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ABSTRACT 

Craniofacial development depends on dynamic tissue interactions and their co-ordinated 

integration into complex structures. Elements of lower face, pharynx as well as outer and 

middle ear, derive from six pairs of branchial arches located around the pharyngeal endoderm. 

Each branchial arch contains mesodermal core surrounded by neural crest cells, and is 

covered by endoderm from inside and ectoderm from outside. Despite their importance and 

evolutionary conservation, the early processes that coordinate development and integration of 

different arch components are still poorly understood. 

 

Cranial neural crest cells originate adjacent to the neural ectoderm and migrate in three 

streams toward arches. Migratory pattern of the neural crest cells is coupled to the 

segmentation of the hindbrain into rhombomeres. Traditionally, it was thought that the fate of 

the neural crest cells, which give rise to the skeletal elements, is determined prior to their 

migration, and that they play an instrumental role in the branchial arch patterning. However, 

recent evidence has highlighted the importance of the neural-crest independent mechanisms 

of pharyngeal development. 

 

Fibroblast growth factor (Fgf) signalling appears to be important for multiple tissue-

interactions during pharyngeal development, both within and between different germ layers. 

The effects of FGFs are mediated by four tyrosine kinase-type receptors, fibroblast growth 

factor receptors 1-4 (FGFR1-4). In the pharyngeal region, Fgfr1 is expressed in different 

cellular components of the branchial arches, and may thus play multiple roles during the 

development of the arches and their derivatives. Mouse embryos homozygous for a null 

mutation in the Fgfr1 are unable to gastrulate normally and die during early gestation. In this 

work, hypomorphic (partial loss-of-function) and conditional alleles of the Fgfr1 were used to 

study the role of Fgf signaling in the pharyngeal development. The present results show that 

Fgfr1 is required for the entry of neural crest cells into the second branchial arch. Fgf 

signalling has been previously implicated with the regulation of the cell migration. However, 
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the detailed molecular mechanisms involved are largely unclear. In many studies, possible 

direct effects of FGFs on the migrating cells are at the centre of the focus Presented results 

show that in the pharyngeal region Fgf signalling regulates neural crest cell migration non-

cell autonomously.  

 

Proper patterning of the pharyngeal epithelium appears to be of great importance for the 

interaction and integration of different branchial arch tissue components. However, only very 

little is know about the mechanisms responsible for the correct localization of signalling 

centres in the epithelium. This study highlights the importance of the ectoderm in 

specification of the second branchial arch. It demonstrates that Fgfr1 is required for 

correct patterning of the pharyngeal ectoderm and establishment of putative signalling 

centre in the surface ectoderm of the presumptive second branchial arch. This 

ectodermal domain appears also important for development of the geniculate  placode 

giving rise to the VIIth cranial nerve. 

 

Another important signalling centre in the developing head is the isthmic organizer, 

which has been shown to regulate development of both central nervous system and 

craniofacial region. FGFs are signaling molecules of the isthmic organizer, which regulate 

patterning and growth of the posterior midbrain and anterior hindbrain. Although a lot is 

known on the molecular properties of the isthmic organizer, very little is known about the 

mechanisms responsible for the maintenance of this signalling centre. This study shows that: 

FGFR1 is the primary FGF receptor receiving signals from the isthmic organizer; tissue 

specific inactivation of Fgfr1 in the midbrain-hindbrain, results in developmental defects in 

both the midbrain and hindbrain; FGFR1 is independently required in both midbrain and 

hindbrain for the maintenance of isthmic organizer dependent gene expression. Taken 

together, present studies contribute to our understanding of head formation and reveal novel 

functions of FGF signalling in this process. 
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REVIEW OF THE LITERATURE  

Developmental anatomy of banchial arches 

Branchial arches are transient embryonic structures characteristic to all vertebrates. In mice, 

there are six pairs of branchial arches, which develop around the pharyngeal foregut. They 

arise in antero-posterior order during early somitogenesis, between 8 and 11 days of 

embryonic development in the mouse (E8-11), and are numbered in this order. Only first 

three arches can be well discriminated, while more posterior ones are less obvious (Fig. 1A). 

These bud like structures are covered with the surface ectoderm from outside and pharyngeal 

endoderm from inside (Fig. 1B). They contain a core of paraxial mesoderm surrounded by the 

neural crest cells (Lumsden et al., 1991; Noden, 1986; Noden, 1988; Trainor and Tam, 1995). 

Endodermal pharyngeal pouches and ectodermal pharyngeal clefts separate adjacent branchial 

arches in areas where endodermal and ectodermal cells are in direct contact (Graham, 2001). 

Pharyngeal pouches appear as localized, paired evaginations of the endoderm, just prior to 

branchial arch formation. At the same time, pharyngeal clefts form by paired invaginations of 

the surface ectoderm directly overlying the pharyngeal pouches (Fig. 1A and B). Pharyngeal 

pouches and clefts are formed in rostral to caudal sequence and are numbered according to 

preceding arch. 

 

Each fully developed branchial arch contains the basic set of structures including aortic arch, 

nerve, supporting cartilage rod and muscular component (Kaufman, 1999). Aortic arches are 

the earliest and most prominent structures seen in each branchial arch. Bilaterally symmetrical 

system of aortic arches develops from mesoderm in a cranio-caudal sequence. Aortic arches 

pass through the middle of the branchial arch core (Fig. 1B). In the symmetrical arrangement 

of aortic arches, the outflow from the heart is a single vessel, the ventral aorta, from which 6 

pairs of aortic arches pass dorsally on either side around the pharyngeal foregut, to unite with 

a pair of dorsal aortas. Caudal to the heart, the paired dorsal aortas unite to form a single 

dorsal aorta. Muscular components of the branchial arches derive from the mesodermal core 

around the aortic arch (Noden, 1983; Noden, 1986), while cartilage rods that form the 
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skeleton of each arch derive from the neural crest cells (Couly et al., 1993; Kontges and 

Lumsden, 1996).  

 
Figure 1. Branchial arches. A side view of the mouse embryo at E9.5 (A).  Distinct structures in the 

pharyngeal region are indicated as: BA1-3, branchial arch 1-3; pc, pharyngeal cleft; pp, pharyngeal 

pouch; ov, otic vesicle. Schematic presentation of longitudinal section through the branchial arches (B). 

Aortic arches (AA), pharyngeal pouches and pharyngeal clefts, as well as branchial arch tissue 

components are indicated (Ect, ectoderm; End, endoderm; M, mesoderm; NCC, neural crest cells).  

 

Cranial nerves have heterogeneous origins, arising from both neural crest cells and ectoderm. 

Each branichial arch is innervated by its own specific cranial nerve by E10.5. Trigeminal 

(Vth) nerve innervates the first arch, facial (VIIth) nerve innervates the second arch, vagal 

(IXth) nerve innervates the third arch and glossopharyngeal (Xth) nerve innervates the fourth 

arch (see Fig. 4). Cranial nerves consist of motor and sensory neurons. Motor neurons of the 

cranial nerves originate from the hindbrain and innervate branchial arch muscles. Sensory 

neurons of the cranial nerves are responsible for receiving and sending sensory information to 

the central nervous system. Vth sensory nerve is derived proximally from the neural crest and 

distally from several small placodes. VIIth, IXth and Xth sensory nerves are derived 

proximally from the neural crest cells and distally from the epibranchial placodes (D'Amico-

Martel and Noden, 1983).  

 

Epibranchial placodes are recognized as a series of ectodermal thickenings above pharyngeal 

clefts (Baker and Bronner-Fraser, 2001). They develop in antero-posterior sequence, 
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concomitantly with the branchial arch formation. The first epibranchial placode (geniculate) 

contributes to the VIIth nerve, the second epibranchial placode (petrosal) contributes to the 

IXth nerve, and the third epibranchial placode (nodose) contributes to the Xth nerve. 

 

Evolutionary aspects of branchial arch development  

The anatomy of the pharyngeal region is similar in all vertebrates during their embryonic 

development, but it gives rise to very different, specialized structures in the adult organisms 

(Radinsky, 1987). For example, all six pairs of aortic arches are formed in mammalian and 

avian embryos before the system eventually becomes simplified into the single aortic arch.  

In jawless vertebrates (including lamprey and hagfish) pharyngeal region develops into gill 

apparatus which serve for gas exchange and filter feeding. In these organisms the embryonic 

arrangement of the pharyngeal region is retained throughout the life. 

 

In jawed vertebrates, anterior portion of pharyngeal region, including the first and second 

branchial arch, is involved in the development of the upper and lower jaw and also gives rise 

to components of the middle ear apparatus (Graham, 2001). In fishes, the segmentally 

arranged gills form on either side of the pharynx from the third and more posterior arches. In 

reptiles, birds and mammals, in which lungs oxygenate the blood, pharyngeal region no 

longer serves a respiratory function. In these organisms, segmental arrangement of the 

pharyngeal region exists only during early embryogenesis, after which its constituents 

undergo significant modifications and further differentiation to form adult structures 

(Kaufman and Bard, 1999). 

 

Branchial arch derivatives  

Symmetrical arrangement of embryonic aortic arch system undergoes drastic changes in adult 

terrestrial vertebrates. Specific derivatives of each branchial arch with associated nerve and 

artery are presented in Table 1. Some structures disappear while others are strongly 
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reorganized. In mouse, the first and second aortic arches largely disappear, and their only 

derivatives are maxillary and stapedial artery respectively (Kaufman and Bard, 1999).  The 

third arch arteries give rise to the distal part of the common carotid arteries. They also give 

rise to the proximal part of the internal and external carotid arteries. The terminal branches of 

the third arch arteries form the ophthalmic, the anterior and the middle cerebral arteries. The 

left fourth arch artery gives rise to the arch of aorta, and the right fourth arch artery gives rise 

to the brachiocephalic trunk and right subclavian artery. The fifth aortic arch is only transient 

structure, while the sixth aortic arch gives rise to the right and left pulmonary arteries, ductus 

arteriosus and pulmonary trunk. 

 
Table1. Branchial arch (BA) derivatives  

Based on: Kaufman and Bard 1999. 
 

The cartilages that develop in the pharyngeal arches from mesenchyme of neural crest origin 

serve the embryo as a temporary support. Some remain as cartilages, some degenerate after 

Germ layer BA1 BA2 BA 3 BA 4 and 5 
  
Neural  crest Skeleton of the   Stapes, styloid greater horns Laryngeal  
derived skeleton maxillary arch: process, lesser of the hyoid,  cartilages 
 maxillae, palatine. horns of the hyoid ventrodistal   
 pterygoid, jugal and dorsoproximal hyoid body  
 alisphenoid, incus, hyoid body  
 and squamosal    
 Skeleton of the  
 mandibular arch:  
 dentary, malleus,  
 gonial, tympanic   
    
Mesodermal Maxillary branch  Corticotympanic, Common carotid Arch of aorta 
aortic arches of carotid artery stapedial artery artery subclavian artery 
     
Mesodermal Masticatory  Facial and  Stylopharyngeal Pharyngeal 
muscles  and facial stapedial and laryngeal 
  
Nerve  Vth nerve VIIth nerve IXth nerve Xth nerve 
    
Pharyngeal  External acoustic External acoustic Epithelium Epithelium 
cleft  meatus and  meatus and  around ear around ear 
  external ear external ear   
   
Pharyngeal  Middle ear, tym- Tonsilar clefts Parathyroid  Ultimobranchial  
pouch  panic membrane, and crypts of  and thumus bodies (para- 
  Eustachian tube palatine tonsil  folicular cells) 
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bone is laid down intramembranously next to cartilage, and others are replaced by 

endochondral bone formation (Le Douarin and Kalcheim, 1999). Meckel's cartilage is the 

first arch cartilage. In primitive vertebrates, it gives rise to the bones of the upper and lower 

jaws. In mice, jaw bones are formed almost entirely intramembranously.  Only few structures 

derive from the first arch cartilage including incus and malleus of the middle ear and 

alisphenoid, as well as the sphenomandibular ligament (Couly et al., 1993; Kontges and 

Lumsden, 1996; Mallo, 1998). The second arch cartilage, known as Reichert’s cartilage, 

ossifies to form the stapes of the middle ear, the styloid process of the temporal bone, lesser 

horn and part of the body of the hyoid bone. It also gives rise to the styloid ligament. The 

third arch cartilage forms the greater horn and rest of the body of the hyoid bone, whereas the 

fourth and sixth arch cartilage gives rise to the laryngeal cartilages  

 

Arch muscle components give rise to visceral muscles which are innervated by nerve fibres of 

specific cranial nerves. The principal arch-derived muscles are: masticatory, facial expression, 

pharyngeal and laryngeal muscles. Endoderm forms pharyngeal and middle ear epithelium 

and glandular structures including thymus, thyroid and parathyroid (Cordier and Haumont, 

1980). Surface ectoderm forms epidermis and external acoustic meatus. The anterior most 

cleft transforms into the auditory Eustachian tube and middle ear chamber, whereas the other 

clefts disappear after making some important contributions to glands and lymphatic tissues in 

the throat region (Kaufman and Bard, 1999).  

 

Figure 2. Skeletal derivatives of the first and 

second branchial arch. The first branchial arch 

skeletal derivatives (in grey) are indicated as: AS, 

alisphenoid; X, maxilla; PL, palatine; P, 

pterygoid; M, malleus; I, incus; G, gonial; T, 

tympanic ring; MC, Meckels cartilage; D, dentine. 

The second branchial arch skeletal derivatives (in 

black) are indicated as: S, stapes; SY, styloid 

process; LH, lesser horns of the hyoid body. 



 
 

15

Origins and organization of the branchial arch primordial tissues  

Segmentation of the pharyngeal region is already present in its primordial cells before 

becoming morphologically expressed in the branchial arches. Neural crest cells, which give 

rise to majority of skeletal structures in the head, were thought to coordinate formation of the 

pharyngeal region (see below). Therefore, previous studies mostly concentrated on these 

cells. Consequently, analysis of other arch constituents was usually performed in the context 

of their contribution to the neural crest development. 

 

Neural crest cells 

Neural crest is vertebrate-specific cell population, which evolved soon after the split of the 

cephalochordates (amphioxus) and vertebrates. Neural crest cells arise at the junction between 

the neural plate and the surface ectoderm (Bronner-Fraser, 1995). During the process of 

neurulation, these cells detach form the periphery of the neural plate and migrate throughout 

the embryo to generate numerous derivatives including pigment cells, autonomic and sensory 

ganglia, and most of the facial skeleton (Le Douarin and Kalcheim, 1999). The neural crest 

can be divided into four main, overlapping domains (cranial, trunk, vagal and sacral, and 

cardiac), each forming characteristic derivatives (Table2).  

 

Table2. Fate of the neural crest cells along the rostro-caudal axis 
Neural crest cells Origin  Cell type or structure derived 
Cranial Fore-, mid-, Connective tissues,  smooth muscles, pericytes 
 and hindbrain Bones and cartilage of the face and neck 
  Cranial sensory neurons and glia 
   
Cardiac Somite 1-3 Muscular-connective tissue wall of large arteries 
    Septum between the aorta and pulmonary artery 
   
Vagal  Somite 1-7 Parasympathetic (enteric) ganglia of the gut 
and sacral Posterior to somite 28  
   
Trunk Somite 6 Dorsal root ganaglia, Schwann cells 
 through the tail Sensory and sympathetic gangila 
  Adrenomedullary cells and melanocytes 

Based on: Le Douarin and Kalcheim, 1999. 
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Neurulation and induction of neural crest cells  

The acquisition of neural fate by embryonic ectodermal cells involves signalling by FGFs and 

attenuation of the activity of bone morphogenetic protein (BMP). In chick embryo, FGFs 

from medial epiblast cells promote neural fate by repression of BMP (inhibitor of neural 

induction), and through another pathway independent of BMP repression. But FGFs, either 

alone or in combination with BMP antagonists, are not sufficient to induce neural fate in 

prospective epidermal ectoderm of amniote embryos. High levels of WNT signals in lateral 

epiblast cells block the response of epiblast cells to FGFs (Wilson and Edlund, 2001). This 

results in expression of Bmps, which promote epidermal fate and repress neural fate in lateral 

epiblast cells. 

 

In mouse embryo, neuroectoderm is morphologically evident as the thickened neural plate on 

the dorsal surface of the embryo (Colas and Schoenwolf, 2001). Following its initial 

formation, the neural plate changes shape dramatically, and its lateral edges elevate to form 

the neural folds (Fig. 3). At E 8-8.5 the neural folds fuse along the dorsal midline forming the 

neural tube which separates from the surface ectoderm. The neural tube generates the brain 

and the spinal cord (Lumsden and Krumlauf, 1996). Before formation of the neural tube, 

anterior neuroectoderm becomes segmented into forebrain (prosencephalon), midbrain 

(mesencephalon) and hindbrain (rhombencephalon). The forebrain is divided into 

telencephalon and diencephalon, and the hindbrain is further subdivided into eight 

rhombomeres (numbered from 1 to 8). 

 

The neural crest cells are induced at the stage when lateral edges of the neural plate elevate to 

form the neural folds (Fig. 3). Inductive interactions between the neural and non neural 

ectoderm (Liem et al., 1995; Selleck and Bronner-Fraser, 1995) as well as signalling from the 

mesoderm (Bonstein et al., 1998; Marchant et al., 1998), are critical for the neural crest 

formation. Inductive signals include members of the Bmp, Fgf, and Wnt signalling molecule 

families (Ikeya et al., 1997; Kanzler et al., 2000; Knecht and Bronner-Fraser, 2002; Marchant 
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et al., 1998; Mayor et al., 1997). They triger expression of the early neural crest markers such 

as Slug/Snail, Sox9, Id2, and members of the FoxD, Hox and Zic families (Gavalas et al., 

2001; LaBonne and Bronner-Fraser, 2000; Nakata et al., 1998; Nieto et al., 1994; Spokony et 

al., 2002). However, the precise function and pathways in which these molecules are 

involved, are still not known.   

 

 

Figure 3. Neurulation and the neural crest 

cell induction. (A) Neural crest cell 

precursors (in black) between the surface 

ectoderm (Ect, in white) and the neural 

plate (NP, in grey). Notochord (N) 

underlines the neural plate. (B) Formation 

of the neural folds (NF). (C) Separation of 

the neural tube (NT) from the surface 

ectoderm and onset of neural crest cell 

migration (NCC). 

 

Initiation of the neural crest cell migration 

Prior to and during the neural tube closure, neural crest cells undergo epithelial to 

mesenchymal transition resulting in delamination and onset of migration.  In order to become 

mesenchymal, the epithelial cells must change their shape and adhesive properties. This 

involves downregulation of N-cadherin and upregulation of cadherin-11, both of which code 

for membrane-bound proteins that mediate cell-to-cell interactions. RhoB, a small GTPase 

that regulates cell shape and adhesion, is also required for epithelial-mesenchymal transition 

of the neural crest cells (Liu and Jessell, 1998). Additionally, the transcription factor Snail, 

was implicated in induction of the neural crest delamination through repression of E-cadherin 

and upregulation of RhoB (Cano et al., 2000). Recent study by Zhou et al. showed that Snail 

is negatively regulated by GSK-3b (Zhou et al., 2004). They suggest that signals such as 
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MAPK and WNT inhibit GSK-3b, and thus in turn result in upregualtin of Snail and 

downregulation of E-cadherin expression. 

 

Migratory pathways and fates of the cranial neural crest cells originating from the posterior 

midbrain and hindbrain  

Migration of the cranial neural crest starts at the four-somite stage and is completed by the 

16-somite stage. First cells migrate from the anterior hindbrain, followed by migration from 

the midbrain, caudal hindbrain, and diencephalon of the forebrain (Serbedzija et al., 1992). 

Neural crest cells populating branchial arches derive from the posterior midbrain and 

hindbrain (Fig. 4). They migrate ventrally in three major streams toward the arches  

(Birgbauer et al., 1995; Chai et al., 2000; Lumsden et al., 1991; Sechrist et al., 1993a; Trainor 

et al., 2002). The stream of the neural crest arising from the posterior midbrain and 

rhombomeres one and two, contribute to the first arch and ganglia of the Vth (trigeminal) 

nerve. The stream arising from rhombomere four, contribute to the second (hyoid) arch and 

ganglia of the VIIth (facial) nerve. The stream arising from rhombomeres six and seven, 

contribute to the third, fourth, and sixth branchial arches, as well as to the ganglia of the IXth 

(glossopharyngeal) and Xth (vagus) nerves.  

 

No migratory neural crest cells are observed laterally to the rhombomere 3 and 5. These 

neural crest free zones separate adjacent crest streams. Studies in chick embryos, suggested 

that the majority of the neural crest cells produced by rhombomeres 3 and 5, are lost by 

means of apoptosis (Graham et al., 1993). However, other studies in chick and mouse, 

showed that DiI labelled neural crest cells from rhombomeres 3 and 5 move anteriorly and 

posteriorly to join the neural crest streams migrating from the adjacent even-numbered 

rhombomeres (Birgbauer et al., 1995; Kulesa and Fraser, 2000; Sechrist et al., 1993a; Trainor 

et al., 2002). These results were further confirmed by quail-chick (Couly et al., 1996; Kontges 

and Lumsden, 1996) and mouse-chick (Trainor et al., 2002) chimeric studies. In addition, 

analysis of the neural crest cell migration revealed that final destination of the neural crest 
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cells also depends on the timing of emigration from the neural plate (Lumsden et al., 1991; 

Serbedzija et al., 1992). Thus, earlier migrating neural crest cells settle more ventrally and 

populate the branchial arches, whereas the later migrating crest cells settle more dorsally, in 

the region of cranial nerve formation.  

 

 

 

Figure 4. Origins and migratory streams of the 

branchial arch neural crest cells. Schematic 

presentation of the mouse embryo at E9.5. 

Neural crest cells originating from the 

posterior midbrain (post MB), rhombomere 1 

and 2 (R1 and R2), contribute to the Vth 

cranial nerve and populate the first branchial 

arch (BA1). Neural crest cells originating from 

the rhombomere 4 (R4), contribute to the VIIth 

cranial nerve and populate the second 

branchial arch (BA2). Neural crest cells 

originating from the rhombomere 6 and 7 (R6 

and R7), contribute to the IXthe and Xth 

cranial nerves and populate the third and fourth branchial arches (BA3 and 4). For the simplicity, 

migration of neural crest cells originating from rhombomeres 3 and 5 (R3 and 5) is not presented. Ov, 

otic vesicle. 

 

Paraxial mesoderm 

Mesoderm is generated during gastrulation, from the epiblast cells migrating through the 

primitive streak. Initially embryonic mesoderm becomes divided into three components, 

paraxial, intermediate and lateral. Cranial paraxial mesoderm is transiently segmented into 

seven loose aggregates, somitomeres, as observed by scaning electron microscopy (Meier and 

Tam, 1982; Meier and Tam, 1982). Cells of the somitomeres contribute to the branchial 

arches. On its migratory route from somitomeres toward branchial arches, paraxial mesoderm 

is co-distributed with the neural crest cells originating at the same level along the antero-

posterior axis (Trainor and Tam, 1995). As revealed by cell labelling, somitomeres II and III 

contribute to the first branchial arch, somitomeres IV and V contribute to the second branchial 

arch, and somitomeres VI and VII contribute to the third branchial arch (Trainor et al., 1994). 
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Genes known to be expressed in the cranial paraxial mesoderm include Mox1 (Candia et al., 

1992) and M-twist (Wolf et al., 1991). However, these markers do not show regionally 

restricted expression pattern that would reflect somitomeric organization, and the existence of 

segmentation in the cranial mesoderm therefore remains unclear.  

  

Ectoderm 

Similar to the hindbrain, early pharyngeal surface ectoderm has been suggested to be 

segregated along antero-posterior axes into territories, called ectomeres (Couly et al., 1990). 

However, it has not yet been demonstrated that each ectomere represents a functional 

developmental unit and only few molecules, including Fgf3 (Mahmood et al., 1995), were 

shown to be locally expressed in distinct antero-posterior stripes of the surface ectoderm prior 

to the branchial arch formation. Lack of the early regional markers and insufficient 

knowledge on origins and distribution of the pharyngeal surface ectoderm are significantly 

limiting our understanding of its development and function. 

 

Endoderm 

Endoderm as a layer develops during gastrulation. Initially, it gives rise to flattened 

sheet of the primitive gut, divided along antero-posterior axis into fore-, mid-, and 

hindgut (Grapin-Botton and Melton, 2000; Tam et al., 2003). Prior to the formation of 

the first somites, the foregut endoderm can be divided into three longitudinal zones, a 

medial, intermediate, and lateral zone. The medial zone gives rise to the gut roof, the 

intermediate zone forms the pharyngeal pouches, and the gut floor, while laterally 

located cells give rise to the extra embryonic endoderm. Beginning at 4 somite stage, 

the foregut becomes dorso-ventrally flattened. At this time, segmentally organised 

pharyngeal pouches form by localized invaginations of the pharyngeal endoderm at 

sites between presumptive branchial arches. Couly et al. showed that antero-posterior 

pattern within the pharyngeal endoderm are already determined at the early neurula 
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stage, well before the branchial pouches are formed (Couly et al., 2002). By using a 

microsurgical approach, defined fragments of the endoderm covering the cephalic 

region of the five-somite stage avian neurula were either removed or ectopically 

transplanted. The results of this study elegantly demonstrated that shape, 

proximodistal and anteroposterior polarity of the skeleton are dictated by the 

endoderm already at the early neurula stage. However, prior to formation of 

pharyngeal pouches, known markers for the early pharyngeal endoderm such as Fgf8 

(Crossley and Martin, 1998), Pax1 (Muller et al., 1996) and Bmp7 (Solloway et al., 

1999) are expressed throughout the region. Thus, similar to the paraxial mesoderm 

and surface ectoderm, one difficulty with assessing early segmentation of the 

pharyngeal endoderm is the lack of specific regional markers.  

 

Tissue interactions regulating neural crest segregation 

Close correlation between rhombomeric organisation of the hindbrain and the patterns of the 

cranial neural crest cell migration has been revealed by cell labelling studies (Couly et al., 

1992; Kontges and Lumsden, 1996; Lumsden et al., 1991; Sechrist et al., 1993a; Serbedzija et 

al., 1992). Thus, similar to the neural crest cell identity, it has been proposed that the pattern 

of their migration is determined before emigration form the neural tube. Along this line, 

Graham et al. suggested that hindbrain is responsible for establishment of the neural crest 

cell-free zones lateral to the rhombomeres 3 and 5 (Graham et al., 1993). They showed that 

signalling from the neighbouring rhombomeres induced apoptotic cell death in rhombomeres 

3 and 5 through induction of Bmp-4 and Msx-2. Their conclusion was that the lack of the 

neural crest cell generation from the rhombomeres 3 and 5 resulted in formation of the crest 

streams.  
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In contrast, observations that all rhombomeres give rise to the neural crest cells and that those 

from the rhombomeres 3 and 5 migrate in anterior and posterior directions, joining adjacent 

neural crest streams, raised the possibility that extrinsic factors play important role in the 

patterining of the crest cells (Birgbauer et al., 1995; Kulesa and Fraser, 1998; Sechrist et al., 

1993a; Trainor et al., 2002). Accordingly, Farlie et al. proposed that  regions of non-

permissive mesenchyme, also called paraxial exclusion zones, inhibit neural crest migration 

adjacent to rhombomeres 3 and 5 (Farlie et al., 1999). Furthermore, rhombomeres 3 and 5 

were suggested to be the source of these inhibitory cues (Eickholt et al., 1999). This study 

indicate that signalling molecule Semaphorin-3A, which is expressed in rhombomeres 3 and 

5, and released into the adjacent mesenchume, inhibits migration of the neural crest cells 

between the streams. In addition, receptor tyrosine kinase ErbB4, expressed in rhombomeres 

3 and 5, was shown to be required for establishment of the repulsive cues in the mesoderm 

adjacent to rhombomere 3 (Golding et al., 2000; Golding et al., 2002). Same group 

demonstrated that signaling from the surface ectoderm overlying rhombomere 5 maintains 

neural crest free zone adjacent to this segment (Golding et al., 2004).  

 

Importantly, the time-lapse analysis suggested that the interactions between the neural crest 

cells are important in guidance (Kulesa and Fraser, 1998; Kulesa and Fraser, 2000). They 

demonstrated ability of the crest cells to migrate as individuals or as groups. Observation that 

some of these cells cross between adjacent streams, suggested that crest free areas, established 

in close proximity to the hindbrain, must be continually maintained on their migration 

pathway toward the branchial arches. Accordingly, Ephrins and their receptors (Smith et al., 

1997), Fgf2 (Kubota and Ito, 2000) and an uncharacterised chemoattractant released from the 

otic vesicle (Sechrist et al., 1994b) were shown to be involved in maintaining the segregation 

of the neural crest cell streams at the level of the branchial arches. In xenopus embryos, 

ephirn B2 and its receptors EphB1 and EphA4 are expressed in adjacent neural crest streams 

and underlying mesoderm. Over-expression of either dominant-negative Eph receptors or 

wild-type EphirnB2 caused aberrant migration of the neural crest cells, presumably because 
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the expression of repulsive guidance cues had been altered (Smith et al., 1997). Importantly, 

Eph receptor/Ephrin families were implicated in sorting mechanisms in the hindbrain, 

providing a key means of sharpening rhombomere boundaries already prior to neural crest 

cell migration (Mellitzer et al., 1999; Mellitzer et al., 1999). Kubota et al. showed in vitro that 

FGF-2 has chemotactic activity for mouse neural crest cells deriving from the midbrain 

(Kubota and Ito, 2000). This is one of the rare examples of the chemoattractant shown to 

guide migration of the branchial arch neural crest cells. Additionally, conbination of rotation 

and dye labelling studies demonstrated that the otic vesicle displays attractive properties 

during crest cell migration (Sechrist et al., 1994b). However, the nature of the otic vesicle 

derived chamoattractant has remained uncharacterised. 

 

Several studies showed that tissue interactions and mechanical barriers imposed by ectoderm 

and endoderm may be critical for the neural crest migration in streams.  For example, the otic 

vesicle has been proposed to represent a mechanical barrier to neural crest cells migrating 

from rhombomere 5 (Anderson and Meier, 1981). Another study showed that the segmental 

organization of the pharyngeal pouches directs neural crest cell streams into separate 

branchial arches (Piotrowski and Nusslein-Volhard, 2000). They demonstrated that in the van 

gogh (Vgo) mutant in zebrafish, where segmentation of the pharyngeal endoderm was absent, 

migrating neural crest cells initially formed distinct streams, but they fused after reaching the 

arches. Inhibition of RA signalling in the head-fold mouse embryos, results in altered 

morphology of the second and third pharyngeal pouches (Wendling et al., 2000). The authors 

suggest that this endodermal defect could impose a mechanical barrier on the neural crest 

cells which fail to populate the third and fourth branchial arches in the mutant embryos. 

Recent study by Cerny et al. demonstrated that infolding of the surface ectoderm create 

channels for the neural crest migration (Cerny et al., 2004). They showed that ablation of the 

cranial epidermis in axolotl causes fusion of the neural crest streams followed by cessation of 

the neural crest migration.  
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Taken together, these findings show that neural crest cell streaming toward the brancial 

arches is a result of dynamic cell- and tissue-interactions along antero-posterior and dorso-

ventral axis of their migration routes. Furthermore they show that different mechanisms, 

including inherent information from the hindbrain, attractive and repulsive cues, signalling 

regulating cell survival, as well as mechanical constrains, are involved in this process. 

 

Mechanisms of patterning in the mid- and hindbrain and the branchial arches 

Early development of mid- and hindbrain 

The neural crest cells which populate the branchial arches originate from and are partially 

patterned by the posterior mid- and hindbrain (see below). Therefore understanding the early 

development of the posterior mid- and hindbrain is crucial for understanding formation of the 

pharyngeal region. 

 

Patterning of the hindbrain  

Rhombomeric segmentation of the hindbrain is established first at the molecular level, 

followed by the appearance of the morphological constrictions between rhombomeres (in the 

period of 6-12-somite stage). Rhombomere 1 (metencephalon) is adjacent to the midbrain, 

while rhombomere 8 is continuous with the spinal cord. Later during development, 

rhombomere 1 will give rise to the cerebellum involved in processes such as motor 

coordination, while more posterior region of hindbrain (myelencephalon) will become the 

medulla oblongata.  

 

The first genes whose expression was shown to be segmentally regulated in the hindbrain 

were the Hox genes (Wilkinson et al., 1989), the evolutionarily conserved regulators of 

segment identity. Four clusters of Hox genes (denoted a-d) are found within the vertebrate 

genome, on individual chromosomes. Expression of genes at the 3’ ends of the Hox clusters 

precedes rhombomere formation and becomes progressively restricted such that expression 

boundaries coincide with the interfaces between rhombomeres. Thus, each rhombomere has 
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unique combination of Hox genes. Only exception is rhombomere 1 where Hox expression is 

missing (Fig. 5). Hox genes were shown to be important for establishing hindbrain 

segmentation, as well as specification of antero-posterior rhombomeric identities. For 

example, Hoxa2, the most anterior Hox gene expressed up to the rhombomere 1/2 boundary 

(Prince and Lumsden, 1994), was shown to be important for the specification of rhombomere 

2 and 3 identity (Gavalas et al., 1997). Hoxb1 and Hoxb2 expressed in rhombomere 4 and 

rhombomere 3-7 respectively were shown to be important for specification of rhombomere 4 

identity (Barrow and Capecchi, 1996; Goddard et al., 1996; Studer et al., 1996).  

 

 

 

Figure 5. Hox gene expressions within 

specific rhombomeres and branchial arches 

in the mouse embryo at E10. Schematic 

presentation of rhombomeres 1-8 (R1-8) and 

branchial arches 1-4 (BA1-4). Correlations 

between Hox gene expression patterns in 

rhombomeres and branchial arches are 

indicated in greyscale bars.  

A number of other genes were demonstrated to have expression patterns coinciding with the 

rhombomere boundaries. These genes fall into various categories, including transcription 

factors, transmembrane proteins, secreted proteins and intracellular proteins. Majority of these 

genes were shown to be involved in a regulatory cascade controlling hindbrain segmentation. 

For example ephrin receptor EphA4, expressed in rhombomere 3 and 5, is important for 

restricting cell mixing between adjacent rhombomeres (Gale et al., 1996; Smith et al., 1997). 

Transcription factor Krox20, expressed in rhombomere 3 and 5, was shown to regulate gene 

expression (Theil et al., 1998) and formation of these rhombomeres (Schneider-Maunoury et 

al., 1993; Swiatek and Gridley, 1993; Wilkinson et al., 1989). In zebrafish, Fgf 3 and Fgf8 

signalling from rhombomere 4 is required to establish correct segmental identity throughout 

the hindbrain (Maves et al., 2002; Walshe et al., 2002; Waskiewicz et al., 2002). 

Spatiotemporal studies of Fgf expression suggest that this patterning mechanism is conserved 
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during hindbrain development in other vertebrate classes. These studies suggest that 

rhombomere 4 domain of Fgf expression may play a role similar to other secondary centres 

involving Fgf signalling, such as the isthmic organizer (Irving and Mason, 2000).  

 

Patterning of the posterior midbrain and rhombomere 1: the role of the isthmic organizer  

Signalling centres have fundamental roles for regulation of embryonic patterning. They 

influence behaviour of neighbouring cells through transient and localized expression of 

signalling molecules. Local antero-posterior pattern of the midbrain and rhombomere 1 is 

generated within an unsegmented field by the graded signal from the mid- and hindbrain 

boundary, named isthmic organizer (Bally-Cuif et al., 1992; Martinez et al., 1991a). Tissue 

grafting studies first first identified the isthmus as an organizing centre, a source of a signal 

sufficient to induce cells in the anterior neural tube to change their fate. When transplanted 

into the forebrain or anterior midbrain the isthmus induced the surrounding cells to form 

posterior midbrain structures, and when transplanted into posterior hindbrain, it induced 

cerebellar differentiation characteristic for the rhombomere 1 (Gardner and Barald, 1991; 

Marin and Puelles, 1994; Martinez and Alvarado-Mallart, 1990; Martinez et al., 1991a; 

Martinez et al., 1995b). Under the control of the isthmic organizer, midbrain develops into 

superior and inferior colliculi, relaying visual and auditory stimuli, respectively, while 

rhombomere 1 forms the cerebellum (Irving and Mason, 2000; Wingate and Hatten, 1999).  

 

Specification of the midbrain and anterior hindbrain requires expression of Otx2 and Gbx2 in 

the prospective midbrain and anterior hindbrain respectively (Broccoli et al., 1999; Millet et 

al., 1996; Millet et al., 1999). The border of Otx2 and Gbx2 expression determines the 

position of the isthmus (reviewed in Rhinn and Brand 2001). Subsequently, signals from the 

isthmic organizer are refining expression patterns of  genes in the midbrain and anterior 

hindbrain, including expression of transcription factors Gbx2 (Shamim et al., 1998), Otx2 

(Millet et al., 1996), En1/2 (Davis et al., 1988) and Pax2/5 (Puschel et al., 1992; Adams et al., 

1992) (summarized in Fig6 and Joyner et al., 1996). 
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Figure 6. Early 

patterning in the mid- 

and hindbrain region. 

Schematic (left) and 

graphic (right) 

presentations of gene 

expression patterns at 

5-somite stage (A) and 

E9.5 (B). Midbrain, 

isthmus and 

rhombomeres 1-7 (R1-

7) are indicated.

Adapted from Joyner et al., 1996. 
 

Among several signalling molecules secreted by the isthmic organizer, in particular FGF8 and 

WNT-1 have been implicated in the control of the mid- and hindbrain patterning (Chi et al., 

2003; McMahon and Bradley, 1990; Meyers et al., 1998; Reifers et al., 1998). Initially, Fgf8 

and Wnt1 are expressed broadly in regions of the rhombomere 1 and midbrain, respectively. 

By E9.5, Fgf-8 is expressed in a ring of cells at the isthmus, the constriction between the 

mesencephalic vesicle, and rhombomere 1, while Wnt-1 is expressed in a ring of cells 

immediately rostral to Fgf-8 and along the dorsal midline (Fig. 6). Fgf8 expression at the mid- 

and hindbrain boundary is conserved in all vertebrate classes (Christen and Slack, 1997; 

Heikinheimo et al., 1994; Ohuchi et al., 1994; Irving and Mason, 1999). Ectopic application 

of FGF8 protein can alter the regional identity of anterior midbrain and posterior hindbrain, 

mimicking the effects of isthmic tissue (Crossley et al., 1996; Irving and Mason, 2000; 

Martinez et al., 1999; Irving and Mason, 2000; Martinez et al., 1999). Null mutations of Fgf8 

in mice are embyonic lethal due to gastrulation defects. However, hypomorphic Fgf8 mutants 

reveal that Fgf8 is an essential component of the isthmus organizer, required for both 

cerebellum and posterior midbrain structures (Meyers et al., 1998). Similarly, zebrafish 

mutants in which Fgf8 is either partially of completely inactivated also lack a cerebellum, 

isthmus and posterior midbrain structures (Reifers et al., 1998). 
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The molecular mechanism by which isthmic organizer patterns the anterior hindbrain is 

starting to be understood (Irving and Mason, 2000). Rhombomere 1 is the only hindbrain 

segment in which no Hox genes are expressed and it is located in the region where two 

distinct patterning mechanisms confront: graded signalling from the isthmus and 

segmentation of the hindbrain (Lumsden and Krumlauf, 1996). It has been shown that the 

isthmus establishes the anterior limit of Hox gene expression in the hindbrain and thus 

positions the boundary between rhombomere1 and 2 (Irving and Mason, 2000). At the 

molecular level it has been demonstrated that Fgf8 from the isthmus provides a repressive 

signal that establishes the anterior limit of Hoxa2 gene at the rhombomere1/2 border. 

  

Positional identities in branchial arches 

Each branchial arch within the series is a distinct unit with its own identity (inter-branchial 

arch identity). In addition, each arch also has sense of its own anteroposterior and 

dorsoventral axis (intra-branchial arch identity). Initially, positional identities of branchial 

arches are characterized by distinct gene expressions. For example, Hox genes are 

differentially expressed in between branchial arches, specifying inter-branchial arch identity, 

while Dlx genes are differentially expressed along dorso-ventral axis of individual branchial 

arches, specifying intra-branchial arch identity (Depew et al., 1999; Qiu et al., 1995; Qiu et 

al., 1997). Later during development, branchial arch positional identities are reflected in the 

formation of specific derivatives at specific sites. Consequently an important question is, 

which tissue posses patterning information and imposes it on other branchial arch tissue 

components?  

 

Neural crest cell patterning  

Prepatterning 

Early studies suggested that the neural crest cells are the major players in  
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branchial arch patterning. According to their place of origin and time of migration, the neural 

crest cells follow specific migratory pathways (Birgbauer et al., 1995; Lumsden et al., 1991; 

Sechrist et al., 1993a; Trainor et al., 2002) and give rise to specific cranio-facial skeletal 

structures (Table 1), (Couly et al., 1996; Kontges and Lumsden, 1996). Chimeric grafting 

studies showed that after transplantations of the neural tube ectopically located neural crest 

cells retain identity associated with their position of origin (Kuratani and Eichele, 1993; 

Noden, 1983; Prince and Lumsden, 1994; Simon et al., 1995). For example, when the anterior 

hindbrain giving rise to the first arch neural crest cells was grafted to the rhombomere 4 

teritory, emerging neural crest cells migrated into the second arch but formed first arch 

skeletal components (Noden, 1983). These results indicated that fates of the branchial arch 

neural crest cells are fixed already before their migration from the hindbrain. Moreover, 

Noden at al. showed that identity of the mesodermaly derived craniofacial muscles depends 

on the co-migrating neural crest cells, further indicating that they are the major player in arch 

patterning (Noden, 1986).  

 

Observation that the neural crest cells in branchial arches express Hox genes characteristic for 

their rhombomeric origin (Fig. 5), provided clue on the molecular mechanism of the neural 

crest and branchial arch patterning (Hunt et al., 1991; Wilkinson et al., 1989). It was proposed 

that the segmental pattern of the hindbrain, encoded by Hox genes, is acquired and then 

transmitted by the neural crest cells to the branchial arches and cranial ganglia (Hunt et al., 

1991). Even after grafting to a new position along the antero-posterior axis, neural crest cells 

were shown to retain their original set of Hox genes (Couly et al., 1996; Couly et al., 1998; 

Guthrie et al., 1992; Prince and Lumsden, 1994). Further evidence for neural crest pre-

patterning and its crucial role in the arch patterning come from the analysis of Hoxa2  mutant 

mice (Gendron-Maguire et al., 1993; Grammatopoulos et al., 2000; Pasqualetti et al., 2000; 

Rijli et al., 1993). Hoxa2 is expressed in the neural crest of the second and more caudal 

arches, as well as in their rhombomeric precursors. Subsequent expression of Hoxa2 in the 

surface ectoderm was thought to be imposed by the neural crest cells (Hunt et al., 1991). 
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Inactivation of Hoxa2 resulted in homeotic transformations of the second arch skeletal 

elements into the first arch elements (Gendron-Maguire et al., 1993; Rijli et al., 1993). 

Consistent with this, ectopic expression of Hoxa2 in the first branchial arch resulted in its 

transformation into second branchial arch (Grammatopoulos et al., 2000; Pasqualetti et al., 

2000). This led to the conclusion that Hoxa2 is a selector gene that determines the fate of the 

pre-migratory neural crest cells destined to populate the second arch. 

 

Plasticity 

Although it was generally accepted that the neural crest cells are predetermined, some early 

experiments provided clues on their plasticity. For example, Noden’s transplantations from 

the midbrain to the rhombomere 4 never resulted in skeletal structures deriving from the 

midbrain crest cells. Instead, they resulted in the skeletal structures deriving from the 

rhombomere 1 and 2 (Noden, 1983). Although neglected, this was important observation, 

revealing that the neural crest cells are able to change their fate. Similarly, neural fold 

ablations implied neural crest plasticity. For example, after ablation of rhombomere 4 neural 

crest, the first arch-derived crest cells repopulated the second arch and formed normal second 

arch skeletal structures (Couly et al., 1996). Furthermore, early and late migrating crest cells 

have been shown to have equivalent potential, forming structures appropriate to their new 

environment when transplanted into older or younger hosts (Baker et al., 1997). Accordingly, 

recent study demonstrated the ability of trunk neural crest cells to differentiate into skeletal 

structures under appropriate conditions (McGonnell and Graham, 2002).  

 

Several studies on correlation between Hox expression and neural crest plasticity, also argued 

against idea that neural crest fate is fixed before delamination. For example, Hoxa2 was 

shown to be expressed in rhombomere 2 but not in neural crest cells derived from 

rhombomere 2 (Prince and Lumsden, 1994). Furthermore, it was demonstrated that Hox gene 

expression is independently regulated in the hindbrain and migrating neural crest cells. In 

rhombomeres 3 and 5 Hoxa2 was shown to be regulated by Krox20 (Nonchev et al., 1996), 



 
 

31

and in branchial arches by AP-2 (Maconochie et al., 1999). Consistant wiht this, Mallo and 

Brändlin (1997) showed that the Hoxa2 null mutants, in which the second arch neural crest 

assumes first arch identities, retain a normal neuronal organization of the hindbrain. This 

strongly argues against neural crest cell prepatterning theory and suggests that local signals 

from environment are required for patterning of the neural crest cells in branchial arches. 

 

The final proof for the neural crest plasticity came from grafting experiments in mice (Trainor 

and Krumlauf, 2000) and zebrafish embryos (Schilling et al., 2001). These studies revealed 

that the neural crest cells can change their Hox gene expression in the new environment, after 

grafting small groups of cells from the rhombencephalic levels. Consistently, Golding et al. 

showed that mis-migrated neural crest cells would change their Hox code in accordance with 

the new environment (Golding et al., 2000). Moreover, maintenance of normal Hox gene 

expression in the neural crest cells was demonstrated to require signalling from the paraxial 

mesoderm (Trainor and Krumlauf, 2000). They performed transplantation experiments from 

the second to the first branchial arch, and showed that the second arch neural crest cells retain 

Hoxb1 expression only when transplanted in combination with the second arch mesoderm.  

All together these results suggest that the neural crest cells are not irreversibly committed 

before migration into the arches. Furthermore, they demonstrate responsiveness of the neural 

crest cells to the patterning cues from environment and highlight the importance of 

interactions between the neural crest cells.  

 

Early branchial arch patterning does not depend on the neural crest cells 

Observation that the surface ectoderm overlying the second branchial arch still turns on its 

normal Hox gene expression, after the Hox expressing crest was replaced with the non-Hox-

expressing crest (Couly et al., 1998), argued against studies highlighting the importance of the 

neural crest cells in the branchial arch patterning. Consistent with this, it was shown that the 

first arch skeletal derivatives may be transformed into the second arch derivatives only after 
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global expression of Hoxa2 in the neural crest cells and surrounding tissues (Grammatopoulos 

et al., 2000; Pasqualetti et al., 2000). 

 

Ablation studies in the chick by Veitch et al. were the further proof that branchial arches are 

not dependent upon the neural crest for their formation and patterning (Veitch et al., 1999). 

They demonstrated that morphologies of branchial arches, pharyngeal pouches and clefts 

appear normal after neural crest ablation. Furthermore, using regional molecular markers for 

the pharyngeal epithelium, they showed that the early branchial arch patterning is normal in 

the absence of the neural crest cells. This was deduced from the observation that the 

expression of genetic markers such as Bmp7, Fgf8 and Pax1 occurs in the same regions of the 

pouch endoderm whether neural crest cells immigrate or not. In concordance with this, in 

Hoxa1 and Hoxb1 compound knock-out mutants, where generation of rhombomere 4 neural 

crest cells is impaired, the second branchial arch forms and is patterned normally (Gavalas et 

al., 2001). Importantly, these findings are in accordance with the evolutionary studies 

according to which, pharyngeal segmentation is characteristic for chordates, while neural 

crest cells are characteristic only for craniates (Radinsky, 1987). 

 

Inductive tissue interactions in the pharyngeal region, sources of patterning information 

Development of branchial arches is regulated at multiple levels. Several epithelial signalling 

centres indicated in regulation of early pharyngeal patterning include: isthmus at the border of 

mid- and hindbrain, pharyngeal endoderm, pharyngeal pouches and clefts. These organizing 

centres are acting reiteratively. First, signalling from the isthmus and then pharyngeal 

endoderm are required for the early specification of the neural crest cells. Subsequently, 

signalling from the pharyngeal pouches and clefts is required for further patterning inside the 

branchial arches. 
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Figure7. Patterning of the branchial arches. In E8.5 mouse embryos, Isthmus, early pharyngeal 
endoderm and surface ectoderm (not marked) act as important sources of signalling molecules. 
Signalling from isthmus and endoderm is indicated by arrows. With the formation of branchial arches 
at E9.5 majority of signalling molecules in pharyngeal endoderm and surface ectoderm become 
restricted to pharyngeal pouches and clefts (small arrows). Distinct streams of neural crest cells are 
marked by big arrows. Some of the signalling molecules secreted by pharyngeal epithelium are 
indicated on the right.  
 
 
Isthmic organizer 

Molecular mechanism by which neuroepithlium patterns the first arch neural crest precursors 

was recently revealed (Irving and Mason, 1999; Trainor et al., 2002). Similar to the patterning 

mechanism of the rhombomere 1 (Irving and Mason, 1999), Trainor et al. showed that isthmic 

organizer represses expression of Hoxa2 in the first arch neural crest cells and that this 

activity is mediated by Fgf8 signalling molecule (Trainor et al., 2002). They demonstrated 

that presence of isthmus or Fgf8 in the rhombomere 4 teritory will down-regulate Hoxa2 

expression in the rhombomere 4 neural crest cells and thus respecify their fate. 

Transplantation of isthmus together with rhombomere 1 possibly explains the results by 

Noden discussed above (page 29). Contradictory to these results, mutant mice in which Fgf8 

expression was eliminated in the mid- and hindbrian by the 10 somite stage have apparently 

normal craniofacial development (Chi et al., 2003). Thus, the function of Fgf8 in the 

regulation of Hoxa2 must be very early.  

 

Epithelium  
FGF, BMP, 
RA, SHH, ET1 



 
 

34

Pharyngeal endoderm   

It is likely that endoderm has a primary role in patterning of the pharyngeal region. Molecular 

defects in the early pharyngeal endoderm of mouse embryos with impaired RA signalling, 

where suggested to be responsible for the lack of the third and more posterior branchial arches 

in these mutants (Quinlan et al., 2002; Wendling et al., 2000).  In zebrafish Van Gogh (Vgo) 

mutants both pharyngeal endoderm and skeletal patterning are disrupted, although the neural 

tube patterning is normal (Piotrowski and Nusslein-Volhard, 2000). Vgo was found to act cell 

autonomously in the pharyngeal endoderm and influence development of the neural crest 

secondarily (Piotrowski et al., 2003). Importantly, this study demonstrated that Vgo 

corresponds to Tbx1 transcription factor in mammals (Piotrowski et al., 2003). Mice 

heterozygous for the Tbx1 null allele exhibit cardiovascular and craniofacial defects 

resembling those in DiGeorge syndrome, while Tbx1 null mice display severe branchial arch 

hypoplasia (Jerome and Papioannou 2001; Lindsay et al., 2001; Merscher et al., 2001; 

Schinke and Izumo, 2001; Vitelli et al., 2002a). In addition to the role in patterning facial 

mesenchyme, pharyngeal endoderm was shown to be required for the neuronal induction in 

the surface ectoderm resulting in formation of the epibranchial placodes (Begbie et al., 1999). 

Additionally, this study revealed that inductive endodermal activity is mediated by secreted 

signal BMP7. Recent studies by Haworth et al. suggested that the pharyngeal endoderm has 

an early role in patterning the orofacial ectoderm (Haworth et al., 2004). They showed that 

endoderm regulates Fgf8 expression in the precursors of the ectoderm covering proximal 

mandibular arch.  

 

Importantly, distinct antero-posterior stripes of the early pharyngeal endoderm were found to 

send patterning cues to specify the shape and orientation of the neural crest skeletal 

derivatives (Couly et al., 2002; Ruhin, 2003). Transplanting small sections of quail anterior 

endoderm into 5-6 somite stage chick embryo resulted in duplicated skeletal elements 

corresponding to the axial level of origin of the grafted endoderm.  For example, grafts of 

endoderm from underneath the anterior midbrain resulted in duplications of Meckel's 
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cartilage. Furthermore, changing the orientation of the grafted endoderm also changed the 

orientation of the duplicated skeletal elements. Although signalling molecules are still to be 

discovered, this study shows that prior to branchial arch formation, endoderm is required for 

specifying the morphology and pattern of the neural crest skeletal derivatives.  

 

Couly et al. demonstrated that interpretation of endodermal signalling depends on the Hox 

identity of the neural crest cells (Couly et al., 2002), as Hox positive and Hox negative neural 

crest cells respond differently to signalling from the same endodermal fragment. This is 

consistent with study by Kanzler et al., showing that Hoxa2 negatively affect the ability of 

neural crest cells in the second branchial arch to form skeletal elements (Kanzler et al., 1998). 

Thus, it is possible that Hox genes act to make neural crest cells competent to respond to the 

patterning cues from environment. This explanation provides correlation between signalling 

from the isthmus and pharyngeal endoderm and combines the theories of pre-patterning and 

plasticity.  

 

Surface ectoderm  

A paper by Shigetani et al. presents one of the rare studies on the early function of the surface 

ectoderm in pharyngeal patterning (Shigetani et al., 2000). This study suggested a role for the 

surface ectoderm in defining presumptive mandibular and premandibular regions through 

localized expression of Fgf8 and Bmp4 respectively. They showed that ectopically applied 

BMP4 inhibits FGF8 in the ectoderm of presumptive mandible, resulting in transformation of 

mandibular region into premandibular region.  

 

BMP4 and FGF8 were implicated in regulation of expression of Dlx transcription factors 

(Ferguson et al., 2000; Luo et al., 2001; Miyama et al., 1999; Thomas et al., 2000). 

Importantly, inactivation of Dlx5 and Dlx6 in mouse embryos (Depew et al., 2002), results in 

transformation of the mandible into maxillae.  Therefore, it is possible that FGF8 and BMP4 

control proximo-distal determination of the branchial arches through regulation of Dlx genes 
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in the underlying neural crest cells (Depew et al., 1999; Qiu et al., 1995; Qiu et al., 1997). 

However, recent study by Ozeki et al. indicated that ET1, produced by the branchial 

epithelium and core mesenchyme, regulates Dlx expression (Ozeki et al., 2004). They showed 

that ET1 knock out mice have strikingly similar phenotype to Dlx5/Dlx6 null mutants. 

Correspondingly, expression of Dlx5 and Dlx6, is significantly down-regulated in ET1 

mutants.  

 

Pharyngeal pouches and pharyngeal clefts 

Existence of a possible signalling centre in the first pharyngeal cleft/pouch was suggested by 

the phenotype of the Hoxa2 knock out mouse (Gendron-Maguire et al., 1993; Rijli et al., 

1993). In Hoxa2 mutants the second branchial arch is transformed into the first arch resulting 

in duplicated first arch elements with the mirror image symmetry. Consistent with this theory, 

many signalling molecules including BMPs, FGFs and SHH are expressed by pharyngeal 

clefts and pouches as well as anterior epithelial border of the first branchial arch (Wall and 

Hogan 1995; Francis-West et al., 1998). Fgf8, expressed in the epithelium at the anterior and 

posterior border of the first branchial arch, was suggested to regulate patterning within the 

first arch (Trumpp et al., 1999; Tucker and Sharpe, 1999). This was based on observations 

that FGF8 induces expression of the anterior mesenchymal marker Lhx6, and the posterior 

mesenchymal marker Gsc. FGF8 was also shown to induce Barx1, a marker of the proximal 

mesenchyme (Trumpp et al., 1999). On the other hand, Msx1, a marker of the distal 

mesenchyme, was shown to be induced by epithelial signalling molecule, BMP4 (Tucker et 

al., 1998).  

 

A number of individual genes have been proposed to control patterning of the branchial 

arches. However, it is dificult to resolve in which branchial arch tissue and at which stage 

certain gene is needed, what is its primary function, and in which signalling network it is 

involved. One reason is that same genes can be active in more than one branchial arch cell 

type in the same time. Furthermore, their products, signalling molecules and transcription 
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factors, are repeatedly used in different developmental processes during the course of arch 

development (including cell migration, specification, survival and differentiation). Exciting 

studies on the field of branchial arch development will continue to adress these issues 

in the years to come. 

 

FGFs and their receptors FGFRs 

FGFs 

FGFs form a conserved family of secreted growth factors (Ornitz and Itoh, 2001). A wide 

spectrum of cellular functions such as proliferation, apoptosis, differentiation, and migration 

is controlled by FGFs (Yamaguchi and Rossant, 1995). In mice, FGF family consists of 22 

members. Most Fgf genes are composed of three exons and two large introns, with the 

exception of Fgf8 which contains at least six exons, encoding for eight isoforms (MacArthur 

et al., 1995). FGFs contain a conserved "core" sequence of 28 highly conserved and six 

identical amino acids. This sequence provides FGFs a common tertiary structure and the 

ability to bind heparin or heparin sulphate proteoglycans and FGF receptors (Faham et al., 

1996). FGF family is subdivided into subfamilies. FGFs within a subfamily have similar 

receptor-binding properties and partially overlapping patterns of expression. For example, 

FGF8, -17, and -18 have 70-80% sequence identity, similar ligand binding properties, and are 

co-expressed in many tissues (Ornitz and Itoh, 2001). 

 

FGFRs 

FGF receptors (FGFRs) belong to the family of receptor tyrosine kinses (RTKs). To date four 

FGFR (FGFR1-4) with the same overall primary structure have been cloned (Dionne et al., 

1990; Keegan et al., 1991; Lee et al., 1989; Ornitz, 2000; Partanen et al., 1991). As all other 

RTKs, FGFRs have a ligand binding extracellular domain, a single transmembrane region and 

a cytoplasmic portion containing the kinase domain. The extracellular domain consists of 

three immunoglobulin domains (IgI, IgII and IgIII). The ligand binding region resides in IgII 



 
 

38

and IgIII domains. An alternative splicing event involving the exon encoding the C-terminal 

region of IgIII domain in FGFR1, FGFR2 and FGFR3 results in IIIb and IIIc receptor 

isoforms. Splice isoforms possess different expression patterns and ligand-binding 

specificities (Johnson and Williams, 1993; Ornitz and Itoh, 2001). IIIb isoforms of FGFRs are 

predominantly found in epithelial lineages and preferentially bind to FGF1, FGF3, FGF7 and 

FGF10 in assays in vitro. IIIc isoforms are expressed in mesenchymal lineages and bind to 

FGF1, FGF2, FGF4, FGF8 and FGF9.   

 

FGFR signalling pathways 

Specific recognition and interaction between receptor and ligand are prerequisites for correct 

intracellular signal transduction to occur. This is achieved through different binding affinities 

between FGFs and FGFRs. The existance of FGFR1-3 IIIb and IIIc isoforms, further adds to 

specificity of interactions with ligands (Ornitz et al., 1996).  FGFs bind to FGFRs as 

monomers requiring the assistance of accessory molecules, heparin sulphate proteoglycans or 

heparin (Mohammadi et al., 1996; Schlessinger et al., 1995). Binding of FGF leads to 

dimerization and autophosphorylation of FGF receptors. Dimerization occurs both between 

FGF receptors of the same type, homodimerization, and between different FGF receptor 

types, heterodimerization (Bellot et al., 1991). FGFR autophosphorylation activates several 

intracellular cascades, including the RAS pathway, SRC family tyrosine kinases, 

phosphoinositide 3-kinase/AKT (PI3K/AKT) and the phospholipase-Cγ/protein kinase C 

(PLC-γ/PKC) pathway. 

 

In the RAS pathway, the activated FGFR phosphorylates and activates two independent 

adaptor proteins, SHC and membrane-bound FRS2 (Kouhara et al., 1997). This creates 

binding sites for the GRB2 adaptor in complex with the RAS activating, nucleotide exchange 

factor SOS (Kouhara et al., 1997). This leads to activation of the GTPase RAS, setting off a 

cascade of kinases including Raf, MEK, and finally MAPK (Kolch et al., 1993; Moodie et al., 
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1993; Stokoe and McCormick, 1997). MAPK translocates into the nucleus and 

phosphorylates and activates different transcription factors, thereby activating transcription of 

target genes. RAS pathway was shown to be involved in Fgf induced cell proliferation 

(LaVallee et al., 1998). 

 

FGF signal transduction also involves activation of the SRC kinase pathway, which in turn 

stimulates increases in the level of Myc (LaVallee et al., 1998). Inhibition of Myc expression 

was shown to severely compromise the cells' migratory potential. Furthermore, SRC-induced 

tyrosine phosphorylation of cortactin was shown to decrease ability of cortactin to cross-link 

actin and to enhance migratory potential of the cells (Boilly et al., 2000; LaVallee et al., 1998; 

Liu et al., 1999). 

 

In response to FGF stimulation, FRS2α and Gab1 associate indirectly via Grb2 resulting in 

tyrosine phosphorylation of Gab1 and activation of the PI3-kinase pathway (Ong et al., 2001). 

One of the best characterized targets of PI3K lipid products is the protein kinase AKT. It 

mediates many PI3K-regulated biological responses, including the inhibition of apoptosis 

(Vanhaesebroeck and Alessi, 2000). Activated AKT has been shown to phosphorylate the 

pro-apoptosis BCL2 family member BAD, Caspase 9, FKHRL1, and IκB kinase, preventing 

apoptosis and possibly leading to endothelial cell survival (Vanhaesebroeck and Alessi, 

2000). 

 

In the PLCγ pathway, autophosphorylation of FGFR at Y766 recruits PLCγ to the FGFR for 

activation. This elicits phosphoinositol hydrolysis and metabolism, PKC activation, and Ca2+ 

mobilization (Mohammadi et al., 1992; Peters et al., 1992). The intracellular Ca2+ 

concentration modulates the activity of numerous proteins. In FGFR-1 Y766F mutants 

tyrosine 766 is replaced by a phenylalanine residue, resulting in FGFR1 which is unable to 

bind PLC-γ. Partanen et al. showed that this mutation leads to alterations in antero-posterior 
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patterning of the vertebral column, with transformations occurring exclusively in the posterior 

direction (Partanen et al., 1998). Their results suggest that a signal starting at phosphorylated 

Y766 plays a role in the negative regulation of FGFR1 activity in vivo.  Cross et al. suggested 

that FGFR-1 mediated cytoskeletal reorganisation is dependent upon PLC-γ pathway (Cross 

et al., 2000), as cells expressing FGFR-1 Y766F fail to form stress fibres, needed for the cell 

shape-changes.  

 

FGF responsive genes  

Downstream transcriptional targets of the FGF signalling include Sef  and members of 

Sprouty (Spry) and ETS gene families. FGF signaling is both necessary and sufficient to 

control their expression. In addition, some of these molecules are feedback regulators of FGF 

signalling. SPRY is a conserved protein that was originally identified as an antagonist of 

FGF-dependent tracheal development in Drosophila (Casci et al., 1999) and was subsequently 

shown to function as a general inhibitor of receptor tyrosine kinase (RTK) signalling 

(Furthauer et al., 2001). Four mammalian homologues (SPRY1, 2, 3 and 4) have been 

identified (de Maximy et al., 1999; Hacohen et al., 1998; Minowada et al., 1999; Tefft et al., 

1999). Sprouty proteins function as FGF-induced feedback inhibitors (de Maximy et al., 

1999; Minowada et al., 1999). SPRYs are intracellular proteins associated with the inner 

surface of the plasma membrane. Concerning the mechanisms involved in the actions of 

SPRYs, studies have shown that SPRY1 and SPRY2 inhibit the activation of the Erk pathway 

in response to FGF signaling (Impagnatiello et al., 2001). Decreased activation of Ras (Casci 

et al., 1999; Lee et al., 2001) or Raf (Yusoff et al., 2002) has been reported to be responsible 

for the inhibition of Erk activation. 

 

SEF (similar expression to Fgf genes) was identified in zebrafish as an inhibitor of 

RAS/MAPK-mediated FGF signaling (Furthauer et al., 2002; Tsang et al., 2002). SEF has a 

putative signal peptide and a putative transmembrane domain and thus is believed to be a 

transmembrane protein. SEF has been identified in other vertebrates and thus is thought to be 
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a conserved inhibitor of FGF signaling (Furthauer et al., 2002; Kawakami et al., 2003; Lin et 

al., 2002; Niehrs and Meinhardt, 2002; Preger et al., 2004; Tsang et al., 2002). Vertebrate Sef 

is expressed in highly restricted patterns in early stages of embryos, and its expression pattern 

is similar to the expression patterns of Fgf genes such as Fgf3, Fgf8, and Fgf17 and sprouty 

members such as Spry2 and Spry4 (Furthauer et al., 2002; Kawakami et al., 2003; Lin et al., 

2002; Tsang et al., 2002).  

 

Pea3 and Erm are defined by the presence of an evolutionarily conserved Ets domain that 

mediates DNA binding (de Launoit et al., 1997; Sharrocks et al., 1997). FGF signaling is both 

necessary and sufficient for their expression (Firnberg and Neubuser, 2002; Kawakami et al., 

2003; Raible and Brand, 2001; Roehl and Nusslein-Volhard, 2001). They are present at 

regions of FGF signaling in several developmental contexts, and are thought to be general 

transcriptional targets of FGF signaling (Chotteau-Lelievre et al., 1997; Raible and Brand, 

2001; Roehl and Nusslein-Volhard, 2001). Additionally, Pea3 and Erm were shown to 

activate Fgf signalling in zebrafish (Chotteau-Lelievre et al., 2001). 

 

FGFs and FGFRs in mid- and hindbrain development  

Fgf8 expression in the isthmus is conserved in all vertebrate classes (Crossley and Martin, 

1995; Crossley et al., 1996; Furthauer et al., 1997; Heikinheimo et al., 1994; Ohuchi et al., 

1994; Reifers et al., 1998). Fgf17 and Fgf18 (Maruoka et al., 1998) were detected in the mid- 

and hindbrain boundary, after initiation of Fgf8. In the mid and hindbrain region, Fgf8 is 

required for the isthmic organizer activity and for cell survival (Chi et al., 2003; Irving and 

Mason, 2000; Meyers et al., 1998; Reifers et al., 1998). Inactivation of Fgf17 in the mouse, 

results only in mild cerebellar defects, probably caused by reduced cell proliferation of the 

cerebellum precursors (Xu et al., 2000). However, mice homozygous for the Fgf17 null allele 

and heterozygous for the Fgf8 null allele have more severe phenotype, implying redundancy 

between Fgf8 and Fgf17 in the mid- and hindbrain development.  
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Detailed analysis of Fgfr1-4 expression at early stages of neural development (E8.5-10) has 

not been reported in mouse embryos. At the corresponding stage in chick embryos, Fgfr1 is 

expressed throughout the neural tube. Fgfr2 and Fgfr3 are expressed in the anterior midbrain 

and throughout the hindbrain, with the exception of most anterior portion corresponding to 

rhombomere 1 (Walshe and Mason, 2000; Wilke et al., 1997; Yamaguchi et al., 1992). Fgfr4 

was not detected within developing neural tube (Marcelle et al., 1994). Consistent with results 

from chick, in zebrafish Fgfr1 is the only Fgfr expressed at the mid- and hindbrain boundary 

(Scholpp et al., 2004). Several genetically engineered mouse models affecting FGFRs have 

been generated (Table 3). However, defects in the mid- and hindbrain region have not been 

reported in these mutants. 

 

FGFs and FGFRs in branchial arch development  

In mouse embryo, Fgf3, Fgf4, Fgf8 and Fgf15 have been detected in the developing branchial 

arches. Fgf3 (Mahmood et al., 1996; Wilkinson et al., 1988) and Fgf15 (McWhirter et al., 

1997) are expressed in the anterior epithelial margins of the second and third branchial arch. 

In addition, Fgf3 was detected in prospective otic ectoderm (Mahmood et al., 1996; 

Wilkinson et al., 1988). Fgf8 (Heikinheimo et al., 1994; Crossley and Martin, 1995) and Fgf4 

(Niswander and Martin, 1992) are expressed at the anterior and posterior epithelial borders of 

all branchial arches. Furthermore, expression of Fgf-s in the pharyngeal region was found to 

be conserved in chick and Xenopus (Christen and Slack, 1997; Lombardo et al., 1998; Ohuchi 

et al., 1994; Shamim and Mason, 1999; Vogel et al., 1996). 

 

Gene inactivations of Fgf3, Fgf4, Fgf8 and Fgf15 did not add to our understanding of their 

role in the branchial arch development. Inactivations of Fgf4 (Feldman et al., 1995) and Fgf8 

(Minowada et al., 1999) result in early embryonic lethality, before branchial arch formation. 

In contrast, Fgf3 knockout mice show only mild phenotypic alterations in the middle ear and 

tail (Mansour et al., 1993), and Fgf15-deficient mice embryos (E9.5-E12.5) appear normal 

(Wright et al., 2004).  
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Fgf8 from the isthmic organizer patterns the first branchial arch neural crest cells, through 

regulation of Hox-gene expression (Trainor et al., 2002). Tissue-specific gene inactivation of 

Fgf8 in the ectoderm of the first branchial arch demonstrated that Fgf8 is required for survival 

and patterning of the neural crest cells in the mandibular arch of mouse embryo (Trumpp et 

al., 1999). Several studies have implicated Fgf8 signalling defects in DiGeorge syndrome, 

showing that strongly reduced expression of Fgf8 affects both the development of the 

branchial arches and cardiac structures (Meyers et al., 1998; Abu-Issa et al., 2002; Frank et 

al., 2002).  

 

Data on Fgfr1-4 expression in the pharyngeal region comes from studies in chick embryos 

(Walshe and Mason, 2000; Wilke et al., 1997). Fgfr1 is expressed in ectoderm, endoderm and 

more weakly in mesenchyme of all branchial arches. Furthermore, expression is higher in the 

first and second branchial arch compared with posterior arches. Similarly, Fgfr2 signal is 

stronger in the first two branchial arches. At the tissue level, it is present in ectoderm and at 

lower level in medial pharyngeal endoderm. However, Fgfr2 is absent in endoderm of the 

pharyngeal pouches. Fgfr3 expression is restricted to posterior first and anterior second 

branchial arch. In contrast to Fgfr2, Fgfr3 is detected only in the mesenchyme and pouch 

endoderm. 

 

Genetic manipulations of Fgfr1 and Fgfr2 demonstrate their role in craniofacial development 

(see Table 3). Mice homozygous for hypomorphic alleles of the Fgfr1 gene have cleft palate, 

and reduced pinna of the outer ear (Partanen et al., 1998) as well as inner ear defects (Pirvola 

et al., 2002). It was suggested that reduced size of the second branchial arch could affect 

craniofacial development in the Fgfr1 hypomorphs, but the mechanism of this defect 

remained unknown (Partanen et al., 1998). Inactivation of the Fgfr2(IIIb) function results in a 

thinner mandible and cleft palate (De Moerlooze et al., 2000). Recently, Rice et al. 

demonstrated that cleft palate in Fgfr2(IIIb) mutants is caused by disrupted epithelial-
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mesenchymal interactions resulting in decreased cell proliferation in both epithelium and 

mesenchyme (Rice et al., 2004). In addition, Fgfr-2(IIIb) was shown to be critical for tooth 

(De Moerlooze et al. 2000) and the inner ear development (Pirvola, 2000).  

 

Table 3. Phenotypes of Fgfr1-4 transgenic mice  

Gene Mutation and defects       Refference 
Fgfr1 Fgfr1 null mutants have gastrulation defects, die at E8.5-9.5 (Yamaguchi et al., 1994) 
 mesodermal pattering is affected, somites do not form (Deng et al., 1994) 
   
 Fgfr1IIIb-/- mutants have defect in tail development, (Partanen et al., 1998) 
 do not have other obvious defects  
   
 Fgfr1 chimeras reveal defective migration of mesodermal (Ciruna et al., 1997) 
 cells through the primitive streak  
   
 Fgfr1 hypomorphs die neonataly; have craniofacial, somite (Partanen et al., 1998) 
 and limb defects, and abnormalities in A-P patterning  
       
       
Fgfr2 A null mutation of Fgfr2 results in peri-implantation  (Arman et al., 1998) 
 lethality at E4.5     
       
 Embryos with a homozygous hypomorphic Fgfr2 allele (Xu et al., 1998) 
 die by E10.5 with no limb buds and defective placenta.   
       
 Inactivation of the Fgfr2(IIIb) function results in  (De Moerlooze et al., 2000)
 craniofacial and inner ear defects   
       
       
Fgfr3 A null mutation of Fgfr3 results in skeletal dysplasia  (Colvin et al., 1996) 
 of the long bones and an inner ear defect   (Deng et al., 1996) 
       
       
Fgfr4 Fgfr4-deficient mice show no apparent phenotype but (Weinstein et al., 1998) 
 Fgfr3/Fgfr4 double null mutants demonstrate a late   
  lung defect not found in the single receptor-deficient mice    

 

 

FGF signalling in human genetic disorders 

In humans, mutations of Fgfr1, Fgf2 and Fgfr3 result in dwarfing chondrodysplasia 

syndromes and craniosynostosis syndromes characterized by premature fusion of the cranial 

sutures (reviewed by Wilkie et al., 2001; Ornitz and Marie, 2002). Craniosynostosis 

syndromes include Apert syndrome, Crouzon syndrome, Pfeiffer syndrome, Jackson-Weiss 
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syndrome, and a non-syndromic craniosynostosis. Most of these syndromes are associated 

with dominant, gain-of-function mutations, affecting the highly conserved extracellular FGFR 

lignad binding domain. Some of these mutations result in ligand-independent dimerization of 

FGFRs constitutively activating the receptor, other mutations prolong the duration of FGFR 

signalling or alter ligand-binding specificity. Studies on the cellular processes controlled by 

FGF signalling suggest that it enhances suture closure by regulating the balance among 

skeletal cell growth, differentiation and apoptosis.  

 

More recently, FGF signalling in the pharyngeal region has been associated with the 

DiGeorge syndrome. Fgf8 hypomorphic mice phenocopy DiGeorge syndrome (Abu-Issa et 

al., 2002; Frank et al., 2002), which is characterized by cardiac outflow tract anomalies, 

hypoplasia of the thymus and parathyroid glands, cleft palate and facial dysmorphogenesis, 

and is attributed to abnormal development of the pharyngeal arches and pouches. As many of 

the structures affected in patients with DiGeorge syndrome are derived from the neural crest 

cells in branchial arches, it is likely that FGF8 produced by the pharyngeal epithelial cells 

regulates development of the neural crest cells. Tbx1 is the major candidate gene for 

DiGeorge syndrome (Jerome and Papioannou 2001; Lindsay et al., 2001; Merscher et al., 

2001; Schinke and Izumo, 2001; Vitelli et al., 2002a). It was shown that Tbx1 interact 

genetically with Fgf8, as double heterozygous Tbx1+/-; Fgf8+/- mutants reveal higher 

penetrance of aortic arch artery and thymic defects than Tbx1+/-;Fgf8+/+ mutants (Vitelli et 

al., 2002b). Furthermore, this study showed that Fgf8 is not detected in the pharyngeal 

endoderm of Tbx1 null mutants, implying that Tbx1 is required for Fgf8 expression in the 

endoderm. Recent study by Macatee et al., demonstrated that ectodermal and endodermal 

Fgf8 domains in pharyngeal region have discrete functional roles (Macatee et al., 2003). 

Specific inactivation of Fgf8 in pharyngeal ectoderm resulted in vascular defects, while 

inactivation of Fgf8 in the third and fourth branchial arch ectoderm and endoderm resulted in 

pharyngeal gland and aortic valve defects characteristic for DiGeorge syndrome.  
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AIMS OF THE STUDY 

The aim of this study was to investigate function of FGFR1 in branchial arch, midbrain and 

hindbrain development. Specifically the aims were: 

 

1. to characterise craniofacial defects in the hypomorphic Fgfr1 mutants 

 

2. to define when and where FGFR1 is required during branchial arch development 

 

3. to describe cellular and molecular mechanisms by which FGFR1 regulates branchial 

 arch development 

 

4. to study if FGFR1 is required for mid- and hindbrain development  

 

5. to describe mechanism by which FGFR1 regulates mid- and hindbrain development 
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MATERIALS AND METHODS 

Mouse strains 

Ffr1n15YF Hypomorphic Fgfr1 allele Fgfr1n15YF, has a neo-cassette insertion in intron 15 

(Partanen et al., 1998). As a result, the amount of full-length Fgfr1 transcripts 

produced by Fgfr1n15YF allele is only ~10% of the amount produced by the 

wild-type Fgfr1 allele.  

 

Fgfr1n7 Hypomorphic Fgfr1 allele Fgfr1n7, has a neo-cassette insertion in intron 7 

(Partanen et al., 1998). As a result, the amount of full-length Fgfr1 transcripts 

produced by Fgfr1n7 allele is only ~20% of the amount produced by the wild-

type Fgfr1 allele.  

 

Fgfr117 The neo-cassette in Fgfr1n7 allele is flanked by loxP sites, which allow 

excision of the cassette by the Cre recombinase.This results in the Fgfr117 

allele, which is functionally a wild-type allele.  

 

Fgfr1flox  In conditional Fgfr1 null allele (Fgfr1flox) the exons 8-15 encoding the 

transmembrane domain, juxtamembrane domain and most of the tyrosine 

kinase domain of FGFR1 are flanked by two loxP sites (Trokovic et al., 

2003). Fgfr1flox allele is functionally equal to a wild-type allele. 

 

Fgfr1∆flox  Cre recombination of Fgfr1flox allele results in excision of exons 8-15 

generating Fgfr1 null allele, Fgfr1∆flox. 

 

Wnt1-Cre  Wnt1-Cre is a transgene containing Cre gene under the control of Wnt1 

promoter. Cre expression is driven by Wnt1 promoter in the dorsal neural 

tube where the neural crest precursors are situated (Danielian et al., 1998).  
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En1-Cre  En1-Cre mice express the Cre-recombinase under the En1 locus, in the 

midbrain and rhombomere 1 (Kimmel et al., 2000). 

 

Z/AP  Z/AP double-reporter transgene contains ubiquitous promoter driving 

expression of lacZ and human alkaline phosphatase (Lobe et al., 1999).  LacZ 

is followed by polyadenylation signal which stops transcription and disables 

expression of human alkaline phosphatase. The region comprising LacZ and 

polyadenylation signal is flanked with loxP sites recognized by Cre 

recombinase. Cre-mediated excision of this loxP flanked region results in 

expression of human alkaline phosphatase.  

 

Tie1lcz  Tie1lcz is a reporter transgene containing lacZ gene under the control of Tie1 

promoter (Puri et al., 1995). LacZ expression is driven by Tie1 promoter in 

the endothelial cells. 

 

Pgk-Cre  Pgk-Cre transgene ubiquitously drives Cre expression (Lallemand et al., 

1998). 

 

Mice and genotyping  

Analyses of mice and embryos carrying Fgfr1n7, Fgfr1n15YF, Fgfr1flox and Fgfr1 ∆flox alleles, as 

well as the Pkg-Cre, En1-Cre, Wnt1-Cre,  Tie1lcZ and Z/AP transgenes were carried out in 

outbreed (ICR) background. Embryonic age was estimated by counting the somites or 

considering noon of the day of a vaginal plug as E0.5. Mice and embryos were genotyped by 

polymerase chain reaction (PCR) analysis of DNA (Article I).  

Oligonucleotide primer pairs used for detection of distinct alleles are listed in Table 4. The 

Z/AP and TielcZ alleles were detected by β-galactosidase staining (Lobe et al., 1999).  
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Table 4. Primers used for genotyping  

Allele   Upstream primer 5' - 3' Downstream prime 5' - 3'   Article 
Fgfr1  CCCCATCCCATTTCCTTACCT TTCTGGTGTGTCTGAAAACAGCT I, II, III 
      
Fgfr1n7,  AATAGGTCCCTCGACGGTATC  CTGGGTCAGTGTGGACAGTGT   I, II, III 
Fgfr1flox      I, III 
      
Fgfr115YF,  AATAGGTCCCTCGACGGTATC  TAGTAGTCGGCACTGTTTGGA  III 
Fgfr1∆flox    I, III 
      
Pgk-Cre  ATTCTCCCACCGTCAGTACG CGTTTTCTGAGCATACCTGGA  III 
      
Wnt-Cre, ATTCTCCCACCGTCAGTACG  CGTTTTCTGAGCATACCTGGA   I, III 
En1-Cre          I, III 

 

Crosses performed to obtain transgenic mouse lines and embryos used in this study are 

indicated in Tables 5 and 6, respectively.  

 

Table 5. Generation of transgenic mouse line 

Cross       Generated mouse line   Article 
Fgfr1flox/+ Fgfr1flox/+  Fgfr1fox/flox  I, III 
Pgk-Cre/+ Fgfr1flox/+  Fgfr1∆flox/+ I, III 
Wnt1-Cre/+ Fgfr1n7/+  Wnt1-Cre/+; Fgfr1n7/+ I, III 
Wnt1-Cre/+ Fgfr1flox/flox  Wnt1-Cre/+; Fgfr1flox/+ I, III 
Wnt1-Cre/+ Fgfr1∆flox/+  Wnt1-Cre/+; Fgfr1∆flox/+ I, III 
En1-Cre/+ Fgfr1flox/flox  En1-Cre/+; Fgfr1flox/+ I, III 
En1-Cre/+ Fgfr1∆flox/+  En1-Cre/+; Fgfr1∆flox/+ I, III 
TielcZ/+ Fgfr1n7/+   TielcZ/+; Fgfr1n7/+   I 

 

 

Table 6. Generation of transgenic mouse embryos 

Cross        Generated mouse embryo Article 
Fgfr1n7/+   Fgfr1n7/+  Fgfr1n7/n7 I, II, III 
Fgfr1n15YF/+  Fgfr1n15YF/+ Fgfr1n15YF/n15YF III 
Wnt1-Cre/+; Fgfr1n7/+  Fgfr1n7/+  Wnt1-Cre/+; Fgfr1n7/n7 I 
Wnt1-Cre/+; Fgfr1flox/+ Fgfr1flox/flox Wnt1-Cre/+; Fgfr1flox/flox I, III 
Wnt1-Cre/+; Fgfr1∆flox/+ Fgfr1flox/flox Wnt1-Cre/+; Fgfr1∆flox/flox I, III 
En1-Cre/+; Fgfr1flox/+ Fgfr1flox/flox En1-Cre/+; Fgfr1flox/flox I, III 
En1-Cre/+; Fgfr1∆flox/+ Fgfr1flox/flox En1-Cre/+; Fgfr1∆flox/flox I, III 
En1-Cre/+   Z/AP/+  En1-Cre/+; Z/AP/+ I, III 
Wnt1-Cre/+   Z/AP/+  Wnt1-Cre/+; Z/AP/+ I, III 
TielacZ/+; Fgfr1n7/+   Fgfr1n7/+  TielacZ/+; Fgfr1n7/n7 I 
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Riboprobes and antibodies 

Riboprobes and antibodies used in this study are listed in Tables 7 and 8.  
 
 

Table 7. Antisense riboprobes for in situ hybridization 

Probe   Reference         Article 
Ap2       I 
Bmp4  (Tucker et al., 1998)    I 
Bmp7  IMAGE 5121825    II 
Crabp1   IMAGE 468821    I 
Dlx1  (McGuinness et al., 1996)   I 
Dlx2  (Porteus et al., 1992)    I 
Dlx5  (Liu et al., 1997)    I 
Dopamine-β-hydroxylase  a gift from Wolfgang Wurst   III 
En1  (Davis and Joyner, 1988)    III 
En2  (Davis and Joyner, 1988)    III 
Erm  IMAGE 3674281    II 
EphA4  (Gilardi-Hebenstreit et al., 1993)   I 
EphB2  IMAGE 4983886    I 
EphB3  IMAGE 1110951    I 
EphrinA5  Agift form David Wilkinson   III 
Fgf3  (Peters et al., 1993)     I, II 
Fgf8  (Crossley and Martin, 1995)    I, II, III 
Fgf15  (McWhirter et al., 1997)    II, III 
Fgfr1∆Flox  bp 1152-1724 of NM 010206; (Trokovic et al., 2003) I, II, III 
Fgfr2  a gift from Alka Mansukhani   I, II, III 
Fgfr3  (Wilkinson et al., 1988)    I, II 
Ggx2  a gift from Wolfgang Wurst   III 
Hoxa2  a gift from Mario Capecchi   I, III 
Hoxb1       I 
Hoxb2       I 
Hoxd4       I 
Krox20  (Nieto et al., 1991)    I 
Msx1  (Jowett et al., 1993)    I 
Ngn2  IMAGE 2922473    II 
Otx2  (Acampora et al., 1997)    III 
Pax1  IMAGE 1327502    I, II,  
Pax2  a gift from Gregory Dressler   III 
PB-cadherin  Clone ID:: UI-M-BH1-akr-h-03-0-UI   III 
Sox10  IMAGE 4165363    II 
Spry1  a gift from Seppo Vainio   II,III 
Spry4  a gift from Seppo Vainio   II 
VachT  a gift from Wolfgang Wurst   III 
Wnt1   (McMahon and Bradley, 1990)       III 
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Table 8. Antibodies  

Antibody   Description / Source         Article 
α -calbindin  Rabbit-α-Calbidin (Swant cat. CB38)   III 
α -TH   Rabbit-α-Tyrosine Hydroxylsase (Chemicon AB152)  III 
α -NF  Mouse monoclonal α−neurofilament (Sigma N-5139)  II, III 
α -ChAT   Rabbit-α-Choline Acetyltransferase (Chemicon, AB5042)   III 

 

 
Experimental methods 

The experimental methods used in this study are listed in Table 9. The description of each 

method is found in the original publication. 

Table 9. Experimental methods used in this stu 

 

 

 

 

 

 
 
 
 
 
 

Methods        Reference     Article 
Skeletal analysis       I 
Radioactive in situ on sections   (Wilkinson and Green, 1990) I, II, III 
Whole-mount in situ    (Henrique et al., 1995)  I, II, III 
Nile blue sulfate (NBS) staining      I, III 
Terminal deoxynucleotidyl transferase   In Situ Cell Death Detection Kit  I, III 
mediated nick end labelling (TUNEL) analysis  (Roche, cat. 1684 795)    
ß-galactosidase    (Lobe et al., 1999)  I, III 
Alkaline phosphatase       I, III 
Hematoxylin-eosin staining      I, III 
Semi-thin sections       III 
Toluidine blue       III 
NADPH-Diaphorase        III 
AChE histochemistry       III 
Behaviour studies (rotarod and stationary beam assay)       III 
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RESULTS AND DISCUSSION  

Expression of Fgfr-s  in the pharyngeal region (I) 

Mice homozygous for the hypomorphic alleles of the Fgfr1 gene, Fgfr1n7 and Fgfr1n15  die 

neonatally and display craniofacial defects, including cleft palate and reduced size of the 

pinna of the outer ear (Partanen et al., 1998). In addition, his study implied that the 

craniofacial defects in Fgfr1 hypomorphs are caused by an early defect in formation of the 

second branchial arch. Based on expression studies, Fgf signalling was implicated in the 

epithelial-mesenchymal interactions in the branchial arches (Francis-West et al., 1998; Wall 

and Hogan, 1995). In the developing mouse, Fgf3, Fgf4, Fgf8  and Fgf15 were detected in the 

pharyngeal epithelium (Crossley and Martin, 1995; Heikinheimo et al., 1994; Mahmood et al., 

1996; McWhirter et al., 1997; Niswander and Martin, 1992; Wilkinson et al., 1988), but data 

on  expression of Fgfr-s was incomplete. To study the Fgf signalling in the branchial arches, 

we first analysed expression of Fgfr1, Fgfr2 and Fgfr3 at E9.5. We found that, Fgfr1 is 

uniformly expressed in different branchial arches, both in mesenchyme (neural crest cells and 

mesoderm) and epithelia (ectoderm and endoderm). At this time, Fgfr2 is strongly expressed 

in the surface ectoderm of the first and second branchial arches and at lower level in the 

pharyngeal mesenchyme (Fig. 8 and I, Supplementary data). These observations were similar 

to reports on Fgfr expression in chick (Walshe and Mason, 2000; Wilke et al., 1997). 

However, in contrast to expression in chick, we detected low level of Fgfr2 in the pharyngeal 

pouch endoderm (Fig. 8F, arrowhead). Furthermore, we could not detect expression of Fgfr3 

in the branchial arches (Fig. 8 and I, Supplementary data). Co-expression of Fgfr1 and Fgfr2 

in branchial arches implies that they may have to some extent redundant roles in the branchial 

arch region. 
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Figure 8. Expression of 

Fgfr1-3 in the branchial 

arches. Whole mount in situ 

hybridization with Fgfr1-3 

probes at E9 (A,D,G). 

Radioactive in situ 

hybridization analysis using 

Fgfr1, Fgfr2, and Fgfr3 

riboprobes on adjacent 

sagittal serial sections at E9.5 

(B,C,E,F,H,I). Bright field 

images (B,E,H) correspond to 

dark field images (C,F,I). 

BA1-3, branchial arch 1-3; 

Ect, ectoderm; End, 

endoderm; M, mesenchyme; 

PP1-3, pharyngeal pouch 1-3. 

 

In this study we did not look at the expression patterns of different Fgfr splice isoforms. 

Importantly, wealth of data on Fgfr expressions in other regions showed that IIIb isoforms are 

expressed mainly in epithelia and the IIIc isoforms in mesenchyme, as well as that the splice 

isoforms dramatically differ in ligand specificity (Ornitz and Itoh, 2001). For example during 

limb bud development, FGF10 in the mesenchyme interacts with the FGFR2(IIIb) which is 

expressed in the surface ectoderm, while FGF8 in the ectoderm interacts with the 

mesodermally expressed FGFR2(IIIc) (Xu et al., 1998). FGF signalling within the same tissue 

was also observed. For example in the inner ear, FGFR2(IIIb) and FGF10 interaction operates 

within the epithelium (Pirvola et al., 2000). 

 

Fgfr1 is required for the normal craniofacial  development (I)  

Second branchial arch defects in hypomorphic Fgfr1 mutants  

In order to further characterise the craniofacial defects in the hypomorphic Fgfr1 mutants we 

decided to use the Fgfr1n7/n7 mutants in our studies, because the Fgfr1n15/n15 embryos are often 

growth-retarded and therefore difficult to compare with the wild-type littermates. First we 
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performed detailed analysis of the branchial arch morphology with the electron-microscopy in 

E9.5-E10.5 Fgfr1n7/n7 mutants and control embryos (I, Fig.2). We have observed variable 

deficiencies in the second branchial arch of the mutants, ranging from the almost completely 

missing structure to the well formed distal part of the arch. The proximal part of the second 

branchial arch was always strongly affected. Morphologies of the first and the third branchial 

arches were normal in the Fgfr1n7/n7 embryos. To visualize the endothelial cells of the aortic 

arches in the Fgfr1 hypomoprhs, we generated Fgfr1n7/n7; Tie1lcZ/+ embryos. β−Galactosidase 

staining of the Fgfr1n7/n7; Tie1lcZ/+ embryos revealed specific defect in the development of the 

second aortic arch (I, Fig. 2). 

 

These results demonstrate that Fgfr1 is required for the formation of the second branchial 

arch and its aortic arch. Importantly, our results and those from others (I, Supplementary 

data), (Yamaguchi et al., 1992), showed that Fgfr1 is expressed throughout pharyngeal region 

in E9.5 mouse embryos, indicating its role in formation of all branchial arches. Having in 

mind that in the hypomorphic Fgfr1 mutants Fgfr1 is only partially inactivated, it is possible 

that the first and the third branchial arches require lower activity of the Fgfr1 than the second 

arch. Similarly, the proximal part of the second branchial arch could be more sensitive to 

reduction in the Fgfr1 then the distal part of the arch. Additionally, Fgfr2 is expressed 

throughout pharyngeal region at E9.5 (Fig. 8 and I, Supplementary data). Therefore, Fgfr2 

could also be involved in the branchial arch development, and it could exhibit redundancy 

with the Fgfr1.  

 

Craniofacial skeletal deficiencies in hypomorphic Fgfr1 mutants  

Analysis of the skeletal preparations of the newborn hypomorphic Fgfr1 mutants revealed 

abnormalities in structures deriving from the proximal part of the first branchial arch 

(palatine, pterygoid, squamosum, alisphenoid and incus), structures deriving from the distal 

part of the first arch (malleus, tympanic and gonial), structures deriving from the proximal 
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part of the second arch (styloid and stape), and structures deriving from the distal part of the 

second arch (lesser horns of the hyoid) (I, Fig.1 and Table 1).  

 

Styloid process and stapes were strongly affected or missing in the Fgfr1n7/n7 mutants. This 

could be explained by the early defect in the second branchial arch formation, as the proximal 

part of the arch was always strongly affected in the Fgfr1n7/n7 embryos. Lesser horn of the 

hyoid bone was either only mildly affected or appeared normal in mutants, implicating that 

even small population of the neural crest cells in the remaining second arch is enough to form 

this structure. Surprisingly, skeletal preparations of newborn Fgfr1n7/n7 mice also showed 

abnormalities in several first arch derived skeletal elements. Consistent with expression 

studies, this could reflect a function of Fgfr1 in the later development of the first arch. 

Alternatively, abnormal development of the second branchial arch may disrupt presumptive 

patterning center between the first and the second branchial arch, leading secondarily to 

defect in the first arch (Rijli et al., 1993). In 80% of the Fgfr1n7/n7 mice the lesser horns of the 

hyoid bone and pterygoid processes were positioned abnormally laterally, and the palatal 

shelves were open, while in 20% of mutants these elements appeared normal. Defects in 

palatine, pterygoid and lesser horn of the hyoid bone always appear together, indicating their 

correlation. 

 

Role of Fgfr1 in the development of the second branchal arch (I, II) 

Fgfr1 indirectly regulates migration of the neural crest cells  

Generation, migration and survival of neural crest cells in hypomorphic Fgfr1 embryos 

Normal development of Fgfr(IIIb)-/- mouse mutants (Partanen et al., 1998) suggests that it is 

the Fgfr1(IIIc) isoform, which is required for the craniofacial development. As Fgfr1(IIIc) is 

mainly expressed in mesenchymal tissues (Ornitz et al., 2001), the branchial arch defect in 

Fgfr1 hypomorphs could be caused by defect in the mesenchymal neural crest cells. 

Consistent with this theory, neural crest cells were thought to be a major player during 
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branchial arch development (numerous studies including: Clouthier et al., 1998; Gavalas et 

al., 1998; Kurihara et al., 1994; Qiu et al., 1995; Qiu et al., 1997). Furthermore, Fgf signalling 

has been implied in cellular processes regulating neural crest cell generation (Mayor et al., 

1997), neural crest patterning and survival (Trumpp et al., 1999; Tucker and Sharpe, 1999), 

and neural crest migration (Kubota and Ito, 2000). Therefore, in order to understand the 

cellular mechanism of the second branchial arch defect in the Fgfr1n7/n7 embryos, we first 

focused our studies on the neural crest cells. 

 

Second branchial arch neural crest cells originate from the rhombomere 4 in the hindbrain. 

Consequently, rhombomere 4 specification defect could affect development of the second 

branchial arch. To analyse the antero-posterior patterning of the hindbrain in the hypomorphic 

Fgfr1 embryos, we studied expression of the several hindbrain regional markers by the whole 

mount in situ hybridisation. We detected similar patterns of Krox20, Hoxd4, Hoxb1 and 

EphA4 in the mutant and control embryos at E8.5-E9 (I, Fig. 3). These results suggested that 

the antero-posterior patterning of the hindbrain is normal in the hypomorphic Fgfr1 mutants. 

 

We next analysed whether rhombomere 4 neural crest cells were generated properly and 

whether they migrated normally toward the second branchial arch in the Fgfr1n7/n7 mutants. 

Crabp1, Ap2 and Hoxa2 riboprobes were used to detect neural crest cells in E9.0-E9.5 

Fgfr1n7/n7 and wild-type embryos (I, Fig. 4). A stream of neural crest cells was found to 

originate from the rhombomere 4 region and migrate ventrally toward the second branchial 

arch in the Fgfr1n7/n7 and control embryos. Thus, generation and initial migration of the 

rhombomere 4 neural crest cells are normal in the Fgfr1n7/n7 embryos. However, in contrast to 

the wild type embryos, majority of the rhombomere 4 derived neural crest cells in Fgfr1 

mutants fail to enter the second branchial arch and instead accumulate proximal to it. Thus, 

Fgfr1 is needed for migration of the neural crest cells into the second branchial arch. 
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To analyse whether apoptosis of the neural crest cells contributed to the second branchial arch 

defect in the Fgfr1n7/n7 embryos, we performed whole mount Nile blue staining (at E9-E9.5) 

and TUNEL on tissue sections (at E9.5). We did not detect increase in the cell death inside 

the second branchial arch of Fgfr1n7/n7 mutants (I, Fig. 6). This suggested that the early defect 

in the second branchial arch formation in the Fgfr1n7/n7 embryos is not caused by apoptotic 

cell death. However, increased neural crest cell death was detected proximal to the second 

branchial arch in E9.5 Fgfr1n7/n7 embryos. Because this is the region where the neural crest 

cells accumulate in the Fgfr1n7/n7 embryos, it is possible that they do not receive appropriate 

cues from the environment and are therefore depleted by apoptosis. 

 

Dlx1, Dlx2, Dlx5 and Msx1 probes were used to analyse the proximo-distal patterning of the 

neural crest cells populating the second branchial arch of E9.5-E10.5 Fgfr1n7/n7 embryos (I, 

Fig. 5). Appropriate gene-expressions were observed at E9.5, suggesting that the neural crest 

cells populating the second arch of the Fgfr1n7/n7 embryos are patterned correctly along the 

proximo-distal axis. At E10.5 Dlx1 and Dlx2 were almost diminished in the proximal second 

branchial arch. Probable explanation for this is progressive decrease in number of the neural 

crest cells due to the migration defect and cell death. Alternatively, this could reflect a later 

role of Fgfr1 in neural crest differentiation. 

 

Neural crest cell specific inactivation of the Fgfr1 

Based on expression data in the pharyngeal region, it is possible that  FGFs expressed in the 

branchial arch epithelia directly attract the neural crest cells into the arch through activation 

of FGFR1 (Fig.7 and I, Supplementary data). Along this line, FGF2 and FGF8 were shown to 

induce chemotactic migration of mesencephalic neural crest cells (Kubota and Ito, 2000). 

To understand whether Fgfr1 is required cell-autonomously for the neural crest cell migration 

we took advantage of the Cre recombination technique. We used the Wnt1-Cre mice 

expressing Cre under the Wnt1 promoter that is active in the neural crest precursors 

(Danielian et al., 1998). First we analysed stage and tissue specificity of Cre activity with the 
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Z/AP reporter allele (Lobe et al., 1999). Analysis of the Wnt1-Cre/+; Z/AP /+ embryos at 

E8.5 revealed efficient recombination of the Z/AP reporter allele in the migrating neural crest 

cells, before their entry to the second branchial arch (I, Fig. 7). 

 

Our first strategy was to inactivate Fgfr1 specifically in the neural crest cells.  We crossed the 

Fgfr1flox mice (III) with the Wnt1-Cre mice to generate the Wnt1-Cre/+; Fgfr1flox/flox embryos. 

Cre-mediated recombination of the Fgfr1flox deletes the transmembrane and most of the 

intracellular region encoding exons, resulting in the inactive Fgfr1∆flox allele (schematically 

presented in I, Fig. 7). In the Wnt1-Cre allele, the Cre expression is driven under the Wnt1 

promoter throughout the dorsal neural tube. In the Wnt1-Cre/+; Fgfr1flox/flox embryos Fgfr1 

will be inactivated also in the neural crest cells, as they derive from cells in the dorsal neural 

tube. To check for the inactivation of the Fgfr1flox allele, we carried out in situ hybridization 

analyses of Wnt1-Cre/+; Fgfr1flox/flox embryos with a Fgfr1 RNA probe. Using tissue sections, 

in situ hybridization was performed with the Fgfr1 probe containing exonic sequences 

between the loxP sites in the Fgfr1flox allele. In the pharyngeal region of mutant embryos, the 

Fgfr1 signal was detected in pharyngeal endoderm, ectoderm and mesoderm, whereas it was 

absent from the neural crest cells (I, Fig. 7). This result clearly showed that the Fgfr1 was 

efficiently inactivated in the neural crest cells of the Wnt1-Cre/+; Fgfr1flox/flox embryos at 

E9.5. But to our surprise, the second branchial arch was normally formed in these embryos (I, 

Fig. 7). We also generated the Wnt1-Cre/+; Fgfr1∆flox/flox embryos, carrying one conditional 

and one null allele of Fgfr1. In these mice a single Cre mediated recombination event is 

enough to inactivate Fgfr1 function in the target cell. Similar to the Wnt1-Cre/+; Fgfr1flox/flox 

embryos, development of the second branchial arch was still normal in the Wnt1-Cre/+; 

Fgfr1∆Flox/Flox embryos (data not shown).  

 

The Wnt1-Cre/+; Fgfr1flox/flox and Wnt1-Cre/+; Fgfr1∆flox/flox mice die neonataly of unknown 

cause. Beside cleft palate and abnormally laterally positioned pterygoid processes and lesser 
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horns of the hyoid bones, other skeletal derivatives of the branchial arches form normally in 

the Wnt1-Cre/+; Fgfr1flox/flox and Wnt1-Cre/+; Fgfr1∆flox/flox mice (I, Fig. 7, Table 1 and 

Supplementary data). Defects in palatine, pterygoid and lesser horns of the hyoid bone were 

stronger than in the Fgfr1n7/n7 mice, providing additional proof for the complete inactivation 

of the Fgfr1 in the Wnt1-Cre/+; Fgfr1flox/flox mice. 

 

Neural crest cell specific rescue of the hypomorphic Fgfr1 allele 

In order to understand whether Fgfr1 is required cell-autonomously for the neural crest cell 

migration, our second approach was to rescue the hypomorphic Fgfr1n7 allele specifically in 

the neural crest cells of the Fgfr1n7/n7 embryos. For this purpose, we crossed Wnt1-Cre/+ and 

Fgfr1n7/n7 mice to generated the Wnt1-Cre/+; Fgfr1n7/n7 embryos. In the dorsal neural tube 

cells where Cre is active, recombination will result in excision of the neo cassette from the 

hypomorphic Fgfr1n7 allele and its conversion into the Fgfr1l7 allele functionally equal to a 

wild-type allele (schematically presented in I, Fig. 7). Similar to the Fgfr1n7/n7 embryos, 

analysis of the Wnt1-Cre/+; Fgfr1n7/n7 embryos revealed the second branchial arch specific 

defect (I, Fig. 7). Therefore, rescue of the hypomorphic Fgfr1n7 allele specifically in the 

neural crest cells failed to rescue the second branchial arch defect in the Fgfr1n7/n7 embryos. 

This is consistent with observations in the Wnt1-Cre/+; Fgfr1flox/flox embryos. Based on these 

results, we concluded that Fgfr1 is required non-cell-autonomously for the neural crest cell 

migration into the second branchial arch.  

 

Similar to Fgfr1n7/n7 mice, Wnt1-Cre/+; Fgfr1n7/n7 mice die neonatally and have defects in the 

branchial arch skeletal derivatives. However, the palatal shelves are closed and lesser horns of 

the hyoid bone and the pterygoid processes are normally oriented in the Wnt1-Cre/+; 

Fgfr1n7/n7 mice (I, Fig. 7 and Supplementary data). Together, analysis of skeletal structures in 

the Fgfr1n7/n7, Wnt1-Cre/+; Fgfr1n7/n7 and Wnt1-Cre/+; Fgfr1flox/flox mice imply correlation 

between defects in palatine, pterygoid and lesser horns of the hyoid bone, and demonstrate 

their independency on branchial arch development. 
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Early patterning of pharyngeal ectoderm is affected in the Fgfr1 mutants  

A study by Veitch et al. showed that early segmentation and patterning of the pharyngeal 

epithelium are independent on the neural crest cells (Veitch et al., 1999). Thus, to further 

understand the nature of the second branchial arch defect in the Fgfr1 hypomorphs, we have 

analysed pharyngeal epithelial patterning in the Fgfr1n7/n7 mutants. For this purpose, we have 

used epithelial markers Fgf3 and Fgf8, expressed in pharyngeal clefts and pouches, as well as 

Bmp4 and Pax1, specifically expressed in pharyngeal pouches. Our results revealed fusion of 

the first and the second pharyngeal pouches and abnormal patterning of the epithelium 

surrounding the second branchial arch in the Fgfr1n7/n7 embryos at E9 (I, Fig. 8). 

 

Our studies on the Fgfr1-3 expression patterns at E8.5, prior to migration of the neural crest 

cells into the second branchial arch, demonstrated that Fgfr1 is broadly expressed in the 

pharyngeal region in all cell types (II, Fig. 1 and Table 1). Fgfr2 is co-expressed with Fgfr1 in 

this domain, but at the significantly lower level. Expression of Fgfr3 was not detected in the 

presumptive second branchial arch region, while in the first branchial arch Fgfr3 was detected 

at low level in all cell types.  

 

In the light of studies showing that pharyngeal epithelium is crucial for the branchial arch 

formation (Piotrowski and Nusslein-Volhard, 2000; Wendling et al., 2000), we asked whether 

epithelium is the primary domain of Fgfr1 activity in the pharyngeal region? First, we studied 

the timing of the onset of the neural crest cell migration defect in the Fgfr1 hypomorphs. 

Neural crest cells expressing Crabp1 normally start to populate the second branchial arch at 

10-somite stage. At this stage we could not detect Crabp1 positive cells in the second 

branchial arch of the Fgfr1n7/n7 embryos. However, at 8-somite stage, before the influx of the 

neural crest cells into the second arch, similar expression of Crabp1 has been detected in the 

Fgfr1n7/n7 mutants and the wild type embryos (I, Fig. 9). These results reveal that the neural 

crest cell migration defects in the hypomorphic Fgfr1 mutants appear at the onset of the 
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neural crest influx into the second branchial arch.  

 

We then analysed whether defect in the pharyngeal epithelium precedes defect in the neural 

crest cells. For this purpose, we compared expression of pharyngeal epithelial marker Fgf3 in 

8-9-somite stage Fgfr1n7/n7 mutants and control embryos. At this stage normal expression of 

Fgf3 in the pharyngeal region is located in the surface ectoderm of the presumptive second 

branchial arch. However, this domain of Fgf3 expression was strongly downregulated in the 

Fgfr1n7/n7 mutants (I, Fig. 9 and II, Fig. 2). These results show that defects in the pharyngeal 

epithelium of the Fgfr1n7/n7 mutants precede defects in the migratory neural crest cells. This 

suggests that, Fgfr1 is required for development of a permissive environment for the neural 

crest cell migration into the second branchial arch.  

 

Next, we wanted to analyze whether pharyngeal endoderm is also affected in the Fgfr1 

hypomorphs and which tissue is the primary target of the Fgfr1 signalling. For this purpose, 

we studied expressions of Fgf8, Fgf15, Spry1, Spry4 and Erm in the pharyngeal epithelium of 

Fgfr1n7/n7 mutant and wild-type embryos at 8-10-somite stage. Normally, Fgf8, Spry1, Spry4 

and Erm are expressed broadly in the pharyngeal region, whereas Fgf15 is localized to the 

epithelium of the presumptive second branchial arch (II, Fig. 2 and 3), similar to Fgf3. In 

Fgfr1 hypomorphs, specific down-regulation of Spry1 in the ectoderm of the second branchial 

arch was detected already at 8-somite stage (II, Fig. 3). Subsequently, we observed specific 

down-regulation of Fgf15, Spry1, Spry4 and Erm in both ectoderm and endoderm of the 

presumptive second branchial arch in 9-10-somite stage Fgfr1n7/n7 embryos (II, Fig. 2 and 3). 

In contrast, expression of Spry1, Spry4 and Erm in the pharyngeal mesenchyme, as well as in 

all tissue-components of the first branchial arch appeared normal in Fgfr1n7/n7 embryos. 

Our results suggest that the surface ectoderm of the presumptive second branichial arch is the 

primary target for Fgfr1 signalling. Also pharyngeal endoderm is affected. However, we do 

not now whether gene expression in the pharyngeal endoderm is directly regulated by Fgfr1, 

or indirectly through its interaction with the ectoderm. Localized expression patterns of Fgf3 
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and -15, imply existence of the local signalling centre in the surface ectoderm of the second 

branchial arch. We suggest that Fgfr1 has a role in the early patterning of the pharyngeal 

ectoderm and establishment of this signalling centre.  

 

Impaired differentiation of the geniculate placode and VIIth cranial nerve in 

hypomorphic Fgfr1 embryos  

In order to further investigate the role of the Fgfr1 in the pharyngeal ectoderm we analyzed 

neuronal differentiation of the pharyngeal ectoderm in the Fgfr1 hypomorphs. Neurofilament 

staining at E10.5 revealed specific deficiencies  in the VIIth cranial nerve of Fgfr1n7/n7 

embryos (II, Fig. 5). Cranial nerves have heterogeneous origin, arising from both neural crest 

cells and ectodermal placodes. In order to examine the nature of the neuronal defect in the 

Fgfr1 hypomorphs, we first studied formation of the epibranchial placodes in the Fgfr1 

hypomorphs at E9.5-10.5, using Ngn2 probe as a molecular marker. In mutants,  we observed 

localized downregulation of Ngn2, revealing specific defect in formation of the geniculate 

placode, related to the second branchial arch (II, Fig. 4). Next, we analyzed the neurogenic 

neural crest. We demonstrated that the marker for the neurogenic neural crest cells, Sox10, is 

normally expressed in the Fgfr1n7/n7 embryos at E9 (II, Fig. 4). These results suggest that in 

mice with general reduction of Fgfr1 signaling, deficient development of the geniculate 

placode and VIIth cranial nerve is primarily caused by defect in ectoderm.  

 

Begbie et al. showed that pharyngeal endoderm induces formation of the epibranchial 

placodes through secretion of the signalling molecule Bmp7 (Begbie et al., 1999). To 

understand whether defect in formation of the geniculate placode is caused by the defect in 

the endoderm, we studied expression of Bmp7. Similar pattern of Bmp7 expression was 

observed in 13-somite stage Fgfr1n7/n7 mutant and wild-type embryos (II, Fig. 4).  This result 

implies that the placodal ectoderm in the Fgfr1n7/n7 mutants receives inductive signal from the 

endoderm comparable to the normal embryos.  
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We suggest that general reduction of FGFR1 signalling leads to a local defect in the 

competency of ectoderm (corresponding to the prospective geniculate placode) to respond to 

the inductive signal from the endoderm. This is consistent with our molecular studies 

suggesting that Fgfr1 is required for the localized gene-expression in pharyngeal ectoderm 

well before neurogenesis in the geniculate placode is initiated. Signals from a putative 

signalling centre in the presumptive second branchial arch region, including FGF3 and 

FGF15, might be important for the interaction between ectoderm and underlying endoderm 

that is in turn critical for the proper tissue integrations. Our results suggest that this local 

signalling centre fails to form normally in the mouse embryos with reduced signalling 

intensity of the FGFR1, because of the patterning defect in the pharyngeal surface ectoderm. 

Consequently, the neural crest migration, formation of the second branchial arch and its 

innervation are affected in these mutants (II, Fig. 6). 

 

Role of the Fgfr1 in the development of the mid- and hindbrain development (III) 

Expression of Fgfr1 and Fgfr2 during early development of the mid- and hindbrain 

Genetic loss-of-function studies both in zebrafish and mouse (Meyers et al., 1998; Reifers et 

al., 1998; Xu et al., 2000), have demonstrated the importance of Fgf-s, and Fgf8 in particular, 

in the development of the midbrain–hindbrain region. However, the direct target tissues and 

the receptors of FGF signals were poorly understood. Studies with mice carrying null 

mutations in each of the Fgfr genes have suggested that two of these, Fgfr1 and Fgfr2, carry 

out the majority of FGF receptor functions during early embryonic development. To study 

Fgf signaling in midbrain-hindbrain development, we first analyzed the expression of Fgfr1 

and Fgfr2. At a late head-fold stage (E 7.5), around the stage when the isthmic organizer is 

induced, expression of both genes is detected in the head folds (III, Fig. 1). At E8.5–9.5, 

widespread Fgfr1 expression was observed in the developing central nervous system, 

including the midbrain–hindbrain region. However, no Fgfr2 expression was detected at the 

midbrain–hindbrain boundary in the anterior rhombomere 1 or posterior midbrain (III, Fig. 1). 
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Tissue-specific inactivation of Fgfr1 in the midbrain-hindbrain region 

To study the role of Fgfr1 in the isthmic organizer, we wanted to inactivate Fgfr1 specifically 

in the neuroepithelium of the mid- and hindbrain after their regional specification. For this 

purpose, we have used En1-Cre mice (Kimmel et al., 2000). To characterize the Cre activity 

expressed in the En-Cre allele, we crossed En-Cre mice with Z/AP reporter mice. Cre activity 

and specific recombination in the mid- and hindbrain region of the En1-Cre/+; Z/AP/+ 

embryos was observed already at 8 somite stage (III, Fig. 2). Next, we crossed the Fgfr1flox/flox 

mice with the En1-Cre mice to inactivate Fgfr1 specifically in the mid-and hindbrain 

(schematically presented in III, Fig. 2). At 10 somite stage the midbrain and the entire 

rhombomere 1 of the En1-Cre/+; Fgfr1flox/flox embryos, were negative for the Fgfr1 signal (III, 

Fig. 2 and Supplementary data). The majority of En1-Cre/+; Fgfr1flox/flox mice survived till 

adulthood, but they had ataxia (impaired motor coordination) demonstrated by behavioral 

tests, including stationary beam and rotarod assays (III, Table 1). Consistent with the 

impaired motor coordination, severe defects were observed in the cerebellar structures in 

adult En1-Cre/+; Fgfr1flox/flox mice. The vermis of the cerebellum was completely absent and 

foliation of the cerebellar hemispheres was abnormal (III, Fig. 3). In addition, extensive 

deletions including the entire inferior colliculi were also evident in the posterior midbrain.  

We also generated En1-Cre/+; Fgfr1∆flox/flox mutants carrying one conditional and one null 

allele of Fgfr1. These mice had same defects as En1-Cre/+; Fgfr1flox/flox mice, further 

confirming successful inactivation of Fgfr1 by En-Cre transgene. Consistently, analysis of the 

brains of the newborn mice homozygous for the hypomorphic Fgfr1 alleles, Fgfr1n7 and 

Fgfr1n15YF (Partanen et al., 1998), revealed almost complete absence of the cerebellar vermis 

and partial deletions of the inferior colliculi of the midbrain (III, Fig. 3). As expected, the 

phenotype of the hypomorphic Fgfr1 mutants, expressing only 10-20% of the wild-type Fgfr1 

mRNA levels, was similar but less severe than the phenotype of the En1-Cre/+; Fgfr1flox/flox 

mice. 
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Fgfr1 is required for the expression of isthmic organizer dependent genes  

Next, we wanted to understand the mechanism through which Fgfr 1 regulates development 

of the mid- and hindbrain. First we analysed expression patterns of the mid-hindbrain regional 

markers, Otx2, En2 and Fgf8. Similar expressions were detected in En1-Cre/+; Fgfr1flox/flox 

and wild-type embryos at E9.5-10.5. Otx2 was detected in the midbrain, En2 in posterior 

midbrain and anterior hindbrain, and Fgf8 in the anterior hindbrain (III, Fig. 4). Therefore, 

these results demonstrated that the isthmic organizer is present and correctly positioned in the 

E9.5-E10.5 En1-Cre/+; Fgfr1flox/flox embryos. In contrast, expression of genes thought to 

depend on isthmic signals, including Sprouty1 and Pax2, were clearly affected in the En1-

Cre/+; Fgfr1flox/flox embryos at E9.5-10 (III, Fig. 4 and Supplementary data). Sprouty1 was 

completely abolished from the isthmic domain. Expression of Pax2 at the mid- and hindbrain 

boundary was decreased already at E9.5 and virtually absent at E10. Wnt1 was downregulated 

in the posterior midbrain. These results demonstrate that FGFR1 is involved in maintaining 

expression of isthmus-dependent genes and they confirm our suggestion that FGFR1 is the 

primary FGF receptor receiving isthmic signals.  

 

Tissue-specific inactivation of Fgfr1 in the midbrain  

We wanted to understand whether both midbrain and hindbrain are direct targets of Fgf 

signalling. Therefore we decided to inactivate Fgfr1 specifically in the midbrain, using the 

Wnt1-Cre transgene. First we analyzed the patterns of Cre activity in Wnt1-Cre/+ mice, by 

crossing them with the Z/AP/+ reporter mouse line. The Z/AP allele was observed to be 

recombined efficiently and specifically in the midbrain of the Wnt1-Cre/+; Z/AP/+ embryos 

already at E8.5. As expected, Cre activity was absent from the rhombomere 1 (III, Fig. 2). We 

next generated Wnt1-Cre/+; Fgfr1flox/flox embryos to inactivate the Fgfr1flox allele specificaly in 

the midbrain (schematically presented in III, Fig. 2). At E9.5, Fgfr1 expression signal could 

not be detected in the midbrain of the Wnt1-Cre/+; Fgfr1flox/flox embryos, whereas abundant 

Fgfr1 signal was detected in the rhombomere 1 (III, Fig. 2). 
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Analysis of the brains of the newborn Wnt1-Cre/+; Fgfr1flox/flox mice revealed deletion of the 

inferior colliculi of the midbrain, reminiscent of the En1-Cre/+; Fgfr1flox/flox mice (III, Fig. 5). 

Development of the dorsal cerebellum was also abnormal. However, in contrast to the En1-

Cre/+; Fgfr1flox/flox mice, the vermis was not completely missing although it was severely 

malformed in the Wnt1-Cre/+; Fgfr1flox/flox mutants (III, Fig. 5). Comparable phenotype was 

observed in newborn Wnt1-Cre/+; Fgfr1∆flox/flox mice.  

 

Fgfr1 is independently required in both midbrain and hindbrain  

Our next aim was to understand whether Fgfr1 directly regulates gene expressions on 

both sides of the isthmic organizer. Therefore, we analysed the expression of isthmic 

genes Otx2, En2 and Fgf8  in the Wnt1-Cre/+; Fgfr1flox/flox and wild-type embryos at 

E9.5-10.5. Our results show that in the midbrain specific Wnt1-Cre/+; Fgfr1flox/flox 

mutants the isthmic organizer forms and is correctly positioned, similar to the En1-

Cre/+; Fgfr1flox/flox mutants (III, Fig. 6). However, expression of isthmus regulated 

genes was abnormal specifically in the midbrain of Wnt1-Cre/+; Fgfr1flox/flox mutants 

(III, Fig. 6). Sprouty1, although still normally expressed in the hindbrain, was 

markedly downregulated in the midbrain in E9.5 Wnt1-Cre/+; Fgfr1flox/flox mutants. 

Similarly, Pax2 was downregulated specifically in the midbrain by E10 in Wnt1-

Cre/+; Fgfr1flox/flox mutants. Thus, our results show that Fgfr1 is independently 

required in both midbrain and hindbrain for the maintenance of isthmic dependent 

gene expression. 
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CONCLUSIONS AND FUTURE PROSPECTS 

In this study we have analysed roles of Fgfr1 in the early craniofacial and mid- and hindbrain 

development. Using a hypomorphic Fgfr1 allele, we show that Fgfr1 is necessary for 

formation of the proximal region of the second branchial arch. We demonstrate that 

perturbation of Fgfr1 function leads into a failure in neural crest cell entry into the second 

branchial arch. Both rescue of the hypomorphic Fgfr1 allele and inactivation of a conditional 

Fgfr1 allele specifically in neural crest cells suggest that Fgfr1 regulates the entry of neural 

crest cells into the second branchial arch non-cell-autonomously (I). Furthermore, we 

demonstrate that the first molecular defect in hypomorphic Fgfr1 mutants is localized down-

regulation of gene expression in the surface ectoderm of presumptive second branchial arch (I 

and II). Additionally, ectoderm associated with the second arch fails to respond to the 

neurogenic signal from endoderm, resulting in defective formation of the geniculate 

epibranchial placode in Fgfr1 hypomorphs (II). Thus, our results strongly suggest that Fgfr1 

is primarily needed for the patterning of the pharyngeal ectoderm.   

 

Together with other studies, our results suggest that Fgf signaling is involved in different 

signalling centers that regulate formation of the pharyngeal region. Fgf signalling from the 

isthmic organizer was shown to regulate patterning of the posterior midbrain and anterior 

hindbrain as well as the neural crest cells deriving from this region (Trainor et al., 2002). Our 

studies of Fgf signalling in the mid- and hindbrain region, demonstrate that FGFR1 is the 

primary FGF receptor receiving signals from the isthmic organizer, and that it has direct 

functions on both sides of the organizer (III). Furthermore, we propose existence of FGF 

signalling centre in the ectoderm covering presumptive second branchial arch (II). Based on 

our results Fgfr-1 is required for establishment of this putative signalling centre (II), in 

contrast to the isthmic organizer where Fgfr1 is required for its maintenance (III). Signalling 

from overlying ectoderm appears to be important for development of both the second 

branchial arch and geniculate placode. One possible source of inductive FGF signals is 

rhombomere 4. In zebra fish and mice, rhombomere 4/5 has been shown to be a transient 
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source of FGF signals required for patterning of the hindbrain and induction of the otic 

placode (Alvarez et al., 2003; Leger and Brand, 2002; Maroon et al., 2002; Mahmood et al., 

1996; Maves et al., 2002; Walshe et al., 2002; Wright and Mansour, 2003). Being at the same 

axial level as the second branchial arch, rhombomere 4 is also potential inducer of the 

signalling centre in ectoderm overlying presumptive second branchial arch. Once the 

branchial arches are formed, new transient epithelial signalling centres appear between arches 

and coordinate their outgrowth and differentiation. Our results propose role of Fgfr1 also in 

these signalling centres (I). 

 

This study allows us to present a model of how Fgfr1 contributes to the formation of the 

second branchial arch (II). Fgfr1 is primarily needed for the patterning of the pharyngeal 

ectoderm and formation of a local signalling centre in ectoderm overlying the presumptive 

second branchial arch. Subsequent interactions between pharyngeal ectoderm and endoderm 

ensure proper integration of the second branchial arch cell types and formation of the 

geniculate placode. This will result in complex anatomy of the second branchial arch, 

surrounded by pharyngeal clefts and pouches, and innervated by VIIth cranial nerve.   

 

To further confirm presumptive role of Fgfr1 in regionalization of the pharyngeal ectoderm, 

expression of additional regional markers should be analyzed. One way to test our model 

would be to rescue Fgfr1 hypomorph mutant and/or to inactivate Fgfr1 specifically in the 

ectoderm of the second branchial arch. Alternatively, mutant embryos could be cultured and 

grafted with the wild-type pharyngeal ectoderm or with beads of FGF3 and/or FGF15 close to 

the second branchial arch to see whether they can rescue the phenotype. Co-expression of 

Fgfr1-3 suggests that they may have to some extent redundant roles in the pharyngeal region. 

Therefore, getting the complete picture of the Fgf signalling in the pharyngeal region requires 

generation of transgenic mice with different combinations of mutated Fgfr genes. Newborn 

Wnt1-Cre/+; Fgfr1flox/floxmice have midfacial defects. One posibility is that they are caused by 

defect in the neural crest cell migration and or survival. As neural and head development are 
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interdependent (Schneider et al., 2001), the clefting in the midfacial region may also be linked 

to defect in the brain development.  

 

From the broader perspective, our study supports view that the formation of different 

branchial arches rely on distinct developmental mechanisms and that the patterning of the 

proximal and distal parts of the branchial arches are separately regulated. It also emphasizes 

importance of the pharyngeal ectoderm in formation of the branchial arches and patterning of 

the neural crest cells. This study again demonstrates that the same signalling molecules are 

repeatedly used in tissue interactions at different points during development. 

 

Understanding the genetic programs and tissue interactions that direct branchial arch 

patterning are critical when considering evolution during craniofacial morphogenesis in 

craniates. Due to recent findings on branchial arch development, the evolutionary studies will 

redirect focus of their interest from the neural crest cells toward pharyngeal epithelium as the 

main source of changes in patterning of craniofacial structures. Furthermore, these studies are 

crucial for understanding and curing diseases which are caused by defects during pharyngeal 

development. More emphasis will be put on changes in the patterning of the endoderm and 

ectoderm for an explanation of why these defects occur. 
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