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SUMMARY 
 
The significance of carbohydrate-protein interactions in many biological phenomena is now 
widely acknowledged and carbohydrate based pharmaceuticals are under intensive development. 
The interactions between monomeric carbohydrate ligands and their receptors are usually of low 
affinity. To overcome this limitation natural carbohydrate ligands are often organized as 
multivalent structures. Therefore, artificial carbohydrate pharmaceuticals should be constructed 
on the same concept, as multivalent carbohydrates or glycoclusters. Infections of specific host 
tissues by bacteria, viruses, and fungi are among the unfavorable disease processes for which 
suitably designed carbohydrate inhibitors represent worthy targets. 
 
The bacterium Helicobacter pylori colonizes more than half of all people worldwide, causing 
gastritis, gastric ulcer, and conferring a greater risk of stomach cancer. The present medication 
therapy for H. pylori includes the use of antibiotics, which is associated with increasing 
incidence of bacterial resistance to traditional antibiotics. Therefore, the need for an alternative 
treatment method is urgent. 
 
In this study, four novel synthesis procedures of multivalent glycoconjugates were created. Three 
different scaffolds representing linear (chondroitin oligomer), cyclic (γ-cyclodextrin), and 
globular (dendrimer) molecules were used. Multivalent conjugates were produced using the 
human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT (Galβ1-
4GlcNAcβ1-3Galβ1-4Glc), and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc all representing 
analogues of the tissue binding epitopes for H. pylori. The first synthetic method included the 
reductive amination of scaffold molecules modified to express primary amine groups, and in the 
case of dendrimer direct amination to scaffold molecule presenting 64 primary amine groups. 
The second method described a direct procedure for amidation of glycosylamine modified 
oligosaccharides to scaffold molecules presenting carboxyl groups. The final two methods that 
were created both included an oxime-linkage on linkers of different length. All the new synthetic 
procedures synthesized had the advantage of using unmodified reducing sugars as starting 
material making it easy to synthesize glycoconjugates of different specificity.  
 
In addition, the binding activity of an array of neoglycolipids to H. pylori was studied. 
Consequently, two new neolacto-based structures, Glcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-
Cer and GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer, with binding activity toward H. 
pylori were discovered. Interestingly, N-methyl and N-ethyl amide modification of the GlcAβ1-
3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer glucuronic acid residue resulted in more effective H. 
pylori binding epitopes than the parent molecule.  
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1 INTRODUCTION 
 
Carbohydrates or saccharides (Greek: sakcharon, sugar) are ubiquitous in cells. They dangle 
from many of the lipid molecules and nearly all the proteins in the body. The surfaces of all cells 
are adorned with these glycolipids and glycoproteins, which play a fundamental role in the 
interaction of cells with other cells and with their surroundings having both structural and 
regulatory functions. The body uses these molecules to signal something as general as "I am a 
human tissue, I belong here," or as detailed as "I am injured, send help from the immune 
system." For example, blood clotting as well as harmful inflammatory reactions are often 
triggered by carbohydrates. Cancer cells use carbohydrate structures on their surfaces to slip past 
cells belonging to the immune system, and to infiltrate tissues. In addition, the cell surface serves 
as a docking site for other cells, pathogens, and the extracellular matrix. For example, certain 
pathogenic viruses, bacteria and yeasts rely on the glycolipids and glycoproteins on cell surfaces 
to home in on their tissue of preference, in their favorite host species, and to spread themselves 
from cell to cell.  
 
Glycobiology is the study of the structure, chemistry, biosynthesis, and biological functions of 
carbohydrates and their derivates. Glycobiology-based therapies have the potential to 
revolutionize the treatment of some diseases and carbohydrate-based drugs are expected to be the 
next major breakthrough in drug discovery. Such drugs may be used to treat, for example, 
cancer, inflammatory diseases, infections, and transplant rejection. In addition, the development 
of carbohydrate-based anti-adhesives presents a promising approach for the prevention of 
susceptible microbial infections. The alarming increase of bacterial strains resistant to antibiotics 
makes it vitally important to develop such new means of combating bacteria. 
 
Because of the multivalent nature of pathogen binding to its target cells and tissues, an effective 
carbohydrate-based anti-adhesive should be designed based on the same concept, i.e. structures 
carrying several copies of the active carbohydrate sequence in the carrier molecule. 
Understanding the role of carbohydrate structures in adhesion of the infecting organisms to their 
host cell surfaces through multivalent carbohydrate-protein interaction is currently incomplete. 
However, the knowledge is constantly growing and there is an enormous need to improve the 
tools available for characterizing these interactions. There is also a need to develop conjugates 
which can interfere with these interactions in a beneficial manner, so that they can be applied to 
the study and treatment of disease. In this thesis, several different kinds of multivalent 
neoglycoconjugates were constructed based on three structurally different scaffolds representing 
cyclic, linear and globular scaffold types. All oligosaccharides used for the conjugation were 
analogs of established Helicobacter pylori binding epitopes. In addition, the binding activity of 
several new carbohydrate structures towards H. pylori and their structural requirements were 
studied.     
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2 REVIEW OF THE LITERATURE 
 

2.1 Biologically relevant carbohydrate interactions 
 
Carbohydrates are hydrophilic in nature and are consequently generally located on the outside of 
cell membranes. It is thus hypothesized that the first contact many cells make with each other 
occurs via interactions of the carbohydrate structures. Consequently, carbohydrates are widely 
involved in cell-cell recognition, cell-external agent interactions, and cell differentiation events 
(Varki, 1993). These interactions can initiate both beneficial biological processes, such as 
immune responses, fertilization, and cell growth and differentiation (e.g. during embryogenesis), 
as well as detrimental disease events, such as inflammation, cancer metastasis, and bacterial and 
viral infections (Davis, 2000; Dwek, 1996; Gabius, 1997; Lis and Sharon, 1998; Varki, 1993). 
Here, only a few examples of relevant interactions will be given and the interested reader in 
referred to literature cited for a more comprehensive look on the subject (Varki et al., 1999). The 
focus of this thesis is on carbohydrate interactions between pathogens and host cell surfaces and 
a more in-depth overview on this subject will be given in section 2.2.  
 
The onset of modern glycobiology began in the late 1980s. Several research groups separately 
cloned the genes for the three human carbohydrate-binding proteins, which play a pivotal role in 
attracting white blood cells, or leukocytes to injured sites in the body. These proteins, called 
selectins, are expressed on leukocytes (L-selectin), on vascular endothelial cells (E- and P-
selectin), and on platelets (P-selectin) (Kansas, 1996). The selectins interact with glycoprotein 
ligands modified to express sialylated, fucosylated glycans. The selectin family of adhesion 
molecules is responsible for the initial tethering of leukocytes to the walls of blood vessels and 
maintain leukocyte rolling, facilitating the subsequent firm adhesion and transendothelial 
migration (Kansas, 1996; Tedder et al., 1995). Although leukocytes start the healing process, 
they can also lead to inflammation, which itself can damage tissues. Blocking the ability of 
selectins to bind to their carbohydrate targets using molecules that mimic natural selectin ligand 
may thus prevent inflammation. For example, using sialyl Lewisx (sLex) as a lead a low 
molecular weight molecule selectin inhibitor was discovered, which was shown to inhibit E-, P-, 
and L-selectin dependent adhesion in vitro (Davenpeck et al., 2000; Kogan et al., 1998).  
 
Examples of viral and bacterial infections (see also section 2.2) include influenza virus surface 
proteins complexing with specific membrane-bound oligosaccharides on human cells (Wiley and 
Skehel, 1987) resulting in viral infections, and Helicobacter pylori infection of the human 
stomach starting by adherence of the bacteria to cell surface receptors (see also section 2.9). 
Binding of cell surface lectins to its oligosaccharide ligand can also transduce a signaling event, 
e.g. the strength of the immunoglobulin signaling is regulated by B cell lectin CD22 binding to 
sialic acid (Jin et al., 2002; Kelm et al., 2002). In addition, a variety of tumor-associated 
carbohydrate antigens are known, including the carcinoma-associated Thomsen-Freidenreich T 
or TF antigen (Galβ1-3GalNAcα-O-Ser/Thr), the O-linked glycan TN (GalNAcα-O-Ser/Thr), and 
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sialyl TN antigen (Siaα2-6GalNAcα-O-Ser/Thr) (Brockhausen, 1999; Dennis et al., 1999; Kim 
and Varki, 1997). Consequently, carbohydrate antigens can serve as diagnostic markers for 
specific tumor cells and the presence of these antigens has even been correlated with more 
aggressive disease states (Shigeoka et al., 1999).  
 
Carbohydrates also have a crucial role in xenograft rejection. Exposure of human blood to non-
primate cells, tissues, and organs elicits a strong immune response, which is followed by 
rejection of the foreign tissue. The foremost antigenic epitope responsible for this is the terminal 
carbohydrate Galα1-3Galβ1-4GlcNAc, also called the “αGal” epitope (Galili et al., 1985; Rother 
and Squinto, 1996; Sandrin et al., 1993). If this αGal-mediated immunorejection could be 
countermanded, e.g. by neutralization of anti-αGal antibodies by αGal related oligosaccharides 
(Cairns et al., 1995; Neethling et al., 1994), organs from other animals could potentially develop 
into a greatly needed source of tissue grafts for humans. Furthermore, the carbohydrate moieties 
of glycoproteins influence the overall physical structure of the proteins, and serve as biological 
tags, marking proteins with different oligosaccharides for different fates. Certain 
oligosaccharides label a glycoprotein for secretion or insertion into the plasma membrane while 
others signal transfer to lysosomes. Sialoglycoproteins in the blood that lose their outermost 
sialic acid residues are targeted for removal from the circulation by the liver cell receptors and 
are degraded by the liver.  
 

2.2 Glycans and microbial pathogenesis 
 
In pathological processes glycoconjugates serve as receptors for bacteria and viruses attaching to 
host cells consequently participating in the initial stages of infection. Adhesins are proteins on 
the surface of viruses or bacteria that bind to ligands present on the surface of higher eukaryotic 
cells. Microorganisms have evolved adhesins that interact with glycoproteins, glycolipids, and 
proteoglycans. For infection to occur bacteria and viruses must first pass through the glycocalyx 
that surrounds the cells, bind to exposed extracellular matrix or cell surfaces, and colonize the 
target tissue. Some examples of pathogen binding on host cell surface glycan structures are 
presented below.  
 

2.2.1 Bacterial adhesins and toxins 
 
Most bacteria have multiple adhesins with different carbohydrate specificities helping to define 
the range of susceptible tissues (i.e. the bacteria’s ecological niche). Binding of an adhesin to a 
receptor is generally of low affinity, but because they both often cluster in the plane of the 
membrane, the resulting strength of the interaction (avidity) can be quite strong. Several binding 
epitopes for Helicobacter pylori (see section 2.9.2. for more detail), the bacterium that causes 
gastric ulcers and cancer, have been characterized, including Lewis b (Leb) antigen present on 
human gastric epithelium (Ilver et al., 1998). Streptococcus suis, which causes septicemia, 
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meningitis, and pneumonia in pigs, and which is also known to cause bacterial meningitis in 
humans, binds to galabiose (Galα1-4Gal) moiety found as a constituent on cell surface 
glycolipids (Haataja et al., 1994). In addition, Streptococcus suis and Mycoplasma pneumoniae 
bind to terminal Neu5Acα2-3Gal structures present on erythrocytes (Liukkonen et al., 1992; 
Loomes et al., 1984), and the receptor saccharide for cholera toxin produced by Vibrio cholerae 
is the pentasaccharide Galβ1-3GalNAcβ1-4(NeuAcα2-3)Galβ1-4Glc (Merritt et al., 1994). 
Specific strains of Pseudomonas aeruginosa, a serious opportunistic pathogen with several 
targets, including skin of burn injuries, damaged cornea, and lung epithelium in patients with 
cystic fibrosis, bind specifically to carbohydrate sequence GalNAcβ1-4Gal (Lee et al., 1994; 
Sheth et al., 1994). Bacteria can also recognize internal sugars in addition to terminal ones. For 
example, Streptococcus pneumoniae interacts specifically not only with the pentasaccharide 
NeuAcα2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc, but also with the corresponding trisaccharide 
GlcNAcβ1-3Galβ1-4Glc and the tetrasaccharide Galβ1-4GlcNAcβ1-3Galβ1-4Glc (Barthelson et 
al., 1998; Idanpään-Heikkilä et al., 1997).  
 
Escherichia coli is a normal member of the intestinal flora. However, opportunistic infections 
and rogue strains pose a significant risk to human health. Among susceptible individuals E. coli 
is a cause of traveler’s diarrhea, sepsis, urinary tract infections, and newborn meningitis. E. coli 
can possess numerous types of fimbriae, which are classified according to their carbohydrate 
binding specificities (Sokurenko et al., 1997). These include type 1 fimbriated strains specific for 
mannose, neural S fimbriated strains specific for NeuAcα2-3Galβ1-3GalNAc, and strains 
carrying P fimbriae specific for galabiose (Galα1-4Gal). In addition, heat-labile enterotoxin from 
E. coli bind to terminal LacNAc units (Karlsson et al., 1996) and Shiga toxins produced by E. 
coli recognizes Galα1-4Galβ1-4Glc (Lingwood et al., 1987).           
 

2.2.2 Viruses 
 
Influenza is one of the most common viral infectious diseases that is inadequately controlled by 
modern medicine. The influenza virus glycoprotein hemagglutinin mediates viral adhesion by 
binding to the cell surface sialic acid residues. The carbohydrate binding specificity of the virus 
is dependent of the species of origin: Human viruses bind to glycans with terminal Neu5Acα2-
6Gal structures (Connor et al., 1994; Rogers and Paulson, 1983), whereas, viruses of avian origin 
preferentially bind to glycans with terminal Neu5Acα2-3Gal structures (Ha et al., 2001). The 
next residue of the carbohydrate chain, namely GlcNAc, also takes a considerable part in 
binding, so that the receptor for all true human A and B influenza strains is actually the 
trisaccharide Neu5Acα2-6Galβ1-4GlcNAc (Gambaryan et al., 1997). Many other viruses 
including animal rotavirus, Sendai, and polyomavirus also bind to sialic acid containing residues 
(Karlsson, 1995). However, both animal and human rotaviruses have also been shown to bind to 
non-acid glycolipids (Mendez et al., 1993). Dengue flavivirus, the causative agent of dengue 
hemorrhagic fever, and herpes simplex virus bind to heparan sulphate and heparin, respectively 
(Chen et al., 1997; Rostand and Esko, 1997).  
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2.3 Multivalency in biological processes 
 
Non-covalent interactions are essential for all processes that take place in living organisms. In 
comparison to covalent bonds, these transient interactions are weak. However, they are elegantly 
selective and offer a dynamic framework for adaptation to the environment and self-regulations. 
The strength and specificity required for recognition in biological processes is high, but the 
association constants for monovalent carbohydrate-protein interactions are often weak (Ka=103-

4M-1) (Bundle and Young, 1992; Kiessling and Pohl, 1996; Lee and Lee, 1995; Mammen et al., 
1998; Roy et al., 1996). Consequently, many carbohydrate-protein interactions rely on the 
amplification of low-affinity interactions by presenting binding epitopes in a multivalent fashion. 
The multivalent nature of lectin-oligosaccharide interactions allows numerous low-affinity 
binding events to take place at the same time, resulting in high overall avidity (Dam et al., 2000; 
Gupta et al., 1996; Hughes, 2001). The interaction of epitopes displayed in a multivalent array 
with proteins possessing multiple carbohydrate binding sites can result in the formation of 
several simultaneous binding events with an observed binding affinity greater than the sum of its 
constituent binding events, a phenomenon known as the cluster glycoside effect. There are 
several physiological advantages conferred by multivalent binding. First, the kinetics exhibited 
by multivalent binding events are probably critical for biological systems, for example exhibiting 
greater reversibility in the presence of competing ligands (Rao et al., 1998). Secondly, multiple 
weak interactions are less prone to entrap cells in unproductive binding events. Thirdly, low 
affinity multivalent interactions are expected to be more resistant to shear stress, encountered for 
instance when cells interact in the bloodstream (Alon et al., 1995). Finally, multivalent 
interactions have been shown to be highly versatile and specific (Liang et al., 1997; Mortell et 
al., 1996; Weatherman et al., 1996), and the binding can be modulated by altering saccharide 
residue spacing or by changing the residues themselves.     
 
Biological events using the multivalency effect include events such as cell-cell communication, 
tissue differentiation, protein targeting and clearance, and host interaction with pathogens and 
their secreted toxins (Lundquist and Toone, 2002; Mammen et al., 1998). For example, 
monomeric affinity of shiga-like toxin is in millimolar range, whereas, the multivalent 
attachment to the cell has a Kd of ~1 nM (Kitov et al., 2000). Dimerization of L-selectin 
increases leukocyte adhesion to clustered oligosaccharide residues (Dwir et al., 2002; 
Ramachandran et al., 2001), and rolling of leukocyte cells in sites of chronic and acute 
inflammation entails recurring multivalent binding events with rapid binding and release (Dwir 
et al., 2003; Schwarz and Alon, 2004). The serum mannose-binding protein preferentially 
recognizes clustered mannose ligands (Lee and Lee, 2000). In addition, multivalent binding of 
many beneficial and pathogenic strains of bacteria (Hooper and Gordon, 2001; Karlsson, 1995; 
Schengrund, 2003) is believed to permit colonization by providing resistance to the flow of 
extracellular fluids (e.g. gastric juices, mucus, etc.).  
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2.4 Synthetic multivalent neoglycoconjugates as modulators of biological processes 
 
Synthetic multivalent ligands can be divided into two distinct groups of molecules: (1) to 
inhibitors, in which the multivalent molecule prevents receptor-ligand binding; and (2) to 
effectors, in which the multivalent molecule induces a cellular response. Multivalent inhibitors 
can interfere with a broad range of interactions including those concerning cell-extracellular 
matrix, cell-cell, and cell-pathogen binding. Multivalent effectors, on the other hand, can be used 
to understand, manipulate, and dissect signal transduction pathways. The range of responses 
include cellular activation, differentiation, and migration, in particular those initiated by multiple 
receptor-ligand contacts at the cell surface.  
 
Multivalent inhibitors. The high functional affinities of multivalent ligands have encouraged 
attempts to develop potent inhibitors of cell-surface binding events. As an example, L-selectin, 
present on leukocytes, mediates the initial stages on recruitment to the endothelium during 
inflammation through multivalent binding to its ligand. In addition, pathogenic organisms, 
including certain pathogenic viruses, bacteria and yeasts, utilize these mechanisms to adhere to 
mammalian cells and tissues. A deeper understanding of these interactions at the molecular level 
will enable the development of novel effective and highly selective carbohydrate based 
pharmaceuticals. Preventing the binding of influenza virus hemagglutinin to host cells was 
among the first applications of multivalent inhibitors created (Gamian et al., 1991; Glick and 
Knowles, 1991; Matrosovich et al., 1990; Sabesan et al., 1991; Spaltenstein and Whitesides, 
1991). More recently, multivalent sialidase inhibitors build on polyglutamic acid having more 
potent efficacy in comparison to a monomeric inhibitor in vivo and enhanced antiviral activity 
against influenza virus have been described (Honda et al., 2002). Efforts to create potent 
multivalent inhibitors, that could function as anti-inflammatory agents, based on the multivalent 
nature of the naturally-occurring L-selectin ligands, are under study. Several monovalent and 
multivalent L-selectin ligands have been described (Gordon et al., 2000; Nishida et al., 2000; 
Sanders et al., 1999; Simanek et al., 1998; Toppila et al., 1999; Turunen et al., 1995) including 
the study describing the multivalent sLex conjugates based on polylactosamine type scaffold, 
which have been shown to bind selectins with high affinity (Renkonen et al., 1997). In addition, 
multivalent polymers based on polylysine backbone with sLex-mimetics as ligands have been 
shown to act as superior inhibitors of E-selectin-dependent leukocyte rolling in vivo when 
compared to monovalent antagonists (Ali et al., 2004).  
 
Multivalent effectors. Multivalent binding events are also valuable for eliciting rather than 
inhibiting biological responses. This role is especially appreciated in the context of generating 
synthetic carbohydrate-based vaccines. Multiple copies of an antigen on a carrier protein or other 
suitable scaffold can induce potent immune responses. Examples include glycoconjugate 
vaccines based on the cell surface carbohydrates of a microorganism, which are proving to be 
most effective in generating protective immune responses to prevent a wide range of diseases. 
Such glycoconjugates already licensed include vaccines against Neisseria meningitidis, 
Haemophilus influenzae type b, and Streptococcus pneumoniae [see (Jones, 2005) for review on 
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the subject]. Another effort is directed at generation of synthetic anti-cancer vaccines and already 
complex glycoconjugates with promising anti-cancer activities have been synthesized 
(Danishefsky and Allen, 2000). In their investigations multivalent conjugates with synthetic 
oligosaccharides coupled to carrier protein were successful at eliciting both humoral and cellular 
responses (IgM and IgG antibodies).  
 

2.4.1 Different classes of multivalent model systems 
 
Several classes of model systems have been developed to study multivalent protein-carbohydrate 
interactions. To illustrate the range of multivalent scaffolds available when designing a 
glycoconjugate a few examples will be described here. These model systems include 
cyclodextrins and calixarenes, glycoclusters, dendrimers and dendrons, neoglycoproteins, and 
glycopolymers (Figure 1).  
 
 

 
 
Figure 1. Schematic presentation of multivalent glycoconjugates based on various scaffold structures. 
The oligosaccharide ligands are presented as grey spheres. 
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Cyclodextrins and calixarenes. Cyclodextrins are a family of cyclic oligosaccharides containing 
6, 7, or 8 α1-4-linked glucopyranosyl units resulting in α-, β-, or γ-cyclodextrin, respectively (see 
section 2.7. for more details). Synthesis of several neoglycoconjugates based on cyclodextrins 
with varying chemical linker specificity and length with one or more carbohydrates attached 
have been described previously [e.g. (Andre et al., 2004; Fulton and Stoddart, 2001; Furuike et 
al., 2000; Houseman and Mrksich, 2002; Matsuda et al., 1997; Ortiz Mellet et al., 2002)]. 
Calixarenes in return are cyclic oligomers of substituted aromatic rings commonly derived from 
the base-induced reaction of phenol with formaldehyde. They are commonly composed of four, 
six, or eight arene units. Variable size of the cavity, tunable conformation, selective and multiple 
derivatization, and the ease of preparation in large quantities makes this class of molecules an 
intriguing choice as multivalent scaffold. Several calixarenes modified with carbohydrate ligands 
have been described [e.g. (Dondoni et al., 2002; Dondoni et al., 1997; Fujimoto et al., 2000; 
Fulton and Stoddart, 2001; Roy and Kim, 1999)]. They have also been modified as site-directed 
drug delivery systems using galactosides to deliver a fluorescent dye to the surface of rat 
hepatoma cells (Fujimoto et al., 2000). 
 
Glycoclusters. Glycoclusters represent a large group of molecules presenting two to five 
carbohydrate ligands on a small scaffold (Zanini and Roy, 1998). Scaffolds in this group include 
butane and pentane (Uchiyama et al., 1995), quaternary carbon (Kretzschmar et al., 1995), 
ethylene glycol tether (Wittmann et al., 1998), aromatic ligands (Miyauchi et al., 1997), and 
carbohydrates and peptides (Baisch and Öhrlein, 1996; Kitov et al., 2000; Uchiyama et al., 
1995). Studies done with this group of molecules illustrate the importance of ligand to ligand 
spacing and conformational flexibility in multivalent interactions. For example, a tailored 
multivalent ligand build on carbohydrate scaffold has been prepared using the crystal structure of 
the Shiga-like toxin I B-subunit pentamer in complex with an analogue of its carbohydrate 
receptor as a model, resulting in ligand with subnanomolar inhibitory activity (Kitov et al., 
2000). Consequently, the valency and nature of the scaffold molecules in this family are less 
important than the length of the linker between the carbohydrate ligands and the scaffold.  
 
Dendrimers and dendrons. Dendrimers are a class of polymer structures composed of a core 
structure that is modified with several regularly hyperbranched units. Dendrons represent a 
subclass of dendrimers, in which the core structure is modified with single hyperbranched unit 
(Kim and Zimmerman, 1998). This family of scaffold molecules is continuously growing, with 
each new generation larger than the previous one. Despite their size, comparable to 
glycopolymers, glycodendrimers (see section 2.8 for more information on glycodendrimers) are 
of defined chemical character, and their synthesis, purification, and analysis usually leads to very 
pure compounds readily suitable for biological tests. The poor valence-dependent binding 
affinity enhancement toward carbohydrate-binding proteins sometimes observed for these 
molecules (Zanini and Roy, 1997) is though to reflect an improper geometry and spacing of the 
carbohydrates presented on these scaffolds (Andre et al., 1999; Lee and Lee, 1997). Other 
possibility is that large dendrimers and dendrons sterically prevent the cross-linking of 
carbohydrate-binding proteins.     
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Neoglycoproteins. Neoglycoproteins present one of the most widely used class of multivalent 
glycoconjugates. This group consists of naturally occurring proteins, which have been 
synthetically modified to express carbohydrate ligands. For example, neoglycoproteins 
constructed by reductive amination of glycans to proteins were first introduced in the early 1980s 
by Lee and co-workers and are still widely used today (Fadden et al., 2003; Kitov et al., 2000; 
Lee et al., 1984; Lee et al., 1983; Stambach and Taylor, 2003). Recent variations include 
attachment of biotinylated glycans to a streptavidin-alkaline phosphate complex (Blixt et al., 
2003), and attachment of streptavidin-conjugated glycan to a biotinylated bovine serum album 
(Yamaji et al., 2003). Neoglycoproteins are suitable as carriers for various therapeutic agents, 
e.g. as liver targeting devices of an anti-inflammatory agent coupled to lactosaminated or 
mannosylated human serum albumin to hepatocytes or Kupffer cells, respectively (Franssen et 
al., 1993). A variety of synthetic methods for glycoprotein preparations exists providing 
reasonable control over valency (Davis, 1999; Roy, 1994; Roy, 1997; Yi et al., 1998).  
 
Glycopolymers. Polymers present an attractive group of scaffold molecules because their 
synthetic preparation methods permit control over the density of one or more ligands on the 
polymer backbone and molecular weight of the molecule (Kadokawa et al., 1999; Roy, 1994; 
Roy, 1996a; Roy, 1997). The limitations of these neoglycopolymers are that ligands are not 
presented in defined environments and that the number of interactions is frequently unknown. 
Polymers in this group include polyacrylamide (Bovin, 1998; Fan et al., 1995; Roy et al., 1992), 
polylysine (Thoma et al., 1999), and polyglutamine (Zeng et al., 1998), dextran (Yoshitani and 
Takasaki, 2000), polysaccharides [e.g. GAGs (Sakagami et al., 2000; Soltés et al., 1999) and 
chitosan (Kato et al., 2001)], and polystyrene (Matsuura et al., 2000; Tsuchida et al., 1998). For 
example, in an in vivo study done in mice polyacrylamide-based glycopolymer inhibitor of 
influenza virus alleviated the disease symptoms, increased the survival, and decreased lesions in 
the mouse lungs (Gambaryan et al., 2002), suggesting that synthetic multivalent inhibitors of 
virus attachment can be employed for the treatment and prevention of influenza.   
 

2.4.2 Effect of scaffold structure on function 
 
When designing a multivalent ligand with a specific activity it is important to consider the wide 
variety of structural scaffolds available. In order to begin to elucidate the effect of scaffold 
structure on the mechanism of action, Gestwicki and co-workers evaluated the ability of a 
structurally diverse collection of 28 multivalent ligands to interact with the lectin concanavalin A 
(Gestwicki et al., 2002). The scaffolds examined in the study were from 5 different structural 
classes: (1) low molecular weight compounds, (2) globular proteins, (3) dendrimers, (4) defined 
linear polymers, and (5) polydisperse polymers. Consequently, structural parameters varied in 
the study included scaffold size, shape, valency, and density of binding elements. By varying 
ligand architecture, they were able to identify compounds that preferentially engage in selected 
binding modes as well as the mechanism of action preferred by the multivalent ligand. For 
example, the study suggested that ligands with high molecular masses are excellent inhibitors, 
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whereas, low molecular weight ligands are generally poor inhibitors of ConA binding. Therefore, 
testing diverse multivalent ligands can be used to help to illuminate the binding modes 
underlying the activities of specific ligand architectures. 
 
Another example illustrating the effects of the ligand architecture on its specificity and inhibitory 
activity explored a series of synthetic inhibitors of hemagglutination (Reuter et al., 1999). In 
their study several dendritic polymeric inhibitors, including linear, linear-dendron copolymers, 
spheroidal, comb-branched, and dendrigraft polymers bearing Neu5Ac residues were tested for 
their ability to inhibit virus hemagglutination and to block infection of mammalian cells in vitro. 
The study revealed that the inhibitory potency of the multivalent ligand depended strongly on its 
three-dimensional structure. Similar results were also obtained using different cyclic 
glycopeptides to determine the biological activity using hemagglutination assay: Size and three 
dimensional spatial arrangement were of significant importance in the production of effective 
multivalent ligands (Ohta et al., 2003). In addition, effects of polymer structure on the inhibition 
of cholera toxin by a series of polyglutamatic acid-based glycopolymers once again illustrated 
the effects of variation in the linker length and density of the pendant carbohydrate ligands 
(Polizzotti and Kiick, 2006).       
 

2.4.3 Designing a multivalent ligand 
 
Empirical approach. To design effective multivalent ligands, detailed information about the 
native structure of the proteins that adhere to them is advantageous. However, if this information 
is not available an empirical approach to the development of ligands is necessary. Without 
knowing the optimal valency or spacing of the lectins in question, one can develop an array of 
different potent oligovalent carbohydrate derivates. Parameters that influence the mechanisms by 
which a multivalent ligand acts include the structure of the scaffold, spacers, conjugation 
chemistry, the identity of the binding epitopes, number of binding groups, and density of binding 
elements. Altering a single structural feature of a multivalent ligand, such as the arrangement of 
its binding sites, density of the binding epitopes, or its valency can change its activity [e.g. (Allen 
et al., 2001; Cairo et al., 2002; Cochran and Stern, 2000; Dintzis et al., 1976; Gestwicki et al., 
2000; Kudryashov et al., 2001; Reuter et al., 1999; Roy et al., 1998; Woller and Cloninger, 
2002)]. Valuable insight into the construction of compounds with defined biological activities 
can be provided by the collected information of ligands of various architectures. The biological 
and chemical relevance of many of these studies have been reviewed (Bertozzi and Kiessling, 
2001; Davis, 2000; Fan et al., 2000a; Kiessling et al., 2000; Kiessling and Pohl, 1996; Koeller 
and Wong, 2000; Lee and Lee, 1995; Lindhorst and Welsch, 2001; Lundquist and Toone, 2002; 
Mammen et al., 1998; Roy et al., 1996; Wright and Usher, 2001; Yarema and Bertozzi, 1998). 
Screening of the biological activities of the resulting glycoconjugates with different structures 
can then be used to gather information about the productive display of carbohydrate residues for 
the system under study. By systematic ligand variation, it is possible to identify the mechanism 
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of action preferred by a multivalent ligand (Gestwicki et al., 2002), which can lead to potent 
ligands (Hansen et al., 1997; Kötter et al., 1998; Lindhorst et al., 1998).  
 
Rational design and empirical optimization. The number of precisely known lectin structures is 
continuously increasing leading to the syntheses of new multivalent inhibitors based on rational 
design and to empirical optimization strategies of multivalent molecules previously described. 
Several reports show that it is possible to design ligands capable of occupying simultaneously all 
the carbohydrate binding sites of a lectin, provided that the precise three-dimensional structure of 
the oligomeric lectin is known [e.g. (Fan et al., 2000a; Fan et al., 2000b; Kitov et al., 2000; Lee 
et al., 1984)]. Alternatively, surprisingly small differences in the scaffold structure may be 
unfavorable to the conjugate’s biological activity (Ohta et al., 2003). Analysis of previous reports 
should be useful in the design of new rational synthetic multivalent inhibitors of protein-
carbohydrate interactions and/or of empirical optimization strategies. To illustrate the use of 
rational design and/or of empirical optimization strategies to develop potent multivalent 
inhibitors of protein-carbohydrate interactions a few examples will be discussed here. 
 
The family of AB5 bacterial toxins is characterized by a single A subunit in the center 
surrounded by a pentagonal arrangement of five B subunits (Merritt and Hol, 1995). This protein 
family includes cholera toxin, shiga toxin, shiga-like toxins, pertussis toxin, and heat-labile 
enterotoxin. These toxins, which are responsible for millions of deaths each year (Holmgren and 
Svennerholm, 1992), invade the cells by multivalent binding of the B subunit to the carbohydrate 
residues of gangliosides. Consequently, a rational strategy is to design a multivalent ligand that 
can occupy all five binding sites simultaneously. Kitov and co-workers used the crystal structure 
of the B5 subunit of Escherichia coli Shiga-like toxin I in complex with an analogue of its 
carbohydrate receptor (Galα1-4Galβ1-4Glcβ-O-Cer) (Karmali et al., 1985; Ling et al., 1998) to 
design a decavalent carbohydrate ligand (named STARFISH) (Kitov et al., 2000). This 
STARFISH ligand exhibited a subnanomolar inhibitory activity. The in vitro inhibitory activity 
was 1-10-million-fold higher than that of the trisaccharide alone, which lies within the range 
desired for an anti-adhesive therapeutic agent. Variants of this design for multivalent inhibitors 
of Shiga-like toxin and cholera toxin imply that the spacing of glycan ligands attached to the 
scaffold is more important than the actual core structure (Mulvey et al., 2003; Nishikawa et al., 
2002; Zhang et al., 2002). Fan and co-workers in return designed pentavalent ligands for the E. 
coli heat-labile enterotoxin (Fan et al., 2000b). The distance between nonadjacent binding sites is 
known from the available atomic structural data (Sixma et al., 1992). They used this data as a 
basis for their structure-based design of several pentavalent molecules in which the capping 
carbohydrates were attached to the fivefold symmetry center using linkers of different length. 
Again the structure-based design of ligands produced a potent antagonist of heat-labile 
enterotoxin, a pentavalent ligand 105 times more active than the corresponding monovalent 
derivative.  
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Influenza virus infection is initiated by the binding of hemagglutinin to sialic acid-containing 
oligosaccharides on the host cell surfaces. Hemagglutinin is a trimeric protein with each subunit 
containing one ligand binding site. In order to fashion a tailored blocker of influenza virus 
hemagglutinin Ohta and co-workers created cyclic peptide scaffolds containing tridentate 
oligosaccharide units (Ohta et al., 2003), a design based on the three-dimensional structure of 
hemagglutinin (Weis et al., 1988; Wilson et al., 1981). They found that the amino acid sequence 
of the peptides had a marked influence on the flexibility and direction of ligand presentation.  
 
An optimization of chemotactic response of E. coli has been achieved by tuning the valency of 
galactose-functionalized oligomers (Gestwicki et al., 2000). Consequently, a second generation 
of multivalent chemoattractants designed using molecular modeling resulted in ligands with a 
responsive threshold concentrations 10-fold lower than those required with the original displays 
(Gestwicki et al., 2001).  
 

2.5 Carbohydrates as targeting vehicles 
 
Another exciting area for carbohydrate conjugates is their use as specific targeting vehicles. The 
concept of targetable glycosylated drug delivery systems employs the extensive involvement of 
oligosaccharide in various recognition processes (Monsigny et al., 1988; Ouchi and Ohya, 1994; 
Wadhwa and Rice, 1995). Targeted drug delivery system can be used to promote specific 
accumulation of bioactive molecules with low therapeutic index into disease sites, which results 
in enhanced therapeutic efficacy and reduced systemic side effects. Targeting system is achieved 
by conjugating therapeutic agents to a macromolecular carrier functionalized to express 
carbohydrate epitopes specifically recognized by cell receptors (Matthews et al., 1996; Takakura 
and Hashida, 1996). For example, liver cells can be targeted with structures expressing terminal 
galactose units (Neufeld and Ashwell, 1979; Wall et al., 1980), which are specifically recognized 
by asialoglycoprotein receptors on liver cells (Ashwell and Harford, 1982; Ashwell and Morell, 
1974). In addition, receptors present on Kupffer cells specific for mannose residues can induce 
receptor mediated endocytosis (Dragsten et al., 1987; Fallon and Schwartz, 1989; Franssen et al., 
1993; Jansen et al., 1991; Seymour, 1994; Seymour et al., 1991), L1210 leukemia cells have 
fucose specific receptors at their cell surface (Monsigny et al., 1984), and mannosyl/fucosyl 
receptors present at the surface on macrophages are all attractive choices for targeting purposes 
(Duffels et al., 2000; Rice, 1997).  
 
Due to their toxicity and high pharmacological activity, antiviral and anticancer agents are 
excellent candidates for utilization of drug targeting systems. Models supporting this idea 
include effective accumulation of cisplatin-dextran complex containing tetravalent galactose 
conjugates to human hepatoma cells in vitro (Ohya et al., 2001), targeting of β-CD-
polymannoside dendrimer carrying docetaxel as a guest molecule to macrophages in vitro, and 
targeting of glycosylated HPMA copolymer-doxorubicin into colon cancer cells in vitro (David 
et al., 2004). In addition, carrier-mediated targeting also holds great promise in delivering 
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synthetic oligonucleotide drugs [e.g. (Duff et al., 2000; Maier et al., 2003; Zanta et al., 1997) 
Unmodified oligonucleotides suffer from poor cellular uptake and lack stability against 
enzymatic degradation. Attachment to a multivalent carbohydrate cluster significantly improves 
the cellular uptake of oligonucleotides and thus the therapeutic efficacy of antisense 
oligonucleotides in vivo.  
 
However, the in vivo performance of the therapeutic system, i.e. the drug release and the 
pharmacokinetic profile may depend severely on the bioconjugated moieties such as targeting 
agents and drug. In a recent study (Cavallaro et al., 2004) two macromolecular conjugates build 
on polyaspartamide scaffold with either galactose or mannose as targeting sugars and as drug 
components either acyclovir or ganciclovir (Colla et al., 1983; Fan-Havard et al., 1989; Faulds 
and Heel, 1990; O'Brien and Campoli-Richards, 1989; Schaeffer et al., 1978) were shown to 
display significant difference in their in vivo behavior. In particular, the mannosyl derivatization 
promoted the rapid disposition of the conjugate in the liver, while the galactosyl derivatization 
showed no difference to disposition in the liver of that of a naked polyaspartamide polymer. It 
was concluded that slight physico-chemical differences of the conjugates (architecture, structure, 
solubility, etc.) may reflect in this impressive biological difference with particular reference the 
different quantitative composition of the targeting sugar moieties. Consequently, to obtain 
successful therapeutic targeting systems things to be considered include the appropriate choice of 
the components and the proper chemical synthesis process, which allows derivatives with the 
required characteristics to be obtained.             
 

2.6 Glycosaminoglycans 
 
Glycosaminoglycans (GAGs) are linear, polydisperse, acidic polysaccharides, which are often 
covalently linked to a protein core to form proteoglycans (PGs). GAG polysaccharides extend 
from a protein core in a brush-like composition. To core proteins, from 10 kDa to >500 kDa in 
size, the number of GAG chains attached ranges from 1 up to >100 (Kjellen and Lindahl, 1991). 
The most common GAGs are chondroitin sulphate (CS), dermatan sulphate (DS), heparin (HP), 
heparan sulphate (HS), keratan sulphate (KS), and hyaluronic acid (HA). Except for HA, all 
GAGs are biosynthesized as PGs. PGs occur in the membranes of all animal tissues, 
extracellularly in the matrix, or intracellularly in certain cells (usually in secretory granules). 
Chondroitin sulphate is the most common GAG in the body, and occurs in both soft and skeletal 
tissues. It is also found in neural tissues (Margolis and Margolis, 1997) and on cell surfaces 
(Fransson, 1987). Vertebrates utilize glycosaminoglycans in structural, adhesion, recognition, 
and signaling roles. GAGs are also increasingly thought to have a role in regulating a wide 
variety of biological processes, including the inflammatory response and tumor cell metastasis. 
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Glycosaminoglycans are synthesized with alternating hexosamine (either GalNAc or GlcNAc) 
and uronic acid (GlcA or IdoA) residues, in which the set of monosaccharide units gives rise to a 
number of complex sequences by variable substitution with N-sulphate, O-sulphate, and N-acetyl 
groups (Table 1). Considerable variations occur in the positions of both IdoA and sulphation. HA 
lacks any sulphate groups, but the rest of the glycosaminoglycans contain sulphates.  
 
 
        Table 1. Glycosaminoglycans. 

Glycosaminoglycan Synonym Structure of main repeating disaccharide 

Chondroitin-4-sulphate Chondroitin sulfate A -3GalNAc(4-OSO3
-)β1-4GlcAβ1- 

Chondroitin-6-sulphate Chondroitin sulfate C -3GalNAc(6-OSO3
-)β1-4GlcAβ1- 

Dermatan sulphate Chondroitin sulfate B -3GalNAc(4-OSO3
-)β1-4IdoAα1- 

Heparin  -4GlcNSO3
-(6-OSO3

-)β1-4IdoA(2-OSO3
-)α1- 

Heparan sulphate  -4GlcNAcα1-4GlcAβ1- 
Hyaluronan  -3GlcNAcβ1-4GlcAβ1- 
Keratan sulphate   -4GlcNAc(6-OSO3

-)β1-3Galβ1- 
 
 
Hyaluronan is the simplest GAG consisting of [-GlcNAcβ1-4GlcAβ1-3]n disaccharide units, 
where n can be up to 25000. Keratan sulphate oligo- or polysaccharides contain repeating 
sulphated [-GlcNAcβ1-3Galβ1-4]n disaccharides. It is generally of relatively low molecular 
weight, with nearly equal amounts of sulpho groups on the 6-positions of GlcNAc and Gal. 
Chondroitin sulphate consists of repeating [-GalNAcSβ1-4GlcAβ1-3]n units polymerized into 
long chains. The size of the CS chain varies greatly, with an average size of 20 kDa (~40 
disaccharides) found for cartilage proteoglycan (Iozzo, 1985). Two common chondroitin 
sulphates are chondroitin-4-sulphate or chondroitin sulphate type A (CSA) and chondroitin-6-
sulphate or chondroitin sulphate type C (CSC). CSA has 90% of the GalNAc residues sulphated 
at the 4-position with 10% at the 6-position, and CSC has 90% of the GalNAc residues sulphated 
at the 6-position with 10% sulphated at the 4-position. Dermatan sulphate (chondroitin sulphate 
B) is a polydisperse microheterogenous copolymer of GalNAc and primarily IdoA acid 
[-GalNAcβ1-4IdoAα1-3]n. O-sulpho groups are generally found on 4-position of GalNAc and 
infrequently on the 6-position of GalNAc and the 2-position of IdoA. Heparan sulfate 
(HS)/heparin are polydisperse, highly sulphated, linear polysaccharides made up of GlcNAcα1-
4GlcA(β1-4)/IdoA(α1-4) repeating units. While structurally similar, HS and heparin have 
different ratios of O-sulpho and N-acetyl groups.  
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2.6.1 Pharmaceutical use of GAGs 
 
Many pharmaceutical products based on GAGs themselves have been previously prepared of 
which the most well known is heparin, which is utilized therapeutically as an antithrombotic 
drug and anticoagulant and which is readily available in good quantities. Over 33 metric tons of 
heparin is manufactured worldwide each year (e.g. of bovine and porcine origin), amount 
representing over 500 million doses (Linhardt, 1991). In addition to its best known application, 
heparin also has a wide variety of other activities (Table 2).  
 
 

         Table 2. Current and potential therapeutic applications of heparin and heparin 
          analogues. 

Application Reference 

Anticoagulant / antithrombotic (Frangos et al., 2000) 
Complement inhibitors (Edens et al., 1993) 
Antiatherosclerotics (Jaeger, 2001) 
Anti-inflammatory (Fath et al., 1998) 
Anticancer agents (Hettiarachchi et al., 1999) 
Antiviral agents (Chen et al., 1997) 
Antiangiogenic agents (Smorenburg and Van Noorden, 2001) 
Anti-Alzheimer agents (Dudas et al., 2002) 

 
 
Other GAGs have also found their use in therapeutic applications. Like HS, dermatan sulfate is 
also anticoagulant, although of lower potency than heparin (Tollefsen et al., 1982; Tollefsen et 
al., 1983). DS has been useful in the development of artificial tissues (Miwa and Matsuda, 1994) 
and CS has been used as a component of artificial skin (Osborne et al., 1999). CS (e.g. of bovine 
origin) has also been used as a therapeutic medicine for the chronic inflammatory diseases such 
as rheumatoid arthritis, cirrhosis, and chronic photo damage (Conte et al., 1995; Fawthrop et al., 
1997; Gressner et al., 1980). In addition, CS from human milk has been found to inhibit HIV 
glycoprotein gp120 binding to its host cell CD4 receptor, in vitro (Konlee, 1998). Hyaluronic 
acid has been used in a wide array of medical applications, for example, to treat patients with 
osteoarthritis (Manek and Lane, 2000; Rosier and O'Keefe, 2000), as a cloth-like material to 
prevent adhesions after surgery (Panay and Lower, 1999), and as an aerosol to prevent elastase-
mediated injury in pulmonary emphysema (Cantor et al., 1998).  
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2.7 Cyclodextrins 
 
Cyclodextrins (CDs) are formed (Bender, 1986) during the degradation of the linear amylose 
fraction of starch by cyclodextrin glucosyltransferases, isolated from the bacterium Bacillus 
macerans, yielding a family of cyclic α-(1-4)-linked oligosaccharides consisting mainly of six, 
seven or eight D-glucose units resulting in α-, β- or γ-cyclodextrin, respectively (Figure 2). This 
process also forms the basis for the production of CDs in industrial scale (Schmidt, 1985). The 
cyclic arrangement of CDs creates a hydrophilic exterior and a hydrophobic “open cavity” region 
(Stella and Rajewski, 1997). Cyclodextrins resemble truncated, hollow cones in which all 
glucose units adopt the commonly observed 4C1-chair conformation. Primary hydroxyl groups 
(O6) of cyclodextrins are on the narrow side of the cone, and the secondary hydroxyl groups 
(O2, O3) are on the wider side of the cone (Figure 2) forming intramolecular, interglucose 
O2···O3’ hydrogen bonds stabilizing the conformation of the molecule (Czugler et al., 1981; 
Harata, 1986; Mentzafos et al., 1991; Saenger, 1984).  
 

 
 
Figure 2. Structural and a truncated cone presentation of γ-cyclodextrin. The wider side formed by the 
secondary 2- and 3-hydroxyl groups and the narrower side formed by the primary 6-hydroxyl groups are 
indicated.  
 
 
Cyclodextrin’s hydrophobic cavity has the remarkable property of forming inclusion complexes 
both in solution and in the solid state with a large variety of guest molecules and ions that have a 
suitable size and shape to be fully or partially accommodated (Bender and Komiyama, 1978; 
Saenger, 1980; Saenger, 1984; Szejtli, 1988; Uekama and Irie, 1987). This feature is utilized in 
food and pharmaceutical industries (Frömming and Szejtli, 1994) to encapsulate compounds that 
have a low solubility in water, are sensitive to the environment, or are volatile and have more 
favorable properties as CD inclusion complexes. The number of glucose molecules determines 
the size of the central cavity capable of forming inclusion complexes with hydrophobic 
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molecules. β-CD is currently the most widely available and the CD of lowest cost. Relative to β-
CD, α-CD has a higher water solubility (14.5 versus 1.9 g/ml at 25°C) and a smaller cavity (5.3 
versus 6.6 Å). Similarly, γ-CD has a higher water solubility (23.2 g/ml at 25°C) and a larger (8.4 
Å) and a more flexible cavity (Szente and Szejtli, 1999). 
 
Selective chemical modification of the hydroxyl groups in order to prepare new compounds with 
specific properties is a challenge due to large number of hydroxyl groups. Numerous mono- to 
persubstituted CDs have been synthesized (Khan et al., 1998) to introduce catalytic activity or to 
improve the inclusion selectivity of the host. Modification of the hydroxyl groups by acyl, 
hydroxyalkyl, or longer alkyl groups decreases the solubility of the β-CDs, but their solubility 
may increase again in the presence of a guest molecules (Lindberg et al., 1991). In addition, their 
host/guest forming capability has been used to create specific drug delivery systems. 
Cyclodextrins are able in alleviating the undesirable properties of drug molecules through the 
formation of inclusion complexes. Attachment of bio-recognizable saccharides onto CDs specific 
site delivery of pharmacologically active compounds has been faced (Benito et al., 2004; de 
Robertis et al., 1994; Kassab et al., 1997; Lainé et al., 1995; Leray et al., 1995; Uekama et al., 
1998). Finally, their primary and secondary hydroxyl groups make them ideal candidates as 
scaffolds to create multivalent glycoconjugates [e.g. (Andre et al., 2004; Fulton and Stoddart, 
2001; Furuike et al., 2000; Matsuda et al., 1997; Ortiz Mellet et al., 2002)] and the multivalency 
effect of CD-carbohydrate glycoconjugates has been demonstrated in several studies (Andre et 
al., 2004; Furuike et al., 2000; Ichikawa et al., 2000).  
 

2.8 Glycodendrimers 
 
Dendrimers are fully synthetic macromolecules comprised of perfectly branched repeat units in 
layers (with each layer synthesized depicted as a new generation) emanating radially from a 
central core (see also Figure 6). There are two defined methods of dendrimer synthesis: The 
molecule can be assembled from the core to the periphery using a divergent synthesis method or 
from the outside to termination at the core using a convergent synthesis method. Dendrimers are 
defined by their three components: A central core, the branches (an interior dedritic structure), 
and a surface that can contain a variety of substituents. Dendrimers are globular, extremely well-
defined synthetic polymers with a number of characteristics, which make them useful in 
biological systems.  
 
Glycodendrimers (Roy et al., 1993) are a relatively novel class of glycoconjugates, which have 
been proposed to afford a better understanding of multiple protein-carbohydrate interactions at a 
molecular level (Andre et al., 1999; Zanini and Roy, 1996; Zanini and Roy, 1998). 
Glycodendrimers are generally classified in three different categories: (1) carbohydrate-coated; 
(2) carbohydrate-based; and (3) carbohydrate-centered structures. Here, only glycodendrimers 
belonging to the first category will be discussed and the interested reader is referred to a recent 
review for more detail (Turnbull and Stoddart, 2002). Glycodendrimers have several surface 
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group carbohydrate epitopes available for multiple binding interactions. In addition, the chemical 
nature of the synthetic linker used to construct dendrimers and the type of glycosidic linkages 
used to attach oligosaccharides to scaffold can be varied. This class of glycoconjugates are 
structurally similar to naturally occurring multiantennary glycoproteins built on dendritic 
scaffolds (Archut and Vögtle, 1998; Bosman et al., 1999; Chow et al., 1998; Hawker and 
Frechet, 1990; Seebach et al., 1998; Smith and Diederich, 1998; Tomalia and Durst, 1993; 
Tomalia et al., 1990; Zeng and Zimmerman, 1997). The defined molecular architecture and 
nonimmunogenic nature of these molecules makes them interesting tools as multivalent 
glycoconjugates for the inhibition of host cell infections by pathogens, even though they are not 
as effective as neoglycoproteins and glycopolymers in inhibition studies.  
 
Glycodendrimers appear to be potent inhibitors for a number of carbohydrate-protein assays in 
vitro. For example, effective ligands for cholera toxin (Thompson and Schengrund, 1997), 
various lectins (Dam et al., 2002; Page and Roy, 1997), human immunodeficiency virus type 1 
(HIV-1) (Kensinger et al., 2004), and influenza virus (Reuter et al., 1999) have been successfully 
synthesized by conjugating cell surface carbohydrate ligands to spherical hyperbranched 
dendrimers. Systematic study exploring the behavior of Starburst dendrimers, modified to 
express terminal β-D-lactosyl epitopes, towards lectins with identical monosaccharide 
specificity, but with differential binding site orientation, concluded that the intimate details of 
topology in both the ligand display on different generations of core assembly and presentation of 
receptor binding sites determine the potential of glycodendrimers as lectin targeting device 
(Andre et al., 1999). Several reviews concerning the design, synthesis, and biomedical use of 
glycodendrimers with a thorough evaluation of a number of neoglycoconjugate types have been 
published (Boas and Heegaard, 2004; Lindhorst, 2001; Roy, 1996b; Röckendorf and Lindhorst, 
2001; Turnbull and Stoddart, 2002). These exciting properties make this family of molecules an 
interesting choice in the human trials involving protection against malignancies and microbial 
infections.  
 

2.9 Helicobacter pylori 
 
In 1982 Barry J. Marshall and J. Robin Warren discovered the gram-negative bacterium 
Helicobacter pylori (Figure 3) and elucidated its role in peptic ulcer disease and gastritis. Before 
that lifestyle and stress were considered to be the major causes of peptic ulcer disease. It is now 
firmly established that Helicobacter pylori causes up to 80% of gastric ulcers and more than 90% 
of duodenal ulcers. In 2005 Marshall and Warren were awarded the Nobel Prize in Physiology or 
Medicine for their discovery: “The bacterium Helicobacter pylori and its role in gastritis and 
peptic ulcer disease”. 
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More than half of the world’s population is infected with H. pylori. Frequency of H. pylori 
infection varies with country of origin and socioeconomic status. Prevalence of infection is 
thought to be 30-50% in industrialized countries 
and 80-90% in developing countries (Goodman and 
Cockburn, 2001). H. pylori is almost always 
acquired during childhood (usually before the age 
of 10) (De Giacomo et al., 2002) and if untreated 
infection is lifelong. It is not known how the 
bacteria are transmitted or why some patients 
become symptomatic while others do not. 
Bacterium most likely spreads from person to 
person through oral-oral, fecal-oral, or gastric-oral 
routes, while contaminated water sources are 
possible environmental reservoirs. 
 

2.9.1 Diseases associated with Helicobacter pylori infection 
 
H. pylori colonizes the gastric mucosa and elicits both immune and inflammatory lifelong 
responses, including the release of various host-dependent and bacterial cytotoxic substances 
(Peterson and Graham, 1998). Most of the infected persons never suffer any symptoms related to 
this infection. However, H. pylori causes duodenal and gastric ulcers, chronic gastritis (Dunn et 
al., 1997; Figueiredo et al., 2005; McGee and Mobley, 1999), mucosal-associated lymphoid 
tissue (MALT) lymphoma ((EHPSG), 1997; NIH, 1994), and increases the risk of neoplastic 
diseases of the gastrointestinal tract (Kikuchi and Dore, 2005; Mueller et al., 2005; Peek and 
Blaser, 2002). In addition, the epidemiological data suggests that H. pylori gastritis is associated 
with gastric carcinogenesis (Plummer et al., 2004; Sipponen and Marshall, 2000) and H. pylori 
infection has been recognized as a risk factor for both intestinal and diffuse types of gastric 
cancer (Xue et al., 2001). Disease severity in H. pylori-infected hosts has been shown to depend 
both upon the bacterial (Blaser et al., 1995; Censini et al., 1996; Peek et al., 1995; Wu et al., 
2003) and host (El-Omar et al., 2000) factors. In 1994 the bacterium itself was classified as a 
class I carcinogen by the World Health Organization (WHO) and International Agency for 
Research on Cancer Consensus Group (IARC, 1994). Interestingly, H. pylori may protect against 
the development of gastroesophageal reflux disease and diseases to which this might lead, i.e. 
Barrett’s esophagus and esophaegeal adenocarcinoma (Blaser, 1999)   
 
 
 
 
 
 
 

Figure 3. Helicobacter pylori. 
H.pylori image courtesy of www.hpylori.com.au 
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2.9.1.1 Current diagnostic and treatment methods 
 
Diagnosis. There are two types of diagnostic tests used to detect H. pylori infection: Invasive and 
noninvasive. Invasive test include endoscopy: During endoscopy biopsy specimens of the 
stomach and duodenum are obtained. This enables to determine either the presence or absence of 
infection and the severity and extent of mucosal injury. Noninvasive tests include blood test, 
stool test, and urea breath test. The blood test is a serological test that measures specific IgG 
antibodies against H. pylori present in the blood. Test shows whether the individual has been 
infected or whether H. pylori was present in the past and is now cleared. The stool test uses 
monoclonal or polyclonal anti-H. pylori antibodies to detect H. pylori antigens. The urea breath 
test is the most recent diagnostic method: The patient is given either 13C- or 14C-labeled urea to 
drink, an effective enzyme in the bacteria metabolizes the urea into carbon dioxide after which 
labeled carbon can then be measured as CO2 in the patient’s expired breath to determine whether 
H. pylori is present. The use of upper gastrointestinal endoscopy with gastric biopsy is 
considered the golden standard of diagnostic tests for H. pylori. 
 
Treatment. Therapy for H. pylori infection consists of 7 to 14 days of one or two effective 
antibiotics, such as amoxicillin, metronidazole, clarithromycin, or tetracycline, plus either 
bismuth subsalicylate, ranitidine bismuth citrate, or a proton pump inhibitor. Acid suppression by 
proton pump inhibitor or H2-receptor blocker in conjunction with the antibiotics may enhance 
the efficacy of the antibiotics against H. pylori at the gastric mucosal surface, helps to alleviate 
ulcer-related symptoms (i.e., abdominal pain, nausea), and helps the healing gastric mucosal 
inflammation. However, eradication is not always successful (in adults the greatest rates of 
bacterial eradication is >80%) and harmful side effects of these drugs may be encountered. 
Moreover, the current antibiotics based treatment is directly connected to risks of emergence of 
antibiotic resistant strains and eradication of H. pylori using this method is not sensible in large 
populations (Van Der Wouden et al., 2000; Wu et al., 2005). Therefore, nonantibiotic agents that 
are both safe and effective are required. An alternative way of treatment based on the oral use of 
anti-adhesion molecules is under discussion (Karlsson, 2000).  

 

2.9.2 Attachment of Helicobacter pylori on host cell surface 
 
Helicobacter pylori is a spiral-shaped bacterium (Figure 3) that is found adherent at the epithelial 
lining of the stomach or in the gastric mucous layer. H. pylori colonization of the stomach starts 
by adherence of the bacteria to the gastric epithelium. Adhesin proteins expressed on H. pylori 
outer membrane bind to specific host-cell receptors. H. pylori recognizes carbohydrates, 
probably mediating essential attachment to host cells (Karlsson, 1998; Karlsson, 2000). The most 
prominent bacterial adhesins described so far are the Leb epitope binding adhesin BabA (Ilver et 
al., 1998) and the sialic acid-binding adhesin SabA (Mahdavi et al., 2002). Several different 
carbohydrate receptor candidates for H. pylori binding have been documented (Table 3). In 
addition, in a recent study the binding of babA/sabA double mutant H. pylori strain to 
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glycoproteins fibronectin and lactoferrin was shown to be only abolished by denaturation rather 
than deglycosylation indicating that the protein moiety also plays a role in receptor recognition 
(Walz et al., 2005). One recent hypothesis states (Roche et al., 2004) that the initial binding of H. 
pylori is achieved through binding to carbohydrate epitopes present in the normal gastric 
epithelium, e.g. the Leb antigen and lactotetraosylceramide. The following inflammation leads to 
upregulation of the expression of sialic acid-containing glycoconjugates, which are normally 
present only at very low concentrations (Madrid et al., 1990; Miller-Podraza et al., 1997). This 
enhanced expression in turn provides novel binding sites for H. pylori SabA adhesin, thus 
contributing to the chronicity of the infection.   
 
As illustrated by the wide range of different structures in Table 3, H. pylori is highly variable in 
its binding activities to respective carbohydrate epitopes. Expression of different specificities 
depends both on growth conditions and bacterial strains. Dependence of binding to elements 
related to lactotetraosylceramide, neolacto structures, fucosylated, and sialic acid-containing 
structures will be described here in more detail. 
 
 
Table 3. Carbohydrate receptor candidates recognized by H. pylori 

Name Structure References 

Blood group antigens, 
e.g. Leb 

Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ-R (Boren et al., 1993) 

Sialic acid-containing 
structures 

Neu5Ac-R (Evans et al., 1988; Hirmo et al., 
1996; Miller-Podraza et al., 1997) 

Galactosylceramide Galβ1-Cer (Abul-Milh et al., 2001) 
Lactosylceramide Galβ1-4Glcβ1-Cer (Ångström et al., 1998) 
Lactotetraosylceramide Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ1-Cer (Teneberg et al., 2002) 
Neolacto structures R1-Galβ1-4GlcNAcβ1-3Galβ1-4Glc-R2 (Miller-Podraza et al., 2005) 
Sulphatide SO3-Galβ1-Cer (Saitoh et al., 1991) 
Ganglio structures Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-Cer 

GalNAcβ1-4Galβ1-4Glcβ1-Cer 
(Lingwood et al., 1992) 

 
 
Lacto-based structures. A study using glycosphingolipids structurally related to lactotetraosyl-
ceramide investigated for their H. pylori binding activity illustrated that all the substitutions 
tested abolished the binding of the only active glycosphingolipid, lactotetraosylceramide 
(Teneberg et al., 2002). Particularly, the terminal disaccharide Galβ1-3GlcNAcβ1-3 with an 
intact acetoamino group was evaluated to constitute as the binding epitope. Moreover, binding to 
lactotetraosylceramide was also achieved with strains devoid of Leb binding activity indicating 
that the H. pylori binding to these two epitope structures is not due to cross-binding but 
represents two separate binding specificities.  
 



 32

Neolacto-based structures. In a another study H. pylori binding to neolacto glycolipids and 
various glycolipids with related structures was investigated (Miller-Podraza et al., 2005). The 
tetra-, penta-, and hexaglycosylceramides were all shown to bind H. pylori with 
pentaglycosylceramide GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer being the strongest 
binder. The terminal trisaccharide GlcNAcβ1-3Galβ1-4GlcNAcβ1-3 was indicated as the 
sequence required for maximal activity. Interestingly, the terminal GlcNAcβ of 
pentaglycosylceramide could be exchanged for either Galα3, GalNAcβ3, or GalNAcα3 without 
losing activity. However, molecular modeling studies indicated that H. pylori binding to these 
four molecules are a result of molecular mimicry rather than being due to separate specificities.  
 
Fucosylated structures. H. pylori binding to fucosylated structures Leb [Fucα1-2Galβ1-3(Fucα1-
4)GlcNAcβ1-3Galβ1-4Glc] and H-1 (Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc) is restricted to 
the terminally fucosylated lacto series type 1 chains (Boren et al., 1993). In addition, the 
branched fucose residue on the Leb chain is important for optimal receptor-bacterium interaction 
as indicated by weaker binding activity of the H-1 antigen (Boren et al., 1993). The terminal 
structure Fucα1-2Gal has been shown sufficient for binding of H. pylori although significantly 
stronger binding has been observed using the terminal trisaccharide Fucα1-2Galβ1-3GlcNAc 
(Walz et al., 2005). Moreover, Lea (Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-4Glc) lacking the 
terminal fucose shows no binding activity against H. pylori (Boren et al., 1993). 
 
Sialic acid-containing structures. The structural requirements for binding of H. pylori to 
complex gangliosides has been investigated in several studies. H. pylori strains bind to N-
acetyllactosamine-based gangliosides (with preference for Galβ1-4GlcNAc over Galβ1-
3GlcNAc in the core structure) with α3-linked Neu5Ac, while terminal NeuAcα6, 
NeuAcα8NeuAcα3, or NeuGcα3 are not recognized (Evans et al., 1988; Hirmo et al., 1996; 
Johansson et al., 1999; Johansson and Miller-Podraza, 1998; Miller-Podraza et al., 2004; Miller-
Podraza et al., 1997; Roche et al., 2004; Roche et al., 2001). In addition, fucose substitution of 
the N-acetyllactosamine core chain, the branches of the carbohydrate chains, and length of the 
carbohydrate chain have been indicated as factors affecting binding affinity (Roche et al., 2004). 
Studies done to investigate the dependence of different parts of the carbohydrate epitope, 
trisaccharide Neu5Acα2-3Galβ1-4GlcNAc, revealed an important role for Neu5Ac and its 
carboxyl and glycerol side chains and N-acetoamino group (Johansson et al., 2005; Miller-
Podraza et al., 2004). Moreover, parts of Gal seems to be necessary, whereas, GlcNAc appears to 
have a secondary role serving as a guiding carrier for the ending epitope (Johansson et al., 2005).    
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3 AIMS OF THE STUDY 
 
Adhesion of bacteria to host cells and tissues is a prerequisite for most infections to occur. In 
various cases, this is initiated by bacterial surface lectins that bind to complementary 
carbohydrates structures on the surface of the host cells and tissues. Consequently, carbohydrate 
based anti-adhesion therapy presents a highly promising approach for combating bacteria: 
Suitable carbohydrate structures prevent the adhesion of the bacteria to host cells, or detach them 
at the early stages of infection. It is however generally accepted that to augment the activity of 
the weak individual protein-carbohydrate interactions infecting organisms engage in multipoint 
attachment. Based on same concept effective anti-adhesives should be constructed by coupling 
several bioactive carbohydrate drug units to a single backbone carrier (multivalent presentation 
of carbohydrates).  
 
 
The aims of the present study were: 
 
 
1. To synthesize multivalent neoglycoconjugates with varying linker chemistry on a γ-
cyclodextrin backbone (I, II, and unpublished results). 
 
2. To synthesize multivalent neoglycoconjugates with varying linker chemistry on a chondroitin 
oligomer backbone (I, II). 
 
3. To synthesize multivalent neoglycoconjugates on a dendrimer scaffold (unpublished results). 
 
4. To synthesize and analyze the binding activity of an array of novel neolacto based 
carbohydrate structures towards Helicobacter pylori (III). 
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4 MATERIALS AND METHODS 
 

4.1 Commercial oligosaccharides (I-III) 
 
LNnT (Galβ1-4GlcNAcβ1-3Galβ1-4Glc) (I-III) and GnLacNAcLac (GlcNAcβ1-3Galβ1-
4GlcNAcβ1-3Galβ1-4Glc) (I) were from Kyowa Hakko (Japan). Lewis b hexasaccharide 
LNDFH I (Fucα1-2Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-4Glc) (I) was purchased from IsoSep 
(Lund, Sweden). γ-CD (I, II), Chondroitin sulphate A (CSA) (from bovine trachea) (I, II), and 
para-nitrophenyl-β-glucuronide (pNP-β-GlcA) (I, III) were from Calbiochem. GlcAβ1-3Galβ1-
4GlcNAcβ1-3Galβ1-4Glcβ1-Cer (III) was from Wako Pure Chemicals Industries. GlcNAcβ1-
3Man and GlcNAcβ1-6Gal (III) were from Sigma.  
 

4.2 Chemical and enzymatic methods (I-III)  
 
                       Table 4. Conjugation reactions used for neoglycoconjugate syntheses in the  
                present study. 
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    Table 5. A list of methods used in the present study for syntheses of 
multivalent conjugates. Detailed description of the methods, and the  
reagents used in them, are found in the original publications (I-III) as  
indicated and in references therein. 

Method Described in  
publication 

Reductive amination I, III 
Desulphation and hydrolysis I, II 
Amidation I-III 
Oxidation I, II 
α2,6-sialylation I 
Esterification II 
Oxime formation II 
Stability analysis II 
Glycosylamidation II 
Preparation of glycolipid derivatives III 
Modifications of glycolipids III 
Preparation of sialylated derivatives III 
Synthesis of neoglycolipids III 
Enzymatic synthesis of oligosaccharides III 

 

4.3 Preparation of multivalent PAMAM dendrimers (unpublished results) 
 
Glycodendrimers based on generation 4.0 polyamido amine dendrimer (PAMAM’64 dendrimer) 
(StarburstTM dendrimers, Aldrich) (Tomalia et al., 1985) were prepared as follows: 250 nmol 
PAMAM, 50 µmol oligosaccharide (LNnT or GnLacNAcLac), and 250 µmol NaCNBH4 were 
dissolved in 250 µl of 0.1 M Na-borate pH 8.5. Both reactions were performed at room 
temperature for 24 hours under constant magnetic stirring. Products were isolated by gel 
filtration chromatography and analyzed by MALDI-TOF MS and 1H-NMR. 
 

4.4 Modification of LNnT using aminooxyacetic acid and amidation to DAP-ox-γ-CD 
(unpublished results)  
 
LNnT was modified using aminooxyacetic acid (Aoa) as follows: 100 µmol LNnT and 200 µmol 
aminooxyacetic acid (Sigma) were dissolved in 2.4 ml 0.2 M Na-acetate buffer, pH 4.0 and 
incubated at room temperature for 48 hours. The oligosaccharide fraction was isolated by gel 
filtration chromatography in a column of Superdex 30 (5 × 95 cm) run in 200 mM NH4HCO3. 
The DAP-ox-γ-CD (described in part I) was amidated with LNnT-Aoa as follows: 5 µmol of 
DAP-ox-γ-CD, 500 µmol DIPEA, 500 µmol HBTU, and 100 µmol crude LNnT-Aoa were 
dissolved in pyridine containing 10% H2O. Reaction was performed at room temperature, in the 
dark, and under constant magnetic stirring for three days. Reaction mixture was evaporated to 



 36

dryness with rotary evaporator and purified using Superdex 30 (5 × 95 cm) run in 200 mM 
NH4HCO3. 
 

4.5 Helicobacter pylori strains (III) 
 
CCUG 17874 and CCUG 17875 (Culture Collection, Göteborg University, Sweden), the 
babA1A2-knock out mutant of CCUG 17875 (from Dr. Thomas Borén, Umeå University, 
Sweden), and S-032 (acquired from a patient with duodenal ulcer at the Örebro Medical Center, 
Örebro, Sweden). Growth conditions were as described previously (Miller-Podraza et al., 1996). 
  

4.6 Chromatographic methods (I-III) 
 
Table 6. List of purification methods employed in the present study. Full description of the 
chromatographic methods, and the reagents used in them, are found in the original publications (I-III) as 
indicated and in references therein. 

Method Described in  
publication 

Size-exclusion chromatography on a Superdex 30 (5 × 95 cm) or Superdex Peptide HR 
10/30 (10 × 300 mm) column 

I-III 

Anion-exchange chromatography on a ResourceTMQ column III 
Thin-layer chromatography III 
Hydrophobic silica-based purification on a BondElut C-18 column III 
Reversed-phase chromatography on a Hypercarb column III 
Desalting of glycolipids using a small column filled with Sephadex G-25 or by Sephadex 
LH-20 chromatography 

III 

Desalting and deproteinization of reaction mixtures in a mixed bed of Dowex AG 1-X8 
(Ac-) and AG 50W-X8 H+  

III 

 

4.7 Mass spectrometry (I-III) 
 
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra (MS) (I-
III) were recorded on a Voyager-DETM STR BioSpectrometryTM (PerSeptive Biosystems) time-
of-flight instrument. Samples were analyzed in either negative ion delayed extraction linear 
mode using 2,4,6-trihydroxyacetophenone (THAP) (Fluka) (3 mg/ml in acetonitrile / 20 mM 
aqueous diammonium citrate, 1:1, by volume) or positive ion delayed extraction reflector mode 
using 2,5-dihydroxybenzoic acid (DHB) (Aldrich) matrix (10 mg/ml in H2O). 
 
Fast atom bombardment mass spectrometry (FAB MS) (III) was performed on a JEOL SX-102 
mass spectrometer in the negative ion mode. The spectra were produced by Xe atoms using 
triethanolamine as a matrix.  
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4.8 Nuclear magnetic resonance spectroscopy (I-III and unpublished results)  
 
Prior to the 1D 1H NMR experiments, the samples were lyophilized twice from D2O (99.9%) 
(Aldrich) and then dissolved in 38 µl D2O. The 1D 1H NMR spectra were recorded in D2O 
(Aldrich, 99.9%) with a Varian Unity 500 spectrometer (Varian Inc., CA, USA) at 23°C using a 
gHX nano-NMR probe (Varian Inc., CA, USA). The 1H chemical shifts are presented by 
reference to internal acetone (δ=2.225 ppm). 
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5 RESULTS 
 

5.1 Synthesis of multivalent neoglycoconjugates (I, II, and unpublished results) 
 
Three different scaffold molecules were chosen for multivalent glycoconjugates: (1) γ-
cyclodextrin, (2) a chondroitin 14-mer fraction, and (3) a commercial PAMAM’64 dendrimer, 
representing cyclic, linear, and globular scaffolds, respectively. Multivalent glycoconjugates 
were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), 
LNnT, or GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc (Table 7), all representing analogs of the 
tissue binding epitopes for the human gastric pathogen Helicobacter pylori. Four different 
methods were created to attach these oligosaccharides to their scaffold molecules.  
 
 
Table 7. A list of ligand oligosaccharides attached to chondroitin oligomer, γ-CD, or PAMAM scaffolds  

Ligand Ch14 γ-CD PAMAM 
Galβ1-4GlcNAcβ1-3Galβ1-4Glc 
(LNnT) 

I, II I, II, unpublished 
results 

Unpublished 
results 

GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc  
(GnLacNAcLac) 

I  Unpublished 
results 

Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4Glc            
(LNDFH I) 

I   

 

5.1.1 Reductive amination of oligosaccharides to amine modified scaffolds (I) 
 
Chondroitin oligomer as scaffold. In order to create linear multivalent neoglycoconjugates 
chondroitin sulphate A (CSA) (from bovine trachea) was chosen as starting material. A fraction 
containing the chondroitin 14-mer (Ch-14) oligosaccharide (GlcAβ1-3GalNAcβ1-4)6GlcAβ1-
3GalNAc (compound 1, Figure 4) as the major compound was prepared by CSA desulphation 
and hydrolysis. Product was purified and isolated with gel permeation chromatography, and 
identified by MALDI-TOF MS and 1D 1H NMR spectroscopy. Amine function was introduced 
to scaffold molecule by amidation of 1,3-diaminopropane to chondroitin 14-mer glucuronic acid 
residues (1→2). DAP-amidated Ch14 (DAP-Ch14, compound 2) was isolated and analyzed as 
above. A substitution level of 4.5 DAP-units per Ch14 molecule was determined from NMR 
spectrum. Three different oligosaccharides (Table 7), LNnT, GnLacNAcLac or LNDFH I were 
then linked to DAP-Ch14 by reductive amination (2→3a for LNnT). Products LNnT-DAP-
Ch14, GnLacNAcLac-DAP-Ch14 and LNDFH I-DAP-Ch14 (compounds 3a-c, respectively) 
were isolated and analyzed as above. MALDI-TOF mass spectrum of each product indicated 2-6 
oligosaccharides attached to the DAP-Ch14 backbone. The NMR studies showed that α/βH1 
signals of reducing end Glc from LNnT, GnLacNAcLac, or LNDFH I, were all missing 
indicating that  no  free  reducing  oligosaccharides remain in the sample. In all spectra αH1/βH1 
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Figure 4. Synthetic methods employed to construct chondroitin oligomer based multivalent products (I and II). To 
simplify illustration only single modification event for each reaction is shown and both products are combined on a 
single Ch14 scaffold (in actual conjugates oligosaccharides are presumably attached randomly to 6’-position 
carboxyl-groups along the scaffold). Both oligosaccharides attached to Ch14 backbone using different methods is 
LNnT.  
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signals for Gal adjacent to this Glc had shifted downfield due to reductive amination. The more 
distant part βH1 signals were consistent with those reported for the free LNnT, GnLacNAcLac, 
or LNDFH I, molecules. In addition, from LNDFH I-DAP-Ch14 spectrum an average 
substitution level of 4.6 LNDFH I oligosaccharides per DAP-Ch14 molecule was obtained 
indicating that the reductive amination reaction was essentially complete.  
 
γ-cyclodextrin as scaffold. In order to create cyclic multivalent neoglycoconjugates γ-
cyclodextrin (γ-CD) was chosen as starting material. First, primary alcohol groups of γ-CD were 
partially oxidized by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy radical) mediated process to 
introduce carboxyl groups to scaffold (5→6) (Figure 5). Product, ox-γ-CD (compound 6), was 
isolated using gel filtration and identified by mass spectrometry. MALDI-TOF MS analysis 
revealed an oxidized product with an average of 6 carboxylate groups. These 6’-position 
carboxyl-groups were further modified by amidation with 1,3-diaminopropane to form a γ-CD 
derivative carrying primary amine groups (6→7). Product, DAP-ox-γ-CD (compound 7), was 
isolated and analyzed as above. A substitution level of 2.5-3 DAP-units attached to the ox-γ-CD 
scaffold was determined from MALDI-TOF mass spectra. LNnT was then bound to modified 
carrier by reductive amination (7→10) and product, LNnT-DAP-ox-γ-CD (compound 10), was 
isolated and analyzed by MALDI-TOF MS and 1D 1H NMR. MALDI-TOF mass spectrum of 
product indicated 1-5 oligosaccharides attached to the DAP-ox-γ-CD backbone. The NMR 
showed that α/βH1 signals of reducing end Glc from LNnT were missing (as observed for LNnT-
DAP-Ch14, GnLacNAcLac-DAP-Ch14, and LNDFH I-DAP-Ch14) indicating that no reducing 
end LNnT remains in the sample. In addition, compared to the free LNnT the βH1 signal for Gal 
adjacent to this Glc had shifted downfield due to reductive amination. The more distant part βH1 
signals were consistent with those reported for the free LNnT molecule. 
 
Sialylation of multivalent product. The LNnT-DAP-ox-γ-CD conjugate was also shown to act as 
an acceptor for α2,6-sialyltransferase. The sialylated product (SA-LNnT-DAP-ox-γ-CD) was 
isolated by gel filtration and analyzed using MALDI-TOF mass spectrometry. The spectrum 
showed a major peak containing the fully sialylated SA3-LNnT3-DAP-ox-γ-CD product, in 
addition to minor peaks representing different degrees of sialylation on (LNnT)2-4-DAP-ox-γ-CD 
backbone. The average sialylation level for the reaction was approximately 70 %. 
 

5.1.2 Reductive amination of oligosaccharides to PAMAM dendrimer scaffold (unpublished 
results) 
 
LNnT and GnLacNAcLac were attached to PAMAM’64 dendrimer (compound 13) by reductive 
amination (Figure 6). The glycodendrimers were isolated by gel filtration chromatography and 
analyzed by MALDI-TOF MS and 1D 1H NMR. The mass spectrum indicates that the LNnT-
PAMAM’64 conjugate (compound 14a) carried about 56 oligosaccharide units (Figure 7A). The 
MALDI-TOF MS analysis of the GnLacNAcLac-PAMAM’64 conjugate (compound 14b) 
revealed   an   equal   substitution  level  (data  not  shown).  The  1H  NMR  spectrum  of  LNnT-   
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Figure 5. Synthetic methods used to construct γ-cyclodextrin based multivalent products (parts I, II, and 
unpublished results). To simplify illustration only a single modification event for each reaction is shown and all four 
products are combined on a single γ-CD scaffold. The oligosaccharide attached to the γ-CD backbone in each case is 
LNnT.  
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PAMAM’64 (Figure 7B) shows the same pattern for LNnT signals as already described for 
LNnT-DAP-Ch14 and LNnT-DAP-ox-γ-CD conjugates. The PAMAM´64 scaffold protons are 
seen at 2.4-3.0 ppm. The LNnT-PAMAM’64 conjugate carried an average of 2 LNnT units as 
calculated by comparing the intensity of C-GlcNAc N-acetyl proton signals to those of PAMAM 
proton signals. The LNnT-PAMAM’64 conjugate (~50 nmol sample) 1H NMR spectrum was 
recorded with 600 nmol of L-fucose as internal quantification standard. Quantification gave as a 
result 39 nmol of LNnT-PAMAM’64 conjugate (yield 78%). This was calculated by comparing 
the integrated intensities of LNnT C-GlcNAc N-acetyl signals or PAMAM’64 backbone proton 
signals to the intensity of internal standard L-Fuc α/βCH3 signals. Similar results were obtained 
also with the GnLacNAcLac-PAMAM’64 conjugate recorded with L-fucose: Conjugate carried 
an average of 53 GnLacNAcLac units attached to PAMAM´64 backbone and quantification gave 
as a result 37 nmol of PAMAM’64 conjugate (yield 74%) (data not shown). 
 

5.1.3 Amidation of oligosaccharide glycosylamines to scaffold carboxylic acid units (II)  
 
Chondroitin oligomer as scaffold. LNnT converted to its glycosylamine form (LNnT-NH2) was 
conjugated to Ch14 oligomer (1→4) by amidation to 6’-position carboxyl-groups (Figure 4). 
Product, LNnT-NH-Ch14 (compound 4) was isolated by gel filtration and analyzed using 
MALDI-TOF MS and 1D 1H NMR. Mass spectra of LNnT-NH-Ch14 indicated 0-3 
oligosaccharides attached to the Ch14 backbone, with the main product carrying one 
oligosaccharide chain. The NMR study showed that α/βH1 signals of reducing end Glc from 
LNnT were missing indicating that no free reducing oligosaccharides remained in the sample. In 
addition, compared to the free LNnT the βH1 signal for Gal adjacent to this Glc had shifted 
downfield. The average substitution level deduced from NMR spectrum was 1.6 LNnT 
oligosaccharides per Ch14 molecule. 
 
γ-cyclodextrin as scaffold. LNnT converted to its glycosylamine form was conjugated to ox-γ-
CD scaffold (5→6, described in section 5.1.1.) by amidation to 6’-position carboxyl-groups 
(6→9, Figure 5). Product, LNnT-NH-ox-γ-CD (compound 9) was isolated by gel filtration and 
analyzed using MALDI-TOF MS and 1D 1H NMR. Mass spectrum of LNnT-NH-ox-γ-CD 
indicated 1-4 oligosaccharides attached to the ox-γ-CD molecule, and the main products were di- 
and trisubstituted species. The NMR study resulted in similar results as obtained for LNnT-NH-
Ch14: The α/βH-1 signals of reducing end Glc unit from LNnT were missing indicating that no 
free reducing LNnT remains in the sample, and compared to the free tetrasaccharide the βH1 of 
Gal adjacent this amidated Glc had shifted downfield. The average substitution level could not 
be established from the spectrum because the heterogeneous nature of the αH1 signals of the 
modified γ-CD resulted in unreliable integration of this area. 
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Figure 6. Reductive amination of oligosaccharides to the polyamido amine dendrimer scaffold (PAMAM’64, 
Generation 4.0). Generations 0-4 are specified and numbered 
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Figure 7. (A) MALDI-TOF mass spectrum of LNnT-PAMAM glycodendrimer (compound 14a) measured in linear 
positive-ion mode. The signal at m/z 52779 corresponds to singly-charged [M+Na]+ glycodendrimer carrying 
approximately 56 LNnT oligosaccharides attached to PAMAM´64 backbone. Signals at m/z 27762 and 14582 
represent doubly- and triply-charged species, respectively. (B) 1D 1H-NMR spectrum of LNnT-PAMAM’64 
(compound 14a) with fucose as internal quantification standard. 
 

5.1.4 Synthesis of oxime-linked multivalent oligosaccharides (II and unpublished results) 
 
Two different methods were created to conjugate oligosaccharides to γ-CD backbone using an 
oxime linkage. In the first method (II) Boc-Aoa was ester-linked to primary alcohol group of γ-
CD (5→8) (Figure 5). Reaction mixture was purified using dialysis. The average Boc-Aoa 
substitution level was 3.5 as determined by MALDI-TOF MS analysis. In addition, signals 
representing molecular species where protecting group Boc had undergone hydrolysis, thus 
revealing amine groups, were also observed. Next, the protecting Boc groups were removed and 
LNnT was chemoselectively ligated to unprotected Aoa-γ-CD (8→12). Product (LNnT-Aoa-γ-
CD, compound 12) was isolated using gel filtration chromatography and analyzed by MALDI-
TOF MS and 1D 1H NMR. The mass spectrum of LNnT-Aoa-γ-CD conjugate indicated 2-5 
oligosaccharide units attached to the Aoa-γ-CD scaffold. In addition, molecular species, where 
the amine groups have probably been lost from the aminooxy units revealing hydroxyl groups 
(O-NH2 converted to OH = m/z -15), were observed. The NMR study showed that α/βH1 signals 
of reducing end Glc from LNnT were missing indicating that no free reducing oligosaccharides 
remained in the sample. In addition, the βH1 signal for Gal adjacent to this Glc had shifted 
downfield when compared to the free LNnT oligosaccharide. Signal representing oxime proton 
Glc H1 was also observed. The average substitution level was 3.1 LNnT oligosaccharides per 
modified γ-CD molecule as calculated by comparing the integrated intensities of αH1 signals of 
the modified γ-CD and LNnT βH1 of GlcNAc.  
 
The second method (unpublished results) included the oxidized and amidated γ-CD scaffold 
described in section 5.1.1. (5→6→7) (Figure 5). This DAP-ox-γ-CD (compound 7) was 
amidated with aminooxyacetic acid modified LNnT (LNnT-Aoa) to create the multivalent 
product (7→11). Product (LNnT-Aoa-DAP-ox-γ-CD, compound 11) was isolated with gel 
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filtration chromatography and analyzed using MALDI-TOF MS and 1H NMR (Figure 8). From 
mass spectrum (Figure 8A) the indicated signals were tentatively identified as LNnT1-Aoa2-
DAP4-ox7-γ-CD (m/z 2493 [M-3H+2Na]-), LNnT2-Aoa3-DAP4-ox7-γ-CD (m/z 3214 [M-H]-), and 
LNnT3-Aoa3-DAP5-ox6-γ-CD (m/z 3950 [M-H]-). The heterogeneity in the spectrum is due to 
variable levels of oxidation and amidation.  
 
The 1H NMR spectrum of LNnT-Aoa-DAP-ox-γ-CD (Figure 8B), show in the anomeric region 
H1 resonances βH1 of D-Gal (4.480 ppm) and βH1 of C-GlcNAc (4.713 ppm), and H4 of 3-
substituted B-Gal (4.157 ppm) consistent with those reported for the free LNnT molecule. αH1 
resonances of the modified γ-CD are seen around 5.1 ppm. When compared to the spectrum of 
unmodified γ-CD where αH1 signals (Glcα1-4) resonate at the same frequency (5.09 ppm), the 
αH1 signal area of LNnT-Aoa-DAP-ox-γ-CD is very heterogeneous due to the complex nature of 
the molecule. Compared to the free LNnT tetrasaccharide the βH1 of B-Gal had shifted 
downfield from 4.436 ppm to 4.518 ppm due to modification of the A-Glc unit. The α/βH-1 
signals of A-Glc are missing indicating that no free reducing LNnT remains in the sample. The 
average substitution level could not be established from the spectrum because the heterogeneous 
nature of the αH1 signals of the modified γ-CD resulted in unreliable integration of this area.  
 
Stability of the oxime linkage. The stability of sugar-oxime linkage was investigated under highly 
acidic conditions that orally administered molecules would probably experience in the stomach 
(+37°C pH ~1). Samples containing approximately 40% LNnT and 60% LNnT-Aoa were 
incubated in highly acidic conditions (at pH 0 or pH 1) at room temperature or at +37°C. At 
selected time points aliquots were removed and analyzed using MALDI-TOF MS. At +37°C pH 
~1 the half-life of approximately 3 hours and even at +37°C pH 0 the half-life of about 1 hour 
were observed for LNnT-Aoa.  
 
 
 

 
Figure 8. (A) MALDI-TOF MS of LNnT-Aoa-DAP-ox-γ-CD (compound 11) measured in the linear negative ion 
mode. (B) 1D 1H NMR spectrum of LNnT-Aoa-DAP-ox-γ-CD. 
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5.2 Characterization of novel Helicobacter pylori binding carbohydrate structures (III) 
 
An array of glycolipid derivatives and neoglycolipids were prepared, followed by analysis (on 
TLC plates) of their binding activity against H. pylori and the structural requirements involved 
(Table 8):  
 
Discovery of new carbohydrate structures with binding activity towards H. pylori. GlcAβ1-
3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer (compound 15) and Glcβ1-3Galβ1-4GlcNAcβ1-
3Galβ1-4Glcβ1-Cer (compound 19) represent two novel neolacto based carbohydrate structures 
with binding activity against H. pylori. In addition, N-methyl (compound 16) and N-ethyl 
(compound 17) amidation of GlcA residue of compound 13 promoted this binding. 
 
The role of N-acetoamido groups in H. pylori binding to neutral neolacto epitope. De-N-
acetylation of either (compound 22) or both (compound 23) of the N-acetoamido groups of 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer (compound 20) resulted in inactive 
structures. The same result was also obtained by ring-opening of the terminal Gal residue 
(compound 21). 
 
Binding of H. pylori to hydrophobic derivatives of sialylparagloboside (SPG). Coupling of C18 
aliphatic group to the terminal Neu5Ac of the Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-
Cer (compound 24) glycolipid all resulted in binding-active (of different strengths) derivatives 
(compounds 25-27).  
 
Binding of H. pylori to a number of neoglycolipids. Neoglycolipids were prepared by chemical 
coupling of reducing oligosaccharides to two different aminated lipids: Hexadecylaniline (HDA, 
CH3(CH2)15C6H4NH2), or a branched palmitate-lysine-based conjugate (C-42, Pal-
Lys(Pal)CONH(CH2)4-NH2). Analysis on TLC plates of these neoglycolipids confirmed that 
neolacto structures with terminal GlcA(methyl amide) (compound 38/39) or GlcNAc 
(compounds 28/29 and 32/33) are among the most active epitopes against H. pylori. Moreover, 
the importance of more distal sugar residues was seen. The most active derivatives were obtained 
by linking the epitope by β6 linkage to GlcNAc or Gal (compounds 28/29, 32/33, 38/39), 
whereas replacing β6 linkage by α6 (30/31) or β3 (42/43) linkage negatively influenced the 
binding. In addition, lipid parts containing different hydrophobic moieties (HDA or C42) also 
appear to influence binding. 
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  Table 8. Binding of H. pylori to glycolipid derivatives and neoglycolipids. 

Structure Compound Binding 

GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer                             15 + 
GlcA(methyl amide)β1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer    16 +++ 
GlcA(ethyl amide)β1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer            17 +++ 
GlcA(benzyl amide)β1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer      18 + 
Glcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer 19 + 
 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer 

 
20 

 
++ 

Gal(oxid/red)β1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer 21 - 
Galβ1-4GlcNβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer and 
Galβ1-4GlcNAcβ1-3Galβ1-4GlcNβ1-3Galβ1-4Glcβ1-Cer 

22 - 

Galβ1-4GlcNβ1-3Galβ1-4GlcNβ1-3Galβ1-4Glcβ1-Cer 23 - 
 
Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer 

 
24 

 
+++ 

Neu5Ac(octadecyl)α2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer 
(R-COOH → R-CO-NH-(CH2)17CH3) 

25 ++(+) 

Neu5Ac(octadecyl)α2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer  
(R-CHOH-CHOH-CH2OH →  
 R-CHOH-CH2NH-(CH2)17CH3 + R-CH2-NH-(CH2)17CH3) 

26 +++ 

Neu5Acred(octadecyl)α2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer 
(R-COOH → R-CO-NH-(CH2)17CH3 

 R-CHOH-CHOH-CH2OH → R-CHOH-CH2OH) 

27 (+) 

 
GlcNAcβ1-3Galβ1-4GlcNAcβ1-6GlcNAc-HDA / -C42                                         

 
28 / 29 

 
+++ / ++ 

GlcNAcβ1-3Galβ1-4GlcNAcα1-6GlcNAc-HDA / -C42 30 / 31 (+) / (+) 
GlcNAcβ1-3Galβ1-4GlcNAcβ1-6Gal-HDA / -C42 32 / 33 +++ / ++ 
GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Man-HDA / -C42 34 / 35 + / + 
GlcAβ1-3Galβ1-4GlcNAcβ1-6GlcNAc-HDA / -C42 36 / 37 + / + 
GlcA(methyl amide)β1-3Galβ1-4GlcNAcβ1-6GlcNAc-HDA / -C42 38 / 39 +++ / ++ 
GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc-HDA / -C42 40 / 41 (+) / + 
GlcA(methyl amide)β1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc-HDA / -C42 42 / 43 (+) / (+) 

“+++” stands for high frequency of binding, “++” and “+“ for less strong binding, “(+)” for occasional binding,  and 
“–“ for no binding 
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6 DISCUSSION 
 
Helicobacter pylori persistently infects the gastric mucosa of a majority of the global human 
population and is implicated in several diseases of the gastrointestinal tract including chronic 
gastritis, duodenal and gastric ulcers, and gastric adenocarcinoma (Israel and Peek, 2001; Peek 
and Blaser, 2002). The current treatment of H. pylori, based on the use of antibiotics, although 
effective is connected with risks of emergence of antibiotic resistant strains. There is therefore a 
need for alternative therapeutic treatment for eradication therapy of which method based on the 
oral use of anti-adhesion molecules (Figure 9) is under discussion (Karlsson, 2000). Indeed, it 
has been reported that high doses of sialyllactose (Neu5Acα2-3Galβ1-4Glc) could cure H. pylori 
infection in Rhesus monkeys (Mysore et al., 1999) and bovine milk glycoconjugates inhibited 
the in vivo infection in mouse model (Wang et al., 2001).  
 
The general principle of anti-adhesion therapy is the inhibition of micro-organism adhesion to 
the host cell with the help of soluble receptor analog (Figure 9). This is achieved by 
administration of natural or synthetic carbohydrate derivatives having a high affinity for the 
microorganism lectin [e.g. (Zopf and Roth, 1996)]. Consequently, the microorganism is no 
longer able to interact with the host cell surface carbohydrate structures, and as a result it will 
pass through the body stopping the ongoing infection or without ever initiating infection. Such 
anti-adhesives agents occurring naturally include human breast milk, which contains various 
soluble oligosaccharides providing newborn babies with a mechanism for aborting the course of 
infection (Mouricout et al., 1990). Thus, carbohydrates are ideal candidates as therapeutic agents 
since they are unlikely to be immunogenic or toxic, and in particular since various carbohydrate 
structures that inhibit bacterial adhesion are found as normal constituents of body fluids (such as 
human milk) or on cell surfaces.  
 
All oligosaccharide ligands used to construct multivalent glycoconjugates in the present study (I, 
II, and unpublished results) were established analogs of H. pylori binding epitopes (Boren et al., 
1993; Miller-Podraza et al., 2005). In addition, structural details of neolacto-based structures 
were studied further (III), which can prove to be useful for possible future development of new 
high affinity anti-adhesion molecules.     
 

6.1 Synthesis of multivalent glycoconjugates (I, II and unpublished results)  
 
Monovalent carbohydrate molecules bind weakly, which makes even the most optimized 
carbohydrate analog of the human Helicobacter receptor of limited use. Consequently, adhesion 
of Helicobacter pylori binding to gastrointestinal epithelial cells was inhibited by monomeric 3´-
sialyllactose at millimolar concentrations whereas multivalent neoglycoproteins bearing 3´-
sialyllactose were 1000-fold more potent (Simon et al., 1997). In addition, the expression of the 
sialyl  Lex and  Leb  epitopes on pig  milk glycoproteins has been shown to correlate to the ability  
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Figure 9. Basis of anti-adhesion therapy against Helicobacter pylori. (A) Monovalent oligosaccharide epitopes are 
ineffective. (B) Multivalent receptor analogs effectively compete with oligosaccharides on the cell surface resulting 
in H. pylori clearance from the body.   
 
 
of porcine milk to inhibit H. pylori adhesion in vitro and lower degree of colonization in vivo 
(Gustafsson et al., 2006). 
 
In the present study (I, II, and unpublished results) four different methods were created to 
synthesize new types of multivalent glycoconjugates. When choosing possible scaffold 
molecules the focus was on assembling our multivalent ligands on carbohydrate based scaffolds 
which may offer better biocompability. Furthermore, the configurational, conformational, and 
constitutional diversity of carbohydrates enables control over the presentation of ligands. 
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Previously described carbohydrate based multivalent molecules include conjugates constructed 
e.g. on cyclodextrins (Fulton and Stoddart, 2001; Houseman and Mrksich, 2002; Ortiz Mellet et 
al., 2002), heparin (Sakagami et al., 2000), hyaluronic acid (Soltés et al., 1999), and chitosan 
(Murata et al., 1996; Sakagami et al., 2000).  
 
The three different scaffolds used in this study, (1) the cyclic γ-CD, (2) the linear Ch14, and (3) 
globular dendrimer, were chosen because they present their ligands in a diverse manner. (1) 
cyclodextrin based conjugates are expected to present their ligands in a relatively rigid fashion, 
and may find preferential use in binding to influenza virus hemagglutinin type proteins and 
bacterial toxins (Kitov et al., 2000; Ohta et al., 2003). (2) GAGs are valuable scaffold molecules 
for constructing multivalent glycoconjugates because their carboxyl-groups are easily 
functionalized for subsequent derivatization with carbohydrate units. The chondroitin oligomer 
based conjugates described in this thesis present their oligosaccharide ligands on a linear 
scaffold, which may mimic e.g. polylactosaminoglycans and natural mucins. Chondroitin based 
neoglycoconjugates may find favored use in e.g. selectin inhibitor area: Polyvalent sLex 
conjugates based on polylactosamine scaffolds with high affinity towards selectins have been 
previously described (Renkonen et al., 1997). (3) Carbohydrate coated dendrimers 
(glycodendrimers) involve modification of pre-existing dendrimers in a convenient way to make 
multivalent glycoconjugate in minimal number of steps. Glycodendrimers are established tools in 
glycobiology, and therefore it is important to compare the binding properties of multivalent 
glycoconjugates based on novel carrier structures with glycodendrimers. In addition, 
glycodendrimers may mimic the complex multi-antennary carbohydrate moieties of 
glycoconjugates.  
 
In part I and in unpublished results reductive amination was used to conjugate unmodified 
reducing oligosaccharides to the three selected scaffold molecules (Table 9). Reductive 
amination is an established method in neoglycoconjugate synthesis, which allows the reactions to 
be performed in the absence of protective groups and under aqueous conditions. For example, it 
has previously been used to attach 64 galactose units to PAMAM dendrimer (Bhadra et al., 
2005) and up to 64 galactose or lactose units has been attached to polypropylene imine 
dendrimers by means of amide bond (Ashton et al., 1997). The scaffold molecules used here 
included, chondroitin 14-mer and γ-cyclodextrin both modified to express primary amines, and a 
commercial PAMAM´64 dendrimer carrying 64 primary amino groups (unpublished results). 
MALDI-TOF MS analysis of multivalent product LNDFH I-DAP-Ch14 indicated that 2-6 
oligosaccharides were attached to the modified Ch14 backbone, whereas from NMR analysis an 
average substitution level of 4.6 LNDFH I oligosaccharides per Ch14 scaffold was obtained.    
Comparable results were also acquired for LNnT-DAP-Ch14 and GnLacNAcLac-DAP-Ch14. 
Similarly MALDI-TOF MS analysis of LNnT-DAP-ox-γ-CD indicated that 1-5 LNnT units were 
attached to the carrier molecule, resulting in an average substitution level of ~2.5. Finally, 
MALDI-TOF MS and 1H-NMR spectroscopy analyses of LNnT-PAMAM’64 and 
GnLacNAcLac-PAMAM’64 indicated an average substitution of >50 oligosaccharide units 
attached to the scaffold molecule. 
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The multivalent conjugate LNnT-DAP-ox-γ-CD was also shown to act as an acceptor in α2,6-
sialyltransferase reaction, yielding a multivalent sialylglycoconjugate. All LNnT sites in the 
conjugate could be sialylated indicating that they are available for biological recognition. Based 
on the same concept a chemo-enzymatic approach for oligosaccharide-branched cyclodextrins 
have been previously described (Furuike et al., 2005; Matsuda et al., 1997). Moreover, the 
structural data from influenza virus hemagglutinin has been used to design cyclic peptide 
scaffolds presenting three sialotrisaccharide epitopes. Interestingly, these conjugates were shown 
to exhibit different binding affinities against hemagglutinin depending on the scaffold structure 
(Ohta et al., 2003). On similar approach, the new chemoenzymatic method described in this 
study can be used to create cyclic carbohydrate based (α-, β-, or γ-CD) conjugates presenting 
hemagglutinin binding oligosaccharides (e.g. sialotrisaccharide).  
 
In part II multiple copies of glycosylamine modified LNnT were bound to 6’-position carboxyl-
groups of either chondroitin oligomer or oxidized γ-cyclodextrin by amidation (Table 9). 
Oligosaccharide derivatization through a β-glycosylamide linkage is an recognized method in 
glycobiology (Chiu et al., 1995; Wong et al., 1993). MALDI-TOF MS analysis of multivalent 
product LNnT-NH-Ch14 indicated that 0-3 oligosaccharides were attached to the modified Ch14 
backbone, whereas from NMR analysis an average substitution level of 1.6 LNnT 
oligosaccharides per Ch14 scaffold was obtained. Amidation of oxidized γ-CD was more 
efficient: MALDI-TOF MS analysis of product LNnT-NH-ox-γ-CD indicated that 1-4 
oligosaccharides were attached to the modified γ-CD backbone, resulting in an average 
substitution level of ~2.5. These glycoconjugates have the benefit that their degradation products 
are devoid of any added linker structures. Interestingly, using an analogous method, synthesis of 
glycosylated calixarene through the formation of amide bonds using calix[4]arene diacid and 
galactosamine has been previously attempted (Schädel et al., 2005). It is notable that in their 
study no glycosylated calixarenes were obtained using this approach due to steric effects and 
longer spacers were required for successful reactions.  
 
In addition, in part II and in unpublished results two novel synthesis methods for oxime-linked 
sugar-sugar conjugates were described (Table 9). Synthesis of several glycopeptide analogues 
containing this sugar-peptide oxime-linkage has been reported previously (Brask and Jensen, 
2000; Marcaurelle et al., 1998; Marcaurelle et al., 2001; Peri et al., 1999; Peri et al., 1998; 
Renaudet and Dumy, 2001; Rodriguez et al., 1998; Singh et al., 2005). The first multivalent 
glycoconjugate in this group was synthesized as follows: γ-CD was effectively esterified with 
Boc-Aoa and after Boc removal unprotected reducing LNnT was attached by oxime linkage in 
good yield to the modified γ-CD. MALDI-TOF MS analysis of product LNnT-Aoa-γ-CD 
indicated that 2-5 oligosaccharides were attached to the modified γ-CD backbone, whereas from 
NMR analysis an average substitution level of 3.1 LNnT oligosaccharides per γ-CD scaffold was 
obtained. The second oxime-linked multivalent molecule was synthesized as follows: 
Aminooxyacetic acid modified LNnT was amidated to modified γ-CD scaffold. MALDI-TOF 
MS analysis of product LNnT-Aoa-DAP-ox-γ-CD indicated that 1-3 oligosaccharides were 
attached to the modified γ-CD backbone, resulting in an average substitution level of ~2.0.  
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Because the site of biological action is at the epithelial cell surfaces of the stomach, multivalent 
ligand against Helicobacter pylori should be orally delivered. Peptide-oximes, while stable under 
mildly acidic and neutral conditions, are unstable at high pH (Rose, 1994; Shao and Tam, 1995). 
Stability analysis of sugar oxime conjugates under highly acidic conditions (+37°C pH ~1) 
analyzed in this study resulted in a half-life of approximately 3 hours for sugar oxime-linkage. 
As the residence time of compounds in the stomach has been reported to be as low as 0.5 h 
(Sakkinen et al., 2006) the stability of oxime-linkage in these compounds is expected to be 
sufficient for therapeutic gastric applications.  
 
By comparing the different methods created in this study (see also Table 9), it can be concluded 
that reductive amination is clearly the most successful technique (I). The disadvantage of this 
process is that it results in open ring conformation of the reducing sugar unit attached to the 
scaffold, which may influence the ability of the oligosaccharide to function as a ligand. In 
contrast, direct amidation of glycosylamine modified oligosaccharides to GlcA carboxyl groups 
preserves the reducing sugar in its ring conformation (II). However, this method resulted in the 
lowest substitution level observed here, which may be due to steric hindrance. Both methods 
employing the oxime-linkage worked reasonably well (II and unpublished results). Of these, the 
oxidation and amidation of γ-CD, followed by amidation of oxime modified oligosaccharide to 
the scaffold may prove too laborious for practical applications. 
 

6.2 Binding activity of an array of neolacto-based structures against H. pylori (III)  
 
Helicobacter pylori binding to a wide range of natural and chemically modified neutral and 
sialylated neolacto-based carbohydrate structures has been investigated in previous studies [e.g. 
(Johansson et al., 2005; Miller-Podraza et al., 2004; Miller-Podraza et al., 2005). GlcNAcβ1-
3Galβ1-4GlcNAcβ1-3Galβ1-4Glc-Cer has proven as an effective binder, where terminal 
GlcNAcβ3 can be replaced by GalNAcβ3, GalNAcα3 or Galα3 without losing activity (Miller-
Podraza et al., 2005). In this study, an array of neolacto-based carbohydrate chains were 
synthesized and studied for their in vitro binding activity towards H. pylori using TLC overlay 
assay. As a result two new neolacto-based pentaglycosylceramides with binding activity for H. 
pylori were discovered, GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc-Cer and Glcβ1-3Galβ1-
4GlcNAcβ1-3Galβ1-4Glc-Cer. In addition, amidation of the terminal GlcA using methylamide 
or ethylamide resulted in enhanced binding activity.   
 
A previous study indicates that terminal extension of the active neolacto-based GlcNAcβ1-
3Galβ1-4GlcNAc oligosaccharide by Galβ4 and NeuAcα2-3Galβ4 are tolerated by H. pylori 
(Miller-Podraza et al., 2005). In this thesis, it was shown that oxidation/reduction of terminal 
galactose in Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer abolishes binding 
activity confirming that vicinal sugars may influence binding. In addition, TLC binding analysis 
using glycolipids with different core structures revealed an important role for both types of 
monosaccharides of distal parts of the chains and glycosidic linkages.  
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Octadecylamide derivative of sialylparagloboside (SPG, NeuAcα2-3Galβ1-4GlcNAcβ1-3Galβ1-
4Glcβ1-Cer) is H. pylori binding-active on TLC plates (Miller-Podraza et al., 2004). To 
investigate the possibility that this binding is based on the interaction with the C18 lipid tail, 
other hydrophobic derivatives of SPG with octadecyl chains were studied. It is known that 
ceramide is of importance for the interaction of H. pylori in some cases (Abul-Milh et al., 2001; 
Tang et al., 2001; Ångström et al., 1998) and it has been proven that H. pylori binds to some 
phospholipids (Lingwood et al., 1992). Results here verify the importance of the glycerol tail of 
Neu5Ac and also indicate that the interaction of H. pylori with hydrophobic derivatives of SPG 
is dependent on the presence of sialic acid suggesting a less probable role for hydrophobic 
aliphatic chains in H. pylori binding.  
 
H. pylori has the ability to interact with various terminal neolacto-based oligosaccharides. 
However, of neolacto-based structures studied here only Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAc 
and Neu5Acα2-3Galβ1-4GlcNAc are ubiquitous components of human cells. The rest have not 
been described as normal part of carbohydrates structures present in human stomach and other 
possible H. pylori target tissues. Nonetheless, it can not be excluded that carbohydrate chains 
present on body fluids and other human cells as well as some inner carbohydrate sequences 
might turn out to be of consequence for the interaction with H. pylori. For example, gastric 
mucosa layer contains glycosaminoglycans such as hyaluronic acid, dermatan sulphate, and 
heparin sulphate (Theocharis et al., 2003) all of which have both uronic acids and hexosamines, 
monosaccharide building blocks present in oligosaccharides analyzed in this study. H. pylori 
infection decreases gastric mucin synthesis by inhibition of galactosyltransferase (Tanaka et al., 
2003), which may consequently result in increase of H. pylori binding to mucin chains carrying 
GlcNAcβ1-3Galβ1-4GlcNAc epitopes (Miller-Podraza et al., 2005). Accordingly, mucins 
carrying GlcNAcβ1-3Galβ1-4GlcNAc terminating structures have been described from deep 
gastric and duodenal glands as well as from neoplasia and metaplasia with gastric differentiation 
(Hanisch et al., 1993). Additionally, mucins MG1 and MG2, present in the saliva, carry diverse 
sialylated and neutral carbohydrates based on lacto, neolacto, and GalNAc-containing structures, 
thus generating a wide range of potential binding sites for microorganisms (Prakobphol et al., 
1998; Thompson et al., 2002).     
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7 CONCLUDING REMARKS 
 
Anti-adhesive therapy based on multivalent sugar receptor analogs can be used both to prevent 
infection and detach adherent bacteria. The successful treatment of infections in the 
gastrointestinal tract presents a realistic objective for therapy with receptor analogs. In order to 
interfere effectively with the multivalent microbe-host cell interaction the inhibitor should be 
multivalent in nature as well. Consequently, optimized carbohydrate analogs may become too 
large to be resorbed into the blood, whereas retaining their activity against pathogens in the 
gastrointestinal lumen.  
 
More than half of world population is infected with Helicobacter pylori. Although the current 
treatment based on antibiotics is quite effective, the eradication of this organism worldwide is 
complicated by the emergence of resistant strains. Moreover, practical and economic problems 
preclude intensive and widespread use of antibiotics in most developing countries. Still, H. pylori 
infection poses a considerable health risk and alternative treatment method based on 
glycobiology is currently under investigation in several laboratories and biocompanies. It is 
generally accepted that this method would be based on multivalent presentation of H. pylori 
receptor analogs on a suitable scaffold, a concept adopted from natural processes. 
 
In this thesis synthesis of multivalent molecules based on linear (chondroitin 14-mer), cyclic (γ-
CD), and globular (dendrimer) scaffolds all presenting several copies of established carbohydrate 
analogs of the human Helicobacter receptor were described. It will be of great interest to assess 
whether the binding epitope arrangements in the present conjugates results in a clear 
multivalency effect in vitro. The different synthetic methods described here can also be used to 
attach reducing sugars to create multivalent inhibitory ligands of different specificities. Also, 
other scaffolds can be easily used, including other GAG structures, other dendrimers, as well as 
other CDs (α-, β-, and γ-CD). In addition, the structural requirements for binding of H. pylori to 
neolacto-based oligosaccharide chains, in vitro, was investigated further. Given account the 
continuously growing list of saccharide structures known to be active as binding molecules 
toward H. pylori one could speculate, that the best anti-adhesive result will probably be achieved 
using a mixture of molecules with different epitope activities on a suitable multivalent scaffold. 
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