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ABSTRACT

The time of the large sequencing projects has enabled unprecedented possibilities of 
investigating more complex aspects of living organisms. Among the high-throughput 
technologies based on the genomic sequences, the DNA microarrays are widely 
used for many purposes, including the measurement of the relative quantity of the 
messenger RNAs. However, the reliability of microarrays has been strongly doubted 
as robust analysis of the complex microarray output data has been developed only 
after the technology had already been spread in the community. An objective of this 
study consisted of increasing the performance of microarrays, and was measured by the 
successful validation of the results by independent techniques. To this end, emphasis has 
been given to the possibility of selecting candidate genes with remarkable biological 
signifi cance within specifi c experimental design. Along with literature evidence, the 
re-annotation of the probes and model-based normalization algorithms were found 
to be benefi cial when analyzing Affymetrix GeneChip data. Typically, the analysis 
of microarrays aims at selecting genes whose expression is signifi cantly different in 
different conditions followed by grouping them in functional categories, enabling 
a biological interpretation of the results. Another approach investigates the global 
differences in the expression of functionally related groups of genes. Here, this technique 
has been effective in discovering patterns related to temporal changes during infection 
of human cells.
Another aspect explored in this thesis is related to the possibility of combining 
independent gene expression data for creating a catalog of genes that are selectively 
expressed in healthy human tissues. Not all the genes present in human cells are 
active; some involved in basic activities (named housekeeping genes) are expressed 
ubiquitously. Other genes (named tissue-selective genes) provide more specifi c functions 
and they are expressed preferably in certain cell types or tissues. Defi ning the tissue-
selective genes is also important as these genes can cause disease with phenotype in the 
tissues where they are expressed. The hypothesis that gene expression could be used as 
a measure of the relatedness of the tissues has been also proved. 
Microarray experiments provide long lists of candidate genes that are often diffi cult 
to interpret and prioritize. Extending the power of microarray results is possible by 
inferring the relationships of genes under certain conditions. Gene transcription is 
constantly regulated by the coordinated binding of proteins, named transcription factors, 
to specifi c portions of the its promoter sequence. In this study, the analysis of promoters 
from groups of candidate genes has been utilized for predicting gene networks and 
highlighting modules of transcription factors playing a central role in the regulation of 
their transcription. Specifi c modules have been found regulating the expression of genes 
selectively expressed in the hippocampus, an area of the brain having a central role 
in the Major Depression Disorder. Similarly, gene networks derived from microarray 
results have elucidated aspects of the development of the mesencephalon, another region 
of the brain involved in Parkinson Disease.
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All living organisms carry precise 
instructions in their genome concerning 
how they grow and function. Genomics is 
the fi eld of biological sciences that aims to 
study and decode this genetic information. 
The birth of genomics is generally thought 
to coincide with the completion of the 
fi rst entire genome, the 5,375 base pairs 
long Phage PHI-X174 genome sequence 
in 1977 (Sanger et al. 1977). By January 
13th 2009, the genome sequence of about 
1,400 prokaryotes, about 200 eukaryotes, 
and 31 mammals has been completed or 
drafted, as reported by the NCBI genome 
sequencing project statistics (http://www.
ncbi.nlm.nih.gov/genomes/static/gpstat.
html). However, the only function of the 
genomic DNA is storing the information 
and ensuring its accurate delivery from one 
generation to another. Complexity arises 
primarily from more intricate regulatory 
interactions among genes, their products, 
and the environment.  

1.1 Functional Genomics

Making use of the vast amount of data 
produced by genomics is the main task of 
the functional genomics. While genomics, 
proteomics, and structural biology focus 
on static aspects of the molecules of life 
(e.g. sequences and structures of DNA or 
proteins), functional genomics attempts 
to study dynamic aspects such as gene 
transcription and its regulation, as well 
as the interaction of genes and their 
products.

Each inheritable unit of DNA, 
usually referred to as a gene, contains 
the information required to make RNAs 
and proteins; such molecules constitute 
each and every cell, determining their 
functionality as well as their ability to 

survive. The access to the information 
stored in the DNA is constantly modulated 
by dynamic processes that infl uence the 
amount of RNA and proteins present in 
the cells. Both the RNA-coding and the 
protein-coding genes are used as a template 
for the synthesis of RNA molecules by a 
process named transcription; similarly, 
the protein-coding RNAs are used as 
templates for synthesizing proteins during 
translation. The new proteins are thereafter 
folded, chemically modifi ed, and delivered 
to the cellular compartment where they 
function; alternatively, they are secreted 
outside from the cells. Secreted proteins 
can act on the same cells where they are 
produced, or on neighbor cells, or on very 
distant cells by traveling within the blood 
stream. 

1.2 Methods to analyze gene expression

Classical low-throughput techniques 
for quantifying the products of gene 
transcription, the messenger RNAs 
(mRNAs), include northern blotting 
and Polymerase Chain Reaction (PCR) 
(Saiki et al. 1988). In the mid-1990s, 
high-throughput technologies allowed 
many genes to be assayed within the 
same experiment. It is possible to divide 
these techniques into hybridization-
based and sequencing-based methods. 
To the fi rst class belong the microarrays, 
where target cDNA or cRNA is 
hybridized to complementary probes of 
the genes of interest and the abundance 
of a given transcript is estimated from 
the hybridization intensity of the 
corresponding probes.

In the family of the sequencing-based 
methods, the Serial Analysis of Gene 
Expression (SAGE), and the so named 
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next generation sequencing methods are 
among the most popular ones. In SAGE, 
short fragments of 14-17 bp length (usually 
referred to as tags) obtained from the 3’ 
end of RNA molecules are concatenated 
and sequenced to quantify the expression 
levels of the corresponding transcripts 
(Velculescu et al. 1995). More recently, 
new ultra-high-throughput sequencing 
technologies have become available, 
including the Roche 454 GS FLX (http://
www.454.com), the Illumina/Solexa 
Genome Analyzer (http://www.illumina.
com), and the Applied Biosystems SOLiD 
(http://www.appliedbiosystems.com) 
technologies. The 454 technology uses 
emulsion PCR for producing beads-linked 
individual DNA fragments (Tawfik and 
Griffiths 1998). After transferring the 
beads into a multi-well picotiter plate, a 
sequencing-by-synthesis pyrosequencing 
approach is used, in which the release of 
inorganic pyrophosphate (PPi) is measured 
by chemiluminescence (Ronaghi et al. 
1996). In the Illumina Solexa system, 
single-stranded DNA fragments are 
attached to a solid surface at one end by the 
use of adapters; next, the molecules bend, 
hybridizing to complementary adapters 
and are bridge-amplifi ed to produce large 
amounts of clonal copies. The templates 
are sequenced using a sequencing-by-
synthesis procedure, in which reversible 
terminators with removable fluorescent 
moieties and special DNA polymerases 
are used. ABI SOLiD technology is based 
on the polony technique (Shendure et 
al. 2005) and sequencing-by-ligation 
approach. Similar to the Roche 454 
system, the emulsion PCR amplifi cation 
products (on small beads) are transferred 
onto a glass support where sequencing 
occurs by multiple rounds of hybridization 
and ligation of fluorescently marked 
dinucleotides. 

1.3 Regulation of gene expression

Gene expression is accomplished by 
modulating the accessibility of the 
genomic DNA, transcription, and the 
stability of messenger RNAs. Some long-
term regulations involve chemical (eg. 
methylation) and steric (supercoiling) 
modification of the DNA molecules 
(van der Maarel 2008). Other levels of 
regulation might involve a variety of 
modifications of the proteins that are 
constitutively bound to the genomic DNA 
molecules, such as histones (Svaren and 
Hörz 1996). Each transcriptional unit (may 
be formed by a single gene or groups of 
related genes) is surrounded by regulatory 
DNA sequences, enhancers and promoter 
sequences (Sipos and Gyurkovics 2005). 
Once a promoter is available for binding 
the RNA polymerase, transcription is 
primarily regulated by the binding of 
transcription factors (TF) to their specifi c 
binding sites (TFBSs). Usually, multiple 
TFs and co-factors bind simultaneously 
to the promoter, recruiting or enforcing 
the binding of the RNA polymerase at the 
start site of the transcription (TSS) (Ross 
and Gourse 2009). The relative order and 
spacing of these TFBSs within a module are 
often highly conserved through evolution, 
highlighting their importance in regulation 
(Seifert et al. 2005). This conservation can 
allow the usage of computational tools for 
identifying clusters of known TFBS rather 
than specifi c nucleotide sequences.

1.4 Gene expression in complex 
organisms

While a copy of the same DNA molecule 
carrying the information for all the RNAs 
and proteins is present in each cell of the 
multi-cellular organisms, only some genes 
(called housekeeping genes) are active 
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in all the cells, as they are essential for 
the basic cellular functions. Other genes, 
providing more specialized molecular 
functions, are expressed selectively in 
particular tissues or cell types, or for 
example, at a particular moment of the 
development. Tissue-selective gene 
expression can be addressed in the strict 
terms of genes whose expression is 
limited to one tissue or cell type, but there 
is evidence indicating that functionally 
related tissues share many expression 
patterns (Liang et al. 2006). Compared 
to the housekeeping genes, the tissue-
selective genes are thought to be longer 
(Vinogradov 2004), to have a more 
complex structure (Castillo-Davis et al. 
2002), a different nucleotidic composition 
(Vinogradov 2003), and lower substitution 
rates at non-synonymous sites (Duret and 
Mouchiroud 2000). In addition, the tissue-
selective genes show faster evolution rates 
and they are more likely to be mutated 
in genetic diseases with Mendelian 
inheritance (Winter et al. 2004).

The identifi cation of tissue-selective 
genes sharing coordinate regulation can 
provide hints about the mechanisms 
governing development, the maintenance 
of the physiological state, and the 
establishment of pathological conditions. 
Table 1 summarizes the results of several 
studies where microarrays have been used 
for investigating the selective expression 
patterns in healthy human tissues (Hsiao 
et al. 2001, Saito-Hisaminato et al. 2002, 
Shyamsundar et al. 2005, Yanai et al. 
2005, Liang et al. 2006).  

1.5 DNA microarrays

Since their fi rst description (Schena et al. 
1995), DNA microarrays have become 
a routine tool in many laboratories 
worldwide. DNA microarrays can be 
defined as ordered and large series of 
known nucleic acid fragments that are 
placed on a solid support and that can 
function as molecular detectors. Through 

Hsiao 
et al. 2001

Saito-Hisaminato 
et al. 2002

Yanai 
et al. 2005

Shyamsundar 
et al. 2005

Liang et al. 
2006

n. tissues 19 29 12 35 97

n. of genes 
analyzed

7,000 27,000 23,000 26,000 27,000

% of specifi c 
genes

21 % 17 % 35 % 15 % 14 %

Microarray 
platform

Affy 
HuGeneFL

cDNA-MA Affy 
HGU95A-E

cDNA-MA Affy 
HGU-133A

Pre-processing 
method

MAS5 bg-correction MAS5 bg-correction MAS5

Identifi cation of 
tissue-specifi c 
pickup

Student’s 
t-test

fold-change ANOVA 
+ tissue-
specifi city 
index

fold-change Tukey-
Kramer’s HSD

Table 1. Microarrays in tissue-selectivity studies.
Each column represents a study where microarrays have been used for investigating tissue-
specifi c or tissue-selective expression patterns. In rows, information concerning: the number of 
tissues and genes analyzed; the percentage of genes found specifi c or selective calculated as 
(selective genes / tot genes) * 100; the microarray platform, the preprocessing algorithm, and the 
method for the selection of genes utilized.
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hybridization, it is possible to identify 
and quantify many labeled RNA or 
DNA species at a time. Nowadays, the 
microarrays are used for a variety of 
different proposes including comparative 
genomics  hybr id i za t ion  (CGH) 
(Oostlander et al. 2004), ChIP-on-CHIP 
(Nègre et al. 2006), genotyping (Hacia 
1999), and microRNA quantification 
(Yin et al. 2008). However, their most 
popular application is still the large-scale 
gene expression analysis. Profi ling gene 
expression in human samples has been 
important for defining the functional 
identity of the tissues and, consequently, 
for uncovering the genomic signatures in 
many pathological conditions. Moreover, 
the microarrays and other high-throughput 
approaches are also potentially very useful 
in studying human complex diseases in an 
unbiased (i.e. hypothesis-free) manner. 
The number of publications tagged by the 
word “microarray” according to PubMed 
was 411 in the period spanning from 
1995 to 2000, compared to 27,926 from 
2001 to 2008. However, as the number 
of publications reporting microarray 
experiments has constantly grown, their 
reliability has also been questioned 
(Kothapalli et al. 2002, Draghici et al. 
2006). Similar to other high throughput 
technologies, microarrays are prone to 
many uncontrolled and unknown sources 
of variability affecting their reproducibility. 
A general lack of standardization can 
also represent obstacles towards full 
comparability of independent experiments. 
In order to address these issues, the 
Microarray Gene Expression Data Group 
(MGED group) proposed in 2001 (Brazma 
et al. 2001) guidelines referred to as 
MIAME (Minimum Information About a 
Microarray Experiment). It defi nes three 
levels of microarray data: i) the scanned 
images (raw data); ii) the quantitative 

outputs from the image analysis; and 
iii) the quantitative output from the 
preprocessing. The minimum information 
about a published microarray experiment 
should always include information 
concerning: i) the experimental design; 
ii) the array design; iii) the samples used; 
iv) the hybridization procedures and 
parameters; v) the measurements; and vi) 
the normalization specifi cation.

1.6 Experimental design

The design of microarray experiments 
is done, as for any other scientific 
experiment, balancing considerations such 
as skill, cost, equipment, and accuracy. 
The objective of experimental design is 
to make the analysis of the data and the 
interpretation of the results as simple 
and as powerful as possible. Several 
issues affect the microarray experimental 
design: i) the biological questions that the 
experiment is supposed to answer; ii) the 
meaning of the experiment with respect 
of the whole scientifi c project; iii) type 
of samples, amount, and complexity of 
the biological material; iv) the number of 
microarrays utilized for the experiment; 
v) the microarray platform utilized  (Yang 
and Speed, 2002, Simon et al. 2002). As 
a general rule, a microarray experiment 
should be carried out only if it is feasible, 
given the type and the amount of resources 
available. It is also important to prioritize 
the biological objectives, as a design is 
usually able to answer only a limited 
number of questions with reasonable 
precision. A sensitive aspect of the 
experimental design is the number and 
the type of replicates used. The number 
of replicates largely depends on the 
desired magnitude of the gene expression 
differences as well as the noise level in the 
system. Different microarray technologies, 
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in fact, have different noise levels, and the 
only way to estimate the noise is to do 
adequate replicate hybridizations. There 
is substantial disagreement about whether 
to pool individual samples.  In theory, 
if the gene expression variation among 
individuals is normally distributed, pooling 
individual samples results in smaller 
variance. In practice, the expression of 
most of the genes among individuals is 
not normal for a variety of biological and 
technical reasons (Pritchard et al. 2001). It 
has been argued that in small experiments, 
the inference for most genes is not 
adversely affected by pooling. On the other 
hand, pooling does not increase precision 
in larger experiments (Kendziorski et al. 
2005).

1.7 Microarray platforms

In gene expression microarrays, 
either synthetic oligonucleotides or 
cDNA fragments have been used as 
probes. Especially in the early years, 
cDNA libraries and Bacterial Artificial 
Chromosomes (BAC) sets have been 
the principal source of probe fragments 
(Holloway et al. 2002). Later, they 
have been almost completely replaced 
by oligonucleotides corresponding to 
known genes or transcripts. Because the 
oligonucleotides are much shorter than 
cDNAs, they allow more specificity 
but their base composition is likely to 
influence their performance (Kreil et 
al. 2006). Hence, an effective design is 
needed (Kreil et al. 2006).  Probes are 
typically printed or synthesized on glass 
to allow visualization of the bound, 
fl uorescently labeled targets. Glass slides 
have continued to be the favored solid 
support for immobilizing probes for 
reasons of availability, low fl uorescence, 
transparency, high temperature resistance, 

physical rigidity and the variety of surface 
chemical modifi cations possible (Affara 
2003, Petersen and Kawasaki 2007). 

The market of microarrays has 
changed markedly in the past few years as 
the price of commercial arrays has rapidly 
fallen. Affymetrix GeneChip arrays were 
increased in complexity and in the number 
of species represented. NimbleGen have 
described a technology for synthesizing 
microarrays containing about 200,000 
features using a digital micromirror 
device (DMD or digital light processor 
– DLP) that creates digital masks to 
synthesize specifi c polymers (Nuwaysir et 
al. 2002). Febit has introduced a method 
that generates microarrays within a three-
dimensional microstructure (Obermeier 
et al. 2003). Oligonucleotide probes are 
synthesized in situ via a light-activated 
process using a digital projector within 
the channels of a three-dimensional 
microfl uidic reaction carrier. The three-
dimensional microstructure contains, 
in total, four individual channel-like 
chambers or arrays, allowing eight array 
experiments to be run on a single carrier. 
Illumina introduced the BeadArray 
technology based on the random self-
positioning of bead pools onto a patterned 
substrate (Michael et al. 1998). A decoding 
process is used for mapping the location 
of a specifi c bead type on the array. This 
is determined by serially hybridizing with 
fluorescently labeled complementary 
oligonucleotides. In this technology, the 
miniaturization is secured by adjusting 
the size of the beads and the pattern of the 
substrate; randomly assembled 300-nm 
diameter bead array is about 40,000 times 
higher than a typical spotted microarray. 

1.7.1 Agilent microarray technology
Agilent produces microarrays by in situ 
inkjet printing of 60 nucleotides probes 

Introduction



6

(Hughes et al. 2001). The probe design 
relies on multiple up-to-date and publicly 
available sequence databases for a variety 
of organisms. For the Homo sapiens 
whole genome chipset, the probe design 
starts with the sequence comparison 
and the genome mapping of very well 
annotated sequences found in RefSeq 
(Pruitt et al. 2007), Ensembl (Flicek et 
al. 2008), UCSC GoldenPath (Kuhn et al. 
2008) known genes and Incyte Foundation 
Full Length databases (Kronick 2004). 
Clusters of transcript sequences having 
sequence and genome overlap, namely 
GeneBins, are formed by using BLAT 
metrics (Kuhn et al. 2008). Additionally, 
a second GeneBin set is generated from 
more poorly annotated sequences from a 
variety of databases including Unigene 
(Sayers et al. 2009), the TIGR Tentative 
Human Consensus (Lee et al. 2005), 
Incyte Foundation partial transcripts 
and other GeneBank (Sayers et al. 2009) 
accessions. Any transcript sequences not 
mapping to the fi rst set are included in the 
second round of GeneBins and additional 
consensus regions are defined. Once 
the fi nal set of GeneBins is defi ned, the 
repetitive sequences are eliminated and a 
reference homology database is created, 
against which the probe sequences are 
compared to insure uniqueness. 

Agilent technology also represents a 
versatile and budget choice as it allows 
production of custom arrays starting from 
any set of probes, the customization of the 
sample preparation protocols as well as the 
scanning and image analysis procedures. 
More recently, Agilent has also introduced 
the multiplex technology, where multiple 
sets of probes printed onto the same slide 
can be independently assayed (Wolber et 
al. 2006). The Agilent sample preparation 
protocol relies on direct labeling; one 
(Cy3-labeled) or two (Cy3- and Cy5-

labeled) samples are usually hybridized at 
a time (Wolber et al. 2006). Alternatively, 
indirect labeling techniques can also be 
successfully used.  The electronic images 
produced during the scanning can be 
analyzed by the use of different algorithms 
and software. Agilent feature extraction 
methods aim at quantifying the feature 
signals and the background, performing 
the background subtraction, normalizing 
the dye effect, and computing the log 
ratios and their error estimates. Image 
segmentation and extraction of the feature 
intensities can also be performed with other 
software such as Axon GenePix (Paper II 
for an example). More recently, evidence 
supporting a simpler pre-processing 
strategy has been described, whereby the 
background correction step is skipped 
and intensity-dependent normalization 
is applied to the log-transformed signal 
intensities (Zahurak et al. 2007). 

1.7.2 Affymetrix GeneChip technology
In the Affymetrix GeneChip technology, 
25mer oligonucleotides probes are 
directly synthesized on the surface of the 
arrays by the use of photolithography 
technology (Lockhart et al. 1996). 
Multiple independent oligonucleotides 
(20, 16, or 11 couples according to the 
chipset) are designed in silico, from 
available sequence databases, to hybridize 
to different regions of the same transcript. 
In addition to each perfect match (PM) 
probes, oligonucleotides having a different 
base in the 13th position are also designed. 
This second type of probes, called 
mismatch (MM) probes, in principle, serve 
as controls for specifi c hybridization and 
they should facilitate the direct subtraction 
of background and cross-hybridization 
signals. All the probes for one transcript 
are referred to as probe set. Each probe set 
is formed by probe pairs, constituted by a 
PM probe with its own MM partner.
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1.7.2.1 The mismatch probes
The mismatch probes should provide a 
way to quantify the hybridization noise 
of the PM partners, as the mutation in the 
13th base should decrease their affi nity 
to the target. However, about 30% of the 
MM probes show bigger signals than their 
respective PM partners suggesting that the 
measure obtained as the difference of the 
PM and MM is not reliable for many of the 
probes (Naef et al. 2002a, b). Moreover, 
the difference between the PM and MM 
intensities is affected by the nucleotide 
composition of the probes (Naef and 
Magnasco 2003). MM probes also 
introduce a systematic variability, which 
decreases the precision of expression 
measures (Binder and Preibish 2005). This 
suggests that subtracting the MM intensity 
from PM signal represents a major source 
of error, leading to fewer potentially 
biologically important candidate genes 
(Wang et al. 2007).

1.7.2.2 The annotation of the probes
In Affymetrix GeneChips, all the probes 
within a probe set should estimate the 
expression of the same gene. In recent 
years, however, evidence has shown 
that large portions of Affymetrix probes 
cross-hybridizing to multiple genes are 
non-specific or mis-targeted (Gautier 
et al. 2004b). Many probes do not even 
recognize their appropriate mRNA 
reference sequence (Mecham et al. 
2004, Harbig et al. 2005). On the other 
hand, re-annotating the Affymetrix 
probes according to the RefSeq database 
improves the precision in estimating gene 
expression (Mecham et al. 2004). The 
Affymetrix probes have been aligned 
to different genomic databases such as 
UniGene, Refseq and Entrez Gene, and 
it was discovered that many probes are 
prone to mis-annotation issues (Dai et al. 

2005). In addition, the genes identifi ed as 
differentially expressed using the original 
and updated probe defi nition show only 
50% overlap (Dai et al. 2005). More 
recently, it has been shown that updated 
defi nitions of the Affymetrix probes lead 
to more precise and accurate results as 
compared with the original annotations 
provided by the manufacturer (Sandberg 
and Larsson 2007). Several re-annotation 
methods are available allowing the probes 
to be mapped to genes, transcripts, or 
even exons sequences stored in public 
databases. However, exon-based re-
annotation leads to decreased precision 
and increased variance in estimating gene 
expression, probably due to the smaller 
number of probes that map to each exon 
(Sandberg and Larsson 2007). 

1.7.2.3 Preprocessing of Affymetrix 
GeneChips
The fi rst task of the computational analysis 
of Affymetrix GeneChips is referred 
to as preprocessing and it consists of 
five main components: image analysis, 
background adjustment, normalization, 
summarization, and quality assessment. 
Image analysis allows converting the pixel 
intensities in the scanned images into the 
probe-level data. This process assigns 
one number to each probe cell (PM and 
MM). Background adjustment is essential, 
as part of the measured probe intensities 
is due to non-specific hybridization 
and the noise in the optical detection 
system. Observed intensities need to be 
adjusted to give accurate measurements 
of specifi c hybridizations. Without proper 
normalization, it is impossible to compare 
measurements from different arrays due to 
many sources of variation. These include 
sampling, different effi ciencies of reverse 
transcription, labeling, hybridization 
reactions, physical problems of the arrays, 
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reagent batch effects, scanning, and 
laboratory conditions. Summarization is 
performed in order to obtain one number 
(usually referred to as the expression 
value) from the whole set of probes 
assayed for each transcript. At the end 
of preprocessing, an expression matrix 
carrying numerical information about the 
expression values per each gene/transcript 
(rows of the matrix) in each array (columns 
of the matrix) of the data set is obtained 
(Figure 1). 

Affymetr ix has  developed a 
computational method for preprocessing, 
named MAS5 (http://www.affymetrix.
com). First, the expression values are 
computed by averaging the PM-MM 
differences for all the probe pairs of the 
same probe set. Then, the expression 

values are normalized by a scaling 
method. Already in 2001, Li and Wong 
(Li and Wong 2001a and b) reported 
that variation of a specifi c probe across 
the arrays is considerably smaller than 
the variance across probes within a 
probe set. Therefore, they concluded 
that one of the most critical issues in the 
analysis of the GeneChips is the way 
probe-specifi c effects are handled. They 
proposed a linear model, named Model-
Based Expression Index (MBEI), where 
the probe-specifi c and the array-specifi c 
effect are estimated and used to calculate 
the expression values.  In 2003, the robust 
multi-array average method (RMA) was 
also described (Irizarry et al. 2003). The 
RMA method allows robust estimation 
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Figure 1. Affymetrix GeneChip preprocessing.
A schematic summary of the main steps of Affymetrix GeneChips preprocessing is shown. In 
some methods, such as RMA, the background correction and normalization are carried out at 
the single probe level; in other methods, such as MAS 5, the probes are summarized before the 
normalization step.
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of inter-array variability. Similar to the 
MBEI, it uses information from multiple 
arrays for normalizing the dataset (through 
quantile normalization, the data are forced 
to have the same distribution) and fi tting 
a linear model for each probe set across 
all the arrays of the dataset. RMA uses 
only the intensities from the PM probes 
for computing gene expression. Within 
the last few years, a multitude of model-
based methods have been proposed. For 
instance, in the GCRMA algorithm, which 
is a direct evolution of the RMA, the 
nucleotide composition of the probes is 
taken into account (Wu and Irizarry 2004). 
Similarly, the PDNN algorithm estimates 
gene expression by using a free energy 
position-dependent nearest neighbor 
model based on PM sequences within 
each probe set (Zhang et al. 2003). Table 
2 summarizes the features of the most 
popular methods.

This research field is still evolving 
and it is imaginable that new algorithms 
will allow more accurate gene expression 
estimations in the future. Several 
studies have compared the most popular 
preprocessing algorithms for Affymetrix 
GeneChips by using spike-in or dilution 
datasets, reporting that the model-based 
algorithms perform generally better than 
MAS5 (Irizarry et al. 2006). Elsewhere, 
the performance of preprocessing 
methodologies has been investigated in 
terms of the PCR validation rate (Qin et 
al. 2006). 

1.7.2.4 Complex tissues and probe pre-
fi ltering
Affymetrix GeneChips can detect cRNA 
species at very small concentrations. 
However, this has little value in gene 
expression detection in complex tissues, 
like the brain, which consists of specialized 

Table 2. Affymetrix GeneChip preprocessing methods.
Each row summarizes the main features of the MAS5, MBEI, RMA, GCRMA, and PDNN 
preprocessing methods respectively. 

Introduction

Method Citation Background correction Normalization Summarization
MAS 5 Affymetrix 

2002
Spatial background and MM 
are subtracted

Scale 
normalization

Robust average 
(Tukey biweight)

MBEI Li and Wong 
2001

MM are subtracted Splines from a 
reference array 
and invariant set

Model assuming 
multiplicative probe-
effect and additive 
error

RMA Irizarry et al. 
2003

Global correction from 
posterior mean given the 
observed PM

Quantile Linear model including 
array and probe 
effects using median 
polish

GCRMA Wu and 
Irizarry 2004 

Probe specifi c correction 
using posterior mean of PM 
and MM; probe sequence 
used to predict model 
parameters

Quantile Linear model including 
array and probe 
effects using median 
polish

PDNN Zhang at al. 
2003

Model with optical background, non-specifi c binding, and specifi c 
binding as additive components
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cells with variant transcriptional profi les.  
In practice, relatively high-abundance 
transcripts are reliably detected by 
GeneChips but a signifi cant percentage of 
low-abundance transcripts are undetected 
or, in most of the cases, unreliably 
detected. As a result, the magnitude of 
expression changes found with microarrays 
is often modest and hard to separate from 
the experimental noise. In addition to 
producing normalized expression values, 
the preprocessing could also consider 
whether all the hybridizations of a single 
experiment are reliable. Methods that 
eliminate potentially unreliable data can 
help, beginning from the assumption 
that not all genes are expressed at levels 
that are either biologically signifi cant or 
detectable by the Affymetrix technology 
in a particular tissue. Pre-fi ltering based on 
hybridization quality before the statistical 
evaluation of each transcript can aid in 
reducing the noise. Different methods 
have been used to pre-fi lter data to remove 
probe sets that are believed to be less 
reliable but the effects of such pre-fi ltering 
have rarely been analyzed (Wildhaber et al. 
2003, Ryan et al. 2004, Stossi et al. 2004). 
Filtering by expression level (Modlich et 
al. 2004) aims to eliminate probe sets with 
signal close to background; the choice 
of how close to background is arbitrary. 
Removal of probe sets that are called 
“Absent” on all arrays has been reported 
(Ryan et al. 2004). Some use post-hoc 
methods by eliminating signifi cant probe 
sets with low fold changes (Wildhaber et 
al. 2003). McClintick and Edenberg have 
fi ltered out probe sets that were not called 
Present by the MAS5 detection call in at 
least 50% of the samples in one treatment 
group (McClintick and Edenberg 2006). 
Others use combinations of these strategies 
(Perrier et al. 2004, Stossi et al. 2004, 
Aston et al. 2005, Tang et al. 2004).

1.8 Microarray analysis of differential 
gene expression

A microarray experiment typically aims to 
identify the relative differences between 
the biological conditions examined. The 
fi rst computational techniques utilized for 
inferring the differential expression relied 
on the simple assumption that the reliability 
and, consequently, the signifi cance would 
increase together with the magnitude 
in the gene expression. Accordingly, 
the fold changes calculated between 
samples served also as a significance 
cut-off. More strict statistical evaluation 
has been established and the number of 
methodological papers introducing novel 
statistical approaches has been increasing 
as the biological papers presenting 
microarray results. Usually, in gene-wise 
analyses, p-values are calculated for each 
gene present on the microarray by using 
the t-test or some other analytical strategies 
such as the ANOVA, which helps to 
estimate the contribution of experimental 
factors to the distribution of the measured 
gene expression. Next, a cut-off is found 
to separate the differentially expressed 
genes from the genes whose expression is 
not changed. This cut-off is usually based 
on a multiple testing criterion such as the 
Bonferroni or the false discovery rate 
(Benjamini and Hochberg 1995). Post-hoc 
corrections are also recommended because 
the number of genes tested is much bigger 
than the amount of samples replicated 
across two or more biological conditions. 

1.8.1 Microarray functional analysis
A typical microarray experiment results in 
lists of differentially expressed genes. Long 
gene lists, however, cannot be considered 
the end point of the analysis. Rather, they 
have to be regarded as the starting point 
of a more meaningful interpretation, 
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whereby biological patterns are typically 
highlighted. By taking advantage of the 
increasing knowledge about the functions 
of the genes within the cells, it is also 
possible to infer the overall changes in 
terms of functions and processes. This 
essentially shifts the level of analysis from 
individual genes to sets of biologically 
related genes. The annotation terms are 
usually obtained from libraries such as 
Gene Ontology (Ashburner et al. 2000) 
or KEGG (Ogata et al. 1999). Metabolic 
pathways, though, are controlled to a 
large extent by protein-based events, 
having no direct implication to the levels 
of mRNA measured by microarray 
assays. Similarly, one can test whether 
the expression of genes sitting in specifi c 
portions of chromatin (i.e. cytobands 
or entire chromosome) are involved in 
certain experimental conditions. For 
any of the annotations used for grouping 
the genes, the terms are defi ned a priori 
and constructed independently from the 
experimental data. The most popular 
method starts from a list of differentially 
expressed genes and assesses whether a 
given gene set is overrepresented by using 
a test for independence in a contingency 
matrix (Khatri and Draghici 2005 for 
an overview). These methods imply the 
use of a strict signifi cance cut-off for the 
differential expression of individual genes. 
Alternatively, one can test whether the 
ranked list of genes annotated in a given 
gene set differs from a uniform distribution 
by using the Kolmogorov-Smirnov test 
(Mootha et al. 2003). Other approaches 
do not compute the p-values per each 
gene, but start the analysis directly from 
the raw expression data. It has been 
proposed to test whether samples with 
similar expression profiles have similar 
class labels. This can be achieved by using 
logistic regression models (Goeman et al. 
2004), ANOVA models (Mansmann and 

Meister 2005), or a t-test after reducing 
the gene set to its fi rst principal component 
(Tomfohr et al. 2005).

1.8.2 Gene regulatory networks
Increasing attention is being oriented to 
the inference of transcriptional regulatory 
networks based on high throughput 
gene expression screenings (Lee 2005, 
Sivachenko et al. 2007, Wang et al. 
2007). These approaches aim to link 
gene expression data to the activity of 
transcription factors in cause-effect 
models (Goutsias and Lee 2007, Babu 
2008). Fundamental to the idea of a gene 
network is the notion of modularity, 
according to which a complex system is 
built by combining simpler parts (Alon 
2007). Modularity exists in a variety of 
biological contexts, including protein 
complexes, metabolic pathways, signaling 
pathways and transcriptional programs 
(Wagner et al. 2007). For transcriptional 
programs, for instance, modules are 
defi ned as sets of genes controlled by the 
same set of transcription factors under 
certain conditions. Learning the structures 
of networks based on biological data and 
estimating their parameters is a crucial 
step. This is accomplished by integrating 
a priori knowledge about the network 
structure based on assumptions about the 
function of a gene (Schlitt and Brazma 
2006). Co-regulation of mammalian genes 
usually depends on sets of transcription 
factors that coordinately bind the 
promoter sequences and interact with each 
other (Werner 2007). Regulatory motif 
sequences within the promoter regions 
are organized into defined frameworks 
or modules of two or more transcription 
factor binding sites. Subsequent to the 
defi nition of frameworks, it is possible to 
scan large promoter sequences repositories 
for matches of such predefi ned modules.
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1.9 Microarray meta-analysis
Despite their broad use, microarrays 
are still suffering a substantial lack of 
standardization levels that would easily 
allow a combination of independent 
experiments (Kuo et al. 2002, Järvinen et 
al. 2004). There is anyway an increasing 
need for integrating the massive amount of 
gene expression data that are continuously 
produced worldwide. This kind of 
integration would sensitively improve our 
knowledge of the complex events that take 
place during the embryonic development 
of tissues, during the genesis of diseases, 
or the mechanisms that modulate the 
response to drugs. In recent years, several 
attempts have been made in comparing 
and integrating high throughput gene 
expression experiments. Wang et al. 
observed that different microarray 

platforms show good agreement both 
within and across laboratories when 
using the same RNA samples (Wang et al. 
2005). On the other hand, the laboratory 
effect plays a more signifi cant role than 
the platform effect  (Wang et al. 2005). 
Severgnini et al. effectively compared 
gene expression data from similar 
microarray technologies, using identical 
sample preparation protocols and identical 
statistical analysis (Severgnini et al. 2006). 
Microarrays have also been collected 
for studying gene expression in human 
cancers (Kilpinen et al. 2008). There is 
evidence that one way to reliably combine 
microarray data is by matching the probes 
from different chipsets or platforms on 
the sequence base (Hwang et al. 2004, 
Carter et al. 2005, Stec et al. 2005, Ji et 
al. 2006). 

Introduction – Aims of the Study

2. AIMS OF THE STUDY

Due to the multi- and inter-disciplinary nature of this thesis, it is possible to divide its 
objectives in two orders: methodological and biological. 
Methodological objectives:

Establishing statistical frameworks for increasing the reproducibility of Affymetrix 
GeneChip experiments;
Defi ning methods for reliably meta-analyzing independent Affymetrix GeneChip 
data sets;
Extending microarray results to regulatory gene networks.

Biological objectives:
Exploring gene expression patterns in human tissues and cell lines;
Investigating the relationships of human tissues based on gene expression 
information;
Evaluating gene expression in neuronal primary cultures and brain tissues for 
studying the developing brain.
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3. METHODS

An overview of the methods used in the publications included in the thesis is shown in 
Table 3.

Table 3. Summary of the methods used in this thesis.
Each row corresponds to a particular method. The paper (I – IV) where the method is used is also 
reported. Each method is described in details in the following paragraphs.

3.1 Microarray data collection from 
public repositories (III)

Affymetrix (http://www.affymetrix.com) 
GeneChip raw data fi les (CEL fi les) were 
collected from the Gene Expression for 
Omnibus (GEO) public database (Edgar 
et al. 2002). Strict criteria for the data 
selection were applied: i) the experiments 
had been documented according to the 
MIAME protocol (Brazma et al. 2001); ii) 
the arrays had been hybridized to normal 
fetal or adult human tissues or cell types; 
iii) the specimens had been obtained from 
healthy subjects or from reference RNA 
samples; iv) the raw data fi les had been 
made available for download; v) all the 
samples had been hybridized to Affymetrix 
GeneChips chipset HGU-133A.

3.2 Microarray quality control (I, II, 
III, IV)

Affymetrix data (I, III, IV) were checked 
for quality by using the package affy 
(Gautier et al. 2004a) and affyQCReport 
(Parman and Halling 2008) for R (R 
Development Core Team 2008). Agilent 
(http://www.agilent.com) data (II) were 
checked for quality by using the R package 
limma (Smyth 2005).

3.3 Affymetrix probes re-annotation 
(III, IV)

Sequence-based re-annotation of the 
Affymetrix probes was applied. Each 
single oligonucleotide probe was re-
annotated according to the Homo sapiens 

Method Paper
Microarray data collection from public repositories III

Microarray quality control I, II, III, IV

Affymetrix probes re-annotation III, IV

Affymetrix GeneChips preprocessing I, III, IV

Affymetrix GeneChips pre-fi ltering I

Agilent microarray preprocessing II

Differential gene expression analysis I, II, IV

Tissue-selective gene selection III

Microarray results functional analysis I, III, IV

Microarray functional global-testing II

Literature-based gene network analysis III, IV

Promoter computational analysis III, IV

Methods
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release March 3, 2006 (III) and the 
Rattus norvegicus release June 28, 2006 
(IV) Entrez Gene databases (Maglott 
et al. 2007). In Paper III, the probes 
were also re-annotated according to the 
RefSeq version 24 (Pruitt et al. 2007) 
and Ensemble version 42 gene databases 
(Flicek et al. 2008). R packages for the re-
annotated Affymetrix chipset are available 
for download at http://brainarray.mbni.
med.umich.edu/Brainarray/Database/
CustomCDF/CDF_download.asp.

3.4 Affymetrix GeneChips 
preprocessing (I, III, IV)

CEL files were imported into R (R 
Development Core Team 2008) and 
preprocessed using the algorithm RMA 
(Irizarry et al. 2003) implemented in the 
BioConductor (Gentleman et al. 2004) 
package affy.

3.5 Affymetrix GeneChips pre-fi ltering 
(I)

Three different pre-filtering methods 
were applied to normalized Affymetrix 
GeneChip data. Pre-fi ltering based on the 
Affymetrix detection call (Liu et al. 2002): 
probe sets were retained if its detection 
call was equal to “Present” in at least 
50% + 1 arrays in at least one group of 
biologically replicated arrays. Detection 
calls “Marginal” were converted to 
“Absent”. Pre-fi ltering based on the MBEI 
standard error (Li and Wong 2001a and b): 
probe sets were kept if its MBEI standard 
error was falling below the 95th percentile 
of the distribution of all the standard errors 
computed for each probe set across all the 
arrays of the experiment. Combinational 
pre-filter: both the detection call-based 
and the MBEI standard error-based pre-
fi lters were applied.

3.6 Agilent microarray preprocessing 
(II)

Image segmentation as well as estimation 
of foreground and local background 
intensities for each feature was performed 
using Axon Genepix Pro version 6.0 
(http://www.moleculardevices.com/pages/
software/gn_genepix_pro.html). The data 
were then imported into R (R Development 
Core Team 2008) by using methods 
implemented in the package limma (Smyth 
2005). Background-corrected intensities 
were normalized using the variance 
stabilization normalization (VSN) method 
(Huber et al. 2002).

3.7 Differential gene expression 
analysis (I, II, IV)

In paper I, a permutation-corrected t-test 
(Tusher et al. 2001) was used; probe sets 
with p-value < 0.01 after false discovery 
rate FDR correction were selected as 
differentially expressed. In paper II, 
genes with analysis of variance (ANOVA) 
p-value < 0.01 were considered. In paper 
IV, a moderated t-test and p-value cut-off 
of 0.001 after Benjamini Hockberg post-
hoc correction were applied.

3.8 Tissue-selective gene selection (III)

RMA-normalized expression values were 
transformed so that the maximum value 
was set to 1 for each gene across the 
tissues; the method proposed by Yanai 
and collaborators (Yanai et al. 2005) is 
used as a gene-specifi c weight; the tissue-
selectivity score per gene per tissue is then 
computed for each gene in each tissue 
separately as the transformed expression 
value by its specifi c weight.

Methods
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3.9 Microarray results: functional 
analysis (I, III, IV)

In paper I and III, Fisher’s exact test was 
used for screening the over-representation 
of gene ontology categories (Ashburner 
et al. 2000); p-value cut-offs of 0.05 
and 0.01 were applied respectively for 
selecting signifi cant families. In paper IV, 
the methods implemented in the DAVID 
gene annotation system were utilized with 
default parameters (Huang et al. 2007).

3.10 Microarray functional global-
testing (II)

Global statistics implemented in the R 
package global test (Goeman et al. 2004) 
for R (R Development Core Team 2008) 
were applied to the normalized expression 
matrix in order to find gene ontology 
categories affected during Chlamydia 
pneumoniae infection. Gene ontology 
families showing a p-value < 0.01 after 
permutation correction were considered to 
be signifi cant; for each of these, the genes 
showing the most signifi cant differential 
expression were selected for further 
investigation.

3.11 Literature-based gene network 
analysis (III, IV)

Lists of candidate genes were imported 
into the software Genomatix Bibliosphere 
(http://www.genomatix.de/products/
BiblioSphere/) in order to build networks. 
Two genes were connected in the graph 
if they appeared to be co-cited in the 
PubMed literature database (Wheeler et 
al. 2008), or if the consensus for a known 
transcription factor family was present in 
their promoter regions. In Bibliosphere, 
it is possible to highlight both consensus-
based connections between the candidate 
genes, as well as the connection of the 
input genes with other transcription 
factors.

3.12 Promoter computational analysis 
(III, IV)

The transcription factors presenting an 
interesting topology within the literature-
based gene network were selected; 
promoter regions of candidate genes 
presenting specifi c consensus sequences 
were retrieved using the software 
Genomatix Gene2Promoter (http://www.
genomatix.de/online help/helpeldorado/
Gene2Promoter Intro.html) and screened 
with the methods implemented in 
Genomatix FrameWorker (http://www.
genomatix.de/online help/help gems/
FrameWorker.html) in order to find 
common regulatory modules containing 
at least two transcription factor binding 
sites.

Methods
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4. RESULTS

4.1 Pre-fi ltering improves the reliability 
of Affymetrix GeneChip experiments in 
complex tissues as tested by qPCR (I).

The effect of the treatment with the 
psycho-stimulant drug methylphenidate 
(MPH) was evaluated in male rats. 
Gene expression screening was carried 
out on the striatum of these animals 
by using Affymetrix GeneChips RAE-
230A. Several pre-filtering methods of 
the normalized expression values were 
applied (Paper I, Figure 1) and a set of 85 
biologically relevant genes were tested 
by qPCR. In particular, the genes chosen 
included those encoding post-synaptic 
density proteins (Yao et al. 2004, Elkins 
et al. 2003), neurotransmitter receptors 
(Sari 2004, Heidbreder et al. 2005), 
transcription factors (Guerriero et al. 
2005), trophic factors (Castrén 2004), 
extra-cellular matrix proteins (McCracken 
et al. 2005), and synaptic vesicle release 
proteins (Kahlig et al. 2005), for their 
expression had already known to be related 
to drug abuse (Paper I, Table 2). The 
qPCR validation showed large agreement 
(~ 98%) with the microarray predictions 
after the detection call and MBEI standard 
error pre-filters, with exception of the 
gene Bmpr1a (qPCR-based t-test p-value 
= 0.31). None of the genes from the other 
analyses were validated (Paper I, Table 
3). 

4.2 Integrating global testing and gene-
wise analysis in gene expression data 
(II).

Global testing was used for fi nding gene 
ontology classes containing at least 3 
genes that signifi cantly associated (p-value 
< 0.01) with Chlamydia pneumoniae 

infection at different temporal stages. 
In this analysis, the p-value represented 
the probability of the differential global 
expression of all the genes associated 
to a given GO term at each time point 
as compared to all the others (Paper II, 
Table 2). The GO-wise and the gene-wise 
analyses were combined in this study 
for determining the candidate genes to 
be considered for further investigation 
(Paper II, Figure 1). At 12 hours time 
point the GO term “DNA modifi cation”, 
possibly related to the manipulation 
of gene expression of the host by the 
Chlamydia pneumoniae, was globally 
induced; from this group, the gene vFOS 
was selected. During all the stages of the 
experiment, the expression of several 
steroid-related categories went through 
an overall modifi cation; the gene NR4A1 
was chosen from the “steroid hormone 
receptor activity. Similarly, the gene 
DKK1 was picked up as a member of the 
GO class “negative regulation of the WNT 
signaling pathway”, which was drastically 
induced after 12 hours and repressed after 
72 hours of infection. Finally, the gene 
CYR61 was selected from the functional 
group “Insulin-like growth factor binding 
activity”. In addition, 6 genes, namely 
EGR1, FLJ32065, EMP1, IGFBP1, 
ACHE, FLJ23356, were also selected as 
showing notable induction in the gene-
wise analysis, creating a group of 10 
candidate genes (Paper II, Table 3). After 
qPCR validation of the selected genes, 4 
of them were successfully silenced with 
corresponding siRNAs (Paper II, Table 4). 
The silencing of the genes EGR1 or DKK1 
was capable of reducing the amount of 
Chlamydia pneumoniae by more than 25% 
(Paper II, Table 5).
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4.3 Building a catalog of tissue-selective 
genes (III).

The pipeline designed for identifying the 
tissue-selective genes (Paper III) consists 
of several consecutive steps (Figure 2). 

A total of 4,985 gene-tissue pairs, 
corresponding to 1,601 unique genes, 
were considered as expressed in a tissue-
selective manner after permutation testing 
(Paper III, File S1, Table 0.1). Signifi cant 
gene-tissue pairs were found in 77 out of 
78 tissues analyzed, with the exception 
of the superior cervical ganglion. About 
35% of the 1,601 genes were selectively 
expressed in one tissue, 20% in two, 13% 
in three; 10% of the tissue selective genes 
were expressed in six or more tissues 
(Figure 3). 

The majority of the tissue-selective 
genes shared by ten or more tissues 
were expressed in neural system tissues. 
The greatest part of the tissue-selective 
genes were found in the immune system 
(32%), followed by central and peripheral 
nervous system (17%), muscles (15%), 
and reproductive organs (9%); altogether, 
the other categories accounted for 27% of 
the selective genes (Figure 4). 

By using the normalized expression 
of the 1,601 genes, the tissues could be 
successfully segregated by hierarchical 
clustering (Paper III, File S3, Figure 2), 
principal component analysis (Paper 
III, File S3, Figure 4), and curvilinear 
component analysis (Paper III, S3, Figure 
6). 

The tissue-selective genes represented 
many biological and molecular themes, 
as they could be signifi cantly annotated 
in many gene ontology terms (Paper III, 
File S1, Tables 0.2, 0.3, and 0.4). Nineteen 
percent of the tissue selective genes were 
involved in signal transduction, 16% 
in development, and 14% in immune 
response. Moreover, about 18% of these 
genes coded for secreted proteins, and 
8% for receptors. When the selective 
genes in each tissue were annotated, 
they were able to depict the main known 
physiological traits, for instance, the liver-
selective genes (Paper III, File S1, Table 
44.2) or the testis-selective genes (Paper 
III, File S1, Table 55.2). The 1,601 tissue-
selective genes were enriched in disease 
genes, for they were associated with 361 
human Mendelian disorders (Paper III, 
File S1, Table 0.5). In many cases, tissue-

Data collection
from GEO database 

Affymetrix HGU-133A
Probe re-annotation Tissue-selective Genes

Functional Analysis
over-represented GO terms Disease Association

Connectome of Tissues

Hippocampus-selective
Gene Network 

and promoter analysis
Data Normalization Clustering Data Exploration

Figure 2. Analytical fl owchart of paper III.
Each box represents an analytical step used in the paper III.
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selective genes were found to be related 
to pathologies having strong impact on 
the tissues from where they were found 
to be selectively expressed. This was, for 
instance, the case for numerous muscle-
selective genes linked to myopathies, or 
gland-selective genes linked to endocrine 
system and metabolic disorders. The fetal 

Figure 4. Tissue representation.
In A: the distribution of tissue-selective genes in groups of related tissues. In B: the groups of 
tissues analyzed in paper III.

A B

Results

Figure 3. Distribution of the tissue-selective genes.
In x axis, the number of tissues sharing the expression of selective genes; in y axis, the number 
of genes in each category.

heart-selective GATA4 and NKX2.5 had 
been associated with heart malformations, 
such as tetralogy of Fallot and atrial septal 
defects (Goldmuntz et al. 2001, Hirayama-
Yamada et al. 2005).

About 65% of the 1,601 tissue 
selective genes were found in two or 
more tissues. Hence, investigating the 
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relationship of tissues based on the 
amount of tissue selective genes shared 
was relevant. Networks of tissues (namely 
connectome, in Paper III) were built, 
where each node represented an analyzed 
tissue and the number of selective genes 
shared by two or more tissues formed 
the edges. The number of edges in the 
graphs was computed as the function of 
the number of shared genes. Thus, three 
cut-off values of at least 30, at least 20, 
and at least 5 shared genes were selected 
as a representation of different degrees of 
relatedness of tissues (Paper III, Figure 1). 
Four main results were obtained from the 
connectome analysis: i) central nervous 
system, immune, and testis tissues showed 
very distinct expression signatures, as they 
formed tight intra-connections already at 
30 sharing genes cut-off. Testis tissues 
did not join any other tissues until the 
connectivity cut-off was lowered to 5 
genes; ii) amygdala, which is thought to 
be a collection of adjacent cell groups 
within the forebrain, was located in the 
center of a CNS tissues network, sharing 
expression patterns with anatomically 
neighbor areas; iii) tonsil, an immune 
organ with a myoepithelial histological 
structure, bridged the networks of the 
immune tissues and the muscles; iv) the 
hippocampus, the fetal brain, and the 
olfactory bulb showed an interesting 
topology for they were placed at the 
interface between the nervous tissues and 
other tissues where active cell replication 
is known to take place. Neurogenenesis 
is present in these three neural tissues. 
Therefore, the hippocampus-selective 
genes were further investigated in 
search of genetic networks that would 
underlie physiological functions of the 
hippocampus.  

A network of the hippocampus-
selective genes was modeled based on 

their literature co-citation as well as the 
presence of consensus sequence motifs 
for specifi c transcription factor families 
within their regulatory regions. The 
transcription factor NFKB, which was not 
selectively expressed in hippocampus, was 
found to potentially bind the promoters 
of several hippocampus selective genes 
(Paper III, Figure S1). Extensive analysis 
of the regulatory regions of the NFKB 
interactors revealed the presence of 
a conserved transcriptional module 
composed by E2F and NFKB transcription 
factor families (Paper III, Figure S2). 
Hence, the E2F-NFKB module was found 
in an independent set of 1,901 human 
promoter sequences. The functional 
annotation of these genes, according to 
the gene ontology system, highlighted 
biological themes such as nervous system 
development, cell adhesion, and tyrosine 
kinase receptor signaling (Paper III, File 
S2). 

4.4 Gene expression screening 
for characterizing embryonic 
mesencephalon and neuronal primary 
cultures (IV).

Three sequence-based re-annotations, 
based on the Entrez Gene (Maglott et 
al. 2007), RefSeq (Pruitt et al. 2007), 
and Ensembl gene (Flicek et al. 2008) 
databases, were used for alternatively 
grouping the probes of the Rattus 
norvegicus Affymetrix ChipSet RAE230A. 
These re-annotated independent data sets 
were then normalized and differential 
expression was assayed by moderated 
t-test (Paper IV, Table 1). The lists of 
differentially expressed genes were then 
analyzed using the DAVID database 
(Huang et al. 2007) and it was found that 
425 differentially expressed unique genes 
were shared between the three annotations 
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(Figure 5, and Paper IV, Figure 1 and 
Table ST1). 

A total of 268 genes were found to 
be over-expressed in mesencephalon 
primary cultures (MesPC), representing 
the functional families of development, 
lipid metabolism, extracellular matrix, 
and mitochondrion (Paper IV, Table ST2). 
Analogously, 157 genes were signifi cantly 

associated with E11.5 mesencephalon 
(MesE11), covering functions such as 
synaptic transmission, nervous system 
development, neurogenesis, and ion 
channels (Paper IV, Table ST3).

A number of promoters of MesPC 
genes showed a binding site for the 
transcription factor Egr1. Further 
investigation highlighted the module 
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composed of binding sites for Egr1 
and Sp1 as potentially involved in their 
expression regulation. The Egr1-Sp1 
module was also found in promoters of 
other Rattus norvegicus genes involved in 
neuron differentiation and neurogenesis 
(Paper IV, File SR1).

As for the MesE11-genes, co-
citation based network analysis and 
promoter analysis revealed a role of the 
transcription factor families Neur and 

Nr2f in modulating the expression of 
many MesE11-genes. The genes Neurod3 
(NEUR family) and Nr2f2 (Nr2f family) 
were found to be significantly over-
expressed in MesE11. Other Rattus 
norvegicus promoters, covering functional 
families such as dopamine metabolism, 
synaptic transmission, and development, 
showed consensus for the Neur-Nr2f 
module.

Results
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5. DISCUSSION

This is the 15th year since the first 
microarray publication (Schena et al. 
1995). Since then, the microarrays 
became a technique for large gene 
expression screening worldwide; 
increasing number of articles report 
gene expression microarray results in a 
variety of organisms and a multitude of 
experimental conditions. Despite their 
popularity, there has been increasing 
skepticism concerning the microarrays, 
determining the paradoxical situation that 
more scientists choose microarrays for 
their projects and at the same time more 
scientists struggle for publishing their 
microarray results. More specifically, 
several studies have highlighted major 
issues of reproducibility and predictability 
of microarray experiments (Tan et al. 
2003, Kawasaki 2006, Walker and Hughes 
2008, Ioannidis et al. 2009). Efforts have 
been made for increasing the reliability 
of microarray experiments, including 
increasing the sample size (Ein-Dor et 
al. 2006), improving the computational 
analysis of the data (Tilstone 2003, 
Allison et al. 2006, Jafari and Azuaje 
2006), updating the probe annotation 
(Taylor et al. 2001, Dai et al. 2005, Carter 
et al. 2005) and design (Mecham et al. 
2004), and standardizing manufacturing 
processes (Tan et al. 2003) as well as 
the sample preparation and hybridization 
procedures (Vartanian et al. 2009). 

Microarrays have developed very 
rapidly along with the progressive 
completion of the genome sequencing 
projects but only recently the community 
focused on questions inherent to the 
computational analysis of the microarray 
data. When statistics entered into the 
microarray fi eld, a peculiar split in the 
literature has happened: statisticians, 

mathematicians, engineer and computer 
scientists have been proposing better and 
more sophisticated methods for analyzing 
microarray data, but their job has rarely 
been able to infl uence the way of working 
of the biologists. Rather, the microarray 
users have often entrusted their data to 
easy-to-use graphic-interfaced software 
that not always ensure adequate levels 
of strictness and customizability.  
Alternatively, some biologists have 
assigned the responsibility of the 
analysis to theoretical mathematicians 
or statisticians, assuring very high 
numerical reliability but scarce biological 
interpretability. Another reason for the 
increased skepticism towards microarrays 
is related to the strategic management 
of projects where microarrays have 
been used. Because of their complexity 
and costs, microarrays have been often 
regarded as the final step of longer 
projects. However, the real essence of 
large-scale and non-quantitative screening 
methods would naturally place the 
microarray experiments in the beginning 
of more articulated research projects. 
Whenever microarrays are used, problems 
also arise from the fact that usually too 
big and too much complex output is 
generated, making the interpretation of 
the general picture appearing in the results 
very diffi cult (Slonim 2002). For these and 
more practical motives related to budget 
issues, post-array work plan is extremely 
complicated, and often it abruptly stops 
at the validation of a handful of genes 
by the means of other methods such as 
PCR (Holland 2002, Czechowski et al. 
2004). Owing to the costs associated 
with independent verifi cations, in most 
papers only a few genes (typically less 
than 20) are validated, including the 
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differentially expressed genes that are 
also widely studied and those with well-
agreed sequences (Larkin et al. 2005, 
Paper II, Paper IV). When working 
with standardized microarray protocols 
and platforms, the validation rate can 
also be very high (Paper I). Regardless 
of the method used for testing the 
differential expression, the genes to be 
further investigated should be selected 
by prioritizing their potential biological 
meaning (Paper I and Paper II). In this 
thesis, much effort has been given to 
combining rigorous statistics with high 
biological interpretability of the results. 
In the papers presented here, people 
with different expertise and disciplinary 
backgrounds have independently screened 
the lists of differentially expressed genes, 
ensuring unbiased selection of genes 
to be validated by PCR. Additionally, 
when designing PCR primers, taking into 
account the position of the microarray 
probes onto the gene sequence has proven 
to be benefi cial in terms of validation 
rates, despite the microarray platform 
utilized (Paper I, Paper II, Adriani et al. 
2006, Volpicelli et al. 2007, Consales et al. 
2007, Kivi et al. 2008). Post-array work 
is not always limited to the independent 
validation of the microarray results. In 
paper II, a gene silencing approach has 
been utilized in order to fi nd genes whose 
expression would be essential for the 
replication of Chlamydia pneumoniae. 
Elsewhere, the information concerning 
the transcripts levels has been integrated 
with protein quantifi cation and functional 
assays (Kivi et al. 2008).  

Microarray data are expensive and 
time consuming to generate, nonetheless, 
they are rarely fully mined for their 
information content. Soon after the 
introduction of microarrays, it has been 
clear of the importance of sharing data 
within the community (Stoeckert et al. 

2002), as well as the need of standardizing 
their description (Brazma et al. 2001). 
Additional motivations for public 
archiving of the microarray data has 
been to avoid duplicating experiments, 
as well as to re-analyze using new 
and more efficient algorithms. Several 
repositories offer the possibility to store 
and consult microarray data, including 
Gene Expression Omnibus (Barrett et 
al. 2005), ArrayExpress (Parkinson et 
al. 2005), Stanford Microarray Database 
(Ball et al. 2005), oncoMine (Rhodes et 
al. 2004), Celsius (Day et al. 2007), and 
ArrayWiki (Stokes et al. 2008). GEO 
and ArrayExpress contain data of about 
280,000 and about 235,000 individual 
hybridizations respectively. 

In Paper III, gene expression obtained 
by using human HGU-133A Affymetrix 
GeneChips was retrieved from the GEO 
database. Only a small part of the available 
data has been included in the analysis, 
as many experiments were stored in the 
SOFT format (Barrett et al. 2005), where 
only the normalized gene expression 
matrix had been made available. For 
these, the re-annotation of the probes 
is not possible; in addition, many 
experiments had been normalized using 
outdated methods no longer considered 
reliable. The quality of any meta-analysis 
depends on the underlying data. For 
this reason, strict pre-selection criteria 
of the experiments as well as rigorous 
quality assessment has been preferred 
over collecting as many hybridizations as 
possible to include in the study. In fact, 20-
50% of all the HGU-133A arrays present 
in GEO and ArrayExpress databases have 
been reported to be of insuffi cient quality 
and should not be considered for inclusion 
in any meta-data set (Larsson et al. 2006). 
Finally, 195 arrays from six data sets have 
been selected for further investigation. 
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There are two general approaches 
for integrating microarray studies: i) 
the comparative analysis of the results 
published in different studies; and 
ii) the comprehensive re-analysis by 
merging primary data from different 
experiments. Comparison of aging and 
cellular senescence microarray studies has 
demonstrated that the expression patterns 
of genes involved in cellular senescence 
were similar to those of aging in mice but 
not in humans (Wennmalm et al. 2005). 
Similarly, microarray results from several 
studies have been integrated to identify 
common host transcriptional responses to 
pathogens (Jenner and Young 2005). The 
comprehensive re-analysis approach can 
be conceptually divided into three main 
groups, according to their primary purpose: 
i) summarizing meta-analysis, where the 
investigators try to identify more accurate 
results associated to a given phenotype; 
ii) hypothesis-driven meta-analysis, 
needed when a biological question can be 
answered with the integration of data; and 
iii) exploratory meta-analysis, where large 
sets of data are used to fi nd previously 
uncharacterized gene expression patterns 
(Larsson et al. 2006). Additional biases in 
microarray meta-analysis are represented 
by the laboratory-effect (Irizarry et al. 
2005), the platform-effect (Carter et al. 
2005) and the species-effect (McCarroll et 
al. 2004). In this study, the platform-effect 
and the species-effect have not infl uenced 
the analysis, for only arrays from the 
same chipset have been considered. In 
Affymetrix GeneChips, the hybridization 
thermodynamics has been modeled 
considering some probe-specifi c and array-
specifi c effects (Li and Wong 2001a and 
b, Irizarry et al. 2003). The probe-effect 
is balanced by re-annotating the probes, 
(Dai et al. 2005), as not only are they re-
arranged within more appropriate probe 

sets, but all the probes that potentially 
bias the hybridization are eliminated. 
On the other hand, the standardization 
of the GeneChip manufacturing and the 
consistency of the laboratory procedures 
have drastically diminished the array-
specifi c effect. Therefore, the model-based 
algorithms typically used to normalize 
single experiments can largely deal with 
the laboratory-effect, similar to what they 
do with the array-specifi c effect. In these 
studies, the RMA algorithm (Irizarry et 
al. 2003) has been successfully utilized 
for normalizing arrays from different 
experiments. The RMA particularly allows 
robust estimation of inter-array variability. 
It uses information from multiple arrays 
for normalizing, through the quantile 
method (Bolstad et al. 2003), gene 
expression. More recently, large groups of 
independent GeneChips have been used as 
training sets for increasing the accuracy 
of the RMA-based gene expression 
estimation (Katz et al. 2006).

A group of genes, called housekeeping 
genes, are virtually expressed in all tissues 
to maintain the basic cellular functions, 
whereas the tissue-selective genes show 
differential expression patterns among the 
tissues and provide specialized functions 
that distinguish the tissues from each 
other. Although largely ubiquitous, the 
housekeeping genes are far from being 
constantly expressed, their expression 
levels may vary significantly between 
different tissues (Thellin et al. 1999, 
Lee et al. 2002, Barber et al. 2005). The 
estimation of the number of housekeeping 
genes is still debated (Warrington et 
al. 2000, Hsiao et al. 2001, Zhu et al. 
2008). On the other hand, big interest is 
also given to the defi nition of the tissue-
selective group of genes, and the new 
high-throughput technologies have 
represented in recent years valuable 
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tools for large-scale screening of gene 
expression across multiple tissues and cell 
types (Hsiao et al. 2001, Saito-Hisaminato 
et al. 2002, Shyamsundar et al. 2005, 
Yanai et al. 2005, Liang et al. 2006, Paper 
III). Housekeeping genes are thought to 
evolve slowly (Winter et al. 2004), and 
the slowly evolving genes are generally 
highly expressed (Drummond et al. 2005). 
Therefore, the importance of focusing 
on genes with middle-range and low 
expression has been pointed out (Yanai 
et al. 2005, Paper III). The housekeeping 
genes have also been reported to be under-
represented among the disease genes due 
to a higher chance of embryonic lethality 
when mutated (Winter et al. 2004). 
Likewise, many human diseases caused 
by genetic defects are usually highly 
tissue-selective as well as disease genes 
are inclined to encode non-hub proteins 
in the protein network (Goh et al. 2007). 
In this study, the tissue-selective genes 
were found to be highly associated with 
human diseases. Additionally, an evident 
tendency emerged for disease genes to 
be selectively expressed in the tissues 
where their defects are described to cause 
pathology. Similar observations have been 
made elsewhere (Lage et al. 2008). Tissue-
selectivity can be addressed in strict terms 
of considering only the genes whose 
expression is limited to a specifi c tissue, 
in which case it is referred to as tissue-
specifi city. However, tissues involved in 
the same functions or having common 
developmental origin share also numerous 
expression patterns. 

Here, attention has been given to 
those genes whose expression is enriched 
in one or more similar tissues (Liang et al. 
2006, Zhu et al. 2008, Paper III). Further 
investigation has been concentrated on the 
relatedness of tissues that shared selective 
expression patterns. The central nervous 

system, testis, immune, and muscle tissues, 
showed a high grade of intra-relatedness, 
as these groups were connected already at 
very high degrees in the tissue network. 
However, the testis tissues have showed 
the most peculiar expression patterns, as 
their sub-network has remained isolated 
to all the other tissues also at medium 
and low degrees. Within the sub-network 
of CNS tissues, the amygdala, which 
originates from neurons migrating from 
different portions of the brain (Swanson 
and Petrovich 1998), presented high 
relatedness and central position. At a lower 
degree of relatedness, the hippocampus, 
together with a few other CNS structures, 
shared numerous expression patterns with 
other tissues where active cell replication 
is reported under certain conditions such 
as the liver and some fetal structures. 
Production of new neurons is thought 
to be possible in the adult hippocampus 
(Jacobs et al. 2000).

High-throughput technologies are 
only merely capable of cataloguing 
biological events in a relatively flat 
format, rather than providing a frame 
of deeper understanding or a broad key 
of interpretation. Alongside, microarray 
experiments provide only estimation 
of the transcript levels without directly 
revealing any possible regulatory 
mechanisms (Werner 2007). Regulatory 
networks provide a good way to 
represent the apparatuses that control 
the molecular processes of a living cell 
(Werner and Nelson 2006). Therefore, it 
has been proven that coordinated sets of 
transcription factor binding sites retrieved 
from the promoter sequences of related 
genes can provide an interpretative 
framework for the changes observed in 
gene expression (Pilpel et al. 2001). The 
relationships of genes can be inferred from 
the gene expression data in combination 
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with multiple independent evidence 
(Seifert et al. 2005). A similar approach 
has been considered in Papers III and IV of 
this thesis. In Paper III, the hippocampus-
selective genes have been interconnected 
based on literature-based evidence, 
whilst in Paper IV, the genes found over-
expressed in embryo mesencephalon or 
in the primary cell cultures derived from 
it have been the object of investigation. 
In both cases, additional links between 
the genes have been drawn according 
to the presence of TFBS for specific 
transcription factor families, enabling the 
discovery of regulatory relationships not 
described before. Visual inspection of 
the gene networks allows selecting sub-
networks of genes whose promoters show 
possible co-regulation. Next, promoter 
sequence alignment can help in fi nding 
common modules constituted of multiple 
TFBSs (Cohen et al. 2006). In Paper III, 
the E2F-NFKB module has emerged as 
possibly regulating the expression of 
several hippocampus-selective genes as 
well as additional genes found selectively 
expressed in other CNS regions 
extensively studied for neurogenesis 
(Gould 2007). Transcription factors of 
the family E2F have a well-established 
role regulating gene expression during 
the cell cycle (Attwooll et al. 2004) 
and silencing several S-phase genes in 
differentiated neurons (Liu et al. 2005). 
Additionally, E2F binding sites have been 
identifi ed in promoters of genes involved 

in hippocampal development (Dabrowski 
et al. 2006). Within the CNS, NFKB genes 
have been reported to play a crucial role 
in synaptic plasticity, neuroprotection, as 
well as in learning and memory (Mémet 
2006). They have also reported to be 
expressed in areas of active neurogenesis 
(Denis-Donini et al. 2005). Protein 
members of the E2F and NFKB families 
have been also reported to physically 
interact and cooperate in regulating the 
expression of common effectors (Lim et 
al. 2007). Likewise, in Paper IV the novel 
modules EGRF-SP1F and NEUR-NR2F 
have been identifi ed in Rattus norvegicus 
dopaminergic neuronal primary 
cultures and embryonic mesencephalon 
respectively. EGR transcription factors 
have been described as having a role in 
chronic CNS diseases (Beckmann and 
Wilce 1997), as well as being involved 
in several neurophysiological aspects 
(Swiatek and Gridley 1993, Topiko et al. 
1994, Jones et al. 2001, Li et al. 2007). 
Depolarization positively regulates the 
transcription of Egr1, indicating that this 
gene functions in neuronal differentiation 
following electrical stimuli. Neurogenic 
helix-loop-helix transcription factor 
family NEUR play a pivotal role in 
Nurr1-induced dopaminergic neuronal 
differentiation (Park et al. 2006). NR2F 
genes seem also involved in GABAergic 
interneurons migration during the 
development of the brain (Tripodi et al. 
2004).
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6. CONCLUSIONS

The completion of the human genome 
sequence and several model organisms 
has shown that complexity arises 
primarily from more complex regulatory 
interactions among genes, their products, 
and the environment. At the same time, 
high-throughput technologies delineate 
the location, abundance, state and 
interactions of genes and their products 
with increasing resolution in terms of 
cell types, time points and conditions. 
Among them, the microarrays allow 
investigating the function of many genes 
at once, thereby providing an assay of the 
transcriptional status of cells or tissues 
in a wide variety of physiological or 
pathological situations. At the same time, 
new ultra-high-throughput sequencing 
methods enable measurement of gene 
expression and genomic variations within 
the same experiments, at unparalleled 
sensitivity. These methods will not 
replace the microarrays, but will drive 
their evolution towards more powerful 
and more affordable levels. Investigating 

gene expression and its regulation is 
of big impact in defining the identity 
of organisms, tissues, and cells, hence 
allowing the characterization of disease 
conditions and their etiology as well as the 
evaluation of new treatments. Organizing, 
combining, and reanalyzing the massive 
information already obtained are a central 
need as well as an unprecedented resource 
for the scientifi c community. 

Biomedical sciences are going through 
a profound revolution, as important as 
the one that invested all the fields of 
knowledge in XVI and XVII centuries. 
Under the thrust of more and more capable 
technologies, they are moving from 
the reductionist approach to a powerful 
integrated approach. Along with their 
internal metamorphosis, biosciences are 
also challenging the whole society, as the 
fast progress especially in genetics have 
profound implications and consequences 
also on politics, economy, and ethics. 
Indeed, the very concepts of life and death 
are being forever modifi ed. 

Conclusions



28

7. ACKNOWLEDGEMENTS

It is impossible to properly acknowledge all the people who have inspired me as a person 
and a scientist; only some of them are mentioned in this book. Many of the others are not 
scientists: some are musicians, writers, or painters, but they are not less important. All of 
them formed in many ways the foundation of my personality and my way of thinking. 

This study has been carried out at the DNA Sequencing and Genomics Laboratory 
of the Institute of Biotechnology, University of Helsinki, with fi nancial support from the 
University of Helsinki, Academy of Finland, Finnish Cultural Foundation, and Ehnrooth 
Foundation.

All this would not have been possible without my supervisor Dr. Petri Auvinen. 
Besides being one of the most brilliant minds I have encountered in my life, he is a 
nice and sensitive person. He has well tolerated all my crazy moments and worn his 
headphones only when really exhausted. Among many other things, Petri taught me that 
extraordinary goals can be achieved simply and quietly… and that bosses can ask things 
so gently that you don’t realize it is something you “have” to do (and even fast)!

I wish to thank Prof. Mart Saarma, Director of the Institute of Biotechnlogy, for 
giving us all at the Institute an excellent work environment and facilities. It is also 
because of my great admiration for him that I moved to Finland.

I am grateful to the members of my follow up group, Professors Eero Castren and 
Jukka Corander, for advising and guiding my work. I am also grateful to Jukka and 
Dr. Iiris Hovatta for critically reviewing my thesis. It has been my great pleasure and 
honor to collaborate with them. I express my gratitude to Dr. Christopher Carroll for the 
language revision of this thesis.

I wish to thank to Prof. Tapio Palva and Dr. Pekka Heino, at the Division of Genetics 
in the Department of Biological and Environmental Sciences, for their help during my 
whole curriculum. Dr. Eeva Sievi and Dr. Sandra Falck of the Viikki Graduate School in 
Biosciences are also acknowledged.

My time in the lab has been nicer thanks to the people who have populated it or that 
currently do so: Panu, Tuomas, Eeva-Marja, Lasse, Kui, Jenni, Olli, Jarmo, Miia, Kaisa, 
Anu S. & P., Pia, Matias, Eetu, Rashi, Paula, Anna-Liisa, Päivi, Kirsi, Pasi, Ritu, Tuuli, 
Mira, Suvi, Lea, Ritva, Tuula, Riikka. Noora, Robert, Ari-Matti, Hannu, Markku, Janne, 
Tanja, Matthew, Juha. Thank you for enduring my up-n-down days, usually starting at 
your lunchtime. 

During these years in Finland, I have had the chance to work with many talented 
scientists. I wish to mention those who have challenged and infl uenced me most: Dr. 
Eeva Auvinen, Dr. Mikko Frilander, M.Sc. Nina Kivi, M.Sc. Heli Pessa, M.Sc. Maria 
Sundvik, M.Sc. Helena Kilpinen, Prof. Arto Urtti, Prof. Pertti Panula, Dr. Tapio Heino, 
Dr. Johan Peränen, Prof. Anu Wartiovaara, Dr. Joni Alvesalo, Prof. Pia Vuorela, Prof. 
Kristina Lindström, Dr. Jarno Tuimala, Dr. Eija Korpelainen, Dr. Saara Laitinen, Dr. 
Oscar Puig, Dr. Zewdu Terefework, Dr. Ettore Tiraboschi, Dr. Petri Törönen, M.Sc. Kati-
Sisko Vellonen, Prof. Hannele Yki-Järvinen, Dr. Anna Kotronen, M.Sc. Mari Palgi.

My adventure in science began in 1997, when I was a fi rst year student at the 
Faculty of Medicine in Naples. Prof. Corrado Garbi, my fi rst mentor, transferred to me 
his love and enthusiasm for science and disciplined me to the rigorous way of thinking. 

Acknowledgements



29

I will owe him a lot for the rest of my life. Prof. Lucio Nitsch has supported me even 
when I moved from cell biology to bioinformatics. I am thankful to Pasquale De Luca 
at BioGeM for tutoring and becoming a good friend.  My last stage in Italy was at 
the Developmental Neurobiology lab, CNR, directed by Dr. Umberto di Porzio. He 
introduced me to neurobiology, which I have not abandoned anymore. He also allowed 
me to visit Helsinki in March 2003, which changed my life forever. 

The following are only a few of the many friends and colleagues whose support and 
ideas were vital also to my work: Antonello, Damiana, Salvatore, Massimiliano, Carla, 
Floriana, Luigi, Claudia, Simone, Ombretta, Eleonora, Cinzia, Gaetano, Flaviana, Anna, 
Paolo, Remo, Pandelis, Rosario, Irene, Michele, Alessandro, Laura.

I am also enormously indebted to my family for the endless support and 
encouragement.

My greatest thank goes to Leena for making my life so colorful. I love her more 
than microarrays.

Helsinki, April 2009

Acknowledgements



30

8. REFERENCES

Adriani W, Leo D, Greco D, Rea M, di Porzio U, Laviola G, Perrone-Capano C. 2006. Methylphenidate 
administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene 
expression. Neuropsychopharmacology. 31(9):1946-56.

Affara NA. 2003. Resource and hardware options for microarray-based experimentation. Brief Funct 
Genomic Proteomic. 2(1):7-20.

Allison DB, Cui X, Page GP, Sabripour M. 2006.  Microarray data analysis: from disarray to consolidation 
and consensus. Nat Rev Genet. 7(1):55-65.

Alon U. 2007. Network motifs: theory and experimental approaches. Nat Rev Genet. 8(6):450-61.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, 

Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald 
M, Rubin GM, Sherlock G. 2000. Gene ontology: tool for the unifi cation of biology. The Gene Ontology 
Consortium. Nat Genet. 25(1):25-9.

Aston C, Jiang L, Sokolov BP. 2004. Transcriptional profiling reveals evidence for signaling and 
oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder.  Mol 
Psychiatry. 10(3):309-22.

Attwooll C, Lazzerini Denchi E, Helin K. 2004. The E2F family: specifi c functions and overlapping 
interests. EMBO J. 23(24):4709-16.

Babu MM. 2008. Computational approaches to study transcriptional regulation. Biochem Soc Trans. 36(Pt 
4):758-65.

Ball CA, Awad IA, Demeter J, Gollub J, Hebert JM, Hernandez-Boussard T, Jin H, Matese JC, Nitzberg 
M, Wymore F, Zachariah ZK, Brown PO, Sherlock G. 2005. The Stanford Microarray Database 
accommodates additional microarray platforms and data formats. Nucleic Acids Res. 33:D580-2.

Barber RD, Harmer DW, Coleman RA, Clark BJ. 2005. GAPDH as a housekeeping gene: analysis of 
GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics. 21(3):389-95.

Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rudnev D, Lash AE, Fujibuchi W, Edgar 
R. 2005. NCBI GEO: mining millions of expression profi les--database and tools. Nucleic Acids Res. 
33:D562-6.

Beckmann AM, Wilce PA. 1997. Egr transcription factors in the nervous system. Neurochem Int. 31(4):477-
510.

Benjamini Y and Hochberg Y. 1995. Controlling the False Discovery Rate: a practical and powerful approach 
to multiple testing. J Royal Stat Soc. 57(1):289-300.

Binder H, Preibisch S. 2005. Specific and nonspecific hybridization of oligonucleotide probes on 
microarrays. Biophys J. 89(1):337-52.

Bolstad BM, Irizarry RA, Astrand M, Speed TP. 2003. A comparison of normalization methods for high 
density oligonucleotide array data based on variance and bias. Bioinformatics. 19(2):185-93.

Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball 
CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson 
H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M. 2001. Minimum 
information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 
29(4):365-71.

Carter SL, Eklund AC, Mecham BH, Kohane IS, Szallasi Z. 2005. Redefi nition of Affymetrix probe sets 
by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-
associated gene expression measurements. BMC Bioinformatics. 6:107.

Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA. 2002. Selection for short introns 
in highly expressed genes. Nat Genet. 31(4):415-8.

Castrén E. 2004. Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol. 4(1):58-64.

References



31

Cohen CD, Klingenhoff A, Boucherot A, Nitsche A, Henger A, Brunner B, Schmid H, Merkle M, Saleem 
MA, Koller KP, Werner T, Gröne HJ, Nelson PJ, Kretzler M. 2006. Comparative promoter analysis 
allows de novo identifi cation of specialized cell junction-associated proteins. Proc Natl Acad Sci U S A. 
103(15):5682-7. 

Consales C, Volpicelli F, Greco D, Leone L, Colucci-D’Amato L, Perrone-Capano C, di Porzio U. 2007. 
GDNF signaling in embryonic midbrain neurons in vitro. Brain Res. 2007 1159:28-39. 

Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK. 2004. Real-time RT-PCR profi ling of over 
1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specifi c 
genes. Plant J. 38(2):366-79.

Dabrowski M, Aerts S, Kaminska B. 2006. Prediction of a key role of motifs binding E2F and NR2F 
in down-regulation of numerous genes during the development of the mouse hippocampus. BMC 
Bioinformatics. 7:367.

Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, 
Watson SJ, Meng F. 2005. Evolving gene/transcript defi nitions signifi cantly alter the interpretation of 
GeneChip data. Nucleic Acids Res. 33(20):e175.

Day A, Carlson MR, Dong J, O’Connor BD, Nelson SF. 2007. Celsius: a community resource for Affymetrix 
microarray data. Genome Biol. 8(6):R112.

Denis-Donini S, Caprini A, Frassoni C, Grilli M. 2005. Members of the NF-kappaB family expressed 
in zones of active neurogenesis in the postnatal and adult mouse brain. Brain Res Dev Brain Res. 
154(1):81-9.

Draghici S, Khatri P, Eklund AC, Szallasi Z. 2006. Reliability and reproducibility issues in DNA microarray 
measurements. Trends Genet. 22(2):101-9.

Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. 2005. Why highly expressed proteins evolve 
slowly. Proc Natl Acad Sci U S A. 102(40):14338-43.

Duret L, Mouchiroud D. 2000. Determinants of substitution rates in mammalian genes: expression pattern 
affects selection intensity but not mutation rate. Mol Biol Evol. 17(1):68-74

Edgar R, Domrachev M, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expression and 
hybridization array data repository. Nucleic Acids Res. 30(1):207-10.

Ein-Dor L, Zuk O, Domany E. 2006. Thousands of samples are needed to generate a robust gene list for 
predicting outcome in cancer. Proc Natl Acad Sci U S A. 103(15):5923-8.

Elkins RL, Orr TE, Rausch JL, Fei YJ, Carl GF, Hobbs SH, Buccafusco JJ and Edwards GL. 2003. Cocaine-
induced expression differences in PSD-95/SAP-90-associated protein 4 and in Ca2+/calmodulin-dependent 
protein kinase subunits in amygdalae of taste aversion-prone and taste aversion-resistant rats. Ann N Y 
Acad Sci 1003:386-390.

Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates G, Cunningham F, Cutts 
T, Down T, Dyer SC, Eyre T, Fitzgerald S, Fernandez-Banet J, Gräf S, Haider S, Hammond M, Holland 
R, Howe KL, Howe K, Johnson N, Jenkinson A, Kähäri A, Keefe D, Kokocinski F, Kulesha E, Lawson 
D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Prlic A, Rice S, Rios D, Schuster 
M, Sealy I, Slater G, Smedley D, Spudich G, Trevanion S, Vilella AJ, Vogel J, White S, Wood M, Birney 
E, Cox T, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJ, Kasprzyk A, Proctor G, 
Smith J, Ureta-Vidal A, Searle S. 2008. Ensembl 2008. Nucleic Acids Res. 36:D707-14.

Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. 2004a.  affy---analysis of Affymetrix GeneChip 
data at the probe level. Bioinformatics 20:307-315.

Gautier L, Møller M, Friis-Hansen L, Knudsen S. 2004b. Alternative mapping of probes to genes for 
Affymetrix chips. BMC Bioinformatics. 14;5:111.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry 
J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki 
G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. 2004. Bioconductor: open software development for 
computational biology and bioinformatics. Genome Biol. 5(10):R80.

Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC. 2004. A global test for groups of genes: 
testing association with a clinical outcome. Bioinformatics. 20(1):93-9.

References



32

Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. 2007. The human disease network. Proc Natl 
Acad Sci U S A. 104(21):8685-90.

Goldmuntz E. 2001. The epidemiology and genetics of congenital heart disease. Clin Perinatol. 28(1):1-10.
Gould E. 2007. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci. 8(6):481-8.
Goutsias J, Lee NH. 2007. Computational and experimental approaches for modeling gene regulatory 

networks. Curr Pharm Des. 13(14):1415-36.
Guerriero RM, Rajadhyaksha A, Crozatier C, Giros B, Nosten-Bertrand M and Kosofsky BE. 2005. 

Augmented constitutive CREB expression in the nucleus accumbens and striatum may contribute to the 
altered behavioral response to cocaine of adult mice exposed to cocaine in utero. Dev Neurosci 27:235-
248.

Hacia JG. 1999. Resequencing and mutational analysis using oligonucleotide microarrays. Nat Genet. 21(1 
Suppl):42-7.

Harbig J, Sprinkle R, Enkemann SA. 2005. A sequence-based identifi cation of the genes detected by 
probesets on the Affymetrix U133 plus 2.0 array. Nucleic Acids Res. 33(3):e31.

Heidbreder CA, Gardner EL, Xi ZX, Thanos PK, Mugnaini M, Hagan JJ and Ashby CR Jr. 2005. The role of 
central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res Brain 
Res Rev. 49:77-105.

Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H, Furutani M, Imamura 
S, Takao A, Nakazawa M, Matsuoka R. 2005. Phenotypes with GATA4 or NKX2.5 mutations in familial 
atrial septal defect. Am J Med Genet A. 135(1):47-52.

Holland MJ. 2002. Transcript abundance in yeast varies over six orders of magnitude. J Biol Chem. 
277(17):14363-6.

Holloway AJ, van Laar RK, Tothill RW, Bowtell DD. 2002. Options available--from start to fi nish--for 
obtaining data from DNA microarrays II. Nat Genet. 32 Suppl:481-9.

Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P, 
Weng Z, Mutter GL, Frosch MP, Macdonald ME, Milford EL, Crum CP, Bueno R, Pratt RE, Mahadevappa 
M, Warrington JA, Stephanopoulos G, Stephanopoulos G, Gullans SR.  2001. A compendium of gene 
expression in normal human tissues. Physiol Genomics. 7(2):97-104.

Huang W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, 
Lempicki RA. 2007. The DAVID Gene Functional Classifi cation Tool: a novel biological module-centric 
algorithm to functionally analyze large gene lists. Genome Biol. 8(9):R183.

Huber W, von Heydebreck A, Sueltmann H, Poustka A, Vingron M. 2002. Variance Stabilization Applied to 
Microarray Data Calibration and to the Quantifi cation of Differential Expression. Bioinformatics 18:96-
S104.

Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter 
JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, 
Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS. 2001. Expression profi ling 
using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. 19(4):342-7.

Hwang KB, Kong SW, Greenberg SA, Park PJ. 2004. Combining gene expression data from different 
generations of oligonucleotide arrays. BMC Bioinformatics. 5:159.

Ioannidis JP, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, Falchi M, Furlanello C, Game L, 
Jurman G, Mangion J, Mehta T, Nitzberg M, Page GP, Petretto E, van Noort V. 2009. Repeatability of 
published microarray gene expression analyses. Nat Genet. 41(2):149-55.

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP. 2003. 
Exploration, normalization, and summaries of high density oligonucleotide array probe level data. 
Biostatistics. 4:249-264.

Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JG, Geoghegan J, 
Germino G, Griffi n C, Hilmer SC, Hoffman E, Jedlicka AE, Kawasaki E, Martínez-Murillo F, Morsberger 
L, Lee H, Petersen D, Quackenbush J, Scott A, Wilson M, Yang Y, Ye SQ, Yu W. 2005. Multiple-laboratory 
comparison of microarray platforms. Nat Methods. 2(5):345-50.

References



33

Irizarry RA, Wu Z, Jaffee HA. 2006. Comparison of Affymetrix GeneChip expression measures. 
Bioinformatics. 22(7):789-94.

Jacobs BL, Praag H, Gage FH. 2000. Adult brain neurogenesis and psychiatry: a novel theory of depression. 
Mol Psychiatry. 5(3):262-9.

Jafari P, Azuaje F. 2006. An assessment of recently published gene expression data analyses: reporting 
experimental design and statistical factors. BMC Med Inform Decis Mak. 6:27.

Järvinen AK, Hautaniemi S, Edgren H, Auvinen P, Saarela J, Kallioniemi OP, Monni O. 2004. Are data from 
different gene expression microarray platforms comparable? Genomics. 83(6):1164-8.

Jenner RG, Young RA. 2005. Insights into host responses against pathogens from transcriptional profi ling. 
Nat Rev Microbiol. 3(4):281-94.

Ji Y, Coombes K, Zhang J, Wen S, Mitchell J, Pusztai L, Symmans WF, Wang J. 2006. RefSeq refi nements 
of UniGene-based gene matching improve the correlation of expression measurements between two 
microarray platforms. Appl Bioinformatics. 5(2):89-98.

Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S, Charnay P, Bozon B, Laroche S, Davis 
S. 2001. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term 
memories. Nat Neurosci. 4(3):289-96.

Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A. 2005. Amphetamine 
induces dopamine effl ux through a dopamine transporter channel. Proc Natl Acad Sci U S A. 102(9):3495-
500. Epub 2005 Feb 22.

Katz S, Irizarry RA, Lin X, Tripputi M, Porter MW. 2006. A summarization approach for Affymetrix 
GeneChip data using a reference training set from a large, biologically diverse database. BMC 
Bioinformatics. 7:464.

Kawasaki ES. 2006. The end of the microarray Tower of Babel: will universal standards lead the way? J 
Biomol Tech. 17(3):200-6.

Kendziorski C, Irizarry RA, Chen KS, Haag JD, Gould MN. 2005. On the utility of pooling biological 
samples in microarray experiments. Proc Natl Acad Sci U S A. 102(12):4252-7.

Khatri P, Drăghici S. 2005. Ontological analysis of gene expression data: current tools, limitations, and open 
problems. Bioinformatics. 21(18):3587-95.

Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H, Pisto T, Saarela M, Skotheim RI, Björkman M, 
Mpindi JP, Haapa-Paananen S, Vainio P, Edgren H, Wolf M, Astola J, Nees M, Hautaniemi S, Kallioniemi 
O. 2008. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 
samples from 175 types of healthy and pathological tissues. Genome Biol. 9(9):R139.

Kivi N, Greco D, Auvinen P, Auvinen E. 2008. Genes involved in cell adhesion, cell motility and mitogenic 
signaling are altered due to HPV 16 E5 protein expression. Oncogene. 27(18):2532-41.

Kothapalli R, Yoder SJ, Mane S, Loughran TP Jr. 2002. Microarray results: how accurate are they? BMC 
Bioinformatics. 3:22.

Kreil DP, Russell RR, Russell S. 2006. Microarray oligonucleotide probes. Methods Enzymol. 410:73-98.
Kronick MN. 2004. Creation of the whole human genome microarray. Expert Rev Proteomics. 1(1):19-28.
Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR, Rhead B, Raney BJ, Pohl A, 

Pheasant M, Meyer L, Hsu F, Hinrichs AS, Harte RA, Giardine B, Fujita P, Diekhans M, Dreszer T, 
Clawson H, Barber GP, Haussler D, Kent WJ. 2009. The UCSC Genome Browser Database: update 2009. 
Nucleic Acids Res. 37:D755-61.

Kuo WP, Jenssen TK, Butte AJ, Ohno-Machado L, Kohane IS. 2002. Analysis of matched mRNA 
measurements from two different microarray technologies. Bioinformatics. 18(3):405-12.

Lage K, Hansen NT, Karlberg EO, Eklund AC, Roque FS, Donahoe PK, Szallasi Z, Jensen TS, Brunak S. 
2008. A large-scale analysis of tissue-specifi c pathology and gene expression of human disease genes and 
complexes. Proc Natl Acad Sci U S A. 105(52):20870-5.

Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J. 2005. Independence and reproducibility across 
microarray platforms. Nat Methods. 2(5):337-44.

Larsson O, Wennmalm K, Sandberg R. 2006. Comparative microarray analysis. OMICS. 10(3):381-97.
Lee NH. 2005. Genomic approaches for reconstructing gene networks. Pharmacogenomics. 6(3):245-58.

References



34

Lee PD, Sladek R, Greenwood CM, Hudson TJ. 2002. Control genes and variability: absence of ubiquitous 
reference transcripts in diverse mammalian expression studies. Genome Res. 12(2):292-7.

Lee Y, Tsai J, Sunkara S, Karamycheva S, Pertea G, Sultana R, Antonescu V, Chan A, Cheung F, 
Quackenbush J. 2005. The TIGR Gene Indices: clustering and assembling EST and known genes and 
integration with eukaryotic genomes. Nucleic Acids Res. 33:D71-4.

Li C  and Wong WH. 2001a. Model-based analysis of oligonucleotide arrays: Expression index computation 
and outlier detection. Proc Natl Acad Sci. 98:31-36. 

Li C and Wong WH. 2001b. Model-based analysis of oligonucleotide arrays: model validation, design issues 
and standard error application. Genome biol. 2:research0032.1-0032.11.

Li L, Yun SH, Keblesh J, Trommer BL, Xiong H, Radulovic J, Tourtellotte WG. 2007. Egr3, a synaptic 
activity regulated transcription factor that is essential for learning and memory. Mol Cell Neurosci. 
35(1):76-88.

Liang S, Li Y, Be X, Howes S, Liu W. 2006. Detecting and profiling tissue-selective genes. Physiol 
Genomics. 26(2):158-62.

Lim CA, Yao F, Wong JJ, George J, Xu H, Chiu KP, Sung WK, Lipovich L, Vega VB, Chen J, Shahab 
A, Zhao XD, Hibberd M, Wei CL, Lim B, Ng HH, Ruan Y, Chin KC. 2007. Genome-wide mapping of 
RELA(p65) binding identifi es E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 
activation. Mol Cell. 27(4):622-35.

Liu DX, Nath N, Chellappan SP, Greene LA. 2005. Regulation of neuron survival and death by p130 and 
associated chromatin modifi ers. Genes Dev. 19(6):719-32.

Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J, 
Smeekens SP. 2002. Analysis of high density expression microarrays with signed-rank call algorithms. 
Bioinformatics. 18(12):1593-9.

Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, 
Horton H, Brown EL. 1996.

Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 14(13):1675-
80.

Maglott D, Ostell J, Pruitt KD, Tatusova T. 2007. Entrez Gene: gene-centered information at NCBI. Nucleic 
Acids Res. 35:D26-31.

Mansmann U, Meister R. 2005. Testing differential gene expression in functional groups. Goeman’s global 
test versus an ANCOVA approach. Methods Inf Med. 44(3):449-53.

McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, Li H. 2004. 
Comparing genomic expression patterns across species identifi es shared transcriptional profi le in aging. 
Nat Genet. 36(2):197-204.

McClintick JN, Edenberg HJ. 2006. Effects of fi ltering by Present call on analysis of microarray experiments. 
BMC Bioinformatics. 31;7:49.

McCracken CB, Hamby SM, Patel KM, Morgan D, Vrana KE, Roberts DC. 2005. Extended cocaine self-
administration and deprivation produces region-specifi c and time-dependent changes in connexin36 
expression in rat brain. Synapse. 58(3):141-50.

Mecham BH, Wetmore DZ, Szallasi Z, Sadovsky Y, Kohane I, Mariani TJ. 2004. Increased measurement 
accuracy for sequence-verifi ed microarray probes. Physiol Genomics. 18(3):308-15.

Mémet S. 2006. NF-kappaB functions in the nervous system: from development to disease. Biochem 
Pharmacol. 72(9):1180-95.

Michael KL, Taylor LC, Schultz SL, Walt DR. 1998. Randomly ordered addressable high-density optical 
sensor arrays. Anal Chem. 70(7):1242-8.

Modlich O, Prisack HB, Munnes M, Audretsch W, Bojar H. 2004. Immediate gene expression changes after 
the fi rst course of neoadjuvant chemotherapy in patients with primary breast cancer disease. Clin Cancer 
Res. 10:6418–6431.

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, 
Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman 
B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. 2003. PGC-1alpha-responsive genes involved in 
oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 34(3):267-73.

References



35

Naef F, Hacker CR, Patil N, Magnasco M. 2002a. Characterization of the expression ratio noise structure in 
high-density oligonucleotide arrays. Genome biol. 3:PREPRINT0001.

Naef F, Hacker CR, Patil N, Magnasco M. 2002b. Empirical characterization of the expression ratio noise 
structure in high-density oligonucleotide arrays. Genome biol. 3(4):RESEARCH0018.

Naef, F., and M. O. Magnasco. 2003. Solving the riddle of the bright mismatches: hybridization in 
oligonucleotide arrays. Phys. Rev. E. 68:11906–11910.

Nègre N, Lavrov S, Hennetin J, Bellis M, Cavalli G. 2006. Mapping the distribution of chromatin proteins 
by ChIP on chip. Methods Enzymol. 410:316-41.

Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski T, Berg JP, Ballin 
J, McCormick M, Norton J, Pollock T, Sumwalt T, Butcher L, Porter D, Molla M, Hall C, Blattner F, 
Sussman MR, Wallace RL, Cerrina F and Green RD. 2002. Gene expression analysis using oligonucleotide 
arrays produced by maskless photolithography. Genome Res. 12:1749-55.

Obermeier F, Burgmaier J, Thome K, Weichert S, Hein S, Binnewies T, Foitzik V, Muller M, Stahler CF and 
Stahler PF. 2003. Validation of a novel, fully integrated and fl exible microarray benchtop facility for gene 
expression profi ling. Nucleic Acids Res. 31:e151.  

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. 1999. KEGG: Kyoto Encyclopedia of Genes 
and Genomes. Nucleic Acids Res. 1;27(1):29-34.

Oostlander AE, Meijer GA, Ylstra B. 2004. Microarray-based comparative genomic hybridization and its 
applications in human genetics. Clin Genet. 66(6):488-95.

Qin LX, Beyer RP, Hudson FN, Linford NJ, Morris DE, Kerr KF. 2006. Evaluation of methods for 
oligonucleotide array data via quantitative real-time PCR. BMC Bioinformatics. 7:23.

Park CH, Kang JS, Shin YH, Chang MY, Chung S, Koh HC, Zhu MH, Oh SB, Lee YS, Panagiotakos G, 
Tabar V, Studer L, Lee SH. 2006. Acquisition of in vitro and in vivo functionality of Nurr1-induced 
dopamine neurons. FASEB J. 20(14):2553-5. 

Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, Coulson R, Farne A, Lara GG, 
Holloway E, Kapushesky M, Lilja P, Mukherjee G, Oezcimen A, Rayner T, Rocca-Serra P, Sharma A, 
Sansone S, Brazma A. 2005. ArrayExpress--a public repository for microarray gene expression data at the 
EBI. Nucleic Acids Res. 33:D553-5.

Parman C and Halling C. 2008. affyQCReport: A Package to Generate QC Reports for Affymetrix Array 
Data.

Perrier P, Martinez FO, Locati M, Bianchi G, Nebuloni M, Vago G, Bazzoni F, Sozzani S, Allavena P, 
Mantovani A. 2004. Distinct transcriptional programs activated by interleukin-10 with or without 
lipopolysaccharide in dendritic cells: induction of the B cell-activating chemokine, CXC chemokine 
ligand 13.  J Immunol. 172:7031–7042. 

Petersen DW, Kawasaki ES. 2007. Manufacturing of microarrays. Adv Exp Med Biol. 593:1-11.
Pilpel Y, Sudarsanam P, Church GM. 2001. Identifying regulatory networks by combinatorial analysis of 

promoter elements. Nat Genet. 29(2):153-9.
Pritchard CC, Hsu L, Delrow J, Nelson PS. 2001. Project normal: defi ning normal variance in mouse gene 

expression. Proc Natl Acad Sci U S A. 98(23):13266-71.
Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a curated non-redundant 

sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35:D61-5.
R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria.
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan 

AM. 2004. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 
6(1):1-6.

Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P. 1996. Real-time DNA sequencing using 
detection of pyrophosphate release. Anal Biochem. 242(1):84-9.

Ross W, Gourse RL. 2009. Analysis of RNA polymerase-promoter complex formation. Methods. 47(1):13-
24.

References



36

Ryan CA, Gildea LA, Hulette BC, Dearman RJ, Kimber I, Gerberick GF. 2004. Gene expression changes 
in peripheral blood-derived dendritic cells following exposure to a contact allergen. Toxicol Lett. 
2;150(3):301-16.

Saito-Hisaminato A, Katagiri T, Kakiuchi S, Nakamura T, Tsunoda T, Nakamura Y. 2002. Genome-wide 
profi ling of gene expression in 29 normal human tissues with a cDNA microarray. DNA Res. 9(2):35-45.

Sandberg R, Larsson O. 2007. Improved precision and accuracy for microarrays using updated probe set 
defi nitions. BMC Bioinformatics. 8:48.

Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith 
M. 1977. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 265(5596):687-95.

Sari Y. 2004. Serotonin1B receptors: from protein to physiological function and behavior. Neurosci 
Biobehav Rev 28:565-582.

Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. 1988. Primer-
directed enzymatic amplifi cation of DNA with a thermostable DNA polymerase. Science. 239(4839):487-
91.

Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, 
Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott 
DR, Miller V, Mizrachi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin 
K, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Yaschenko E, Ye J. 2009. Database resources of 
the National Center for Biotechnology Information. Nucleic Acids Res. 37:D5-15.

Schena M, Shalon D, Davis RW, Brown PO. 1995. Quantitative monitoring of gene expression patterns with 
a complementary DNA microarray. Science. 270(5235):467-70.

Schlitt T, Brazma A. 2006. Modelling in molecular biology: describing transcription regulatory networks at 
different scales. Philos Trans R Soc Lond B Biol Sci. 361(1467):483-94.

Seifert M, Scherf M, Epple A, Werner T. 2005. Multievidence microarray mining. Trends Genet. 
21(10):553-8.

Severgnini M, Bicciato S, Mangano E, Scarlatti F, Mezzelani A, Mattioli M, Ghidoni R, Peano C, Bonnal R, 
Viti F, Milanesi L, De Bellis G, Battaglia C. 2006. Strategies for comparing gene expression profi les from 
different microarray platforms: application to a case-control experiment. Anal Biochem. 353(1):43-56.

Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra 
RD, Church GM. 2005. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 
309(5741):1728-32.

Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, van de Rijn M, Botstein 
D, Brown PO, Pollack JR. 2005. A DNA microarray survey of gene expression in normal human tissues. 
Genome Biol. 6(3):R22. 

Simon R, Radmacher MD, Dobbin K. 2002. Design of studies using DNA microarrays. Genet Epidemiol. 
23(1):21-36.

Sipos L, Gyurkovics H. 2005. Long-distance interactions between enhancers and promoters. FEBS J. 
272(13):3253-9.

Sivachenko AY, Yuryev A, Daraselia N, Mazo I. 2007. Molecular networks in microarray analysis. J 
Bioinform Comput Biol. 5(2B):429-56.

Slonim DK. 2002. From patterns to pathways: gene expression data analysis comes of age. Nat Genet. 32 
Suppl:502-8.

Smyth GK. 2005. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry 
R, Huber W, editors. Bioinformatics and Computational Biology Solutions using R and Bioconductor. 
New York: Springer. pp 397-420.

Stec J, Wang J, Coombes K, Ayers M, Hoersch S, Gold DL, Ross JS, Hess KR, Tirrell S, Linette G, 
Hortobagyi GN, Fraser Symmans W, Pusztai L. 2005. Comparison of the predictive accuracy of DNA 
array-based multigene classifi ers across cDNA arrays and Affymetrix GeneChips. J Mol Diagn. 7(3):357-
67.

References



37

Stoeckert CJ Jr, Causton HC, Ball CA. 2002. Microarray databases: standards and ontologies. Nat Genet. 
32 Suppl:469-73.

Stokes TH, Torrance JT, Li H, Wang MD. 2008. ArrayWiki: an enabling technology for sharing public 
microarray data repositories and meta-analyses. BMC Bioinformatics. 9 Suppl 6:S18.

Stossi F, Barnett DH, Frasor J, Komm B, Lyttle CR, Katzenellenbogen BS. 2004. Transcriptional profi ling 
of estrogen-regulated gene expression via estrogen receptor (ER) alpha or ERbeta in human osteosarcoma 
cells: distinct and common target genes for these receptors. Endocrinology. 145(7):3473-86.

Svaren J, Hörz W. 1996. Regulation of gene expression by nucleosomes. Curr Opin Genet Dev. 6(2):164-
70.

Swanson LW, Petrovich GD. 1998. What is the amygdala? Trends Neurosci. 21(8):323-31.
Swiatek PJ, Gridley T. 1993. Perinatal lethality and defects in hindbrain development in mice homozygous 

for a targeted mutation of the zinc fi nger gene Krox20. Genes Dev. 7(11):2071-84.
Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC. 2003. 

Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 
31(19):5676-84.

Tang Z, McGowan BS, Huber SA, McTiernan CF, Addya S, Surrey S, Kubota T, Fortina P, Higuchi Y, 
Diamond MA, Wyre DS, Feldman AM. 2004. Gene expression profi ling during the transition to failure in 
TNF-alpha over-expressing mice demonstrates the development of autoimmune myocarditis. J Mol Cell 
Cardiol. 36:515–530.

Tawfi k DS, Griffi ths AD. 1998. Man-made cell-like compartments for molecular evolution. Nat Biotechnol. 
16(7):652-6.

Taylor E, Cogdell D, Coombes K, Hu L, Ramdas L, Tabor A, Hamilton S, Zhang W. 2001. Sequence 
verifi cation as quality-control step for production of cDNA microarrays. Biotechniques. 31(1):62-5.

Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E. 1999. 
Housekeeping genes as internal standards: use and limits. J Biotechnol. 75(2-3):291-5.

Tilstone C. 2003. DNA microarrays: vital statistics. Nature. 424(6949):610-2.
Tomfohr J, Lu J, Kepler TB. 2005. Pathway level analysis of gene expression using singular value 

decomposition. BMC Bioinformatics. 6:225.
Topilko P, Schneider-Maunoury S, Levi G, Baron-Van Evercooren A, Chennoufi AB, Seitanidou T, 

Babinet C, Charnay P. 1994. Krox-20 controls myelination in the peripheral nervous system. Nature. 
371(6500):796-9.

Tripodi M, Filosa A, Armentano M, Studer M. 2004. The COUP-TF nuclear receptors regulate cell migration 
in the mammalian basal forebrain. Development. 131(24):6119-29.

Tusher VG, Tibshirani R, Chu G. 2001. Signifi cance analysis of microarrays applied to the ionizing radiation 
response. Proc Natl Acad Sci U S A. 2001 98(9):5116-21.

van der Maarel SM. 2008. Epigenetic mechanisms in health and disease. Ann Rheum Dis. 67 Suppl 3:iii97-
100.

Vartanian K, Slottke R, Johnstone T, Casale A, Planck SR, Choi D, Smith JR, Rosenbaum JT, Harrington 
CA. 2009. Gene expression profi ling of whole blood: Comparison of target preparation methods for 
accurate and reproducible microarray analysis. BMC Genomics. 10(1):2.

Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. 1995. Serial analysis of gene expression. Science. 
270(5235):484-7.

Vinogradov AE. 2003. Isochores and tissue-specifi city. Nucleic Acids Res. 31(17):5212-20.
Vinogradov AE. 2004. Compactness of human housekeeping genes: selection for economy or genomic 

design? Trends Genet. 20(5):248-53.
Volpicelli F, Caiazzo M, Greco D, Consales C, Leone L, Perrone-Capano C, Colucci D’Amato L, di Porzio 

U. 2007. Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro. 
J Neurochem. 102(2):441-53.

Wagner GP, Pavlicev M, Cheverud JM. 2007. The road to modularity. Nat Rev Genet. 8(12):921-31.

References



38

Walker MS, Hughes TA. 2008. Messenger RNA expression profi ling using DNA microarray technology: 
diagnostic tool, scientifi c analysis or un-interpretable data? Int J Mol Med. 21(1):13-7.

Wang H, He X, Band M, Wilson C, Liu L. 2005. A study of inter-lab and inter-platform agreement of DNA 
microarray data. BMC Genomics. 6(1):71.

Wang Y, Miao ZH, Pommier Y, Kawasaki ES, Player A. 2007. Characterization of mismatch and high-signal 
intensity probes associated with Affymetrix genechips. Bioinformatics. 23(16):2088-95.

Wang RS, Zhang XS, Chen L. 2007. Inferring transcriptional interactions and regulator activities from 
experimental data. Mol Cells. 24(3):307-15.

Warnat P, Eils R, Brors B. 2005. Cross-platform analysis of cancer microarray data improves gene expression 
based classifi cation of phenotypes. BMC Bioinformatics. 6:265.

Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M. 2000. Comparison of human adult and fetal 
expression and identifi cation of 535 housekeeping/maintenance genes. Physiol Genomics. 2(3):143-7.

Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar 
R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, 
Madden TL, Maglott DR, Miller V, Ostell J, Pruitt KD, Schuler GD, Shumway M, Sequeira E, Sherry 
ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko E. 2008. 
Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 36:D13-
21.

Wennmalm K, Wahlestedt C, Larsson O. 2005. The expression signature of in vitro senescence resembles 
mouse but not human aging. Genome Biol. 6(13):R109.

Werner T. 2007. Regulatory networks: linking microarray data to systems biology. Mech Ageing Dev. 
128(1):168-72.

Werner T, Nelson PJ. 2006. Joining high-throughput technology with in silico modelling advances genome-
wide screening towards targeted discovery. Brief Funct Genomic Proteomic. 5(1):32-6.

Wildhaber BE, Yang H, Tazuke Y, Teitelbaum DH. 2003. Gene alteration of intestinal intraepithelial 
lymphocytes with administration of total parenteral nutrition. J Pediatr Surg. 38(6):840-3.

Winter EE, Goodstadt L, Ponting CP. 2004. Elevated rates of protein secretion, evolution, and disease among 
tissue-specifi c genes. Genome Res. 14(1):54-61.

Wolber PK, Collins PJ, Lucas AB, De Witte A, and Shannon KW. 2006. The Agilent in situ-synthesized 
microarray platform. Methods in enzymology 410:28-57.

Wu Z, Irizarry RA. 2004. Preprocessing of oligonucleotide array data. Nature Biotechnology 22:656-658
Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, Bar-Even A, Horn-Saban S, 

Safran M, Domany E, Lancet D, Shmueli O. 2005. Genome-wide midrange transcription profi les reveal 
expression level relationships in human tissue specifi cation. Bioinformatics. 21(5):650-9. 

Yang YH, Speed T. 2002. Design issues for cDNA microarray experiments. Nat Rev Genet. 3(8):579-88.
Yao WD, Gainetdinov RR, Arbuckle MI, Sotnikova TD, Cyr M, Beaulieu JM, Torres GE, Grant SG and 

Caron MG. 2004. Identifi cation of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral 
plasticity. Neuron 41:625-638.

Yin JQ, Zhao RC, Morris KV. 2008. Profi ling microRNA expression with microarrays. Trends Biotechnol. 
26(2):70-6.

Zahurak M, Parmigiani G, Yu W, Scharpf RB, Berman D, Schaeffer E, Shabbeer S, Cope L. 2007. Pre-
processing Agilent microarray data. BMC Bioinformatics. 8:142.

Zhang L, Miles MF, Aldape KD. 2003. A model of molecular interactions on short oligonucleotide 
microarrays. Nature Biotechnology 21:818-821.

Zhu J, He F, Song S, Wang J, Yu J. 2008. How many human genes can be defi ned as housekeeping with 
current expression data? BMC Genomics. 9:172.

References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /FIN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




