004). Although the response of transendothelial
cell migration is believed to occur largely as a result of leukocyte migration through junctions between
adjacent endothelia cells (paracellular route), there is now a renewed interest in the leukocyte migration
through the body of the endothelial cells (transcellular route) (Engel hardt and Wolburg, 2004, Carman and
Springer, 2004). ICAM-1 playsakey rolein regulating leukocyte transmigration by both pathways (Yang et
al, 2005). ICAM-1 and vascular cell adhesion molecule-1 concentrate at the leukocyte-endothelial cell
contacts, forming cuplike structures surrounding migrating cellswhich provides directiond guidanceto leukocyte
(Carman and Springer, 2004). The formation of the transmigration cup structure is essential for both para-
and transcel lular migration events by monocytes, neutrophilsand lymphocytes, indicating that the structure
represents ageneral feature of transendothelial cell migration. JAM-1, amoleculewhich normally regul ates
endothelial cdll-cell junctions, isalsoinvolved in transmigration (Ostermann et al, 2002). It has been specul ated
that LFA-1 swaps ligands from the ICAMs to JAM-1 during the migration. In addition, chemokines have
been shown to be key regulators of lymphocyte transmigration (Cinamon et a, 2001). Some b2 integrins
have al so been shown to be associated with matrix metaloproteases and thisinteraction seemsto beimportant
for migration (Stefanidakiset al, 2003, 2004). However, interaction with LFA-1 and matrix metalloproteases
has not reported.

LFA-1 aso has an essential rolein T cell — APC interactions. Antigen presentation occurs when a T cell
interactswith an APC that expressesits specific antigen. Theinitial interaction involves exploratory contacts
that are mediated by chemokine activated LFA-1 and its ligands, which culminatesin IS formation. The IS
isaspecialized cell-cell junction between aT cell and APC which isrequired for T cell signalling (Grakoui
et al, 1999). ThelS can be stable over many hours, and it naturally deliversastop signal for T cell migration
that isan essential event in T cell activation (Dustin et al, 1997). Like migration, ISformation isamultistep
process with two major morphologically defined stages: immature | S and mature IS (reviewed in Sims and
Dustin, 2002). Intheimmature |Stheintegrinsareinitially engaged in the center of the contact area, and T
cell receptors (TCRs) are engaged in the periphery of the contact (Figure 2B). A major feature of the
mature IS is the concentration of TCRs at the center surrounded by aring of LFA-1 (Monks et al, 1998).
Also additional moleculesinvolvingin T cell activation clustered at the center of the contact, such asCD2,
CD28, PKC-0, Lck, Fyn, CD4 and CD8 (reviewed in Huppaand Davis, 2003). In contrast, only LFA-1 and
talin are known to reside in the peripheral area. Some molecules such as CD43 and CD45 are excluded
from the contact areaentirely probably for reasonsof large size. Thislateral movement inducestheformation
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of asecond protein complex distal to the site of TCR engagement, which has been shown to beimportant for
appropriate T cell activation (Cullinan et al, 2002). The precise mechanism by which the mature|Sisformed
isunknown, but it is believed to be dependent on signals generated by the TCR and the actin cytoskeleton
(reviewedinLinet al, 2005).

¥ < LFA-1 and a4-integrins s | Lymphocyte surface
&) S g cD43
Rolling and < CD45 7 LFA-ICAM
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tethering o ; Talin
Activation and ; 4 ‘
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Figure2. T cell adhesion events. A. The multistep mode of leukocyte interactions with the endotheium. Adapted
from Kinashi, 2005. B. The face of the IS, including the central region (dark gray), the peripheral ring surrounding
the central region (light gray) and the region distal to the synapse (white), and the molecules that are found enriched
within each region. Adapted from Huppa and Davis, 2003.

Leukocyte adhesion deficiency and LFA-1-deficient mice

The physiological importance of LFA-1 inleukocyte function hasalso been verified by the study of anaturally
occurring human disease, leukocyte adhesion deficiency-I (LAD-I) (reviewed in Hogg and Bates, 2000). A
range of mutations in the b2 gene have been identified including deletions, truncations, substitutions, and
frame shiftsthat result in abnormalities of the b2 polypeptidesand b2 integrin expression levels. Thelack of
b2 integrin resultsin elevated numbers of circulating neutrophils because these cedlls fail to migrate across
the endothelium. Patients typically have recurrent bacterial or fungal infections of the skin and mucous
membranes, impaired mobilization of leukocytes to infected area, severe gingivitis, and impaired tissue
remodeling and wound healing. Severdly affected people often die of infectionsin early childhood or adulthood
unless bone marrow transplantation is successfully accomplished. A few variant LAD-1 syndromes have
also beenidentified (Kuijperset al, 1997, Hogg et al, 1999, McDowall, et al, 2003). In these syndromesthe
expression levelsof LFA-1werenormal or only marginally reduced, but integrinswere nonfunctional, indicating
adefect in inside-out signalling. A new interesting LAD-1 variant has been identified recently, which hasa
magjor truncation of the b2 cytoplasmic domain (Hixson et al, 2004). Thisis the first report describing an
LAD-1 that specifically involvesthe cytoplasmic domain. Thistruncation impaired binding function of LFA-
1, but surprisingly not Mac-1, another b2 integrin.
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Both aL” and b2’ mice display similar phenotypic features as humans with LAD-I (Schmits et al, 1996,
Mizgerd et al, 1997, Scharffetter-K ochanek et al, 1998). Animasdeficient in LFA-1 demonstrate def ects of
T cell function in vivo, including leukocytosis, spontaneous skin infections, neutrophilia and failure in
immunogenictumor rejection. Miceaso haveimpaired T lymphocyte and neutrophil transendothelia migration
(Andrew et al, 1998, Berlin-Rufenach et al, 1999). Interestingly, LFA-1 mutant mice having adeletion of the
conserved GFFKR matif inthe al cytoplasmic domain, which makes L FA-1 constitutively active, also have
impaired immune responses (Semmrich et a, 2005). The phenotype was quite similar to that of LFA-1-
deficient mice, including enlarged spleens and impaired lymphocyte responses, but in addition, T cell activation,
cytotoxic T cell activity and T cell-dependent humoral immune responses were impaired. Thus, also
deactivation of LFA-1 and disassembly of LFA-1-mediated cell contacts seem to be vital for the generation

of normal immune responses.

1.4 LFA-1 as a signalling receptor

Two-way signalling through LFA-1

Integrins possess the unique ability to regulate dynamicaly their adhesiveness by bidirectional signalling
across the plasma membrane (reviewed in Dustin et a, 2004, Travis et al, 2004). Ligation of various cell-
surface receptors generatesintracellular signals that increase L FA-1-mediated cell adhesion; thisistermed
inside-out activation. This pathway can modulate both the affinity of LFA-1 for its ligands and clustering
of integrins in the cell membrane. LFA-1 is also capable of transducing signals into the cell after ligand
binding in a process known as outside-in signalling. This outside-in signalling occurs particularly in the
context of the IS, but probably also during endothelial attachment and migration (Pardi et al, 1989, van
Seventer et al, 1990). Signalling eventsthat follow direct L FA-ligation include tyrosine phosphorylation of
phospholipase Cyl (PLCyl) (Kanner et a, 1993), and activation of the tyrosine kinases ZAP-70 (zeta-
associated protein of 70 kDa) (Soede et al, 1999), Pyk-2 and focal adhesion kinase (FAK) (Rodriguez-
Fernandez et al, 1999). The functions of protein kinase Co (PKC3), cytohesin-1 and Jun activation domain-
binding protein 1 (JAB1) have al so been compared directly in outside-in signalling (Perez et al, 2003). These
signals may influence whether a T cell isdifferentiated to T helper type 1 or type 2 fates.

Theinitia activating signal in inside-out signalling can be triggered by a number of different cell-surface
receptors. Several stimulating receptorsareinvolved intheinitial contact between T lymphocytesand APC,
including CD3, CD2 (Dusting and Springer, 1989, van Kooyk et a, 1989), CD44 (Koopman et al, 1990) and
CDA45 (Spertini et al, 1994). Furthermore, multiple inflammatory mediators, such as chemokines, have been
shown to induce L FA-1-mediated adhesion through inside-out signalling (Campbell et al, 1998, Constantin, et
al, 2000).

In addition, LFA-1 can also be activated by extracellular treatment with divalent cations (Dransfield et al,
1992), ligands (Cabanas and Hogg, 1992, Li et a, 1993, Kotovuori et al, 1999, Bleijset al, 2000) or certain

monoclonal antibodiesto theintegrin extracellular domain (reviewed by Humphries, 2000).
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Intracellular signalling controlling LFA-1 activation
Multipleintracdlular signalling events contributeto LFA-1 activation (Figure 3). Ligation of the TCR through
CD3 cross-linking activates a network of downstream signalling including activation of protein tyrosine
kinases like Lck (reviewed in Dustin and Chan, 2000). Lck has been shown to be responsible for the early
eventsin T cell activation due to tyrosine phosphorylation events, and the induction of calcium signals
(Straus and Weiss, 1992). Relative little is known about the proximal signalling events that regul ate TCR-
activated LFA-1 adhesion. However, Lck has been shown to play acritical role in superantigen-induced
LFA-1-mediated T cell - B cell conjugation independent of its ability to activate ZAP-70 (Morgan et al,
2001). Adhesion is dependent on the kinase activity of Lck and a functional Lck Src-homology 3 (SH3)-
domain, indicating that one or more proteins that interact with the SH3 domain of Lck are required for the
inside-out signalling from the TCR. In addition, overexpression of Lck has been shown to upregulate L FA-
1 surface expressionin acytolytic T cell clone, and that way to increase adhesion to ICAM-1 (Torigoeet a,
1994). Lck has been shown to regul ate the affinity of b1-integrinsin T cells (Feigelson et al, 2001), but the
involvement of Lck inintegrin activation remains poorly understood.
SLP-76 (Src homology 2 domain — containing leukocyte protein of 76 kDa) is a scaffold molecule that is
required for TCR signalling (Yablonski et al, 1998). This protein lacks enzymatic domains and instead carries
binding domains that are needed for the assembly of complexes. SLP-76 associates in a TCR-inducible
fashion with SLAP-130/Fyb, another hamatopoi eti c-specific adaptor. T cellsfrom SLAP-130/Fyb-deficient
micefail to enhance TCR-induced L FA-1-dependent adhesion and clustering of the LFA-1 (Peterson et al,
2001). The other SLP-76-binding protein, ADAP (adaptor adhesion and degranulation promoting adaptor
protein), has al so been shown to be needed for TCR-induced LFA-1 adhesion and T cell —APC conjugation
(Wang et al, 2004), indicating that i ntermol ecul ar interaction might congtitute alink in TCR-mediated activation
of LFA-1.
TCR-ligation and chemokinetriggering al so lead to activation of PLC, which generatesthe second messengers
inositol triphospate (IP,) and diacylglycerol (DAG). IP, isrequired for Ca* flux that has been shown to be
crucial for LFA-1-mediated adhesion (Rothlein and Springer, 1986, Stewart et al, 1996, 1998). The effects
of Ca?* are mediated through calcium-binding proteins, like calmodulin and calpain (Pettit and Fay, 1998).
DAG inturn, activates PKCs which are candidates for activation signals for LFA-1, since phorbol esters,
cell permeable analogs of DAG, have been shown to stimulate L FA-1-mediated adhesion (Patarroyo et al,
1985, Rothlein and Springer, 1986). In addition, involvement of PKC in LFA-1 activation was demonstrated
using aPKC inhibitor (Dustin and Springer, 1989, Hauss, et al, 1993). The PKC family includes agrowing
number of isoforms that are classified into three major subgroups based on their structure and cofactor
requirements for activation. Overexpression of active conventional PK Csand novel PKCs, but not atypical
PK C isoforms induces LFA-1-mediated adhesion to ICAM-1 (Katagiri et al, 2000). On the other hand, the
atypica { PKC has been shown to beinvolved in chemokine-induced LFA-1 lateral mobility (Giagulli et al,
2004). Moreover, PK Cs have been shown to phosphorylate severa residuesinthe LFA-1 b subunit (Fagerholm
et al, 2002).
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Figure 3. Schematic figure of intracellular signalling pathways controlling LFA-1 activation. T cdls are
activated through TCR or chemokine receptors. TCR-ligation leads to protein tyrosine kinase (PTK) activity
resulting in the activation of multiple downstream pathways. The Ras-MAPK pathway is activated downstream of
PTK-signalling. PTK activity also resultsin PLCgactivation that leads to PK C activation and Ca2+-signalling. PLCc¢
is aso activated by chemokine triggering. All these pathways have been implicated in LFA-1 regulation. TCR-
ligation also leads to recruitment of adapter protein to the plasma membrane, such as SLAP-130/Fyb, that regulates
LFA-1 clustering on the cell surface. Vav is GEF for Rho GTPases that transduces TCR-signals to LFA-1. PI3K is
activated after chemokine triggering and TCR-ligation and it probably contribute to LFA-1 activation through
cytohesin. Raplisactivated in T cells by multiple pathways and it is important for LFA-1 regulation.

Phosphoinositide 3-kinases (PI3Ks) are afamily of intracdlular signal transducing enzymes that share the
capacity to phosphorylate phosphatidylinositol lipids (Kapeller and Cantley, 1994). PI3K hasbeen demonstrated
to play arole in TCR-induced adhesion and chemokine-induced clustering of LFA-1 (Nagel et al, 1998,
Katagiri et al, 2000, Constantin et al, 2000). In contrast, a cata ytically inactive PI3K does not affect TCR-
induced adhesion of mouse T cells to the LFA-1 ligand ICAM-1 (Okkenhaug et a, 2002). One proposed
mechanism for PI3K signalling is through cytohesin-1, an integrin-binding ARF-GEF (Nagel et al, 1998,
Geiger et al, 2000).

Members of the Ras/Rho superfamily of small GTPases regulate the actin cytoskeleton in many cell types,
including leukocytes (reviewed in Vicente-Manzanares and Sancher-Madrid, 2004). Members of the Ras/
Rho family have been reported to have both apositive and anegativerolein integrin-mediated adhesion. For
example, RhoA has been reported to control the induction of LFA-1 high-affinity state and rapid lateral
mobility induced by chemokines (Giagulli et al, 2004), whereas RhoH has been demonstrated to maintain
LFA-1in anonadhesive state (Cherry et a, 2004). Interestingly, Rapl, asmall GTPase, has emerged as an
important regul ator of integrin adhesiveness (Kinashi and Katagiri, 2005). Rapl isactivated by anumber of
extracellular stimuli, including TCR-ligation aswell aschemokineand phorbol ester triggering (Katagiri et a,
2000, Katagiri et a, 2002, Shimonaki et a, 2003). Expression of adominant-activeform of Rapl (RaplV12)
enhances L FA-clustering and adhesion by increasing both affinity and avidity of LFA-1 (Katakiri et al, 2000,
Sebzdaet al, 2002). Raplisbelievedto act at least in part, through RAPL (regulator of cell polarization and
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adhesion enriched in lymphoid tissues), Rapl-interacting protein (Katagiri et al, 2003). Another protein
clearly implicated in Rapl-induced integrin-mediated cell adhesion and spreading is Riam, an interactor of
Rap-GTP. Overexpression of Riam promotes the active conformation of b1 and b2 integrins and integrin-
mediated adhesi on, and knock-down of Riam abolishes Rap-induced adhesion (Lafuente et al, 2004). Moreover,
several other proteins have been identified that interact with the active form of Rapl, including Arap3 and
Afadin (Bos, 2005). Interestingly, Rapl has recently been shown to associate with b1l integrins through
protein kinase D1 after phorbol ester or TCR-stimulation. This association was shown to be critical for
activation-dependent b1 integrin clustering and adhesion in T cells(Medeiroset al, 2005).

I'n addition, guanine nucleotide exchange factors (GEF) for GTPasesplay aroleinintegrin regulation. Vavl
is GEF for Rho GTPases that has recently been shown to transduce TCR-signals required for LFA-1
function (Ardouin et a, 2003). Vav1 hasbeen shown to require multiple LFA-1-indused functions, including
adhesion and spreading, but not agoni st-induced inside-out activation (Gakidis et al, 2004).

2. INTEGRIN STRUCTUREAND AFFINITY CHANGES

2.1. Structure of the integrin ectodomain

The overall shape of the integrin extracellular domain has been known from electron microscopy studies
(Weisd etal, 1992, Du et a, 1993): aglobular amino-terminal “headpiece” bindsligand and two long carboxy-
terminal rod-like “legs’ connect the head to the transmembrane and cytoplasmic domains (Figure 4A). In
2001 the first X-ray crystal structure of the extracellular domain of an integrin was published at 3.1 A
resolution (Xiong et a, 2001). The structure was from the I-domain lacking integrin aV b3, areceptor that
participates in cardiovascular and bone functions. The big surprise was that the structure assumed a bent
conformation, in which the ligand-binding headpiece was folded back onto the legs of the molecule. A
second integrin crystal structure followed closely after the first, in which a cyclic Arg-Gly-Asp (RGD)
peptide was soaked in the presence of manganese into pre-exigting integrin crystals (Xiong, 2002). The
location of theligand binding pocket wasfound to be at thejunction of the b-propeller and theb I-like domain
in the integrin head. Although aVb3 is a member of the subclass of integrins that lacks an |-domain, its
structure also predicted the [-domain insertion site to be within aloop on the surface of the b-propeller that
faces the b subunit. A complementary NMR structure of b2 integrin fragment reveals the structure of the
some missing domains and defines the disposition of residuesimportant in integrin activation (Beglovaet al,
2002).

The a-subunit
The N-terminal region of all integrin a subunits contains seven segments of about 60 amino acids with weak
homology to one another. The seven repeats have been predicted to fold into a seven-bladed b-propeller

domain (Springer, 1997). Half of the 18 integrin a subunits, including aL, contain a 200-residue module
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homol ogous to the cation-binding A-domain of von Willebrand factor (called the “inserted” [-domain). In|
domain-containing integrinsthe | domain isthe major ligand binding domain and recognizesligand directly
(Michishitaet a, 1993, Diamond et a, 1993). The I-domain is predicted to be inserted between the second
and thethird b-strand of the b-propeller (Springer, 1997). Crystal and NMR structures have been determined
for I-domains from theintegrin aM (Lee et al, 1995, Baldwin et al, 1998), aL (Qu and Leahy, 1995, 1996,
Legge et al, 2000), a2 (Emsley et al, 1997) and al subunits (Nolte et al, 1999). These showed that the |
domain has a dinucleotide-binding or Rossmann fold, with a central hydrophobic b-sheet, containing five
paralel and one anti-paralée b-strand, surrounded by amphipathic a-helices (Figure 4B). There are six
major a-helices and several short a-helices that differ between | domains. The top face of the I-domain
containsauniquedivalent cation (M g?*) coordination site designated the metal ion-dependent adhesion site
(MIDAYS). Themetal ionisrequired for ligand binding by integrins, and iscoordinated by fiveamino acidsin
theintegrin, whilethe sixth coordinating resi due has been proposed to comefrom the ligand (Casasnovas et
al, 1997, Xiong et al, 2001).

The region C-terminal to the b-propeller domain comprises alarge portion of the a subunit extracelular
domain of about 500 amino acids, so-called stalk region. Theseregions providethe crucial link between the
transmembrane and cytoplasmic domains and the conformationa changes that occur in the ligand-binding
head region. The stalk region of thea subunit iscomposed of three b-sandwich domains: an Ig-like“thigh”
domain and two very similar domainsthat form the“calf” module (Figure 4A) (Xiong, 2001). Between the
thigh domain and thefirst calf domainisahighly flexible“knee” (genu), which adoptsastriking about 135°
bend in the crystal structure.

The b-subunit

Theb subunit ectodomain consists of eight domains; the N-terminal PSI domain (for Plexins, Semaphorins,
and Integrins), anlg-like*“hybrid” domain (with the I-like domain emerging from theloop connecting itstwo
b-sheets), four epidermal growth factor (EGF)-likerepeatsand anovel cystatin-likefold (Figure4A) (reviewed
in Hynes, 2002). The PSI domainisacysteine-rich region of residues 1-50 which shares sequence homol ogy
with membrane proteins including plexins and semaphorins (Bork et al, 1999). The integrin PSI domain
forms atwo-stranded anti-parallel b-sheet, with two flanking short helices, connected by disulfides to the
central sheet, and an N-terminal segment that may also be helical (Xiong et a, 2004). The structure is
stabilized by four disulfide bridges. Although the PSI domain is at the N-terminus of the integrin primary
sequence, it is not at the distal end of the molecule. Instead, the b subunit portion of the integrin “head” is
composed of an Ig-like hybrid domain and the I-like domain inserted into the loop of the hybrid domain
(Xiong, 2001). Thisl-like domain containsa putative metal -binding DX SX S sequence motif similar to that of
theMIDAS Inthel domain, asimilar secondary structure (Leeet al, 1995), but weak sequence homology to
the | domain (Ponting et al, 2000); therefore, it has been termed the I-like domain. The I-like domain
containstwo long loops, including one that isimportant for determining ligand specificity, and referred to as
the specificity-determining loop (Takagi et al, 1997). The I-like domain has an extra cation-binding site
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adjacent tothe MIDAS of thel-like domain (known asADMIDAYS) (Xiong et a, 2001) and thissiteislikely
to betheinhibitory Ca?*- binding site(Mould et al, 2003). TheI-like domain together with b-propeller directly
bindsligandinintegrinsthat lack | domainsinthea subunit, and indirectly regulateligand bindinginintegrins
that contain | domains (Kamataet al, 2002, reviewed in Shimaoka et al, 2002).

Recently the crystal structure of the PSI domain/ hybrid domain/ I-EGF1 segment from the b2 subunit was
solved (Shi et al, 2005). The structure reveals an elongated molecule with arigid architecture stabilized by
nine disulfide bridges. The PSI domain is located centrally in the 3D structure, below the hybrid “head”
domain, and participates in the formation of extended interfaces with both the hybrid domain and I-EGF1
domains. The b subunit “leg” is made up of four tandem cysteine-rich repeats. The first and second are
poorly resolved in the crystal's, but the third and fourth are clearly folded into EGF-likefolds (Xiong, 2001),
termed integrin-EGF (I-EGF) domains (Takagi et al, 2001a). The NMR structure of the second and third
cysteine-rich repeats of b2 reveals similar EGF-like shapes (Beglovaet al, 2002). The fourth I-EGF repeats
are followed by a C-terminal disulfide bonded b-sheet domain termed the transmembrane-proximal b-tail
domain (bTD) (Xiong, 2001). Interestingly, many activating antibodies, or antibodies that bind only when
integrins are activated, bind to the stalk region or “leg” of the b subunit, indicating the importance of this
region in regulating ligand binding in the headpiece (reviewed by Humphries, 2004).

2.2. Sructure of the cytoplasmic tails
Integrin cytoplasmic domainsare normally <50 amino acid in length, with the b subunit sequences exhibiting

greater homology to each other than the a subunits. Severad NMR structures of integrin a and b subunit
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cytoplasmic tails have been reported, mainly of the allbb3 integrin (Li et a, 2001, Ulmer et al, 2001,
Vinogradovaet al, 2000, 2002, 2004, Weljie et al, 2002). Although some studies have failed to detect an a-
b association (Li et a, 2001, Ulmer et al, 2001), the latest NMR analyses confirm that the subunits interact
(Vinogradova et al, 2002, 2004, Weljie et a, 2002). The first ten residues of the a subunits cytoplasmic
domain after the transmembrane segment appear to form an a-helix that isterminated by aproline residue
(Figure5B). Also, thefirst 20 amino acids of the b subunit cytoplasmic domainsare a-helical, and thus, two
membrane-proximal helices mediate a weak link between the subunits via a series of hydrophobic and
electrostatic contacts. The a subunit helix isfollowed by aturn, allowing the acidic C-terminal loop to fold
back and interact with the positively charged N-terminal region, and the final 25 residues following the b
subunit membrane-proximal helix are disordered in an aqueous environment, except one or two NPxY-like
motif (Figure5A), thefirst of which has propensity to formab turn (Ulmer et al, 2001). Such b turn-forming
sequences frequently serveto bind to phosphotyrosine-binding (PTB) domains (Van der Geer et a, 1995).
Interestingly, b3tail hasbeen shown to have additiona membrane binding siteat the NPxY motif (Vinogradova
et al, 2004).

The head domain of the large cytoskeleton protein talin has been demonstrated to be a major player in
activation of different integrins, including LFA-1 (Kim et al, 2003, Tadokoro et al, 2003). It bindsdirectly to
the b chainsof integrins cytoplasmic domains, and the crystal structureof theintegrin-binding portion of talin
(F3-domain) linked to a 12-residue fragment of the b cytoplasmic domain has been determined (Garcia-
Alvarez et a, 2003). The structure shows that residue 740-742 of b3 (DTA before the first NPxY-motif)
form ab strand that isincorporated into the b5-b7 sheet of talin F3. NPxY-motif form a reverse turn, with
Tyr747 pointing into an acidic pocket of talin F3. An unusual aspect of the b3-talin F3 complex from the
typical PTB-domain interactions is a pocket occupied by the side chain of a conserved b-tail tryptophan
(W739inb3). Thisstructureis believed to represent aprototype for integrin associations with other signalling
molecules (Calderwood et al, 2003).

Theinteraction between thea and b subunit membrane-proximal cytoplasmic regionsisunclasped by activating
mutations (Hughes et al, 1996, Lu and Springer, 1997) and by the talin head domain (Calderwood et al,
1999), suggesting that cytoplasmic interactions between the a and b subunits regulate the integrin affinity
(Figure 5C). A model for integrin activation was proposed in which the spatial separation of the cytoplasmic
and/or transmembrane domainswas agenera mechanism for initiating integrin inside-out activation (Takagi
et al, 2001b, Vinogradovaet a, 2002, 2004). Thismovement would enable structural changesto betransmitted
to the extracellular domain. The membrane anchoring of the NPxY region has an important functional role
during activation since the membrane anchoring may restrict the movement of the b tail during tails separation.
Importantly, fluorescence resonance energy transfer (FRET) studies or replacement of the aL and b2
cytoplasmic domains with acidic and/or basic peptides support thismodel also for LFA-1 (Kim et al, 2003,
Lu et al, 2001a).
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Furthermore, glycosylation mapping studies have suggested that the membrane-proximal domains of the a
and 3 subunits can reside within the membrane bilayer and that certain activating mutations in this region
can displace them from the membrane, thereby shortening the transmembrane domains (Armulik et al, 1999,
Stefansson et al, 2004). An upward movement of membrane-proximal helices has also been suggested
during talinbinding (Vinogradovaet al, 2004), indi cating that changesin the membraneinsertion of membrane-

proximal domains of thea and b subunits can be a one mechanism to regulate integrin activation.
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Figure 5. Structure of the integrin cytoplasmic tails. A. Schematic figure of the integrin cytoplasmic domains.
(TM = transmembrane) B. Schematic representation of the cytoplasmic domain of the integrin. a-helices are shown
as the tetragons. The membrane-proximal regions are shown at the top. C. Modd for talin-induced integrin
activation. Seetext for details.

2.3. Models for LFA-1 ligand binding and activation

Sructural basis of LFA-1 ligand-binding

LFA-1 binds ICAMs, members of the IgSF of which ICAM-1 is the most widely studied. Although the
extracellular domain of LFA-1 islarge and structurally complex, the ligand-binding siteis contained solely
withinthe | domain of aL (reviewedin Springer and Wang, 2004, Lu et al, 2001b). Crystal structuresfor two
different I-domain conformations, termed open and closed, have been obtained for theaM and a2 I-domains,
and it has been speculated that these represent the “high affinity” and “low affinity” conformations,
respectively (Leeet a, 1995a, 1995b, Emsley et al, 2000). The two conformations differ in the side chains
that coordinate the Mg?* ion in the MIDAS to make the Mg?* ion more electrophilic for an acidic residue
from the ligand. The metal ion is central in the binding site and directly coordinates a Glu residue in the
ICAM-1 (Lee et a, 1995b). Also, compared to the closed conformation, the open conformation exhibits a
large 10 A movement of the C-terminal a-helix (a7) down the side of the | domain, and arearrangement of

the loop connecting the a7-helix to the preceding b-strand. The structure of the aL 1-domain has been
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determined only in the closed conformation (Qu and Leahy, 1995, 1996, L eggeet al, 1999); however, direct
evidence of conformational changes has been obtained by NMR spectroscopy (Huth et al, 2000).

The structural basis of aLFA-1—ligand complex has been studied using an I-domain whichislocked in the
open or closed conformation by disulfidebridges (Figure6A) (Lu et al, 2001b, 2001c, Shimaokaet a, 2001).
The open conformation of the aL I-domain was modeled by using the open aM I-domain as a template.
Locking the I-domain in the open conformation resulted in a 9000-fold increase in affinity for ICAM-1
(Shimaokaet al, 2001). By contrast, the closed conformation hassimilar affinity to ICAM-1 asthewild type,
and it prevents activation of cell adhesion by Mn?* or an activating antibody (Lu et al, 2001b), supporting the
idea that conformation regulates affinity. The crysta structure of the aL I-domain and its complex with
ICAM-1 (IgSF domains 1-3) was determined for intermediate-affinity and high-affinity 1-domain mutants
(Shimaokaet al, 2003). Thel-domain binds only to the side of domain 1 of ICAM-1, making no contactswith
the flexible loops at the N-terminal end of domain 1 (Casasnovas et al, 1998) or with domain 2. The key
integrin-binding residue Glu-34 at the end of theb strand C of ICAM-1 directly coordinatesto the Mg ion
onthe MIDAS siteat the center of the binding groove. The bond between the Mg?* and Glu-34 is surrounded
by aring of hydrophaobic contacts, and around this area, there are polar interactions involving hydrogen
bonds and salt bridges that appear to orient optimal contact of ICAM-1 with the I-domain. Also, the crysta
structure of ICAM-3 (IgSF domain 1) in complex with the aL I-domain has been determined (Song et al,
2005). The structure suggests acommon docking modefor all ICAMsthat bind to LFA-1, and the markedly
different affinity among ICAMs are regulated by the hydrophobic interactions surrounding the metal

coordination bond.
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Figure 6. The structural basis of a LFA-1-igand complex. A. Open and closed structure of the aL I-domain.
Adapted from Lu et al, 2001a. B. Modd of LFA-1 bound to ICAM-1. The I-domain a7-helix is represented by a
cylinder in its low-affinity (blue) and high affinity (orange) conformation. Mg®* ions at the MIDAS and ADMIDAS
are gold spheres. Adapted from Shimaoka and Springer, 2003.
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The optimal interaction between the I-domain and ICAMSs requires the critical rearrangements in the I-
domain by pulling down the C-terminal a7 helix, and interestingly, ICAM-1itself inducesthis movement by
binding to the | domain (Figure 6B) (Shimaokaet al, 2003). Moreover, the I-like domain undergoes similar
conformationa changes during activation that all osterically regulate binding through thealL 1-domain (Lu et
al, 2001c, Kamataet al, 2002, Yang et al, 2004a, 2004b).

Global conformational changes in the integrin ectodomain
The crystal structure of the extracellular domains of aV b3 revealed an unexpected bent conformation of
theintegrin (Xiong et al, 2001); theintegrin head domain wasfolded down onto thelegs. Based on evidence
from the NMR structure of the b2 subunit I-EGF domains (Beglovaet al, 2002), together with mapping of
activation—dependent or activation-inducing antibodies (Lu et al, 2001d, Zang and Springer, 2001), the bent
conformation was proposed to represent a low-affinity state of the integrin, and a switchblade-like (or
pocket-knife model) opening was proposed to occur upon activation (Figure 7) (Takagi et a, 2002, Liddington,
2002). In the bent conformation only the closed conformation of the headpiece (I- or I-like domain) is
present (Xiong et al, 2001) and the extension re-orientsthe ligand binding face to the open conformation and
at the sametime exposes activation epitopesin thetail piece (Takagi et al, 2002, 2003, Lu et a, 2001d, Xie et
al, 2004). An extended form with a closed headpiece conformation, known as an intermediate affinity state,
has also been demonstrated (Takagi et al, 2002, 2003). FRET measurements between an a4bl-bound
peptide and the plasma membrane have been used to reveal that such movements actually take place in
living cells (Chigaev et al, 2003). Transition to the extended state from abent state involves separation of the
a and b subunits at their cytoplasmic, transmembrane and leg domains (Takagi et a, 2002, Vinogradova et
al, 2002, Kim et al, 2003, Luo et a, 2004). A recent atomic structure of allbb3 integrin head fragment in
complex with a ligand mimetic suggested the outward swing of the hybrid domain. The hybrid and PS|
domains act as arigid lever that transmits and amplifies this motion, resulting in separation of thea and b
legs at their kneesto favor leg extension (Xiao et a, 2004). Thisis agreement with studies that showed the
exposure of activation-dependent antibody epitopesin the hybrid and PSI domains upon activation (Tng et
al, 2004, Mould et al, 2005, Tang et al, 2005).
In solution, and apparently on the cell surface aswell, integrinsarenot fixed in aparticular conformation, but
equilibrate between them (Takagi et al, 2002). Whether or not the equilibrium favorsthe bent, an intermediate
or the extended conformation is affected by the presence of activating intracellular factors and the
concentration of extracellular ligands. For example, on the surface of therolling leukocytes, L FA-1 hasbeen
shown to be in an extended conformation and the aL I-domain is not in a high-affinity state, whereas the
conformation of LFA-1 that mediates firm adhesion appears to most closely correspond to an extended
conformation with ahigh-affinity |-domain (Salas et al, 2004). Similarly, endothelium-presented chemokines
triggered a fast extension of bent LFA-1, which mediated lymphocyte rolling on high endothelial venules
(Shamri et al, 2005). To support firm adhesion, this extended LFA-1 conformation required immediate
activation by itsligand, ICAM-1.
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However, some studies have suggested that a switchblade movement is not required to render the integrin
competent to bind physiological ligands (Calzadaet al, 2002, Buttaet al, 2003), and an alternative “ deadbolt”
model has been proposed (Xiong et al, 2003). This model proposes that the bTD and the b I-like domains
interact and the interaction holds the integrin in a non-ligand-binding form. Inside-out activation is then
accomplished by releasing this deadbolt allosterically, ~40 A from the membrane, via cytoplasmic /
transmembrane movements. Thismodel assumesthat the bent integrin can stably bind ligand. This matches
the crystal structure of theaVb3in complex with an RGD peptide (Xiong et a, 2002). Additionally, recent
reports showed that the bent aVb3 stably binds a physiological ligand in solution in a Mn?" -dependent
manner (Adair et al, 2005), and that the conformational changeinthel domain of aL can occur independently
of the conversion from a bent to an extended form (Larson et al, 2005), suggesting more diverseness in

integrin activation.
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Figure 7. Global conformational changes of the extracellular portion of integrins. The bent conformation
represents a low-affinity state of the integrins, the extended form with a closed headpiece represents the
intermediate affinity state and the extended form with an open headpiece the high affinity state.

3. CYTOPLASMIC DOMAINSAND REGULATION OFAVIDITY

3.1. Important motifs in the integrin cytoplasmic tails

Although it has undoubtedly been established that integrins can undergo conformational changes during
activation, which increase the affinity of individual integrinsfor their ligands (reviewed by Shimaokaet al,
2002, Springer and Wang, 2004, Humphries et al, 2003), additional affinity-independent mechanisms have
also been proposed to contribute to the control of integrin-mediated adhesion (reviewed by van Kooyk and
Figdor, 2000, Hogg at a, 2002, Ca derwood, 2004). Affinity-independent mechanismsinvolveintegrin clustering,
resultinginincreased avidity and providing stronger adhesion at sitesof cell-cell contact, but also, interactions

with and reorgani zation of the cytoskeleton. Although theintegrin a and b cytoplasmic domain arerelative
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short and do not contain any intrinsic enzymatic activity, they areimportant for affinity and avidity regulation.
Theb cytoplasmictailsare closely related to each other, whereasthe a cytoplasmic tails have morediversity
in structure (reviewed in Williamset al, 1994, Y lanne, 1998). However, important motifs are found in both
tails(Figure 8).

The a subunit cytoplasmic domains are well conserved among different species but share little homology
with each other (Hynes, 1992). Thus, a subunit cytoplasmic tails may mediate the direct specific responses
after cell stimulation. For example, the a4 cytoplasmic domain promotesbl integrin-mediated cell migration,
whereas the a2 and a5 cytoplasmic domains facilitate collagen gel contraction and spreading (Chan et al,
1992, Kassner et al, 1995, Naet al, 2003). Likewise, aL and aM have been shown to have unique functions
in chemokine-induced activation of the b2 integrins (Weber et al, 1999). The membrane-proximal GFF(K/
R)R motif in the cytoplasmic tail of the a subunit is strictly conserved among integrin-family members,
except a8, al0 and all. Truncation of the a cytoplasmic domain before, but not after, the conserved
GFF(K/R)R motif, or deletion of this sequence rendered, theintegrin constitutively activewith ahigh affinity
conformation (Hibbset al, 1991a, O Tooleet al, 1994, Peter and O Toole, 1995, Lu and Springer, 1997, van
Kooyk et al, 1999). The arginine residue in GFFKR and an aspartic —acid residue at the corresponding
positionintheb chainform asalt bridge, which holdstheintegrinin alow affinity form (Hugheset al, 1996),
and breaking thisinteraction activatestheintegrin (Lu and Springer, 1997, Takagi et al, 2001b). Additionally,
the GFFKR motif stabilizes the integrin heterodimer, probably because of its direct interaction with the b
chain (Pardi et a, 1995).

Theb subunit cytoplasmic domainsare generally considered important in the regulation of integrin functions
(Williams et al, 1994). Compl ete deletion of the b2, b3 or b7 cytoplasmic domainsresultsin constitutively
activeintegrins(Lub et al, 1997, Hugheset al, 1995, Croweet al, 1994), probably because thelink between
the a and b subunit is disrupted. In contrast, truncation of the b2 domain after 6 amino acids from the
transmembrane domain eliminated LFA-1 binding to ICAM-1 and sensitivity to phorbol ester (Hibbset a,
19914), indicating that L FA-1 adhesivenessis controlled by the cytoplasmic domain of the b2 subunit. Mutation

studies haverevealed anumber of different functionally important areaswithin the b2 cytoplasmic domain.
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Figure 8. Amino acid sequences of integrin a and b subunits. Conserved motifs that are important for integrin
functions are highlighted.
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A cluster of three threonine residues has been shown to be necessary for ligand binding (Hibbs et al, 1991b).
This threonine triplet is also required for actin cytoskeleton reorganization and cell spreading, so called
postreceptor events (Peter and O* Tool e, 1995), but has no effect on LFA-1 mediated transendothelial migration
induced by chemokines (Weber et al, 1997). Corresponding threonine residues in b1 and b3 cytoplasmic
domains have also shown to be of critical importancefor integrin function (Wennerberg et a, 1998, Stroeken
et al, 2000, Bordeau et al, 2001).

Despitethesimilarity of b1 and b2 cytoplasmictails, integrinsare differently regulated by inside-out signals.
Wild type LFA-1, when expressed in the erythroleukemic cell line K562 (Andersson et al, 1979), is not
clustered and is defective for phorbol ester activation. Replacement of the b2 cytoplasmic domain with the
b1, but not theb7 cytoplasmic tail, restored the clustered cell surface distribution and sensitivity to phorbol
ester (Lub et al, 1997). Thisindicated that b2 and b7 integrins use different lymphocyte-specific signa
elements to activate integrins. Interestingly, substitution of a single leucine residue to arginine in the b2
DLRE motif together with an intact TTT sequence is sufficient to completely restore phorbol ester
responsiveness of LFA-1 expressed in K562 cells (Bleijs et a, 2001).

Several b subunits havetwo NPxY motifswithin their cytoplasmic domain, but in b2 both of thesetyrosines
arereplaced by phenylalanines. Importantly, both phenylal anines have shown to be essential for b2 integrin
activity. Mutations of the phenylalaninesto non-conservative alanines abrogated ligand-dependent adhesion,
but the conservative Pheto Tyr substitution had no effect (Hibbset al, 1991b, Fabbri et al, 1999), suggesting
conservation of the genera structure of the NPxY motif but loss of its possible phosphorylation state. The
NPXF motif in b2 cytoplasmic domain has also been shown to trigger intracellular Ca2* mobilization and
therefore contributeto T cell signalling (Sirim et a, 2001).

3.2. LFA-1 interacts with a variety of intracelular proteins

The critical role of the cytoplasmic domains in integrin function implicates the importance of cytoplasmic
proteinsthat modify or bind to integrin cytoplasmic tails. LFA-1 has been described to interact with severa
proteins, including cytoskeletd proteinssuch astalin, a-actinin and filamin, signalling proteins such ascytohesin,
and adaptor proteins such asRack-1 (Table 1) (reviewed in Liu et al, 2000). b cytoplasmictails play crucial
roles in cytoskeletal interactions, whereas in most cases the a cytoplasmic domains play regulatory roles
(Cadderwood et al, 2004).

Actin-binding proteins

The connection of integrin receptors to the actin cytoskeleton regulates many functions of integrins, in
particular cell adhesion and migration (reviewed in Wiesner et al, 2005). However, actin filaments cannot
bind directly tointegrins. Instead, integrins arelinked indirectly to actin filamentsviaseveral actin-binding
proteins, including talin, thefirst cytoplasmic protein shown to bind to integrins (Horwitc et al, 1986). Talinis
an abundant cytoskel etal protein that playsacrucial roleinintegrin activation (Tadokoro et a, 2003). It binds
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strongly to b1A, b1D, b2 and b3 integrin tails and weakly to the b7 tails (Horwitch et al, 1986, Knezevic et
al, 1996, Sampath et al, 1998). The mgjor integrin-binding site lies within the talin globular head domain
(Caderwood et al, 1999, Patil et al, 1999), although the C-terminal rod domain al so containsalower-affinity
integrin-binding site (Calderwood et al, 1999, Yan et a, 2001). The talin head domain containing a FERM
domain (Band four-point-one, ezrin, radixin, moesin) activates b1, b2 and b3 integrins by binding to their
NPxY motif inthe b cytoplasmictails (Calverwood et al, 1999, Calderwood et al, 2002, Kim et al, 2003). The
binding causes a spatial separation of thealL and b2 cytoplasmic domains and therefore integrin activation
(Kimetal, 2003). Thisisconsistent with NM R studies on dissociation of theallbb3 cytoplasmic complex by
thetalin head domain (Vinogradovaet al, 2002). Thus, talin binding to integrinis proposed to be afinal step
inintegrin activation. In addition to this activation function, talin expression and localization are critical for
localization of theactive LFA-1, ICAM-binding stability and T cell migration (Smith et al, 2005).
Additionally, at least two other cytoskeleta proteins, a-actinin and filamin, have been shown to directly
interact with the b2 cytoplasmic domain (Pavalko and LaRoche, 1993, Sharmaet al, 1995). The a-actinin-
binding siteisin the membrane-proximal half of the b2 integrintail, whilethe C-terminal portion of thetail
inhibitsthisinteraction (Sampath et al, 1998). Thus, the association of a-actininwith b2 integrinsis probably
regulated by conformational changes in the cytoplasmic domain that unmask the a-actinin binding site.
Filamin has also been shown to interact with the b cytoplasmic domain of severa integrins, including b2
(Sharmaet a, 1995). Filamin crosslinks actin, forming either loose microfilaments networks or tight actin
bundles, depending on the actin:filamin ratio, but filamin also acts as an adaptor protein for a number of
signalling proteins that can regulate cytoskeletal dynamics (Stossel et al, 2001). Binding of filamin to b
integrin tails has been shown to be important in the regulation of the cell migration, asthe b7 integrin tail,
which bindsstrongly to filamin, inhibited cell migration, whereasb1 tailsthat bind weakly to filamin supported
cell migration (Calderwood et al, 2001). Interestingly, filamin binds to the important TTT-region of the b
cytoplasmic tail (Calderwood et a, 2001), and it is possible that this interaction is regulated activation-
dependent manner, for example by phosphorylation.
14-3-3 adaptor proteins, ahighly conserved family of phospho-serine and —threonine binding proteins, have
been shown to i nteract with asynthetic b2-integrin peptide phosphorylated on the threonineresidue (Thr758)
of the TTT-region (Fagerholm et al, 2002). Additionally, b1 and b4 has been shown to interact with 14-3-3,
but the interaction between b1 and 14-3-3 occurs outside of the amphipathic groovewhichisinvolved in 14-
3-3 interactions with other ligands, and the association was not thought to be phosphorylation-dependent
(Hanetal, 2001, Santoro et a, 2003). However, the functional amphipathic groove of 14-3-3, rather thaniits
interaction with blintegrin, isrequired for 14-3-3 regulation of cell spreading and migration (Rodriguez and
Guan, 2005).
Several other cytoskeletal proteins have been identified asintegrin-binding proteins; however, interaction
with b2 has not been reported. Platelet myosin has phosphorylation-dependent associations with b3 tails
(Jenkinset al, 1998), skelemin bindsto b1 and b3tailsin non-musclecells (Reddy et al, 1998), and tensin has
shown to bind to b3, b5, b7 and more weakly to b1 cytoplasmic tails (Calderwood et al, 2003).
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Cell signalling proteins

In additionto providing alink to the actin cytoskel eton, integrin b tail-binding proteinsalso regulate signaling.
Because the integrin intracellular domains have no catalytic function, the interaction with other signal
transducing moleculesiscrucia for integrin-mediated signalling. Oneof these signalling moleculesiscytohesin-
1 (Kolanuset al, 1996), which has a GEF activity for the ARF family of small GTPases (Meacci et a, 1997).
Cytohesin-1 specifically binds selectively to the membrane-proximal residuesin b2 cytoplasmic tails, and
mutation of theseresiduesinhibitsLFA-1 mediated adhesion (Geiger et al, 2000). Overexpression of cytohesin-
lincreased ungtimulated L FA-1 binding to ICAM-1, whereasits pleckstrin homology (PH)-domain or antisense
cytohesin-1 oligonucleotides reduced b2-mediated cell adhesion (Kolanuset al, 1996, Korthduer et al, 2000,
Hmama et a, 1999). Cytohesin-1 is believed to have two independent roles in LFA-1 regulation; direct
modulation of LFA-1 avidity by molecular interactions, and by its GT Pase activity, which ismoreimportant
for transmigration (Greiger et al, 2000, Weber et al, 2001).

The Trp-Asp (WD) repeat protein Rack1 (receptor for activated protein kinase C) has also been identified
asab2tail-binding protein (Liliental and Chang, 1998). Rack1 iscomposed of seven WD repeats, and it was
originally identified based onitsability to bind to the activated form of PKC (Ron et al, 1994). Theinteraction
of Rackl with integrins requires stimulation with phorbol ester, which indicates that the Rack1l may link
PK C directly tointegrins and mediateintegrin bidirectional signalling (Liliental and Chang, 1998, Buensuceso
et a, 2001). Moreover, Rackl has been shown to regulate integrin-mediated adhesion, protrusion, and
chemotactic migration through itsinteraction with Src family kinases (Cox et al, 2003). The other integrin-
binding WD repeat protein, WAIT-1 (WD protein associated with integrin tails), bindsto both a and b tails,
specifically b7, a4 and aE, but not b2 or aL (Rietzler et al, 1998). Both Rack1 and WAIT-1 interact with a
membrane-proximal region of the b subunit. However, no functional data suggesting a role for WAIT-1
interaction with b tail has been provided.

JAB-1isatranscriptional coactivator for the Jun family of activator protein-1 (AP-1) transcription factors,
which has been shown to constitutively interact with the cytoplasmic domain of the b2 integrin (Bianchi et al,
2000). JAB-1isfound in the nucleus and in the cytoplasm, and the b2-interaction is believed to keep JAB-
1in cytoplasm. Interestingly, Ser745 phosphorylation of b2 leads to disengagement of JAB-1 from LFA-1
and induces Jun activation, which indicates that signalling through the LFA-1 might also regulate the gene
expression (Perez et al, 2003).

In contrast to the b subunits, there are only afew descriptions of interactions between cytoplasmic proteins
andintegrina subunits. Cdreticulin, aluminal endoplasmic reticulum calcium-binding protein, directly interacts
with the KxGFF(K/R)R motif of several a cytoplasmic domains and has important roles in several cell
functionsincluding integrin signalling (reviewed in Coppolino and Dedhar, 1998). However, interaction with
thealL -tail hasnot been described. Very recently theal tail hasbeen shown to interact with thetransmembrane
receptor-like protein tyrosine phosphatase CD45 (Geng et a, 2005), but the physiological significance of this
interaction is yet unclear. Thus, the most interesting aL-binding cytoplasmic protein is RAPL, a Rapl-

binding molecule that may mediate Rapl-induced cell adhesion. RAPL overexpression increases the
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adhesiveness of LFA-1 through both affinity and avidity regulation (Katagiri et al, 2003). In addition, T and
B cellsisolated from RAPL knock-down mice are much less adherent to ICAM-1 and do not show the
characteristic cell polarizarization and patchy appearance of integrins after chemokine stimulation (Katagiri
et al, 2004). RAPL, whichishighly expressed in lymphocytes, bindsto active Rapl-GTP upon stimul ation
with TCR or SDF-1. Activated RAPL then forms a complex with the aL subunit and moves to the leading
edge, forming large patch-like clusters (Katagiri et al, 2003). RAPL binds aL close to the membrane-
proximal GFFKR motif, which isknown to stabilizea and b subunit heterodimer formation, and disruption of
this link between the subunits could be a mechanism how RAPL affects LFA-1 mediated cell adhesion
(reviewed in Kinashi and Katagiri, 2004).

Binding protein | Binding site Effect on cells Reference

Talin b2, membrane distal, NPxY-motif | integrin activation, Horwitz et a, 1986
cytoskeleta interaction

a-actinin b2, membrane proximal (736-746) | ? Pavalko and LaRoche,

1993

Filamin b2, membrane proximal (724-747) | Migration regulation? Sharma et a, 1995

14-3-3 b2 TTT-motif cytoskeletal interaction? | Fagerholm et al, 2002

Cytohesinland 3 | b2, membrane proximal (724-725) | Adhesion and migration | Kolanuset al, 1996
regulation?

Rack1 b2, membrane proximal Link PKC to integrin ? Liliental and Ghang, 1998

JAB-1 b2, Ser745 Signalling Bianchi et al, 2000

Calreticulin a-tail, KxGFFK R-motif Signalling Coppolino et a, 1997

CD45 aL, membrane distal ? Geng et dl, 2005

RAPL aL, membrane proxima Integrin activation Katagiri et al, 2003

Table 1. Proteinsinteracting with LFA-1 cytoplasmic tails

3.3. Regulation of avidity
It is becoming evident that the cytoskeleton isinvolved in the dynamic regulation of the adhesive state of
LFA-1 (reviewed in Carman and Springer, 2003, van Kooyk and Figdor, 2000). The actin cytoskeleton is not
only important for driving membrane remodeling (which can either increase or decrease LFA-1 avidity) but
also acts as a platform to bring together surface receptors and recruit required signalling molecules. The
importance of the cytoskeleton as a dynamic regulator of leukocyte adhesion came to light using agents,
whichinhibit actin disassembly, such ascytochalasin D. TCR-ligation or phorbol ester-induced T cell adhesion
is abolished by treatment of cellswith high concentrations of cytochalasin D (Stewart et a, 1996). On the
other hand, low concentration of cytochalasin D hasthe capacity to promote integrin-mediated adhes on by
allowing lateral movement of the LFA-1 onthe cell surface (Kucik et al, 1996). In additional, several stimuli
that increase cell adhesion, such as phorbol ester or TCR-ligation, increase diffusion of LFA-1 in the cell
membrane without adetectable changein the affinity (Kucik et al, 1996, Stewart et al, 1996, van Kooyk and
Figdor, 2000).
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However, the mechanism of clustering and itsrolein adhesion remain unclear. One possibility isthat lymphocyte
activation involves release of receptors from the cytoskeleton that simply facilitates ligand-dependent
accumulation of integrins into the site of contact (Kucik et al, 1996). The expression level of calpain, a
specific Ca?*-dependent protease, isincreased after T cell activation, and it may be responsiblefor releasing
LFA-1 from the cytoskeleton (Stewart et al, 1998). The potential target of calpain involving in LFA-1
regulating istalin, since calpain-mediated proteolysis of talin has been identified as amechanism by which
adhesion dynamicsareregulated (Franco et a, 2004). An aternative hypothesisisthat the dynamic recruitment
of leukocyte integrins into lipid rafts regulates LFA-1 avidity; however, the reports are still controversial.
LFA-1 on mouse thymocytes was shown to associate with lipid rafts (Krauss and Altevogt, 1999) whereas
LFA-1 transfected into a human T cell line showed that LFA-1 does not associate with rafts unless it is
activated by Mn?* (Leitinger and Hogg, 2002). Moreover, raft disruption by cholesterol depletion did not
inhibit LFA-1 mediated adhesion of human peripheral blood T cells (Shamri et al, 2002) but adhesion of
murine T cells was strongly decreased (Marwali et al, 2003). The actin cytoskeleton plays an active role
also in this process. Another suggested mechanism for active integrin clustering includes formation of
homotypic associ ations between transmembrane domai ns of adjacent integrinsupon transition to the extended
conformation (Li et a, 2001, 2003).

Interestingly, a recent report presented the novel finding that clustering of LFA-1 follows and does not
precede ligand binding (Kim et a, 2005). Therefore, it was speculated that the conformational change of
LFA-1playsacritical and limiting rolein theformation of integrin-ligand bondsthat initiate firm adhesion,

after which LFA-1 accumulates at the substrate contact interface, resulting in adhesion strengthening.

4. PHOSPHORY LATION OF THE INTEGRIN CYTOPLASMICTAILS

4.1. Integrin b-chain phosphorylation

Serine/threonine phosphorylation

Reversible phosphorylation is akey mechanism regulating many cellular activities. Protein phosphorylation
can rapidly switch the activity of proteins from one state to another. It may modify protein activity directly
by changing the conformation but it can also modul ate the structure of protein motif to favor protein-protein
interaction. Phosphorylation of integrin cytoplasmic domains could therefore be a mechanism for regulating
integrin activity.

Integrin phosphorylation has been studied for severa years. Early studiesof b2 integrins showed that serine
phosphorylation occurs only after cell stimulation by phorbol ester (Figure 9) (Haraand Fu, 1986, Chatila
and Geha, 1988, Chatila et al, 1989, Buyon et al, 1990) or by TCR-ligation (Pardi et al, 1992, Valmu and
Gahmberg, 1995), and the main phorbol -ester induced phosphorylation sitewasfound to be Ser756 (Hibbs et
al, 1991b). Thefunction of this Ser756 phosphorylation in theregulation of b2 isstill unknown; however, it
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does not affect cell adhesionto ICAM-1 (Hibbset al, 1991b). The corresponding serineis not found in the
b3 polypeptide, but b1 hasbeen reported to be phosphorylated on Ser785, and dephosphorylation coincides
with the activation of theintegrin during differentiation (Dahl and Grabel, 1989). b1 serine phosphorylation
has been suggested to regul ateintegrin locali zation because the serine/threonine phosphatase inhibitor, okadaic
acid, hasbeen shown to increase thelevel of b1 phosphorylation and cause the selectiveremoval of b1 from
focal adhesion sites(Mulrooney et al, 2000). Additionaly, the Ser to Asp mutation, which mimicsacondtitutively
phosphorylated state, leadsto reduced b1 localization to focal contacts (Reszkaet al, 1992, Barreuther and
Grabel, 1996). Moreover, serine phosphorylation of bl isreported to regulate cell spreading and migration
(Mulrooney et a, 2001).

b2 integrin has a unique, non-conserved serine residue in the cytoplasmic tail (Ser745), which has been
shown to become phosphorylated in T cells, in responseto phorbol ester stimulation (Fagerholm et al, 2002)
or by stimulation of the cellsby adding ICAM-2 (Perez et al, 2003). Ser745 phosphorylation rel eases JAB-
1 from LFA-1 and induces the activation AP-1-driven transcription (Perez et al, 2003).
Thethreoninetriplet (Thr758-760) in the b2 cytoplasmic domain, and itsthe corresponding motifsin bl and
b3, are necessary for integrin functions (Hibbs et al, 1991b, Valmu et al, 1991, Peter and O' Toole, 1995,
Wennerberg et a, 1998, Mastrangelo et al, 1999, Bodeau et al, 2001). Phosphorylation of the threonine
triplet inthe b2 cytoplasmictail isavery dynamic process; it can be revealed only when the serine/threonine
phosphatases in the activated T cells are inhibited by okadaic acid (Valmu and Gahmberg, 1995). The
kinases responsible for phosphorylation of the b2 threonine residues, aswell as Ser745, were identified as
PK Cisoforms(Fagerholm et al, 2002). M utation studies have showed that the b2 threoninetripletisvital for
b2-mediated cell adhesion (Hibbs et al, 1991b), and it isinvolved in so called postreceptor events, such as
spreading and the cytoskel etal association (Peter and O  Toole, 1995). Threonine phosphorylated b2 integrins
distribute preferentially to the actin cytoskeleton (Valmu et al, 1999) and the linkage between integrin and
actin-binding proteins might be mediated by 14-3-3 proteins (Fagerholm et al, 2002).

Recently, the b1 integrin has been showed to be phosphorylated at two threonine residues during muscle
differentiation (Kim et al, 2004). b3 becomes phosphorylated on threonine residues after platelet activation
with thrombin, phorbol myristate, calculin A or platel et-activation factor (Parise et al, 1990, Lereaet al, 1999,
vanWilligenet a, 1996). The phospholipid-dependent kinases protein kinase B and phospholipi d-dependent
kinase 1 have been shown to phosphorylate b3 threonine residuesin vitro (Kirk et a, 2000). The mutation
studies have indicated that the threonineresiduesin b1 and b3 integrins are of critical importanceinintegrin
extracellular domain conformational changes, cell adhesion and spreading, and integrin signaling (Wennerberg
et al, 1998, Mastrangelo et al, 1999, Lerea et al, 1999, Bodeau et al, 2001). In addition, bl threonine
phosphorylation has been speculated to regul ate integrin association with the actin cytoskel eton during mitosis
and muscle differentiation (Suzuki and Takahashi, 2003, Kim et al, 2004). Interestingly, b3 threonine
phosphorylation hasbeenreported to inhibit outside-in signaling eventsby blocking recruitment of thetyrosine
kinase Shc, suggesting that the threonine phosphorylation of b3 may be an important negative regulator of

integrin (Kirk et al, 2000).
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Figure 9. Serine/threonine phosphorylation of LFA-1. TCR-ligation and phorbol ester-stimulation of cells
induce serine and threonine phosphorylation of b2. Ser756 is the main phosphorylation site after phorbol ester
activation but the function of Ser756, and kinase that phosphorylates Ser756-phosphorylation are unknown Ser745
becomes phosphorylated in response to phorbol ester and it is adirect target of PKC. Ser745 is also phosphorylated
after ICAM-2 binding to LFA-1, and integrin phosphorylation at this site induces the release of the transcriptional
coactivator JAB-1 from the integrin, allowing it to participate in downstream signaling. Thr758-Thr760 are
important for integrin-mediated adhesion and cytoskeletal reorganization, and these residues are phosphorylated by
PK C-isoforms after phorbol ester stimulation or TCR-ligation. The Thr-phosphorylation is labile, and can only be
detected in the presence of phosphatase inhibitors.

Tyrosine phosphorylation

Like b2, on resting cells b3 integrins are inactive but when cells are exposed to agonists they undergo
changesto the extended, active conformation. Outside-in signalling mediated by the b3 integriniscritical to
platelet function and has been shown to involve the phosphorylation of tyrosine residues on the cytoplasmic
tailsof b3 (Law et al, 1996). The b3 cytoplasmic tail contains two tyrosine residues, each in aNPxY motif,
awell known recognition sequence for proteins containing PTB domains (Van der Geer et al, 1995). The
tyrosine phosphorylation of b3 in plateletsisadynamic process which isinitiated upon platel et aggregation
(Law et al, 1996), or by adhesion of plateletsto b3 specific ligand (Blystone et al 1996, Prasad et al, 2003).
b3 tyrosine phosphorylation has been demonstrated to be induced by Src-family kinases (Dattaet al, 2002).
A mouse model that expresses ab3, in which thetyrosine residuesin the integrin cytoplasmic domain have
been substituted with phenylalanines, displays a phenotype of selectively abrogated outside-in signalling,
defective aggregation of platel ets clot-retraction responsein vitro, and a bleeding defect in vivo (Law et al,
1999). Additionally, mutation studies have shown that the tyrosine residues are essential for cell spreading
and recruitment of integrinsto focal adhesions (Ylanne et al, 1995). Phosphorylation is dependent on the
ligand, and b3-mediated adhesion to vitronectin (Blystone et al, 1997), but interestingly, not to fibronectin
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(Dattaet a, 2002, Butler et al, 2003), requirestyrosine phosphorylation. Phosphorylationis believed to exert
its effects through phosphorylation-dependent protein-protein interactions because several signalling and
cytoskeletal proteins have been shown to selectively interact with either tyrosine-phosphorylated or non-
phosphorylated b3 cytoplasmic tails. The signalling proteins Grb2 and Shc bind to tyrosine phosphorylated
b3 (Law et al, 1996, Blystone et al, 1996, Cowan et al, 2000), and Pyk2 has recently been identified as a
phosphorylated b3 binding partner (Butler and Scott, 2005). In addition, Vavl, a GEF for Rac and Rho, has
been shown to have phosphorylation-dependent association with b3 (Gao et al, 2005). Furthermore, the
cytoskel etal protein myosin associates with adouble-tyrosine-phosphorylated b3 peptide (Jenkins et al, 1998),
and thislinkage might mediate transmission of forceto thefibrin clot during the processof clot retraction. b3
tyrosine phosphorylation has also shown to be necessary for the Arp3-organization into adhesion contacts
(Chandhokeet al, 2003).

Also bl integrin tyrosine phosphorylation has been reported but only infibroblaststhat are transformed by v-
src (Hirst et al, 1986, Tapley et al, 1989, Johansson et al, 1994). The tyrosine phosphorylation leads to
integrin displacement from focal contacts (Johansson et al, 1994), and it has major effectson the organi zation
of foca adhesionsand the cytoskel eton, and on directiona cell motility (Sakai et a, 1998), and cell transformation
(Sakai et al, 2001, Dattaet a 2001). Theimportance of the NPxY motifs of the b1 cytoplasmic tail has also
been shown in integrin-mediated adhesion in T lymphocytes but the implication of phosphorylation in this
process has not been studied (Romzek et al, 1998). In addition, the tyrosine residues areinvolved in FAK-
activation and cell spreading (Wennerberg et a, 2000). Although tyrosine phosphorylation normally increases
the binding to PTB domains, the phosphorylation of the NPxY motif in bl inhibitstalin binding (Tapley et al,
1989). Theinteractions between theintegrin membrane proxima NPxY motif and talin arelargely hydrophobic
(Garcia-Alvarez et al, 2003), and the lack of positively charged residuesintalin is consistent with recognition
of non-phosphorylated tyrosine and disruption of integrin binding by phosphorylation. Integrin tyrosine
phosphorylation may therefore be an important negative regul ation of b1 integrin activation.

In b2 integrins, including LFA-1, the tyrosine residues in the NPxY motif are replaced by phenylalanines.
Thereis, however, an additional tyrosinein the membrane-proximal tyrosine-based endocytosismotif (Y XX,
where X isany amino acid and @ isan amino acid with bulky hydrophobic residue). Tyrosine phosphorylation
of b2 has been reported in 1L-2 stimulated NK cells (Umehara, et al, 1993) and in polymorphonuclear cell
after stimulation by type| collagen (Garnotel et a, 1995). Thetyrosineresiduein the b2 cytoplasmictail has
been shownto play acritical roleintheinternalization processand L FA-1 recycling to theruffling membrane
(Fabbri et a, 1999, Tohyama et a, 2003) but the role of phosphorylation of these processes has not been
reported.

4.2. Integrin a-chain phosphorylation

Integrina chains, includingal, aM, aX, a3A, a4 anda6A, also become phosphorylated, mostly on serine.

alL, aM and a4 are constitutively phosphorylated but a3A or a6A integrin phosphorylation is increased

upon cell treatment with phorbol ester (Haraand Fu, 1986, Chatilaet al, 1989, Buyon et al, 1990, Shaw et al,
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1990, Valmu et al, 1991, Hogervorst et a, 1993a, Han et al, 2001). The phosphorylated serine of a3A and
a6A occur within a QPSXXE motif highly conserved among the a3A, abA and a7A tailsin all animal
species examined. Upon mutation of acritical serineinthe QPSXXE motif inthe a6A tail, therewasnoloss
of cell adhesion, in contrast, transfectants witch express the serine to alanin mutation adhere to laminin more
extensively than the wild-type transfectants (Hogervorst et a, 1993b). Likewise, neither constitutive nor
phorbol ester stimulated cell adhesion was altered by the serine mutation inthe a3A tail (Zhang et a, 2001).
Thus, phosphorylation of the a3A and a6A tails has no obvious effect on inside-out integrin signalling.
However, a3A phosphorylationisfunctionally relevant because phosphorylation has been shownto strongly
influence cell signalling, morhphol ogy, and motility, most likely by affecting integrin-dependent cytoskeletal
organization (Zhang et al, 2001).

a4 integrins mediate increased cell migration and decreased cell spreading because the a4 cytoplasmic
domain bindstightly to paxillin, asignal adapter protein (Liu et a, 1999). Phosphorylation of thea4 cytoplasmic
tail by protein kinase A at a serine residue within the paxillin binding site regulates paxillin binding (Liu and
Ginsberg, 2000, Han et al, 2001). Both phosphorylation and dephosphorylation of a4 isimportant for optimal
cell migration (Han et a, 2003), probably because of spatio-temporal regulation of paxillinbindingtothea4
tail. In migrating cellsthe phosphorylated a4 accumul ated al ong the | eading edge, whereas unphosphorylated
a4 and paxillin colocalized along the lateral edges of those cells (Goldfinger et al, 2003). The paxillin-a4
interaction mediates the recruitment of an ADP-ribosylation factor GTPase-activating protein (Arf-GAP)
that decreases Arf activity, thereby inhibiting small GTPase Rac, which mediates formation of the leading
lamellipodium (Nishiyaet al, 2005). The localized formation of the a4-paxillin Arf-GAP complex mediates
the polarization of Rac activity to the leading edge and promotes directiona cell migration (Nishiya et al,
2005). Interestingly, like a4, the a9 cytoplasmic domain enhanced cell migration and inhibited cell spreading
(Young et al, 2001). Paxillin also specifically bindsto thea9tails, but in contrast to a4, theinteraction hasno
effect on cell migration. Thepossibleroleof phosphorylationin paxillin-a9 interaction has not been studied.
aL,aM and aX integrins can be phosphorylated on serine residues, but the phosphorylated sitesand possible

functions have remained unknown.



SUMMARY OF THE STUDY

5. AIMS OF THE STUDY

Phosphorylation isacommon mechanism for the regulation of integrin functions, but itsrolein LFA-1

activation has remained incompletely understood. The aims of the present study were;

1 To examine the role of the tyrosine kinase Lck in the LFA-1 functions.
2. To characterize the induced b2 threonine phosphorylation in vivo.
3. To map the phosphorylation site(s) of aL subunit.

4, To determinetherole of integrin phosphorylation in the regulation of LFA-1 activation.
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6. EXPERIMENTAL PROCEDURES

Detailed description of the materials and methods are found in the original publications.

Materials and methods Original publications
Antibodies I I Il v
Peptide synthesis I v
cDNA constructs and mutagenesis Il v
Transfection "l v
T cell isolation and cell lines I I i v
Radioactive cell labelling and cell activation I I I v
Immunoprecipitation I I Il v
SDS-PAGE and immunobl otting I I Il v
Phosphopeptide mapping 1 Il
Determination of the stoichiometry of I v
phosphorylation

Cell adhesion and aggregation assays I Il v
Flow cytometry I v

Endoglycosidase H treatment I

Phosphoamino acid analysis Il

Manual radiosequencing of phosphopeptides i
Peptide affinity chromatography v
14-3-3 affinity chromatography v
Co-immunoprecipitation v
Immunofluorescence staining v
Soluble ligand-binding assay v
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7. RESULTS

7.1. Therole of the tyrosine kinase Lck in the regulation of LFA-1 activation in human T
lymphocytes (1)

Despite extensive studiesthe signalling pathways and molecular mechanismsinvolved inintegrin regulation,
therole of TCR proximal signalling eventsis poorly understood. L ck has been reported to be involved in
early T cell activation eventsvial TAM-phosphorylation and ZAP-70-activation, thereby inducing tyrosine
phosphorylation and activating different signalling pathways (Straus and Weiss, 1992). Lck isdynamically
regulated by positive and negative tyrosine phosphorylation events, and the CD45 tyrosine phosphatase has
been shown to regulate Lck activity (reviewed in Mustelin and Tasken, 2003). To examine whether Lck
regulates L FA-1 activation, we used the Src kinase inhibitor PP2, which inhibits Lck kinase activity. PP2
inhibited adhesion induced by TCR-ligation, but not phorbol ester induced adhesion to coated ICAM-1, at the
same concentration (10rmM) that completely inhibited phosphorylation of mitogen-activated protein (MAP)-
kinase on the pThr-pTyr motif that is important for catalytic activity (I, Figl). MAP kinase has also been
showntobeinvolvedin LFA-1inside-out signallinginitiated by TCR (O' Rourke et al, 1998). Since PP2 not
only inhibitsLck, but also other Src-family kinases such as Fyn, we used the Jurkat cell line deficientin Lck
(JCaM1.6) to verify the results. JCaM 1.6 cells did not adhere to ICAM-1 nor aggregate when activated
either through TCR or, surprisingly, with phorbol ester (I, Fig2). Retransfection of JCaM1.6 cells with
human L ck restored both TCR- and phorbol ester —induced adhesion to wild-type levels.

Next we examined whether reduced adhesion was due to altered expression levels of LFA-1. Indeed,
JCaM 1.6 cellswerefound to express significantly lower levels of functional heterodimerson the cell surface
(1, Fig3). Further investigations showed that the protein expression of both subunitswas normal, but the b2
polypeptide wasimmaturely glycosylated and uncomplexed with aL and thereforeinefficiently transported
to the cell surface (1, Fig4). Retransfection of Lck did not lead to increased LFA-1 on the cell surface.

In addition, we examined therole of CD45 in L FA-1 mediated adhesion using CD45-deficient Jurkat T cells,
J45.01. J45.01 cells were able to bind ICAM-1 and aggregate when stimulated with phorbol ester but not
when stimulated through TCR, as expected because of the crucial role of CD45in TCR signalling. We al'so
examined whether Lck and CD45 influenced Ser756 phosphorylation of b2 cytoplasmic domain, but the b2
subunit became normally phosphorylated on Ser756 in both JCaM 1.6 and J45.01 cells (I, Fig5). PP2 had no
effect on Ser756 phosphorylation in cells treated with PP2 before phorbol ester activation. These results
indicate that Ser756 phosphorylation of b2 happensindependently of Lck in Jurkat cells.

7.2. Characteristics of LFA-1 b chain phosphorylation (1, I11)

Since protein phosphorylation isknown to often regul ate protein activity, we wanted to examine therol e of
LFA-1 phosphorylationinintegrin regulation. The b2 subunit of L FA-1 has previously been shownto become
phosphorylated after activation both on serine residues (Hibbs et al, 1991, Fagerholm et al, 2002) and very
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dynamically on threonine residues (Valmu et al, 1995) but the biological role of phosphorylation was not
clear. Toidentify the specific amino acids phosphorylated in phorbol ester activated T cells, wefirst performed
tryptic phosphopeptide mapping. The phosphorylated b2 tryptic peptides were run on cellulose plateswith
synthetic marker peptides. Ser756 was shown to beamajor phosphorylated site after phorbol ester stimulation,
as observed earlier (Figure 9) (Hibbs et al, 1991, Fagerholm et al, 2002). After activation of T cells by
phorbol ester together with the serine/threonine phosphatase inhibitor okadaic acid (OA), Ser756 and two of
the threonine residues in the b2 threonine triplet become phosphorylated (11, Figl). The phosphorylated
peptide wasisolated from the phosphopeptide map and subjected to Edman degradation. The result showed
that all three threonine residues (758-760) become phosphorylated but only two at atime (111, Figl). TCR-
ligation also leadsto astrong threonine phosphorylation, but interestingly, differed from phorbol ester activation
in that phosphorylation occurred only on thefirst threonine (Thr758) of thethreoninetriplet (111, Fig2).
The other leukocyte-specific integrin, b7, hasaserineresiduein the position corresponding to Ser756 in b2
and asimilar threoninetriplet to b2. Interestingly, a so b7 became phosphorylated on the first threonine after
phorbol ester activation (111, Fig6). However, mutation of thisthreonine had no effect on b7-mediated adhesion
to vascular cell adhesion molecule-1 (VCAM-1) (I11, Fig7).

For determination of the stoichiometry of b2 phosphorylation, the relative amount of radioactive phosphate
incorporated into the g-position of ATPfirst had to be quantified. The radioactivity of ATPfrom3?P-labelled
T cells was present only in the b and g-phosphoryl groups, and in 1:1 proportion (11, Fig3 and 4). The
stoichiometry of b2 phosphorylation wasthen calculated by comparing the incorporation of 32P-label from
the g-phosphoryl group of [*P]ATPinto the b2 molecule with the absolute amount of b2 polypeptide. The
stoichiometry of phosphorylation of b2 in phorbol ester stimulated T cellswas0.12 mol of phosphate/ mol of
b2 subunit and the phorbol ester stimulated T cellsin the presence of OA was 0.92 mol of phosphate/ mol
of b2 subunit (11, Table 1).

7.3. ldentification of the phosphorylation site and stoichiometry in the aL chain (1V)

aL hasbeen shown to be constitutively phosphorylatedin T cells, but the phosphorylation site and possible
functions has not been reported. To examine therole of LFA-1 a subunit phosphorylation, we first mapped
the phosphorylation site(s). Tryptic phosphopeptide maps from resting (1V, Figl) and from phorbol ester
activated cells (data not shown) were performed. The mapswere identical, thus, no additional sites become
phosphorylated after cell activation. Identification of the serine phosphorylation site was made by Edman
degradation, and this showed that Ser1140 isthe major aL phosphorylation site (Figure8) (1V, Figl).

To assessthe stoichiometry of aL. phosphorylationin T cells, wefirst generated a phospho-specific antibody
against the phosphorylated form of aL. The antibody was shown to be sequence and phospho-specific (1V,
Fig2). This phospho-specific aL antibody immunoprecipitated about 40 % of the total heterodimeric aL
from resting T cells (1V, Fig2), indicating that approximately 40 % of surface aL was phosphorylated.

38



7.4. LFA-1 phosphorylation in the regulation of integrin activation (1V)

We then went on to study the LFA-1 phosphorylation sitesin cells. Thr758, the first threoninein the TTT-
motif, was determined asamajor phosphorylation site of b2 after TCR-ligation. Interestingly, 14-3-3 adapter
proteins from leukocyte lysates have previously been shown to interact with a synthetic b2 peptide
phosphorylated on Thr758 (Fagerholm et al, 2002). To investigate the association in more detail, we used
recombinant 14-3-3 proteins and examined the binding of these proteinsto the phosphorylated b2 cytoplasmic
peptides. We showed that the b2 peptide bindsto purified 14-3-3-proteins directly and in aphosphorylation-
dependent manner and the binding occurs through the canonical 14-3-3-phosphopeptide binding motif (1V,
Fig7). Furthermore, endogenous 14-3-3-proteinsand b2 integrins could be copreci pitated from TCR-stimul ated,
but importantly, not unstimulated human T cells(1V, Fig7), indi cating that phosphorylation-dependent interaction
occurs aso in vivo.

Mutation studies were then used to investigate the role of the 14-3-3-association with the b2 integrin. The
Thr758Alamutation, which reducesthe association with 14-3-3 (1V, Fig7), significantly reduced the congtitutive
integrin-mediated adhesion of transfected COS1-cells to ICAM-1 (1V, Fig8). MEM-83, an activating aL
antibody, could still activate the Thr-mutated integrin, showing that activating conformational changes could
still occur also for the mutated integrin. To examine whether the effects of the Thr758 mutation seen were
dueto the blocking of binding of 14-3-3 proteinsto theintegrin, we cotransfected cell swith wild-type L FA-
1 and an R18-construct, which blocks 14-3-3 interactions with its cellular ligands by binding to the
phosphopeptide-binding groovein 14-3-3 (Jinet al, 2004). The R18 peptide clearly reduced cell adhesion to
ICAM-1 (1V, Fig8). The TTT-motif of the integrin has been closely associated with actin reorganization
events, but not affinity-changesin integrins (Peter and O’ Toole, 1995). Thus, wewanted to examine whether
14-3-3 association with b2 was involved in cell spreading. Indeed, the Thr758 mutation was shown to
significantly reduce cell spreading on ICAM-1 asexamined by FITC-phalloidin staining of polymerized actin
(IV, Fig9). In addition, R18-transfected cell spreading on ICAM-1 was amost completely abolished.
Therole of aL phosphorylation in the regulation of LFA-1 activation was also investigated. We generated
stable Jurkat Jb2.7 cell transfectants expressing wild-type and Ser1140Alaal . Mutation did not affect the
heterodimerization or cell surface expression of LFA-1 (1V, Fig3). Thebinding of both wild-typeand Ser1140Ala
al transfectants to immobilized ICAM-1 wasincreased by TCR-ligation and by phorbol ester treatment as
compared to resting cells (1V, Fig.4). In contrast, mutant cells bound less efficiently to ICAM-1 when
activated by MEM-83 or Mg/EGTA. These activators probably activate LFA-1 binding to ICAM-1 by
inducing conformationa changesin the extracellular head-domain of LFA-1 (Luet al., 2004, Shimaokaet al,
2002). We al so studied whether a negative charge at position 1140 (Ser to Asp-mutation) would be enough
to affect adhesion, but the Ser-Asp mutation did not result in adifferent adhesion phenotype compared to the
Ser-Alamutation (1V, Fig4). To further study the mechanisms of the different modes of adhesion, asoluble
ICAM-1Fc binding assay was used to measure the ligand-binding activity. MEM-83 greatly increased the

binding of soluble ICAM-1 to wild-type aL transfectants, while only minimal binding was observed for
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Ser1140Alaal cells (1V, Fig4). Similar results were seen when affinity modulation of L FA-1 was detected
by using the monoclonal antibody 24 (mAb24) (Dransfield and Hogg, 1989). These results suggest that aL
phosphorylation could beinvolved in LFA-1 conformational changes needed for integrin binding to ligand.
Some physiological activators of LFA-1, including chemokines and ligands, have been shown to lead to
extracellular conformation changes of LFA-1 (Constantin et al, 2000, Cabanas and Hogg, 1993, Li et a,
1993, Kotovuori et al, 1999). To determine whether Ser1140-mutation affected mAb24 expression, we
stimulated cells with the chemokine SDF-1 or ICAM-2. Clear staining was detected on the wild-type cells
but not on the Ser1140-mutant cells (1V, Fig5).

Furthermore, the small GTPase Rapl is a potent activator of LFA-1 which has been shown to increase
LFA-1 affinity (Katagiri et al, 2003). Importantly, Rapl actsthrough thea chain cytoplasmic domain (Tohyama
et al, 2003), and thus we wanted to examine the effect of active Rapl (Rap1V12) on the wild-type and
Ser1140-mutated cells. RaplV 12 was ableto induce binding of wild-type cellsbut not Ser1140-mutant cells
to coated ICAM-1.

Thetalin head-domain directly bindsto the b2 cytoplasmic domain and presumably induces a separation of
the cytoplasmic tails of the a and b chains, which leads to a conformational change in the extracellular
domain (Tadokoro et al, 2003, Kim et al, 2003). Thus, we examined whether a talin head-domain can
activate the Thr758Ala mutated b2 or Ser1140Ala mutated aL integrin. Talin head-domain was able to
induced binding of wild-type and both mutant COS1-cdlsto ICAM-1 (1V, Fig10), indicating that the mechanism
by phosphorylation regulated L FA-1 isnot mediated by talin.
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8. DISCUSSION

8.1. Lck isimportant for activation of LFA-1

Sincethe LFA-1 interaction with itsligands must be tightly regulated, several different signalling pathways
are expected to participate in LFA-1 activation. Early tyrosine phosphorylation events after TCR-ligation
are known to be crucia for T cell signalling, but the involvement of early signalling moleculesin integrin
activation still remains poorly understood. We have investigated therole of Lck in regulating L FA-1-mediated
functions.

Lck is a lymphoid-specific cytosolic PTK, which plays a key role in TCR-linked signalling (Weiss and
Littman, 1994). Theactivity of Lck isregulated by protein kinasesand phosphatases, including CD45 (Mustelin
and Tasken, 2003). Some L ck-dependent functions seem to be independent of Lck kinase activity, and
presumably involve protein-proteininteractionsthrough the Src-homol ogy 2- (SH2-), SH3- or unique domain
of Lck (Xu and Littman, 1993, Park et a, 1995, Lee-Fruman et a, 1996). We have now shown that Lck is
also involved in regulating LFA-1 functions. Firstly, PP2, a specific inhibitor of the Src-family kinases,
inhibits TCR-induced LFA-1 adhesion to coated ICAM-1. However, PP2 did not inhibit phorbol ester-
induced adhesion. Results indicate that L ck kinase activity isrequired for inside-out signalling induced by
TCR-ligation but not by phorbol ester, which bypass proximal TCR signalling events. Secondly, the Lck-
deficient cell line, JCaM 1.6, did not adhere to coated ICAM-1 when stimulated either through the TCR or,
interestingly, with phorbol ester. Also T cell aggregation wasdeficient in these cells. Importantly, Mg/EGTA-
treatment could activate L ck-deficient cells (data not shown), indicating a defect in inside-out signalling.
Sincethe LFA-1 washon-functional also after phorbol ester stimulation, it indicatesthat kinase-independent
activity of Lck is needed for phorbol ester activation. Transfection of these cells with human Lck restored
both TCR- and phorbol ester-induced adhesion to wild-type levels. And thirdly, JCaM 1.6 was found to
expresssignificantly lower amountsof LFA-1 onthecell surfacethanwildtype Jurkat cells. The b2 polypeptide
was normally expressed but it was immaturely glycosylated and uncomplexed with the aL chain. This
indicatesthat Lck isinvolved in regulating integrin cell heterodimer formation and surface expression. The
CDA45 null cell line, JFAS, has also significantly lover LFA-1 expression than in the parental Jurkat cells
(manuscript by Turunen PM, Nurmi, SM, Autero, M, Gahmberg, CG, and Fagerholm, SF.), indicating the
samesignalling pathwaysasL ck in regulation LFA-1 surface expression. The small amount of CD45 present
in the J45.01 cells is enough to restore surface expression amost to normal levels (I, Fig3). However,
retransfection of JCaM 1.6 with human Lck did not restore LFA-1 surface expression, even if it restored
stimulus-induced cell adhesion. This might indicate that the localization of transfected Lck is not correct or
the amount is in-sufficient for increased b2 surface expression.

The mechanism of integrin-regulation by Lck remainsto be determined. Probably both kinase activity and
an adapter function of Lck are needed for T cell adhesion. Interestingly, superantigen-induced LFA-1-
meditated conjugation of T cell to APC has also been shown to require both Lck kinase activity and a
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functional SH3 domain (Morgan et a, 2001). Activation of ZAP-70, the protein normally thought to lie
directly downstream of Lck in the TCR signaling pathway, is dispensable for conjugation, but some other
molecules that interact with the SH3 domain of Lck are probably needed for the inside-out signalling from
TCRtoLFA-1. Oneinteresting possibility isthat the Lck SH3 domain may affect adhesion viaitsinteraction
with proline-rich sequencesin CD28 (Holdorf et al, 1999). CD28is costimulatory molecule, whichisengaged
by APC during antigen presentation. CD28-L ck-interaction has been shown to regulate Rapl activation
(Carey et a, 2000) and Rapl, in turn, has been directly implicated in regulating LFA-1 dependent adhesion
(Katagiri et al, 2000). Moreover, Lck recruitment to the | S depends on the CD28 proline-rich binding motif
for Lck (Tavano et al, 2004). The SH3 domain of Lck has also been shown to be required for costimulation-
dependent L ck reorganization of lipid raftsand TCR signal stabilization (Patel et al, 2001). LFA-1isprobably
also recruited to lipid raftsupon T cell stimulation (Leitinger and Hogg, 2002), and thus, lipid rafts would
provide aplatform for functional interactions needed for LFA-1 activation. However, therole of lipid raftin
LFA-1regulationisstill controversial.

Furthermore, one possible downstream signal molecule of Lck isVavl, a GEF for Rho GTPases. Lck has
been shown to regulate Vav1 activity (Han et al, 1997). Vav aso hasarolein lipid raft clustering (Villalba et
al, 2001) and L ck recruitmentinto lipid raftsand accumulation at 1S (Tavano et a, 2004), indicating that Vavl
may also be involved in Lck-signalling. In addition, Vav1 has been shown to berequired for TCR induced
LFA-1 activation (Ardouin et al, 2003), and it al so regul ates TCR-induced integrin clustering and cell adhesion
(Krawczyk et al, 2002). Thus, Vavl is a potentia signalling molecule involved in Lck-signalling from the
TCR to LFA-1.

8.2. Threonine phosphorylation of the b2 chain regulates LFA-1 activation through affinity-
independent mechanisms

Phosphorylation of the cytoplasmic domainsof LFA-1 wasinitially reported morethan adecade ago (reviewed
in Fagerholm et al., 2004), but the significance of these phosphorylation eventsin integrin regulation has
remained unclear. Threonine phosphorylation has been reported to occur after stimulation of cellsby TCR-
ligation or phorbol ester (Valmu and Gahmberg, 1995), and it has al so been shown that the threoninetripl et
inb2 (Thr758-760) isimportant both for adhesion and cytoskel etal reorganization mediated by LFA-1 (Hibbs
et al., 1991, Peter and O’ Toole, 1995). PKC has been shown to be the main b2 kinase in leukocytes, and
many PK C isoforms are capable to phosphorylate the b2 subunit in vitro (Fagerholm et al, 2002). We have
now mapped the threonine phosphorylation sitesin the b2-cytoplasmic domain. After phorbol ester activation
all three threonine residues act as substrates but importantly, only two at atime. In contrast, if T cellswere
stimulated through TCR, only the firgt threonine residue (Thr758) of the triplet becomes phosphorylated.
These results indicate that different signalling events take place and different PKC isoforms are activated
under different activation conditions. Since TCR-ligation induces phosphorylation of Thr758, PKCB and
PKCb are probably involved, whereas phorbol ester also activates other PKC isoforms.
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The stoichiometry of phosphorylation of b2 integrinin phorbol ester stimulated T cellswasdetermined to be
0.12 mol per mal of protein. This means that the phosphorylation occurred in approximate 12% of the
integrins molecules if the phosphorylation took place only at a single serine residue. In the presence of
serine/threoni ne phosphataseinhibitors, the stoichiometry of phosphorylation was0.92 mol per mol of protein
but since several sites become phosphorylated under these conditions each site is phosphorylated only at a
low level. On the other hand, it is possible that the OA treatment isnot highly efficient and in reality higher
stoichiometry may occur. However, even alow stoichiometry of phosphorylation may play important roles
by regulating protein-proteininteractions.

Stimuli, which induce threonine phosphorylation of b2, have been shown to induce clustering of integrinson
the cell surface and avidity rather that affinity (Stewart et al, 1996, 1998). In addition, the threonine
phosphorylated LFA-1 has been shown to distribute preferentially to the actin cytoskeleton (Valmu et al,
1999), indicating cytoskeleton-dependent mechanisms of integrin activation. The linkage to the actin
cytoskeleton could occur via actin-binding proteins that have been shown to associate with integrins or
through specific adaptor proteins. 14-3-3 adaptor proteinsbind to serine and threonine-phosphorylated proteins
(Badin et al, 2000) and mediate interactions with numerous intracellular proteins. 14-3-3 proteins from
leukocyte lysates have been shown to interact with a synthetic b2 cytoplasmic peptide phosphorylated on
Thr758 (Fagerholm et al, 2002), and we showed that the interaction occurs at the protein level, it is direct
and phosphorylation-dependent. Thebinding occursin T cellsonly after cell activation by stimuli that induced
phosphorylation of Thr758, like phorbol ester and TCR-ligation. M utation of Thr758 or blocking the 14-3-3-
b2 interaction by R18-peptides inhibited L FA-1-mediated cell adhesion and spreading, indicating that the
association isrequired for integrin functions.

14-3-3sare dimers, and both monomers can independently bind to phosphorylated targets either within the
same protein or in different proteins (Tzivion and Avruch, 2002, MacKintosh, 2004). Thus, they would be
ideal candidatesto recruit other signaling proteins or cytoskel etal elementsto the phosphorylated integrin to
form larger complexes. LFA-1 has been reported to associate with several cytoskeletal proteins, including
talin (Horwitz et al, 1986), a-actinin (Pavalko and Laroche, 1993) and filamin (Sharmaet al, 1995). The
head-domain of talin bindsto theintegrin b2 cytoplasmic domain and it has been shown toinduce aseparation
of the LFA-1a and b chains (Kim et a, 2003). However, the talin head-domain was capabl e to activate the
b2 Thr758Alamutant in cells, indicating that threonine phosphorylationisnot needed for talin-induced activation.
a-actinin has been shown to interact with the b2 cytoplasmic tail at a membrane-proximal site, and the C-
terminal regulatory domain between residues 748-762, including the TTT-motif, inhibits the congtitutive
association of b2 with a-actinin (Sampath et al, 1998). However, point mutation Thr758Glu, which may
mimic phosphorylation by introducing anegative charge, and Thr758Alaboth enhanced a-actinin binding,
suggesting that phosphorylation of Thr758 isnot necessary for inducing binding of a-actinin. Interestingly,
filamin has been shown to bind to the integrin in the region that contains the phosphorylatable threonines

(Cadderwood et al, 2001). Filamin isal so aphosphoprotein and phosphorylation has been suggested to be one
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possible mechanism that regulatesits associati on with surface receptors, i.e. b2 integrins (Goldmann, 2001,
Sharmaand Goldmann, 2004). Filamin a so bindsto 14-3-3 proteins (Fagerholm S., personal communication),
but whether b2, filamin and 14-3-3 are in the same complex, and whether phosphorylation regulates the

interactionsisnot known.

Additionaly, 14-3-3 proteinsmay promote cell adhesion and spreading by interacting with signalling molecules
involved in LFA-1 regulation. Small GTPases of the Rho family have been shown to regulate the actin
cytoskeleton, and cell adhesion and migration (reviewed in Ridley, 2001). 14-3-3( hasbeen thought to provide
adirect link between the cytoplasmic tails of integrin and signalling molecules involved in Rho GTPase
activation, because 14-3-3( hasbeen shown to mediateintegrin-induced Cdc42 and Rac activation (Bialkowska
et al, 2003). However, clear evidence of thisinteraction has not been reported. Another signalling molecule
that has beenimplicated inintegrin signalling and shown to interact with 14-3-3 proteinsis p130°® (Gracia-
Guzman et a, 1999). 14-3-3 and p130“=colocalized at membrane ruffles and lamellipodiaduring theinitial
integrin-mediated attachment of cells, supporting the proposal that the 14-3-3 proteinshavearoleinintegrin
sgnaling.

8.3. Serine phosphorylation of aL regulates L FA-1 activation through affinity-dependent
mechanisms

We also established therole of L FA-1 a-chain phosphorylation in integrin regul ation (Figure 10). We mapped
theal phosphorylation siteto Ser1140 and showed that approximately 40 % of surfacea L was phosphorylated
inT cells. Thea4 integrin hasbeen shown to have asimilar constitutive high stoichiometry of phosphorylation
(Han et al, 2001), which plays profound rolesin spatio-tempora regulation of integrin functions (Goldfinger
et al, 2003). By mutation of the Ser1140 of aL to a non-phosphorylatable amino acid, we showed that
phosphorylated Ser1140 isinvolved in conformational changes occurring in LFA-1 in response to several
different affinity-increasing stimuli, such as an activating antibody, ligand or chemokines. Integrins have
been shown to undergo aglobal conformational changefrom abent to an extended form upon cell activation
(Figure 7). In addition, the optimal interaction between LFA-1 and ligand requires critical rearrangementsin
the I-domain by pulling down the C-terminal a7 helix (Shimaokaet al, 2002). The Ser1140Alamutant was
ableto undergo a conformational change from a bent form to an extended form similar to that of wild-type
cells, as detected by the KIM 127-antibody which detects the extended form of LFA-1 (unpublished data).
This indicates that the aL phosphorylation is involved in I-domain rearrangements. How this integrin
intracellular phosphorylation affects the conformation of extracellular I-domain remainsto be established.
One possible mechanism isthat the negative charge induced by phosphorylation facilitates the separation of
the integrin cytoplasmic tails, leading to a conformational change in the extracellular domain (Kim et al,
2004, Adair et al, 2005). However, mutation of Ser1140 to a negatively charged Asp, did not lead to a
different phenotype compared to the Ser1140 to Alamutation, indicating that anegative charge aloneis not
enough the integrin activation. On the other hand, “locking” integrinsin the phosphorylated state can have
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negative effects on integrin activation since the dynamic nature of phosphorylation might be crucial for
integrin function.

Alternatively, the aL phosphorylation site could act through cytoplasmic binding proteins that selectively
bind to it or disconnect them from the phosphorylated form of the integrin. For example, a4 serine
phosphorylation has been shown to inhibit the binding of paxillin, and therefore regulates cell migration (Han
et al, 2001, 2003). Active Rapl was unable to induce binding of Ser1140Ala-mutant cells to ICAM-1,
suggesting that Rap1-induced activation requires a L -phosphorylation. Rapl may possibly influencethebinding
of some cytoplasmic factorsto the phosphorylated aL tail. One possible candidateis RAPL, a Rap1-binding
molecule. RAPL has been claimed to have an important function in LFA-1 mediated cell adhesion, and
importantly, it bindsto theal cytoplasmictail (Katagiri et al, 2003). In thefuture, it would be interesting to
study the effects of RAPL on S1140A-mutant cells. Other Rapl effectors have also been implicated in
Rapl-induced adhesion, for example Riam, but an interaction with LFA-1 hasnot reported (Bos, 2005). Itis
important to note that some leukocyte-specific restrictive factors that work through phosphorylated aL
could beinvolved in LFA-1 regulation, because affinity-inducing stimuli of theintegrin arefunctional alsofor

the Ser1140Alamutant in COS-1 cells.
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Figure 10. A model how a and b chain phosphorylation regulates LFA-1 activation. aL phosphorylation i<
required for adhesion events that involve rapid changes in the conformation and affinity of the LFA-1. b2
phosphorylation works through the interaction with 14-3-3-proteins and involves actin reorganization and integrin
clustering.



9. CONCLUDING REMARKS

Dynamic adhesion is especially important in the immune system, where cells need to attach and detach
continuoudly. The LFA-1 integrin is expressed exclusively in leukocytes and is of fundamental importance
for the function of the immune system. LFA-1 mediates cell adhesion under various conditions, for example
during immunological synapse formation between the T cell and the antigen presenting cell, and during
leukocyte emigration from the bloodstream into tissues. Whereas the TCR-mediated adhesion is slow and
sustained, chemokine-induced adhesion isfast and rapidly reversible. These different adhesive events may
require different mechanisms of regulation. Both affinity-dependent and -independent mechanisms have
been postul ated to beimportant in the regulation of integrin activation. These mechanisms are not mutually
exclusive, and different modes of integrin activation may involve different mechanisms alone or together.
For example, TCR-induced activation of LFA-1 has not been shown to involve affinity regulation in the
integrin, but instead has been closely correl ated with a spreading phenotype of T cellsand actin cytoskeleton
rearrangements. I n contrast, chemokines mediate rapid conformational changesin LFA-1 but alsoinvolves
clustering of integrins.

Theresults of thisthesis showed that the Lck tyrosine kinase is essential for proper integrin activation, and
both L ck kinase activity and adapter functions are needed. Lck isinvolved both in the regulation of integrin
cell surface expression and regulation of integrin inside-out activation. Thus, the Lck plays multiplerolesin
theregulation of T cell adhesion.

It was also shown that phosphorylation of both the a-chain and the b-chain of the integrin cytoplasmic
domains plays arolein the molecular mechanismsinvolved in these different activation events (Figure 10).
However, the al and b2 polypeptides play distinctive rolesin integrin activation. Theintegrinal chainis
constitutively phosphorylated and this phosphorylation site (Ser1140) isrequired for adhesion that involves
rapid changes in the conformation and affinity of the integrin heterodimer. In contrast, the b2-Thr758
phosphorylation that isinduced after physiological triggering of T cdllsthrough the TCR, andinvolvesformation
of theimmunologica synapse, worksthrough theinteraction with 14-3-3 proteins. Thisinteractionisinvolved
inintegrin-mediated adhesion, actin reorganization and cell spreading.

Thus, different phosphorylation eventsparticipatein LFA-1 regul ation. The different regul ation mechanisms
may depend on the surroundings and the context of adhesion, and thus enables regulation of both fast,

transient adhesive events and long-term adhesion strengthening.
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