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ABBREVIATIONS

bFGF basic fibroblast growth factor
CD cluster of differentiation
Cer ceramide
CHO Chinese hamster ovary
DQFCOSY double-quantum-filtered correlated spectroscopy
EGF epidermal growth factor
ESL-1 E-selectin ligand 1
Fuc L-fucose
Fuc-T fucosyltransferase
Gal D-galactose
GalNAc N-acetyl-D-galactosamine
Glc D-glucose
GlcNAc N-acetyl-D-glucosamine
GlyCAM-1 glycosylated cell adhesion molecule 1
Hex hexose
HexNAc N-acetylhexosamine
HMBC heteronuclear multiple bond correlation
HMQC heteronuclear multiple quantum coherence
Lac lactose
LacdiNAc GalNAcβ1-4GlcNAc
Lea Lewis a, Galβ1-3(Fucα1-4)GlcNAc
Leb Lewis b, Fucα1-2Galβ1-3(Fucα1-4)GlcNAc
Lex Lewis x, Galβ1-4(Fucα1-3)GlcNAc
Ley Lewis y, Fucα1-2Galβ1-4(Fucα1-3)GlcNAc
LN N-acetyllactosamine (type 2), Galβ1-4GlcNAc
LNB lacto-N-biose, type 1 N-acetyllactosamine, Galβ1-3GlcNAc
MAG myelin associated glycoprotein
MALDI-TOF matrix-assisted laser desorption/ionization time-of-flight
Man D-mannose
Me methyl
MHC major histocompability complex
MOPS 3-(N-morpholino)propanesulfonic acid
NCAM neuronal cell adhesion molecule
Neu5Ac N-acetylneuraminic acid
NGF nerve growth factor
NK natural killer
NMR nuclear magnetic resonance
PDGF platelet-derived growth factor
PNA peanut agglutinin
PSGL-1 P-selectin glycoprotein ligand 1
sLex sialyl Lewis x, Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAc
sLea sialyl Lewis a, Neu5Acα2-3Galβ1-3(Fucα1-4)GlcNAc
ST sialyltransferase
TOCSY total correlation spectroscopy
TrkA tyrosine kinase A
VEGF vascular endothelial growth factor
VIM-2 Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-4(Fucα1-3)GlcNAc
WEFT water-eliminated Fourier transformation
Xyl D-xylose
X2 GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc
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1. INTRODUCTION

The surfaces of eukaryotic cells are covered with carbohydrates which show an enormous diver-
sity of structure. The glycans mediate a wide variety of cellular recognition events, for example
in the recruitment of leukocytes to sites of infection and their homing to lymph nodes, tumour
metastasis, neural development, angiogenesis, fertilization, signal transduction and bacterial
adhesion.

The biological functions of oligosaccharides are often carried out by the terminal elements of the
glycans. Sialylation and fucosylation are typical terminal modifications that mediate specific
functions. Both sialic acid and fucose contain structural features which distinguish them from
the monosaccharides that make up the common core structures. These structural characteristics
may be the reason why sialylated and fucosylated capping group structures are often specifically
recognized by both endogenous and exogenous lectins that mediate their functions.

Glycan biosynthesis occurs primarily through the action of glycosyltransferases. Glycan struc-
ture is determined by the sequential action of glycosyltransferases, which add one monosaccha-
ride at a time to a specific position on specific precursors. The precision of oligosaccharide
biosynthesis is achieved by the strict acceptor substrate specificity of glycosyltransferases. �One
glycosyltransferase - one glycosidic linkage� is an old paradigm in the field of oligosaccharide
biosynthesis. However, more recently this view has been broadened to encompass the findings
that many glycosyltransferases form redundant families, with more subtle differences in accep-
tor specificity between the members: some transferases can make two different linkages; and
some have relaxed substrate specificities, being able to transfer two different monosaccharides
or to two different monosaccharides. The clarification of the detailed specificities of the indi-
vidual members of glycosyltransferase families will eventually help us understand the different
biological roles of the various isoenzymes. The present study clarifies the detailed acceptor
specificities of the α1,3-fucosyltransferases Fuc-TV and Fuc-TIX, and the α2,3-sialyltransferase
ST3Gal II.
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2. REVIEW OF THE LITERATURE

2.1 Glycan structure

Carbohydrate chains are attached to proteins and lipids on cell surfaces. Glycoproteins and  free
oligosaccharides are found in body fluids and secretions. A basic principle of glycan structure is
that each class of glycans has a limited number of common core structures, to which a diversity
of capping groups is attached to a more terminal location. The terminal capping groups are often
responsible for the biological functions of carbohydrates. This review will deal mainly with
mammalian glycosylation. For reviews of the structures described below, see (1,2).

2.1.1 Core structures

Glycoprotein glycans are N-linked to asparagine (N-glycans), or O-linked to serine or threonine
(O-glycans). Mammalian N-glycans share a common pentasaccharide core Manα1-3(Manα1-
6)Manβ1-4GlcNAcβ1-4GlcNAcβ1-Asn. On the basis of the structure that is assembled on the
core they are divided into high-mannose, hybrid and complex types. The innermost GlcNAc of
complex type N-glycans can be α1,6-fucosylated. O-glycans have four common core structures:
core 1 (Galβ1-3GalNAcα1-Ser/Thr), core 2 (Galβ1-3(GlcNAcβ1-6)GalNAcα1-Ser/Thr), core
3 (GlcNAcβ1-3GalNAcα1-Ser/Thr) and core 4  (GlcNAcβ1-3(GlcNAcβ1-6)GalNAcα1-Ser/
Thr), and some less rare GalNAc-linked cores. Less common types of O-glycosylation include
N-acetylglucosamine (3), fucose (4), or mannose (5) O-linked to serine or threonine. Of these,
O-GlcNAc has only been characterized as a monosaccharide, but O-Fuc and O-Man can be
further elongated. Heparan sulphate and chondroitin sulphate glycosaminoglycans are O-linked
to their core proteins via a Galβ1-3Galβ1-4Xyl core. Lipid-linked glycans are divided into five
families according to their core structures: ganglio- (GalNAcβ1-4Galβ1-4Glcβ1-Cer), globo-
(Galα1-4Galβ1-4Glcβ1-Cer), isoglobo- (Galα1-3Galβ1-4Glcβ1-Cer), lacto- (Galβ1-
3GlcNAcβ1-3Galβ1-4Glcβ1-Cer), and neolactoseries (Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer).
In addition, the GPI-anchors of certain proteins contain a lipid-linked glycan as well.

2.1.2 Capping group structures

The core structures are often elongated by repeating Galβ1-4GlcNAcβ1-3 units called
polylactosamines. Polylactosamine chains are either linear or branched at the C6 hydroxyl of the
galactose residue. Polylactosamines on glycoproteins were first characterized in 1978 from hu-
man erythrocyte membranes by Roger Laine (6) and Heikki Rauvala (7) and their co-workers.
Subsequently polylactosamines have emerged as common oligosaccharide structures on both
glycoproteins and glycolipids (1,2).  Polylactosamine backbones carry bioactive terminal epitopes,
like the sialylated and fucosylated structures described here.

Fucosylated structures
Fucose is found α1,3-, α1,4- or α1,6-linked to N-acetylglucosamine and α1,2-linked to galac-
tose in mammalian glycans (Figure 1). α1,3-linked fucose has been characterized on type 2 N-
acetyllactosamine (Galβ1-4GlcNAc) forming the Lewis x structure (Galβ1-4(Fucα1-3)GlcNAc;
Lex), and on the so-called LacdiNAc structure (GalNAcβ1-4GlcNAc). The Lewis a structure
(Galβ1-3(Fucα1-4)GlcNAc) contains an α1,4-linked fucose on a type 1 N-acetyllactosamine.
Both Lewis x and Lewis a also occur in sialylated and sulfated forms. Lewis x epitopes are also
found as polyfucosylated sequences on polylactosamines. Lewis y (Fucα1-2Galβ1-4(Fucα1-
3)GlcNAc) and Lewis b (Fucα1-2Galβ1-3(Fucα1-4)GlcNAc) are doubly fucosylated
derivatives of Lewis x and Lewis a. In addition to Lewis y and Lewis b, α1,2-fucosylation occurs



9

in the ABO-blood group determinants A, B and H, and for example in the so called fucosyl-GM1
structure. Fucose also occurs α1,6-linked to the innermost core GlcNAc of complex N-glycans,
and directly O-linked to Ser or Thr in certain proteins, where it can be elongated into an oli-
gosaccharide such as Neu5Acα2-3Galβ1-4GlcNAcβ1-3Fucα1-Ser/Thr.

Figure 1. Examples of fucosylated glycan structures

Sialylated structures
Sialic acid is a common terminal monosaccharide in a variety of glycans. Due to its negative
charge, it dramatically changes the physical and chemical properties of the glycan, which ren-
ders it capable of mediating a wide array of biological functions. Sialic acid occurs in mamma-
lian systems mainly α2,3-linked or α2,6-linked to galactose or N-acetylgalactosamine, and α2,8-
linked to another sialic acid. Sialylated glycolipids are called gangliosides. The Svennerholm
nomenclature for ganglioseries gangliosides (8) is used throughout this text. Examples of sialylated
glycan structures are presented in Figure 2.

2.2 Glycan biosynthesis

Glycan biosynthesis occurs primarily through the action of glycosyltransferases, although some
glycosidases are involved as well. The precursor oligosaccharide of N-glycans is assembled on a
dolichol lipid, and then transferred en bloc to the polypeptide by the oligosaccharyltransferase.
O-glycan biosynthesis is initiated by a polypeptide GalNAc-transferase, and glycolipid biosyn-
thesis by a glucosyl- or galactosyltransferase acting on ceramide. Glycan structure is determined
by the sequential action of glycosyltransferases, which add one monosaccharide at a time to a
specific position on specific precursors. Glycosyltransferases transfer monosaccharides from
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activated donor sugars (e.g. CMP-Neu5Ac, GDP-Fuc) to the growing glycan. The precision of
glycan biosynthesis is achieved through the strict acceptor substrate specificity of
glycosyltransferases. This review will concentrate on the acceptor specificities of the cloned
human glycosyltransferases that are responsible for the generation of fucosylated and sialylated
capping groups on various backbone structures.

Figure 2. Examples of sialylated glycan structures
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2.2.1 Fucosyltransferases

The cloned human fucosyltransferases have been designated Fuc-TI-IX. Fucosyltransferases I
and II are α1,2-fucosyltransferases, III-VII and IX α1,3/4 fucosyltransferases, and Fuc-TVIII is
an α1,6-fucosyltransferase that fucosylates the chitobiose core of N-glycans. In addition, the
protein O-fucosyltransferase I, O-FucT-I, transfers fucose directly to serine or threonine in EGF-
like repeats of certain proteins (9).

α1,α1,α1,α1,α1,3-Fucosyltransferases

Table I shows the relative reactivities of different acceptors with the cloned human α1,3-
fucosyltransferases. The data have been compiled from a set of different studies that have been
referred to in Table I. Some discrepancies exist between them. These differences may be due to
differences in enzyme constructs, the exact structure of the acceptor (e.g. the nature of a possible
aglycon), or reaction conditions such as the acceptor concentration, or the presence and nature of
detergent. When experiments are performed with cell lysates rather than with purified enzymes,
unexpected endogenous glycosyltransferase activities may occur (10,11).

Table I. The relative reactivities of different acceptor oligosaccharides with the α1,3-
fucosyltransferases.

Acceptor Fuc-TIII Fuc-TIV Fuc-TV Fuc-TVI Fuc-TVII Fuc-TIX
LN + +++ +++ +++ - +++
Neu5Acα2,3�LN + + +++ +++ +++ -
Neu5Acα2,6�LN - - - - -
Fucα1,2�LN ++ +++ +++ +++ - +++
Galα1,3�LN + +++ +++
6-sulfo-LN - ++ ++
6'-sulfo-LN - - -
3'-sulfo-LN + ++ +++ +++ + +

Lac + - + - - -
Fucα1,2�Lac ++ + ++ + -
Neu5Acα2,3�Lac + - - -

LNB +++ - + - - -
Neu5Acα2,3�LNB ++ - + -
Fucα1,2�LNB +++ + ++ - -
Galα1,3�LNB +++ - ++

LacdiNAc + +++ - ++
Galβ1-3GalNAc - - - - - -

references (12,14-19, (14-16,33, (14-16,36, (32,35,36, (33,50,51, (58-60)
36,60) 36,60) 60) 38,60) 60)

+++: the best acceptor for the transferase in question, or having reactivity close to the best reactivity, ++: reactiv-
ity about half of that of the best acceptor, +: weak reactivity, -: no or very weak reactivity, blank: no information
available
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Fuc-TIII
Fuc-TIII was the first human α1,3-fucosyltransferase to be cloned in 1990 (12). Fuc-TIII is
thought to correspond to the purified fucosyltransferase known as the �Lewis� enzyme (13),
since it has both α1,3- and α1,4-fucosyltransferase activities, being able to fucosylate both Galβ1-
4GlcNAc (type 2 lactosamine, LN) and Galβ1-3GlcNAc (type 1 lactosamine, LNB) (12). Fuc-
TIII strongly prefers type 1 lactosamine acceptors to type 2 acceptors (12,14,15). In some sys-
tems Fuc-TIII has been reported to be completely inactive towards Galβ1-4GlcNAc (16-18).

α1,2-fucosylated lactosamines are better acceptors for Fuc-TIII than the corresponding
unsubstituted ones, whereas α2,3-sialylated lactosamines are slightly less effective acceptors
(14,15,17-19). Additionally, Fuc-TIII transfers to Glc in lactose (12,15,16), α1,2-fucosyllactose
(15,16) and α2,3-sialyllactose (16), and to the reducing end glucose of Galβ1-4GlcNAcβ1-
3Galβ1-4Glc and Galβ1-3GlcNAcβ1-3Galβ1-4Glc; a bifucosylated product is formed from the
latter acceptor (19).

Analysis of glycolipids from Fuc-TIII transfected cells has shown that Fuc-TIII is able to make
both Lex and sLex in vivo as well (20). Fuc-TIII synthesizes sLex and Lex in the ratio 14:1 on the
N-glycans of β-trace protein in vivo, transferring preponderantly one fucose per diantennary N-
glycan (21). Fuc-TIII has also been shown to be able to generate the VIM-2 epitope, that is to
fucosylate the penultimate N-acetyllactosamine unit in a sialylated polylactosamine (22). When
LNβ1-3�LNβ1-3�LN-2AB is used as the acceptor, Fuc-TIII strongly prefers the middle LN unit
as the acceptor site (the reducing end GlcNAc is not likely to be available for fucosylation in this
kind of acceptor, as it has been reductively aminated) (23).

Fuc-TIII is expressed at high levels in colon, stomach, small intestine, lung and kidney (24).
Inactivating point mutations in the Fuc-TIII gene account for the Lewis negative (Le(a-b-)) phe-
notype on erythrocytes and secretions observed in 10% of Caucasians (25,26). An increased risk
of atherosclerotic disease has been associated with Le(a-b-) phenotype, but the mechanism of
this effect is unclear (27,28).

Fuc-TIV
Fuc-TIV has been independently cloned by three groups (29-31). It corresponds to the �my-
eloid� type of fucosyltransferase activity (13). Fuc-TIV fucosylates preferentially neutral type 2
N-acetyllactosamine (30,31). It does not react with type 1 acceptors (16,31,32), and reacts very
weakly if at all with Neu5Acα2-3Galβ1-4GlcNAc (16,30,31,33). Fuc-TIV reacts very effec-
tively with Fucα1-2Galβ1-4GlcNAc, generating the Lewis y epitope (14). Galα1-3Galβ1-
4GlcNAc is a good acceptor, and N-acetyllactosamines sulfated at the 3-position of Gal or at the
6-position of GlcNAc show moderate reactivity (14). The analysis of glycolipids from Fuc-TIV
transfected cells supports the view that Fuc-TIV synthesizes Lex rather than sLex (20). In the
analysis of β-trace protein N-glycans, Fuc-TIV shows a sLex/Lex ratio 1:7 (21).

Like Fuc-TIII, Fuc-TIV fucosylates inner LN units within a polylactosamine chain. Fuc-TIV-
transfected cells synthesize the VIM-2 epitope (Neu5Acα2-3�LNβ1-3�Lex)  (30,31). It has been
shown that Fuc-TIV prefers the inner LN units to the non-reducing end LN unit in both sialylated
and non-sialylated polylactosamine acceptors (34). In sialylated polylactosamine acceptors the
sialylated LN unit is virtually non-reactive, whereas in neutral polylactosamines the differences
between the reactivities of the different LN units are less dramatic (34).
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Fuc-TV
Fuc-TV is highly homologous to Fuc-TIII, but has a slightly different acceptor specificity profile
(15). Fuc-TV reacts with both sialylated and non-sialylated type 2 N-acetyllactosamine, and
weakly with type 1 N-acetyllactosamine and lactose (15). In in vivo studies Fuc-TV has been
shown to synthesize both Lex and sLex on both glycolipids (20) and glycoproteins (21), with a
slight preference towards sialylated structures. In addition, α1,2'-fucosylated, α1,3'-galactosylated,
3'-sulfated and 6-sulfated derivatives of LN serve as acceptors in vitro (14-16,35,36). (3� de-
notes modification at the 3-hydroxyl of the second monosaccharide residue from the reducing
end, in this case Gal, whereas 3 would  refer to modification at the reducing end monosaccharide
residue, in this case GlcNAc.) Fuc-TV is able to react with chito-oligosaccharides, forming a
terminal GlcNAcβ1-4(Fucα1-3)GlcNAc determinant (37). Like Fuc-TIII and Fuc-TIV, Fuc-TV
preferentially fucosylates the inner LN unit in a polylactosamine chain (23). Fuc-TV expression
is restricted to liver, colon and testicle (24). The detailed acceptor- and site-specificity of Fuc-
TV has been studied in the present thesis (part I).

Fuc-TVI
The enzymatic properties of cloned Fuc-TVI correspond to the fucosyltransferase previously
known as �plasma� type (13,35,38). Fuc-TVI reacts with sialylated and non-sialylated type 2 N-
acetyllactosamine (32,35,36,38). The reactivities of type 1 lactosamine (32,36,38) and lactose
(36,38) are very weak or non-existent. α1,2'-Fucosylated or 3'-sulfated type 2 lactosamines react
efficiently (32,36). Additionally, Fuc-TVI has been shown to be able to fucosylate GlcNAcβ1-
4GlcNAc (37).

Fuc-TVI makes both Lex and sLex on glycolipids in vivo (20). Fuc-TVI prefers longer glycolip-
ids as acceptors than Fuc-TIII, -IV, -V and -VII, but the structures of the products have not been
analyzed in detail (20). Fuc-TVI makes equal amounts of Lex and sLex on a glycoprotein sub-
strate in vivo, and efficiently fucosylates both branches of a biantennary N-glycan, unlike Fuc-
TIII, -IV, -V and -VII, which predominantly make monofucosylated N-glycans (21).

The site-specificity of Fuc-TVI seems to be different on sialylated and non-sialylated
polylactosamines. Fuc-TVI preferentially fucosylates the inner LN unit in LNβ1-3�LNβ1-3�LN-
2AB, and virtually no difucosylated product is formed (23). However, Fuc-TVI transfected CHO
cells do not stain with anti-VIM-2 antibodies, but do stain with anti-difucosyl-sLex (Neu5Acα2-
3�Lexβ1-3�Lex) antibodies (35). The clarification of the site-specificity of Fuc-TVI on sialylated
and non-sialylated polylactosamines will require experiments where both types of acceptors are
analyzed under the same experimental setup.

Fuc-TVI is expressed in liver, kidney, small intestine, colon, salivary gland, bladder, and uterus
(24). Fuc-TVI in liver has been found to be essential for the fucosylation of acute phase proteins
(39). Liver Fuc-TVI is also the major source of the α1,3-fucosyltransferase activity in plasma
(39,40). In addition to the Golgi, Fuc-TVI has rather surprisingly been shown to be localized in
the Weibel-Palade bodies of human endothelial cells (41). Individuals having a missense muta-
tion in the Fuc-TVI gene show no obvious pathologies, indicating that Fuc-TVI function is
dispensable in humans, or that other fucosyltransferases can compensate for the lack of Fuc-TVI
(40).

Fuc-TIII, Fuc-TV and Fuc-TVI genes are highly homologous to each other (12,15,35,38). They
form a cluster on human chromosome 19p13.3 (42). Fuc-TIII, -V and -VI are thought to have
originated by duplication events in human evolution, since only one homologue has been found
from the bovine genomic library (43). This bovine gene is thought to be an orthologous
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homologue of the ancestor of the human Fuc-TIII, -V and -VI genes (43). The bovine α1,3-
fucosyltransferase shows an acceptor specificity profile similar to human Fuc-TVI, consistent
with the finding that bovine tissues do not express α1,4-fucosylated structures (43). Despite
their high sequence homology, human Fuc-TIII, -V and -VI have different acceptor specificity
profiles, as discussed above. Domain swapping experiments, sequence alignment of α1,3- and
α1,3/4-fucosyltransferases, and site-directed mutagenesis experiments have demonstrated that
only a few amino acids determine whether or not the fucosyltransferases can use type 1
lactosamines as substrates, and thus conform to their distinct acceptor specificity profiles (44-
48).

Fuc-TVII
Fuc-TVII exhibits strict specificity towards α2,3-sialylated type 2 lactosamines (49,50). The
reactivity of non-sialylated and type 1 acceptors is very weak or non-existent, depending on the
assay conditions (33,50,51). Fuc-TVII prefers sialylated N-acetyllactosamines to non-sialylated
ones also when studied in vivo with glycoprotein (21) and glycolipid (20) acceptors. Fuc-TVII is
able to react with Neu5Acα2-3Galβ1-4(SO3-6)-GlcNAc, generating the L-selectin ligand 6-
sulfo sLex (52).

The site-specificity of Fuc-TVII is also strict. Fuc-TVII has been shown to fucosylate Neu5Acα2-
3�LNβ1-3�LNβ1-3�Lacβ1-Cer glycolipid only at the non-reducing end, sialylated LN unit (53).
Similar results have been obtained by using oligosaccharide acceptors: Fuc-TVII transfers pref-
erentially to the non-reducing end, sialylated LN unit of both Neu5Acα2-3�LNβ1-3�LNβ1-
3Galβ1-OMe and Neu5Acα2-3�LNβ1-3�LNβ1-3�LN (34). Fuc-TVII prefers the non-reducing
end site also on prefucosylated polylactosamines: Neu5Acα2-3�LNβ1-3�Lexβ1-R type accep-
tors react efficiently, whereas Neu5Acα2-3�Lexβ1-3�LNβ1-R type acceptors react only weakly
(34,51).

Fuc-TIV and Fuc-TVII are expressed on leukocytes, and they are thought to collaborate in the
biosynthesis of selectin ligands (for discussion on selectins and selectin ligands, see section
2.3.1). They seem to be at least partially specialized in the way that Fuc-TVII directs the expres-
sion of P-selectin binding glycoforms of P-selectin glycoprotein ligand 1 (PSGL-1) and controls
the rolling frequency of leukocytes, whereas Fuc-TIV directs the expression of E-selectin bind-
ing glycoforms of E-selectin ligand 1 (ESL-1) and dictates rolling velocity (54,55). Fuc-TVII-
deficient mice show defects in their selectin ligand activity and leukocyte recruitment in inflam-
mation (52). However, prominent selectin ligand activities remain in these mice, whereas in
mice deficient in both Fuc-TIV and Fuc-TVII nearly all selectin ligand activity and leukocyte
recruitment is absent (56). In the light of the complementary site-specificities of Fuc-TIV and
Fuc-TVII (34), it seems likely that the biosynthesis of the complete repertoire of optimal ligands
for all three of the selectins involves both internal and distal fucosylation of polylactosamine
chains.

An individual having an inactivating missense mutation in his Fuc-TVII gene has been diag-
nosed with ulcer disease, non-insulin-dependent diabetes, osteoporosis, spondylarthrosis, and
Sjögren�s syndrome, but does not have a history of recurrent bacterial infections or leukocytosis
(57).

Fuc-TIX
Fuc-TIX transfers fucose to non-sialylated type 2 lactosamine, but not to α2,3-sialylated type 2
lactosamine, or to type 1 lactosamine (58). 3'-sulfated type 2 lactosamine reacts weakly (59).
α1,2'-fucosylated type 2 lactosamine is a good acceptor, but α1,2-fucosylated type 1 lactosamine
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does not react (60). Lactose is non-reactive as well (60). LacdiNAc (GalNAcβ1-4GlcNAc) shows
moderate reactivity (60). Fuc-TIX shows unique site-specificity on LNβ1-3�LNβ1-3�LN-2AB:
it preferentially fucosylates the non-reducing end LN unit (23). The acceptor and site-specificity
of Fuc-TIX has been studied in detail in this thesis (part II).

Fuc-TIX has a low degree of homology to the other α1,3/4 fucosyltransferases, and is phyloge-
netically quite distant from them (58). In contrast, the Fuc-TIX gene sequence is highly con-
served between human, mouse, rat and hamster (58,61-63), indicating that it has been under
strong selective pressure during evolution, and thus suggesting that it has an essential role in the
organisms.

Fuc-TIX has a more restricted expression pattern than the other α1,3/4-fucosyltransferases. It is
expressed as transcripts of different lengths in different tissues and developmental stages (58,60).
Notably, Fuc-TIX is abundantly expressed in both the developing and mature brain (58,60). The
expression of the Fuc-TIX product, the Lewis x epitope, is developmentally regulated in the
brain, and it is thought to be involved in brain morphogenesis, as discussed in section 2.3.1.
Pax6, a transcription factor involved in brain patterning and neurogenesis, controls the spatially
and temporally restricted expression of the Lewis x epitope in the developing rat brain by regu-
lating Fuc-TIX gene expression (64). A concomitantly occurring increase in the amounts of
Lewis x bearing glycolipids and increased expression of Fuc-TIX has been observed during
neural differentiation of PC19 embryonal carcinoma cells induced by retinoic acid (65).

Fuc-TIX has been shown to direct the synthesis of CD15 (non-sialylated Lewis x) on mature
granulocytes (66), but its possible role in the selectin ligand biosynthesis remains to be eluci-
dated. It is possible that Fuc-TIX accounts for the residual neutrophil infiltration in experimen-
tally induced inflammation seen in mice that lack both Fuc-TIV and Fuc-TVII (56).

ααααα1,2- and ααααα1,6-Fucosyltransferases
Fuc-TI and Fuc-TII are α1,2-fucosyltransferases. Fuc-TI (H-enzyme) regulates the expression
of the H antigen (Fucα1-2Gal) on erythrocyte membranes (67). Fuc-TII (Secretor enzyme) regu-
lates the expression of the H antigen in the secretory fluids and digestive mucosa (68). Fuc-
TVIII is an α1,6-fucosyltransferase, that fucosylates the chitobiose (GlcNAcβ1-4GlcNAc) core
of N-glycans (69). Phylogenetic analysis indicates that the vertebrate α1,2-, α1,3/4- and α1,6-
fucosyltransferase gene families have evolved by duplications, translocations, and divergent
evolution from a single ancestral gene (70,71).

2.2.2 Sialyltransferases

Sialyltransferases transfer sialic acid from CPM-Neu5Ac to glycolipids and glycoproteins. To
date, six α2,3-sialyltransferases, seven α2,6-sialyltransferases and five α2,8-sialyltransferases
have been cloned. All sialyltransferases cloned to date contain a conserved region called a
�sialylmotif�, which is involved in binding the donor substrate CMP-Neu5Ac (72). Conserved
cysteines in the sialylmotif form a disulfide linkage that seems to be essential for proper confor-
mation and activity of the enzymes (73).

Nomenclature of sialyltransferases
The naming of sialyltransferases used to be rather confusing. Multiple names were given to the
same enzyme, and even the same name was given to different enzymes. The names did not give
sufficient information for distinguishing the different transferases. In 1996 a systematic nomen-
clature was proposed (74), and since then it has become universally used. This system comprises
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four elements, for example the CMP-Neu5Ac: Galβ1-4GlcNAc α2,6-sialyltransferase is abbre-
viated ST6Gal I, where ST denotes sialyltransferase, 6 means that it is an α2,6-sialyltransferase,
Gal is the acceptor sugar to which sialic acid is transferred, and I is the numeral assigned con-
secutively to each new gene in the subgroup. In the following sections the older names for the
sialyltransferases are indicated in parenthesis following the current denotation. Unless other-
wise stated, the data refer to human sialyltransferases.

ααααα2,3-Sialyltransferases

ST3Gal I (ST3O, ST3GalA.1, SiaT-4a, SAT-4, ST-2, ST3Gal-Ia)
ST3Gal I transfers sialic acid to Galβ1-3GalNAc, but not to Galβ1-3GlcNAc or Galβ1-4GlcNAc
(75-77). Mouse ST3Gal I has been shown to prefer glycoprotein acceptors (asialofetuin) to gly-
colipid acceptors (GM1 and asialo GM1) in vitro (78). The acceptor specificities of α2,3-
sialyltransferases are summarized in Table II.

Table II. Relative reactivities of different acceptors with the α2,3-sialyltransferases

Acceptor ST3Gal I  ST3Gal II ST3Gal III  ST3Gal IV  ST3Gal V  ST3Gal VI
Galβ1-4GlcNAc - - ++ ++ +++
Galβ1-3GlcNAc - - +++ + +
Galβ1-3GalNAc +++ +++ + +++ -
Galβ1-4Glc - + +

lactosylceramide - - + +++ -
asialo GM1 ++ +++ - +++ - -
asialofetuin +++ ++ +++ +++ - ++

references (76,77) (83,84) (77,87) (77,92) (98,101) (100)

+++: the best acceptor for the transferase in question, or having reactivity close to the best reactivity, ++: reactiv-
ity about the half of that of the best acceptor, +: weak reactivity, -: no or very weak reactivity, blank: information
not available

ST3Gal I is expressed in many tissues. High levels are found in heart, placenta, lung, liver,
skeletal muscle, kidney, pancreas, spleen and peripheral blood leukocytes (76). Expression of
ST3Gal I is elevated in breast cancer cells, associated with the synthesis of the cancer-associated
epitope sialyl T (Neu5Acα2-3Galβ1-3GalNAcα1-Ser/Thr) (79,80).

ST3Gal I-deficient mice show increased apoptosis of CD8+ T-cells (81). Activation of T-cells is
associated with desialylation of core 1 O-glycans and concomitant increase in core 2 biosynthe-
sis (82). The activated T-cells bearing core 2 O-glycans are destined for either apoptosis, or
differentiation into memory cells, which is accompanied by the reappearance of sialylated core 1
O-glycans as the predominant O-glycan structure (81). Therefore it can be assumed that ST3Gal
I is involved in the regulation of T-cell homeostasis.

ST3Gal II (ST3O-II, ST3GalA.2, SiaT-4b, ST3Gal-Ib)
Like ST3Gal I, ST3Gal II uses Galβ1-3GalNAc as an acceptor determinant (83,84). Galβ1-
4GlcNAc and Galβ1-3GlcNAc are not sialylated by ST3Gal II (83). Mouse ST3Gal II prefers
glycolipid acceptors to glycoprotein acceptors in vitro (78). Species-specific differences exist in
the tissue expression patterns of ST3Gal II. Human ST3Gal II is expressed in heart, liver, skel-
etal muscle and lymphoid tissues, but not in brain or kidney (83), whereas in mouse and rat the
expression of ST3Gal II is restricted to the brain and liver (85). ST3Gal II-deficient mice
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accumulate ST3Gal II substrates GM1a and GD1b, but yet have significant amounts of the prod-
ucts GD1a and GT1b, possibly due to the action of ST3Gal I (86). The acceptor specificity of
ST3Gal II was further studied in this thesis (part III).

ST3Gal III (ST3N, ST3GalB, ST-3, ST3Gal II)
ST3Gal III sialylates both Galβ1-3GlcNAc and Galβ1-4GlcNAc, the type 1 lactosamine being
the preferred acceptor (87). Lactose and Galβ1-3GalNAc are poor acceptors (77,87). A com-
mercial cloned α2,3-sialyltransferase, supposedly ST3Gal III, has been reported to be able to
sialylate Galβ1-3GlcNAc where the 6-hydroxyl of GlcNAc has been substituted by sulphate or
sialic acid (88). Rat ST3Gal III has been shown to prefer tri- and tetra-antennary N-glycans to
biantennary N-glycans, and intact glycoproteins to glycopeptides (89), suggesting that it recog-
nizes larger structures than the acceptor disaccharide determinant.

ST3Gal III is strongly expressed in liver, skeletal muscle, testis, and many fetal tissues (76,87).
ST3Gal III expression level in the female rat pituitary gland has been shown to be regulated by
oestrogens, and to be associated with the changes in the sialylation status of follicle-stimulating
hormone, affecting its charge-isoform distribution and biological activity (90). An unexpected
post-Golgi localization of ST3Gal III on the apical membrane of rat kidney tubule cells has been
demonstrated (91).

ST3Gal IV (ST3O/N, ST3GalC, SiaT-4c, SAT-3, ST-4, STZ, ST3Gal III)
ST3Gal IV sialylates Galβ1-3GalNAc, Galβ1-4GlcNAc and it poorly sialylates Galβ1-3GlcNAc
and lactose (77,92). ST3Gal IV has been shown to sialylate both glycolipids and glycoproteins
presenting Galβ1-3GalNAc or Galβ1-4GlcNAc determinants (77). ST3Gal IV is strongly ex-
pressed in the placenta, testis and ovary (76). Cell type-specific transcriptional regulation has
been described for ST3Gal IV in epithelial and leukemia cell lines (93,94). Transfection with
ST3Gal IV has been shown to confer increased expression of sialyl Lewis x in Namalwa cells
(92), suggesting a possible role in the selectin ligand biosynthesis. ST3Gal IV, together with
Fuc-TVII, is rapidly upregulated upon activation of CD4+ T-cells, resulting in the synthesis of P-
selectin ligands and migration into inflamed tissue (95) (for selectins and selectin ligands see
section 2.3.1). ST3Gal IV is upregulated in the hippocampus of the mouse following kindled
seizures, suggesting that it may be involved in neural plasticity (96). ST3Gal IV-deficient mice
have a markedly reduced number of platelets and have a significant increase in bleeding time,
but the exact role of ST3Gal IV in hematopoiesis and hemostasis remains to be studied (97).

ST3Gal V (GM3 synthase)
GM3 synthase initiates the biosynthesis of the ganglio-series gangliosides by converting
lactosylceramide into GM3 (Neu5Acα2-3Galβ1-4Glcβ1-Cer) (98). ST3Gal V is expressed tis-
sue specifically, predominantly in the brain, skeletal muscle and testis (98). ST3Gal V has been
shown to localize to axons in addition to the Golgi in mouse and rat neurons (99).

ST3Gal VI
ST3Gal VI shows a strict acceptor specificity towards type 2 lactosamines (100). Both glycopro-
teins and glycolipids containing Galβ1-4GlcNAc serve as acceptors for ST3Gal VI, but those
containing Galβ1-3GlcNAc or Galβ1-3GalNAc do not. Free Galβ1-4GlcNAc oligosaccharide
reacts readily with ST3Gal VI, Galβ1-3GlcNAc reacts weakly and Galβ1-3GalNAc not at all.
Lactosylceramide is not an acceptor for ST3Gal VI (100).
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ααααα2,6-Sialyltransferases
ST6Gal I is the only known sialyltransferase that sialylates the 6-position of galactose (102,103).
ST6GalNAc I and ST6GalNAc II sialylate the GalNAc in GalNAcα1-Ser/Thr, Galβ1-
3GalNAcα1-Ser/Thr and Neu5Acα2-3Galβ1-3GalNAcα1-Ser/Thr (104-107). ST6GalNAc I and
ST6GalNAc II require glycopeptide acceptors; they are inactive towards oligosaccharides and
glycolipids containing the appropriate acceptor determinants (104,107). ST6GalNAc III has only
been cloned from the mouse and rat so far (108,109). ST6GalNAc III and ST6GalNAc IV sialylate
Neu5Acα2-3Galβ1-3GalNAc determinants in glycoprotein and glycolipid acceptors, but are
inactive towards non-sialylated Galβ1-3GalNAc (108,110). ST6GalNAc V seems to be specific
for GM1b (Neu5Acα2-3Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-Cer): it does not react with other
glycolipids, or glycoproteins containing the Neu5Acα2-3Galβ1-3GalNAc determinant.
ST6GalNAc V has only been cloned from the mouse so far, and it is expressed specifically in the
brain (111,112). Mouse ST6GalNAc VI sialylates GM1b, GT1b and GD1a, but not glycopro-
teins (113).

ααααα2,8-Sialyltransferases
ST8Sia I (GD3 synthase) is specific for GM3 (114-116). ST8Sia II (STX) and ST8Sia IV (PST)
are α2,8-sialyltransferases capable of synthesizing polysialic acid (117,118). Polysialic acid is
an α2,8-linked sialic acid polymer that occurs specifically on the embryonic form of the neural
cell adhesion molecule and a limited number of other proteins, as discussed in section 2.3.2.
ST8Sia III sialylates the sialic acid in Neu5Acα2-3Galβ1-4GlcNAc (119), and ST8Sia V sialylates
the α2,3-sialylated gangliosides GM1b, GD1a, GT1b and GD3, but not GM3 (120).

2.3. Glycan Function

Since sialylated and fucosylated epitopes are usually situated terminally in glycan structures,
they are in a position which is easily accessible to lectins. Moreover, sialic acid and fucose have
distinct structural characteristics that make them different from the monosaccharides that make
up the common core structures. Therefore it is not surprising that a large proportion of the known
glycan functions are associated with the sialylated and fucosylated structures. The next sections
describe some examples of these, concentrating on the best-characterized phenomena and recent
findings.

2.3.1. Functions of fucosylated glycans

The importance of fucosylated glycan structures is highlighted by the clinical manifestations of
LAD II (leukocyte adhesion deficiency II; also known as CDG-IIc, congenital disorder of
glycosylation IIc), a disorder where the GDP-fucose transporter, that provides the donor GDP-
fucose for all fucosyltransferases, is defective (121). LAD II patients are deficient in all fucosylated
glycans. Children suffering from LAD II have distorted facial features and frontal cerebral atro-
phy leading to severe psychomotor retardation. They suffer from growth retardation, general
failure to thrive, and immunodeficiency leading to recurrent infections (122-124).

The selectins and their fucosylated ligands mediate vascular cell adhesion
The selectins mediate the primary adhesion and rolling step of the leukocyte extravasation cas-
cade leading to leukocyte infiltration into inflamed tissue and homing to lymph nodes, reviewed
in (125,126). Three selectins are known: L-selectin that is constitutively expressed by most
leukocytes, P-selectin that is transported from storage vesicles to cell surface of endothelial cells
and platelets as a response to inflammatory mediators, and E-selectin whose expression is in-
duced on inflamed endothelium. All selectins bind to the sialyl Lewis x tetrasaccharide (127),
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Figure 3. Selectin ligand oligosaccharides
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but their high-affinity biological ligands are more complex structures carried by specific pro-
teins, and for a large part they are yet uncharacterized.

Several putative L-selectin glycoprotein ligands that carry sialylated and fucosylated oligosac-
charides have been characterized (126,128). The best known oligosaccharide structures occur-
ring on a L-selectin ligand are the O-glycans of mouse glycosylated cell adhesion molecule 1
(GlyCAM-1); the core 2 structures carrying 6- and 6�-sulfated sialyl Lewis x (Figure 3) (129).
However, mice that lack a core 2 GlcNAc-transferase show normal lymphocyte homing (130).
L-selectin ligands in these mice carry 6-sulfated sialyl Lewis x on an extended core 1 structure
(Figure 3) (131). These observations indicate that the core 2 structure is not indispensable for L-
selectin binding. CD34 is another L-selectin ligand glycoprotein. CD34 from human tonsillar
high endothelial venules carries a sialylated, sulfated and fucosylated O-glycan, with a proposed
structure where 6-sulfated sLex is β1,3-linked to the �core 1 galactose� (Figure 3) (132).

The best-characterized selectin-glycoprotein interaction is that between P-selectin and P-selectin
glycoprotein ligand 1 (PSGL-1). PSGL-1 glycosylation has been characterized from the human
promyelocytic cell line HL-60. PSGL-1 carries sialyl Lewis x on sialylated core 2, and a larger
structure containing trivalent Lex (Figure 3) (133). Sulfation at specific tyrosines of the protein
backbone is needed for binding to P-selectin (134). Binding studies and X-ray crystallography
using a glycopeptide model containing the tyrosine sulfations and the O-glycan indicate that
there is a stereospecific interaction between P-selectin and PSGL-1, to which each of the three
tyrosine sulfates, the peptide backbone, and fucose/sialic acid on an optimally positioned core 2
O-glycan each contribute distinctly (135,136). E-selectin has been shown to bind sialylated,
multiply fucosylated polylactosamines on glycoproteins such as ESL-1 (137,138), and glycolip-
ids (139).

Many fucosylated glycans are tumour-associated antigens
Elevated expression of several fucosylated antigens is associated with malignant transforma-
tion. These include Lex (140), dimeric Lex (141), sLex (142), sialyl dimeric Lex (140,143), Ley
(144), Lea (145), sLea (146), Leb (145), fucosyl GM1 (Fucα1-2Galβ1-3GalNAcβ1-4(Neu5Acα2-
3)Galβ1-4Glcβ1-Cer) (147) and globo H (Fucα1-2Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-
Cer) (148). sLex, sialyl dimeric sLex and sLea have been proposed to have a role in hematogeneous
metastasis of cancer, where malignant cells would adhere to the endothelial lining via E or P-
selectin in a manner analogous to leukocyte adhesion (149,150). The expression of these anti-
gens has been correlated with increased the metastatic potential of tumours and poor prognosis
for cancer patients (151-153).

Fucosylated glycans play roles in fertilization and embryonic development
The molecular details of mammalian gamete adhesion remain for the large part unresolved.
There is, however, substantial evidence that mammalian gamete adhesion is carbohydrate-medi-
ated (154). Fucosylated glycans, such as Lewis x and sialyl Lewis x, have been proposed to be
involved in high affinity sperm-egg adhesion (155,156).

The expression of many fucosylated oligosaccharide antigens is tightly regulated both spatially
and temporally during development (157). The Lewis x epitope first appears at the 8-16 cell
stage, thus correlating with the onset of compaction of the embryo (158). It has been proposed
that homotypic interaction between Lewis x epitopes is involved in embryonal compaction
(159,160).
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The expression of Lewis x is thought to have a role in neural development. Lewis x is transiently
expressed at defined regions of the developing brain, and often appears during critical stages of
development (161-163). The amount of Lewis x bearing glycolipids has been shown to dramati-
cally increase during the course of neural differentiation of PC19 embryonal carcinoma cells
induced by retinoic acid (65). Lewis x has been implicated in glial-neuronal cell adhesion (164),
and the segregation of cells to form different regions (165). It has not been established whether
these adhesion events are mediated by homotypic Lex-Lex adhesion, or by a yet uncharacterized
lectin with Lewis x binding activity. A glycoprotein bearing the Lewis x determinant is ex-
pressed in cell-cell contact- and the differentiation state-dependent fashion by corneal epithelial
cells during development (166). The Lewis x epitope is also selectively expressed by cell popu-
lations undergoing important morphogenetic steps during the development of the pancreas (167),
kidney (168) and lung (169).

Fuc-TI and its product the type 2 H-antigen define a unique expression pattern in the developing
prostate and regulate epithelial cell proliferation during prostatic branching morphogenesis (170).

O-linked fucose is involved in the regulation of cell signalling
The EGF modules of certain proteins are glycosylated by fucose directly O-linked to serine or
threonine (5). The Notch receptors function in cell-fate decisions, proliferation and apoptosis
during development (171). The Fringe family of glycosyltransferases modify the ability of Notch
to respond to its ligands by transferring a β1,3-linked GlcNAc to O-linked fucose on Notch
(172). This structure is then elongated into Neu5Acα2-3Galβ1-4GlcNAcβ1-3Fucα1-O-Ser/Thr
(172). O-linked fucose has also been shown to be essential for the growth factor activity of
urokinase-type plasminogen activator (173) and signalling activity of Cripto (174).

Bacteria use fucosylated glycans on host cell surface for adhesion
Many bacteria, viruses and toxins adhere to host cell surface carbohydrates. It has been sug-
gested that the evolutionary selection pressures of external origin, mediated by pathogens that
recognize glycans, are an important factor driving the diversification of glycans (175). A Lewis
b�binding adhesin has been characterized from Helicobacter pylori, a human pathogen that
causes gastric ulcers and cancer (176). The intracellular parasite that causes granulocytic erlichiosis
in humans specifically adheres to fucosylated PSGL-1 in a manner that mimics P-selectin bind-
ing (177). Fucosylated oligosaccharides of human milk inhibit the binding of various gastric
pathogenic agents such as enteropathogenic Escherichia coli (EPEC), Campylobacter jejuni,
and the heat stable enterotoxin of E. coli to their host cells (178). It has been postulated that the
great diversity of free oligosaccharides found in human milk serves to protect the infant from
bacterial infection.

Fucosylated glycans mediate angiogenesis
Fucosylated carbohydrate structures have been implicated to have a role in the induction of
angiogenesis. Selectins and their carbohydrate ligands seem to have a versatile role in the mul-
tiple events that occur during inflammatory responses. Monoclonal antibodies against sialyl
Lewis x and sialyl Lewis a inhibit capillary morphogenesis in a bovine in vitro model (179).
Furthermore, soluble E-selectin has been shown to induce chemotaxis of human endothelial
cells, and induce angiogenesis in rat cornea (180). On the basis of these observations it has been
proposed that after the binding of leukocytes to endothelial cells, E-selectin expressed on the
cell surface is cleaved and shed, and then recruits and activates endothelial cells (181). A selectin-
independent carbohydrate-mediated signalling system may also contribute to angiogenesis. A
carbohydrate structure that is recognized by an antibody against Lewis y and H-antigens is rap-
idly up-regulated on human endothelial cells by several cytokines and its amount is increased in
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rheumatoid arthritis synovial fluid. Glucose analogues of Lewis y and H trisaccharides are chemo-
tactic to human endothelial cells and induce angiogenesis in rat cornea (182).

2.3.2 Functions of sialylated glycans

The sialic acid-binding immunoglobulin superfamily lectins (Siglecs) mediate many dif-
ferent recognition and signalling phenomena
The Siglecs, sialic acid-binding immunoglobulin superfamily lectins, are a family of sialic-acid
binding lectins that have sequence homology and share structural similarities (183). Ten Siglecs
have been characterized to date (184). Their tissue expression, sialic acid recognition specifici-
ties and functions vary (Table III). The CD33-related Siglecs (Siglecs 3 and 5-10) contain con-
served immunoreceptor tyrosine-based inhibition motifs (ITIMs) in their cytoplasmic tails, sug-
gesting that they may be regulatory receptors in the immune system (184).

Siglecs 1-3 are expressed by different subsets of hematopoietic cells: Siglec 1 (sialoadhesin) by
subsets of macrophages (185), Siglec 2 (CD22) by mature resting B-cells (186,187), and Siglec
3 by (CD33) by myeloid progenitors, monocytes and macrophages (188). Sialoadhesin binds to
gangliosides and glycoproteins containing terminal α2,3-linked sialic acid (189), whereas CD22
binds specifically to Neu5Acα2-6Galβ1-4GlcNAc on N-glycans (190). Siglecs 1-3 are thought
to be involved in the regulation of the immune system. Sialoadhesin is thought to mediate inter-
actions of developing myeloid cells in the bone marrow (191) and lymphocyte trafficking (192).
CD22 is proposed to have roles in the regulation of B-cell signalling (193), and B-cell homing to
bone marrow (194). CD22-deficient mice show evidence of dysregulation of B-cell responses
and expanded numbers of peritoneal B-cells (195,196). Mice that lack ST6Gal I, and therefore
lack CD22 ligands, present a phenotype that partially overlaps with that of CD22 knock out
mice, including a severe immunodeficiency (197). CD33 has been proposed to have a regulatory
role in hematopoiesis and the myeloid cell maturation, since mAb-mediated crosslinking of
CD33 inhibits the proliferation of myelomonocytic cell precursors (198) and generation of den-
dritic cells from monocytes (199).

Siglec 4, also called myelin associated glycoprotein (MAG), is expressed by myelin forming
oligodendrocytes and Schwann cells (200,201). Various neuronal gangliosides bearing a termi-
nal Neu5Acα2-3Galβ1-3GalNAc determinant have been proposed to be ligands for Siglec 4
(202). Additional sialic acid residues linked to the inner core, especially Neu5Acα2,6 on the
GalNAc, enhance binding affinity (203). However, there is also evidence of glycoprotein ligands
(204,205). Siglec 4 participates in myelin-axon interactions. Siglec 4 deficient mice have altered
periaxonal architecture (206,207), and they exhibit demyelination and axonal degeneration when
they get older than 8 months (208). In addition to its apparent role in myelin organization, Siglec
4 has been shown to promote neurite outgrowth from neonatal neurons, but inhibit axonal growth
from adult neurons (209). The inhibition of neurite outgrowth is mediated by Siglec 4 binding to
ganglioside GT1b with subsequent activation of Rho-kinase (210).

The newly cloned Siglecs 5-10 are less well characterized when it comes to their binding speci-
ficity and function. Siglec 5 is expressed by neutrophils and monocytes (211). Siglec 6 is ex-
pressed at high levels in placenta, and at moderate levels in B-cells, spleen and small intestine
(212). Siglec 6 binds specifically to Neu5Acα2-6GalNAc (sialyl-Tn antigen) (212), whereas
Siglec 5 exhibits the least specificity of the Siglecs for sialic acid linkage: it binds to α2,8-linked
as well as to α2,3- and α2,6-linked Neu5Ac (189). Siglec 7 is a putative inhibitory receptor on
NK-cells (213,214). It recognizes gangliosides containing the disialyl sequence Neu5Acα2-
8Neu5Ac or an internal Neu5Acα2,6-branch (215,216). Siglecs 8-10 are specifically expressed
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by different subsets of hematopoietic cells and bind to both α2,3- and α2,6-sialyllactose (217-
219).

An eleventh Siglec has recently been cloned and named human Siglec-like molecule (Siglec-L1)
(220) and S2V (221). Interestingly, in this Siglec a conserved arginine known to be essential for
sialic acid binding has been mutated (220). The chimpanzee orthologue of Siglec-L1 retains the
arginine and is fully functional, showing a binding preference toward N-glycolylneuraminic
acid (220). It has been postulated that the mutation in human Siglec-L1 is evolutionarily related
to the loss of N-glycolylneuraminic acid in human evolution (see the discussion about modified
sialic acids below).

Table III. The Siglecs.

Siglec other names expression binding specificity function

Siglec 1 sialoadhesin macrophages Neu5Acα2,3 myeloid cell development?,
lymphocyte traffic?

Siglec 2 CD22 B-cells Neu5Acα2-3Galβ1-4 regulation of B-cell signaling
GlcNAc

Siglec 3 CD33 myeloid Neu5Acα2-3/6Gal hematopoeisis, myeloid cell
progenitors, maturation?
monocytes,
macrophages

Siglec 4 MAG myelin forming Neu5Acα2-3Galβ1-3 myelin stability, regulation of
cells (Neu5Acα2-6)GalNAc neurite outgrowth

Siglec 5 OB-BP2 neutrophils, Neu5Acα2,3/6/8 ?
monocytes,
macrophages,
B-cells

Siglec 6 OB-BP1, placenta, B-cells Neu5Acα2-6GalNAc ?
CD33L

Siglec 7 p75/AIRM1 NK cells, Neu5Acα2-8Neu5Ac
monocytes, or internal Neu5Acα2,6 regulation of NK cell activa-
dendritic cells tion?

Siglec 8 eosinophils Neu5Acα2,3/6 ?

Siglec 9 neutrophils, terminal Neu5Acα2,3/6 ?
monocytes,
NK cells, B-cells

Siglec 10 eosinophils, Neu5Acα2,3/6 ?
dendritic cells,
NK cells, B-cells
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Gangliosides modulate signal transduction
Gangliosides are thought to have roles in cell-cell recognition, cell-matrix interactions, and growth
and differentiation of cells, especially neurons, but most of these events are poorly characterized
at the molecular level, reviewed in (222,223). The functions of gangliosides as Siglec ligands
were discussed in the previous section. An emerging theme of ganglioside function is their roles
as receptor modulators. Gangliosides and tyrosine kinase receptors associate with each other in
specialized microdomains of the cell membrane (224). Many of the experiments described be-
low involve incubation of cells with exogenous gangliosides. The results obtained this way
should be interpreted with caution, as culture conditions may affect the incorporation of ganglio-
sides, and depending on the cell line, many exogenously added gangliosides become rapidly
metabolized into others. Therefore it is not uncommon that conflicting results about the effect of
gangliosides on growth factor receptors are obtained (225,226)

Exogenously added ganglioside GM1 has neurotrophic and neuritogenic effects both in vivo and
in vitro (227-229). These effects are mediated by potentiation of the action of nerve growth
factor (NGF): GM1 facilitates the dimerization and autophosphorylation of the NGF receptor
tyrosine kinase A (TrkA) (230). Depletion of PC12 cells of glycosphingolipids inhibits the ac-
tion NGF and abolishes TrkA autophosphorylation. These effects can be reversed by addition of
GM1 to the culture medium, but not by other gangliosides (231). GM3 inhibits epidermal growth
factor (EGF) -stimulated phosphorylation of the EGF receptor (232). The role of GM3 in the
negative regulation of EGF signalling is supported by studies showing that cells with decreased
amounts of gangliosides, especially GM3, either because of a metabolic defect in ganglioside
biosynthesis (233) or overexpression of a specific sialidase (234) show increased EGF receptor
autophosphorylation. Specific gangliosides have also been proposed to modulate signalling
mediated by PDGF (235), interleukin-2 (236), bFGF (237), insulin (238), and VEGF (239).

Sialylation influences the activity and survival of T-cells
CD8 on immature T-cells binds the PNA lectin, which is specific for the core 1 (Galβ1-3GalNAc)
structure (240). When T-cells mature, PNA-binding is lost due to sialylation of Galβ1-3GalNAc
by ST3Gal I (82,241). Mature T-cells show a diminished ability to bind soluble class I MHC
tetramers as compared to immature T-cells. This switch has been attributed to the Neu5Acα2-
3Galβ1-3GalNAc structure on mature T-cells (242,243). Alteration in the domain-domain asso-
ciation or orientation of the CD8αβ coreceptor stalk by the carbohydrate have been proposed as
a possible mechanism for the change in avidity (243). Activation of T-cells is associated with
desialylation of core 1 O-glycans and concomitant increase in core 2 biosynthesis (82). The
activated T-cells bearing core 2 O-glycans are destined for either apoptosis mediated by galectin-
1 (244,245), or differentiation into memory cells, which is accompanied by the reappearance of
sialylated core 1 O-glycans as the predominant O-glycan structure (81). ST3Gal I-deficient mice
show increased apoptosis of CD8+ T-cells (81). These observations show that the Neu5Acα2-
3Galβ1-3GalNAc structure generated by ST3Gal I has an important role in the regulation of T-
cell activity and homeostasis.

A sialylated glycan regulates cell adhesion mediated by ααααα-dystroglycan binding to laminin
α-Dystroglycan carries an unusual mannose-linked O-glycan, which is elaborated by a sialylated
N-acetyllactosamine: Neu5Acα2-3Galβ1-4GlcNAcβ1-2Manα1-Ser/Thr (246,247). This struc-
ture is essential for the binding of α-dystroglycan to laminin (246). Mutation of the β1,2-N-
acetylglucosaminyltransferase involved in the biosynthesis of this structure causes muscular
dystrophy and neuronal migration disorder (248).



25

Sialylated glycans and microbial pathogenesis
The attachment of bacteria, their toxins, and viruses to host tissue is considered to be essential
for the pathogenic processes elicited by these agents. Many bacteria, toxins and viruses use
sialylated glycans on host cell surface as receptors (249-251). Some examples are presented
below.

Bacterial adhesins
In addition to binding to Lewis b, as mentioned in section 2.3.1, Helicobacter pylori has at least
two different sialic acid-binding specificities, but the identity of the sialic acid-binding adhesins
and their detailed specificities remain obscure. The first binding specificity is towards Neu5Acα2-
3Gal and it is expressed when bacteria are grown on agar (252,253). The second binding speci-
ficity remains, when the bacteria are grown in broth and it is associated with Neu5Acα2-3Gal on
complex polyglycosylceramides (254,255). The specific binding of H. pylori to sialylneolacto-
hexaosylceramide and sialylneolacto-octaosylceramide isolated from human gastric adenocar-
cinoma has been demonstrated (256). S-fimbriated E. coli which cause meningitis in infants
bind to glycoproteins carrying Neu5Acα2-3Gal on O-glycans (257). Interestingly, certain strains
of Streptococcus suis which cause meningitis in piglets, similarly bind to terminal Neu5Acα2-
3Gal, but in the context of a polylactosamine chain (258). Other sialic acid-binding bacteria
include Mycoplasma pneumoniae, which binds to gangliosides (259), and Haemophilus
influenzae, which binds to sialylated polylactosamines (260).

Bacterial toxins
Cholera toxin and the heat-labile enterotoxin from Escherichia coli bind to GM1 ganglioside,
whereas tetanus toxin requires the internal disialyl sequence found in the GT1b series of gan-
gliosides (261). Clostridium botulinum neurotoxins use gangliosides such as GT1b and GD1a as
coreceptors together with synaptotagmin (262). Pertussis toxin from Bordetella pertussis binds
to sialic acid on glycoproteins (263,264).

Viruses
The binding specificity of influenza virus hemagglutinin is dependent on the species of origin of
the virus; most human influenza virus isolates preferentially bind to Neu5Acα2-6Gal (265,266).
Influenza pandemics have been accompanied by the evolution of the receptor binding site from
the narrower type found in avian viruses, that preferentially accommodates the α2,3-linkage, to
the wider type with the preference to α2,6-linkage, found in human isolates (267). Specific
recognition of larger ganglioside structures by influenza viruses has been implicated, although
the detailed structure of the receptor remains unclear (268). Sendai virus binds to gangliosides
containing the Neu5Acα2-3Galβ1-3GalNAc sequence, and shows highest affinity towards GQ1b
(269). Mouse polyomavirus binds to α2,3-linked sialic acid (270), whereas the human
polyomavirus JC binds to α2,6-linked sialic acid (271).

Molecular mimicry
Sialic acid is also used by pathogens as a means of evading host immune response. Some bacte-
ria make polysaccharides that resemble or are identical to host glycoconjugates, which makes
them poorly immunogenic. Examples include the polysialic acid containing capsule of certain
strains of Neisseria meningitidis and E. coli (272), and the α2,3-sialylated lipo-oligosaccharide
of N. meningitidis and N. gonorrhoeae (273).
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Sialylated glycans as tumour-associated antigens
As mentioned earlier in the context of fucosylated oligosaccharides, aberrant glycosylation is a
feature often associated with malignant transformation. A general increase in cell surface
sialylation has been shown to correlate with metastatic potential (274,275).

An altered ganglioside profile is a common feature of many types of tumours. For example, GD3
expression is often enhanced in tumours as compared to normal tissue (276), and high level of
GD3 has been associated with malignancy of the tumour (277) and poor survival of patients
(278). Suppression of GD3 synthesis reduces cell migration, tumour growth, metastasis, angio-
genesis, and vascular endothelial growth factor production of rat neuroblastoma cells (279,280).
This indicates that gangliosides, specifically GD3, are involved in the regulation of tumour
growth, possibly by stimulating angiogenesis. Other cancer-associated gangliosides include GD2
(281), GM2 (282,283), GT3 (282), and α2,6- and α2,3-sialylated lacto- and neolactoseries gan-
gliosides (284-286). Tumour cells have been observed to shed gangliosides (287,288), which
may have immunosuppressive activity (289-291).

In addition to gangliosides, the expression of many protein-associated carbohydrate antigens is
altered in cancer. Enhanced expression of the sialyl T (292) and sialyl Tn (293,294) antigens,
resulting from underprocessing of O-glycans (295), is a common feature of many cancer cells.
Re-expression of polysialic acid on neuronal cell adhesion molecule (NCAM) has been reported
in some tumours (296,297) (normally NCAM is polysialylated only in fetal tissues, as discussed
below). Sialylated glycoconjugates bearing N-glycolylneuraminic acid are found on some hu-
man tumours (298). This is rather unexpected, since as discussed in the section �modified sialic
acids�, the human CMP-Neu5Ac hydroxylase gene has an exon deletion.

Polysialic acid modulates the function of the neuronal cell adhesion molecule
Polysialic acid, a linear homopolymer of α2,8-linked sialic acid, occurs in mammals almost
exclusively on one protein, the embryonic form of NCAM (272). Polysialic acid modulates cell
adhesion mediated by NCAM during cell migration, axon pathfinding and synaptogenesis, and
thus has important functions in the development of the nervous system (299). NCAM is the
major polysialic acid carrying protein in mammals, but this modification also occurs on the
sodium channel α-subunit (300), on the polysialyltransferases that are responsible for its biosyn-
thesis (301), and on integrin α5 subunit, where it mediates binding to fibronectin (302).

Modified sialic acids
The term �sialic acid� is commonly used to refer to N-acetylneuraminic acid (Neu5Ac), al-
though in fact the sialic acids are a family of 9-carbon acidic sugars (303). The most common
sialic acids in mammals are N-acetylneuraminic acid (Neu5Ac), 9-O-acetylated N-
acetylneuraminic acid (Neu5,9Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans are ex-
ceptional, because a mutation in CMP-sialic hydroxylase has resulted in the loss of Neu5Gc,
making Neu5Ac the predominant sialic acid in humans (304). The sialic acid modifications
affect the biological functions of the molecules carrying them. For example, 9-O-acetylation is
developmentally regulated, and also regarded as an onco-developmental antigen - it has been
shown to reappear in cancer tissue (305,306). The presence of 9-O-acetylated N-acetylneuraminic
acid or N-glycolylneuraminic acid also affects sialic acid recognition by pathogens (307,308)
and endogenous lectins like Siglecs (189,220,309,310)
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 3. AIMS OF THE STUDY

The aim of this study was to study the function of fucosyl- and sialyltransferases by

1. Determining the detailed acceptor specificity profiles of Fuc-TV (I) and Fuc-TIX (II), as well
as their site-specificities on polylactosamine acceptors.

2. Studying enzymatic synthesis of the Neu5Acα2-3GalNAc linkage (III).

and additionally to use the oligosaccharide containing Neu5Acα2-3GalNAc generated by ST3Gal
II to study its susceptibility to sialidases (III).
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4. MATERIALS AND METHODS

4.1 Acceptor oligosaccharides

LN (I,II), Galβ1-3GlcNAc (I,II), chitobiose (I,II) and Galβ1-4�LN (II) were from Sigma. Manβ1-
4GlcNAc (I), Fucα1-2�LN (II) Neu5Acα2-6�LN (II) and GalNAcβ1-3Gal (III) were from Dextra
(Reading, UK). Chitotriose (I) and chitotetraose (I) were from Seikagaku (Tokyo, Japan). Lac-
tose (II) was from BDH Chemicals (Poole, UK). 2'-Fucosyllactose (II) was from Biocarb (Lund,
Sweden). Neu5Acα2-3�LN (I,II) was from Oxford Glycosystems (Abingdon, UK). Globo-N-
tetraose (III) was from Accurate Chemical and Scientific Corporation (Westbury, NY).

LNβ1-OMe (I), LNβ1-2Man (I,II), LNβ1-6Gal (I,II), LNβ1-3Galβ1-OMe (I,II), LNβ1-6Manα1-
OMe (I, II), LNβ1-4GlcNAc (I) and 6-SO3-LN (II) were synthesized by using bovine milk β1,4-
galactosyltransferase (Sigma) from GlcNAcβ1-OMe (Sigma), GlcNAcβ1-2Man (Glyko, Novato,
CA), GlcNAcβ1-6Gal (Sigma), GlcNAcβ1-3Galβ1-OMe (Sigma), GlcNAcβ1-6Manα1-OMe
(Sigma), chitobiose and 6-SO3-GlcNAc (Sigma), respectively, essentially as described in (311).

GalNAcβ1-4GlcNAc (I) and GalNAcβ1-4GlcNAcβ1-OMe (I, II) were synthesized from GlcNAc
(Sigma) and GlcNAcβ1-OMe, respectively, by bovine milk β1,4-galactosyltransferase using
UDP-GalNAc as a donor, as described in (312).

GlcNAcβ1-3�LN (I,II), LNβ1-3�LN (I,II), LNβ1-3�LNβ1-OMe (I), LNβ1-3�LNβ1-3Galβ1-OMe
(I), GlcNAcβ1-3�LNβ1-3�LN (II) and LNβ1-3�LNβ1-3�LN (I) were synthesized by consecutive
β1,4-galactosyltransferase and β1,3-GlcNAc-transferase (human serum) reactions as described
in (313).

Galβ1-3(LNβ1-6)GalNAc (I,II) was synthesized from Galβ1-3GalNAc (Sigma) by using β1,6-
GlcNAc-transferase (hog gastric mucosa) and bovine milk β1,4-galactosyltransferase as described
in (314). LNβ1-3'(LNβ1-6')LN (I,II) was synthesized from LN by using human serum β1,3-
GlcNAc transferase, hog gastric β1,6-GlcNAc transferase and bovine milk β1,4-galactosyl-
transferase as described in (315).

Galβ1-3GlcNAcβ1-3�LNβ1-3Galβ1-OMe (I) was prepared by galactosylating GlcNAcβ1-
3LNβ1-3Galβ1-OMe with β1,3/4-galactosyltransferase activity present in Colo 205 cells, treat-
ing the resulting mixture with β1,4-galactosidase from Diplococcus pneumoniae to remove se-
lectively the β1,4-linked galactose from LNβ1-3�LNβ1-Galβ1-OMe, and purifying the intact
Galβ1-3GlcNAcβ1-3�LNβ1-3Galβ1-OMe from the mixture by gel filtration chromatography.

Lexβ1-3�LN (I) was obtained from LNβ1-3�LN by successive β1,6-GlcNAc-transferase (hog
gastric mucosa), α1,3-fucosyltransferase (recombinant human Fuc-TVI, Calbiochem, La Jolla,
CA) and β-N-acetylhexosaminidase (jack bean, Sigma) reactions, as described in (316). LNβ1-
3�Lexβ1-3Galβ1-OMe (I) and LNβ1-3�LNβ1-3�Lex (I) were synthesized from GlcNAcβ1-
3�LNβ1-3Galβ1-OMe and GlcNAcβ1-3�LN, respectively, by first fucosylating with α1,3-
fucosyltransferase (recombinant human Fuc-TVI) and then elongating the chains to their full
length with β1,4-galactosyltransferase (bovine milk) and β1,3-GlcNAc-transferase (human se-
rum) reactions, essentially as described in (317,318). Lexβ1-3�LNβ1-3�LN (I) was synthesized
by first �protecting� the two most reducing end LN units by β1,6-GlcNAc transferase present in
rat serum, then fucosylating the free non-reducing end LN unit with recombinant human Fuc-
TVI, and finally removing the β1,6-linked GlcNAc:s by β-N-acetylhexosaminidase (jack bean).
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LNβ1-3�LNβ1-3�LNβ1-3�LN (I,II) was chemically synthesized as described in (319).

LNβ1-2Manα1-3(LNβ1-2Manα1-6)Manβ1-4GlcNAc (I,II) and LNβ1-2(LNβ1-4)Manα1-
3[LNβ1-2(LNβ1-6)Manα1-6]Manβ1-4GlcNAc (I) were a gift from Prof. G. Strecker (Université
des Sciences et Technologies de Lille, Villeneuve D�Ascq, France). LNβ1-2(LNβ1-4)Manα1-
3(LNβ1-2Manα1-6)Manβ1-4GlcNAc (I) was prepared from the corresponding α2,6-sialylated
oligosaccharide (also from Prof. Strecker) by desialylation with Arthrobacter ureafaciens sialidase.

All the α2,3-sialylated acceptors in parts I and II were synthesized from the corresponding neu-
tral oligosaccharides by using recombinant rat ST3Gal III (Calbiochem). Neu5Acα2-3�Lexβ1-
3�LN (II) was synthesized in the same way as Lexβ1-3�LN, but with a sialylation step preceding
fucosylation, as described in (318).

GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc (III) was synthesized from Galβ1-4GlcNAcβ1-
3Galβ1-4Glc (a gift from Prof. R. Cummings, University of Oklahoma) essentially as described
in (320), by using ammonium sulphate precipitate of human serum as the enzyme source (321),
and UDP-GalNAc as the donor.

4.2 Glycosyltransferase reactions

4.2.1 Fucosyltransferase assays (I, II)

GDP-[14C]fucose (100 000 cpm, Amersham Pharmacia Biotech), GDP-fucose (1 nmol, Sigma)
and the individual acceptors (50 nmol) were incubated for 1 h at 37 °C in 10 µl of 50 mM MOPS
pH 7.2, 10 mM fucose, 5 mM ATP and 0.5% Triton X-100 and lysates of transfected cells (30-
50 µg protein). Fuc-TV transfected CHO cells (I) were prepared as described in (15), and they
contained 17-25 µU fucosyltransferase activity per mg lysate protein (1 U = 1 µmol/min).  Fuc-
TIX transfected Namalwa cells (II) were prepared as described in (58), and they contained 53-
100 µU fucosyltransferase activity per mg lysate protein. The Fuc-TV reaction mixtures, but not
the Fuc-TIX reaction mixtures, also contained 10 mM MnCl2. The reactions were terminated by
adding 10 µl of ethanol followed by 100 µl of ice cold water. To rule out possible activation of
endogenous fucosyltransferase activity the substrate specificity of each batch of Fuc-TV trans-
fected CHO cell lysates was tested with LN, LNB and Neu5Acα2-3�LN before the actual ex-
periments to ascertain that the reactivity profile with these acceptors conformed to the unique
specificity of Fuc-TV. Fuc-TIX experiments were carried out with a single batch of Namalwa
cells lysates. The specificity profile was indicative of Fuc-TIX and no other known α1,3-
fucosyltransferase. In both series of experiments the acceptors were monitored by gel filtration
chromatography with UV-detection after incubation. No significant acceptor degradation by
glycosidases was observed.

4.2.2 Sialyltransferase reactions (III)

ST3Gal II reactions. 600 nmol of acceptor oligosaccharide and 2.4 µmol of CMP-Neu5Ac were
incubated with 40 mU of rat recombinant ST3Gal II (α2,3-(O)-sialyltransferase, Calbiochem) in
50 mM sodium cacodylate pH 6.0, 0.02% NaN3, 0.05% BSA and 8 mM MnCl2 in a reaction
volume of 600 µl for 6 days at room temperature. 20 mU of fresh enzyme was added on day 3.
The reactions were terminated by boiling for 3 minutes.

ST3Gal III reactions. 49 nmol of acceptor oligosaccharide and 100 nmol of CMP-Neu5Ac were
incubated with 3.2 mU of rat recombinant ST3Gal III (α2,3-(N)-sialyltransferase, Calbiochem)
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in 100 mM MOPS-NaOH pH 7.5, 0.02% NaN3, and 8 mM MnCl2 in a reaction volume of 12.5
µl for 6 days at room temperature.

4.3 Glycosidase reactions

4.3.1 βββββ-Galactosidase reactions (I, II)

Jack bean β-galactosidase (Sigma or Seikagaku) reactions were carried out as described in (322).

4.3.2 βββββ-N-Acetylhexosaminidase reactions

Jack bean β-N-acetylhexosaminidase (Sigma) reactions used in the structural analysis of α1,3-
fucosyltransferase products (I, II) were carried out as described in (322). Jack bean β-N-
acetylhexosaminidase reactions used to characterize the GalNAc-terminating oligosaccharides
in part II were carried out in a similar manner but in the exhaustive conditions described in
(323).

4.3.3 Endo-βββββ-galactosidase reactions (I, III)

Endo-β-galactosidase digestions with Bacteroides fragilis (Roche Molecular Biochemicals, Basel
Switzerland) and Escherichia freundii (Seikagaku) endo-β-galactosidases were performed as
described in (324).

4.3.4 Sialidase reactions

Sialidase reactions in part III were performed in 40 µl reaction volume and 75 µM substrate
concentration. The reactions were incubated for 20 h at 37°C and terminated by boiling for 3
minutes. Clostridium perfringens sialidase (New England Biolabs, Beverly, MA) reactions
were carried out in 50 mM Na-phosphate buffer pH 4.5 with 167 mU of enzyme; Newcastle
disease virus sialidase (Roche molecular biochemicals) reactions in 50 mM Na-phosphate
buffer pH 5.5 with 8 mU of enzyme; and Streptococcus pneumoniae sialidase (Calbiochem)
reactions in 50 mM Na-phosphate buffer pH 4.5 with 20 mU of enzyme.

Arthrobacter ureafaciens sialidase (Glyko) (I, II, III) reactions were carried out as described
in (325).

4.4 Chromatographic methods

4.4.1. Paper chromatography (I, II)

Descending paper chromatography of radiolabelled oligosaccharides was carried out as described
in (326), using the upper phase of n-butanol:acetic acid:water (4:1:5) (solvent A) as the eluant.

4.4.2 Gel filtration chromatography

Gel filtration in a Superdex Peptide HR 10/30 column (Amersham Pharmacia Biotech) was
carried out as described in (34).
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4.4.3 Ion exchange chromatography

The acceptors and reaction products of fucosyltransferase assays (I, II) were desalted and sepa-
rated from unreacted donor in a mixed bed of ion exchange resins (Dowex AG-50 and Dowex
AG-1 from Bio-Rad). The neutral oligosaccharides were eluted with water and the anionic oli-
gosaccharides were eluted with 0.5 mM acetic acid as described in (38).

Anion exchange chromatography in a MonoQ (5/5) column (Amersham Pharmacia Biotech) (I,
II, III) was carried out essentially as described in (314).

4.5 NMR spectroscopy (III)

Prior to the NMR experiments the saccharides (400-600 nmol) were lyophilized twice from D2O
and then dissolved in 40 µL of D2O (99.996 atom %). The NMR experiments were carried out
on a Varian Unity 500 spectrometer at 23°C using a gHX nano-NMR probe (Varian). A spinning
rate of 2000 Hz was used. In recording 1D proton spectra a modification of the WEFT sequence
(327) was used. The DQFCOSY and TOCSY experiments were carried out essentially as in
(328).

For the gradient HMQC (329) and gradient HMBC experiments (330,331) (32 and 128 scans
per t1 value, respectively), matrices of 2k*256 and 2k*128 points were recorded and zero-filled
to 2k*512 and 2k*256 points, respectively and a shifted sine-bell function was used. The aver-
age 1H-13C coupling constant was estimated to be 140 Hz and ∆2 was 63.5 ms. The spectral
widths F1 and F2 were 11250 Hz and 2400 Hz respectively.

4.6 Mass spectrometry

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of
reaction products was performed with a BIFLEX  mass spectrometer (Bruker-Franzen Analytik,
Bremen, Germany). The neutral oligosaccharides were analyzed essentially as in (318) and the
sialylated oligosaccharides as in (332,333).
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5. RESULTS

5.1 The acceptor specificity of Fuc-TV (I)

Lysates of CHO cells transfected with full-length human Fuc-TV reacted efficiently with N-
acetyllactosamine (LN). The transfer rate was 1.0-1.5 nmol fucose per hour per mg lysate pro-
tein at 5 mM acceptor concentration (33-50 µg lysate protein, 0.55-1.3 µU fucosyltransferase
activity). The relative Fuc-TV reactivities of various oligosaccharides, together with their Fuc-
TIX reactivities, are shown in Table IV. It can be noted that Fuc-TV reacted efficiently with N-
acetyllactosamine and GalNAcβ1-4GlcNAc (LacdiNAc). The reactivity of the type I lactosamine,
Galβ1-3GlcNAc, with Fuc-TV was 13% of the reactivity of the type 2 lactosamine. Chitobiose
and Manβ1-4GlcNAc were very poor acceptors.

The addition of a β1,3-linked GlcNAc on the non-reducing side of LN greatly enhanced its
reactivity. Sialylation tended to enhance the reactivity as well: most α2,3-sialylated acceptors
reacted better than the corresponding neutral ones.

The O-glycan analogue Galβ1-3(LNβ1-6)GalNAc was a good acceptor for Fuc-TV. LNβ1-2Man
was quite an inefficient acceptor, whereas LNβ1-6Manα1-OMe reacted much more efficiently.
The relative reactivities of LNβ1-6Gal and LNβ1-3Galβ1-OMe further supported the idea that
LN units linked to the 6-position of the adjacent monosaccharide are favoured as acceptors. The
Fuc-TV reactivities of the N-glycan analogs LNβ1-2(LNβ1-4)Manα1-3[LNβ1-2(LNβ1-
6)Manα1-6]Manβ1-4GlcNAc and LNβ1-2(LNβ1-4)Manα1-3(LNβ1-2Manα1-6)Manβ1-
4GlcNAc were 130% and 140% respectively of the reactivity of a single unconjugated LN.

5.2 The acceptor specificity of Fuc-TIX (II)

The relative reactivities of various oligosaccharide acceptors with Fuc-TIX are shown in Table
IV. Lysates of Namalwa cells transfected with full-length human Fuc-TIX reacted efficiently
with N-acetyllactosamine (LN). The transfer rate was 3.2-6.0 nmol fucose per hour per mg
lysate protein at 5 mM acceptor concentration  (28 µg lysate protein, 1.5-2.8 µU fucosyltransferase
activity). In addition to LN, GalNAcβ1-4GlcNAcβ1-OMe, 6-SO3-LN and Fucα1-2�LN reacted
well, and chitobiose (GlcNAcβ1-4GlcNAc) appreciably well. Type 1 N-acetyllactosamine (Galβ1-
3GlcNAc), lactose, Fucα1-2�Lac, Galβ1-4�LN, Neu5Acα2-6�LN and Neu5Acα2-3�LN were
virtually unreactive.

The addition of β1,3-linked GlcNAc to the non-reducing end of the acceptor LN unit reduced its
reactivity slightly, as did the addition of Gal to the reducing end as could be seen with LNβ1-
6Gal and LNβ1-3Galβ1-OMe. In contrast to Fuc-TV, Fuc-TIX preferred LNβ1-3Galβ1-OMe to
LNβ1-6Gal.

The N-glycan analogue LNβ1-6Manα1-OMe showed the highest reactivity of all the tested gly-
cans. LNβ1-2Man and LNβ1-2Manα1-3(LNβ1-2Manα1-6)Manβ1-4GlcNAc reacted moder-
ately well. LNβ1-2Man was a better acceptor for Fuc-TIX than for Fuc-TV. The O-glycan ana-
logue Galβ1-3(LNβ1-6)GalNAc also had a high reactivity.
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Table IV. Comparison of the relative reactivities of small oligosaccharide acceptors with Fuc-
TV and Fuc-TIX.

Acceptor Relative Fuc-TV Relative Fuc-TIX
reactivity reactivity

Galβ1-4GlcNAc (LN) 1.0 1.0
Galβ1-4GlcNAcβ1-OMe 1.0 n.d.
Galβ1-3GlcNAc (LNB) 0.13 0.04
Galβ1-4Glc n.d. 0.01
GlcNAcβ1-4GlcNAc 0.04 0.20
GalNAcβ1-4GlcNAc 0.82 n.d.
GalNAcβ1-4GlcNAcβ1-OMe 1.2 0.84
Manβ1-4GlcNAc 0.03 n.d.

6-SO3-LN n.d. 0.40
Neu5Acα2-3�LN 1.7 0.05
Neu5Acα2-6�LN n.d. 0.02

Fucα1-2�Lac n.d. 0.03
Fucα1-2�LN n.d. 0.51
GlcNAcβ1-3�LN 3.5 0.71
Galβ1-4�LN n.d. 0.18
Galβ1-4GlcNAcβ1-4GlcNAc 0.9 n.d.

LNβ1-6Gal 1.4 0.50
LNβ1-3Galβ1-OMe 0.39 0.81

LNβ1-2Man 0.2 0.46
LNβ1-6Manα1-OMe 1.6 1.1
LNβ1-2Manα1-3(LNβ1-2Manα1-6)
Manβ1-4GlcNAc 0.37 0.71
LNβ1-2(LNβ1-4)Manα1-3[LNβ1-2
(LNβ1-6)Manα1-6]Manβ1-4GlcNAc 1.3 n.d.
LNβ1-2(LNβ1-4)Manα1-3(LNβ1-2
Manα1-6)Manβ1-4GlcNAc 1.4 n.d.
Galβ1-3(LNβ1-6)GalNAc 3.0 0.87

Neu5Acα2-3�LNβ1-6Gal 3.8 n.d.
Neu5Acα2-3�LNβ1-3Galβ1-OMe 1.1 n.d.
Neu5Acα2-3�LNβ1-2Man 0.6 n.d.
Neu5Acα2-3�LNβ1-6Manα1-OMe 3.7 n.d.
Neu5Acα2-3Galβ1-3(LNβ1-6)GalNAc 2.5 n.d.

The figures represent the mean values of at least two experiments.
n.d. not determined

5.3 The site-specificity of Fuc-TV on polylactosamines (I)

The Fuc-TV products were degraded by sialidase (only the sialylated saccharides) and then by a
mixture of β-galactosidase and β-N-acetylhexosaminidase to determine which GlcNAc residue
was fucosylated in the multisite acceptors. The latter digestion removes all fucose-free LN units
from the non-reducing end of the desialylated polylactosamines, but is unable to act on α1,3-
fucosylated LN units. Thus, the desialylated chains were shortened in a way that established the
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positions of the α1,3-fucosylated LN units. Products of these digestions were analyzed by paper
chromatography to derive the site-specificity data shown in Figure 4.

Fuc-TV clearly preferred the most reducing end LN unit in all the polylactosamine acceptors. It
is noteworthy that while the reactivities of the LN units at the non-reducing ends of the
polylactosamine acceptors were significantly lower than that of free LN, the reactivity of the
LNB unit (Galβ1-3GlcNAc) in LNBβ1-3LNβ1-3Galβ1-OMe was essentially the same as that
of free LNB. As was the case with the smaller acceptors, α2,3-sialylated acceptors reacted better
than corresponding neutral ones.

Figure 4. The site-specificity of Fuc-TV on polylactosamine acceptors. The bars and the values
above them represent the relative reactivities of the individual acceptor sites as compared to that
of free LN (1.0). The site-specificity analyses were carried out by treating the fucosyltransferase
reaction products with β-N-acetylhexosaminidase and β-galactosidase, and analyzing the di-
gests by paper chromatography as described in sections 4.3 and 4.4.
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When prefucosylated polylactosamines were used as acceptors, it was noted that the Lewis x
determinant reduces the reactivity of the LN unit adjacent to it on the reducing end side, but
enhances the reactivity of the LN unit adjacent to it on the non-reducing end side. In the branched
N-acetyllactosamines Fuc-TV showed a preference towards the β1,3-linked branch.

5.4 The site-specificity of Fuc-TIX on polylactosamines (II)

The site-specificity of Fuc-TIX was analyzed as described for Fuc-TV above (Figure 5). When
multiple LN units were available, as in LNβ1-3�LN and LNβ1-3�LNβ1-3�LNβ1-3�LN, Fuc-
TIX strongly preferred the terminal, non-reducing end site. Interestingly, both LN units of
GlcNAcβ1-3�LNβ1-3�LN reacted equally well. Sialylation partially reversed the site-specificity
of Fuc-TIX, as demonstrated by the good reactivity of the two most reducing end LN units in
Neu5Acα2-3�LNβ1-3�LNβ1-3�LNβ1-3�LN, as compared to the poor reactivity of the two LN
units adjacent to Neu5Ac. Fuc-TIX showed a preference for the β1,3-linked arm over the β1,6-
linked arm of the branched acceptor. The LN unit at the branch point did not react at all.

5.5 Sialylation of GalNAcβββββ1-3Gal determinants by ST3Gal II (III)

The X2 pentasaccharide (GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc), globo-N-tetraose
(GalNAcβ1-3Galα1-4Galβ1-4Glc) and the disaccharide GalNAcβ1-3Gal were incubated indi-
vidually with CMP-Neu5Ac and ST3Gal II. Purified sialylation products were initially analyzed
by MALDI-TOF mass spectrometry, where they gave peaks at m/z 1200.44, 997.28 and 673.06,
respectively, which were assigned to the [M-H] - of Neu5Ac1HexNAc2Hex3,
Neu5Ac1HexNAc1Hex3 and Neu5Ac1HexNAc1Hex1, respectively.

The sialylation product of GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc was not cleaved by β-
N-acetylhexosaminidase, suggesting a non-reducing end location of the sialic acid. Endo-β-
galactosidase cleaved the sialylated product of GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc
into Neu5Ac1HexNAc1Hex1 and HexNAc1Hex1, as analyzed by mass spectrometry.

Figure 5. The site-specificity of Fuc-TIX on
polylactosamine acceptors. The bars and the val-
ues above them represent the relative reactivities
of the individual acceptor sites as compared to that
of free LN (1.0). The site-specificity analyses were
carried out by treating the fucosyltransferase reac-
tion products with β-N-acetylhexosaminidase and
β-galactosidase, and analyzing the digests by pa-
per chromatography as described in sections 4.3 and
4.4.
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The structures of the sialylated reaction products were analyzed in detail by NMR spectroscopy.
The positions of the glycosidic linkages were identified by the correlations in the HMBC spec-
tra, which were indicative of the structures Neu5Acα2-3GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-
4Glc, Neu5Acα2-3GalNAcβ1-3Galα1-4Galβ1-4Glc and Neu5Acα2-3GalNAcβ1-3Gal.

ST3Gal III was inactive towards GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc.

5.6 The Neu5Acααααα2-3GalNAc linkage is resistant to Newcastle disease virus and Streptococ-
cus pneumoniae sialidases (III)

Neu5Acα2-3GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc was incubated with different
sialidases in conditions that completely cleaved off the sialic acid from Neu5Acα2-3Galβ1-
4GlcNAcβ1-3Galβ1-4GlcNAc. The reaction products were analyzed by gel filtration chroma-
tography and MALDI-TOF mass spectrometry. Clostridium perfringens and Arthrobacter
ureafaciens sialidases completely desialylated Neu5Acα2-3GalNAcβ1-3Galβ1-4GlcNAcβ1-
3Galβ1-4Glc. By contrast, Newcastle disease virus and Streptococcus pneumoniae sialidases
were able to desialylate only less than 10% of Neu5Acα2-3GalNAcβ1-3Galβ1-4GlcNAcβ1-
3Galβ1-4Glc.
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6. DISCUSSION

6.1 The acceptor- and site-specificity profiles of the ααααα1,3-fucosyltransferases

The α1,3-fucosyltransferases, like many other glycosyltransferases, form a redundant family.
They all catalyze the same reaction, that is the transfer of fucose in α1,3-linkage to the GlcNAc
in Galβ1-4GlcNAc. One reason for the existence of at least six human α1,3-fucosyltransferase
isoenzymes may be the subtle differences in their acceptor specificities.

The differences in the acceptor profiles could reflect the various biological roles of the different
α1,3-fucosyltransferases. For example, the leukocyte fucosyltransferases Fuc-TVII and Fuc-
TIV have complementary acceptor- and site-specificity profiles: Fuc-TVII preferentially reacts
with sialylated LN units at the non-reducing ends of polylactosamines, whereas Fuc-TIV prefer-
entially fucosylates the inner LN units (34). Fuc-TIV and Fuc-TVII collaborate in the generation
of functional selectin ligands (56). They seem to be at least partly specialized in the way that
Fuc-TVII directs the expression of P-selectin binding glycoforms of PSGL-1 and controls the
rolling frequency of leukocytes, whereas Fuc-TIV directs the expression of E-selectin binding
glycoforms of ESL-1 and dictates rolling velocity (54,55).

6.1.1 The acceptor- and site-specificity Fuc-TV (I)

Fuc-TV is known to be quite flexible in its requirements for acceptor structure: it reacts with
both sialylated and non-sialylated type 2 N-acetyllactosamine, and also weakly with type 1 N-
acetyllactosamine and lactose (16). The data presented in paper I further expands the acceptor
repertoire of Fuc-TV by showing that it can react with LacdiNAc (GalNAcβ1-4GlcNAc) nearly
as efficiently as with LN, and also weakly with GlcNAcβ1-4GlcNAc and Manβ1-4GlcNAc.

Fuc-TV strongly preferred the most reducing end LN unit in all the polylactosamine acceptors
tested. This is in accordance with earlier studies showing that Fuc-TV prefers the inner LN unit
in LNβ1-3�LNβ1-3�LNβ1-R (23), where the reducing end LN unit is probably not available for
fucosylation because of derivatisation. Fuc-TIII and Fuc-TVI similarly fucosylate the inner LN
units of short neutral polylactosamines (23), but their site-specificity on longer and/or sialylated
polylactosamines has not yet been studied.

While the reactivity of the non-reducing end LN unit in LNβ1-3R type structures with Fuc-TV
was significantly lower than that of free LN, the reactivity of LNBβ1-3R was essentially the
same as that of free LNB. These different reactivity patterns suggest that Fuc-TV may have two
distinct adjacent acceptor substrate binding sites, one that preferably binds LN, and another that
preferably binds LNB.

When prefucosylated polylactosamines were used as acceptors for Fuc-TV, it was noted that the
Lewis x determinant enhances the reactivity of the LN unit adjacent to it on the non-reducing
end side. This suggests that Fuc-TV may generate polyfucosylated lactosamines in a stepwise
manner starting from the reducing end.

6.1.2 The acceptor- and site-specificity of Fuc-TIX (II)

Fuc-TIX reacted well with N-acetyllactosamine, Fucα1-2�LN, and GalNAcβ1-4GlcNAc con-
firming previous observations (60). Other N-acetyllactosamine analogues that were good accep-
tors to Fuc-TIX were LN sulfated at the 6-position of GlcNAc and chitobiose. Sulfated Lewis x
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structures occur in L-selectin ligand glycoproteins (129), and on keratan sulfate (334,335), where
they form polyfucosylated sequences. Very poor or nonexistent reactivity was observed for lacto-
N-biose, lactose and Neu5Acα2-3�LN confirming earlier observations (58,60), and for Fucα1-
2�Lac, Galβ1-4�LN, and Neu5Acα2-6�LN. The inability to use α2,3-sialylated N-
acetyllactosamine as an acceptor is a property shared between Fuc-TIV (29,31) and Fuc-TIX,
whereas none of the fucosyltransferases studied so far can react with α2,6-sialylated N-
acetyllactosamine.

The present experiments confirmed the observation that Fuc-TIX preferentially fucosylates the
non-reducing end LN unit of neutral polylactosamines (23). The modification of this LN unit at
the 3-position of galactose with LN, Neu5Ac or sulphate significantly reduces the reactivity
(23,59,62). However, the addition of a single β1,3-linked GlcNAc residue did not significantly
reduce the reactivity of LN in the experiments described in part II. The high reactivities of
GlcNAcβ1-3�LN and GlcNAcβ1-3�LNβ1-3�LN suggest that the enzyme can specifically recog-
nize these type of structures. Therefore Fuc-TIX may participate in the biosynthesis of internally
fucosylated polylactosamines, if the GlcNAcβ1-3Galβ1-4(Fucα1-3)GlcNAc product serves as
an acceptor for subsequent galactosylation and elongation.

The site-specificity of Fuc-TIX was reversed on sialylated polylactosamines: the two most re-
ducing end LN units of Neu5Acα2-3�LNβ1-3�LNβ1-3�LNβ1-3�LN were the most reactive. In
fine detail the site-specificity of Fuc-TIX on sialylated polylactosamines seems to be intermedi-
ate between Fuc-TIV and Fuc-TV. Fuc-TIV prefers middle LN units (34), and Fuc-TV shows a
strong preference towards the most reducing end LN unit as described above, whereas Fuc-TIX
reacts equally well with the two most reducing end LN units. The site-specificities of α1,3-
fucosyltransferases IV, V, VII and IX are summarized in Figure 6.

Fuc-TIX efficiently fucosylated the N- and O-glycan analogues LNβ1-6Manα1-OMe, LNβ1-
2Man, LNβ1-2Manα1-3(LNβ1-2Manα1-6)Manβ1-4GlcNAc and Galβ1-3(LNβ1-6)GalNAc.
LNβ1-6Manα1-OMe was the best of all the studied acceptors for Fuc-TIX. LNβ1-2Man was a
much better acceptor for Fuc-TIX than for Fuc-TV. In addition to being N-glycan branches,
LNβ1-2Man and LNβ1-2(LNβ1-6)Man structures occur in the brain also O-linked to serine or
threonine (246,247,336). α2,3-Sialylated LNβ1-2Manα1-Ser/Thr on dystroglycan is required
for its binding to laminin (246). Disturbances in the synthesis of this structure lead to muscular
dystrophy and neuronal migration disorder (248). Since sialylation and fucosylation of LNβ1-
2Manα1-Ser/Thr seem to be mutually exclusive (246,247,336), it is possible that fucosylation
regulates the binding of dystroglycan to laminin, and therefore cell adhesion. The brain expres-
sion and specificity pattern of Fuc-TIX make it a likely candidate for the synthesis of Lexβ1-
2Manα1-Ser/Thr. The presentation of the Lewis x epitope on mannose-linked O-glycans, as

Figure 6. Comparison of the preferred accep-
tor sites within polylactosamine acceptors for
α1,3-fucosyltransferases IV (34), V (present
study), VII (34) and IX (present study).
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opposed to GalNAc-linked, may be a factor that affects its function and detectability. Fuc-TIX
has been shown to synthesize the spatially and temporally regulated Lewis x epitope in the
developing rat brain (64). However, the detailed structure that carries the epitope has not been
solved.

The capability of Fuc-TV and Fuc-TIX to fucosylate the inner LN units of a polylactosamine
chain suggests that they may have a role in the generation of the sialylated, multiply fucosylated
polylactosamine selectin counterreceptors (133,139). However, further studies are needed to
clarify the contribution of Fuc-TV and Fuc-TIX to the biosynthesis of multiply fucosylated
polylactosamine chains. Mice that lack both Fuc-TIV and Fuc-TVII show some residual neutro-
phil infiltration in experimentally induced inflammation (56). This could be due to E- or P-
selectin ligands generated by Fuc-TIX.

6.2 ST3Gal II is a multifunctional sialyltransferase (III)

The known mammalian α2,3-sialyltransferases, ST3Gal I-VI, transfer sialic acid to the galac-
tose residue in Galβ1-4GlcNAc, Galβ1-3GlcNAc or Galβ1-3GalNAc, and show some promis-
cuity among the three acceptor types, as well as overlapping acceptor specificities with each
other (77,100,101,337). Enzymatic α2,3-sialylation of GalNAc has not been described previ-
ously, although structures containing Neu5Acα2-3GalNAc have been reported (338-340).

ST3Gal II has been shown to act on glycoproteins and glycolipids containing terminal Galβ1-
3GalNAcβ1-OR sequence (85). Results in part III show that ST3Gal II can also sialylate GalNAc
in terminal GalNAcβ1-3Gal determinants in reaction conditions commonly used in enzymatic
in vitro synthesis. This makes it one of the few glycosyltransferases reported to date which are
capable of transferring to different acceptor monosaccharide residues. The clarification of the
actual contribution of ST3Gal II to the biosynthesis of α2,3-sialylated GalNAc determinants
will need further experiments such as comparison of the efficacy of GalNAcβ1-3Gal and Galβ1-
3GalNAc as acceptor determinants, and the analysis of glycoconjugates from transgenic mice
lacking ST3Gal II.

ST3Gal II emerges as yet another glycosyltransferase that challenges the dogma �one
glycosyltransferase - one glycosidic linkage�. The best known of these is β1,4-galactosyl-
transferase that is induced by α-lactalbumin to transfer to glucose instead of N-acetylglucosamine
(311). Glycosyltransferases that transfer to different monosaccharide residues without requiring
an additional modifier molecule include the β1,3-galactosyltransferase β3GalT-V that transfers
to both the terminal GalNAc of GalNAcβ1-3Galα1-4Galβ1-4Glc and the terminal GlcNAc of
GlcNAcβ1-3Galβ1-4Glc (341), and the core 2/I β1,6-GlcNAc transferase that transfers to the
GalNAc of Galβ1-3GalNAcα1-R and GlcNAcβ1-3GalNAcα1-R, as well as to the Gal of
GlcNAcβ1-3Galβ1-R (342,343). Other examples include α1,3/4-fucosyltransferases III and V
that transfer to the Glc of lactose as well as to the GlcNAc of N-acetyllactosamine, generating
Galβ1-4(Fucα1-3)Glc and Galβ1-4(Fucα1-3)GlcNAc respectively (12,15). Finally, the bovine
colostrum α2,6-sialyltransferase sialylates both the Gal of Galβ1-4GlcNAc-R and the GalNAc
of GalNAcβ1-4GlcNAc-R (344), suggesting an acceptor recognition mechanism similar to that
of ST3Gal II. Fuc-TIII and Fuc-TV are exceptional in their ability to make both Fucα1-3GlcNAc
and Fucα1-4GlcNAc linkages (12,15).
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6.3 Possible significance of ααααα2,3-sialylation of GalNAc (III)

α2,3-sialylation of the X2 structure (GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc) may play a
role in bacteria-host interactions. It has been suggested that the X2 epitope found on intestinal
epithelium is the human receptor for Clostridium difficile toxin A. The X2 structure shares struc-
tural features with Galα1-3Galβ1-4GlcNAc, which is considered to be the receptor for toxin A
in animals, but does not occur in humans (345). The X2 glycosphingolipid binds toxin A, but
α2,3-sialylated X2 does not bind (345). Therefore sialylation of X2-like structures might be a
protective measure against adhesion, and thus internalization and cytotoxic effects of Clostridium
difficile toxin A.

The X2 epitope is an example of molecular mimicry between human glycoconjugates and sac-
charides of pathogenic bacteria, a phenomenon that is proposed to have important roles in bac-
teria-host interactions, for example by camouflaging the bacterial surface from the host (272,346).
The X2 structure occurs in the lipo-oligosaccharide (LOS) of the Neisseria gonorrhoeae strain
F62 (347). Sialylation of lipo-oligosaccharide converts gonococci into serum resistant organ-
ism, reviewed in (273). So far only the sialylation of the LOS structure Galβ1-4GlcNAcβ1-
3Galβ1-4Glc by the neisserial sialyltransferase has been documented (273,348). However, Neis-
seria gonorrhoeae sialyltransferase has been shown to react with a GalNAc monosaccharide
derivative (349). It seems possible that Neisseria gonorrhoeae can sialylate its LOS structure
GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc, as well as Galβ1-4GlcNAcβ1-3Galβ1-4Glc, since
its sialyltransferase shows similar flexibility as the mammalian ST3Gal II described here.

6.4 Resistance towards Newcastle disease virus sialidase is not necessarily indicative of
ααααα2,6-linked Neu5Ac (III)

Newcastle disease virus is widely used in structural analysis of oligosaccharides to differentiate
between α2,3- and α2,6-linked Neu5Ac, because it cleaves Neu5Acα2-3Gal bonds while leav-
ing Neu5Acα2-6Gal and Neu5Acα2-6GalNAc bonds intact (350). However, the data presented
in part III show that the Neu5Acα2-3GalNAc bond is resistant towards Newcastle disease virus
sialidase in conditions that completely cleave Neu5Acα2-3Gal bonds. Resistance towards
Newcastle disease virus sialidase has been used to identify Neu5Ac-GalNAc linkages as α2-6
(351-353). The results presented here show that when the sialic acid is linked to GalNAc, the
sialidase specificities that have been characterized using substrates where the sialic acid is linked
to galactose may not necessarily apply, and the results should be used with caution for structural
analysis. This demonstrates that there are certain pitfalls in the use of glycosidases to character-
ize novel oligosaccharide structures.
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7. SUMMARY

The carbohydrate structures that cover cell surfaces are involved in specific recognition events
in a wide variety of biological phenomena. The structural diversity of glycans is achieved through
the specific substrate requirements and  a well defined order of action of the glycosyltransferases
involved in their biosynthesis. The detailed acceptor specificities of the α1,3-fucosyltransferases
Fuc-TV and Fuc-TIX, and α2,3-sialyltransferase ST3Gal II were examined in the present study.

The acceptor- and site-specificity of ααααα1,3-fucosyltransferase V (Fuc-TV) (I)
α1,3-Fucosyltransferases form the Lewis x epitope (Galβ1-4(Fucα1-3)GlcNAc). Six human α1,3-
fucosyltransferases have been cloned and characterized: Fuc-TIII-VII and Fuc-TIX. Distinct
acceptor specificity patterns are emerging among them. Fuc-TV is known to react with both type
1 (Galβ1-3GlcNAc, LNB) and type 2 (Galβ1-4GlcNAc, LN) lactosamines, although much more
efficiently with the latter. In the present study, Fuc-TV reacted very efficiently with N- and O-
glycan analogues where the acceptor LN unit is carried on the 6-branch, namely LNβ1-6Manα1-
OMe and Galβ1-3(LNβ1-6)GalNAc. Structures where the acceptor LN unit was β1,2- (LNβ1-
2Man), β1,3- (LNβ1-3Galβ1-OMe) or β1,4-linked (LNβ1-4GlcNAc) were much poorer accep-
tors for Fuc-TV, suggesting that structures in which the LN unit is attached to the C6 hydroxyl
fit better to the substrate binding site of Fuc-TV than those where the LN unit is linked to ring
hydroxyl. All sialylated acceptors were more efficiently fucosylated than the corresponding neu-
tral ones. When the site-specificity of Fuc-TV on polylactosamines containing multiple acceptor
sites was studied, it was noticed that Fuc-TV strongly prefers the reducing end LN units. While
the reactivity of the non-reducing end LN unit in LNβ1-3R type structures was significantly
lower than that of free LN, the reactivity of the LNB unit in LNBβ1-3R was essentially the same
as that of free LNB. These different reactivity patterns suggest that Fuc-TV may have two dis-
tinct acceptor substrate binding sites, one that preferably binds LN, and another that preferably
binds LNB.

The acceptor- and site-specificity of ααααα1,3-fucosyltransferase IX (Fuc-TIX) (II)
Fuc-TIX is the most recent member of the α1,3-fucosyltransferase family. In part II of this thesis
the detailed acceptor specificity of Fuc-TIX, and its site-specificity on polylactosamines were
determined. Fuc-TIX reacted efficiently with LN and Fucα1-2�LN, GalNAcβ1-4GlcNAc and 6-
sulfated LN, but not with LNB, lactose, Neu5Acα2-3�LN or Neu5Acα2-6�LN. It was found that
although Fuc-TIX preferentially fucosylates the distal, non-reducing end N-acetyllactosamine
unit of a polylactosamine chain, the addition of a single GlcNAcβ1-3 residue on the distal side
of the reacting unit does not significantly affect reactivity. Furthermore, on sialylated
polylactosamines the site-specificity was reversed: Fuc-TIX preferentially fucosylated the two
most reducing end lactosamine units of Neu5Acα2-3[Galβ1-4GlcNAcβ1-3]4. Therefore it can
be concluded that in addition to forming distal Lewis x epitopes, Fuc-TIX may have a role in the
biosynthesis of internally fucosylated polylactosamines. The emerging acceptor-  and site-speci-
ficity profile of Fuc-TIX is different from those of the other α1,3-fucosyltransferases studied so
far.

ααααα2,3-Sialylation of N-acetylgalactosamine by ST3Gal II (III)
Glycan structures containing α2,3-sialylated GalNAc-residues have been characterized from
human tissues. However, enzymatic α2,3-sialylation of GalNAc has not been described previ-
ously. The known mammalian α2,3-sialyltransferases, ST3Gal I-VI, transfer sialic acid to the
galactose in Galβ1-4GlcNAc, Galβ1-3GlcNAc or Galβ1-3GalNAc, and show some promiscu-
ity among the three acceptor types, as well as overlapping acceptor specificities with each other.
To elucidate the biosynthetic route to the Neu5Acα2-3GalNAc linkage, commercial recombi-
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nant α2,3-sialyltransferases were tested for their ability to sialylate oligosaccharides containing
a terminal GalNAcβ1-3Gal determinant. ST3Gal II efficiently sialylated the X2 pentasaccharide
(GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc), globo-N-tetraose (GalNAcβ1-3Galα1-4Galβ1-
4Glc), and the disaccharide GalNAcβ1-3Gal. ST3Gal II has been thought to be specific for the
Galβ1-3GalNAc determinant. The present results show that ST3Gal II is multifunctional, and
could be renamed ST3Gal(NAc) II.

An understanding of the function, especially the substrate specificity, of glycosyltransferases is
essential for studying the regulation of the biological recognition events mediated by glycans.
The studies described above will help to understand the biosynthetic routes to biologically ac-
tive terminal oligosaccharide epitopes.
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