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ABSTRACT

Leukocyte moatility is known to be dependent on both bo-integrins and matrix metall oprotei nases
MMP-2/-9 or gelatinases, capable of mediating leukocyte adhesion and the proteolysis needed for invasion,
respectively. We have used phage display technology to identify peptide sequences interacting with the ay
integrin I domain, an about 200 amino acid residue sequence known to be responsible for ligand binding in
b, integrins. One of the peptides contained a sequence very similar to the conserved DELW(S/T)LG
sequence found in MMP-2 and —9. In several binding, migration and mutation analysis studies, we showed
that the integrin recognition sequence mapped to the MMP catalytic domain, specifically bound to the ay |
domain, and it inhibited migration of leukocytes in vitro. Subcdlular fractionation experiments reveal ed that
the proMMP-9/ayb, complex was formed intracellularly and could be translocated to the cell surface upon
cdl activation. This interaction was efficiently blocked by a peptide sequence derived from the catalytic
domain of MMP-9. Also, a novel small-molecule ligand to the ay | domain, identified by screening a
combinatorial library, inhibited DDGW-phage binding to the | domain and reduced leukocyte infiltration to
an inflammatory site in vivo. The concept that MM Ps associate with integrins, as well as its importance in
some physiological and pathological conditions has been advanced previously but has not been examined on
leukocytes.

Gelatinases not only play an important role in cell migration, tissue remodelling and angiogenesis
during development, but are also involved in the progression and invasiveness of many cancers, including
leukemias. We showed that MM P-9 association with b, integrins seems to play an important role in leukemia
growth and dissemination in vivo, as inhibition of complex formation significantly improved the survival of
mice that developed leukemia. These findings suggest that the integrin/MMP-9 complex may serve as a
functional target for intervention in human acute leukemias.



REVIEW OF THE LITERATURE

LEUKOCYTE ADHESION AND MIGRATION

THE LEUKOCY TE MIGRATION CASCADE

Leukocytes or white blood cells (WBC) are bone marrow-derived cells and principal components of
the immune system. They circulate in the bloodstream as passive, non-polarized cells and function by
destroying “nonsdf” substances, including invading microbes, bacteria, and viruses. Over the past two
decades, much progress has been made towards elucidating the molecular basis of leukocyte migration from
the bloodstream to the tissues (reviewed in Butcher, 1991; Springer, 1995; Carlos and Harlan; 1994; von
Andrian and Mackay, 2000; Mclntyre e al., 2003). Recruitment of neutrophils from the blood to the
inflamed tissues requires a sequence of adhesion and activation events which are mediated by several
adhesion molecules, including mainly selectins (that bind to their carbohydrate-based ligands) and integrins
(that interact with cell adhesion molecules or CAMSs) (Vestweber and Blanks, 1999; von Andrian and
Mackay, 2000) (Figure 1).

At least four steps of adhesion and activation events are required for a succesful extravasation of
leukocytes from the vascular lumen to the tissues: (I) “ Thethering and rolling” is the initial and essential
event in leukocyte recruitment. It describes a process of weak adhesive interactions between the surfaces of
the neutrophil and the endothelial cell, largely mediated by three members of the sdectin family and their
highly glycosylated ligands. Weak adhesive interactions between selectins and their ligands tether
neutrophils to the vascular endothelium, and under shear flow, causes them to crawl along it. Such
interactions can also initiate signals which promote the opening of cell-cel junctions, alowing leukocytes to
pass between tissue (Johnson-Leger et a., 2000) or within (transcytosis; Middleton et al., 1997) endothelial
cellsin order to reach the underlying tissue.

Selectins are a family of cell surface adhesion glycoproteins, which share a conserved sequence and
named according to their main expression sites. L-selectin (LECAM-1, CD62L) is expressed exclusively on
leukocytes, whereas E-selectin (ELAM-1, CD62E) and P-selectin (GMP-140, CD62L) are expressed on
endothelial cells. P sdectinisalso found in platel es.

(1) “Slow rolling and activation” is associated with increased integrin avidity, which can be elicited
by soluble and/or membrane bound chemokines or other chemotactic compounds, such as bacterial peptides,
the platel et activating factor (PAF) or leukotriene B4.
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Figure 1. Adhesion moleculesinvolved in different steps of the leukocyte adhesion /migration cascade. CD, cluster
of differentiation; CAM, cell adhesion molecule; ICAM, intercelular CAM; CLA, cutaneous lymphocyte antigen;
ECM, extracelular matrix; ESL, E-selectin ligand; MAdCAM, mucosal addressin CAM; PSGL, P-sdlectin glycoprotein
ligand; SSEA, siadyl stage-specific embryonic antigen; VCAM, vascular endothelial CAM; sLeX, sialyl Lewis X; FG,
fibrinogen; JAM, junctiona adhesion molecule; PECAM-1, platel et-endothelial-cell adhesion molecule-1.
Chemokines are a large family of extracellular signaling molecules, capable of signaling through G-
protein-coupled receptors and being key regulators of the immune system (reviewed in Mackay, 2001). They
are also known to function as modulators of adhesion events mediated by integrins and selectins, and to
regulate the order and timing of integrin adhesions. Treatment of cells with several chemokines promotes b,-
integrin-mediated adhesions to ICAMSs by increasing bo-integrin clustering and affinity in leukocytes (Goda
et al., 2000). However, several chemokines induce adhesion through activation of a4b;, another major

leukocyte integrin, but this activation is often followed by inactivation and leukocyte detachment (Weber et
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al., 1996; Grabovsky et al., 2000), suggesting that chemokines may shift leukocytes from ajb;- to b,-
mediated adhesions. Moreover, in order for these adhesive events to occur, it has been suggested that
chemokines should be first immobilized by various proteoglycans on the luminal endothelial surface and
presented in a bound form to neutrophils (Rot, 1992; Tanaka et al., 1993).

(1) “Firm adhesion” and “Transmigration” are both mediated mostly by integrins and their ligands.
Firm adhesion of neutrophils to activated endothelium is a step required for further transendothelial
migration and disruption of the tight barriers formed by endothelial junctional proteins. It appears that ayb,-
integrin is one of the key molecules responsible for firm adhesion of neutrophils to the vascular endothelium
in vivo (Bunting et al., 2002), as treatment of animals with anti-b, antibodies resulted in inhibition of cell
adhesion after an inflammatory stimulus (Arfors et al., 1987).

To date, despite the intense studies performed by several investigators using techniques such as
intravital, fluorescence, and eectron microscopy, it still remains unclear which exact pathway neutrophils
useto migrate out of blood vessels. These techniques allowed the elucidation of two migration pathways: (1)
neutrophil migration at intercellular junctions (paracellular migration) (Marchesi and Florey, 1960; Burns et
al., 2000; Shaw et al., 2001) and (2) neutrophil migration through an endothelial cell body (transcellular
migration) (Feng e a., 1998). For a successful paracelular migration, neutrophils need to cross the
endothelial cell-cell junctions formed by a large number of protens, including the vascular endothelial (VE)-
cadherin, members of the junction adhesion molecule (JAM) family, claudins, CD99, occludin and PECAM-
1 (Figure 1). Antibodies against PECAM-1 dramatically decreased transendothelial migration, both in vitro
(Muller et al., 1993; Christofidou-Solomidou et a., 1997) and in vivo (Vaporciyan et al., 1993; Mamdouh et
al., 2003). In addition, chemoattractant gradients play essential roles in providing routes to leukocytes for
polarized migration through the endothelium, and through the ECM into the tissue (Foxman et al., 1997).

NEUTROPHIL FUNCTION AND ADHESION DURING INFLAMMATION

Neutrophils, also known as polymorphonuclear leukocytes (PMNSs) originate from stem cells in the
bone marrow. They represent 60-70% of the total circulating leukocytes and arethe first cells to be recruited
to the sites of infection or injury within minutes to hours after maturation, forming a primary defense against
infectious agents or “foreign” substances that invade our body’s physical barriers. The initiation of an
inflammatory response involves three major steps: (1) increased blood flow by dilation of capillaries; (2)
escape of plasma proteins from the bloodstream; (3) and extravasation of neutrophils through the
endothelium and accumulation at the site of injury. Elimination of invading microorganisms is accomplished
by phagocytosis, generation of reactive oxygen metabolites, as wel as through release of proteolytic
enzymes and microbicidal substances, al stored in intracelular granules of mature PMNs (Bainton, 1999).

The main functions of neutrophils describe adhesion, extravasation, chemotaxis, phagocytosis, and
production of oxidative agents. Like all leukocytes, these functions can be triggered by appropriate stimuli

and the synergistic action of different adhesion molecules that are present on the surface of both neutrophils
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and activated endothdial cells (reviewed in Zimmerman et al., 1992; Carlos and Harlan, 1994). Interactions
of neutrophils with the activated endothelium have been extensively studied either under static conditions or
under physiological conditions (flow shear forces). A new technique was developed to study neutrophil
arrest in inflamed venules in vivo, called leukocyte tracking (reviewed in Ley, 2002). Neutrophil tethering
and capture has been shown to be mediated by P-selectin-binding to its ligand PSGL-1; neutrophil activation
by chemokines, such as IL-8; and firm adhesion by ICAM-1-binding to a, b, and aub, integrins (Divietro et
al., 2001). Chemokines, capable of triggering rapid arrest of T cells, B cells, and monocytes on endothelial
cells under physiological conditions include SLC/CCL21, RANTES, and SLC/CCL21 or SDF-1/CXCL12,
respectively. Unlike other leukocytes, arrest chemokines for neutrophils have been much difficult to define,
even though the neutrophil adhesion cascade has been studied longer and by more groups. In certain in vitro
systems, rapid neutrophil adhesion can be triggered by a single chemoattractant, such as IL-8, the platel et
activating factor (PAF), complement Cba, formyl peptides, and leukotriene LTB4. However, the presence of
a single chemoattractant has little effect on P-selectin-dependent neutrophil rolling and chemoattractant-
dependent activation in most inflammatory models in vivo. In contrary to naive T cells, neutrophils need
multiple inputs for full activation rather than a single arrest chemokine, mediated by additive or even
synergistic signals through G-protein-coupled receptors, Fc receptors, and inflammatory adhesion molecules
(Ley, 2002). Finally, chemokines are responsible for changes in neutrophil morphol ogy, from a spherical to a
polarized motile shape with a leading edge and a uropod that concentrates a great number of adhesion
molecules, known to berequired for PMN rolling and chemotaxis (del Pozo et a., 1995).

Activation of neutrophils can be achieved with nanomolar concentrations of phorbol esters in vitro
(Patarroyo et al., 1985). Such type of stimulation can lead to rapid mobilization of different subsets
neutrophil cytoplasmic granules, as well as, secretory vesicles for exocytosis (Kjeldsen et al., 1992), whereas
similar concentrations of fMLP can only induce discharge of secretory vesicles (Sengelov et a., 1993).
Binding of chemoattractants to their corresponding G-protein-coupled receptors leads to the activation of
phosphaolipase C, which in turns, cleaves phosphoinositol (4,5) biphosphate (PIP2) into inositol 1, 4, 5-
triphosphate (IP3) and diacylglycerol (DAG). IP3 induces elevation in intracelular Ca®* levels, whereas
DAG activates protein kinase C (PKC). Increase in intracdlular Ca* levels results in integrin activation via
inside-out signaling (Altieri et al., 1992; van Kooyk et al., 1993) and when Ca®* reaches concentrations as
high as 40-50 nM, it induces complete release of secretory vesicles from neutrophils (NUsse et al., 1998).
Apparently, neutrophil degranulation can aso be triggered by eevations in intracellular Ca® levels,
especially after L-selectin and ayb; integrin engagement (Ng-Sikorski et al., 1991; Laudanna et al., 1994). In
addition, neutrophil attachment and rolling to cytokine-stimulated vascular endothelium can promote
translocation of secretory vesicles to the plasma membrane, thus providing the neutrophil surface with

adhesion receptors, including the ayb, integrin (Carlos and Harlan, 1994; Borregaard et al., 1994).
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Granulopoiesis and subsets of neutrophil granules

Neutrophil granules are formed during different stages of maturation of myeloid cells in the bone
marrow. Granule formation (granulopoiesis) is a result of a homotypic fusion between identical immature
transport vesicles that bud off from the Golgi apparatus, a process that begins in early promyelocytes
(Bainton and Farquhar, 1966; Bainton et al., 1971). Proteins of different granule subsets are synthesized at
different stages of maturation of neutrophil precursors and proteins of the same subset of granules are
produced simultaneously (Borregaard et a., 1995; Le Cabec et al., 1996) (Figure 4). Several transcription
factors are involved in controlling granule protein expression in neutrophils, including GATA-1, with a site
found in the genes of the ay subunit of ayb, integrin and lactoferrin, and c-Myb, with potential sitesin the
genes of eastase, myeloperoxidase, proteinase-3, and azurocidin (Borregaard and Cowland, 1997). Protein
expression and granule formation defects have been observed in acute myeloid leukemia cells, where the
normal cel differentiation program is disrupted. Neutrophil granules show great differences in size, density,

protein content, as well astendency for extracellular secretion.

MC MMC BC PMN
Neutrophil

2 @ J v m maturation
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maturation

Azurophil Specific Gelatinase Secretory Granule
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@ O @ O
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Figure 4. Biosynthetic windows of granules and granule proteins. MB, myelablast; PM, promyelocyte; MC,
myelocyte, MM, metamyelocyte; BC, band cell; PMN, polymorphonuclear neutrophil. Granule proteins. MPO,
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myeloperoxidase; PR-3, proteinase 3; LF, lactoferrin, AP, akaline phosphatase; NGAL, neutrophil gelatinase-
associated lipocalin (Modified from Faurschou and Borregaard, 2003).

To date, four types of granules have been detected in neutrophils: the “primary or azurophilic
granules’, “secondary or specific’” granules, “tertiary or gelatinase” granules, and “secretory” vesicles,
defined by their content in myeloperoxidase (MPO), lactoferrin (LF), gelatinase B (MMP-9), and latent
alkaline phosphatase, respectively. Azurophilic granules appear in the promyelocytic phase, whereas the rest
of the granule subsets, in the myelocytic or later stages (Figure 4). Neutrophil degranulation results in the
release of granule-containing MMPs which are thought to facilitate neutrophil transmigration through the
vascular basement membrane (Delclaux et al., 1996). Both in vitro and in vivo data describe secretory
vesicles as the first (fastest) granules to be released, followed by gelatinase granules, and last, the specific
granules (Sengelov et al., 1993). Gelatinase granules can be released in the presence of intracellular Ca* at
levels above 50 nM plus ionomycin; specific granules, at levels as high as 1uM; and azurophilic granules,
only in the presence of extreme values (Niisse e al., 1998) (see Table 4). Neutrophil granule subsets undergo
partial exocytosis oncethey arein contact with ECM components, thus re easing matrix-degrading enzymes,
collagenases and serine proteases to facilitate neutrophil migration.

Exocytosis of both specific and azurophilic granules can aso be achieved via disruption of
cytoskeleton contacts with cytochalasin B, whereas stimulation of various plasma membrane receptors, such
as integrins results in the release of the majority of secretory vesicles (Sengelov et al., 1993, Nisse &t al.,
1998). Rho GTPases, including Racl, Rac2, and Cdc42 have been suggested to play an important role in the
regulation of primary granule exocytaosis in neutrophils. Studies from knockout mice also suggested that Vav
proteins can promote b, integrin-association to Rho GTPases and regulate G protein-coupled receptor-
induced signaling events which are essential for leukocyte adhesion and phagocytosis (Gakidis et al., 2004).

When neutrophils encounter with bacteria, they activate antimicrobial systems by the release of
granule components to the phagocytic vacuole or extracellularly (Joiner et al., 1989). Cytoplasmic granules
are discharged in a targeted and regulated manner, a mechanism that enables transformation of neutrophils
from passive circulating cells to potent effector cells of the innate immunity. The granule components target
bacteria by different ways: (1) disruption of their membrane (defensins, BPI, lactoferrin, and lysosyme); (2)
interference with their iron-dependent metabolic pathway (NGAL and lactoferrin); (3) generation of oxygen
species (MPO and cytochrome bssg); and (4) by induction of chemotaxis of CD4+ and CD8+ T lymphocytes
(defensins, azurocidin, and hCAP-18) (reviewed in Faurschou and Borregaard, 2003).
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GRANULES MEMBRANE MATRIX
/VESICLES
Azurophilic CD63 (granulophysin), Cathepsins, Elastase, Protenase 3,
granules CD68 (macrophage  associated | Defensins,  Sialidase,  Azurocidin,
antigen), Stomatin, Presenilin 1, Lysosyme, Ubiquitin-protein, BPI,
Vascular-type H+-ATPase MPO, Acid b-glycerophosphatase, a-
Mannosidase, b-glucuronidase, Acid
mucopolysaccharide, a;-antitrypsin,
N-acetyl-b-glucosaminidase, b-
glycerophosphatase, phospholipase A,
Specific BAP31, aub,, uPAR, fMLP-R, Glutaminase, MRP-14, MMP-9, uPA,
granules Thrombospondin-R, Laminin-R, MMP-8, Lactoferrin, NGAL, CRISP-
Vitronectin-R, Fibronectin-R, TNF-| 3, Heparanase, Histaminase, Sialidase
R, Cytochrome bssg, Rap-1, Rap-2, Histaminase, Lysosyme, b,-
MT6-MMP (MMP-25), Stomatin, microglobulin, hCAP-18, Vitamin
CD15 antigens, NB1 antigen, B12-binding protein, Transcobalamin-
CD15, CD66, CD67, VAMP-2,|I, phospholipase A,
SCAMP, 19-kD/155-kD proteins,
SNAP-23/-25, G-protein,-subunit
Gelatinase amby, axb,, UPAR, TMLP-R, MMP-9, MRP-14,
granules Vascular-type H+-ATPase, SCAMP, | UPA,
Cytochrome Dsss, MT6-MMP | Lysosyme,
(MMP-25), NRAMP-1, VAMP-2, | b,-microglobulin,
SNAP-23/-25, Diacylglycerol- | CRISP-3,
deacylating enzyme Acetyltransferase
Secretory amby, Alkaline phosphatase, Azurocidin, MRP-14,
vesicles Cytochrome bssg, MT6-MMP, Plasma proteins (tetranectin,
fMLP-R, uPAR, C1¢-R, latent alkaline phosphatase, €tc.)
Vascular-type H+-ATPase,
CD10, CD13, CD14, CD16, CD35,
CD45, DAF, SCAMP, VAMP-2
Other
Compartments
MVB aub, M6P-glycoproteins
Alkaline phosphatase
Cytochrome bssg
MLC LAMP-2/LAMP-1 CI-M6P receptor | M6P-glycoproteins
LAMP-2/LAMP-1
PM (markers) HLA-1, L-sdectin

Table 4. Granule- and secretory vesicle-content of resting neutrophils. Other compartments are also mentioned.
MMP, matrix metalloproteinase; MT-MMP, membrane-type MMP; BPI, Bactericida/permeability-increasing protein;
MPO, myeloperoxidase; CRISP, cystein-rich secretory protein; HBP, heparin-binding protein; MVB, multivesicular
bodies; MLC, multilaminar compartments, LAMP, lysosome-associated membrane proteins; M6P, mannose-6-
phosphate, HLA, human leukocyte antigen; hCAP, human cathelicidin protein-18; uPAR, urokinase-type plasminogen
activator receptor; NGAL, neutrophil gelatinase-associated lipocalin; DAF, decay-accelarating protein; NRAMP-1,
natural resi stance-associated macrophage protein-1; SCAMP, secretory carrier membrane protein; SNAP, synaptosome-
associated protein, MRP, myeloid-related protein-14; PM, plasma membrane (Table modified from Borregaard and
Cowland, 1997).

16



INTEGRINS AND THEIR LIGANDS

Adhesion receptors, later called integrins were first described in the mid 1980’s (Patarroyo et al.,
1985a,b). In 1986, theterm “integrin” was first designated to describe a protein complex that was involved in
the transmembrane linkage between the ECM (fibronectin) and the cytoskeleton (actin) (Tamkun et al.,
1986). Soon after, other homologous and structurally related proteins were discovered, thus forming a family
of cell surface receptors. Integrins have been detected in all metazoans, including sponges and cnidaria, and
organisms as diverse as nematodes and flies (Hynes and Zhao, 2000). In vertebrates, integrins play important
roles in certain cell-cell adhesions and in the activation of various signaling pathways. However, no
homol ogs of integrins are present in prokaryotes, plants, or fungi (Whittaker and Hynes, 2002). Integrins are
major heterodimeric receptors which are involved in many cell-cell and cell-ECM interactions (reviewed in
Hynes, 2002). They are type | transmembrane glycoproteins present on the surfaces of various cells,
consisting of two subunits designated a and b that are noncovalently linked to each other. They have alarge
extracellular domain and a single transmembrane domain, followed by arelatively short cytoplasmic domain
(Tuckwell and Humphries, 1993). In mammals, 18 a and 8 b subunits assemble to produce at least 24
distinct heterodimers identified to date, each of which is capable of interacting specifically with membrane-
bound, ECM, or soluble protein ligands (reviewed by Hemler, 1990). Figure 2 depicts the complete list of the
integrin receptor family with all the possible a- and b-subunit associations.

The integrin family is divided into four major subgroups, based on ligand specificity and cellular
expression: b; (CD29) integrins (or very late antigens (VLA)), b, (CD18) integrins (or leukocyte-specific
integrins), bs (CD61) integrins (or cytoadhesins), and b7 (Springer, 1990; Gahmberg et al., 1997; Harris et
al., 2000). Integrins bind to their ligands in a divalent-cation-dependent manner (reviewed in Kanazashi et
al., 1997; Plow et al., 2000).

Figure 2. Schematic picture of the
integrin family. 8 b subunits can
associate with 18 a subunitsto form
24 digtinct integrin heterodimers, of
which 9 out of 18 have an |
(inserted) domain. The integrin a-
subunits that lack or contain an |
domain are shown as white and
purple circles, respectively. The b-
subunits are shown in black.
Integrins that recognize RGD-motif
containing ligands are depicted in a
green triangle. The leukocyte-
wsubunit specific integrins _ are Wlthllj]. a
el-domain yellow triangle. Figure modified
@ a-subunit from Hyn%, 2002.

Non | domain

Leukocyte
receptors

B-subunit
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The b, integrins comprise alarge family of receptors which are involved in mediating cell adhesion
to ECM proteins, such as collagen, laminin, vitronectin, and fibronectin. They are expressed in almost all
types of cells, where they perform multiple functions (Hemler, 1990; Tuckwell and Humphries, 1993;
Hynes, 2002). The various combinations of different a (a;-a1) subunits and a common b, subunit increase
the diversity of the integrin receptors. Among these integrin heterodimers, a;b; (VLA-1), asb; (VLA-2),
asb; (VLA-3), asby (VLA-4), asb; (VLA-5), agh: (VLA-6) are expressed in leukocytes (reviewed in
Hemler, 1990). One important example is a4b; which has been shown to be involved in tethering, rolling,
firm adhesion, and transendothelial migration of leukocytes across the endothedium by interacting with
components of the ECM, such as fibronectin, and the vascular cell adhesion molecule-1 (VCAM-1, CD106)
that is present on the surface of endothelia cells (Elices et al., 1990; Adams and Lobb, 1999). In addition,
a4b; has been reported to mediate homophilic interactions with a4b; (Altevogt et al., 1995), an integrin
which is known to recognize several molecules, including MadCAM-1, VCAM-1, and fibronectin (Berlin et
al., 1993) (see Table 1). Although low levels have been detected in blood circulating leukocytes, b, integrin
receptors can be rapidly upregulated after leukocyte migration through the vascular endothelium. Unlike b,
integrins, additional signaling is required for upregulation of bi-integrin expression. This can be achieved by
signaling that is generated either by chemotactic molecules or by engagement of b,integrins (for example, by
antibody-induced cross-linking of b, integrins) (Werr et al., 2000a). Furthermore, induction of bj-integrin
expression on the surface of neutrophils strongly correlates with neutrophil transendothelial migration in in
vitro (Roussel and Gingras, 1997) and in vivo (Werr et al., 1998; Werr et al., 2000b) models that mimic
neutrophil extravasation.

The b; integrin family includes the ubiquitous aybs integrin, which is a receptor recognizing many
ECM components, and a,,bs, the major platelet integrin. aybs is found mainly in non-hematopoietic cells,
whereas apbszis enriched in platelets. Previous studies confirmed the importance of b; integrins in leukocyte
adhesion via binding to PECAM-1 (CD31) (Pidi et al., 1995), as well as in activation and migration of these
cells across endothelial cells and epithelial monolayers (Lawson and Maxfield, 1995; Brown, 1990; Rainger
et a., 1999), possibly via binding to the integrin-associated protein, IAP or CD47 (Lindberg et al., 1993).
IAP was first isolated as a complex with both aybz and a,,bs integrins (Brown and Frazier, 2001), as wdl as
with aybs and a,b;. Recently, IAP and the aybs integrin were also shown to bind thrombospondin (TSP-1)
via its RGD motif, thus increasing both aybs-mediated spreading of human melanoma cells and ajb;-
mediated chemotaxis of smooth muscle cells (Wang and Frazier, 1998).

The subfamily of integrins that mediate leukocyte firm adhesion to the endothelium, includes four
members named either b, integrins or according to the cluster of differentiation antigen nomenclature,
CD11/CD18 integrins. These leukocyte specific integrins include: a b, (LFA-1, CD11a/CD18), aub, (Mac-
1, CD11b/CD18, CR3), axb, (p150,95, CD11c/CD18), and apb, (CD11d/CD18). The b, integrins are also

known to promote interactions of leukocytes with endothelial cells (during firm adhesion and
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transmigration), with other leukocytes, as well as with cell-surface bound opsonins on invading bacteria and
rejected or hypoxic tissues (Arnaout et al., 1983; Hogg, 1989; Arnaout, 1990a; Springer, 1990; Gahmberg et
al., 1990).

The b, integrins were first purified in the late 1970's from mouse macrophages or human
monocytes and lymphocytes (Milstein et a., 1979; Davignon e al., 1981), which affected several
lymphocyte functions, but they were not known to be adhesion proteins. Convincing proof for their adhesive
nature was obtained by inducing adhesion using phorbol esters followed by inhibition with antibodies
recognising the b,-chain (Patarroyo et a., 1995a,b; Rothlein and Springer, 1986). Since the recognition of
the integrin receptor family over the past 20 years (Hynes, 1987), enormous progress has been done in
elucidating the integrin structure and function. Currently, integrins are the best-understood family of cell
adhesion receptors.

Thea b, integrin is primarily expressed in lymphocytes but also found in all other leukocytes. It was
first described on murine and human lymphocytes by using monoclonal antibodies (mAbs) that could inhibit
both cytotoxic T cdl-mediated killing and T cdl proliferation (Davignon et al., 1981; Sanchez-Madrid e al.,
1982). Later, a b, was shown to play an essential role in leukocyte adhesion and migration across the
endothelium by its ability to bind to several intracelular adhesion molecules (ICAMS), especially ICAM-1
which is present on the surface of endothelial cells, to E-selectin, and to collagen type | (Kotovuori et al.,
1993; Garnotd et al., 1995; Gahmberg, 1997). Initiation of animmune response requires the formation of the
immunological synapse between T cdls and antigen-presenting cells (APCs). This process involves the
association of a b, integrin with ICAM-1 (Bachmann et al., 1997), ICAM-3 (Bleijs et al., 2000), and other
adhesion molecules, aligning the plasma membranes of the two cells in proximity to each other (Grakoui et
al., 1999). Recent reports point out the importance of a b, in organ transplant and treatment of autoimmune
diseases, since mAbs directed against it substantially increased graft survival in several animal models
(Poston et al., 2000; Nicolls et al., 2002), and impaired the symptoms of psoriasis in clinical trials (Gottlieb
and Bos, 2002).

The ayb, integrin is expressed on cells of the mye oid lineage, such as granulocytes, monocytes, and
macrophages, and it is capable of mediating many of the proinflammatory functions in these cells (Dana et
al., 1991). It binds to a broad spectrum of ligands, such as membrane-anchored ICAMs (ICAM-1, -2, and —4)
(reviewed in Gahmberg et al, 1997, Gahmberg, 1997), and to several soluble ligands, including the
complement fragment iC3b, fibrinogen, factor X, heparin, E-sdectin (Crutchfield et al., 2000), bacterial
lipopolysaccharide (LPS) (Wright and Jong, 1986), urokinase-type plasminogen activator receptor (UPAR)
(Pluskota et al., 2003), catalase (Davis, 1992), myel operoxidase (Johansson et al., 1997), junctional adhesion
molecule 3 (JAM-3), and proteinases, such as proteinase 3, cathepsin G, neutrophil elastase (Cai and Wright,
1996), various ECM proteins (Y akubenko et a., 2002 and references therein) (see Table 1).
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ADHESION LIGANDS LOCALIZATION
MOLECULES
Integrins
b, integrins
a.b, (LFA-1) ICAM1-5, LRP Lymphocytes
awb, (Mac-1) ICAMs, E-selectin, iC3b, FG, Factor Granulocytes/monocytes
X, heparin, UPAR, Thy-1, LRP,
FN, NIF, JAM-C, NE, GPIba, Cyr61
axbz (p150,95) ICAM-1, iC3b, FN, FG, CD23 Macrophages
apb, ICAM-1/-3, VCAM-1 Macrophages
b;integrins
asb VCAM-1, MAACAM-1, FN Lymphocytes
(lymph nodes)
agb; E-cadherin Lymphocytes
(intraepithelia)
b, integrins
aibs (VLA-1) Collagens, Laminin-1 Lymphocytes
azb; (VLA-2) Collagens, Laminin-1, MMP-1 Lymphocytes
ash; (VLA-3) Laminins, TSP Lymphocytes
asb; (VLA-4) VCAM-1, FN, OP, TSP Lymphocytes
asby (VLA-5) FN, TSP, ADAMSs, endostatin Lymphocytes
ag7b: (VLA-6/-7) Laminins Lymphocytes
agh; (VLA-8) FN, VN, OP, TN-C, NN, LAP Mesangial/myofibroblast
agb; (VLA-9) VCAM-1, TN-C, OP Neutrophils
aiob: (VLA-10) Collagen typell Chondrocytes
aub; (VLA-11) Collagen typel Chondrocytes
bs_integrins
avbs CD31, FN, VN, TSP, vWF, TN-C, OP, | Macrophages
thrombin, agrin, fibrillin, canstatin, tum,
MMP-2, ADAMs, BSP, Thyl
bs_integrins
aybs VN, OP, HIV tat, BSP, LAP, canstatin Endothelial cells
Selectins
L-selectin (CD62L) |E-/-P sdectins, GlyCAM-1, CD14,|All leukocytes
MAdCAM-1, CD34, sLeX, PSGL-1
E-selectin (CD62E) | ESL-1, sLeX, PSGL-1, L-sdectin, Endothelial cells
CLA, SSEA-1
P-selectin (CD62P) | PSGL-1, sLeX, CD24 Endothelial/platel ets
Members of 1gSF
ICAM-1 (CD54) aumxbz, MMP-9 Endothelium/monocytes
ICAM-2 (CD102) |a b, Endotheliunvleukocytes
ICAM-3 (CD50) a,ph, Endothelium/leukocytes
ICAM-4 aumixba, adbq, avbiss, anbs Erythrocytes
ICAM-5 a.b, Neurons
VCAM-1 (CD106) |a4b,, asb7, apbs Endothelial cells
PECAM-1(CD31) |PECAM-1, aybs Endotheliunvleukocytes
MAdCAM-1 asb,, L-sdectin, ab; Endothelium (intestine)

Table 1. Molecules involved in adhesive interactions between leukocytes and the vascular endothelium. IgSF,
immunoglobulin superfamily; TSP, thrombospondin; OP, osteopontin; TN, tenascin; NE, neutrophil eastase; NN,
nephronectin; LAP, TGFb latency associated protein, iC3b, inactivated complement component 3b; can, canstatin; tum,
tumstatin; BSP, bone siaic protein, LRP, LDL-related protein; NIF, neutrophil inhibitory factor; JAM-C, junctiona
adhesive molecule-C, GPlba, glycoprotein Iba; Thyl, thymus cell antigen 1.
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MADs raised against the ayb, integrin dramatically alleviated the degree of ischemia-reperfusion
injury in several animal models of phagocyte-dependent acute tissue injury (Vedder et al., 1988). ayb,-
integrin antibodies also inhibited the accumulation of phagocytes in damaged tissues and their interaction
with the complement iC3b, thus preventing development of insulin-diabetes mellitus in susceptible mouse
strains (Hutchings e al., 1990). Antibody treatment was also found to be successful in models of
experimental autoimmune encephalomyelitis (Huitinga et al., 1993) and colitis (Pamen et al., 1995) by
inhibiting the accumulation of neutrophils and monocytes to the inflammatory sites. Finally, anti-ay mADb
therapy led to strong attenuation of the severity of disease in two models of arthritis (Taylor e al., 1996; de
Fougeralles et al., 2000), and showed reduced injury in several ischemia-reperfusion models by blocking
leukocyte-endothelial cell interactions (Cornejo et al., 1997).

The axb, integrin is mainly expressed on tissue macrophages, and is a marker for hairy cell
leukemia. It is also expressed, at lower levels, on dendritic cells, granulocytes, natural killer (NK) cells,
lymphoid cells lines and populations of activated T and B cells (Cabanas, 1999). axb, binds to ICAM-1,
iC3Db, fibrinogen, and type | collagen (Garnotel et a., 2000). The most recently discovered b, integrin, apb,
is primarily found on monocytes, macrophages, oesinophils and other leukocytes, and mediates binding to
ICAM-3 and VCAM-1 (van der Vieren, 1995). This interaction may contribute to the homing and keeping

leukocytes in certain tissues.

Structure and function of leukocyte b,integrins

The structural characteristics and functional roles of leukocyte b, integrins have been extensively
reviewed recently (Gahmberg et al., 1997; Arnaout, 2002; Shimaoka et a., 2002; Takagi and Springer,
2002). The b, integrins (a b, amb,, axb,, and apb,) consist of a- (1063, 1137, 1144, and 1084 residues,
respectively) and b- (747 residues) subunits (Figure 3A). The extracellular domains of all b,-integrin
subunits contain several potential N-glycosylation sites: 12 ina ., 19inay, 8inayx, 11inap, and 6 inthe b-
chain (reviewed in Gahmberg et al., 1997) and the structures of the oligosaccharides have been determined
(Asada et al., 1991). Divalent cations are essential for integrin functions by regulating the integrin structure
in a statein which they increase or suppress binding to physiological ligands (reviewed in Plow et al., 2000).
To date, the primary structures of all four b, integrin a- and b-subunits have been described by molecular
cloning (Corbi et al., 1987; Arnaout, 1988; van der Vieren et al., 1995).

Sequence analysis of the a-subunits showed approximately 60-65 % homology between the ay (170
kDa), ax (150 kDa), and ap (155 kDa) subunits, and about 35 % of homology to a, (180 kDa). The a,, aw,
ax, and ap subunits are encoded by three distinct genes that are all clustered on chromosome 16 (Marlin et
al., 1986; Arnaout et al., 1988). The b, gene is on chromosome 21 (Suomalainen et a., 1986; Marlin et a.,
1986). Each integrin a-subunit contains seven, 60- amino-acid long, homologous segments in the amino-

terminal region, and with resemblance to a domain present in the trimeric G protein b-subunit, which are
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predicted to fold into a seven-bladed b-propeller domain (Tuckwell et a., 1994; Springer, 1997). Along with
the predicted I-like domain (bA) from the b-subunit, they both interact to form the “head” of the integrin
(Figure 3B). Each a-subunit contains three characteristic EF-hand-like divalent cation-binding sites within
the b-propeller sheets 5-7, with resemblance to metal-binding motifs DXXDXXXD present in several
calcium-binding proteins, including calmodulin and parval bumin (Arnaout, 1990b).

Half of all integrin a-subunits contain an additional, 200-amino-acid long, | domain which is
inserted between the propeller b-sheets 2 and 3 (Arnaout, 1988; Michishita et al., 1993; Diamond &t al.,
1993a; Springer, 1997), and is homologous to a plasma glycoprotein von Willebrand factor (Colombatti and
Bonaldo, 1991). The three-dimensional architecture of the extracdlular domains of the integrin a- and b-
subunits has been revealed by crystallization, eectron microscopy, and nuclear magnetic resonance (NMR)
(Xiong et a., 2001, 2002; Beglova et al., 2002; Takagi et al., 2002). Based on the crystal structure of the
extracellular domains of aybs, it has been predicted that the | domain lies on top of the b-propeller domain
(Springer, 1997) (Figure 3C).

The | domain plays an essential role in ligand binding (Diamond et al., 1993a; Michishita et al.,
1993; Colombatti et al., 1993), with a partia contribution from the b-propeler (Stanley et a., 1994;
Dickeson et al., 1997). Also, the EF-hand-like repeats indirectly participate in ligand binding (Xiong et al.,
2001). This conclusion is strongly supported by mAb-mapping, mutation, and I-domain deletion studies
(Diamond et a., 1993; Randi and Hogg, 1994; L eitinger and Hogg, 2000a). The crystal structures of a, (Qu
and Leahy, 1995), ay (Lee & a., 1995), a, (Emsley et al., 1997; 2000), and a; (Saminen et al., 1999) |
domains have been solved. They all adopt a classical dinucleotide-binding (Rossmann) fold, with five
paralld and one antiparallel b-strand in the center, surrounded by seven a-hdices, and a divalent cation-
binding site, referred to as the Metal 1on-Dependent Adhesion Site (MIDAYS) at the apex of the | domain.
The binding of a divalent cation, such as Mg*? or Mn*?, is coordinated by oxygen-containing side chains
from five amino acids of the | domain and a predicted sixth residue provided by the ligand (Lee et a., 1995;
Emsley et al., 2000). The metal cations and MIDAS ion, located at the bottom of the b-propeler and in the
domain of the a-subunit, respectively, are reported to affect the stability of the integrin’s structure. For
example, the MIDAS cation in the | domain increases the integrin’s resistance to thermal or chemical
denaturation and has the ability to directly activate integrins (reviewed in Xiong et a., 2003). Mutational
studies have shown the importance of these divalent cations in ligand binding (Kamata et al., 1995z;
McGuire and Bajt, 1995). Indeed, inhibition of the integrin function is achieved by EDTA, which chelates
divalent cations (Altieri, 1991).
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A [: p-Propeller domain repeats—‘

I-EGF
domains
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Figure 3. Schematic structure of the leukocyte integrin. (A) represents the integrin’s primary structure, including
divalent cation-binding sites (Mg™ as red and Ca*? as grey stars). (B and C) are schematic representations of the bent
(inactive) and strainghtened (active) conformations of the integrin, respectively. The arrangement of domains is based
on the three-dimensional crystal structure of aybg integrin, with an | domain added between the 2™ and 3™ b-propel ler
repeats. Each domain is coloured as in A. I-d, I-domain; I-EGF, integrin-epidermal growth factor domain; PSl,
plexin/semaphorin/integrin; b-TM, b-tail domain.

The common by-subunit of leukocyte integrins is different from their corresponding a-subunits, but
is homologous to b; and b7 by 46 %. An interesting feature of the primary sequence of the b-subunit is a
carboxy-terminal cysteine-rich repeat made of four EGF-like domains which lie below the hybrid domain
(Beglova et al., 2002). Another cysteine-rich region (seven cysteine residues) is located within the 54-amino
-acid long PSI domain (Bork et al., 1999) that lies amino-terminal to the hybrid domain, and named after its
sequence homology with plexins, semaphorins, and integrins. All together, 56 cysteine residues are present
in the b-subunit. These cysteine-rich regions are known to keep the integrin in its inactive conformation
(Zang and Springer, 2001). A sequence with a homology to the I-domain of the a-subunit isalso found in the
amino-terminus of the integrin b-subunit and denoted the I-like domain. The I-like domain is 241 residues
long and contains a MIDAS motif (DXSXS), similar to that of the I-domain. Based on mutational studies,
the I-like domain (via a residue at position 243) is important in forming contacts with the a-subunit b-
propeler (via a residue at position 438) (Zang et al., 2000; Xiong et al., 2001) and with various ligands in
integrins which lack | domains (Goodman and Bajt, 1996). These contacts are essential for proper folding of
the integrin subunits (Huang et a., 1997; Huang and Springer, 1997). Additional contacts are known to be

formed between the a- and b-subunits: for example, (1) between the hybrid domains and the b-propeller, (2)
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between the EGF3 and calf-1 domains, (3) between the EGF-4 and calf-2, and (4) between the b-subunit
transmembrane domain (bTM) and calf-2 (reviewed in Arnaout, 2002).

Loss of heteromerization of the integrin during biosynthesis caused by mutations in the gene
encoding the b-subunit resulted in reduced b,-integrin cell-surface expression and function on leukocytes,
leading to a rare human inherited disease, called leukocyte adhesion deficiency-I (LAD-I) (Anderson and
Springer, 1987; Arnaout, 1990a; Hogg and Bates, 2000). Expression of nonfunctional b, integrins was also
observed in LAD-I patients carrying mutations in the MIDAS moetif of the I-like domain in the b-subunit
(Hogg et al., 1999). Polymorphonuclear neutrophils (PMNs) and monocytes from LAD-I patients fail to
migrate through the vascular endothelium or become fully activated because of lack of adherence, actin
cytoskel eton rearrangement, and spreading on ICAM-1- or ECM-coated surfaces (Shappell et a., 1990). This
explains why LAD-I patients are exposed to life-threatening bacterial infections. The same phenotype was
observed in by-integrin knockout mice (Scharffetter-K ochanek et al., 1998). In accordance to these results, a
study on the contribution of each subunit separately in adhesion or migration of cells showed that a-subunit-
expressing cells mediated adhesion and spreading on a variety of integrin ligands, but failed to support cell
migration. However, cells expressing only the b,-subunit showed a migratory phenotype and successfully
attached on a subset of integrin ligands but failed to spread on these ligands (Solovjov et al., 2005). In the |-
domain-containing integrins, ligand binding appears to be indirectly regulated by the I-like domain. High
resolution el ectron microscopic (EM) studies suggested that head separation of the integrin a- and b-subunits
was not triggered by ligand binding (Weisd et al., 1992; Du et al., 1993; Erb et al., 1997; Takagi e al.,
2002), and did not result in high affinity ligand binding by integrins (Luo et al., 2003). However, recent
studies provide evidence that loss of heterodimerization between the integrin TM domains increase ligand
binding affinity, whereas integrin valency or clustering remain unchanged (Luo et al., 2005).

The cytoplasmic tails of integrins are smaller in size (< 50 residues) than their extrace lular domains
and are pivotal in regulating ligand binding and signaling function (Woodside et a., 2001). All a-chains
contain a conserved GFFKR motif proximal to the cell membrane (Williams et al., 1994). Truncation of
either one of the integrin tails can lead to a congtitutively active receptor (O’ Toole et al., 1994). Unlike b,
integrins which have a NPXF motif in their b-chain, the cytoplasmic domains of the rest of the integrin
family contain two conserved NPXY motifs (van Kooyk et al., 1998). Mutations of the threonine residuesin
a conserved motif, SXXTT which is present in by, b,, and b integrins (reviewed by Ylanne, 1998), decreased
leukocyte adhesion via inhibiting complex formation between a b, integrin and ICAM-1 (Hibbs e 4.,
1991a, 1991b; Williams et al., 1994). These motifs may be important, not only in signaling, but also in
integrin endocytosis and localization (van Kooyk et al., 1998) (see below). Several reports support the idea
that association of the membrane proximal regions of the a and b subunit cytoplasmic domains is needed to
keep the integrin in its low affinity state (Hughes et al., 1996; Valar et a., 1999; Lu et al., 2001a; Takagi et
al., 2001; Vinogradova et a., 2002). Eventually, disruption of the interacting sites between these two tails
leads to an active integrin.
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Structural features of the integrin I-domains alone or in association with their binding partners,

ICAMs have been recently documented (reviewed in Springer and Wang, 2004). Three distinct

conformations of the | domain have been reported, denoted closed, intermediate, and open, which reflect the

low, intermediate, and high affinity state of the integrin for ligand binding, respectively (Shimaoka et a.,
2003). The first crystal structure of a, | domain in a complex with ICAM-1 was determined at 3.3-A

resolution (Shimaoka et al., 2003). This structure revealed the open ligand binding conformation of the |

domain, bearing a Mg in its MIDAS site which directly coordinates a glutamic acid (Glu-34) residue in

ICAM-1.
Integrin-Ligand | Integrin and Ligand Method References
interactions binding sites
a b,-ICAM-1 MIDAS-D1 (Glu34) X-ray Shimaoka et al., 2003
a b,-ICAM-2 MIDAS-D1 (Glu37) Mutagenesis Casasnovas et d., 1999
a b,-ICAM-3 MIDAS-D1 (Glu37) X-ray Song et a., 2005
a b, ICAM-4 [-domain-D1 (W19,77,93
; L80; R97) Mutagenesis | Hermand et al., 2004
ayb,-ICAM-4 [-domain-D1 (W19,77,93
;L80;R97) Mutagenesis | Hermand et al., 2004
-D2(E151;T154)
apbs-ICAM-4 unknown -D1 (Q30,36;G3 Hermand et al., 2004
2;K33;W77) & D2 (E151) Mutagenesis
aybs-ICAM-4 unknown -D1 (R52,97;Y6
9;D73;L80;K33;W66,77) Mutagenesis | Hermand et al., 2004
-D2 (E151;T154)
aybys-ICAM-4 unknown -D1 (W19,66;F1
8;V20;R92,97;A94;T94,596) Mutagenesis | Mankelow et al., 2004
-D2 (K118)
aubl/axb-FG [-domain-P1 (g400-411) & Ugarova & Y akubenko,
P2 (g377-395) sites Mutagenesis | 2001
aybs-FN I-like domain- X-ray Xiong et al., 2002
FNIII D10 (RGD) EM Adair et al., 2005
aybs-ADAM-15 I-domain-RGD Mutagenesis Zhang et al., 1998
anpbs-FN b-propeller - Mutagenesis Kauf et al., 2001
FNIII D9-10 (RGD) Xiao et a., 2004
apbs-FG b-propeller/1-like domain- Kamataet a ., 2001
C-terminal (g400-411) Mutagenesis | Xiao et al., 2004
a;b./asb;-Laminin | a-subunits-a, chain short arm Blocking Abs | Colognato et al., 1997
a,b;-collagen MIDAS
G(F/L/IM)OGE(131)R X-ray Emdey et al., 2000
asb,-FN asb;-FN14 (PRARI) Mutagenesis Sharmaet a., 1999
asbs-FN b, chain (ID(130)9)- Blocking
CS1 (EILDVPST) peptides Guan and Hynes, 1990
asb;-VCAM-1 b, chain (ID(130)S)- X-ray
D1 (C-D loop) Mutagenesis | Kamataet al., 1995b
asb;-FN b-propdler/l-like domain-
FN7-10 (RGD) EM Takagi et al., 2003
aghb;-E-Cadherin MIDAS-Glu3l Mutagenesis | Higginset al., 2000

Table 2. Integrin-ligand inter action sites. ICAM, intercellular adhesion molecule; D1, domain 1; Abs, antibodies; FN,
fibronectin; FG, fibrinogen; RGD, Arg-Gly-Asp; VCAM, vascular cell adhesion molecule. Important amino acids for

binding are marked in bold.
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More recently, another crystal structure of a, | domain in complex with ICAM-3 (Glu-37) has been
determined at a resolution as high as 1.65-A (Song et al., 2005). These structures allow us to conclude that
the binding of ICAMSs onto the | domains of integrins is mediated by a common docking mechanism. Other
techniques utilized to characterise the association between leukocyte integrins and their ligands, include EM,
NMR, mAb mapping, and mutagenesis of either ligand or receptor. Several other integrin complexes and

their precise mechanism of association have been determined (see Table 2).

Activation of leukocyte b, integrins

The term "activation” applied to integrins describes changes that are required in order to increase
ligand binding affinity, whereas activation of signaling receptors describes changes that result in enhanced
signal transduction mediated through ligand binding (reviewed in Calderwood, 2004). Four levels of integrin
signaling have been theoretically described: “inside-out”, “outside-in”, “anchorage’, in which integrins
anchor to the cytoskel eton; and “ clustering”, in which integrins become clustered to stabilize adhesion.

Intensive mutagenesis and EM studies have revedled that both integrin activation and signaling are
mediated by conformational chances which occur bi-directionally, from the cytoplasmic domains to the
headpiece of the integrin (a process termed “inside-out”) and vice-versa (a process termed “outside-in”)
(reviewed in Lub et al., 1995; Liddington and Ginsberg, 2002; Shimaoka et al., 2002). These two processes
play an important role during cedll proliferation (van Seventer et al., 1990) or in prevention of cell apoptosis
(Koopman et al., 1994).

A great number of cell surface receptors and integrin-associated proteins are known to be involved in
signaling events which are important in regulating the integrin affinity. The “inside-out” signals can be
initiated via stimulation of other cell surface receptors, including the tyrosine kinase-coupled T cell receptors
(TCR) or G protein-coupled chemokine receptors (Dustin and Springer, 1989; Lollo et al., 1993; Constantin
et al., 2000) and CD44 (Vermot-Desroches et al., 1995). Signals mediated by these receptors are thought to
modulate a b, integrin cytoplasmic tail-mediated triggering of enhanced adhesiveness in the extracellular
domain (O'Rourke et a., 1998; van Kooyk and Figdor, 1993). Increased integrin adhesiveness by inside-out
signals allows circulating leukocytes to strongly attach to the endothelium or to interact with antigen-
presenting cells (APCs; Springer, 1995; Grakoui et al., 1999). However, the mechanism involved in inducing
a high affinity state of a b, has remained poorly understood. Cross-talk of b, integrins with ICAM-derived
peptides (Li et al., 1993, 1995), ICAMSs (Bleijs et a., 2000), other integrins (Imhof et al., 1997; Chan et al.,
2000), selectins (Ruchaud-Sparagano et a., 2000) selectin ligands (Evangelista et al., 1999), PECAM-1
(Piali et al., 1993), and other cell surface molecules (Petty and Todd, 1996; Porter and Hogg, 1998) can
occur to modulate integrin function. For example, there is cross-talk between b, integrins and several other
membrane-associated proteins, including a4b; integrin, urokinase plasminogen activator receptor (UPAR),
IAP, and members of the tetraspan protein family (reviewed in Worthylake and Burridge, 2001). For
example, the ECM protein, TSP-1 binds to IAP and a,b; integrin through two different binding sites,
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resulting in increased intracellular signaling mediated via the a,bs. This event has been shown to be
important in T cdl adherence and activation (Reinhold e al., 1999), demonstrating that association of
integral membrane proteins in cis with integrins can have a strong effect on intracellular signaling. To date,
several other associations between integrins and other cell-surface receptors have been identified (Table 3).
Also, engagement of ajb; integrin or L-sdectin has been reported to induce adhesiveness of both a b, and
amb, integrins for ICAM or activated endotheial cels, an event mediated by increases in actin
polymerisation, aswell as by integrin/selectin clustering (Simon et al., 1999; Chan et al., 2000).

Activation by signals within the cells leads either to an active conformation (extended conformation,

high affinity state) or clustering (high avidity state) of the integrin, both necessary for increased ligand
binding (reviewed in Zel e al., 1999). It has been reported that association between the a- and b-
cytoplasmic domains restricts the integrin in its inactive (bent conformation, low affinity state; Figure 3B)
conformation (Takagi et al., 2002). Dissociation of these domains, mediated by intracellular signals, induced
a switchblade-like opening of the integrin extracellular domains to an extended conformation (Figure 3C)
(Takagi et a., 2001; Vinogradova et a., 2002). Mutagenesis (Lu and Springer, 1997) and fluorescence
resonance energy transfer (FRET) (Kim et al., 2003) studies also provides evidence for conformational
changes occuring in the cytoplasmic tails during physiological activation. The extended conformation
describes an open conformation of the headpiece which corresponds to the high affinity state of the integrin
as demonstrated by NMR (Beglova et al., 2002) and EM studies (Takagi et al., 2002).
The cytoplasmic regions of a b, have been reported to modulate cell adhesion. Truncation of the b,
cytoplasmic domain or mutations performed in that region (T758TT/AAA), both abolished adhesion of COS
cellsto ICAM-1 (Hibbs et al., 1991a). The TTT motif can be phosphorylated (Fagerholm et al., 2004) and
mutations of the motif affects adhesion, actin reorganization, and cell spreading (Peter and O’ Toole, 1995).
Conformational changes in a b, are also thought to be induced after association of the integrin cytoplasmic
tails with talin, or adaptor proteins, such as cytohesin-1 (Nagel et al., 1998; Hmama et al., 1999; Geiger et
al., 2000). Talin head is known to bind to the b-chain cytoplasmic domain, thus triggering the separation of
the two cytoplasmic domains (Calderwood and Ginsberg, 2003, Vinogradova et a., 2004). Also, recruitment
of cytohesin-1 to the plasma membrane and its association with a b, increases adhesion to ICAM-1
(Kolanus et al., 1996). Recent data demonstrate that cytohesin-1, phosphatidylinositol 3(-OH) kinase
(PI(3)K), and Rap-1 are directly involved in chemokine-mediated a b, lateral mobility in lymphocytes
(Constantin et al., 2000; Shimonaka et al., 2003). Rap-1 is a potent inside-out signal. Rap-1, PI(3)K, and
PKC are all reported to be involved in the activation of a b, (Katagiri et al., 2000).

Monaclona antibodies recognizing the ligand-binding site of a b, (Petruzelli et a., 1995; Bazzoni
and Hemler, 1998) and awb, (Diamond and Springer, 1993) have been reported to bind preferentially to
activated integrins, to ligand-occupied forms of integrins, or induce activation themselves through

conformational changes in the extracelular domains to a high affinity for ligand. A 10,000-fold increase in
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affinity of a b, for its ligand, ICAM-1 could be obtained by creating an engineered conformational change

intheintegrin | domain (Shimaoka et al., 2001; Lu et al., 2001b).

PROTEIN

INTEGRIN

REFERENCES

Tetraspanins
TMA4SF

Growth-factor receptors
EGF-R

PDGF-R-b

Insulin-R

ErbB2

VEGF-R-2

GPI-linked receptors
UuPAR (CD87)

FcgRI1IB (CD16B)
CD14
Thy-1 (CD90)

I g superfamily proteins
CD147 (EMMPRIN)
CD47 (1AP)

CD46 (MCP)

CD36

P2Y heptaspanin
Syndecan-4

Transporters/lon channels
16K V-ATPase

Kv1l.3

GIRK

BAP31

ICIn

b; & b, integrins,
anpbs

aybs, az;
aybs, ajphs
aybs

ae,b]_, ae,b4
aybs, ayvbs

aumixbz, biss

am bz
avb,
avbz axb,, avbs

asby, agh

azbs, avbs, apbs
agbl

agby, aghy, anpbs
avbg

asb;

b;integrins
b, integrins
b, integrins
asz
aipbs

Porter and Hogg 1998;
Dedhar, 1999; Tarrant et a ., 2003

Moro et al., 1998;Yu et al., 2000

Borges et al., 2000

Schneller et al., 1997; Maile & al., 2002
Falcioni et al., 1997; Gambaletta et al., 2000
Borges et a., 2000; Reynolds e al., 2002

Kindzelskii et al., 1997; Carriero ¢ al.,
1999; Yu et dl., 2000; Simon €t a., 2000
Petty and Todd, 1996

Petty and Todd, 1996

Wetzel et al., 2004; Choi e a. 2005;
Sadlbach et al., 2005

Berditchevski et al., 1997

Brown et al., 1990; Wang and Frazier, 1998
Lozahic et al., 2000

Dorahy et al., 1996; Thorne et a., 2000

Erb et a., 2001

M ostafavi-Pour et al., 2003

Skinner and Wildeman, 1999

Leviteet al., 2001

McPhee et al., 1998; Ivanina et al., 2000
Zenet al., 2004

Larkin et al., 2004

Table 3. Integrins that interact with transmembrane proteins. TM4SF, transmembrane-4 superfamily; EGF-R,
epidermal growth factor receptor; PDGF-R, platelet-derived growth factor receptor; Thyl, thymus cell antigen 1;
EMMPRIN, extracellular matrix MMP inducer; 1AP, integrin associated protein; MCP, membrane cofactor protein;
P2Y, purinergic receptor; Kv1.3, a voltage-gated potassum channedl; GIRK, G protein-coupled inwardly rectifying
potassium channel; BAP31, B cell receptor-associated protein; 1CIn, a chloride channd regulatory protein.

Lateral redistribution and clustering of integrins (avidity regulation) may also have an impact on
cellular adhesion even though the affinity for ligand remains unchanged (Takada et al., 1997). For example,
treatment of leukocytes with phorbol esters induces clustering of bo-integrins by 10-fold (integrin avidity)
without altering affinity (Kucik et al., 1996), thus inducing bo-integrin-dependent leukocyte adhesion.
Phorbol esters directly activate PKC and bypass early signaling events which are transmitted by other
receptors (Wright and Silverstein, 1982). a b, clustering on the cell surface can also be induced by
interactions with cytoskeletal proteins (Stewart et al., 1998; van Kooyk et al., 1999). Treatment of
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lymphocytes with high concentrations of cytochalasin-D, which disrupts actin filaments, inhibited cell
adhesion to coated ICAM-1 induced by CD3 antibodies or phorbol esters (Stewart et al., 1998).

Transmission of signals into the cdll by integrins can be generated after interactions with ligands or
counter-receptors on other cells or soluble ligands (the process is referred to as “ outside-in” signaling). One
of the earliest events in b, integrin signaling is the activation of both protein tyrosine kinases (PTKSs),
including members of the focal adhesion kinase (FAK) family (p125™" and Pyk2) and the Src-kinase family
(Far, Hek, Lyn, and Syk), which in turn can trigger downstream activation of multiple intracellular signaling
cascades, known to regulate cell morphology, cel growth and survival, adhesion, and migration. Various
cytoskdeton-associated proteins including paxillin, tensin, cortactin, and talin become tyrosine
phosphorylated in PMNs after ligand binding to b, integrins. This strongly correlates with integrin b,-
mediated PMN spreading since such an effect was efficiently blocked by tyrosine kinase inhibitors (reviewed
in Berton and Lowell, 1999). Integrin engagement results in tyrosine phosphorylation of other cytoskeletal-
associated proteins, such as the cytoplasmic tyrosine kinase Fgr (Berton et al., 1994), the Syk tyrosine kinase
(Lin et al., 1995), phospholipase C2 (Hellberg et a., 1996), Vav (Zheng et al., 1996), the proto-oncogene
product Chl (Ojaniemi et al., 1997), the mitogen-activated protein kinases ERK1/ERK2 (McGilvray et d.,
1997), p125™* (Fernandez et a., 1997), and ZAP-70 (Soede et a., 1999). b, integrin-dependent PMN
adhesion/spreading on fibrinogen correlates with Fgr or Lyn kinase activation (Berton et al., 1994; Yan et al.,
1995). These findings are also well-supported by data showing that leukocyte adhesion deficiency (LAD-I)
PMNSs are unable to activate Fgr. In addition, both b, integrin-deficient LAD-I cells (Berton et al., 1994) and
leukocytes expressing a b, integrin which lacks the | domain show impaired "outside-in” signaling
(Leitinger and Hogg, 2000). Furthermore, double knockout mice for Hck and Fgr (hck’™ fgr”) showed
impaired PMN spreading on fibrinogen or ICAM-1 and failed to release large amounts of ROIs, even after
treatment with TNF or fMLP. Double mutant macrophages showed similar integrin-mediated cell spreading
defects (Lowell et al., 1996). Interestingly, collagen type I-binding to a b, integrin results in tyrosine
phosphorylation of both the a- and b-subunit of the integrin (Garnotel et al., 1995). However, not much is
known on the precise mechanisms by which these tyrosine kinases become enzymatically activated by
integrins in vivo.

Previous reports supported the idea that the a b, integrin prevails in inactive state (bent
conformation) when expressed on circulating lymphocytes (Carman and Springer, 2003; Salas &t al., 2004)
and that it becomes activated by endothelium-anchored chemokines through specific G protein-coupled
receptors (GPCRs) which are present on the surface of leukocytes (Constantin et al., 2000). In this case,
integrins are known to regulate adhesion merely by clustering as lymphocytes move along the vessel wall.
Recently, Ronen Alon and colleagues proposed that chemokine-mediated a b, activation in T cells occurs
“locally”, with an immediate lymphocyte arrest and “bidirectionally”, which involves instantaneous inside-
out as well as outside-in conformational arrangements (extension of bent a by) of individua integrin
molecules (Shamri et a., 2005).
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MATRIX METALLOPROTEINASES

Matrix metalloproteinases (MMPs) are a family of structurally related and highly conserved zinc-
dependent endopeptidases collectively capable of degrading most components of the basement membrane
and ECM (Birkedal-Hansen et al., 1993; Nagase and Woessner, 1999). To date, there are at least 25 secreted
or membrane-bound known human MMPs (Sternlicht and Werb, 2001; Visse and Nagase, 2003). Data
generated from intensive studies on MMP activities in different cells and tissues, as well as studies from
knockout animals witness the importance of these enzymes in many normal physiological processes (e.g.
embryonic development, bone resorption, angiogenesis, and wound healing) and pathological processes
(rheumatoid arthritis, multiple sclerosis, periodontal disease, and tumor growth and metastasis) (Murphy and
Hembry, 1992; Nagase and Woessner, 1999; Egeblad and Werb, 2002; Hamano et al., 2003).

CLASSIFICATION

Most human MMPs can be divided according to their sequence homology, substrate specificity, and
celular location (Shingleton et al., 1996) into several subclasses: collagenases, gelatinases, stromelysins,
matrilysins, membrane-type MMPs, and others (Murphy et al., 1991a; Nagase, 1994; Pendas et al., 1997)
(Figure5).

STRUCTURAL FEATURES

The basic multidomain structure of MMPs comprises: (1) an amino-terminal domain; (2) a catalytic
domain; and (3) a carboxy-terminal domain. The amino-terminal domain contains a 17-29 amino acid signal
peptide, used as a signal for secretion of the proenzyme into the ER and eventually out of the cell, and a 77-
87 residue propeptide domain or pro-domain, that is responsible for keeping the enzyme inactive until
proteinase activity is needed. The pro-domain contains a highly conserved sequence, PRCG(V/N)PD in
which the cysteine residue interacts with the catalytic zinc atom in the active site, thus maintaining the
proMMP in its latent form. Disruption of the Cys-zinc covalent bond by a water-zinc interaction (called the
cysteine switch) and removal of the pro-domain may lead to a conformational change of the enzyme from
inactive to catalytically active form (van Wart and Birkedal-Hansen, 1990; Springman et al., 1990).

The catalytic domain contains about 160-180 residues, including calcium ion-binding sites and the
consensus zinc-binding HEBXHXBGBXHS motif (H for Histiding E for glutamic acid; B for bulky
hydrophobic amino acid; G for Glycine, X for variable amino acid; S for Serine) (Murphy et a., 1991b;
Puente et al., 1996; Pendas et al., 1997). However, MMP-11 has threonine in place of serine (Stocker et al.,
1995) and MMP-17 has valine in place of serine (Puente et al., 1996). Together with the catalytic zinc ion,
this motif is essential for the proteolytic activity of MMPs. Additionally, there is a second, structural zinc
and at least one calcium ion located near the catalytic zinc, both important for stabilizing the MMP structure
(Borkakoti, 2000).
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The catalytic domain is linked to the hemopexin domain by a 5-50 residue proline-rich hinge region. In
comparison to MMP-7 (matrilysin-1), MMP-23, and MMP-26 (matrilysin-2), all other MM Ps contain a ~200
resdue and highly conserved C-terminal domain with a sequence similarity to a serum protein named
hemopexin. The hemopexin domain contains four repeats that are connected by a disulfide bridge at both
ends, thus allowing the domain to fold into a four-bladed propeller structure, with a calcium ion in the
middle of a central disc like structure (Morgunova et a., 1999). This domain is known to play a functional
role in protein in substrate binding, in interactions with the natural tissue inhibitors of metalloproteinases or
TIMPs (van Wart and Birkedal-Hansen, 1990; Sanchez-Lopez et al., 1993; Baragi et al., 1994), and in
forming MMP homodimers (Cha et a., 2002). Recently, the hemopexin domain of MMP-2 was shown to be
important for the activation of the protease (Morgunova et al., 1999; Overall et al., 1999). Additional
functional domains are present in some of the other MMP members. For example, three repesats of the
fibronectin-type Il domain are present in the catalytic domain of gelatinases, MMP-2 and MMP-9 that are
capable of mediating enzyme binding to gelatin substrates (Murphy et a., 1994).

A transmembrane domain is known to be present in all MT-MMPs after an extension beyond the
hemopexin domain that localizes these proteases into the cell membrane. Unlike MT-MMPs, MMP-19

contains a further extension of the hemopexin domain but lacks the transmembrane-spanning region.
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REGULATION OF MMPs

The expression, secretion, and activity of MMPs in normal tissues are subject to tight control. Most
MMPs are expressed at very low levels but their expression and activation can be rapidly induced at times of

tissue remodeling, such as during wound healing (Nagase and Woessner, 1999).

Transcriptional regulation

Transcription of MMPs is regulated by many factors, including cytokines, growth factors, oncogenic
cdl transformation, physical stress, and cell-cell and cell-ECM interactions. Also, hormones, oncogenes, and
chemical agents like phorbol esters can upregulate (for example, IL-1, IL-6, TNF-a, EGF, PDGF, bFGF,
NGF, PMA) or downregulate (for example, IFN-g, TGF-b, retinoids, and glucocorticoids) the expression of
MMPs (Birkedal-Hansen et al., 1993; Borden and Heller, 1997; Westermarck and K&héri, 1999; Nagase and
Woessner, 1999; Sternlinct and Werb, 2001). Unlike other MMPs, TGF-b does not suppress but slightly
induces transcription of MMP-2 (Brown et al., 1990; Overall et al., 1991). Many of these inducers of MMP
expression are known to act at the level of transcriptional activation of the gene The promoters of many
MMP genes (such as MMP-1, -3, -7, -10, -12, -13, and -19) include an activator protein-1 (AP-1) consensus
element which is located approximately at position -70 and one or two copies of the polyomavirus enhancer
A-binding protein-3 (PEA-3) element at position between -140 and -200. AP-1 and PEA-3 sites interact with
the Fos and Jun families and the Ets family of transcription factors, respectively (Westermarck and K&héri,
1999). Several reports have shown that these cis-elements are important for the regulation of MMP gene
expression at the basal gene-expression level and in response to extracdlular stimuli like growth factors,
cytokines, and phorbol esters (Angel et al., 1987; Westermarck and K&héri, 1999). For example, the MAPK
pathway, which comprises ERK1/2, INK, and p38 proteins can induce the expression of AP-1 transcription
factors, which is considered by many to be the major activators of MMP-1, -3, -9, and -13 expresion
(Westermark and Kahari, 1999). However, several reports show differences between promoter regions of
MMP-2 and other MMPs (Matrisian, 1994). MMP-2 gene is distinguished by the lack of the AP-1 and PEA-
3 regulatory dements in the promoter region, which explains the lack of transcriptional regulation of MMP-2
expression. The MMP-2 promoter also lacks the TATA site which isimportant in regulating the transcription
of most promoters, as well as the upstream TGF- inhibitory element (TIE) and AP-1 element (Matrisian,
1994; Huhtala et al., 1990; Tryggvason et al., 1990). The latter is shown to interact with AP-1 transcription
complexes. Also, single-nuclectide polymorphisms have been identified within several MMP gene
promoters, which affect the rate of transcription, and influence the development and progression of several
diseases, including cancer (Ye, 2000). Finally, the expression of many MMPs can be upregulated by ligand
and/or antibody-binding to integrins (Werb et al., 1989; Dumin et al., 2001). For example, a_b,-, aub,- and
asb;-integrin ligation promotes the expression of MMP-9. Accordingly, inhibition of these integrins by
antisense oligonucl ectides leads to reduced MM P-9 expression (Aoudjit et al., 1998; DiPersio et al., 2000).
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Zymogen activation

Interaction between the unpaired cysteine residue which is located in the prodomain and the
conserved zinc atom at the active site is thought to be responsible in maintaining the latency of MMPs
(Springman et al., 1990; van Wart and Birkedal-Hansen, 1990). Disruption of the covalent bond which
associates the zinc atom with the cysteine residue and coordination with H,O can lead to the cleavage of the
prodomain and further activation of proMMPs (Nagase and Woessner, 1999; Curran and Murray, 2000).
Most MMPs are known to be secreted as inactive zymogens and activated extracellularly by many different
mechanisms (Will et a., 1996; Cao e al., 1996; Kinoshita et al., 1998; Mazzieri et al., 1997; Wang « al.,
2000). Most proMMPs are also known to be activated in the pericellular space by serum or tissue
proteinases, bacterial proteinases, and other MMPs. Proteinases, such as trypsin, plasmin, kallikrein,
chymase and mast cell chymase, are capable of activating proMMPs in vitro. ProMMPs can aso be activated
by various non-proteolytic agents, including mercurial compounds (aminophenyl mercuric acetate or
APMA), SH-reactive agents, chaotropic agents, reactive oxygen, detergents, and heat treatment (Springman
et al., 1990; Saarialho-kere et al., 1992; Murphy and K nduper, 1997; Nagase and Woessner, 1999). In case of
MMP-2, -8, and -9, activation can occur when exposed to acidic pH followed by neutralization (Davis,
1991).

In vivo proMMP activation is found to localize in both to the intracdlular and extracdlular milieus,
and on the cell surface (Nagase and Woessner, 1999; Visse and Nagase, 2003). MMP-11 (stromelysin-3),
MMP-21, -23, -28, and MT-MMPs are activated intracellularly by Golgi-associated, furin-like serine
proteases (Pel and Weiss, 1996; Kang et al., 2002; Visse and Nagase, 2003). It has been reported that in the
case of MMP-23, a single cleavage is enough to induce both activation and release of MMP-23 from the cell
surface (Pel et al., 2000).

MMP-2 is resistant to proteolytic activation by serine proteases and other endopeptidases because it
lacks a basic amino acid motif, present in most other MMPs (van Wart and Birkedal-Hansen, 1990; Curran et
a., 2000; Vihinen and Kahari, 2002). However, MMP-2 activity is highly regulated by MT-MMPs,
membrane localized MMPs which are important activators of proMMPs in the pericellular space
(Brinckerhoff et al., 2000). Firstly, MT-MMPs, such as MT1-MMP and MT3-MMP form cell-surface
complexes with tissue inhibitors of MMPs, TIMP-2 and TIMP-2 or TIMP-3, respectively, through their C-
terminal tail (Strongin et al., 1995; Zhao et al., 2004). Secondly, TIMP-free MT-MMP can activate
proMMP-2 (Zucker et al., 1998; Wang et al., 2000; Overall et al., 2000). In many cases, MMP activation is
achieved by autocatalytical activation, the cell-surface associated urokinase-type plasminogen activator
(uPA)/plasmin-dependent activation system, and by other proteinases (Carmeliet et al., 1997; Mazzieri et al.,
1997).
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Inhibition of enzymatic activity

Specific inhibition of the activity of MMPs can be achieved in the pericellular milieu by the non-
specific, circulating protease inhibitors, a,-macroglobulin (a,M), serpins, and by the specific TIMPs. a;M is
a homotetramer, made of two pairs of non-coval ently associated dimers, capable of inhibiting MMP activity
in the synovia fluid, serum, and other body fluids. It can also inhibit the activity of several other enzymes,
including serine-, cysteine-, and aspartate proteinases. Serpins, including a;-antitrypsin (a;-proteinase
inhibitor) and plasminogen activator inhibitor (PAI)-1 and -2, are glycoproteins of 50-100 kDa, involved in
regulating the proteolytic activity of MMPs in various tissues (Saarialho-Kere et al, 1992; Birkedal-Hansen
et al., 1993).

TIMPs are known to be the key endogenous regulators of MMP activities in tissues. Four known
members of the TIMP family (TIMPs-1, -2, -3, and -4) have been identified to date, all anchored in the ECM
or secreted extracdlularly (for reviews see Gomez et al., 1997; Westermarck and K&héri, 1999; Brew et al.,
2000). In spite of the fact that all TIMPs share very similar structural features and inhibitory capabilities
against almost al MMPs, they exhibit differences in tissue distribution, in their ability to interact with the
latent forms of MMPs and to inhibit their activity, in solubility, and in their gene regulation patterns (Nagase
and Woessner, 1999; McCawley and Matrisian, 2000; Sternlinct and Werb, 2001). They contain 12
conserved cysteine residues required for building up six disulfide bonds, which keep the two domains in a
rigid conformation (Douglas et a., 1997; Gomez &t a., 1997). TIMPs form non-covalent 1:1 stoichiometric
complexes with the zinc-binding catalytic site of active MMPs, thus inhibiting proteolytic activity (Gomis-
Rith et al., 1997). The N-terminal domain of TIMPs contains a consensus sequence VIRAK which is
required for MMP inhibition, whereas the C-terminal domain seems to affect their specificity (Murphy et al.,
1991b; DeClerck et al., 1993; Goldberg et al., 1992; Ogata et a., 1995; Bigg et al., 1997). TIMPs are capable
of inhibiting not only active MM Ps but also can prevent autocatalytic activation of several MMPs (DeClerck
et al., 1991; Strongin et a., 1993) by forming complexes with proenzymes.

In vitro TIMPs can inhibit the activation of almost all MMPs. For instance, TIMP-1 and TIMP-2 can
preferentialy inhibit MMP activation by forming a complex with proMMP-9 and proMMP-2, respectively,
via the hemopexin domain. TIMP-1 blocks the activity of most MMPs, with the exception of MT1- and
MT3-MMPs. Finaly, TIMP-1 inhibits cleavage and secretion of heparin-binding EGF-like growth factor and
its receptor HER-2 from the surface of breast cancer cells (Dethlefsen et al., 1998; Codony-Servat et al.,
1999). Whereas for TIMP-1 to be expressed in culture requires growth factors, cytokines, and phorbol esters,
the expression of TIMP-2 is constitutive (Gomez et a., 1997). TIMP-2 is expressed in culture by a variety of
cells in a constitutive manner and also inhibits the activity of most MMPs (Strongin et al., 1993), but not
MMP-9. This particular MMP inhibitor is capable of blocking the shedding of TNF-a receptors | and II
(TNF-aRI and I1). Unlike the other TIMPs, which are secreted in soluble forms in tissues and body fluids,
TIMP-3 is insoluble and found associated with the ECM (Leco e al., 1994). TIMP-3 can inhibit the shedding

of pro-TNF-a, L-selectin, and IL-6 receptor from the surface of human peripheral leukocytes and myeloma
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cells (Borland et a., 1999). TIMP-4 is mainly expressed in the adult human heart (Greene et a., 1996) and
can also form a complex with proMMP-2 (Goldberg et al., 1989).

Finally, several proteinases from the ADAM family can also be inhibited by TIMPs due to their
structural similarities with MMPs in the active site. For example, both TIMP-1 and TIMP-3 can inhibit
ADAM10 and ADAMT$SA (aggrecanase-1) (Amour et al., 2000; Kashiwagi et al., 2001). TIMP-3 alone also
inhibits ADAM17 (TNF-a convertase) and ADAMT S5 (aggrecanase-2) (Kashiwagi et al., 2001).

ROLE OF INTEGRINSAND MMPsIN LEUKOCYTE MIGRATION

REGULATION OF CELL ADHESION AND MIGRATION

Leukocyte migration is a complex process, controlled by a wide spectrum of adhesion molecules that
are expressed on both leukocytes and endothelial cells, and by the presence of chemotactic molecules. These
molecules, as wdl as growth factors, are responsible for the establishement of a polarised cell migration and
there is enough evidence to prove that signaling from both phospholipids and proteins from the Rho family
of small GTPases are also involved in directed cell motility (Rickert et al., 2000). Migration of leukocytesis
essential for immune responses, tissue repair, and embryonic development. When cell migration is not
regulated, this may lead to cancer invasion and metastasis.

Integrins have attracted much attention by their strong contribution to the anchorage of cdls to the
ECM and migration across it. During spreading of cells on the ECM, integrins form large aggregates with
their other associated proteins at sites where the plasma membrane and the matrix remain in close contact.
These are called cell-matrix adhesion sites. Engagement of integrins by ECM proteins induces binding of
filamentous (F)-actin to the integrin cytoplasmic domains, mediated by several adaptor proteins of the
cytoskeleton (Geiger et al., 2001). In addition, different structures described by small adhesions that are
present in membrane protrusions, elongated adhesions made of an assembly of fibronectin molecules, and
large adhesions formed by F-actin stress fibers, occur in spreading cells and represent the “focal complexes’,
“fibrillar adhesions’, and “large adhesions”, respectively (Zamir and Geiger, 2001). In fibroblasts, structures
where integrins and signaling molecules are associated intracellularly are described as “focal adhesions’.
Many integrins bind to fibronectin via the same integrin-binding motif, Arg-Gly-Asp (RGD), also present in
many other ECM proteins. For example, a4sb; and asb; integrins, both expressed in leukocytes, have been
shown to bind to fibronectin but via a different mechanism (Weber et al., 1996). asb1, asb,, a by, and ayb,
integrins are involved in the regulation of chemokine-induced adhesion and spreading of leukocytes (Peled et
al., 2000; Voermans e a., 2000). Mice with a deletion of the a-subunit gene showed decrease in T-cell
homing to Peyer patches (Arrojo et al., 1996). Antibodies against the same subunit blocked SDF-1-induced
transendothelial migration of CD34+ cells (Peled et al., 2000). a,b; integrin also plays a prominant role in
leukocyte migration and inhibition of this integrin prevented neutrophil migration by 70 % (Werr et al.,
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1998; 2000b). Datafrom micethat lack b, integrins showed impaired neutrophil infiltration to inflammatory
sites (Borjesson et al., 2003). Moreover, antibody cross-linking of b, integrins has been shown to upregulate
bi-integrin expression (Werr et al., 2000a). Similar effect on bj-integrin expression was detected in
leukocytes after transendothelial migration (Kubes et al., 1995; Werr et al., 1998; 2000b). Taken together,
adhesion and migration of neutrophils is strongly associated with b; and b, integrin expression and
activation.

During migration, signaling through the chemokine receptors (inside-out) triggers changes in the
distribution of filamentous F-actin in leukocytes, which undergo morphological changes, characterized by a
switch from a spherical to a polarized shape (Howard and Oresajo, 1985). During cell polarization, leukocyte
integrins, chemoattractant receptors and other adhesion molecules, cytoskeletal proteins and intracelular
regulatory molecules change their cdlular localization. Polarization of leukocytes occurs not only during cell
attachment to the vascular endothelium mediated by integrins, but also during antigen presentation and
target-cell recognition (reviewed in Sanchez-Madrid and Del Pozo, 1999). A polarized morphology of
leukocytes was first described to be similar to that of a migrating amoebae, with a leading edge at the front
and a uropod at the rear of a migrating cell (Wilkinson, 1986). T cells recognize and bind to APCs through
their leading edge (Kupfer and Singer, 1989). Changes in T cells, such as cell surface protein clustering,
cytokine secretion, and cytoskeletal reorganization triggered after contact with APCs have been extensively
studied (Kupfer and Singer, 1989).

A number of receptors are concentrated at the leading edge, including aybs, UPAR, and fMLP-R in
neutrophils;, CCR2, CCR5, and FAK in T cells; and CXCR4 in B cdlls, which are able to sense chemotactic
gradients, thus guiding leukocytes to migrate in a polarized manner. Antibody-specific cross-linking to L-
selectin induced the trandlocation of intracellular vesicle-stored CXCR4 to specific sites on the surface of T
cdls, called lipid rafts (Sitrin et al., 2004). At the uropod, several reports show localization of ICAMS, L-
selectin, ayb,, PSGL-1, FcgR-111b, CD2, CD43, and CD44 (reviewed in Sanchez-Madrid and del Pozo,
1999; Webb et al., 2002), which play a pivotal role in cell adhesion, thus facilitating cell migration.
However, the asb; integrin can be transocated via endosomes from the uropod to the leading edge of
neutrophils (Pierini et a., 2000). Release of the uropod triggers cell migration. Some of these receptors when
bound to the substratum, become linked to the actin cytoskeleton during cell migration. Interactions between
the cytoskeleton and the cell surface receptors are required for the formation of membrane protrusions, such
as lamellipodia (broad, sheet-like structures) and filopodia (thin cylindrical needle-like projections), both
structures located at the leading edge (Nobes and Hall, 1995). The ERM proteins (ezrin, radixin, and moesin)
are localized at cell-surface protrusions and form a link between the actin cytoskeleton and the cytoplasmic
tails of the membrane receptors. It has been suggested that the association of fMLP receptor with talin
regulates actin polymerization in neutrophils (Jesaitis et al., 1993).

Changes in the actin cytoskeleton in response to extracellular stimuli are mainly regulated by the
Rho family of small GTPases, such as Rac, Cdc42, and RhoA (Nobes and Hall, 1995). Racl mediates
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lamellipodia formation (Ridley et al., 1992), Cdc42 promotes filopodia formation (Kozma et al., 1995), and
RhoA controls focal adhesion formation and actomyocin-mediated contraction in fibroblasts (Ridley and
Hall, 1992). Myocin-induced contraction of the actin network can pull the cell to migrate, suggesting that
RhoA is implicated in the uropod retraction. Rho is known to be involved in a_b,/ICAM-1-dependent
leukocyte aggregation and adhesion through integrins (Laudanna et al., 1996; Sanchez-Madrid and del Pozo,
1999). The actin network is assembled at the leading edge which allows continuous movement of the
leukocyte while it disassembles at the rear (Mitchison and Cramer, 1996). Myosin, a motor protein, seems to
play an important role in migration of leukocytes and other cells by gathering several adhesion receptors,
including integrins towards the uropod, as suggested by studies performed on myosin-deficient amoebae
(Wessdls et al., 1988). Second messengers (calcium and cAMP) and protein (PKA, PKC, and FAK) or lipid
(PI3K) kinases also play important rolein cell migration. In migrating leukocytes, calcium isinvolved in the
regulation of the myosin (located at the uropod)-induced cell contraction, which is manifested by the high
Ca’ levels observed at the cell rear. Adhesion receptors attached to the substrate move backwards as the cell
migrates, while at the same time, renewal of these receptors such as integrins occurs at the leading edge.
Altogether, a combination of high calcium and cAMP concentrations, and low Rho GTPases activity can
lead to disruption of actin filaments, as wel as induction of cell detachment via myosin-dependent
contraction and formation of the uropod, whereas low levels of these second messengers and Rho GTPases
and high phosphoinositide levels can promote cell adhesions and formation of lamellipodia and filopodia at
the leading edge via increase in integrin activation and actin filament assembly (Janmey, 1994). During
transmigration, RhoA and its effector, pl60ROCK, are both required for retraction of the leukocyte tail.
Inhibition of RhoA led to the translocation of b, integrins from front to the rear of migrating leukocytes
(Worthylake et al., 2001), as well as failure to retract the uropod. Thus, coordination of these molecules at
specific places in the cell can determine the assembly or desessembly of the actin cytoskeleton and the
localization of membrane protrusions and retractions. Finaly, several MMPs, including MT1-MMP and
MMP-2 were found to colocalize at membrane protrusions. Interaction of MMPs with their natural
inhibitors, TIMPs at these sites might be the key mechanism for the regulation of cdl surfaceeMMP
activation and eventually, the control of the invasive phenotype of cells (reviewed in Chen and Wang, 1999).
MT1-MMP can promote signal transduction and regulate gene expression. Indeed, transfection of cells with
the MT1-MMP gene induced the activation of the extracellular signal-regulated protein kinase (ERK)
cascade and Rac 1, leading to increased cell migration (Takino et al., 2004; Cao et al., 2004). MT1-MMP
mediated-cleavage of the integrin ay subunit of the aybs integrin resulted in focal adhesion kinase (FAK)
phosphorylation and cell migration. Interestingly, shedding of CD44 (Kgjita et a., 2001) and L RP (Rozanov
et a., 2004) ectodomains by MT1-MMP promotes the release and translocation of the cytoplasmic fragment

from the cell surface into the nucleus for transcriptional activation (Nakamura et al., 2004).
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CELL SURFACE ASSOCIATION OF MMPs AND OTHER PROTEASES

MMPs are secreted as zymogens from inside the cell to the cell surface and into the extracelular
environment where they are able to degrade both ECM and non-ECM proteins. It remains unclear how these
enzymes make it to the correct location at the cell surface and how the proteolytic activity is controlled at the
pericellular space. However, it has been suggested that MMP-binding to cell surface proteins can have an
effect on intracdlular signaling, can facilitate proenzyme localization and activation, mediate cell motility by
disruption of cell contacts with the ECM and promote internalization of the enzyme. For example, integrins
are shown to act as receptors for several proteases, including MM Ps. Such interactions have been detected in
caveolag, in invadopodia, and at the leading edge of migrating cells, where directed proteolytic activity is
needed. The first interaction between an integrin (aybs) and a MMP (MMP-2) was identified on the surface
of melanoma cells and angiogenic blood vessels (Table 5). This complex was shown to be involved in tumor
growth and angiogenesis in vivo (Brooks e al., 1998). Immunofluorescence and confocal microscopic
studies showed the colocalization of MT1-MMP and TIMP-2 with caveolin-1 in the same membrane
microdomains with MMP-2 and ayb; integrin (Puyraimond et al., 2001), termed caveolae. Caveolae are
membrane invaginations enriched in cholesterol and glycolipids and serve as sites for clustering of various
integrins and proteases (Smart e al., 1999). They are involved in the transport of lipids, in signa
transduction pathways and in non-clathrin-mediated endocytosis (reviewed in van Deurs et al., 2003). MT1-
MMP was shown to activate ayb; through proteolytic cleavage, suggesting that coordinated expression and
localization of these molecules may be important for cancer cell invasion and metastasis. Furthermore, there
is evidence that the aybs integrin has modulatory properties on MMP-2 activity by binding to its C-terminal
domain (Brooks et al., 1996; Brooks et al., 1998). Inhibition of the aybs/MMP-2 complex formation by
either the MMP-2 C-terminal domain (Pfeifer et al., 2000) or a small molecule inhibitor, TSRI265 (Silletti et
al., 2001) dramatically suppressed angiogenesis in vivo, demonstrating that this interaction is essential for
endothelial cell proliferation and migration. The TSRI265 molecule neither blocked MMP-2 protease activity
nor aybsz-mediated cell adhesion. Since then, several other important protease associations with integrins
have been reported (Table 5), suggesting that pericelular proteolysis may be activated and targeted by
integrins and other cell surface receptors. Another gelatinase, proMMP-9 has been detected on the surface of
many cell types, including leukocytes, endothdial cells, keratinocytes, and in a variety of malignant cells as
a proenzyme and often free of TIMP-1 (reviewed in Seiki et al., 2003). A complex between proMMP-9 and
TIMP-1 was detected in the culture media of breast epithelial MCF10A cells but not on the cell surface after
treatment with phorbol esters, suggesting that cell surface-bound proMMP-9 may prevent its inhibitor from
bindingtoit (Toth et al., 1997).

In leukocytes, uPA could bind to its receptor, uPAR, and to ayb, simultaneously, forming a
trimolecular complex where ayb, could serve as a signaling receptor (Pluskota et al., 2003). This interaction
is likely to be mediated by both the kringle and proteolytic domains for uPA and the I-domain for ayb,. A

peptide sequence within the ay subunit and outside the | domain was shown to bind uPAR (Simon e al.,
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2000). This complex plays an essential role in the migration of inflammatory cells and vascular homeostasis.

The uPA/UPAR complex was also found associated with the asb; integrin and capable of promoting adhesion

and migration of Chinese hamster ovary cells aswell as intracellular signal transduction through the integrin.

The uPA/UPAR and uPAR/b; integrin complexes were also reported to be present in caveolae of
chondrocytes (Schwab et al., 2001; Tarui et al., 2003). Recently, proM MP-9 was found to be associated with
ICAM-1 (Fiore et al., 2002) and DNA repair protein Ku (Monferran et al., 2004) on the surface of leukemic
cdls. ICAM-1 cleavage by MMP-9 resulted in tumor cell resistance to natural killer cell-mediated

cytotoxicity.
Soluble Associated Cdll-surface Refer ences
proteases proteins expression
MM Ps
MMP-1 ab; myocytes Stricker et al., 2001
asb; keratinocytes Dumin et al., 2001
EMMPRIN lung carcinoma Guo ¢ al., 2000
PAR1 breast carcinoma Boire et al., 2005
MMP-2 aybs melanoma, endothelial Brooks et al., 1996; 1998
LRP fibroblasts Yang et al., 2001
collagen chains  fibroblasts Steffensen et al., 1998
TSP-2 fibroblasts Yang et al., 2001
TIMP-2 malignant cells Olson et al., 1997
caveolin-1 endothelial Puyraimond et al., 2001
Hsp90a fibrosarcoma Eustace et al., 2004
MT1-MMP fibrosarcoma Strongin et al., 1995
BS - Fedarko et al., 2004
MMP-3 osteopontin - Fedarko et al., 2004
MMP-7 CD44HSPG epithelial Yu & Woessner, 2000
TMA4SF - Maecker et al., 1997
CD151 rectal carcinoma Shiomi et a., 2005
MMP-9 collagen chains epithelial/fibrosarcoma  Okada et al., 1992
RECK fibrosarcoma Takahashi et al., 1998
CDh44 melanoma Yu & Stamenkovic, 1999
ICAM-1 leukemias Fioreet a., 2002
LRP fibroblasts Hahn-Dantona € al., 2001
Ku proten macrophages/leukemia  Monferran et a., 2004
TIMP-1 fibroblasts O’ Conndll et al., 1994
TSP-1 malignant cells Rodriguez-M anzaneque, 2001
a mbs neutrophils/leukemias ~ Stefanidakis et al., 2004
azh; epithelial Wang et al., 2003
ash, mammary carcinoma Morini et al., 2000
aybs fibrosarcoma Bjorklund et al., 2004
DMP-1 - Fedarko et al., 2004
MT1-MMP aybs endothelial Galvez ¢ d., 2002
b, subunit endothelial Gadvez & dl., 2002
CD44 fibrosarcoma Mori et al., 2002
TIMP-2 breast carcinoma Imai & al., 1996
collagentype!  gingival fibroblasts Tam et d., 2002
RECK fibrosarcoma Ohet al., 2001
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Serine
proteases
uPA uPAR, which malignant Elliset a., 1999
in turn interacts
with : apxbo neutrophils Xueet al., 1994
aybs fibrosarcoma Xueet d., 1997
" aybs mammary carcinoma Carriero et al., 1999
- asb; mammary carcinoma Wei et dl., 2001
elastase aub- neutrophils Cai and Wright, 1996
Seprase uPAR melanoma Artym et a., 2002
ash; melanoma Monsky et al., 1994
Dipeptidyl ash; fibroblasts Ghersi et al., 2002
peptidase 1V
cathepsin G FPR leukemias Sun & al., 2004
HIV-1gp120 leukemias Avril et al., 1994
membraneGp  platelets/neutrophils Molino et a., 1993
proteinase 3 amub, neutrophils David et al., 2003
plasmin Annexin |l kidney cells MacLeod et al., 2003
Cysteine
proteases
Cathepsin B annexin |l tumors Mal € al., 2000
a,-M bone metastases Arkona & Wiederander, 1996
ADAMs
ADAM-2 agh; Oocytes Chen and Sampson, 1999
ADAM-7 asb, T cell leukemia Bridges et al., 2005
agh; T cell leukemia Bridgeset a., 2005
ab; T cell leukemia Bridges et al., 2005
ADAM-9 agh; fibroblasts Nath et al., 2000
agh; oocytes Etoet al., 2002
aybs Myeloma Zhou et a., 2001
ADAM-12 agh; haematopoietic Zhang et al., 1998
ADAM-15 aybs haematopoietic Nath et al., 1999
ash; haematopoietic Nath et al., 1999
agh, oocytes Etoet al., 2000
ADAM-17 asb; epithelial Bax et a., 2004
ADAM-23 ayvbs neuroblastoma Cd et al., 2000
ADAM-28 aqb, lymphocytes Bridges et al., 2002
agh; T cell leukemia Bridgeset a., 2005
asb; T cell leukemia Bridges et al., 2005
ADAM-33 agh; T cell leukemia Bridges et al., 2005

Table 5. Cdl-surface MM P-associated proteins. Many of the functions and binding mechanisms of these comlexes
have not been eucidated yet. ADAM, a disintegrin and metdloproteinase; a,-M, a,-macroglobulin; BS, bone
sialoprotein; DMP-1, dentin matrix protein-1; FPR, formyl peptide receptor; Gp, membrane glycoproteins, Hsp, heat
shock protein; HSPG, heparan sulfate proteoglycans, PARL, protease-activated receptor 1; RECK reversion-inducing
cysteine-rich protein with kazal matifs.

Also, a chaperone heat shock protein90 (Hsp90) was found to interact with MMP-2 on the cell surface of
fibrosarcoma cells, thus promoting MMP-2 activation, which is critical for tumour invasiveness (Eustace et
al., 2004). The binding mechanism of most of these interactions has not been yet elucidated.
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Several cell surface hyaluronan receptor CD44 isoforms, RECK, TSP-1, LRP, and cell surface
collagen 1V chains aso serve as MMP-9-docking molecules. The CD44/MMP-9 complex was found to be
associated with invasiveness of mouse mammary carcinoma and human melanoma cells in vivo (Yu and
Stamenkovic, 1999), suggesting that CD44 helps to localize MMP-9 activity to the cell surface. Disruption
of the CD44/MMP-9 complex by a soluble CD44 molecule resulted in the loss of tumor invasiveness and
survival mediated via latent transforming growth factor-beta (T GF-b) activation. The GPI-linked proteins
RECK and TSP-1 were not only identified as cell surface receptors for MMP -9 but also were found to block
their enzymatic activity (Oh et a., 2001; Rodriguez-M anzaneque et al., 2001). Recombinant purified RECK
was aso known to inhibit the activity of MT1-MMP in vitro (Oh et al., 2001). When the expression of
RECK was restored in cells which lack the endogenous protein, the invasive, metastatic, and angiogenic
phenotypes of these tumor cells were strongly suppressed (Takahashi et al., 1998; Oh et al., 2001; Liu et al.,
2003). TSP-2 is capable of regulating the proteolytic activity of MMP-2, forming a tight complex that
induces scavanger receptor-mediated endocytosis and clearance (Yang et a., 2001). Interaction of MMPs
with the cell surface may not only be needed for proenzyme activation and targeting at specific sites for
degradation of cell-surface substrates, but could also promote intracellular degradation via receptor-mediated
endocytosis (RME). For example, the LDL receptor-related protein, LRP is capable of inducing RME of
MMP-2, -9, and -13, three MMPs known to have a key role in promoting tumour invasion and metastasis
(Emonard et al., 2004; reviewed in Emonard et al., 2005). MT1-MMP can regulate such interactions as it has
been described to proteolytically process CD44 (Kgjita et al., 2001) and more recently, LRP (Rozanov et al.,
2004), a possible mechanism utilized by tumor cells to maintain an invasive phenotype. Regulation of the
cell surface activity of proteolytic enzymes that are involved in cancer progression, including MMP-2, -9, -
13, tPA, and uPA by endocytosis has led to suppression of tumour cell invasion (Czekay et al., 2001). Both
MMP-2 and -9 were found bound to the surface of various cdl lines via a surface-associated a2(1V) chain of
collagen type IV (Olson et al., 1998; Toth et al., 1999). ProMMP-9 bound to a2(1V) collagen chain with a
high affinity and this interaction is thought to be mediated by the collagen-binding domain as TIMP-1,
known to recognize the hemopexin domain, had no effect on this interaction. However, the hemopexin
domain of proMMP-9 was recently shown to be important for binding gelatin (Roeb et al., 2002). MMP-8,
MMP-19, and other proteases also localize to the cdl surface by a mechanism that has not yet been
determined.

A Disintegrin and a Metalloproteinase (ADAMs) and ADAM with a thrombospondin motif
(ADAMTYS) arelarge family of proteins capable of interacting with integrins and involved in processes such
as angiogenesis, fertilization, myogenesis, neurogenesis, and inflammation. Unlike the transmembrane
proteins ADAMs, ADAMTS proteins are soluble ECM proteases consisting of a prodomain, metalloprotease
and disintegrin domains, but devoid of ADAMS' cystein-rich, EGF-like, transmembrane and cytoplasmic
domains (reviewed in Primakoff and Myles, 2000). ADAM2 or fertilin b was one of the first disintegrin
identified and found to interact with agb; integrin (Chen et al., 1999). Based on knockout mice studies,
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ADAM?2 was found to have an important role in mediating sperm-egg adhesion (Cho et al., 1998). To date,
several other ADAM-integrin interactions have been identified: ADAM9 with a,bs and agh,;, ADAM12 and
ADAM15 with agh;, ADAM15 and ADAM23 with a,bs, and ADAM15 with asb; (reviewed in Evans,
2001) (Table5).

ROLE OF INTEGRINSAND GELATINASES IN CANCER PROGRESS|I ON

Early events in tumor progression are characterized by increases in cell proliferation, insensitivity to
growth-inhibitory signals, reduced ability for differentiation, as well as the ability to escape from apoptosis
and immune surveillance (Hanahan and Weinberg, 2000). Proteinases that degrade components of the ECM
and are capable of processing nonmatrix substrates (e.g. growth factors and its receptors, chemokines,
adhesion molecules, and apoptotic mediators) have long been considered to be important at all stages of
tumorigenesis (Coussens and Werb, 2001). The combined participation of integrins and MMPs is required
for invasion of tumor cells into surrounding connective tissues, intravasation and extravasation from blood
vessels, and metastasis to distant organs (reviewed in McCawley and Matrisian, 2000). Indeed, studies on
TIMPs have shown that overexpression or administration of these inhibitors as recombinant proteins
inhibited experimental invasion and metastasis (Alvarez et al., 1990; Khokha, 1994; Codony-Servat e al.,
1999; Turpeenniemi-Hujanen, 2005). In most cases, the stage of tumor progression correlates with the
expression levels of gelatinases as the invasive and metastatic potential of tumor cedlsis strongly affected by
changes in gelatinase expression in animal models. MMP levels can appear elevated even in the early stages
of tumor progression (Stetler-Stevenson, 1996). Expression of MMP-2 and MM P-9 was found to be strongly
upregulated in cancers of lung, colon, breast, skin, and prostate which correlated with increased tumor
invasiveness and metastasis (reviewed in Egeblad and Werb, 2002). Inhibition of MMP-9 expression in a
model of experimental metastasis reduced the number of colonies formed in the lung of mice (Hua and
Muschel, 1996). Further evidence supporting this hypothesis came from studies on MMP-2 and -9 null mice.

These mice devel oped fewer tumors than the wild-type (reviewed in Sternlinct and Werb, 2001).

INTEGRINS AND GELATINASES IN TUMOR ANGIOGENESIS AND GROWTH

Angiogenesis, the formation of new blood vessels from pre-existing ones is essential for tumor
growth (Hanahan and Folkman, 1996). Growth and metastasis of many cancers require the incorporation of
vascular and lymphatic endothelial cells from pre-existing neighbouring vessels (Folkman, 1995; He et al.,
2004). Among MMPs, gelatinases are important positive regulators of angiogenesis as both their natural and
synthetic MMP inhibitors have the ability to decrease vessel sprouting into tumors in several experimental
models in vitro and in vivo (Schnaper et a., 1993; Itoh et al., 1998; Vu et al., 1998; Gatto et al., 1999; Oh et
a., 2001; Li et a., 2001). The role of gelatinases in tumor angiogenesis is also supported by the tumor-
specific efficacy of MMP inhibitors in several transgenic models. For example, MMP-9 has been shown to
be important for angiogenesis in the K14-HPV 16 skin (Coussens et al., 2000) and RIP-TAg pancregtic islet
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(Bergers et al., 2000) tumor progression models. The authors demonstrated that MMP-9 regulates tumor
angiogenesis by reeasing the pro-angiogenic factor VEGF from ECM and makes its available for binding to
its receptors. Mobilization of VEGF was inhibited by TSP-1, an MMP-9 inhibitor and potential endogenous
suppressor of capillary morphogenesis in vivo, which resulted in decrease of tumor growth by an
antiangiogenic mechanism (Rodriguez-Manzaneque et al., 2001). Interestingly, MMP-2 did not seem to be
required for angiogenesis in the RIP-TAg model, but strongly reduced tumor development. However,
downregulation of MMP-2 expression decreased angiogenesis in a chicken chorioallantoic membrane model
(Fang e al., 2000). Studies on MMP-2- (Itoh et al, 1998) and MMP-9- (Vu et al., 1998) null mice show
impaired tumor angiogenesis and growth compared with the wild-type. Cleavage of type IV collagen
triggered by MMP-2 expaoses a cryptic, abs integrin binding site within the collagen. Indeed, an antibody
recognizing the site strongly inhibited angiogenesis in vitro and tumor growth in vivo (Xu et a., 2001). In
addition, epitope exposure correlated with proMMP-2 activation and increase of a,bs binding, suggesting
that interaction between the cryptic site of collagen 1V and a,b; could promote MT1-MMP/MMP-2
activation and eventually, increased tumor growth and invasion. In addition, MT1-MMP (Zhou et al., 2000;
Galvez et al., 2001) and cathepsins (Joyce et al., 2004) have been able to trigger the angiogenic switch,
suggesting the existance of important positive regulators other than MM P-9.

Gelatinase-induced cleavage of matrix components rel eases fragments with anti-angiogenic activity.
For example, MMP-2 and MMP-9 cleave plasminogen generating angiostatin, whereas MMP-3 and MMP-9
generate a fragment from the basement membrane collagen type XVII, caled endostatin. These fragments
inhibited endothelial cell proliferation and tumor growth (O'Rellly et al., 1994; 1997). Another fragment,
tumstatin is generated by MM P-9 through cleavage of the a; chain of collagen 1V (CollVVa3). This fragment
has been shown to be aligand for a,bs, an integrin highly expressed in blood vessels that are present in large
tumors. It has also been detected in the blood circulation, and recently, found to be acting as angiogenesis
inhibitor and tumor suppressor (Kalluri, 2003; Hamano et a., 2003). The authors detected lower levels of
this fragment in the circulation of MMP-9-deficient mice which led to increased growth of large tumors.
Shedding of SPARC (Secreted Protein Acidic and Rich in Cysteine), a protein that modulates cellular
interaction with the ECM, by MMP-3 produced peptides capable of regulating endothelia cell proliferation
and migration (Sage et a., 2003). We can conclude that MMP-9 has both pro- and anti-angiogenic
properties, as it is capable of not only promoting tumor growth, but also restraining the growth of tumors by
generating endogenous inhibitors of angiogenesis.

The a, integrins play an important role in primary tumor growth in human melanoma (Felding-
Habermann et a., 1992). Endothelia cell integrins, including a,bs, a,bs, and asb; (Kim et a., 2000) have
also been essential for regulating angiogenesis. Although ayb; and a.bs inhibitors blocked tumor
angiogenesis in various models (Stupack and Cheresh, 2002), lack of these integrins did not block
developmental angiogenesis in bs integrin knockout mice (Reynolds et al., 2002), suggesting that endothelial
cdl integrins, aswell as MMPs, can regulate tumor angiogenesis both positively and negatively.

43



INTEGRINS AND GELATINASES IN INVASION AND METASTASIS

Theinitial step of tumor cell invasion is characterized by the breakdown of the basement membrane,
a process known to be dependent on type 1V collagen-degrading enzymes, mainly MMP-2 and MMP-9.
Liotta obtained results where type IV gelatinase activity correlated with cancer metastasis (Liotta et a.,
1980). Endothelial cell proliferation and migration into the tumor tissue is mediated by angiogenic (ex.
MMP-9, VEGF, and bFGF) and lymphangiogenic factors that are released by tumor cells. During metastasis,
tumor cells must dissociate from the primary tumor, degrade the ECM and enter the blood or lymph
circulation by a process called intravasation. Tumor cells that have escaped from the immune system will
have to break through blood vessd and lymph vessd walls, this time by a process called extravasation, into
the surrounding tissue where they must be able to grow in a new environment (secondary tumor) (Mignatti
and Rifkin, 1993). Using DNA microarrays, primary tumor-gene expression profiles could be arranged in
classes of “good” and “poor” prognosis (Sorlie et a., 2001). Kang and colleagues performed DNA-
microarray analysis on human breast carcinoma cell lines that have metastasized to bone. These studies
revealed some of the genes (ex. MMP-1, MMP-2, CXCR4, IL-11, and CTGF) responsible for the increased
metastatic potential of breast cancer cells (Kang et a., 2003; Minn et al., 2005). Videomicroscopy studies
revealed that MMPs play a significant role in tumor metastasis, as TIMP-1 and MMP inhibitor batimastat
(BB-94) blocked the formation of tumors in secondary sites (reviewed in Chambers et al., 2002). The role of
MMPs in tumor invasion and metastasis has also been studied using antisense technology. For example,
antisense expression of MMP-9 resulted in decreased invasiveness of human glioblastoma cells (K ondraganti
et al., 2000). Also, injections of a replication-deficient adenovirus capable of expressing antisense uPAR and
MMP-9 transcripts led to the inhibition of invasion, tumor growth, and metastasis of non-small cell lung
cancer cells (NSCLC) (Rao e al., 2005). RNA interference-directed knockdown of uPA and its receptor
UPAR, and MMP-9 inhibited invasion and growth of prostate and glioma cells in vivo, respectively (Murali-
krishna et al., 2005; Lakka et a., 2005). MMP-2 induced expression also correlate with high metastatic
potential of prostate carcinomas (Stearns and Stearns, 1996). Furthermore, downregulation of the
endogenous MT1-MMP gene expression using RNA silencing technology also inhibited the invasion of
highly invasive fibrosarcoma HT1080 cells (Ueda et al., 2003). Gelatinases and MT-MMPs revealed a new
mechanism to control metastasis by cleavage of the metastasis suppressor gene, KiSS-1 (Takino et al., 2003).
Finally, recent studies supporting thein vitro data from double MMP-2:M M P-9-deficient mice demonstrated
that these enzymes cooperate in promoting the invasive phenotype of malignant keratinocytes in an
experimental model in vivo (Masson et al., 2005). Also, the number of metastatic colonies in MMP-9
deficient mice was significantly decreased in an experimental in vivo model where mice were injected
intravenously with melanoma or lung carcinoma cells (Itoh et al., 1999).

Changes in integrin expression and localization can also influence invasion and metastasis of tumor
cels (Maschler et al., 2005). Integrins were shown to be involved in the migration and liver metastasis of

large cell lymphoma cells and angiogenesis, as a,bs; antagonists induced apoptosis and blocked cancer cell



invasion (Brooks et al., 1994). asb; integrin has a dual role in cancer progression as it inhibited the initial
invasive growth while promoting metastatic spread of melanoma cells. A different study showed that
increased expression of this integrin could inhibit the invasive stage of metastasis formation (Qian et a.,
1994). Overexpression of ayb; integrin had no effect on primary tumor growth but stimulated both
experimental and spontaneous metastasis (Chan et al., 1991). Blocking integrins with synthetic peptides
containing an RGD sequence, antibodies, or disintegrins (integrin-binding proteins isolated from snake
venom) has been demonstrated to intefere with tumor cell invasion and metastasis in vitro and in vivo
(Gehlsen et al., 1988; Curley et a., 1999). Importantly, cooperation between a,b; and MMP-9 increased
migration of metastatic breast cancer cells (Rolli et al., 2003). Increased expression of MMP-9 and aybg
integrin promoted epithelial cell migration during tumor formation via a novel TNF-a-dependent mechanism
(Scott et al., 2004). Also, several reports show that uPA binding to its receptor, uPAR is a requirement for
tumor cdl invasion and metastasis as this process is eficiently inhibited either by an amino-terminal
fragment of urokinase or a mutant plasminogen activator inhibitor-2 (PAI-2) (Wang e al., 2005).
Chemokines can also be involved in organ-specific metastatic growth of tumor cells. This hypothesis is
supported by a recent study which highlights the importance of chemokine receptors in breast cancer
metastasis in vitro and in vivo. For example, treatment of animals with a neutralizing anti-human CXCR4

monaoclona antibody inhibited cancer cell metastasis to lung tissue (Muller et al., 2001).

INTEGRINS AND GELATINASES IN CANCER-ASSOCIATED INFLAMMATION

Chronic inflammation is also associated with a variety of cancers, including bresst, liver, prostate,
and skin (reviewed in Coussens and Werb, 2001). In human cancer, tumor cells are not the only source of
MMPs. MMPs, mainly gelatinases are predominantly produced by stromal cells, ranging from immune
(lymphaocytes and dendritic cdlls), inflammatory (granulocytes and monocytes), and vascular cells (vascular-
and lymph-endothelial cells and pericytes). MMPs have been involved in the escape of cancer cells from
immune surveillance. The escape mechanism occurs through MMP-9-induced cleavage of the interleukin-2
receptor-a (IL-2Ra) (Sheu et a., 2001), TGF-b activation (Yu and Stamenkovic, 2000), and ICAM-1 and
ICAM-2 shedding (Mustjoki et al., 2001; Fiore et al., 2002; Sultan et al., 2004), thus suppressing T cell
proliferation and immune response against tumors.

Chemokines play an essential role in regulating directional migration of leukocytes. Proteolytic
cleavage of chemokines by MMPs can lead to enhanced or reduced leukocyte recruitment into tumors. For
example, MMP-9 activates the neutrophil chemoattractant IL-8 by cleavage, while it inactivates the CXCL7
precursor, the platelet factor-4 (PF-4), the growth-related oncogene-a (GRO-a), and stromal cell-derived
factor 1 (SDF-1) (reviewed in Egeblad and Werb, 2002). A cleaved form of MCP-3 produced by MMP-2 can
bind to CC-chemokine receptors, and unlike intact MCP-3, it abrogates chemotaxis and suppresses
inflammation (McQuibban et a., 2000). ET-1 processing by MMP-9 generates endothelin-1 (ET-1) that
induces secretion of MMP-9 from neutrophils (Fernandez-Patron, 2001), suggesting that MMPs are both
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effectors of leukocyte migration and regulators of the inflammatory response. The importance of chemokine
receptors in metastasis was demonstrated by inhibition of SDF-1-binding to its receptor. Dissociation of
SDF-1/CXCR-4 complex by blocking antibodies strongly reduced breast cancer metastasis to lungs and
lymph nodes in vivo (Mller et a., 2001). MMP-9 and VEGF are produced by mammary tumor-infiltrating
immune cells (Owen et al., 2003). Expression of MMP-9 by tumor-infiltrating macrophages promotes
angiogenesis as well as growth and invasion of xenografted ovarian cancer cellsin vivo (Huang et al., 2002).
Several studies show that cancer cells can promote the secretion of MMPs by stromal cells in a paracrine
manner via secretion of growth factors, interleukins, and EMMPRIN (reviewed in Sternlinct and Werb,
2001). Various data have shown that recruitment of hematopoietic precursor cells is required for tumor
angiogenesis (Coussens et al., 2000). Indeed, transplantation of MM P-9-expressing bone marrow cells into
MMP-9” mice increased tumor growth, probably by delivery of MMP-9-producing monocytes into the

tumor vasculature.

ROLE OF INTEGRINSAND GELATINASESIN ACUTE LEUKEMIAS

Leukemia can be described as the uncontrolled proliferation of hematopoietic cells that lack the
ability to differentiate into mature blood cells. The preciserole of gelatinase-expression in acute leukemias is
not clear. So far, it is known that invasiveness of many hematological malignancies, including myelo-
monocytic leukemias involves overexpression of proteolytic enzymes, such as the MMP-2 and MMP-9
(Janowska-Wieczorek et al., 1999; Kuittinen et al., 1999; Klein et al., 2001). MMP-9 isinduced and secreted
in conditioned media of leukemic cell lines in response to extracellular stimuli, after pretreatment of cells
with chemokines, and after cell adhesion to the ECM (Xie et a., 1998; Wize et al., 1998; Klein et a., 2001,
Takafuji et al., 2003). Higher gelatinase-expression levels were detected in the bone marrow plasma of
patients with leukemia compared with normal controls. After chemotherapy, the levels of TIMP-1 and
TIMP-2 were significantly increased, whereas MMP-9 levels were lower in ALL and AML patients.
Accordingly, AML patients who achieved a complete remission showed significantly lower MMP-9 levels,
suggesting that MMP-9 could be a surrogate marker of leukemic status in these patients. Also, the low
MMP-9 expression levels in patients with leukemia correlated with increased survival (Lin et a., 2002).

Several reports have demonstrated the involvement of both MM P-2/-9 gelatinases and b, integrinsin
the growth and progression of myeloid and lymphoid neoplasms (Kossakowska et al., 1993; Noguchi et al.,
2001; Hayashibara et al., 2002). Selective MMP-9 expression is induced as a result of ayb, integrin ligation
in PMNs (Wize & al., 1998) and a b, integrin ligation in T lymphoma cells (Aoudjit e a., 1998). Also,
studies from ay and a_ integrin knockout mice confirm the importance of b, integrins in mediating
leukocyte adhesion and migration (Bouvard et al., 2001). In accordance, high infiltration of leukemic blasts
in patients with AML strongly correlated with increased expression of both a b, and ayb, integrins
(Noguchi et al., 2001). AML cell adhesion to bone marrow fibroblast monolayers seems to require both b
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and b, integrins, as antibodies against them inhibited the binding (Liesveld et al., 1993; Bendall et al., 1993;
Stucki et al., 2001). Interaction between leukemic cells and bone marrow stroma cells has been shown to
increase leukemic cell survival and chemotherapy-induced leukemia cell resistance (Garrido et al., 2001).
Increased vessel density was detected in the bone marrow of acute and chronic leukemia patients
compared with normal bone marrow, and known to be mediated by angiogenic factors such as VEGF and
basic fibroblast growth factor (bFGF) (Werb, 1997; Aguayo et a., 2000). Both increased plasma MMP-9 and
VEGF correlated with high leukemia cell infiltration, suggesting that MMP-9 and VEGF act co-operatively
in the process of leukemia cell invasion (Hayashibara et al., 2002). Another study showed that increased
vessel density was mediated by MMP-2 and MMP-9 overexpression in primary AML blasts by promoting
endothelial cell migration (de Bont et al., 2001). After achieving complete remission, the vessel number in
AML patients was restored to normal levels. Furthermore, a gene therapy approach using a retroviral vector
encoding for gelatinase inhibitors, endostatin and angiostatin strongly inhibited bone marrow angiogenesis
and leukemia tumor growth in vivo (Scappaticci et a., 2001). These data suggest that gelatinases could be
involved in leukemia progression. As a result, inhibitors of MMPs may be useful in treating hematol ogical

malignancies.

THERAPEUTIC INTERVENTION WITH MMP AND INTEGRIN INHIBITORS

Due to the fact that integrins and MMPs are involved in tumor cell invasion and metastasis, a lot of
effort has been put over the past 20 years in designing integrin and MMP inhibitors (MMPIs). Although
endogenous inhibitors, such as TIMPs inhibited tumor growth in transgenic mouse models, their use in
cancer was limited due to poor pharmacokinetics, difficulties in protein administration, and broad spectrum
of inhibition. To date, several synthetic MMPIs have been developed, tested widely in clinical trials, and
classified into the following pharmacological groups: collagen peptidomimetics, non-peptidomimetics,
tetracycline derivatives, and biphosphonates (reviewed in Hidalgo and Eckhardt, 2001; Ala-Aho and K&héri,
2005). The efficacy of these inhibitorsin clinical trialsis summarized in Table 6.

The design of collagen peptidomimetic MMP inhibitors is based on the collagen-peptide backbone
with zinc-binding hydroxamate moiety that coordinates the Zn* ion, thus inhibiting the MMP catalytic
activity. Batimastat was the first peptidomimetic inhibitor used in clinical trials for the treatment of
malignant tumors but is no longer used in clinical trials as it could not be administered orally. However,
treatment with marimastat, an oral MMPI variant of batimastat, significantly increased survival of patients
with gastric carcinoma (Bramhall et a., 2002). Treatment with marimastat was well tolerated by the patients,
except some small side effects translated with musculoskeletal pain, probably because of the need of MMPs
in normal remodelling of the connective tissue of tendons and joints. In patients with advanced pancreatic
cancer (a phase Il study), marimastat showed comparable therapeutic effects as conventional therapy with
gemcitabine that was used (Bramhall et al., 2002). The survival of patients suffering from glioblastoma
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multiforme was also improved by using marimastat in combination with temozolomide, a cytotoxic drug
(Groves et a., 2002). Several non-peptidomimetic MMP inhibitors, including BMS-275291, AG3340, and
MMI270 have also been tested in clinical trials (Table 6).

Tetracyclines and biphosphonates have also been shown to block MMP activity (Boissier et al.,
2000; Cianfrocca et al., 2002). For example, a broad spectrum MMP inhibitor, metastat (or Col-3) showed

increased tumor cell toxicity, reduced tumor-induced angiogenesis, as well as antimetastatic activity (Seftor
et al., 1998; Lokeshwar et al., 2002), and is currently being tested in patients with Kaposi Sarcoma and brain

cancer inaphasell clinical trial. Periostat, a tetracycline used for the treatment of periodontal diseases, isthe

only MMPI in the market.

Inhibitors Structure Specificity Statug/Indication
MMP
Batimastat (BB-94)  Peptidomimetic MMP-1, -2,-3,-7,-9  Development halted
Marimastat Peptidomimetic MMP-1, -2, -7, -9 Phase I11/Gastric cancer
(BB-2516) Phase I1/Pancrestic cancer
BAY 12-9566 Nonpeptidomimetic MMP-2, -3, -9 Devel opment halted
AG3340 Nonpeptidomimetic MMP-2, -3 Phase I1/111/No benefit
BMS-275291 Nonpeptidomimetic Broad spectrum Phase I/I1/NSCL
MMI270 Nonpeptidomimetic Broad spectrum Phase I/Advanced cancer
Metastat (Col-3) Tetracyclinederivative  MMP-2, -9 Phase I1/Kapos sarcoma
Periostat Tetracyclinederivative  Broad spectrum Phase M/Periodontal disease
Neovastat (AE-941) Shark cartilageextract ~ Broad spectrum Phase II/Multiple myeloma
Phase [11/NSCL
- Green tea extract MMP-2, -9 Phase |11/Cancer
Integrin
Efalizumab/ Hu1124 Humanised MADb CD11a subunit Phase |11/Psoriasis
Anti-CD18 Humanised MAb CD18 Phasell/ Myocardial infarction
Anti-LFA1 Murine CD18 Phase I11/Allograft rejection
Hu23F2G Humanised MAb CD11/CD18integrin  Phase ll/Multiple sclerosis
Phase II/Myocardial infarction
Phasell1/Stroke
LDP-01 Humanised MAb CD18 integrin subunit  Phase 1/Allograft rejection
/Stroke
LDP-02 Humanised MAb asb integrin Phase |1/Ulcerative colitis
Volociximab MAb asb; integrin Phase |l/metastatic NSCL
& Erlotinnib
ATN-161 PHSRN motif from FN  asb, integrin Phase I/NSCL
M200 MAb asb; integrin Phase I1/Kidney cancer
Vitaxin/ LM609 Humanised MAb aybs integrin Phase |1/Sarcoma
Antegren Humanised MAb auby integrin Phase I11/Multiple sclerosis
Phasel l/Colitis,Crohn’ s disease
Tysabri/Natalizumab MAb asb; integrin Phase M/Multiple sclerosis
Abciximab Chimeric Ab abbs, aybs, aybs FDA approved
Eptifibatide Cyclic heptapeptide aysbs integrin FDA approved
Tirofiban Peptidomimetic aupbs integrin " 7 IMyocardia infarction
Cilengitide . Cycllg RGD peptide aybs/aybsintegrins Phase I1/GBM _
Altocor/ Lovastatin -~ Chemical a.b, integrin FDA approval/atherosclerosis

Table 6. MMP and integrin antagonists in clinical trials. NSCL, non-small-cdll lung cancer; FN, fibronectin; Phase

M, on the market; ; GBM, glioblastoma multiforme; Mab, monoclonal antibody; FDA, food and drug administration.
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Interestingly, compounds (T SRI265) capable of inhibiting interactions between MM Ps and integrins showed
promising results in animal experiments (Silletti et al., 2001). Also, a cyclic peptide, CTTHWGFTLC
discovered by phage display technology as a selective gelatinase inhibitor could block cell migration and
tumor growth in a gelatinase-dependent manner (Koivunen et al., 1999).

The failure of MMPIs in several cancer clinical trialsis not surprising (reviewed in Coussens e al.,
2002). Most MMPIs were used to treat patients in late-stage tumors, whereas most results obtained from
animal experiments show the need for targeting MMPs in early stages of cancer progression. Also, these
inhibitors target all MMPs, many of which are needed for the processing of anti-angiogenic factors,
including angiostatin and endostatin. For that, increasing the selectivity of these compounds (for example,
for gelatinases involved in metastasis) could solve the problem of side effects reported so far. MMPIs are
known to target lso ADAMTS, enzymes capable of reducing tumor growth by blocking tumor angiogenesis
(Vazquez et al., 1999). It should be taken in consideration that other proteases are upregulated during tumor
progression that could compensate the loss of MMPs. These proteases should be identified and targeted
along with MMPs.

The involvement of integrins in tumor cdl invasion and metastasis became clear after using ay
(Eliceiri and Cheresh, 1999) or b; (Senger et al., 2002) subunit-blocking antibodies or small synthetic
antagonists generated from the ligand' s-recognition sequence. Humanized mAbs, Vitaxin and Efalizumab
against aybs (Posey et al., 2001) and a, subunit of a b, (Lebwohl et al., 2003) respectively, and the
synthetic, cyclic Arg-Gly-Asp (RGD) peptide motif (Dechantsreiter et al., 1999) present in many integrin
ligands were the three among many other integrin-binding agents that have entered cancer clinical trials (see
Table 6). Efalizumab and a recombinant mAb against a4b,, natalizumab have shown a great promise in the
treetment of psoriasis (Lebwohl e al., 2003), as well as in multiple sclerosis and Crohn’s disease,
respectively (Miller et al., 2003; Ghosh et al., 2003). However, b; and bs-integrin knockout mice showed
increased expression of VEGFR-2 receptor, leading to enhanced tumor angiogenesis (Reynolds et al., 2002).
Taken together, MMP and integrin knockout models and inhibitors can increase our understanding of the
multiple functions of these molecules in several diseases, including cancer. Such studies may be used to
develop therapeutic agents which can interfere with the integrin and MMP function on invasive tumor cells
and blood vessdls.
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AIMSOF THE PRESENT STUDY

Theaims of the present study were:

1. Tostudy whether b, integrins could act as receptors for MMP-2 and MMP-9 on the surface of leukocytes

and leukemic cdl lines, and by which binding mechanism.

2. Toidentify peptides by phage display technology capable of inhibiting the interaction between leukocyte
integrins and MMPs.

3. To study therole of theintegrin/proMMP complexesin leukocyte migration in vitro and in vivo.

4. To identify small-molecule compounds that bind to integrins, which could be more suitable for drug

development.

5. To determine the role of the ayb, integrifMMP-9 complex as a functional target for inhibition of

leukemia cell dissemination and growth in vivo.
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MATERIALSAND METHODS

Detailed descriptions of the materials and methods are found in the original publications.

Materials and M ethods

Original Publications

Antibodies, synthetic peptides, cell lines

-1V

Peptide biosynthesis and chemical synthesis

Cell culture and neutrophil isolation

-1V

Purification of leukocyte integrins

Expression and purification of integrin | domains
and MMP-9 recombinant proteins

-1V

Enzyme-linked immunosorbent assay (ELISA)

SDS-PAGE and immunabl otting

Coprecipitation experiments

I mmunoprecipitation

Cdl adhesion and Transwell migration

Transendothelial migration/Chemotaxis assay

Immunohistochemical staining of tissues

Gelatin zymography

Confocal microscopy

Phage display pannings

Phage binding assays

Subcellular fractionation

Cell surface labeling using "l odine and periodate-
tritiated sodium borohydride

Cell surface biotinylation

MMP-9 cdl surfacerdease

Binding of MMPsto purified integrins

Pepspot

Metabolic radiolabding

Antibody production and purification

Cdl viability and proliferation assay

M, v

Peptide affinity chromatography

v

Cell binding assay using *°I-MMP-9 domains

v

RNA interference and RNAI-transfections

v

Thioglycolate-induced peritonitis in vivo

Leukemia cell dissemination in vivo

v

Human leukemia xenograft models in vivo

v

Pericellular proteolysis

v

Small molecule compound library screening

Statistical analysis

I, 1v
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RESULTS

Identification of DDGW, an ayb, integrin-binding peptide that inhibits leukocyte migration in vitro
).

Using phage peptide display libraries, we selected peptides that interact with the ay | domain. The
consensus D/E-/D/E-G/L-W determined by this approach was clearly different from other b, integrin-binding
peptides reported so far. We chose the peptide CILWMDDGWC (DDGW) for further experiments as this
peptide-bearing phage showed strong binding to the a , | domains and this was readily inhibited by low
concentrations of the DDGW peptide. Data from protein databases revealed that this motif is present and is
highly conserved in the catalytic domain of MMPs, including gelatinases MMP-2/-9 (Figure 1A). To find a
dominant integrin-binding site in the catalytic domain of proMMP-9 was unexpected, as previous reports
suggested another MMP domain to be required for integrin binding. For example, the hemopexin domains of
MMP-2 and MMP-1 mediated binding to aybs (Brooks et al., 1996; Brooks et al., 1998) and ab; integrins
(Dumin et al., 2001; Stricker et al., 2001).

No MMP has been ever reported to bind to the leukocyte b, integrins. We therefore set out to study
whether MMP-9 in particular could be a ligand of the b, integrins as MMP-9 gdatinase is the major
leukocyte MMP and is induced during b, integrin activation. Binding assays with the ay, | domain revealed a
single active peptide that located to the MMP-9 catalytic domain. The sequence of the | domain-binding
peptide was QGDAHFDDDELWSLGKGVVYV and it contained a similar binding motif to the one identified
by phage display. The active MMP-9 peptide contained four consecutive amino acids with negative charges,
DDDE. Alanine scanning mutagenesis on both DDDE- and DDGW-containing peptides significantly
abrogated | domain binding Figure 1E). Also, peptides derived from other known integrin ligands, including
myeloperoxidase, catalase, thrombospondin-1 and complement protein iC3b strongly bound the | domain in
this assay and the doubl e alanine mutations caused a loss of binding (Tablel).

Progelatinases bound in a concentration-dependent manner to coated ayb, integrin. The binding of
gelatinases was observed with both ayb, and a b, integrins and their corresponding | domains. ProMMP-9
bound like a true integrin ligand, as the cation chelator EDTA nearly completely prevented the binding. The
DDGW peptide was an efficient inhibitor and it inhibited proMMP-9 binding to the ay | domain with an
ICs Of 20 pM. Curiously, MMP-2 and MMP-9 lost the integrin binding ability after activation by trypsin or
APMA (Figure 2). Furthermore, proMMP-9 and aywb, were found to co-localize on the cdl surface of
activated leukemia cells. Cell surface labeling and coimmunoprecipitation studies further demonstrated the
occurrence of the complex in leukemic cell lines (Figure 7). We suggest that the MMP-9 co-localizing with
amb,isthe proMMP-9, as the activated MMP-9 did not bind to ayb..

We then studied the effect of the DDGW peptide on adhesion and migration of human
myelomonocytic THP-1 cells. Phorbol-ester activated cells efficiently bound to the DDGW peptide, whereas
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there was no binding in the absence of cell activation. The acute myeloid leukemic cell line OCI/AML-3 also
avidly adhered to DDGW, whereas human fibrosarcoma HT1080 cdls which lack b, integrins did not.
DDGW did not block cell adhesion to fibrinogen and ICAM-1. Both the DDGW and CTT peptides inhibited
the migration of THP-1 cdls on the LLG-C4-GST substratum. Unlike DDGW, CTT was also capable of
inhibiting the migration of b, integrin lacking cells, HT1080 (Figure 9). These results suggest an important

function for the integrin-progel atinase complex in leukocyte migration.

Blocking the progelatinase/b, integrin complex inhibits migration of PMNs to an inflammatory site in
vivo (11)

Previously, endogenous neutrophil elastase, proteinase 3, and cathepsin G have all been reported to
bind to ayb, in PMNs (Cai and Wright, 1996). Immunofluorescence and surface labeling with THP-1
leukemic cells from earlier experiments showed an intense intracellular colocalization of ayb, integrin and
proMMP-9 (I; Figure 7B). Staining of resting and activated PMNs with integrin and MMP antibodies
showed even more intense intracellular colocalization. After PMA-treatment to cause exocytosis of
intracdlular granules, the intracellular staining decreased and ayb, integrin and MMP-9 colocalized to the
cell surface. Although proMMP-9 is known to localize to the same intracelular granules as the aywb,
integrin, association of proMMP-9 with ayf.intracellularly has not been shown before.

Immonoprecipitation studies with integrin and MMP antibodies were performed on purified
azurophilic-, specific-, gelatinase-, secretory vesicle- and plasma membrane-fractions from PMNSs. In non-
activated PMNSs, the proMMP-9/ayb, complex was immunoprecipitated from the gelatinase granules,
whereas after PMA-stimulation, it was translocated to the PMN cell surface. The biosynthesis of the
endogenous complex was aso investigated in the THP-1 leukemic cell line, which is amenable for such
studies. The complex was detected at 2 h and 4 h time points by immunoprecipitation from [*S]-methionine
pulsed cells. These results indicate that the proMMP-9 association is an early event for the integrins and that
the immunoprecipitated material does not represent endocytosed or recycling integrins. This is a more
plausible mechanism for the MMP/integrin complex formation than binding of a secreted MMP to the
integrin on the cell surface. First of all, the integrin could transport the endogenously-bound proMMP-9 to an
appropriate site without competition by extracellular MM P inhibitors and integrin ligands. Secondly, asthe |
domain of ayb, does not bind active MMP-9 (I, Figure 2A), the integrin could regulate the timing of
proMM P-9 activation and release of the active enzyme.

Experiments with recombinant MMP-9 domains gave further support for our finding that a site
interacting with the integrin is present on the MMP-9 catalytic domain (11, Figure 4B) and we developed an
active | domain binding peptide that was only six residues in length. This peptide, HFDDDE, corresponds to
a linear sequence from the MMP-9 catalytic domain and efficiently competed with proMMP-9 binding to
amb, (ICsp of 20 uM) or its purified | domain. ICAM-1 and fibrinogen did not compete with either proMMP,

implying different binding sites for the matrix proteins and proMMPsin the | domain.
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Then, we investigated the effect of the HFDDDE peptide on the adhesion and migration of PMNSs.
After integrin activation, PMNs exhibited an ability to adhere on proMMP-9. Cell adherence was inhibited
by HFDDDE (50pM), DDGW (50uM), the soluble ay | domain and the MEM 170 antibody, indicating b,
integrin-directed binding. Similar results were obtained using the ayp, L-cell transfectants. The in vitro
migration of PMNs was studied either with transwell or transendothelial layer assays. Chemotaxis with C5a
or TNF-a increased PMN transmigration by 5-10 fold and inhibition was obtained either by DDGW,
HFDDDE, CTT or ay and MMP-9 antibodies (11, Figure 6).

To study neutrophil migration in vivo, we used a mouse model of thioglycolate-induced peritonitis.
Approximately 20-fold more PMNs were present intraperitoneally after thioglycolate-stimulus in comparison
to the PBS control. The effects of DDGW and HFDDDE peptides were concentration-dependent and up to
80 % inhibition was obtained by doses of 0.1mg/kg and 4 mg/kg per mouse, respectively. Inflammatory
PMNs from the pritoneal cavity were stained positively for the proMMP-9/ayb, complex, whereas cdls
collected after PBS injection lacked the complex; they expressed the integrin but had no cell-surface MMP-
9. DDGW and HFDDDE prevented the increase in gelatinase levels present in the peritoneal cavities in
accordance with the inhibition of cell migration (11, Figure 7). Taken together, these results suggest that the

proMM P-9/ay b, complex may play arolein PMN matility in vitro and in vivo.

Identification of an aub, integrin—small binding molecule which inhibits integrin-dependent leukemia
cell migration (111)

We developed an assay for the identification of small-molecules that interact and compete with a
DDGW peptide-bearing phage for binding to the ay | domain of ayb, integrin. By this technique, we were
about to select compounds that bind to the target protein with a high affinity, are more stable against
proteolysis and less susceptible to rapid clearance in vivo. The most active compound, IMB-10 bound six
times stronger to both a, and ay | domains than the peptide and inhibited DDGW phage binding.
Surprisingly, unlike DDGW, IMB-10 failed to disrupt the interaction between the | domains and proMMP-9.
However, IMB-10 was capable of stahilizing the active conformation of the | domain as it increased the
binding to integrin ligands (Figure 2). In addition, ayb, integrin-expressing cells adhered strongly to coated
integrin ligands in the presence of IMB-10 and failed to detach in the presence of cation-cheating agents,
such as EDTA (Figure 4). Furthermore, single amino acid point mutations in the integrin ay | domain
indicated that Lys245 would be an important residue in mediating binding to progelatinases. Also, mutations
in the hydrophobic pocket accommodating the C-terminal a-helix, which is known to regulateintegrin’s high
affinity state conformation, inhibited the | domain’s ability to be induced by IMB-10.

Finally, IMB-10 showed no signs of toxicity at concentrations of 25 pM and efficiently inhibited
integrin-dependent migration when added to THP-1 and OCI-AML-3 cells in vitro (Figure 5). This
compound had no effect in mobilization of cdls that lack leukocyte b, integrins. Similarly, the function of

IMB-10 was also tested in a thioglycolate-induced peritonitis model in vivo (Figure 6). The number of
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leukocytes that were recruited to the peritoneum was reduced by 70 % at three hours post-induction of the

inflammation.

Inhibition of human leukemia tumor xenografts by blocking the interaction between integrins and
progelatinases (1V)

We recently demonstrated that proMMP-9 bound via its catalytic domain to ay and a, | domains of
b, integrins on the surface of leukemic cell lines (I, Figure 2B). This binding was inhibited by the MM P-9-
related peptide, HFDDDE derived from the MMP catalytic domain sequence, and by the b, integrin ligand,
DDGW obtained by phage display (11, Figure 4C). Next, we determined the affinity of proMMP-9 to the cdll
surface using recombinant catalytic and C-terminal hemopexin domains. **I-AproMMP-9 bound to OCI-
AML-3 cells with high affinity [dissociation constant (Kg) = 93 nM + 18 nM; n=3]. Inhibition experiments
with the ay and a, antibodies, and integrin-binding peptides indicated that ayb, and a_b, integrins serve as
receptors for AproMMP-9. We aso used short interfering RNAs (SIRNA) to suppress the endogenous ay
integrin gene on OCI-AML-3 and THP-1 cells. *®I-AproMMP-9 binding to the RNAi-treated cells was
significantly reduced as compared to untreated cells. One of the ay SIRNAS suppressed integrin expression
as shown by protein levels at 72 h post-transfection and by FACS. ay siRNAs did not affect proMMP-9
protein expression levels. RNAi-treated cells showed weakened binding to ICAM-1- or proMMP-9-coated
surfaces indicating the loss of integrin function. Taken together, these data indicate that b, integrins, possibly
both ayb, and a,b,, anchor the proMMP-9 catalytic domain to the cell surface (1V, Figure 3).

As the peptides efficiently inhibited leukemia cell migration in several in vitro assays (I, Figure 9B;
I, Figure 6B), we set out to study the role of MMP-integrin complexes in leukemia cell growth and
dissemination in mouse models. Exposure of human OCI-AML-3 and THP-1 leukemic cellsin vitro to either
HFDDDE or DDGW peptides at concentrations as high as 500 pM showed no signs of cytotoxicity.
However, when administered to mice, the peptides significantly suppressed the growth of OCI-AML-3 and
THP-1 xenografts, the linear HFDDDE hexapeptide being consistently more active than the cyclic 18-mer
DDGW. Nude mice were injected subcutaneously with human OCI-AML-3 cells and divided into 5 groups
(n = 8 mice/group). Peptides were administered i.v. a day 4 postinoculation and at concentrations of 10
mg/kg 5 times a week. The HFDDDE- and DDGW-treated mice had significantly smaller tumors at day 20
compared to sequence related but inactive control peptide groups. The tumor suppressive effect of HFDDDE
lasted longer than that of DDGW and at day 160, when the experiment was ended, 3 out of 8 tumor-bearing
micein the HFDDDE group showed tumor regression. Treatment with HFDDDE and DDGW peptides led to
a statistically significant increase in survival that was extended by 140 days and by 50 days, respectively.
Similar results were obtained with the peptides, this time by treating THP-1 tumor-bearing mice (1V, Figure
1).

Several reports demonstrate that tumor-infiltrating leukocytes and increased tumor angiogenesis

contribute to the survival, growth, and progression of various malignant tumors (Folkman et al., 1995; Lin
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and Pollard, 2004). We therefore checked whether the integrin-binding peptides had any effect on host’s
immune system and tumor vascularization. Histological examination of tumor sections with an antibody
against mouse aub, integrin showed diminished host infiltrating leukocytes and blockage of blood vessel
formation in HFDDDE- and DDGW-treated tumors compare to saline-treated. As the subcutaneously
growing leukemias may not properly mimick human leukemias which disseminate via the blood, we next
examined leukemia dissemination in mice at approximately 40 days i.v. postinoculation of OCI-AML-3
cells. Mice subjected to HFDDDE-peptide treastment showed decreased tumor burden and lower number of
visible tumor nodules in the liver, lungs, and gastrointestinal system (1V, Figure 1). In a different mouse
model, the HFDDDE peptide and an antibody raised against it inhibited the infiltration of *° -labeled OCI-
AML-3 cellstothe liver, bone marrow, and spleen. The HFDDDE peptide also inhibited proMMP-9 binding
to the surface of AML cells, blocked cell-mediated gelatin degradation, and “ stabilized” several cell surface
proteins, including b, integrins. In addition, the MMP-9 levels were significantly increased in the serum of
mice which have been treated with the integrin-binding peptides, HFDDDE and DDGW (IV, Figure 2).
These results indicate that disruption of the integri/fMMP complexes presented here provides an

experimental framework to yield AML-targeted therapies..
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DISCUSSION

Extensive effort has been made in developing small molecules, peptides and peptidomimetics
capable of inhibiting interactions which occur on the cell surface. Several linear and cyclic peptides derived
from sequences of b, integrins, ICAMs, and ECM proteins have been shown to have inhibitory effects in
vitro and in vivo. Indeed, ICAM-1-derived peptides can control immune responses in autoimmune diseases
and allograft rejection by simply blocking ICAM-1-binding to a b, integrin. Peptides derived from the
sequence of by- and b,-integrins have been also shown to be potent anti-inflammatory agents by blocking
integrin-mediated adhesion of leukocytes (Y usuf-Makagiansar et al., 2002). Furthermore, inhibition of an
integrin-MMP cdll-surface complex, aybs/MMP-2 dramatically suppressed angiogenesis in vivo, suggesting
that this interaction is essential for endothelial cell proliferation and migration (Silletti et a., 2001). Such
reagents were reported not only to interfere with ligand binding, but also could stabilize integrin
conformations. Conformational changes after ligand or peptide binding is known to induce exposure of
neoepitopes referred to as ligand-induced binding site epitopes (LIBS) (Takagi et a., 1997; Lu et a., 2001b).
Finally, integrin-directed small molecules have entered phase | and Il clinical cancer trials as they showed
strong inhibition of tumor angiogenesis (Kerbel et al., 2000). Also, peptides containing the RGD sequence
have been demonstrated to inhibit experimental tumor metastasis in animal models (Curley et al., 1999).

In our study, a cyclic peptide DDGW discovered by phage display, both inhibited proMMP-9/ayb,
complex formation and leukocyte migration in vitro and in vivo. However, this motif did not block leukocyte
adhesion to ICAM-1 and fibrinogen, suggesting the integrin-bound MMP is essential for degradation of
integrin-directed bonds to matrix proteins. We also discovered a small molecule recognizing the aub,
integrin which had no effect on the integri/MMP complex formation but instead it enhanced the binding of
theintegrin | domain toits ligands by stabilizing the active conformation of the | domain.

Studies on the role of MMP-9 in leukocyte migration have been controversial. For example, some
reports have supported MM P-9 function in leukocyte migration (Keck et al., 2002; Lee et al., 2003), whereas
others have not (Betsuyaku et al., 1999; Allport et al., 1999). These findings are not surprising as MMPs are
known to have overlapping functions and other MMPs within the family could compensate for the loss of
MMP-9.

The molecular basis of the integri-MMP interaction was first studied in vitro using purified
integrins or integrin domains and purified MMPs, both in ELISA and immunoprecipitation
experiments. Cell surface labeling and coimmunoprecipitation studies further demonstrated the
occurrence of the complex in leukemic cell lines. Experiments with recombinant MMP-9 domains
gave further support for our finding that the site interacting with the integrin is present on the
MMP-9 catalytic domain (Figure 6; left panel). The putative binding site was revealed by using
synthetic peptides as 20-mers, spanning the entire MM P-9 sequence.
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Figure 6. Structure of the C-terminally truncated proMMP-9. The pro-domain and cataytic domain, as well as the three
fibronectin type Il (Fnll) repeats are shown in green, cyan/blue, and light pink, light magenta, and magenta,
respectively. The HFDDDE peptide motif, located in the cataytic domain is shown in a higher magnification (right
panel) and amino acids are drawn as ball-and-stick models. The blue b strands and cyan a helices belong to the
catalytic domain of pro-MMP-9. Calcium atoms are depicted in yellow and zinc atoms in orange. The proMMP-9
pictures were generated using Molscript and Raster3D programs. Gimp-2.2 (http://www.gimp.org) has been used to
modify the pictures from the PDB entry 1L6J (Elkins et al., 2002). The figure is printed with the permission of Minna
Varis.

The binding motif in these peptides was homologous to our phage display integrin-binding peptide and to a
sequence e ement, HFDDDE found in the catalytic domain of MMP-2 and -9 (Figure 6; right panel). This
motif could also be involved in cheating the two Ca®* ions which are coordinated by the negatively charged

amino acids, D*® and E*®

. Although the approach to mimick features of complex protein structure with
small peptides may appear somewhat simplified, our study came up with peptides capable of blocking the
interaction between MMP-9 and ayb, integrin. However, we can exclude the possibility that these peptides
also affect other b, integrin ligands than proMMP-9.

A very interesting finding was the observation that the proenzyme, but not the activated MM P bound
to the integrin. Although mechanistically unclear (the site identified to mediate the binding in MMP-9 is not
within the prodomain), this feature could be important for the control of MMPs activity in vivo. Also, the
location of the binding site being close to the MMP catalytic center further suggests a mechanism for
evading inhibition by TIMPs or a,-macroglobulin. In the absence of inhibitors, the cell surface-localized
proMMP-9 would be readily susceptible for activation and substrate hydrolysis, which can occur in the
presence of the intact propeptide (Bannikov et al., 2002). In addition, our results suggest that proMMP-9
binds preferentially to the extended conformation of the integrin as the integrin-binding compound, known to
stabilize the active conformation of the ay | domain strongly increased its binding to proMMP-9. It remains
to be seen whether other integrins conformations, such as the bent (inactive) and intermediate forms (Xiong
et al., 2001; Takagi et a., 2002) can support proMMP-9 binding.
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Moreover, we present evidence that proMMP-9/ayb, complex is stored within the intracellular
granulesin resting PMNs and translocated to the cell surface upon cell stimulation (Figure 7). Thisisa more
plausible mechanism for the MMP/integrin complex formation than binding of a secreted MMP to an
unoccupied integrin on the cell surface. Also, leukocyte integrins could play arolein targeting of proMMPs
to a site where proteolytic activity is needed. However, it remains to be determined by which mechanism
(pro)MMP-9 is located at the surface of cells lacking b, integrins.

Activation of cells with cytokines, chemokines, and chemical agents is known to induce the release
of transmembrane proteins, including TGF-a, TNF-a, and L-selectin (Arribas e a., 1996; Fiore et al.,
2002), a process that is known to be essential for regulating the cellular functions of these receptors. It has
been shown that proteolytic processing of fibrinogen regulates ayb, integrin-mediated leukocyte adhesion
and detachment on this substrate (Lishko et al., 2002). The ayb, integrin ligands ICAM-1 and fibrinogen,
which are important for leukocyte migration act also as substrates for MMP-9 (Lelongt et al., 2001; Fiore et
al., 2002; Sultan et al., 2004). Accordingly, collagenolysis by MMP-1 is known to be required for efficient
migration of keratinocytes on type | collagen matrix (Pilcher et al., 1997). Finally, MT1-MMP-mediated
shedding of laminin-5 leads to stimulated epithelial cell migration (Koshikawa et al., 2000).

CTT ECM ligands Inactive
BE%B\'/DE I p2 integrin
e==gy MMP-9
O |-domain
Cytokines ]
Chemokines %@ Selectins
Chemoattractants =
Chemical agents S Active 2
Storage § @> . integrin
granules § - % ICAM-1
Nucleus X Shedding

Leukocyte

Figure 7. Schematic summary of the integrin/MMP complex in PMNs. The amB/MMP-9 complex is formed in
PMN intracellular granules and can be rapidly mobilized to the cell surface after exposure to degranulation stimuli, such
as TNF-b, LPS, and fMLP. PMN degranulation can also be achieved when cells are in contact with ECM proteins.
Upon PMN activation, cell-surface receptors are routinely shed from PMNSs. Loss of these receptors is mainly due to

PMN-derived MMP activity, a process that facilitates PMN rolling and migration via degradation of the vascular
basement membrane during PMN extravasation.

The physiological role of MMP-2 and -9 is not fully understood, but to our current knowledge they
are involved in the processing of the extracdlular matrix during growth and tissue differentiation, probably

as critical factors for cell motility. Proteases and integrins for such a function have been expected to be
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colocalized at the surface of migrating cells. Most MMPs, however, are secreted enzymes and the search for
cell surface receptors for MMPs has been going on for years. At the moment there are some hundred
publications describing receptors, such as integrins for various MMPs, among them MMP-2 and -9.
Likewise, gelatinase activity has been found in the membrane of leukocytes, but the identification of the
leukocyte integrins as gelatinase receptors is new to our knowledge and likely to extend our understanding of
further mechanisms involved in leukocyte migration. Studies from knockout models for integrins, including
leukocyte b, integrins confirm their involvement in various steps of cancer development. Eventually, tumor
growth and metastasis could be blocked by interfering with integrin function on tumor cells and blood
vessels. This study provides evidence that a small, negatively charged peptide, derived from the catalytic
domain of MMP-9, efficiently blocks ayb,/MMP-9 complex formation, leukemia cell-mediated pericellular
proteolysis, leukemia cell extravasation and growth in vivo. Several MMP inhibitors have been deveoped
and tested in clinical trials but the results have been disappointing. Based on our findings, new and more
effective cancer therapeutics could be achieved by blocking, not only MMPs aone but their association with
integrins or other cell surface receptors. Selective antagonists of the MMP-9/ayb, integrin interaction may
not only be therapeutic in leukemias but also in other types of malignancies where tumor-infiltrating

leukocytes enhance tumor growth.

60



ACKNOWLEDGEMENTS

This study was carried out at the Department of Biological and Environmental Sciences, University
of Helsinki, under the supervision of Docent Erkki Koivunen and Professor Carl G. Gahmberg, during the
years 2001-2005. This work has been supported by the Academy of Finland, the Magnus Ehrnrooth
Foundation, the Finnish Cancer Society, the Ida Montinin Foundation, the Biomedicum Helsinki Foundation,
and the University of Helsinki.

My sincerest graditute is owed to Erkki and Calle for providing me with excellent research facilities,
and for al the support and encouragement throughout the years. Their guidance during the first years as a
scientist has been invaluable for completing this study.

| want to thank Professor Ulf-Hakan Stenman and Timo Lévgren for their support as the follow-up
group of “InVitro Diagnostics’ graduate school.

| am greatful to Professors Renata Pasqualini and Wadih Arap at Texas University M.D. Anderson
Cancer Center (Houston, Texas, USA), and to Professor Niels Borregaard at the National University Hospital
(Copenhagen, Denmark) for their valuable comments, for allowing me to visit their laboratories, and use
their facilities.

Professor Jari Ylanne and Docent Pekka Westermarck are gratefully acknowledged for their careful
review of the manuscript and constructive criticism.

| want to thank al my former and present colleagues of Erkki’s lab: Tanja-Maria, Aino, 2 Terhis,
Sami, Jussi, Pontus, Mikad, Sofia, Juho for their contribution to my work, joyful moments inside and
outside the lab, and mostly, for their friendship.

To all the former and present members of Call€ s lab: Susanna, Tian, Esa, Anne, Liisa, Minna, Tiina,
Suski, Heti, Maria, Cami, Outi, Matti, Jani, Pauli, Yvonne, Leena and all the great people of the Division of
Biochemistry...a BIG thanks. Tian and Susanna are also thanked for proofreading this thesis. My warmest
thanks go to Eve for the guidance during my very first stepsin thelab.

My warmest gratitude goes to Leena K. for her excelent technical assistance in my work, for all the
support during the years, and for the enjoyabl e discussions.

Very special thanks go to my dearest friends: Can, Jari, Laurent, Erik, Rabah, Roosa, and Zeynep for
their help, support, the unforgetable moments outside the lab, and for the fun they have brought into my life.

I could not have accomplished this work without the everlasting love and support of my parents and of
my sister. They have been the greatest motivation for me throughout the years. THANK YOU for believing
in me.

From the bottom of my heart, | want to thank Denice for her love and continuous support.

In Helsinki, November 2005

Mical hsStef anidakhs

61



REFERENCES

Adair, B. D., J-P. Xiong, C. Maddock, S. L. Goodman, M. A. Arnaout, and M. Yeager. 2005. Three-dimensional EM structure of the
ectodomain of integrin alphaVbeta3 in acomplex with fibronectin. J. Cell Biol. 168:1109-1118.

Adams, S. P., and R. R. Lobb. 1999. Inhibitors of integrin dpha4 beta1 (VLA-4). Ann. Rep. Med. Chem. 34:179-188.

Aguayo, A., H. Kantarjian, T. Manshouri, C. Gidd, E. Estey, D. Thomas, C. Kaller, Z. Estrov, S. OBrien, M. Keating, E. Freireich,
and M. Albitar. 2000. Angiogenesisin acute and chronic leukemias and myel odysplastic syndromes. Blood 96:2240-2245.

Ala-Aho, R., and V. M. Kahari. 2005. Collagenases in cancer. Biochimie 87:273-286.

Allport, J R., Y. C. Lim, J. M. Shipley, R. M. Senior, S. D. Shapiro, N. Matsuyoshi, D. Vestweber, and F. W. Luscinskas. 2002.
Neutrophils from MMP-9 or neutrophil e astase-deficient mice show no defect in transendothelial migration under flow in
vitro. J. Leuk. Biol. 71:821-828.

Altevogt, P., M. Hubbe, M. Ruppert, J. Lohr, P. von Hoegen, M. Sammar, D. P. Andrew, L. McEvoy, M. J. Humphries, and E. C.
Butcher. 1995. The alpha4 integrin chainisaligand for alpha 4 beta 7 and alpha 4 beta 1. J. Exp. Med. 182:345-355.

Altieri, D. C. 1991. Occupancy of CD11b/CD18 (Mac-1) divalent ion binding site(s) induces leukocyte adhesion. J. Immunal.
147:1891-1898.

Altieri, D., S. Stamnes, and C. Gahmberg. 1992. Regulated Ca2+ signalling through leukocyte CD11b/CD18 integrin. Biochem. J.
288 465-473.

Alvarez, O. A., D. F. Carmichael, and Y. A. Declerck. 1990. Inhibition of collagenolytic activity and metastasis of tumor-cells by a
recombinant human tissueinhibitor of metaloproteinases. J. Natl. Cancer Instit. 82:589-595.

Amour, A., C. G. Knight, A. Webster, P. M. Scocombe, P. E. Stephens, V. Knauper, A. J. P. Docherty, and G. Murphy. 2000. The in
vitro activity of ADAM-10 isinhibited by TIMP-1 and TIMP-3. FEBS Lett. 473:275-279.

Anderson, D. C., and T. A. Springer. 1987. Leukocyte Adhesion Deficiency - an inherited defect in the Mac- 1, LFA-1, and p150,95
glycoproteins. Annu. Rev. Med. 38:175-194.

Angel, P, M. Imagawa, R. Chiu, B. Stein, R. Imbra, H. Rahmsdorf, C. Jonat, P. Herrlich, and M. Karin. 1987. Phorbol ester-
inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49:729-739.

Aoudjit, F., E. F. Potworowski, and Y. St-Pierre. 1998. Bi-directional induction of matrix metall oproteinase-9 and tissue inhibitor of
matrix metalloproteinase-1 during T lymphoma endothelia cell contact: Implication of ICAM-1. J. Immunol. 160:2967-
2973.

Arfors, K. E., C. Lundberg, L. Lindbom, K. Lundberg, P. G. Beatty, and J. M. Harlan. 1987. A monoclonal-antibody to the
membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo.
Blood 69:338-340.

Arkona, C., and B. Wiederanders. 1996. Expression, subcellular distribution and plasma membrane binding of cathepsin B and
gelatinases in bone metastatic tissue. Biol. Chem. 377:695-702.

Arnaout, M., N. Dana, J. Melamed, R. Medicus, and H. Colten. 1983. Low ionic strength or chemical cross-linking of monomeric
C3b increases its binding affinity to the human complement C3b receptor. Immunol ogy 48:229-237.

Arnaout, M. A. 1990a Leukocyte adhesion molecules deficiency-its structural basis, pathophysiology and implications for
modul ating the inflammatory response. Immunol. Rev. 114:145-180.

Arnaout, M. A. 1990b. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75:1037-1050.

Arnaout, M. A, E. Remold-O'Donnell, M. W. Pierce, P. Harris, and D. G. Tenen. 1988. Molecular cloning of the alpha subunit of
human and guinea pig leukocyte adhesion glycoprotein Mol: Chromosomal localization and homology to the alpha
subunits of integrins. Proc. Natl. Acad. Sci. U S A 85:2776-2780.

Arribas, J,, L. Coodly, P. Vollmer, T. K. Kishimoto, S. Rose-John, and J. Massagué. 1996. Diverse cell surface protein ectodomains
are shed by a system sensitive to metal oprotease inhibitors. J. Biol. Chem. 271:11376-11382.

Arroyo, A. G., J. T. Yang, H. Rayburn, and R. O. Hynes. 1996. Differential requirements for apha 4 integrins during fetal and adult
hematopoiess. Cell 85:997-1008.

Artym, V. V., A. L. Kindzelskii, W.-T. Chen, and H. R. Petty. 2002. Molecular proximity of seprase and the urokinase-type
plasminogen activator receptor on maignant melanoma cell membranes. dependence on beta 1 integrins and the
cytoskel eton. Carcinogenesis 23:1593-1602.

Asada, M., K. Furukawa, C. Kantor, C. Gahmberg, and A. Kobata. 1991. Structural study of the sugar chains of human leukocyte cell
adhesion molecules CD11/CD18. Biochemistry 30:1561-1571.

Auvril, L., M. Di Martino-Ferrer, G. Pignede, M. Seman, and F. Gauthier. 1994. Identification of the U-937 membrane-associated
proteinase interacting with the V3 loop of HIV-1 gp120 as cathepsin G. FEBS Lett. 345:81-86.

Bachmann, M. F., K. McKadlFaienza, R. Schmits, D. Bouchard, J. Beach, D. E. Speiser, T. W. Mak, and P. S. Ohashi. 1997. Didtinct
rolesfor LFA-1 and CD28 during activation of naive T cells: Adhes on versus costimulation. Immunity 7:549-557.

Bainton, D. F. 1999. Distinct granule populations in human neutrophils and lysosomal organelles identified by immuno-electron
microscopy. J. Immunol. Methods 232:153-168.

Bainton, D. F., and M. G. Farquhar. 1966. Origin of granules in polymorphonuclear leukocytes: Two types derived from opposite
faces of the golgi complex in devel oping granulocytes. J. Cell Biol. 28:277-301.

Bainton, D. F., J. L. Ullyot, and M. G. Farquhar. 1971. Development of neutrophilic polymorphonuclear leukocytes in human bone
marrow - origin and content of azurophil and specific granules. J. Exp. Med. 134:907-934.

Bannikov, G. A., T. V. Kareling, I. E. Callier, B. L. Marmer, and G. |. Goldberg. 2002. Substrate binding of gelatinase B inducesits
enzymatic activity in the presence of intact propeptide. J. Biol. Chem. 277:16022-16027.

Bax, D. V., A. J. Messent, J. Tart, M. van Hoang, J. Kott, R. A. Maciewicz, and M. J. Humphries. 2004. Integrin alphaSbetal and
ADAM-17 interact in vitro and co-localize in migrating Hela cells. J. Biol. Chem. 279:22377-22386.

62



Bazzoni, G., and M. E. Hemler. 1998. Are changes in integrin affinity and conformation overemphasized? Trends Biochem. ci.
23:30-34.

Beglova, N., S. C. Blacklow, J. Takagi, and T. A. Springer. 2002. Cysteine-rich module structure reveas a fulcrum for integrin
rearrangement upon activation. Nat. Sruct. Biol. 9:282-287.

Benddl, L. J, K. Kortlepel, and D. J. Gottlieb. 1993. Human acute myeloid-leukemia cells bind to bone-marrow stroma via a
combination of beta-1 and beta-2 integrin mechanisms. Blood 82:3125-3132.

Berditchevski, F., S. Chang, J. Bodorova, and M. E. Hemler. 1997. Generation of monoclonal antibodies to integrin-associated
proteins - Evidence that alpha3betal complexes with EMMPRIN/basigin/OX47/M6. J. Biol. Chem. 272:29174-29180.

Bergers, G., R. Brekken, G. McMahon, T. H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, and D. Hanahan.
2000. Matrix meta | oproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2:737-744.

Berlin, C,, E. L. Berg, M. J. Briskin, D. P. Andrew, P. J. Kilshaw, B. Holzmann, I. L. Weissman, A. Hamann, and E. C. Butcher.
1993. Alphadbeta7-integrin mediates lymphocyte binding to the mucosal vascular addressin MadCAM-1. Cell 74:185-195.

Berton, G., L. Fumagalli, C. Laudanna, and C. Sorio. 1994. Beta-2 integrin-dependent protein-tyrosine phosphorylation and
activation of the Fgr protein-tyrosine kinase in human neutrophils. J. Cel Biol. 126:1111-1121.

Berton, G., and C. A. Lowell. 1999. Integrin signaling in neutrophil s and macrophages. Cell. Signal. 11:621-635.

Betsuyaku, T., J. M. Shipley, Z. Liu, and R. M. Senior. 1999. Neutrophil emigration in the lungs, peritoneum, and skin does not
require gelatinase B. Am. J. Respir. Cell Mal. Biol. 20:1303-1309.

Bigg, H. F., Y. E. Shi, Y. L. E. Liu, B. Steffensen, and C. M. Overall. 1997. Specific, high affinity binding of tissue inhibitor of
metalloproteinases-4 (TIMP4) to the COOH-terminal hemopexin-like domain of human gelatinase A - TIMP-4 binds
progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. J. Biol. Chem. 272:15496-15500.

Birkeda-Hansen, H., W. Moore, M. Bodden, L. Windsor, B. Birkedal-Hansen, A. DeCarlo, and J. Engler. 1993. Matrix
metall oproteinases: areview. Crit. Rev. Oral Biol. Med. 4:197-250.

Bjorklund, M., P. Hekkila, and E. Koivunen. 2004. Peptide inhibition of cataytic and noncatalytic activities of matrix
metal | oprotei nase-9 blocks tumor cell migration and invasion. J. Biol. Chem. 279:29589-29597.

Bleijs, D. A., M. E. Binnerts, S. J. van Vliet, C. G. Figdor, and Y. van Kooyk. 2000. Low-affinity LFA-1/ICAM-3 interactions
augment LFA-1/ICAM-1-mediated T cell adhesion and signaling by redistribution of LFA-1. J. Cell Sci. 113:391-400.

Baire, A., L. Covic, A. Agarwal, S. Jacques, S. Sherifi and A. Kuliopulos. 2005. PARL is a matrix metalloprotease-1 receptor that
promotesinvasion and tumorigenesis of breast cancer cells. Cell 120:303-313.

Boissier, S., M. Fereras, O. Peyruchaud, S. Magnetto, F. H. Ebetino, M. Colombel, P. Delmas, J. M. Ddaisse, and P. Clezardin.
2000. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone
metastases. Cancer Res. 60:2949-2954.

Borden, P, and R. Heler. 1997. Transcriptiona control of matrix metaloproteinases and the tissue inhibitors of matrix
metal |l oproteinases. Crit. Rev. Eukaryot. Gene Expr. 7:159-178.

Borges, E., Y. W. Jan, and E. Ruodahti. 2000. Platelet-derived growth factor receptor beta and vascular endothelia growth factor
receptor 2 bind to the beta(3) integrin through its extracellular domain. J. Biol. Chem. 275:39867-39873.

Borjesson, D. L., S. I. Simon, E. Hodzic, H. E. V. DeCock, C. M. Balantyne, and S. W. Barthold. 2003. Roles of neutrophil beta 2
integrins in kinetics of bacteremia, extravasation, and tick acquisition of Anaplasma phagocytophila in mice. Blood
101:3257-3264.

Bork, P., T. Doerks, T. A. Springer, and B. Snel. 1999. Domains in plexins: links to integrins and transcription factors. Trends
Biochem. ci. 24:261-263.

Borkakati, N. 2000. Structura studies of matrix meta loproteinases. J. Mol. Med. 78:261-268.

Borland, G., G. Murphy, and A. Ager. 1999. Issue inhibitor of metall oproteinases-3 inhibits shedding of L-selectin from leukocytes.
J. Biol. Chem. 274:2810-2815.

Borregaard, N., and J. B. Cowland. 1997. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503-3521.

Borregaard, N., L. Kjeldsen, H. Sengelov, M. S. Diamond, T. A. Springer, H. C. Anderson, T. K. Kishimoto, and D. F. Bainton.
1994. Changes in subcellular-locali zation and surface expression of L-selectin, akaline-phosphatase, and Mac-1 in human
neutrophils during stimulation with inflammatory mediators. J.Leukoc. Biol. 56:80-87.

Borregaard, N., M. Sehested, B. S. Nielsen, H. Sengelov, and L. Kjeldsen. 1995. Biosynthesis of granule proteins in normal human
bone-marrow cells - Gelatinaseis a marker of termina neutrophil differentiation. Blood 85:812-817.

Bouvard, D., C. Brakebusch, E. Gustafsson, A. Aszodi, T. Bengtsson, A. Berna, and R. Fassler. 2001. Functiona conseguences of
integrin gene mutationsin mice. Circ. Res. 89:211-223.

Bramhdl, S. R, M. T. Hallissey, J. Whiting, J. Scholefield, G. Tierney, R. C. Stuart, R. E. Hawkins, P. McCulloch, T. Maughan, P.
D. Brown, and M. Baillet. 2002. Marimastat as maintenance therapy for patients with advanced gastric cancer: a
randomised trial. Brit. J. Cancer 86:1864-1870.

Brew, K., D. Dinakarpandian, and H. Nagase. 2000. Tissue inhibitors of metalloproteinases: evolution, structure and function. BBA-
Prot. Sruct. Mol. Enzymol. 1477:267-283.

Bridges, L. C., and R. D. Bowditch. 2005. ADAM-integrin interactions. Potentia integrin regulated ectodomain shedding activity.
Curr. Pharm Des. 11:837-847.

Bridges, L. C.,, K. R. Hanson, P. H. Tani, and R. D. Bowditch. 2002. Identification of residuesin MDC-L (ADAM 28) that comprise
the apha4 beta 1 integrin recognition site. FASEB J. 16:A900-A900.

Brinckerhoff, C. E., J. L. Rutter, and U. Benbow. 2000. Interstitia collagenases as markers of tumor progression. Clin. Cancer Res.
6:4823-4830.

Brooks, P. C., A. M. P. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. H. Hu, G. Klier, and D. A. Cheresh. 1994. Integrin
alpha(V)beta(3) antagonists promote tumor-regression by inducing apoptosis of angiogenic blood-vessels. Cell 79:1157-
1164.

Brooks, P. C., S. Silletti, T. L. von Schalscha, M. Friedlander, and D. A. Cheresh. 1998. Disruption of angiogenesis by PEX, a
noncatal ytic metall oprotei nase fragment with integrin binding activity. Cell 92:391-400.

63



Brooks, P. C., S. Stromblad, L. C. Sanders, T. L. von Schalscha, R. T. Aimes, W. G. StetlerStevenson, J. P. Quigley, and D. A.
Cheresh. 1996. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin
alphav beta 3. Cell 85:683-693.

Brown, E., L. Hooper, T. Ho, and H. Gresham. 1990. Integrin-associated protein - a 50-Kd plasma-membrane antigen physically and
functionally associated with integrins. J. Cell Biol. 111:2785-2794.

Brown, E. J., and W. A. Frazier. 2001. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11:130-135.

Bunting, M., E. S. Harris, T. M. Mclntyre, S. M. Prescott, and G. A. Zimmerman. 2002. Leukocyte adhesion deficiency syndromes:
adhesion and tethering defects involving beta(2) integrins and selectin ligands. Curr. Opin. Hematol. 9:30-35.

Burns, A. R., R. A. Bowden, S. D. MacDonell, D. C. Walker, T. O. Odebunmi, E. M. Donnachie, S. I. Simon, M. L. Entman, and C.
W. Smith. 2000. Analysis of tight junctions during neutrophil transendothelia migration. J. Cell Sci. 113:45-57.

Butcher, E. 1991. Leukocyte-endothelia cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033-1036.

Cabanas, C., and F. Sanchez-Madrid. 1999. CD11c (leukocyte integrin CR4 al pha subunit). J. Biol. Regul. Homeost. Agents 13:134-
136.

Ca, T. Q. and S. D. Wright. 1996. Human leukocyte elastase is an endogenous ligand for the integrin CR3 (CD11b/CD18, Mac-1,
alpha(M)beta(2)) and modulates polymorphonuclear leukocyte adhesion. J. Exp. Med. 184:1213-1223.

Cal, S, J. M. P. Freije, J. M. Lopez, Y. Takada, and C. Lopez-Otin. 2000. ADAM 23/MDC3, a human disintegrin that promotes cell
adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. Mol. Biol. Cell 11:1457-
1469.

Calderwood, D. A. 2004. Integrin activation. J. Cell Sci. 117:657-666.

Calderwood, D. A., and M. H. Ginsberg. 2003. Tdin forges the links between integrins and actin. Nat. Cell Biol. 5:694-697.

Cao, J,, P. Kozarekar, M. Pavlaki, C. Chiarelli, W. F. Bahou, and S. Zucker. 2004. Distinct roles for the cataytic and hemaopexin
domains of membrane type 1-matrix metalloproteinase in substrate degradation and cell migration. J. Biol. Chem.
279:14129-14139.

Cao, J. A., A. Rehemtulla, W. Bahou, and S. Zucker. 1996. Membrane type matrix metalloproteinase 1 activates pro-gelatinase A
without furin cleavage of the N-termina domain. J. Biol. Chem. 271:30174-30180.

Carlos, T. M., and J. M. Harlan. 1994. L eukocyte-Endothelial Adhesion Molecules. Blood 84:2068-2101.

Carman, C. V., and T. A. Springer. 2003. Integrin avidity regulation: are changes in affinity and conformation underemphasized?
Curr. Opin. Cell Biol. 15:547-556.

Carmeliet, P., L. Moons, R. Lijnen, M. Baes, V. Lemaitre, P. Tipping, A. Drew, Y. Eeckhout, S. Shapiro, F. Lupu, and D. Callen.
1997. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat. Genet. 17:439-
444,

Carriero, M. V., S. Del Vecchio, M. Capozzoli, P. Franco, L. Fontana, A. Zannetti, G. Botti, G. D'Aiuto, M. Salvatore, and M. P.
Stoppelli. 1999. Urokinase receptor interacts with alpha(v)beta(5) vitronectin receptor, promoting urokinase-dependent cell
migration in breast cancer. Cancer Res. 59:5307-5314.

Casasnovas, J., T. Springer, J. Liu, S. Harrison, and J. Wang. 1997. Crystal structure of ICAM-2 reveals a distinctive integrin
recognition surface. Nature 387:312-315.

Casasnovas, J. M., C. Pieroni, and T. A. Springer. 1999. Lymphocyte function-associated antigen-1 binding residues in intercellular
adhesion molecule-2 (ICAM-2) and the integrin binding surface in the ICAM subfamily. Proc. Natl. Acad. <i. U SA
96:3017-3022.

Cha, H., E. Kopetzki, R. Huber, M. Lanzendorfer, and H. Brandstetter. 2002. Structural basis of the adaptive molecular recognition
by MMP9. J. Mal. Biol. 320:1065-1079.

Chambers, A. F., A. C. Groom, and I. C. MacDonald. 2002. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev.
Cancer 2:563-572.

Chan, B. M. C.,, N. Matsuura, Y. Takada, B. R. Zetter, and M. E. Hemler. 1991. In vitro and in vivo consequences of VLA-2
expression on rhabdomyosarcoma cells. Science 251:1600-1602.

Chan, J. R, S. J. Hyduk, and M. I. Cybulsky. 2000. apha(4)beta(1) integrin/'VVCAM-1 interaction activates al pha(L )beta(2) integrin-
mediated adhesion to ICAM-1in human T cdls. J. Immunol. 164:746-753.

Chen, H., and N. S. Sampson. 1999. Mediation of sperm-egg fusion: evidence that mouse egg al pha(6)beta(1) integrin is the receptor
for sperm fertilin beta. Chem. Bial. 6:1-10.

Chen, W.-T., and J.-Y. Wang. 1999. Specidized surface protrusions of invasive cells, invadopodiaand lamellipodia, have differential
MT1-MMP, MMP-2, and TIMP-2 localization. Ann. N.Y. Acad. Sci. 878:361-371.

Cho, C. H., D. O. Bunch, J E. Faure, E. H. Goulding, E. M. Eddy, P. Primakoff, and D. G. Myles. 1998. Fertilization defects in
sperm from mice lacking fertilin beta. Science 281:1857-1859.

Choai, J, L. Leyton, and S.-U. Nham. 2005. Characterization of alphaX I-domain binding to Thy-1. Biochem. Biophys. Res. Commun.
331:557-561.

Christofidou-Solomidou, M., M. T. Nakada, J. Williams, W. A. Muller, and H. M. Delisser. 1997. Neutrophil platelet endothelial
cell adhesion molecule-1 participates in neutrophil recruitment at inflammatory sites and is down-regulated after leukocyte
extravasation. J. Immunol. 158:4872-4878.

Cianfrocca, M., T. P. Cooley, J. Y. Lee, M. A. Rudek, D. T. Scadden, L. Ratner, J. M. Pluda, W. D. Figg, S. E. Krown, and B. J.
Dezube. 2002. Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi's sarcoma: A phase |
AIDS malignancy consortium study. J. Clinical Oncal. 20:153-159.

Codony-Servat, J., J. Albanell, J. C. Lopez-Talavera, J. Arribas, and J. Basdga. 1999. Cleavage of the HER2 ectodomain is a
pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer
Res. 59:1196-1201.

Colognato, H., M. MacCarrick, J. J. ORear, and P. D. Yurchenco. 1997. The laminin a pha 2-chain short arm mediates cell adhesion
through both the al phalbeta 1 and al pha2beta 1 integrins. J. Biol. Chem. 272:29330-29336.



Colombatti, A., and P. Bonddo. 1991. The superfamily of proteins with von Willebrand factor type A-like domains. one theme
common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood 77:2305-
2315.

Colombatti, A., P. Bonaldo, and R. Doliana. 1993. Type A modules: interacting domains found in several non-fibrillar collagens and
in other extracellular matrix proteins. Matrix 13:297-306.

Constantin, G., M. Mgeed, C. Giagulli, L. Piccio, J. Y. Kim, E. C. Butcher, and C. Laudanna. 2000. Chemokines trigger immediate
beta 2 integrin affinity and mobility changes: Differentia regulation and roles in lymphocyte arrest under flow. Immunity
13:759-7609.

Corbi, A., L. Miller, K. O'Connor, R. Larson, and T. Springer. 1987. cDNA cloning and complete primary structure of the alpha
subunit of aleukocyte adhesion glycoprotein, p150,95. EMBO J. 6:4023-4028.

Corngjo, C., R. Winn, and J. Harlan. 1997. Anti-adhesion therapy. Adv. Pharmacol. 39:99-142.

Coussens, L. M., B. Fingleton, and L. M. Matrisian. 2002. Cancer therapy - Matrix metdloproteinase inhibitors and cancer: Trias
and tribulations. Science 295:2387-2392.

Coussens, L. M., C. L. Tinkle, D. Hanahan, and Z. Werb. 2000. MMP-9 supplied by bone marrow-derived cells contributes to skin
carcinogenesis. Cell 103:481-490.

Coussens, L. M., and Z. Werb. 2001. Inflammatory cells and cancer: Think different! J. Exp. Med. 193:23-26.

Crutchfidd, K. L., V. R. Shinde Pdtil, C. J. Campbedll, C. A. Parkas, J. R. Allport, and D. J. Goetz. 2000. CD11b/CD18-coated
microspheres attach to E-selectin under flow. J. Leukoc. Biol. 67:196-205.

Curley, G. P., H. Blum, and M. J. Humphries. 1999. Integrin antagonists. Cell. Mol. Life Sci. 56:427-441.

Curran, S, and G. I. Murray. 2000. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis.
Eur. J. Cancer 36:1621-1630.

Czekay, R.-P., T. A. Kuemmel, R. A. Orlando, and M. G. Farquhar. 2001. Direct binding of occupied urokinase receptor (UPAR) to
LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol.
Biol. Cell 12:1467-1479.

Dana, N., D. M. Fathdlah, and M. A. Arnaout. 1991. Expression of a soluble and functiona form of the human beta2 integrin
CD11b/CD18. Proc. Natl. Acad. <ci. U SA 88:3106-3110.

David, A., Y. Kacher, U. Specks, and I. Aviram. 2003. Interaction of proteinase 3 with CD11b/CD18 (beta2 integrin) on the cell
membrane of human neutrophils. J. Leukoc. Biol. 74:551-557.

Davignon, D., E. Martz, T. Reynolds, K. Kurzinger, and T. Springer. 1981. Lymphocyte function-associated antigen 1 (LFA-1): a
surface antigen distinct from Lyt-2,3 that paticipates in T lymphocyte-mediated killing. Proc. Natl. Acad. Si. U SA
78:4535-4539.

Davis, G. 1991. Identification of an abundant latent 94-kDa gel atin-degrading metall oprotease in human salivawhich is activated by
acid exposure: implications for arole in digestion of collagenous proteins. Arch. Biochem. Biophys. 286:551-554.

Davis, G. 1992. The Mac-1 and p150,95 beta 2 integrins bind denatured proteins to mediate leukocyte cell-substrate adhesion. Exp.
Cdl Res. 200:242-252.

deBont, E., S. Rosati, S. Jacobs, W. A. Kamps, and E. Vellenga. 2001. Increased bone marrow vascularization in patients with acute
myeloid leukaemia: a possible role for vascular endothelia growth factor. Brit. J. Haematol. 113:296-304.

de Fougeralles, A. R., A. G. Sprague, C. L. Nickerson-Nutter, G. Chi-Rosso, P. D. Rennert, H. Gardner, P. J. Gotwals, R. R. Lobb,
and V. E. Koteliansky. 2000. Regulation of inflammation by collagen-binding integrins alphalbetal and alpha2betal in
models of hypersensitivity and arthritis. J. Clin. Invest. 105:721-729.

Dechantsreiter, M. A., E. Planker, B. Maha, E. Lohof, G. Holzemann, A. Jonczyk, S. L. Goodman, and H. Kesder. 1999. N-
methylated cyclic RGD peptides as highly active and selective alpha(v)beta(3) integrin antagonists. J. Med. Chem.
42:3033-3040.

DeClerck, Y. A., T. D. Yean, Y. Lee, J. M. Tomich, and K. E. Langley. 1993. Characterization of the functional domain of tissue
inhibitor of metaloproteinases-2 (Timp-2). Biochem. J. 289:65-69.

DeClerck, Y. A, T. D. Yean, H. S. Lu, J. Ting, and K. E. Langley. 1991. Inhibition of autoproteolytic activation of interstitia
procoll agenase by recombinant metall oproteinase inhibitor MI/TIMP-2. J. Biol. Chem. 266:3893-3899.

Dedhar, S., B. Williams, and G. Hannigan. 1999. Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signaling.
Trends Cdll Biol. 9:319-323.

Delclaux, C., C. Delacourt, M. P. Dortho, V. Boyer, C. Lafuma, and A. Harf. 1996. Role of gelatinase B and elastase in human
polymorphonuclear neutrophil migration across basement membrane. Am. J. Respir. Cell Mal. Biol. 14:288-295.

De Pozo, M. A., P. Sanchezmateos, M. Nieto, and F. Sanchez-Madrid. 1995. Chemokines regulate cellular-polarization and
adhesion receptor redistribution during lymphocyte interaction with endothelium and extracel lular-matrix - Involvement of
Camp Signaling Pathway. J. Cell Biol. 131:495-508.

Dethlefsen, S. M., G. Raab, M. A. Maoses, R. M. Adam, M. Klagsbrun, and M. R. Freeman. 1998. Extracellular calcium influx
stimulates metalloproteinase cleavage and secretion of heparin-binding EGF-Like growth factor independently of protein
kinase C. J. Cdll. Biochem. 69:143-153.

Diamond, M. S, J. Garciaaguilar, J. K. Bickford, A. L. Corbi, and T. A. Springer. 1993a. The I-domain isa major recognition site on
the leukocyte integrin Mac-1 (CD11b/CD18) for 4 distinct adhesion ligands. J. Cell Biol. 120:1031-1043.

Diamond, M. S,, and T. A. Springer. 1993b. A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to
ICAM-1 and fibrinogen. J. Cell Biol. 120:545-556.

Dickeson, S. K., J. J. Walsh, and S. A. Santoro. 1997. Contributions of the | and EF hand domains to the divalent cation-dependent
collagen binding activity of the a pha(2)beta(1) integrin. J. Biol. Chem. 272:7661-7668.

DiPersio, C. M., M. Shao, L. Di Costanzo, J. A. Kreidberg, and R. O. Hynes. 2000. Mouse keratinocytes immortalized with large T
antigen acquire al pha3betal integrin-dependent secretion of MMP-9/gelatinase B. J. Cell Sci. 113:2909-2921.

65



DiVietro, J. A., M. J. Smith, B. R. E. Smith, L. Petruzzelli, R. S. Larson, and M. B. Lawrence. 2001. Immobilized IL-8 triggers
progressive activation of neutrophils rolling in vitro on P-selectin and intercellular adhesion molecule-1. J. Immunal.
167:4017-4025.

Dorahy, D. J., M. C. Berndt, D. R. Shafren, and G. F. Burns. 1996. CD36 is spatialy associated with glycoprotein I1b-111a (alpha I1b
beta 3) on the surface of resting platel ets. Biochem. Biophys. Res. Commun. 218:575-581.

Douglas, D. A., Y. E. Shi, and Q. X. A. Sang. 1997. Computational sequence analysis of the tissue inhibitor of metalloproteinase
family. J. Prot. Chem. 16:237-255.

Du, X. P, M. Y. Gu, J. W. Weisel, C. Nagaswami, J. S. Bennett, R. Bowditch, and M. H. Ginsberg. 1993. Long-range propagation of
conformati onal-changes in integrin-a pha(l1b)beta(3). J. Biol. Chem. 268:23087-23092.

Dumin, J. A., S. K. Dickeson, T. P. Stricker, M. Bhattacharyya-Pakrasi, J. D. Roby, S. A. Santoro, and W. C. Parks. 2001. Pro-
collagenase-1 (matrix metaloproteinase-1) binds the a pha(2)beta(1) integrin upon release from keratinocytes migrating on
type | collagen. J. Biol. Chem. 276:29368-29374.

Dustin, M. L., and T. A. Springer. 1989. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature

341:619-624.
Egeblad, M., and Z. Werb. 2002. New functions for the matrix metaloproteinases in cancer progression. Nat. Rev. Cancer 2:161-
174.

Eliceiri, B. P,, and D. A. Cheresh. 1999. The role of alpha v integrins during angiogenesis: insights into potential mechanisms of
action and clinical development. J. Clin. Invest. 103:1227-1230.

Elices, M. J, L. Oshorn, Y. Takada, C. Crouse, S. Luhowskyj, M. E. Hemler, and R. R. Lobb. 1990. VCAM-1 on activated
endothelium interacts with the leukocyte integrin VLA-4 at a site digtinct from the VLA-4 fibronectin binding-site. Cell
60:577-584.

Elkins, P. A., Y. S. Ho, W. W. Smith, C. A. Janson, K. J. D'Alessio, M. S. McQueney, M. D. Cummings, and A. M. Romanic. 2002.
Structure of the C-terminally truncated human proMM P9, a gelatin-binding matrix metalloproteinase. Acta Crystallogr. D
Biol. Crysallogr. 58:1182-1192.

Ellis V., S. A. Whawel, F. Werner, and J. J. Deadman. 1999. Assembly of urokinase receptor-mediated plasminogen activation
complexesinvolves direct, non-active-site interactions between urokinase and plasminogen. Biochemistry 38:651-659.

Emonard, H., G. Béllon, P. de Diesbach, M. Mettlen, W. Hornebeck, and P. J. Courtoy. 2005. Regulation of matrix metall oproteinase
(MMP) activity by the low-density lipoprotein receptor-related protein (LRP). A new function for an "old friend".
Biochimie 87:369-376.

Emonard, H., G. Bellon, L. Troeberg, A. Berton, A. Robinet, P. Henriet, E. Marbaix, K. Kirkegaard, L. Patthy, Y. Eeckhout, H.
Nagase, W. Hornebeck, and P. J. Courtoy. 2004. Low density lipoprotein receptor-related protein mediates endocytic
clearance of pro-MMP-2 center dot TIMP-2 complex through a thrombospondin-independent mechanism. J. Biol. Chem.
279:54944-54951.

Emsley, J., S. L. King, J. M. Bergelson, and R. C. Liddington. 1997. Crystal structure of the | domain from integrin alpha 2beta 1. J.
Biol. Chem. 272:28512-28517.

Emsley, J., C. G. Knight, R. W. Farndale, M. J. Barnes, and R. C. Liddington. 2000. Structural basis of collagen recognition by
integrin alpha 2 beta 1. Cell 101:47-56.

Erb, E. M., K. Tangemann, B. Bohrmann, B. Muller, and J. Engd. 1997. Integrin apha llb beta 3 reconstituted into lipid bilayersis
nonclustered in its activated state but clusters after fibrinogen binding. Biochemistry 36:7395-7402.

Erb, L., J. Liu, J. Ockerhausen, Q. M. Kong, R. C. Garrad, K. Griffin, C. Neal, B. Krugh, L. I. Santiago-Perez, F. A. Gonzalez, H. D.
Gresham, J. T. Turner, and G. A. Weisman. 2001. An RGD sequence in the P2Y(2) receptor interacts with al pha(V)beta(3)
integrins and is required for G(0)-mediated signal transduction. J. Cell Biol. 153:491-501.

Eto, B., W. Puzon-McLaughlin, D. Sheppard, A. Sehara-Fujisawa, X. P. Zhang, and Y. Takada. 2000. RGD-independent binding of
integrin apha(9)beta(1) to the ADAM-12 and-15 disintegrin domains mediates cell-cell interaction. J. Biol. Chem
275:34922-34930.

Eto, K., C. Huet, T. Tarui, S. Kupriyanov, H.-Z. Liu, W. Puzon-McLaughlin, X.-P. Zhang, D. Sheppard, E. Engvall, and Y. Takada.
2002. Functiona classification of ADAMSs based on a conserved matif for binding to integrin apha 9beta 1. Implications
for sperm-egg binding and other cell interactions. J. Biol. Chem. 277:17804-17810.

Eustace, B. K., T. Sakurai, J. K. Stewart, D. Yimlamai, C. Unger, C. Zehetmeier, B. Lain, C. Tordla, S. W. Henning, G. Beste, B. T.
Scroggins, L. Neckers, L. L. llag, and D. G. Jay. 2004. Functiona proteomic screens revea an essential extracellular role
for Hsp90a phain cancer cell invasiveness. Nat. Cell Biol. 6:507-514.

Evangelista, V., S. Manarini, R. Sideri, S. Rotondo, N. Martdlli, A. Piccali, L. Totani, P. Piccardoni, D. Vestweber, G. de Gaetano,
and C. Cerletti. 1999. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine
phosphorylation-dependent CD11b/CD18 adhesion: Role of PSGL-1 as asignaling molecule. Blood 93:876-885.

Evans, J. 2001. Fertilin b and other ADAMs asintegrin ligands: insightsinto cell adhesion and fertilization. BioEssays 23:628-639.

Fagerholm, S. C., T. J. Hilden, and C. G. Gahmberg. 2004. P marks the spot: site-specific integrin phosphorylation regulates
molecular interactions. Trends Biochem. Sci. 29:504-512.

Falcioni, R., A. Antonini, P. Nistico, S. DiStefano, M. Crescenzi, P. G. Natdi, and A. Sacchi. 1997. apha 6 beta 4 and alpha 6 beta 1
integrins associate with ErbB-2 in human carcinoma cell lines. Exp. Cell Res. 236:76-85.

Fang, J., Y. Shing, D. Wiederschain, L. Yan, C. Butterfield, G. Jackson, J. Harper, G. Tamvakopoulcs, and M. A. Moses. 2000.
Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc.Natl. Acad. ci.
U SA 97:3884-3889.

Faurschou, M., and N. Borregaard. 2003. Neutrophil granules and secretory vesicles in inflammation. Micr. Infect. 5:1317-1327.

Fedarko, N.S,, A. Jain, A. Karadag, L.W. Fisher. 2004. Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind
and activate specific matrix metalloproteinases. FASEB J. 18:734-6.

Felding-Habermann, B., M. M. Mudler, C. A. Romerdahl, and D. A. Cheresh. 1992. Involvement of integrin alpha V gene
expression in human melanoma tumorigenicity. J. Clin. Invest. 89:2018-2022.

66



Feng, D., J. A. Nagy, K. Pyne, H. F. Dvorak, and A. M. Dvorak. 1998. Neutrophils emigrate from venules by a transendothelid cell
pathway in responseto fMLP. J. Exp. Med. 187:903-915.

Fernandez, R., L. A. Boxer, and S. J. Suchard. 1997. beta(2) integrins are not required for tyrosine phosphorylation of paxillin in
human neutrophils. J. Immunol. 159:5568-5575.

Fernandez-Patron, C., C. Zouki, R. Whittal, J. S. D. Chan, S. T. Davidge, and J. G. Filep. 2001. Matrix metall oproteinases regulate
neutrophil-endothelial cell adhesion through generation of endothelin-1[1-32]. FASEB J. 15:2230-2240.

Fiore, E., C. Fusco, P. Romero, and I. Stamenkovic. 2002. Matrix metal oproteinase 9 (MM P-9/gel atinase B) proteolytically cleaves
ICAM-1 and participates in tumor cell resistance to naturd killer cell-mediated cytotoxicity. Oncogene 21:5213-5223.

Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1:27-30.

Foxman, E. F., J. J. Campbel, and E. C. Butcher. 1997. Multistep navigation and the combinatoria control of leukocyte chemotaxis.
J. Cdl Biol. 139:1349-1360.

Gahmberg, C., M. Tolvanen, and P. Kotovuori. 1997. Leukocyte adhesion--structure and function of human leukocyte beta2-
integrins and their cellular ligands. Eur. J. Biochem. 245:215-232.

Gahmberg, C. G. 1997. Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Curr. Opin. Cell Bial.
9:643-650.

Gakidis, M. A. M., X. Cullere, T. Olson, J. L. Wilsbacher, B. Zhang, S. L. Moores, K. Ley, W. Swat, T. Mayadas, and J. S. Brugge.
2004. Vav GEFsare required for beta 2 integrin-dependent functions of neutrophils. J. Cell Biol. 166:273-282.

Gavez, B. G, S. Maias-Roman, J. P. Albar, F. Sanchez-Madrid, and A. G. Arroyo. 2001. Membrane type 1-matrix
metalloproteinase is activated during migration of human endothelia cells and modul ates endothdia motility and matrix
remodeling. J. Biol. Chem. 276:37491-37500.

Gavez, B. G., S. MatiasRoman, M. Yanez-Mo, F. Sanchez-Madrid, and A. G. Arroyo. 2002. ECM regulates MT1-MMP
localization with beta 1 or apha v beta 3 integrins at distinct cell compartments modulating its interndization and activity
on human endothelial cells. J. Cdll Biol. 159:509-521.

Gambaletta, D., A. Marchetti, L. Benedetti, A. M. Mercurio, A. Sacchi, and R. Facioni. 2000. Cooperative signaing between apha
6beta 4 integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase-dependent invasion. J. Bidl.
Chem. 275:10604-10610.

Garnotel, R., J. C. Monboisse, A. Randoux, B. Haye, and J. P. Borel. 1995. The binding of type-I collagen to lymphocyte function-
associated antigen (LFA)-1 integrin triggers the respiratory burst of human polymorphonuclear neutrophils - Role of
calcium signaling and tyrosine phosphorylation of LFA-1. J. Biol. Chem. 270:27495-27503.

Garnotel, R., L. Rittie, S. Poitevin, J.-C. Monboisse, P. Nguyen, G. Patron, F.-X. Maguart, A. Randoux, and P. Gillery. 2000. Human
blood monocytes interact with type | collagen through aphaXbeta? integrin (CD11c/CD18, gp150-95). J. Immunal.
164:5928-5934.

Garrido SM., F.R. Appebaum, C.L. Willman, D.E. Banker. 2001. Acute myeloid leukemia cells are protected from spontaneous
and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp. Hematol. 29:448-
57.

Gatto, C., M. Rieppi, P. Borsatti, S. Innocenti, R. Ceruti, T. Drudis, E. Scanziani, A. M. Casazza, G. Taraboletti, and R. Giavazzi.
1999. BAY 12-9566, anovel inhibitor of matrix metall oprotei nases with antiangiogenic activity. Clin. Cancer Res. 5:3603-
3607.

Gehlsen, K. R.,, W. S. Argraves, M. D. Pierschbacher, and E. Ruoslahti. 1988. Inhibition of in vitro tumor-cell invasion by Arg-Gly-
Asp containing synthetic peptides. J. Cell Biol. 106:925-930.

Geiger, B., A. Bershadsky, R. Pankov, and K. M. Yamada. 2001. Transmembrane extracellular matrix-cytoskeleton crosstalk. Nat.
Rev. Moal. Cell Biol. 2:793-805.

Geiger, C., W. Nagd, T. Boehm, Y. van Kooyk, C. G. Figdor, E. Kremmer, N. Hogg, L. Zeitimann, H. Dierks, K. S. C. Weber, and
W. Kolanus. 2000. Cytohesin-1 regulates beta-2 integrin-mediated adhesion through both ARF-GEF function and
interaction with LFA-1. EMBO J. 19:2525-2536.

Ghers, G., H. Dong, L. A. Goldstein, Y. Yeh, L. Hakkinen, H. S. Larjava, and W. T. Chen. 2002. Regulation of fibroblast migration
on collagenous matrix by a cell surface peptidase complex. J. Biol. Chem. 277:29231-29241.

Ghosh, S., E. Goldin, F. H. Gordon, H. A. Malchow, J. Rask-Madsen, P. Rutgeerts, P. Vyhnalek, Z. Zadorova, T. Pamer, S.
Donoghue, and G. The natalizumab pan-european study. 2003. Natalizumab for active crohn's disease. N. Engl. J. Med.
348:24-32.

Goda, S., T. Imai, O. Yoshie, O. Yoneda, H. Inoue, Y. Nagano, T. Okazaki, H. Imai, E. T. Bloom, N. Domage, and H. Umehara. 2000.
CX3C-chemokine, fractakine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -
independent mechanisms. J. Immunol. 164:4313-4320.

Goldberg, G. I, B. L. Marmer, G. A. Grant, A. Z. Eisen, S. Wilhelm, and C. He. 1989. Human 72-kilodalton type IV collagenase
forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc. Natl. Acad. Sci. U S A 86:8207-
8211.

Goldberg, G. 1., A. Strongin, I. E. Collier, L. T. Genrich, and B. L. Marmer. 1992. Interaction of 92-kdatype-1V collagenase with the
tissue inhibitor of metalloproteinases prevents dimerization, complex-formation with interstitial collagenase, and activation
of the proenzyme with stromelysin. J. Biol. Chem. 267:4583-4591.

Gomez, D. E., D. F. Alonso, H. Yoshiji, and U. P. Thorgeirsson. 1997. Tissue inhibitors of metaloproteinases. Structure, regulation
and biological functions. Eur. J. Céll Biol. 74:111-122.

Gomis-Ruth, F.-X., K. Maskas, M. Betz, A. Bergner, R. Huber, K. Suzuki, N. Yoshida, H. Nagase, K. Brew, G. P. Bourenkov, H.
Bartunik, and W. Bode. 1997. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1.
Nature 389:77-81.

Goodman, T. G., and M. L. Bgt. 1996. Identifying the putative metal ion-dependent adhesion site in the beta(2) (CD18) subunit
required for alpha(L)beta(2) and alpha(M)beta(2) ligand interactions. J. Biol. Chem. 271:23729-23736.

67



Gattlieb, A. B., and J. D. Bos. 2002. Recombinantly engineered human proteins: Transforming the treatment of psoriasis. Clin.
Immunal. 105:105-116.

Grabovsky, V., S. Feigelson, C. Chen, D. A. Bldijs, A. Peled, G. Cinamon, F. Baleux, F. Arenzana-Seisdedos, T. Lapidat, Y. van
Kooyk, R. R. Lobb, and R. Alon. 2000. Subsecond induction of alpha 4 integrin clustering by immobilized chemokines
stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp.
Med. 192:495-505.

Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin. 1999. The immunological synapse:
A molecular machine contralling T cell activation. Science 285:221-227.

Greene, J,, M. S. Wang, Y. L. E. Liy, L. A. Raymond, C. Rosen, and Y. N. E. Shi. 1996. Molecular cloning and characterization of
human tissue inhibitor of metalloproteinase 4. J. Biol. Chem. 271:30375-30380.

Groves, M. D., V. K. Puduvalli, K. R. Hess, K. A. Jaeckle, P. Peterson, W. K. A. Yung, and V. A. Levin. 2002. Phase Il trial of
temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma
multiforme. J. Clin. Oncol. 20:1383-1388.

Guan, J,, and R. Hynes. 1990. Lymphoid cells recognize an aternatively spliced segment of fibronectin via the integrin receptor
alpha4 beta 1. Cell 60:53-61.

Guo, H. M., R. S. Li, S. Zucker, and B. P. Toole. 2000. EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also
binds intergtitial collagenase to the tumor cell surface. Cancer Res. 60:888-891.

Hahn-Dantona, E., J. F. Ruiz, P. Bornstein, and D. K. Strickland. 2001. The low density lipoprotein receptor-related protein
modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J. Biol. Chem. 276:15498-
15503.

Hamano, Y., M. Zeisberg, H. Sugimoto, J. C. Lively, Y. Maeshima, C. Q. Yang, R. O. Hynes, Z. Werb, A. Sudhakar, and R. Kalluri.
2003. Physiological levels of tumstatin, a fragment of collagen IV alpha 3 chain, are generated by MMP-9 proteolysis and
suppress angiogenesis viaaphaV beta 3 integrin. Cancer Cell 3:589-601.

Hanahan, D., and J. Folkman. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353-
364.

Hanahan, D., and R. Weinberg. 2000. The halmarks of cancer. Cell 100:57-70.

Hayashibara, T., Y. Yamada, Y. Onimaru, C. Tsutsumi, S. Nakayama, N. Mori, T. Miyanishi, S. Kamihira, M. Tomonaga, and T.
Maita. 2002. Matrix metalloproteinase-9 and vascular endothelia growth factor: a possible link in adult T-cell leukaemia
cell invason. Br. J. Haematol. 116:94-102.

He, Y. L., T. Karpanen, and K. Alitao. 2004. Role of lymphangiogenic factorsin tumor metastas's. BBA-Rev. Cancer 1654:3-12.

Hellberg, C., L. Molony, L. M. Zheng, and T. Andersson. 1996. Ca2+ signaling mechanisms of the beta(2) integrin on neutrophils:
Involvement of phospholipase C gamma 2 and Ins(1,4,5)P-3. Biochem. J. 317:403-409.

Hemler, M. E. 1990. VLA proteins in the integrin family - structures, functions, and their role on leukocytes. Ann. Rev. Immunol.
8:365-400.

Hermand, P., P. Gane, |. Callebaut, N. Kieffer, J-P. Cartron, and P. Bailly. 2004. Integrin receptor specificity for human red cell
ICAM-4 ligand. Critica residues for apha(llb)beta3 binding. Eur. J. Biochem. 271:3729-3740.

Hibbs, M. L., S. Jakes, S. A. Stacker, R. W. Wallace, and T. A. Springer. 1991a The cytoplasmic domain of the integrin lymphocyte
function-associated antigen-1 beta-subunit - Sites required for binding to intercellular-adhesi on molecule-1 and the phorbol
ester stimulated phosphorylation site. J. Exp. Med. 174:1227-1238.

Hibbs, M. L., H. Xu, S. A. Stacker, and T. A. Springer. 1991b. Regulation of adhesion to ICAM-1 by the cytoplasmic domain of
LFA-1 integrin beta-subunit. Science 251:1611-1613.

Hidalgo, M., and S. G. Eckhardt. 2001. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst.
93:178-193.

Higgins, J. M. G., M. Cernadas, K. Tan, A. Irie, J.-h. Wang, Y. Takada, and M. B. Brenner. 2000. The role of alpha and beta chains
in ligand recognition by beta 7 integrins. J. Biol. Chem. 275:25652-25664.

Hmama, Z., K. L. Knutson, P. Herrera-Vdit, D. Nandan, and N. E. Reiner. 1999. Monocyte adherence induced by lipopol ysaccharide
involves CD14, LFA-1, and cytohesin-1 - Regulation by Rho and phosphatidylinositol 3-kinase. J. Biol. Chem. 274:1050-
1057.

Hogg, N. 1989. Theleukocyte integrins. Immunol. Today 10:111-114.

Hogg, N., and P. A. Bates. 2000. Genetic anaysis of integrin function in man: LAD-1 and other syndromes. Matrix Biol. 19:211-222.
Hogg, N., M. P. Sewart, S. L. Scarth, R. Newton, J. M. Shaw, S. K. A. Law, and N. Klein. 1999. A novel leukocyte adhesion
deficiency caused by expressed but nonfunctiona beta 2 integrins Mac-1 and LFA-1. J. Clin. Invest. 103:97-106.

Howard, T. H., and C. O. Oresgjo. 1985. The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution,
and the shape of neutrophils. J. Cell Biol. 101:1078-1085.

Hua, J, and R. J. Muschel. 1996. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat
sarcoma model system. Cancer Res. 56:5279-5284.

Huang, C. C., C. F. Lu, and T. A. Springer. 1997. Folding of the conserved domain but not of flanking regions in the integrin beta(2)
subunit requires association with the alpha subunit. Proc. Natl. Acad. Sci. U S A 94:3156-3161.

Huang, C. C., and T. A. Springer. 1997. Folding of the beta-propedler domain of the integrin alpha(L) subunit is independent of the |
domain and dependent on the beta(2) subunit. Proc. Natl. Acad. Sci. U SA 94:3162-3167.

Huang, S., M. Van Arsdal, S. Tedjarati, M. McCarty, W. Wu, R. Langley, and I. J. Fidler. 2002. Contributions of stromal
metal | oprotei nase-9 to angiogenesis and growth of human ovarian carcinomain mice. J. Natl. Cancer Inst. 94:1134-1142.

Hughes, P. E., F. DiazGonzalez, L. Leong, C. Y. Wu, J. A. McDonald, S. J. Shattil, and M. H. Ginsberg. 1996. Breaking the integrin
hinge - A defined structura constraint regulates integrin signaing. J. Biol. Chem. 271:6571-6574.

Huhtda, P., L. T. Chow, and K. Tryggvason. 1990. Structure of the human type IV collagenase gene. J. Biol. Chem. 265:11077-
11082.

68



Huitinga, 1., J. Damoiseaux, E. Dopp, and C. Dijkstra. 1993. Treatment with anti-CR3 antibodies ED7 and ED8 suppresses
experimental allergic encephdomyelitisin Lewisrats. Eur. J. Immunol. 23:709-715.

Hutchings, P., H. Rosen, L. O'Reilly, E. Simpson, S. Gordon, and A. Cooke. 1990. Transfer of diabetes in mice prevented by
blockade of adhesi on-promoting receptor on macrophages. Nature 348:639-642.

Hynes, R. 1987. Integrins: a family of cell surface receptors. Cell 48:549-554.

Hynes, R. O. 2002. Integrins: Bidirectional, allosteric signaling machines. Cell 110:673-687.

Hynes, R. O., and Q. Zhao. 2000. The evolution of cell adhesion. J. Cell Biol. 150:89-96.

Imai, K., E. Ohuchi, T. Aoki, H. Nomura, Y. Fujii, H. Sato, M. Seiki, and Y. Okada. 1996. Membrane-type matrix metalloproteinase
1l isagdatinalytic enzyme and is secreted in a complex with tissue inhibitor of metaloproteinases 2. Cancer Res. 56:2707-
2710.

Imhof, B., D. Weerasinghe, E. Brown, F. Lindberg, P. Hammel, L. Piali, M. Dessing, and R. Gider. 1997. Cross tak between
alpha(v)beta3d and alphadbetal integrins regulates lymphocyte migration on vascular cell adhesion molecule 1. Eur. J.
Immunol. 27:3242-3252.

Itoh, T., M. Tanioka, H. Yoshida, T. Yoshioka, H. Nishimoto, and S. Itohara. 1998. Reduced angiogenesis and tumor progression in
gelatinase A-deficient mice. Cancer Res. 58:1048-1051.

Itoh, T., M. Tanioka, H. Matsuda, H. Nishimoto, T. Yoshioka, R. Suzuki, and M. Uehira. 1999. Experimental metastasisis
suppressed in MM P-9-deficient mice. Clin. Exp. Metastasis 17:177-181.

Ivanina, T., C. Neusch, Y. X. Li, Y. H. Tong, C. Labarca, D. F. Maosher, and H. A. Lester. 2000. Expression of GIRK (Kir3.1/Kir3.4)
channelsin mouse fibroblast cells with and without beta 1 integrins. FEBS Lett. 466:327-332.

Janmey, P. A. 1994. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Ann. Rev. Physiol.
56:169-191.

Janowska-Wieczorek, A., L. A. Marquez, A. Masuzaki, H. R. Hashmi, L. M. Larratt, L. M. Boshkov, A. R. Turner, M. C. Zhang,
and D. R. Edwards. 1999. Expresson of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of
metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: comparison with normal bone marrow cells.
Br. J. Haematol. 105:402-411.

Jesaitis, A. J,, R. W. Erickson, K. N. Klotz, R. K. Bommakanti, and D. W. Siemsen. 1993. Functional molecular complexes of human
N-formyl chemoattractant receptors and actin. J. Immunol. 151:5653-5665.

Johansson, M. W., M. Patarroyo, F. Oberg, A. Siegbahn, and K. Nilsson. 1997. Myeloperoxidase mediates cell adhesion via the
alphaM beta 2 integrin (Mac-1, CD11b/CD18). J. Cell Sci. 110:1133-1139.

Johnson-Leger, C., M. Aurrand-Lions, and B. A. Imhof. 2000. The parting of the endothelium: miracle, or smply a junctiona affair?
J. Cdl Sci. 113:921-933.

Joiner, K. A., T. Ganz, J. Albert, and D. Rotrosen. 1989. The opsonizing ligand on salmonel la-typhi murium influences incorporation
of specific, but not azurophil, granule constituents into neutrophil phagosomes. J. Cell Biol. 109:2771-2782.

Joyce, J. A., A. Baruch, K. Chehade, N. Meyer-Morse, E. Giraudo, F.-Y. Tsai, D. C. Greenbaum, J. H. Hager, M. Bogyo, and D.
Hanahan. 2004. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage
tumorigenesis. Cancer Cell 5:443-453.

Kajita, M., Y. Itoh, T. Chiba, H. Mori, A. Okada, H. Kinoh, and M. Seiki. 2001. Membrane-type 1 matrix metall oprotei nase cleaves
CD44 and promoates cell migration. J. Cell Biol. 153:893-904.

Kalluri, R. 2003. Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3:422-433.

Kamata, T., W. Puzon, and Y. Takada. 1995b. Identification of putative ligand-binding sites of the integrin apha 4 beta 1 (VLA-4,
CD49d/CD29). Biochem. J. 305:945-951.

Kamata, T., K. K. Tieu, A. Irie, T. A. Springer, and Y. Takada 2001. Amino acid residuesin the dpha IIb subunit tha are critica for
ligand binding to integrin alphallbbeta 3 are clustered in the beta-propeller model. J. Biol. Chem. 276:44275-44283.

Kamata, T., R. Wright, and Y. Takada. 1995a. Critical threonine and aspartic-acid residues within the I-domains of beta-2 integrins
for interactions with intercellular-adhesion molecule-1 (ICAM-1) and C3bi. J. Biol. Chem. 270:12531-12535.

Kanazashi, S., C. Sharma, and M. Arnaout. 1997. Integrin-ligand interactions: scratching the surface. Curr. Opin. Hematol. 4:67-74.

Kang, T., H. Nagase, and D. Pei. 2002. Activation of membrane-type matrix metalloproteinase 3 zymogen by the proprotein
convertase furinin thetrans-golgi network. Cancer Res. 62:675-681.

Kang, Y., P. M. Siegel, W. Shu, M. Drobnjak, S. M. Kakonen, C. Cordon-Cardo, T. A. Guise, and J. Massague. 2003. A multigenic
program mediating breast cancer metastasis to bone. Cancer Cell 3:537-549.

Kashiwagi, M., M. Tortorella, H. Nagase, and K. Brew. 2001. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-T$4) and
aggrecanase 2 (ADAM-TS5). J. Biol. Chem. 276:12501-12504.

Katagiri, K., M. Hattori, N. Minato, S. Irie, K. Takatsu, and T. Kinashi. 2000. Rapl is a potent activation signal for leukocyte
function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol. Cell. Bial.
20:1956-1969.

Kauf, A. C. W., S. M. Hough, and R. D. Bowditch. 2001. Recognition of fibronectin by the platelet integrin a(llb)b3 involves an
extended interface with multiple electrostatic interactions. Biochemistry 40:9159-9166.

Keck, T., J. I. Balcom, C. Fernandez-Del Cadtillo, B. A. Antoniu, and A. L. Warshaw. 2002. Matrix metalloproteinase-9 promotes
neutrophil migration and alveolar capillary leakage in pancreatitis-associated lung injury in the rat. Gastroenterology
122:188-201.

Kerbd, R. S, A. Viloria-Petit, G. Klement, and J. Rak. 2000. 'Accidenta’ anti-angiogenic drugs: anti-oncogene directed signal
transduction inhibitors and conventional chemotherapeutic agents as examples. Eur. J Cancer 36:1248-1257.

Khokha, R. 1994. Suppression of the tumorigenic and metastatic abilities of murine B16-F10 mdanoma-cells in-vivo by the
overexpression of the tissue inhibitor of the metalloproteinases-1. J. Natl. Cancer Ingtit. 86:299-304.

Kim, M., C. V. Caman, and T. A. Springer. 2003. Bidirectiond transmembrane signaling by cytoplasmic domain separation in
integrins. Science 301:1720-1725.

69



Kim, S, M. Haris, and J. A. Varner. 2000. Regulaion of integrin alpha vbeta 3-mediated endothelia cell migration and
angiogenesis by integrin a pha5beta 1 and protein kinase A. J. Biol. Chem. 275:33920-33928.

Kindzelskii, A. L., M. M. Eszes, R. F. Todd, and H. R. Petty. 1997. Proximity oscillations of complement type 4 (al pha(x)beta(2))
and urokinase receptors on migrating neutrophils. Biophys. J. 73:1777-1784.

Kinoshita, T., H. Sato, Akiko, Okada, E. Ohuchi, K. Imai, Y. Okada, and M. Seiki. 1998. TIMP-2 promotes activation of
progelatinase a by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J. Biol. Chem. 273:16098-
16103.

Kjeldsen, L., O. W. Bjerrum, J. Askaa, and N. Borregaard. 1992. Subcellular-localization and release of human neutrophil gelatinase,
confirming the existence of separate gelatinase-containing granules. Biochem. J. 287:603-610.

Klein G, E. Velenga, M. W. Fraaije, W. A. Kamps, E.S. de Bont. 2004. The possiblerole of matrix metaloproteinase (MMP)-2 and
MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol. 50(2):87-100.

Koivunen, E., W. Arap, H. Valtanen, A. Rainisao, O. P. Medina, P. Heikkila, C. Kantor, C. G. Gahmberg, T. Salo, Y. T. Konttinen,
T. Sorsa, E. Ruoslahti, and R. Pasqualini. 1999. Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol.
17:768-774.

Kolanus, W., W. Nagel, B. Schiller, L. Zeittmann, S. Godar, H. Stockinger, and B. Seed. 1996. dpha L beta 2 integrin/LFA-1
binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regul atory molecule. Cell 86:233-242.

Kondraganti, S., S. Mohanam, S. K. Chintda, Y. Kin, S. L. Jasti, C. Nirmaa, S. S. Lakka, Y. Adachi, A. P. Kyritss, F. Ali-Osman,
R. Sawaya, G. N. Fuller, and J. S. Rao. 2000. Selective suppression of matrix metalloproteinase-9 in human glioblastoma
cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res. 60:6851-6855.

Koopman, G., R. M. J. Keehnen, E. Lindhout, W. Newman, Y. Shimizu, G. A. Vanseventer, C. Degroot, and S. T. Pas. 1994.
Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways
prevents apoptosis of germina center B-cells. J. Immunoal. 152:3760-3767.

Koshikawa, N., G. Giannéli, V. Cirulli, K. Miyazaki, and V. Quaranta. 2000. Role of cell surface metalloprotease MT1-MMP in
epithelial cell migration over laminin-5. J. Cell Biol. 151:479-479.

Kossakowska, A. E., S. J. Urbanski, A. Watson, L. J. Hayden, and D. R. Edwards. 1993. Patterns of expression of metall oproteinases
and their inhibitors in human-malignant lymphomas. Oncol. Res. 5:19-28.

Kotovuori, P., E. Tontti, R. Pigott, M. Shepherd, M. Kiso, A. Hasegawa, R. Renkonen, P. Nortamo, D. Altieri, and C. Gahmberg.
1993. The vascular E-selectin binds to the leukocyte integrins CD11/CD18. Glycobiology 3:131-136.

Kozma, R., S. Ahmed, A. Begt, and L. Lim. 1995. The Ras-reated protein Cdc42Hs and bradykinin promote formation of peripheral
actin microspikes and filopodiain Swiss 3T3 fibroblasts. Mal. Cell. Biol. 15:1942-1952.

Kubes, P., X. F. Niu, C. W. Smith, M. E. Kehrli, P. H. Reinhardt, and R. C. Woodman. 1995. A novel beta(1)-dependent adhesion
pathway on neutrophils - a mechanism invoked by dihydrocytochalasin-B or endothelial transmigration. FASEB J. 9:1103-
1111,

Kucik, D. F., M. L. Dustin, J. M. Miller, and E. J. Brown. 1996. Adhes on-activating phorbol ester increases the mobility of
leukocyte integrin LFA-1 in cultured lymphocytes. J. Clin. Invest. 97:2139-2144.

Kuittinen, O., E. R. Savolainen, P. Koistinen, and T. Turpeenniemi-Hujanen. 1999. Gelatinase A and B (MMP-2, MMP-9) in
leukaemia MM P-2 may indicate a good prognosis in AML. Anticancer Res. 19:4395-4400.

Kupfer, A., and S. J. Singer. 1989. The specific interaction of helper T cells and antigen-presenting B cells. 1V. Membrane and
cytoskeleta reorganizationsin the bound T cell as afunction of antigen dose. J. Exp. Med. 170:1697-1713.

Lakka, S. S, C. S. Gondi, D. H. Dinh, W. C. Olivero, M. Gujrati, V. H. Rao, C. Sioka, and J. S. Rao. 2005. Specific interference of
urokinase-type plasminogen activator receptor and matrix metall oproteinase-9 gene expression induced by double-stranded
RNA results in decreased invasion, tumor growth, and angiogenesisin gliomas. J. Biol. Chem. 280:21882-21892.

Larkin, D., D. Murphy, D. F. Reilly, M. Cahill, E. Sattler, P. Harriott, D. J. Cahill, and N. Moran. 2004. ICIn, a novel integrin
a pha(lIb)beta3-associated protein, functionally regulates platelet activation. J. Biol. Chem. 279:27286-27293.

Laudanna, C., G. Congtantin, P. Baron, E. Scarpini, G. Scarlato, G. Cabrini, C. Dechecchi, F. Rossi, M. A. Cassatella, and G. Berton.
1994. Sulfatides trigger increase of cytosolic-free calcium and enhanced expression of tumor-necrosis-factor-alpha and
interleukin-8 messenger-RNA in human neutrophils - Evidence for a role of L-selectin as a signaling molecule. J. Biol.
Chem. 269:4021-4026.

Lawson, M. A., and F. R. Maxfield. 1995. Ca2+ and calcineurin-dependent recycling of an integrin to the front of migrating
neutrophils. Nature 377:75-79.

Lebwohl, M., S. K. Tyring, T. K. Hamilton, D. Toth, S. Glazer, N. H. Tawfik, P. Walicke, W. Dummer, X. Wang, M. R. Garovoy, D.
Pariser, and G. 2003. The Efalizumab study. A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N. Engl.
J. Med. 349:2004-2013.

LeCabec, V., J. B. Cowland, J. Calafat, and N. Borregaard. 1996. Targeting of proteins to granule subsets is determined by timing
and not by sorting: The specific granule protein NGAL is localized to azurophil granules when expressed in HL-60 cells.
Proc. Natl. Acad. Sci. U SA 93:6454-6457.

Leco, K. J,, R. Khokha, N. Pavloff, S. P. Hawkes, and D. R. Edwards. 1994. Tissue inhibitor of metall oproteinases-3 (Timp-3) is an
extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J. Biol. Chem.
269:9352-9360.

Lee, J, P. Rieu, M. Arnaout, and R. Liddington. 1995. Crystal structure of the A domain from the apha subunit of integrin CR3
(CD11b/CD18). Cell 80:631-638.

Lee, K. S, S M. Jn, H. J. Kim, and Y. C. Lee. 2003. Matrix metalloproteinase inhibitor regulates inflammatory cell migration by
reducing ICAM-1 and VCAM-1 expression in a murine model of toluene diisocyanate-induced asthma. J. Allergy Clin.
Immunol. 111:1278-1284.

Leitinger, B., and N. Hogg. 2000. From crystal clear ligand binding to designer | domains. Nat. Sruct. Mol. Biol. 7:614-616.

Leitinger, B., and N. Hogg. 2000. Effects of | domain deletion on the function of the beta 2 integrin lymphocyte function-associated
antigen-1. Mol. Biol. Cell 11:677-690.

70



Lelongt, B., S. Bengatta, M. Delauche, L. R. Lund, Z. Werb, and P. M. Ronco. 2001. Matrix metall oproteinase 9 protects mice from
anti-glomerular basement membrane nephritis through its fibrinolytic activity. J. Exp. Med. 193:793-802.

Levite, M., L. Cahdon, R. Hershkoviz, A. Peretz, A. Sobko, A. Ariel, B. Attah, and O. Lider. 2001. Extracellular K+ and opening of
voltage-gated potassum channels activate T-cell integrin function: Physical and functional association between Kv1.3
channels and bl integrins. FASEB J. 15:A339-A339.

Ley, K. 2002. Integration of inflammatory signals by rolling neutrophils. Immunol. Rev. 186:8-18.

Li, R., P. Nortamo, L. Valmu, M. Tolvanen, J. Huuskonen, C. Kantor, and C. G. Gahmberg. 1993a. A peptide from ICAM-2 bindsto
the leukocyte integrin CD11&/CD18 and inhibits endothelial cell adhesion. J. Biol. Chem. 268:17513-17518.

Li, R, J. Xie, C. Kantor, V. Koigtinen, D. C. Altieri, P. Nortamo, and C. G. Gahmberg. 1995b. A peptide derived from the
intercellular adhesion molecule-2 regulates the avidity of the leukocyte integrins CD11b/CD18 and CD11c¢/CD18. J. Cell
Biol. 129:1143-1153.

Li, H., F. Lindenmeyer, C. Grengt, P. Opolon, S. Menashi, C. Soria, P. Yeh, M. Perricaudet, and H. Lu. 2001. AdTIMP-2 inhibits
tumor growth, angiogenesis, and metastass, and prolongs survival in mice. Hum. Gene Ther. 12:515-526.

Liddington, R. C., and M. H. Ginsberg. 2002. Integrin activation takes shape. J. Cell Biol. 158:833-839.

Liesveld, J L., J. M. Window, K. E. Frediani, D. H. Ryan, and C. N. Abboud. 1993. Expression of integrins and examination of ther
adhesive function in normal and leukemic hematopoietic-cells. Blood 81:112-121.

Lin, E. Y., and J. W. Pdllard. 2004. Role of infiltrated leucocytes in tumour growth and spread. Br. J. Cancer 90:2053-2058.

Lin, L. 1., D. T.Lin, C. J. Chang, C. Y. Lee, J. L. Tang, and H. F. Tien. 2002. Marrow matrix metall oproteinases (MM Ps) and tissue
inhibitors of MMP in acute leukaemia: potentia role of MMP-9 as a surrogate marker to monitor leukaemic status in
patients with acute myel ogenous leukaemia. Br. J. Haematol. 117:835-841.

Lin, T. H., C. Rosales, K. Mondd, J. B. Bolen, S. Haskill, and R. L. Juliano. 1995. Integrin-mediated tyrosine phosphorylation and
cytokine message induction in monocytic cells - a possible signaling role for the Syk tyrosine kinase. J. Biol. Chem.
270:16189-16197.

Lindberg, F. P, H. D. Gresham, E. Schwarz, and E. J Brown. 1993. Molecular-cloning of integrin-associated protein - an
immunoglobulin family member with multiple membrane-spanning domains implicated in apha-V-beta-3-dependent
ligand-binding. J. Cell Biol. 123:485-496.

Liotta, L. A., K. Tryggvason, S. Garbisa, |. Hart, C. M. Fdltz, and S. Shafie. 1980. Metastatic potentia correlates with enzymatic
degradation of basement-membrane collagen. Nature 284:67-68.

Lishko, V. K., B. Kudryk, V. P. Yakubenko, V. C. Yee, and T. P. Ugarova. 2002. Regulated unmasking of the cryptic binding site for
integrin dphaM beta 2 in the gamma C-domain of fibrinogen. Biochemistry 41:12942-12951.

Liu, L. T., H. C. Chang, L. C. Chiang, and W. C. Hung. 2003. Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2
activation and cancer cell invasion. Cancer Res. 63:3069-3072.

Lokeshwar, B. L., M. G. Selzer, B. Q. Zhu, N. L. Block, and L. M. Golub. 2002. Inhibition of cell proliferation, invasion, tumor
growth and metastasis by an ora non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int.
J. Cancer 98:297-309.

Lollo, B. A., K. W. H. Chan, E. M. Hanson, V. T. Moy, and A. A. Brian. 1993. Direct evidence for 2 affinity states for lymphocyte
function-associated antigen-1 on activated T-cells. J. Biol. Chem. 268:21693-21700.

Lowell, C. A, L. Fumagalli, and G. Berton. 1996. Deficiency of Src family kinases p59/61(hck) and p58(c-fgr) results in defective
adhesi on-dependent neutrophil functions. J. Cell Biol. 133:895-910.

Lozahic, S., D. Christiansen, S. Manie, D. Gerlier, M. Billard, C. Boucheix, and E. Rubinstein. 2000. CD46 (membrane cofactor
protein) associates with multiple beta 1 integrins and tetraspans. Eur. J. Immunol. 30:900-907.

Lu, C. F., M. Ferzly, J. Takagi, and T. A. Springer. 2001b. Epitope mapping of antibodies to the C-terminal region of the integrin
beta(2) subunit reveals regions that become exposed upon receptor activation. J. Immunol. 166:5629-5637.

Lu, C. F., and T. A. Springer. 1997. The adpha subunit cytoplasmic domain regulates the assembly and adhesiveness of integrin
lymphocyte function-associated antigen-1. J. Immunol. 159:268-278.

Lu, C. F., J Takagi, and T. A. Springer. 2001la Association of the membrane proximal regions of the alpha and beta subunit
cytoplasmic domains constrains an integrin in the inactive state. J. Biol. Chem. 276:14642-14648.

Luo, B.-H., C. V. Carman, J. Takagi, and T. A. Springer. 2005. Disrupting integrin transmembrane domain heterodimerization
increases ligand binding affinity, not valency or clustering. Proc. Natl. Acad. Sci. U SA 102:3679-3684.

Lub, M., Y. Vankooyk, and C. G. Figdor. 1995. Ins and Outs of LFA-1. Immunol. Today 16:479-483.

Luo, B.-H., T. A. Springer, and J. Takagi. 2003. High affinity ligand binding by integrins does not involve head separation. J. Biol.
Chem. 278:17185-17189.

Mackay, C. R. 2001. Chemokines: immunology's high impact factors. Nat. Immunol. 2:95-101.

MacLeod, T. J., M. Kwon, N. R. Filipenko, and D. M. Waisman. 2003. Phospholipid-associated annexin A2-S100A10 heterotetramer
and its subunits - Characterization of the interaction with tissue plasminogen activator, plasminogen, and plasmin. J. Bial.
Chem. 278:25577-25584.

Maecker, H. T., S. C. Todd, and S. Levy. 1997. The tetraspanin superfamily: Molecular facilitators. FASEB J. 11:428-442.

Ma, J, R. L. Finley, Jr., D. M. Waisman, and B. F. Sloane. 2000. Human procathepsin B interacts with the annexin Il tetramer on
the surface of tumor cells. J. Biol. Chem. 275:12806-12812.

Maile, L. A., Y. Imai, J. B. Clarke, and D. R. Clemmons. 2002. Insulin-like growth factor | increases apha(v)beta(3) affinity by
increasing the amount of integrin-associated protein that is associated with non-raft domains of the cellular membrane. J.
Biol. Chem. 277:1800-1805.

Mamdouh, Z., X. Chen, L. M. Pierini, F. R. Maxfield, and W. A. Muller. 2003. Targeted recycling of PECAM from endothelia
surface-connected compartments during diapedesis. Nature 421:748-753.

Mankelow, T. J,, F. A. Spring, S. F. Parsons, R. L. Brady, N. Mohandas, J. A. Chasis, and D. J. Anstee. 2004. Identification of
critical amino-acid residues on the erythroid intercelular adhesion molecule-4 (ICAM-4) mediating adhesion to aphaV
integrins. Blood 103:1503-1508.

71



Marchesi, V. T., and H. W. Florey. 1960. Electron microscopic observation on the emigration of leukocytes. Q. J. Exp. Physiol.
45:343-348.

Marlin, S. D., C. C. Morton, D. C. Anderson, and T. A. Springer. 1986. LFA-1 immunodeficiency disease. Definition of the genetic
defect and chromosomal mapping of alpha and beta subunits of the lymphocyte function-associated antigen 1 (LFA-1) by
complementation in hybrid cells. J. Exp. Med. 164:855-867.

Maschler, S., G. Wirl, H. Spring, D. V. Bredow, |. Sordat, H. Beug, and E. Reichmann. 2005. Tumor cell invasiveness correaes
with changes in integrin expression and | ocalization. Oncogene 24:2032-2041.

Masson, V., L. R. delaBallina, C. Munaut, B. Widockx, M. Jost, C. Maillard, S. Blacher, K. Bgou, T. Itoh, S. Itohara, Z. Werb, C.
Libert, J-M. Foidart, and A. Noel. 2004. Contribution of hast MMP-2 and MM P-9 to promote tumor vasculari zation and
invasion of malignant keratinocytes. FASEB J. 19:234-236.

Matrisian, L. 1994. Matrix metall oproteinase gene expression. Ann. N. Y. Acad. Sci. 1994 732:42-50.

Mazzieri, R, L. Masiero, L. Zanetta, S. Monea, M. Onisto, S. Garbisa, and P. Mignatti. 1997. Control of type IV collagenase activity
by components of the urokinase-plasmin system: A regulatory mechanism with cell-bound reactants. EMBO J. 16:2319-
2332,

McCawley, L. J, and L. M. Matrisan. 2000. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mal.
Med. Today 6:149-156.

McGilvray, I. D., Z. Y. Lu, R. Bitar, A. P. B. Dackiw, C. J. Davreux, and O. D. Rotstein. 1997. VLA-4 integrin cross-linking on
human monocytic THP 1 cells induces tissue factor expression by a mechanism involving mitogen-activated protein kinase.
J. Biol. Chem. 272:10287-102%4.

McGuire, S. L., and M. L. Bajt. 1995. Distinct ligand binding sites in the | domain of integrin apha(M)beta(2) that differentialy
affect adivalent cation-dependent conformation. J. Biol. Chem. 270:25866-25871.

Mclintyre, T. M., S. M. Prescott, A. S. Weyrich, and G. A. Zimmerman. 2003. Cdl-cell interactions: leukocyte-endothelial
interactions. Curr. Opin. Hematol. 10:150-158.

McPhee, J. C., Y. L. Dang, N. Davidson, and H. A. Lester. 1998. Evidence for a functional interaction between integrins and G
protein-activated inward rectifier K+ channels. J. Biol. Chem. 273:34696-34702.

McQuibban, G. A., J. H. Gong, E. M. Tam, C. A. G. McCulloch, I. Clark-Lewis, and C. M. Overdl. 2000. Inflammation dampened
by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289:1202-1206.

Michishita, M., V. Videm, and M. A. Arnaout. 1993. A novel divalent cation-binding sitein the I-domain of the beta-2-integrin-CR3
(CD11/CD18) is essential for ligand-binding. Cell 72:857-867.

Middleton, J.,, S. Neil, J. Wintle, I. ClarkLewis, H. Moore, C. Lam, M. Auer, E. Hub, and A. Rot. 1997. Transcytosis and surface
presentation of 1L-8 by venular endothdid cells. Cell 91:385-395.

Mignatti, P., and D. B. Rifkin. 1993. Biology and biochemistry of proteinasesin tumor invasion. Physiol. Rev. 73:161-195.

Miller, D. H., O. A. Khan, W. A. Sheremata, L. D. Blumhardt, G. P. A. Rice, M. A. Libonati, A. J. Willmer-Hulme, C. M. Dalton, K.
A. Miszkid, P. W. O'Connor, and G. 2003. The internationa natalizumab multiple sclerosis trial. A controlled trial of
natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348:15-23.

Milstein, C., G. Galfre, D. Secher, and T. Springer. 1979. Monoclonal antibodies and cell surface antigens. Cell. Biol. Int. Rep. 3:1-
16.

Minn, A. J., G. P. Gupta, P. M. Siegel, P. D. Bos, W. Shuy, D. D. Giri, A. Vide, A. B. Olshen, W. L. Gerdd, and J. Massague. 2005.
Genesthat mediate breast cancer metastasis to lung. Nature 436:518-524.

Mitchison, T., and L. Cramer. 1996. Actin-based cell matility and cell locomotion. Cell 84:371-379.

Molino, M., M. Di Lalo, N. Martelli, G. de Gaetano, and C. Cerletti. 1993. Effects of leukocyte-derived cathepsin G on platelet
membrane glycoprotein 1b-1X and I1b-111a complexes: a comparison with thrombin. Blood 82:2442-2451.

Monferran, S., J. Paupert, S. Dauvillier, B. Salles, and C. Muller. 2004. The membrane form of the DNA repair protein Ku interacts
at the cdll surface with metalloproteinase 9. EMBO J. 23:3758-3568.

Monsky, W., C. Lin, A. Aoyama, T. Kelly, S. Akiyama, S. Mueller, and W. Chen. 1994. A potential marker protease of invasiveness,
seprase, islocalized on invadopodia of human malignant melanoma cells. Cancer Res. 54:5702-5710.

Morgunova, E., A. Tuuttila, U. Bergmann, M. Isupov, Y. Lindqvist, G. Schneider, and K. Tryggvason. 1999. Structure of human pro-
matrix metalloproteinase-2: Activation mechanism reveded. Science 284:1667-1670.

Mori, H., T. Tomari, N. Koshikawa, M. Kgita, Y. Itoh, H. Sato, H. Tojo, I. Yana, and M. Seiki. 2002. CD44 directs membrane-type
1 matrix metall oproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J. 21:3949-3959.

Morini, M., M. Mottolese, N. Ferrari, F. Ghiorzo, S. Buglioni, R. Mortarini, D. Noonan, P. Natali, and A. Albini. 2000. The a3bl
integrinis associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MM P-9) activity. Int. J. Cancer
87:336-342.

Moro, L., M. Venturino, C. Bozzo, L. Silengo, F. Altruda, L. Beguinot, G. Tarone, and P. DeFilippi. 1998. Integrins induce
activation of EGF receptor: rolein MAP kinase induction and adhes on-dependent cell survival. EMBO J. 17:6622-6632.

Mostafavi-Pour, Z., J. A. Askari, S. J. Parkinson, P. J. Parker, T. T. C. Ng, and M. J. Humphries. 2003. Integrin-specific signaling
pathways controlling focal adhesion formation and cell migration. J. Cell Biol. 161:155-167.

Muller, A., B. Homey, H. Sato, N. F. Ge, D. Catron, M. E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S. N. Wagner, J. L.
Barrera, A. Mohar, E. Verastegui, and A. Zlotnik. 2001. Involvement of chemokine receptors in breast cancer metastasis.
Nature 410:50-56.

Muller, W. A., S. A. Weigl, X. Deng, and D. M. Phillips. 1993. PECAM-1 is required for transendothelial migration of leukocytes.
FASEB J. 7:A640-A640.

Murphy, G., and R. M. Hembry. 1992. Proteinases in rheumatoid-arthritis. J. Rheumatol. 19:61-64.

Murphy, G., A. Houbrechts, M. I. Cockett, R. A. Williamson, M. Oshea, and A. J. P. Docherty. 1991b. The N-terminal domain of
tissue inhibitor of metalloprotei nases retains metall oproteinase inhibitory activity. Biochemistry 30:8097-8101.

Murphy, G., and V. Knauper. 1997. Relating matrix metalloproteinase structure to function: Why the "hemopexin" domain? Matrix
Biol. 15:511-518.

72



Murphy, G., Q. Nguyen, M. I. Cockett, S. J. Atkinson, J. A. Allan, C. G. Knight, F. Willenbrock, and A. J. Docherty. 1994.
Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a ddetion mutant. J. Biol. Chem.
269:6632-6636.

Murphy, G. J. P., G. Murphy, and J. J. Reynalds. 1991a. The origin of matrix metalloproteinases and their familial relationships.
FEBS Lett. 289:4-7.

Mustjoki, S., R. Alitalo, E. Elonen, O. Carpen, C. G. Gahmberg, and A. Vaheri. 2001. Intercellular adhesion molecule-1 in
extravasation of normal mononuclear and leukaemiacells. Br. J. Haematol. 113:989-1000.

Nagase, H. 1994. Matrix metalloproteinases. A mini-review. Contrib. Nephrol. 107:85-93.

Nagase, H., and J. F. Woessner. 1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491-21494.

Nagel, W., L. Zeitimann, P. Schilcher, C. Geiger, J. Kolanus, and W. Kolanus. 1998. Phosphoinositide 3-OH kinase activates the
beta(2) integrin adhesion pathway and induces membrane recruitment of cytohesin-1. J. Biol. Chem. 273:14853-14861.

Nakamura, H., N. Suenaga, K. Taniwaki, H. Matsuki, K. Yonezawa, M. Fujii, Y. Okada, and M. Seiki. 2004. Constitutive and
induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res. 64:876-
882.

Nath, D., P. M. Slocombe, P. E. Stephens, A. Warn, G. R. Hutchinson, K. M. Yamada, A. J. P. Docherty, and G. Murphy. 1999.
Interaction of metargidin (ADAM-15) with apha(v)beta(3) and apha(5)beta(1) integrins on different haemopaietic cells. J.
Cedl i, 112:579-587.

Nath, D., P. M. Slocombe, A. Webster, P. E. Stephens, A. J. P. Docherty, and G. Murphy. 2000. Méeltrin gamma (ADAM-9) mediates
cellular adhesion through alpha(6)beta(1) integrin, leading to a marked induction of fibroblast cell matility. J. Cdl Sci.
113:2319-2328.

Ngsikorski, J., R. Andersson, M. Patarroyo, and T. Andersson. 1991. Cacium signaling capacity of the CD11b/CD18 integrin on
human neutrophils. Exp. Cell Res. 195:504-508.

Nicalls, M. R., M. Coulombe, J. Beilke, H. C. Gelhaus, and R. G. Gill. 2002. CD4-dependent generation of dominant transplantation
tolerance induced by simultaneous perturbation of CD154 and LFA-1 pathways. J. Immunol. 169:4831-4839.

Nobes, C., and A. Hall. 1995. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated
with actin stressfibers, lamellipodia, and filopodia Cell 81:53-62.

Noguchi, M., N. Sato, H. Sugimori, K. Mori, and K. Oshimi. 2001. A minor E-selectin ligand, CD65, is critical for extravascular
infiltration of acute myeloid leukemia cells. Leukemia Res. 25:847-853.

Nusse, O., L. Serrander, D. P. Lew, and K. H. Krause. 1998. Ca2+-induced exocytosis in individud human neutrophils; high- and
low-affinity granule populations and submaximal responses. EMBO J. 17:1279-1288.

O'Connell, J. P., F. Willenbrock, A. J. Docherty, D. Eaton, and G. Murphy. 1994. Andysis of the role of the COOH-terminal domain
in the activation, proteolytic activity, and tissue inhibitor of metaloproteinase interactions of gelatinase B. J. Biol. Chem.
269:14967-14973.

Ogata, Y., Y. Itoh, and H. Nagase. 1995. Steps involved in activation of the pro-matrix metalloprotei nase-9 (progel atinase-B)-tissue
inhibitor of metaloproteinases-1 complex by 4-aminophenylmercuric acetate and proteinases. J. Biol. Chem. 270:18506-
18511

Oh, J, R. Takahashi, S. Kondo, A. Mizoguchi, E. Adachi, R. M. Sasahara, S. Nishimura, Y. Imamura, H. Kitayama, D. B.
Alexander, C. Ide, T. P. Horan, T. Arakawa, H. Yoshida, S. I. Nishikawa, Y. Itoh, M. Seiki, S. Itohara, C. Takahashi, and
M. Noda. 2001. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and
angiogenesis. Cell 107:789-800.

Ojaniemi, M., S. S. Martin, F. Ddlfi, J. M. Olefsky, and K. Vuori. 1997. The proto-oncogene product p120(Chl) links c-Src and
phosphatidylinositol 3-kinase to the integrin signaling pathway. J. Biol. Chem. 272:3780-3787.

Okada, Y., Y. Gongji, K. Naka, K. Tomita, |. Nakanishi, K. Iwata, K. Yamashita, and T. Hayakawa. 1992. Matrix metall oproteinase
9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the
precursor and enzymic properties. J. Biol. Chem. 267:21712-21719.

Olson, M. W., D. C. Gervas, S. Mobashery, and R. Fridman. 1997. Kinetic andysis of the binding of human matrix
metal l oproteinase-2 and -9 to tissueinhibitor of metaloproteinase (TIMP)-1 and TIMP-2. J. Biol. Chem. 272:29975-29983.

Olson, M. W., M. Toth, D. C. Gervas, Y. Sado, Y. Ninomiya, and R. Fridman. 1998. High affinity binding of latent matrix
meta l oproteinase-9 to the alpha 2(1V) chain of collagen IV. J. Biol. Chem. 273:10672-10681.

O'Reilly, M. S, T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, and J. Folkman. 1997.
Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277-285.

O'Reilly, M. S,, L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthd, M. Moses, W. S. Lane, Y. H. Cao, E. H. Sage, and J. Folkman.
1994. Angiostatin - anovel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung-carcinoma.
Cell 79:315-328.

O'Rourke, A. M., H. Shao, and J. Kaye. 1998. Cutting edge: A role for p21(Ras) kinase in TCR-mediated activation of LFA-1. J.
Immunol. 161:5800-5803.

OTode, T. E, Y. Katagiri, R. J. Faull, K. Peter, R. Tamura, V. Quaranta, J. C. Loftus, S. J. Shattil, and M. H. Ginsberg. 1994.
Integrin cytoplasmic domains mediate inside-out signal-transduction. J. Cell Biol. 124:1047-1059.

Owen, J. L., V. Iragavarapu-Charyulu, Z. Gunja-Smith, L. M. Herbert, J. F. Grosso, and D. M. Lopez. 2003. Up-regulation of matrix
metaloproteinase-9 in T lymphocytes of mammary tumor bearers: Role of vascular endothdia growth factor. J. Immunal.
171:4340-4351.

Overdl, C. M., A. E. King, D. K. Sam, A. D. Ong, T. T. Y. Lau, U. M. Wallon, Y. A. DeClerck, and J Atherstone. 1999.
Identification of the tissue inhibitor of metall oproteinases-2 (TIMP-2) binding site on the hemaopexin carboxyl domain of
human gelatinase a by site-directed mutagenesis - The hierarchical role in binding TIMP-2 of the unique cationic clusters
of hemopexin modules 11l and IV. J. Biol. Chem. 274:4421-4429.

Overadl, C. M., E. Tam, G. A. McQuibban, C. Morrison, U. M. Wallon, H. F. Bigg, A. E. King, and C. R. Roberts. 2000. Domain
interactions in the gelatinase A center dot TIMP-2 center dot MT1-MMP activation complex - The ectodomain of the 44-

73



kDa form of membrane type-l matrix metalloproteinase does not modulate gelatinase A activation. J. Biol. Chem.
275:39497-39506.

Overall, C. M., J. L. Wrana, and J. Sodek. 1991. Transcriptional and post-transcriptiona regulation of 72-kDa gelatinase/type 1V
collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor
of matrix metalloproteinase gene expression. J. Biol. Chem. 266:14064-14071.

Palmen, M., C. Dijkstra, M. van der Ende, A. Pena, and E. van Rees. 1995. Anti-CD11b/CD18 antibodies reduce inflammation in
acute calitisinrats. Clin. Exp. Immunol. 101:351-356.

Patarroyo, M., P. Beatty, C. Serhan, and C. Gahmberg. 1985. Identification of a cell-surface glycoprotein mediating adhesion in
human granulocytes. Scand. J. Immunol. 22:619-631.

Patarroyo, M., P. Beatty, J. Fabre, and C. Gahmberg. 1985. Identification of a cell surface protein complex mediating phorbol ester-
induced adhesion (binding) among human mononuclear leukocytes. Scand. J. Immunol. 22:171-182.

Pei, D., and S. J. Weiss. 1996. Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process
progelatinase A and expressintring c matrix-degrading activity. J. Biol. Chem. 271:9135-9140.

Pei, D. Q., T. B. Kang, and H. X. Qi. 2000. Cysteine array matrix meta | oproteinase (CA-MMP)/MMP-23 is atype Il transmembrane
matrix metall oproteinase regul ated by a single cleavage for both secretion and activation. J. Biol. Chem. 275:33988-33997.

Peled, A., O. Kallet, T. Ponomaryov, . Petit, S. Franitza, V. Grabovsky, M. M. Sav, A. Nagler, O. Lider, R. Alon, D. Zipori, and T.
Lapidot. 2000. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+)
cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289-3296.

Pendas, A. M., V. Knauper, X. S. Puente, E. LIano, M. G. Mattei, S. Apte, G. Murphy, and C. LopezOtin. 1997. Identification and
characterization of a novel human matrix metalloproteinase with unique structura characteristics, chromosomal location,
and tissue distribution. J. Biol. Chem. 272:4281-4286.

Peter, K., and T. E. OToole. 1995. Modulation of cell-adhesion by changes in apha(L)beta(2) (LFA-1, CD11a/CD18) cytoplasmic
domain/cytoskel eton interaction. J. Exp. Med. 181:315-326.

Petruzzelli, L., L. Maduzia, and T. A. Springer. 1995. Activation of lymphocyte function-associated molecule-1 (CD11a/CD18) and
Mac-1 (CD11b/CD18) mimicked by an antibody-directed against CD18. J. Immunol. 155:854-866.

Petty, H. R., and R. F. Todd. 1996. Integrins as promiscuous signal transduction devices. Immunal. Today 17:209-212.

Pfeifer, A., T. Kesder, S. Silletti, D. A. Cheresh, and I. M. Verma. 2000. Suppression of angiogenesis by lentivira delivery of PEX,
anoncataytic fragment of matrix metalloproteinase 2. Proc. Natl. Acad. Sci. U SA 97:12227-12232.

Pidi, L., S. Albelda, H. Baldwin, P. Hammel, R. Gisler, and B. Imhof. 1993. Murine platelet endothelial cell adhesion molecule
(PECAM-1)/CD31 modulates beta? integrins on lymphokine-activated killer cdlls. Eur. J. Immunol. 23:2464-2471.

Pidi, L., P. Hammel, C. Uherek, F. Bachmann, R. H. Gider, D. Dunon, and B. A. Imhof. 1995. CD31/PECAM-1 is a ligand for
alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J. Cell Biol. 130:451-460.

Pierini, L. M., M. A. Lawson, R. J. Eddy, B. Hendey, and F. R. Maxfield. 2000. Oriented endocytic recycling of apha Sbeta 1 in
moatile neutrophils. Blood 95:2471-2480.

Pilcher, B. K., J. A. Dumin, B. D. Sudbeck, S. M. Krane, H. G. Welgus, and W. C. Parks. 1997. The activity of collagenase-1 is
required for keratinocyte migration on atype | collagen matrix. J. Cell Biol. 137:1445-1457.

Plow, E. F., T. K. Haas, L. Zhang, J. Loftus, and J. W. Smith. 2000. Ligand binding to integrins. J. Biol. Chem. 275:21785-21788.

Plusota, E., D. A. Soloviev, and E. F. Plow. 2003. Convergence of the adhesive and fibrinolytic systems: recognition of urokinase
by integrin alpha(M)beta(2) as well as by the urokinase receptor regulates cell adhesion and migration. Blood 101:1582-
1590.

Porter, J. C., and N. Hogg. 1998. Integrins take partners. cross-talk between integrins and other membrane receptors. Trends Cell
Biol. 8:390-396.

Posey, J. A., M. B. Khazaeli, A. DlGrosso, M. N. Saleh, C. Y. Lin, W. Huse, and A. F. LoBuglio. 2001. A pilot trial of vitaxin, a
humanized anti-vitronectin receptor (anti apha(v)beta(3)) antibody in patients with metastatic cancer. Cancer Biother.
Radiopharm. 16:125-132.

Poston, R., R. Robbins, B. Chan, P. Smms, L. Presta, P. Jardieu, and R. Morris. 2000. Effects of humanized monoclonal antibody to
rhesus CD11ain rhesus monkey cardiac alograft recipients. Transplantation 69:2005-2013.

Primakoff, P., and D. G. Myles. 2000. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet.
16:83-87.

Puente, X., A. Pendas, E. Llano, G. Vdasco, and C. Lopez-Otin. 1996. Molecular cloning of a novel membrane-type matrix
metall oproteinase from a human breast carcinoma. Cancer Res. 56:944-949.

Pulukuri, SM., C. S. Gondi, S. S. Lakka, A. Julta, N. Estes, M. Gujrati, and J. S. Rao. 2005. RNA interference-directed knockdown
of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion,
survival and tumorigenicity in vivo. J. Biol. Chem. 280:36529-36540.

Puyraimond, A., R. Fridman, M. Lemede, B. Arbeille, and S. Menashi. 2001. MMP-2 colocalizes with caveolae on the surface of
endothdial cells. Exp. Cell Res. 262:28-36.

Qian, F., D. L. Vaux, and I. L. Weissman. 1994. Expression of the integrin a pha-4-beta-1 on melanoma-cells can inhibit theinvasive
stage of metastasis formation. Cell 77:335-347.

Qu, A., and D. J. Leahy. 1995. Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, alphalbeta?) integrin. Proc. Natl.
Adac. Si. U SA 92:10277-10281.

Rainger, G. E., C. D. Buckley, D. L. Simmons, and G. B. Nash. 1999. Neutrophils sense flow-generated stress and direct their
migration through a pha(v)beta(3)-integrin. Am. J. Physiol. Heart Circ. Physiol. 276:858-864.

Randi, A. M., and N. Hogg. 1994. | domain of beta 2 integrin lymphocyte function-associated antigen-1 contains a binding site for
ligand intercellular adhesion molecule-1. J. Biol. Chem. 269:12395-12398.

Rao, J. S, C. Gondi, C. Chetty, S. Chittivelu, P. A. Joseph, and S. S. Lakka. 2005. Inhibition of invasion, angiogenesis, tumor
growth, and metagtasis by adenovirus-mediated transfer of antisense uPAR and MMP-9 in non-small cell lung cancer cells.
Mol. Cancer Ther. 4:1399-1408.

74



Reinhald, M. I., J. M. Green, F. P. Lindberg, M. Ticchioni, and E. J. Brown. 1999. Cell spreading distinguishes the mechanism of
augmentation of T cell activation by integrin-associ ated protein/CD47 and CD28. Int. Immunol. 11:707-718.

Reynolds, L. E., L. Wyder, J. C. Lively, D. Taverna, S. D. Robinson, X. Z. Huang, D. Sheppard, O. Hynes, and K. M. Hodivala-
Dilke. 2002. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and betab integrins. Nat. Med.
8:27-34.

Rickert, P., O. D. Weiner, F. Wang, H. R. Bourne, and G. Servant. 2000. Leukocytes navigate by compass: roles of PI3K gamma and
itslipid products. Trends Cell Biol. 10:466-473.

Ridley, A., and A. Hall. 1992. The small GTP-binding protein rho regul ates the assembly of focal adhesions and actin stress fibersin
response to growth factors. Cell 70:389-399.

Ridley, A., H. Paterson, C. Johnston, D. Diekmann, and A. Hall. 1992. The small GTP-binding protein rac regulates growth factor-
induced membrane ruffling. Cell 70:401-410.

Rodriguez-Manzaneque, J. C., T. F. Lane, M. A. Ortega, R. O. Hynes, J. Lawler, and M. L. Iruela-Arispe. 2001. Thrombospondin-1
suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular
endothelial growth factor. Proc. Natl. Acad. Sci. U SA 98:12485-12490.

Roeb, E., K. Schleinkofer, T. Kernebeck, S. Potsch, B. Jansen, I. Behrmann, S. Matern, and J. Grotzinger. 2002. The matrix
metalloproteinase 9 (MMP-9) hemaopexin domain is a novel gelatin binding domain and acts as an antagonist. J. Biol.
Chem. 277:50326-50332.

Radlli, M., E. Fransvea, J. Pilch, A. Saven, and B. Felding-Habermann. 2003. Activated integrin aphavbeta3 cooperates with
meta | oproteinase MM P-9 in regulating migration of metastatic breast cancer cells. Proc. Natl. Acad. Sci. U SA 100:9482-
9487.

Rot, A. 1992. Endothelial-cell binding of Nap-1/IL-8 - Role in neutrophil emigration. Immunol. Today 13:291-294.

Rothlein, R., and T. A. Springer. 1986. The requirement for lymphocyte function-associated antigen 1 in homotypic leukocyte
adhesion stimulated by phorbol ester. J. Exp. Med. 163:1132-1149.

Roussel, E., and M. C. Gingras. 1997. Transendothelial migration induces rapid expresson on neutrophils of granule-release VLAG
used for tissueinfiltration. J. Leukoc. Biol. 62:356-362.

Rozanov, D. V., E. Hahn-Dantona, D. K. Strickland, and A. Y. Strongin. 2004. The low density lipoprotein receptor-related protein
LRP isregulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J. Biol. Chem.
279:4260-4268.

Ruchaud-Sparagano, M.-H., T. R. Walker, A. G. Ross, C. Haslett, and |. Dransfield. 2000. Soluble E-selectin acts in synergy with
platelet-activating factor to activate neutrophil beta 2-integrins. Role of tyrosine kinases and Ca?" mobilization. J. Biol.
Chem. 275:15758-15764.

Saalbach, A., A. Wetzel, U.-F. Haustein, M. Sticherling, J. C. Simon, and U. Anderegg. 2005. Interaction of human Thy-1 (CD 90)
with the integrin alphavbeta3 (CD51//CD61): an important mechanism mediating melanoma cell adhesion to activated
endothelium. J. Immunol. 24:4710-4720.

Saaridho-Kere, U. K., E. S. Chang, H. G. Welgus, and W. C. Parks. 1992. Distinct localization of collagenase and tissue inhibitor of
metal l oprotei nases expression in wound-healing associated with ulcerative pyogenic granuloma. J. Clin. Invest. 90:1952-
1957.

Sage, E. H., M. Reed, S. E. Funk, T. Truong, M. Steaddle, P. Puolakkainen, D. H. Maurice, and J. A. Bassuk. 2003. Cleavage of the
matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis. J. Bial.
Chem. 278:37849-37857.

Salas, A., M. Shimaoka, A. N. Kogan, C. Harwood, U. H. von Andrian, and T. A. Springer. 2004. Ralling adhesion through an
extended conformation of integrin apha(L)beta(2) and relation to alpha | and beta I-like domain interaction. Immunity
20:393-406.

Salminen, T., Y. Nymam, J. Kankare, J. Kapylg, J. Heino, and M. Johnson. 1999. Production, crystallization and preliminary X-ray
andysis of the human integrin alphal | domain. Acta Crystallogr. D. Biol. Crystallogr. 55:1365-1367.

Sanchez-Lopez, R., C. M. Alexander, O. Behrendtsen, R. Breathnach, and Z. Werb. 1993. Rale of zinc-binding- and hemopexin
domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J.
Biol. Chem. 268:7238-7247.

Sanchez-Madrid, F., D. Davignon, E. Martz, and T. Springer. 1982. Antigens involved in mouse cytolytic T-lymphocyte (CTL)-
mediated killing: functional screening and topographic relationship. Cell Immunol. 73:1-11.

Sanchez-Madrid, F., and M. del Pozo. 1999. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18:501-511.

Scappaticci, F. A., R. Smith, A. Pathak, D. Schloss, B. Lum, Y. H. Cao, F. Johnson, E. G. Engleman, and G. P. Nolan. 2001.
Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor
efficacy in leukemia and solid tumorsin mice. Mol. Ther. 3:186-196.

Scharffetter-Kochanek, K., H. Lu, K. Norman, N. van Nood, F. Munoz, S. Grabbe, M. McArthur, |. Lorenzo, S. Kaplan, K. Ley, C.
Smith, C. Montgomery, S. Rich, and A. Beaudet. 1998. Spontaneous skin ulceration and defective T cell function in CD18
null mice. J. Exp. Med. 188:119-131.

Schnaper, H. W., D. S. Grant, W. G. Stetlerstevenson, R. Fridman, G. Dorazi, A. N. Murphy, R. E. Bird, M. Hoythya, T. R. Fuers,
D. L. French, J. P. Quigley, and H. K. Kleinman. 1993. Type-1V collagenase(s) and TIMPs modulate endothelia-cell
morphogenesisin-vitro. J. Cell Physiol. 156:235-246.

Schneller, M., K. Vuori, and E. Ruoslahti. 1997. Alpha v beta 3 integrin associates with activated insulin and PDGF beta receptors
and potentiates the biological activity of PDGF. EMBO J. 16:5600-5607.

Schwab, W., J. M. Gavlik, T. Beichler, R. H. W. Funk, S. Albrecht, V. Magdolen, T. Luther, M. Kasper, and M. Shakibaei. 2001.
Expression of the urokinase-type plasminogen activator receptor in human articular chondrocytes: association with
caveolin and beta(1)-integrin. Histochem.Cell Biol. 115:317-323.

75



Scott, K. A., C. H. Arnott, S. C. Robinson, R. J. Moore, R. G. Thompson, J. F. Marshall, and F. R. Bakwill. 2004. TNF-alpha
regulates epithelia expression of MMP-9 and integrin apha v beta 6 during tumour promation. A role for TNF-alphain
keratinocyte migration? Oncogene 23:6954-6966.

Seftor, R. E. B., E. A. Seftor, J. E. De Larco, D. E. Kleiner, J. Leferson, W. G. Stetler-Stevenson, T. F. McNamara, L. M. Golub, and
M. J. C. Hendrix. 1998. Chemicaly modified tetracyclines inhibit human melanoma cell invason and metastasis. Clin.
Exp. Metast. 16:217-225.

Seiki, M., N. Koshikawa, and I. Yana. 2003. Role of pericellular proteolysis by membrane-type 1 matrix metall oproteinase in cancer
invasion and angiogenesis. Cancer Metast. Rev. 22:129-143.

Sengelov, H., L. Kjeldsen, M. S. Diamond, T. A. Springer, and N. Borregaard. 1993. Subcellular-localization and dynamics of Mac-1
(alpha(M)beta(2)) in human neutrophils. J. Clin. Invest. 92:1467-1476.

Senger, D. R, C. A. Parruzzi, M. Streit, V. E. Kotdiansky, A. R. de Fougeradlles, and M. Detmar. 2002. The alpha(1)beta(1) and
alpha(2)beta(1) Integrins provide critica support for vascular endotheial growth factor signding, endothelia cell
migration, and tumor angiogenesis. Am. J. Pathol. 160:195-204.

Shamri, R., V. Grabovsky, J. M. Gauguet, S. Feigelson, E. Manevich, W. Kolanus, M. K. Robinson, D. E. Staunton, U. H. von
Andrian, and R. Alon. 2005. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation
mediated by endothelium-bound chemokines. Nat. |mmunol. 6:497-506.

Shappell, S. B., C. Toman, D. C. Anderson, A. A. Taylor, M. L. Entman, and C. W. Smith. 1990. Mac-1 (CD11b CD18) mediates
adherence-dependent hydrogen-peroxide production by human and canine neutrophils. J. Immunal. 144:2702-2711.

Sharma, A., J. Askari, M. Humphries, E. Jones, and D. Stuart. 1999. Crystal structure of a heparin- and integrin-binding segment of
human fibronectin. EMBO J. 18:1468-1479.

Shaw, S. K., P. S. Bamba, B. N. Perkins, and F. W. Luscinskas. 2001. Rea-time imaging of vascular endothelial-cadherin during
leukocyte transmigration across endothelium. J. Immunol. 167:2323-2330.

Sheu, B. C., S. M. Hsu, H. N. No, H. C. Tien, S. C. Huang, and R. B. Lin. 2001. A novel role of metalloproteinase in cancer-
mediated immunosuppression. Cancer Res. 61:237-242.

Shimaoka, M., C. F. Lu, R. T. Pdframan, U. H. von Andrian, A. McCormack, J. Takagi, and T. A. Springer. 2001. Reversibly
locking a protein fold in an active conformation with a disulfide bond: Integrin alpha L | domains with high affinity and
antagonist activity in vivo. Proc. Natl. Acad. Sci. U SA 98:6009-6014.

Shimaoka, M., C. F. Lu, A. Sdlas, T. Xiao, J. Takagi, and T. A. Springer. 2002. Stabilizing the integrin adpha M inserted domain in
alternative conformations with a range of engineered disulfide bonds. Proc. Natl. Acad. Sci. U SA 99:16737-16741.

Shimaoka, M., A. Salas, W. Yang, G. Weitz-Schmidt, and T. A. Springer. 2003. Small molecul e integrin antagonists that bind to the
beta(2) subunit I-like domain and activate signalsin one direction and block them in the other. Immunity 19:391-402.

Shimonaka, M., K. Katagiri, T. Nakayama, N. Fujita, T. Tsuruo, O. Yoshie, and T. Kinashi. 2003. Rapl translates chemokine signals
to integrin activation, cell polarization, and matility across vascular endothelium under flow. J. Cell Biol. 161:417-427.

Shingleton, W. D., D. J. Hodges, P. Brick, and T. E. Cawston. 1996. Collagenase: A key enzyme in collagen turnover. Biochem. Cell
Biol. 74:759-775.

Shiomi, T., I. Inoki, F. Kataoka, T. Ohtsuka, G. Hashimoto, R. Nemori, and Y. Okada. 2005. Pericellular activation of proMMP-7
(promatrilysin-1) through interaction with CD151. Lab Invest. 85:1489-1506.

Silletti, S, T. Kesder, J. Goldberg, D. L. Boger, and D. A. Cheresh. 2001. Disruption of matrix metalloproteinase 2 binding to
integrin a pha(v)beta(3) by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc. Natl. Acad. &i. U S
A 98:119-124.

Simon, D. I, Y. Wei, L. Zhang, N. K. Rao, H. Xu, Z. P. Chen, Q. M. Liu, S. Rosenberg, and H. A. Chapman. 2000. Identification of
a urokinase receptor-integrin interaction site - Promiscuous regulator of integrin function. J. Biol. Chem. 275:10228-10234.

Simon, S. ., V. Chergpanov, |. Nadra, T. K. Waddell, S. M. Seo, Q. Wang, C. M. Doerschuk, and G. P. Downey. 1999. Signaling
functions of L-selectin in neutrophils: Alterationsin the cytoskel eton and colocalization with CD18. J. Immunol. 163:2891-
2901.

Sitrin, R. G., D. R. Johnson, P. M. Pan, D. M. Harsh, J. B. Huang, H. R. Petty, and R. A. Blackwood. 2004. Lipid raft
compartmentalization of urokinase receptor signaling in human neutrophils. Am. J. Resp. Cell Moal. Biol. 30:233-241.

Skinner, M. A., and A. G. Wildeman. 1999. beta(1) integrin binds the 16-kDa subunit of vacuolar H+-ATPase at a site important for
human papillomavirus E5 and platelet-derived growth factor signaling. J. Biol. Chem. 274:23119-23127.

Smart, E. J, G. A. Graf, M. A. McNiven, W. C. Sessa, J. A. Engelman, P. E. Scherer, T. Okamoto, and M. P. Lisanti. 1999.
Cavedlins, liquid-ordered domains, and signd transduction. Mal. Cell. Biol. 19:7289-7304.

Soede, R. D. M., M. H. E. Driessens, L. Ruuls-Van Stalle, P. E. M. Van Hulten, A. Brink, and E. Roos. 1999. LFA-1 to LFA-1
signals involve zeta-associated protein-70 (ZAP-70) tyrosine kinase: Relevance for invasion and migration of a T cell
hybridoma. J. Immunol. 163:4253-4261.

Solovjov, D. A., E. Pluskata, and E. F. Plow. 2005. Distinct roles for the alpha and beta subunits in the functions of integrin
alpha(M)beta(2). J. Biol. Chem. 280:1336-1345.

Song, G., Y. T. Yang, J. H. Liu, J. M. Casasnovas, M. Shimaoka, T. A. Springer, and J. H. Wang. 2005. An atomic resol ution view
of ICAM recognition in a complex between the binding domains of ICAM-3 and integrin alpha(L)beta(2). Proc. Natl.
Acad. Si. U SA 102:3366-3371.

Sorlie, T., C. M. Perou, R. Tibshirani, T. Aas, S. Geider, H. Johnsen, T. Hagtie, M. B. Eisen, M. van de Rijn, S. S. Jeffrey, T.
Thorsen, H. Quist, J. C. Matese, P. O. Brown, D. Botstein, P. E. Lonning, and A.-L. Borresen-Dale. 2001. Gene expression
patterns of breast carcinomas distinguish tumor subcdasses with clinical implications. Proc. Natl. Acad. i. U S A
98:10869-10874.

Springer, T. A. 1990. Adhesion receptors of the immune-system. Nature 346:425-434.

Springer, T. A. 1995. Traffic signas on endothelium for lymphocyte recirculation and leukocyte emigration. Ann. Rev. Physiol.
57:827-872.

76



Springer, T. A. 1997. Folding of the N-terminal, ligand-binding region of integrin al pha-subunits into a beta-propeller domain. Proc.
Natl. Acad. Sci. U SA 94:65-72.

Springer, T. A., and J. H. Wang. 2004. The three-dimensional structure of integrins and their ligands, and conformational regulation
of cell adhesion. Adv. Protein Chem. 68:29-63.

Springman, E. B., E. L. Angleton, H. Birkedalhansen, and H. E. Vanwart. 1990. Multiple-modes of activation of latent human
fibroblast collagenase - Evidence for the role of a Cys-73 active-site zinc complex in latency and a cysteine switch
mechanism for activation. Proc. Natl. Acad. Sci. U SA 87:364-368.

Stanley, P., P. A. Bates, J. Harvey, R. |. Bennett, and N. Hogg. 1994. Integrin LFA-1 al pha-subunit contains an ICAM-1 binding-site
in domain-V and domain-VI. EMBO J. 13:1790-1798.

Stearns, M., and M. E. Stearns. 1996. Evidence for increased activated metalloproteinase 2 (MMP-2) expression associated with
human prostate cancer progression. Oncol. Res. 8:69-75.

Stefanidakis, M., M. Bjérklund, E. Ihanus, C. G. Gahmberg, and E. Koivunen. 2003. Identification of a negatively charged peptide
motif within the cataytic domain of progelatinases that mediates binding to leukocyte b2 integrins. J. Biol. Chem.
278:34674-34684.

Stefanidakis, M., T. Ruohtula, N. Borregaard, C. G. Gahmberg, and E. Koivunen. 2004. Intracellular and cell surface localization of a
complex between apha(M)beta(2) integrin and promatrix metalloproteinase-9 progelatinase in neutrophils. J. Immunal.
172:7060-7068.

Steffensen, B., H. F. Bigg, and C. M. Overall. 1998. The involvement of the fibronectin type I1-like modules of human gelatinase A
in cell surface localization and activetion. J. Biol. Chem. 273:20622-20628.

Sternlinct, M. D., and Z. Werb. 2001. How matrix metall oproteinases regulate cell behavior. Annu. Rev. Céll. Dev. Biol. 17:463-516.

Stetler-Stevenson, W. 1996. Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J. Pathol.
148:1345-1350.

Stewart, M. P., A. McDowall, and N. Hogg. 1998. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-
dependent protease, calpain. J. Cell Biol. 140:699-707.

Stocker, W., F. Grams, U. Baumann, P. Reinemer, F. X. Gomis-Ruth, D. B. McKay, and W. Bode. 1995. The metzincins --
Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a
superfamily of zinc-peptidases. Protein Sci. 4:823-840.

Stricker, T. P,, J. A. Dumin, S. K. Dickeson, L. Chung, H. Nagase, W. C. Parks, and S. A. Santoro. 2001. Structura andysis of the
alpha(2) integrin | domain/procollagenase-1 (matrix metall oproteinase-1) interaction. J. Biol. Chem. 276:29375-29381.

Strongin, A. Y., I. Cdllier, G. Bannikov, B. L. Marmer, G. A. Grant, and G. |. Goldberg. 1995. Mechanism of cell surface activation
of 72-kDatype IV collagenase. J. Biol. Chem. 270:5331-5338.

Strongin, A. Y., B. L. Marmer, G. A. Grant, and G. |. Goldberg. 1993. Plasma membrane-dependent activation of the 72-kDatype IV
collagenase is prevented by complex formation with TIMP-2. J. Biol. Chem. 268:14033-14039.

Stucki, A., A. S. Rivier, M. Gikic, N. Monai, M. Schapira, and O. Spertini. 2001. Endothelia cell activation by myeloblasts:
molecular mechanisms of leukostasis and leukemic cell dissemination. Blood 97:2121-2129.

Stupack, D. G., and D. A. Cheresh. 2002. Get aligand, get alife: integrins, signding and cell survival. J. Cel Sci. 115:3729-3738.

Sultan, S., M. Godling, H. Nagase, and J. T. Powell. 2004. Shear stress-induced shedding of solubl e intercellular adhesion molecule-1
from saphenous vein endothelium. FEBS Lett. 564:161-165.

Sun, R, P. Iribarren, N. Zhang, Y. Zhou, W. Gong, E. H. Cho, S. Lockett, O. Chertov, F. Bednar, T. J. Rogers, J. J. Oppenheim, and
J. M. Wang. 2004. Identification of neutrophil granule protein cathepsn G as a novel chemotactic agonist for the G
protein-coupled formyl peptide receptor. J. Immunol. 173:428-436.

Suomalainen, H., C. Gahmberg, M. Patarroyo, P. Bestty, and J. Schroder. 1986. Genetic assignment of GP90, leukocyte adhesion
glycoprotein to human chromosome 21. Somat. Cell Mol. Genet. 12:297-302.

Takada, Y., T. Kamata, A. Irie, W. Puzon-MclLaughlin, and X. P. Zhang. 1997. Structural basis of integrin-mediated signal
transduction. Matrix Biol. 16:143-151.

Takafuji, S., A. Ishida, Y. Miyakuni, and T. Nakagawa. 2003. Matrix metal |oproteinase-9 release from human leukocytes. J. Invest.
Allerg. Clin. Immunal. 13:50-55.

Takagi, J., H. P. Erickson, and T. A. Springer. 2001. C-terminal opening mimics 'inside-out' activation of integrin dpha5 beta 1. Nat.
Struct. Biol. 8:412-416.

Takagi, J,, T. Isobe, Y. Takada, and Y. Saito. 1997. Structural interlock between ligand-binding site and stalk-like region of beta 1
integrin revealed by a monoclonal antibody recognizing conformation-dependent epitope. J. Biochem. 121:914-921.

Takagi, J., B. M. Petre, T. Walz, and T. A. Springer. 2002. Global conformationa rearrangements in integrin extracellular domainsin
outside-in and inside-out signaling. Cell 110:599-611.

Takagi, J., and T. A. Springer. 2002. Integrin activation and structural rearrangement. Immunol. Rev. 186:141-163.

Takagi, J.,, K. Strokovich, T. Springer, and T. Walz. 2003. Structure of integrin aphabbetal in complex with fibronectin. EMBO J.
22:4607-4615.

Takahashi, C., Z. Q. Sheng, T. P. Horan, H. Kitayama, M. Maki, K. Hitomi, Y. Kitaura, S. Takai, R. M. Sasahara, A. Horimoto, Y.
lkawa, B. J. Ratzkin, T. Arakawa, and M. Noda. 1998. Regulation of matrix metalloproteinase-9 and inhibition of tumor
invasion by the membrane-anchored glycoprotein RECK. Proc. Natl. Acad. i. U SA 95:13221-13226.

Takino, T., N. Koshikawa, H. Miyamori, M. Tanaka, T. Sasaki, Y. Okada, M. Seiki, and H. Sato. 2003. Cleavage of metastasis
suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene 22:4617-4626.

Takino, T., H. Miyamori, Y. Watanabe, K. Yaoshioka, M. Seki, and H. Sato. 2004. Membrane type 1 matrix metalloproteinase
regulates collagen-dependent mitogen-activated protein/extracellular signal-related kinase activation and cell migration.
Cancer Res. 64:1044-1049.

Tam, E. M., Y. |. Wu, G. S. Butler, M. S. Stack, and C. M. Overall. 2002. Collagen binding properties of the membrane type-1
matrix metalloproteinase (MT1-MMP) hemopexin C domain - The ectodomain of the 44-kDa autocatalytic product of
MT1-MMP inhibits cell invasion by disrupting native type | collagen cleavage. J. Biol. Chem. 277:39005-39014.

77



Tamkun, J. W., D. W. Desmone, D. Fonda, R. S. Patdl, C. Buck, A. F. Horwitz, and R. O. Hynes. 1986. Structure of integrin, a
glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:271-282.

Tanaka, Y., D. H. Adams, and S. Shaw. 1993. Proteoglycans on endothelial-cells present adhes on-inducing cytokines to leukocytes.
Immunal. Today 14:111-115.

Tarrant, J. M., L. Robb, A. B. van Spridl, and M. D. Wright. 2003. Tetraspanins: molecular organisers of the leukocyte surface.
Trends Immunol. 24:610-617.

Tarui, T., N. Andronicos, R. P. Czekay, A. P. Mazar, K. Bdeir, G. C. Parry, A. Kuo, D. J. Loskutoff, D. B. Cines, and Y. Takada.
2003. Criticd role of integrin alpha 5 beta 1 in urokinase (uPA)/urokinase receptor (UPAR, CD87) signaling. J. Biol. Chem.
278:29863-29872.

Taylor, P., C. Chu, C. Plater-Zyberk, and R. Maini. 1996. Transfer of type Il collagen-induced arthritis from DBA/1 to severe
combined i mmunodeficiency mice can be prevented by blockade of Mac-1. Immunology 88:315-321.

Thorne, R. F., J F. Marshall, D. R. Shafren, P. G. Gibson, I. R. Hart, and G. F. Burns. 2000. The integrins alpha(3)beta(1) and
alpha(6)beta(1) physically and functionally associate with CD36 in human meanoma cells - Requirement for the
extracellular domain of CD36. J. Biol. Chem. 275:35264-35275.

Toth, M., D. C. Gervasi, and R. Fridman. 1997. Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in
human MCF10A breast epithelia cells. Cancer Res. 57:3159-3167.

Toth, M., Y. Sado, Y. Ninomiya, and R. Fridman. 1999. Biosynthesis of apha2(IV) and alphal(lV) chains of collagen IV and
interactions with matrix metalloproteinase-9. J. Cell Physiol. 180:131-139.

Tryggvason, K., P. Huhtala, A. Tuuttila, L. Chow, J. Keski-Oja, and J. Lohi. 1990. Structure and expression of type IV collagenase
genes. Cdll Differ. Dev. 32:307-312.

Tuckwell, D., and M. Humphries. 1993. Molecular and cellular biology of integrins. Crit. Rev. Oncol. Hematol. 15:149-171.

Tuckwell, D. S., M. J. Humphries, and A. Brass. 1994. A secondary structure model of the integrin al pha-subunit N-termina domain
based on andysis of multiple alignments. Cell Adhes. Commun. 2:385-402.

Turpeenniemi-Hujanen, T. 2005. Geatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers.
Biochimie 87:287-297.

Ueda, J., M. Kgjita, N. Suenaga, K. Fujii, and M. Seiki. 2003. Sequence-specific silencing of MT1-MMP expresson suppresses
tumor cell migration and invasion: importance of MT1-MMP as a therapeutic target for invasive tumors. Oncogene
22:8716-8722.

Ugarova, T. P., and V. P. Yakubenko. 2001. Recognition of fibrinogen by leukocyte integrins. Ann. N. Y. Acad. Sci. 936:368-385.

Vallar, L., C. Méchior, S. Plancon, H. Drobecq, G. Lippens, V. Regnault, and N. Kieffer. 1999. Divalent cations differentialy
regulate integrin alpha(llb) cytoplasmic tail binding to beta(3) and to calcium- and integrin-binding protein. J. Biol. Chem.
274:17257-17266.

van der Vieren, M., H. Le Trong, C. Wood, P. Moore, T. St John, D. Staunton, and W. Gallatin. 1995. A novel leukointegrin, alphaD
beta 2, binds preferentially to ICAM-3. Immunity 3:683-690.

van Deurs, B., K. Roepstorff, A. M. Hommelgaard, and K. Sandvig. 2003. Caveolae: anchored, multifunctiona platformsin thelipid
ocean. Trends Cdll Biol. 13:92-100.

van Kooyk, Y., M. Lub, and C. G. Figdor. 1998. Adhesion and signaling mediated by the cytoplasmic tails of leucocyte integrins.
Cdl Adhes. Commun. 6:247-254.

van Kooyk, Y., S. J. van Vliet, and C. G. Figdor. 1999. The actin cytoskeleton regulaes LFA-1 ligand binding through avidity rather
than affinity changes. J. Biol. Chem. 274:26869-26877.

van Kooyk, Y., P. Weder, K. Heije, R. de Waal Mdefijt, and C. Figdor. 1993. Role of intracellular Ca2+ levels in the regulation of
CD11&/CD18 mediated cell adhesion. Cell Adhes. Commun. 1:21-32.

van Seventer, G. A., Y. Shimizu, K. J. Horgan, and S. Shaw. 1990. The LFA-1 ligand ICAM-1 provides an important costimulatory
signal for T cell receptor-mediated activation of resting T cells. J. Immunol. 144:4579-4586.

van Wart, H. E., and H. Birkedal-Hansen. 1990. The cysteine switch: a principle of regulaion of metalloproteinase activity with
potentia applicability to the entire matrix metall oproteinase gene family. Proc. Natl. Acad. Sci. U SA 87:5578-5582.

Vaporciyan, A. A., H. M. Délisser, H. C. Yan, Mendiguren, II, S. R. Thom, M. L. Jones, P. A. Ward, and S. M. Albelda. 1993.
Involvement of platelet endothelial-cell adhesion molecule-1 in neutrophil recruitment in-vivo. Science 262:1580-1582.

Vazquez, F., G. Hastings, M. A. Ortega, T. F. Lane, S. Oikemus, M. Lombardo, and M. L. Iruela-Arispe. 1999. METH-1, a human
ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J. Biadl.
Chem. 274:23349-23357.

Vedder, N., R. Winn, C. Rice, E. Chi, K. Arfors, and J. Harlan. 1988. A monoclonal antibody to the adherence-promoting leukocyte
glycoprotein, CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J.
Clin. Invest. 81:939-944.

Vermot-Desroches, C., J. Wijdenes, L. Vamu, C. Roy, R. Pigott, P. Nortamo, and C. Gahmberg. 1995. A CD44 monoclonal
antibody differentially regulates CD11a/CD18 binding to intercelular adhesion molecules CD54, CD102 and CD50. Eur.
J. Immunol. 25:2460-2464.

Vestweber, D., and J. E. Blanks. 1999. Mechanisms that regulate the function of the sdectinsand their ligands. Physiol. Rev. 79:181-
213.

Vihinen, P.,, and V. M. Kahéri. 2002. Matrix metalloproteinases in cancer: Prognostic markers and therapedtic targets. Int. J. Cancer
99:157-166.

Vinogradova, O., J. Vaynberg, X. Kong, T. A. Haas, E. F. Plow, and J. Qin. 2004. Membrane-mediated structural transitions at the
cytoplasmic face during integrin activation. Proc. Natl. Acad. Sci. U SA 101:4094-4099.

Vinogradova, O., A. Velyvis, A. Velyviene, B. Hu, T. A. Haas, E. F. Plow, and J. Qin. 2002. A structural mechanism of integrin
apha(lIb)beta(3) "inside-out" activation as regulated by its cytoplasmic face. Cell 110:587-597.

Visse, R, and H. Nagase 2003. Matrix metalloproteinases and tissue inhibitors of metaloproteinases - Structure, function, and
biochemistry. Circ. Res. 92:827-839.

78



Voermans, C., P. M. L. Rood, P. L. Hordijk, W. R. Gerritsen, and C. E. van der Schoot. 2000. Adhesion molecules involved in
transendothelia migration of human hematopoaietic progenitor cells. Sem Cells 18:435-443.

von Andrian, U. H., and C. R. Mackay. 2000. Advances in immunology: T-cell function and migration - Two sides of the same coin.
N. Engl. J. Med. 343:1020-1033.

Vu, T. H., J. M. Shipley, G. Bergers, J. E. Berger, J. A. Helms, D. Hanahan, S. D. Shapiro, R. M. Senior, and Z. Werb. 1998. MMP-
9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411-
422,

Wang, X., M. Hou, L. Tan, X. H. Sun, Y. Q. Zhang, P. Li, and Y. S. Zhu. 2005. A hybrid protein of the amino-termina fragment of
urokinase and mutant plasminogen activator inhibitor-2 efficiently inhibits tumor cell invason and metastasis. J. Cancer
Res. Clin. Oncol. 131:129-136.

Wang, X. Q., and W. A. Frazier. 1998. The thrombaospondin receptor CD47 (IAP) modulates and associates with apha 2 beta 1
integrinin vascular smooth muscle cells. Mal. Bial. Cell 9:865-874.

Wang, X.-Q., P. Sun, and A. S. Pdler. 2003. Ganglioside GM3 inhibits matrix metaloproteinase-9 activation and disrupts its
association with integrin. J. Biol. Chem. 278:25591-25599.

Wang, Z. P, R. Juttermann, and P. D. Soloway. 2000. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol.
Chem. 275:26411-26415.

Wehb, D. J,, J. T. Parsons, and A. F. Horwitz. 2002. Adhesion assembly, disassembly and turnover in migrating cells - over and over
and over again. Nat. Cell Biol. 4:97-100.

Weber, C., J. Kitayama, and T. A. Springer. 1996. Differentia regulation of beta 1 and beta 2 integrin avidity by chemoattractants in
eosinophils. Proc. Natl. Acad. Sci. U SA 93:10939-10944.

Wei, Y., J. A. Eble, Z. M. Wang, J. A. Kreidberg, and H. A. Chapman. 2001. Urokinase receptors promote beta 1 integrin function
through i nteractions with integrin apha 3 beta 1. Mol. Biol. Cell 12:2975-2986.

Weisd, J. W., C. Nagaswami, G. Vilaire, and J. S. Bennett. 1992. Examination of the platelet membrane glycoprotein-llb-ll1a
complex and itsinteraction with fibrinogen and other ligands by electron-microscopy. J. Biol. Chem. 267:16637-16643.

Werb, Z. 1997. ECM and cell surface proteolysis: Regulating cellular ecology. Cell 91:439-442.

Werb, Z., P. M. Tremble, O. Behrendtsen, E. Crowley, and C. H. Damsky. 1989. Signa transduction through the fibronectin receptor
induces collagenase and stromelysin gene expression. J. Cell Biol. 109:877-889.

Werr, J., E. E. Eriksson, P. Hedqvist, and L. Lindbom. 2000a. Engagement of beta(2) integrinsinduces surface expression of beta(1)
integrin receptors in human neutrophils. J. Leukoc. Biol. 68:553-560.

Werr, J., J. Johansson, E. E. Eriksson, P. Hedgvist, E. Ruoslahti, and L. Lindbom. 2000b. Integrin apha(2)beta(1) (VLA-2) is a
principa receptor used by neutrophils for locomotion in extravascular tissue. Blood 95:1804-1809.

Werr, J., X. Xie, P. Hedqgvist, E. Ruoslahti, and L. Lindbom. 1998. beta(1), integrins are critically involved in neutrophil locomation
in extravascular tissue in vivo. J. Exp. Med. 187:2091-2096.

Wessdls, D., D. Sall, D. Knecht, W. Loomis, A. De Lozanne, and J. Spudich. 1988. Cell matility and chemotaxis in Dictyostelium
amebae lacking myosin heavy chain. Dev. Biol. 128:164-177.

Westermarck, J., and V. M. Kahari. 1999. Regulation of matrix metalloproteinase expression in turner invasion. FASEB J. 13:781-
792.

Wetzel, A., T. Chavakis, K. T. Preissner, M. Sticherling, U.-F. Haustein, U. Anderegg, and A. Saalbach. 2004. Human Thy-1 (CD90)
on activated endothelia cellsis a counter receptor for the leukocyte integrin Mac-1 (CD11b/CD18). J. Immunol. 172:3850-
3859.

Whittaker, C. A., and R. O. Hynes. 2002. Distribution and evolution of von Willebrand/integrin A domains. widely dispersed
domainswith rolesin cell adhesion and e sewhere. Moal. Biol. Cell 13:3369-3387.

Wilkinson, P. 1986. The locomotor capacity of human lymphocytes and its enhancement by cell growth. Immunology 57.

Will, H., S. J Atkinson, G. S. Butler, B. Smith, and G. Murphy. 1996. The soluble catdytic domain of membrane type 1 matrix
metal |l oprotei nase cleaves the propeptide of progelatinase A and initiates autoproteol ytic activation - Regulation by TIMP-2
and TIMP-3. J. Biol. Chem. 271:17119-17123.

Williams, M. J,, P. E. Hughes, T. E. OToole, and M. H. Ginsberg. 1994. The inner world of cell adhesion: integrin cytoplasmic
domains. Trends Cell Biol. 4:109-112.

Wize, J, |. Sopata, A. Smerdel, and S. Maslinski. 1998. Ligation of selectin L and integrin CD11b/CD18 (Mac-1) induces rel ease of
gelatinase B (MMP-9) from human neutrophils. Inflamm. Res. 47:325-327.

Woodside, D. G., S. Liu, and M. H. Ginsberg. 2001. Integrin activation. Thromb. Haemogt. 86:316-323.

Worthylake, R. A., and K. Burridge. 2001. Leukocyte transendothelial migration: orchestrating the underlying molecular machinery.
Curr. Opin. Cél Biol. 13:569-577.

Wright, S. D., and M. T. Jong. 1986. Adhes on-promoting receptors on human macrophages recognize Escherichia coli by binding to
lipopolysaccharide. J. Exp. Med. 164:1876-1888.

Wright, S. D., and S. C. Silverstein. 1982. Tumor-promoting phorbol esters stimulate C3b and C3b' receptor-mediated phagocytosis
in cultured human monocytes. J. Exp. Med. 156:1149-1164.

Xiao, T., J. Takagi, B. S. Coaller, J-H. Wang, and T. A. Springer. 2004. Structural basis for alostery in integrins and binding to
fibrinogen-mimetic therapeutics. Nature 432:59-67.

Xie, B., A. Laouar, and E. Huberman. 1998. Fibronectin-mediated cell adhesion is required for induction of 92-kDa type IV
collagenase/gel atinase (MM P-9) gene expression during macrophage differentiation - The signaling role of protein kinase
C-beta. J. Biol. Chem. 273:11576-11582.

Xiong, J., T. Stehle, S. Goodman, and M. Arnaout. 2003. Integrins, cations and ligands: making the connection. J. Thromb. Haemogt.
1:1642-1654.

Xiong, J. P, T. Stehle, B. Diefenbach, R. G. Zhang, R. Dunker, D. L. Scott, A. Joachimiak, S. L. Goodman, and M. A. Arnaout.
2001. Crystal structure of the extracellular segment of integrin dphaV beta 3. Science 294:339-345.

79



Xiong, J. P, T. Stehle, R. G. Zhang, A. Joachimiak, M. Frech, S. L. Goodman, and M. A. Arnaout. 2002. Crysta structure of the
extracellular segment of integrin alphaV beta 3 in complex with an Arg-Gly-Asp ligand. Science 296:151-155.

Xu, J, D. Rodriguez, E. Petitclerc, J. J. Kim, M. Hangai, S. M. Yuen, G. E. Davis, and P. C. Brooks. 2001. Proteolytic exposure of a
cryptic site within collagen type 1V isrequired for angiogenesis and tumor growth in vivo. J. Cell Biol. 154:1069-1080.

Xue, W., A. L. Kindzelskii, R. F. Todd, 3rd, and H. R. Petty. 1994. Physical association of complement receptor type 3 and
urokinase-type plasminogen activator receptor in neutrophil membranes. J. Immunol. 152:4630-4640.

Xue, W., I. Mizukami, R. F. Todd, and H. R. Petty. 1997. Urokinase-type plasminogen activator receptors associate with beta(1) and
beta(3) integrins of fibrosarcoma cells: Dependence on extracellular matrix components. Cancer Res. 57:1682-1689.

Y akubenko, V. P,, V. K. Lishko, S. C. T. Lam, and T. P. Ugarova. 2002. A molecular basis for integrin alphaMbeta 2 ligand binding
promiscuity. J. Biol. Chem. 277:48635-48642.

Yan, S. R, L. Fumagalli, and G. Berton. 1995. Activation of p58(c-fgr) and p53/56(lyn) in adherent human neutrophils: Evidence for
arole of divalent cationsin regulating neutrophil adhesion and protein tyrosine kinase activities. J. Inflamm 45:297-311.

Yang, Z. T., D. K. Strickland, and P. Bornstein. 2001. Extracellular matrix metaloproteinase 2 levels are regulated by the low
density lipoprotein-related scavenger receptor and thrombospondin 2. J. Biol. Chem. 276:8403-8408.

Ye, S. 2000. Polymorphism in matrix metalloproteinase gene promoters. implication in regulation of gene expresson and
susceptibility of various diseases. Matrix Biol. 19:623-629.

Ylénne, J. 1998. Conserved functions of the cytoplasmic domains of integrin b subunits. Front Biosci. 3:877-886.

Yu, Q. and I. Stamenkovic. 1999. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-
mediated tumor invasion. Genes Dev. 13:35-48.

Yu, Q., and I. Stamenkovic. 2000. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes
tumor invasion and angiogenesis. Genes Dev. 14:163-176.

Yu, X., S. Miyamoto, and E. Mekada. 2000. Integrin apha 2 beta 1-dependent EGF receptor activation at cell-cell contact sites. J.
Cdl <. 113:2139-2147.

Yu, W.-H., and J. F. Woessner, J. 2000. Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix
metaloproteinase 7). J. Biol. Chem. 275:4183-4191.

Y usuf-Makagiansar, H., M. E. Anderson, T. V. Yakovleva, J. S. Murray, and T. J. Siahaan. 2002. Inhibition of LFA-1/ICAM-1 and
VLA-4/V CAM-1 as atherapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 22:146-167.

Zamir, E., and B. Geiger. 2001. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114:3583-3590.

Zang, Q., C. F. Lu, C. C. Huang, J. Takagi, and T. A. Springer. 2000. The top of the inserted-like domain of the integrin [lymphocyte
function-associated antigen-1 beta subunit contacts the alpha subunit beta-propeller domain near beta-sheet 3. J. Bial.
Chem. 275:22202-22212.

Zang, Q., and T. A. Springer. 2001. Amino acid residues in the PSI domain and cysteine-rich repeats of the integrin beta(2) subunit
that restrain activation of the integrin aXb2. J. Biol. Chem. 276:6922-6929.

Zell, T., W. Kivens, S. Kellermann, and Y. Shimizu. 1999. Regulation of integrin function by T cell activation: points of convergence
and divergence. Immunol Res. 20:127-145.

Zen, K., M. Utech, Y. Liu, . Soto, A. Nusrat, and C. A. Parkos. 2004. Association of BAP31 with CD11b/CD18 - Potential role in
intracd lular trafficking of CD11b/CD18 in neutrophils. J. Biol. Chem. 279:44924-44930.

Zhang, X. P., T. Kamata, K. Yokoyama, W. Puzon-McLaughlin, and Y. Takada. 1998. Specific interaction of the recombinant
disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphav beta 3. J. Biol. Chem. 273:7345-7350.

Zhao, H., M. M. Bernardo, P. Osenkowski, A. Sohail, D. Pei, H. Nagase, M. Kashiwagi, P. D. Soloway, Y. A. DeClerck, and R.
Fridman. 2004. Differentia inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by
tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 regulates pro-MMP-2 activation. J. Biol. Chem. 279:8592-
8601.

Zheng, L. M., A. Sjolander, J. Eckerdal, and T. Andersson. 1996. Antibody-induced engagement of beta(2) integrins on adherent
human neutrophils triggers activation of p21(ras) through tyrosine phosphorylation of the protooncogene product Vav.
Proc. Natl. Acad. Sci. U SA 93:8431-8436.

Zhou, M., R. Graham, G. Russell, and P. I. Croucher. 2001. MDC-9 (ADAM-9/meltrin g) functions as an adhesion molecule by
binding the a pha(v)beta(5) integrin. Biochem. Biophys. Res. Commun. 280:574-580.

Zhou, Z., S. S. Apte, R. Soininen, R. Cao, G. Y. Baaklini, R. W. Rauser, J. Wang, Y. Cao, and K. Tryggvason. 2000. Impaired
endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase |. Proc. Natl.
Acad. <i. U SA 97:4052-4057.

Zimmerman, G., S. Prescott, and T. McIntyre. 1992. Endothelial cell interactions with granulocytes: tethering and signaling
molecules. Immunol. Today 13:93-100.

Zucker, S., M. Drews, C. Conner, H. D. Foda, Y. A. DeClerck, K. E. Langley, W. F. Bahou, A. J. P. Docherty, and J. Cao. 1998.
Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type
1 matrix metalloproteinase 1 (MT1-MMP). J. Bidl. Chem. 273:1216-1222.

80



