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Abstract

Neuronal plasticity is a well characterized phenomenon in the developing and adult brain. It

refers to capasity of a single neuron to modify morphology, synaptic connections and activity.

Neuronal connections and capacity for plastic events are compromised in several pathological

disorders, such as major depression. In addition, neuronal atrophy has been reported in

depressive patients. Neurotrophins are a group of secretory proteins functionally classified as

neuronal survival factors. Neurotrophins, especially brain derived neurotrophic factor (BDNF),

have also been associated with promoting neuronal plasticity in dysfunctional neuronal

networks. Chronic antidepressant treatment increases plastic events including neurogenesis

and arborization and branching of neurites in distinct brain areas, such as the hippocampus.

One suggested mode of action is where the antidepressants elevate the synaptic levels of

BDNF thus further activating several signaling cascades via trkB-receptor. In our studies we

have tried to clarify the mechanisms of action for antidepressants and to resolve the role of

BDNF in this process. We found that chronic antidepressant treatment increases amount of

markers of neuronal plasticity in both hippocampus and in the medial prefrontal cortex, both of

which are closely linked to the etiology of major depression. Secondary actions of

antidepressants include rapid activation of the trkB receptor followed by a phosphorylation of

transcription factor CREB. In addition, activation of CREB by phosphorylation appears

responsible for the regulation of the expression of the BDNF gene. Using transgenic mice we

found that BDNF-induced trkB-mediated signaling proved crucial for the behavioral effects of

antidepressants in the forced swimming test and for the survival of newly-born neurons in the

adult hippocampus. Antidepressants not only increased neurogenesis in the adult

hippocampus but also elevated the turnover of hippocampal neurons. During these studies we

also discovered that another trkB ligand, NT-4, is involved in morphine-mediated anti-

nociception and tolerance. These results present a novel role for trkB-mediated signaling in

plastic events present in the opioid system. This thesis evaluates neuronal plasticity and trkB

as a target for future antidepressant treatments.
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REVIEW OF THE LITERATURE

1. Introduction

The influence of neurotrophins spans from developmental neurobiology to neurodegenerative

and psychiatric disorders. In addition to their classical effects on neuronal survival (Levi-

Montalcini, 1987), neurotrophins can also regulate axonal and dendritic growth and guidance,

synaptic structure and connections, neurotransmitter release, long-term potentiation and

synaptic plasticity (Thoenen, 1995; McAllister et al., 1999; Poo, 2001; Castrén, 2005).

Emerging evidence is also revealing the underlying importance of neuronal plasticity in

chronic pathological disorders of the nervous system such as depression and persisting-pain

states.

TrkB is one of the three trk tyrosine kinase receptors activated by the neurotrophins and two

of the neurotrophins, BDNF and NT-4 are ligands for the trkB (Soppet et al., 1991; Ip et al.,

1992). A fascinating quality of the neurotrophins is that they are activity dependently

regulated. In addition, neurotrophins can be secreted and regulated in a synapse specific

manner within neuron populations. TrkB-mediated signaling has been closely linked to the

regulation of neuronal plasticity. However, recent findings from pro-neurotrophins show that

many questions are still unanswered (Lu, 2005).

Major depression is a pathological disorder characterized by recurrent episodes of reduced

mood and neuronal atrophy in distinct brain areas. Some genetic and epigenetic factors have

been shown to increase susceptibility to development of depression. However, the effect of

stress and stress hormones are the major contributors for the development of depression

(Manji et al., 2001). One of the main problems of the current drug therapies, targeted at

improving the quality of life of depressive patients, is the delayed onset of the antidepressive

effects. While antidepressive drugs affect monoamine levels within minutes the full clinical

effects take several weeks to develop. The current view is that dysfunctions in neuronal

plasticity are responsible for the development of depression and that antidepressants and

neurotrophins are able to partially correct these dysfunctions.

Morphine is an opiate used to treat severe pain. The major problem of morphine’s clinical use

is putative abuse. When it is used as an analgesic the problem is that chronic use leads to

tolerance and the analgesic effects of morphine fade. With the knowledge that neurotrophins

are known to mediate pain signaling (Pezet and McMahon, 2006) and that morphine tolerance

is a process involving neuronal plasticity (Trujillo, 2002; Mao and Mayer, 2001) it is possible
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that neurotrophins are involved in development of morphine tolerance.
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2. Neurotrophins

Neurotrophins comprise secretory proteins produced by the nervous system and needed in a

variety of essential functions. Neurotrophins are structurally and biologically similar, the most

important factors include nerve growth factor (NGF), brain-derived neurotrophic factor

(BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). In addition, neurotrophin-6 (NT-6)

and neurotrophin-7 (NT-7) have been characterized, but only in fish (Gotz et al., 1994; Nilsson

et al., 1998). Mammalian neurotrophins are initially synthesized as pro-neurotrophins, which

are cleaved to produce the mature active proteins (Seidah et al., 1996a and 1996b; Mowla et

al., 2001). The mature proteins are about 12 kDa in size and normally form stable, non-

covalent dimers. Neurotrophins are actively released by both pre- and postsynaptic nerve

terminals.

The gene expression of neurotrophins is tightly regulated during development in the brain.

The highest levels of NGF are found in the basal forebrain, hippocampus and in the pituitary

gland. Significant quantities have also been reported throughout the CNS including the spinal

cord (Goedert et al., 1986; Hefti et al., 1986; Maisonpierre et al., 1990). BDNF expression

rises dramatically during the first postnatal weeks and it is expressed throughout life in the

adult brain. BDNF is abundantly expressed with especially high levels in the hippocampus and

cortex (Ernfors et al., 1990b; Hofer et al., 1990; Maisonpierre et al., 1990; Ernfors et al.,

1992). NT-3 is the most abundantly expressed in the perinatal brain but levels are significantly

reduced in the adult brain (Maisonpierre et al., 1990; Zhou and Rush, 1994; Ernfors et al.,

1990a). NT-4 is expressed in the postnatal and adult hippocampus, neocortex and thalamic

nuclei (Friedman et al., 1998). In the CNS neurotrophins are generally expressed in neurons.

However NT-3 and NT-4 are also widely expressed in glial cells (Zhou and Rush, 1994;

Friedman et al., 1998).

Different neurotrophins show specific binding specificity to particular receptors (Figure 1A).

The synaptic actions of mature neurotrophins are mediated by a high-affinity trk (tropomyosin

related kinase) family of protein tyrosine kinase receptors (Barbacid, 1994; Lewin and Barde,

1996). NGF preferably binds into trkA, BDNF and NT-4 into trkB, and NT-3 into trkC

(Hempstead et al., 1991; Kaplan et al., 1991; Klein et al., 1991a; Klein et al., 1991b; Lamballe

et al., 1991; Soppet et al., 1991; Ip et al., 1993; Barbacid et al., 1994). All of the mentioned

ligands also bind to low-affinity neurotrophin receptor, p75NTR (Lewin and Barde; 1996;

Hempstead, 2002). Pro-forms of neurotrophins also bind, with a high affinity, to p75NTR.

p75NTR is a member of the tumor necrosis factor (TNF) receptor super family (Chao and

Hempstead, 1995). TrkA is expressed mainly by the cholinergic neurons of the basal forebrain
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(reviewed Huang and Reichardt, 2001). TrkB and TrkC are more widely expressed throughout

the brain (McAllister et al., 1999; Merlio et al., 1992; Ringstedt et al., 1993). All of these

receptors are encoded by a single gene that produces a number of functionally variable splice

isoforms (Barbacid, 1994; Lewin and Barde, 1996). All of the trk receptors are expressed

during development and also at the adulthood.

Figure 1: Schematic presentation of binding of neurotrophins into neurotrophic receptors (A) and

signaling pathways activated by the phosphorylation of trkB (B). Mature forms of NTs primarily bind to

trk receptors while pro-forms of NTs bind to p75NTR. Thick and thin arrows are presenting binding

with high or low affinity to receptors, respectively. Signal pathways following the activation of full length

trkB receptor (TrkB.TK+) are also presented. No signal cascades are activated when full length

receptor makes a dimer with truncated isoform (TrkB.T1). IC=intracellular, EC=extracellular,

ec=entzymatic cleavage, for other abbreviations see page 8.
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2.1. BDNF

Brain-derived neurotrophic factor (BDNF) was the second member of the neurotrophin growth

factor family identified (Barde et al., 1982; Leibrock et al., 1989). The genomic structure and

gene regulation of rat and human bdnf gene is quite complex (Aid et al., 2006; Metsis et al.,

1993; Liu et al., 2005, 2006; West et al., 2001). There are four 5’ exons, each with its own

promoter that are combined onto one common 3’ exon with one alternative splice site

consequently producing eight different transcripts in total (Aid et al., 2006). Individual

promoters direct the expression of rat BDNF tissue-specificity; transcripts containing exons I,

II and III are preferably expressed in brain whereas exon IV transcripts are present in heart

and lung (Metsis et al., 1993; Liu et al., 2005, 2006). The transcript from exon III responds

strongly to neuronal stimulation and so far two different transcription factors, cAMP response

element binding (CREB) protein and calcium response factor (CaRF), have been identified to

bind to BDNF promoter III for transcription regulation (Lu, 2003a; West et al., 2001). The

presence of multiple promoters highlights the fact that the bdnf gene is under tight regulation.

BDNF expression levels are low during fetal development, increase after birth and then

reduce to adult levels (Maisonpierre et al., 1990). In the adult brain, highest expression levels

are observed in hippocampus, cortex, cerebellum, amygdala, and in various hypothalamic

nuclei (Castren et al., 1995; Dugich-Djordjevic et al., 1995; Ernfors et al., 1990b; Hofer et al.,

1990). Within hippocampus, pronounced expression is located in dentate granule cells and

pyramidal neurons of the CA1-CA3 regions. Only a few brains areas, such as the striatum,

completely lack BDNF mRNA (Castren et al., 1995). Several studies have demonstrated

BDNF mRNA expression in rodent cultured glial cells (Murer et al., 2001). BDNF expression

has been reported in cultured Schwann cells (Acheson et al., 1991), astroglia (Rudge et al.,

1992; Condorelli et al, 1994; Rubio, 1997), and microglia (Elkabes et al., 1996).

The mature BDNF protein is a 13.5-kDa protein that is secreted as a dimer into the

extracellular space (Kolbeck et al., 1994). BDNF is first generated as a precursor, pre-pro-

BDNF protein. The pre-sequence is cleaved after sequestration to the endoplasmic reticulum.

The remaining pro-BDNF is further processed via the Golgi apparatus into the trans-Golgi

network and is packed into secretory vesicles. The pro-BDNF is cleaved intracellularly by furin

or pro-convertase enzymes and is secreted as a mature peptide. Alternatively, protein is

secreted as a pro-BDNF and cleaved by extracellular proteases such as matrix

metalloproteinases (MMPs) and plasmin (Lee et al., 2001; Lessmann et al., 2003; Pang et al.,

2004). Further, immunohistochemical and overexpression studies have revealed that the

BDNF protein is mainly somatodendritically localized (Fawcett et al., 1997; Goodman et al.,
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1996; Hartmann et al., 2001; Kojima et al., 2001; Tongiorgi et al., 1997; Wetmore et al., 1991)

but axonal BDNF is also present (Kohara et al., 2001). The BDNF protein has been co-

localized with synaptic markers therefore suggesting it’s presence within the synapse (Fawcett

et al., 1997; Goodman et al., 1996).

The first identified function for BDNF was its ability to promote survival of peripheral sensory

neurons during apoptosis and these observations have been confirmed at the system level in

transgenic mice (Conover et al., 1995; Ernfors et al., 1994a; Huang and Reichardt, 2001;

Jones et al., 1994; Sendtner et al., 1992). In the central neurons, BDNF and NT-4 responsive

neurons include cerebellar granule cells, mesensephalic dopaminergic neurons, hippocampal

neurons, cortical neurons and retinal ganglion cells (Lindholm et al., 1993; Okoye et al., 2003;

Segal et al., 1992; Tong and Perez-Polo, 1998). In the CNS, BDNF is primarily transported

anterogradially by several neuron populations and is widely distributed in the nerve terminals,

even in some areas lacking the BDNF mRNA (Fawcett et al., 1998; von Bartheld et al., 1996;

Altar et al., 1997; Conner et al., 1997). In hippocampal neurons BDNF is packed in dense-

core vesicles (Fawcett et al., 1997). BDNF, like classical neurotransmitters, is capable of

rapidly depolarizing neurons through activation of trkB receptors (Kafitz et al., 1999). One of

the rapid effects of BDNF includes a reduction in inhibitory transmission in the hippocampal

CA1 field (Frerking et al., 1998).

2.1.1. Activity-dependent regulation of BDNF

Neuronal activity regulates the expression levels and release of BDNF. There are several

observations of an upregulation of the BDNF mRNA in response to epileptiform activity

induced by lesions, kindling or pharmacological agents such as kainate (Ballarin et al., 1991;

Dugich-Djordjevic et al., 1992; Ernfors et al., 1991; Isackson et al., 1991; Zafra et al., 1990).

The response to these seizures is specifically pronounced in the hippocampus and occurs

rapidly. Interestingly, if BDNF signalling is repressed as in mice overexpressing a truncated

form of trkB (trkB.T1), the kainate induced increase in BDNF transcript is less pronounced

(Saarelainen et al., 2001). Furthermore, neuronal depolarization by either glutamate receptor

agonist MK-801 or high potassium levels (Zafra et al., 1991; Zafra et al., 1990), osmotic

stimulus (Castren et al., 1995), or brain insults such as ischemia (Kokaia et al., 1996; Lindvall

et al., 1992), all strongly elevate BDNF mRNA expression in brain. The neurotransmitter

GABA ( -aminobutyric acid) also regulates expression of BDNF. Stimulation of the GABAergic

system by GABA agonists reduces hippocampal BDNF mRNA whereas inhibiting the

GABAergic system has the opposite effect (Lindholm et al., 1994; Zafra et al., 1991; Zafra et

al., 1990). In addition to these rather dramatic stimulations, physiological stimuli also evoke

BDNF transcription. Light or visual deprivation rapidly regulates levels of BDNF mRNA and
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protein (Capsoni et al., 1999; Castren et al., 1992). Even such delicate stimuli as whisker

stimulation can induce BDNF mRNA expression in rodents (Rocamora et al., 1996).

Furthermore, voluntary exercise increases hippocampal BDNF mRNA (Gomez-Pinilla et al.,

2001; Neeper et al., 1996; Russo-Neustadt et al., 1999; Vaynman et al., 2003), whereas a diet

rich in fat and sugar has the opposite effect (Molteni et al., 2002; Molteni et al., 2004).

Induction of hippocampal long-term potentiation (LTP) has been reported to upregulate BDNF

mRNA both in vivo and in vitro conditions (Bramham et al., 1996; Castren et al., 1993;

Patterson et al., 1992). Equally, induction of the hippocampal BDNF expression is observed

after hippocampus-dependent forms of learning (Gomez-Pinilla et al., 2001; Hall et al., 2000;

Kesslak et al., 1998) whereas amygdala-dependent fear conditioning increases amygdaloid

BDNF mRNA (Rattiner et al., 2004). Conversely, stress that is induced by repeated footshock

delivery downregulates the levels of the BDNF transcripts (Rasmusson et al., 2002). Finally,

the neurotrophin levels are regulated by NTs themselves (Lindholm et al., 1994; Patz and

Wahle, 2004). Subcellularly, the nuclear transcript may be selectively transported to active

dendrites and translated locally. Depolarization of hippocampal neurons leads to more

dendritic distribution of BDNF and trkB transcripts and is suggested to induce local protein

synthesis in dendrites (Righi et al., 2000; Tongiorgi et al., 1997).

Both mature and pro-NTs can be secreted and they have distinct biological actions upon

release (Lee et al., 2001; Lu, 2003b). The secretion from the cell can be either constitutive or

regulated dependent on the cellular context and the efficiency of furin cleavage (Lu, 2003a;

Farhadi et al., 2000; Mowla et al., 1999). Genetic mutations that alter the balance between

secretory pathways can cause physiological consequences. For example, the amino acid

substitution of Val66 to Met in the human pro- BDNF reduces the regulated secretion and

results in deficits in episodic memory (Egan et al., 2003).

One activity-dependent feature of BDNF is its spatially and temporally controlled release. The

regulated BDNF secretion from hippocampal neurons is induced by a variety of stimuli such

as high levels of potassium, glutamate or neurotrophins themselves (Blochl and Thoenen,

1995; Canossa et al., 1997). Both depolarization and neurotrophin-induced BDNF release

depend on increase in the intracellular Ca2+ concentration (Canossa et al., 1997; Goodman et

al., 1996). Moreover, electrical stimulation robustly induces BDNF secretion (reviewed by Poo,

2001). The pattern of electrical stimulation is regulates the BDNF release response in the

central neurons (Gartner and Staiger, 2002; Goodman et al., 1996). These studies have

additionally demonstrated that BDNF can be released from both postsynaptic and presynaptic

compartments (Balkowiec and Katz, 2002; Hartmann et al., 2001; Kohara et al., 2001). BDNF

is more potent in modulating active synapses (Boulanger and Poo, 1999) and as expected,
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secretion occurs in active synapses (Hartmann et al., 2001; Kojima et al., 2001). As the

effects of BDNF are restricted within a 60 m distance from the release site (Zhang and Poo,

2002), the local synaptic release provides an additional way to enhance BDNF signalling

specificity. Altogether, these results indicate that BDNF expression and release are highly

regulated by neuronal activity.

2.2. NT-4

Neurotrophin-4 was first isolated from Xenopus and viper (Hallbook et al., 1991), and shortly

after the mammalian form was presented in two separate reports (NT-4, Ip et al., 1992; NT-5,

Berkemeier et al., 1991). The abbreviation NT-4/5 is therefore also used in the literary. These

first reports also identified trkB as the main signaling receptor. NT-4 promotes the survival of

several types of neurons (Schober et al., 1998; Hynes et al., 1994; Meyer et al., 2001; Alexi

and Hefti, 1996; Lingor et al., 2000; Spalding et al., 2002). NT-4 is required for the survival of

adult sensory neurons (Stucky et al., 2002). NT-4 application in hippocampal slice culture

induces an up-regulation of the GAP-43 and alterations in dentritic branching (Schwyzer et al.,

2002).

Although NT-4 and BDNF mediate their signals using the same trkB receptor and share many

similarities in their actions, differences have been reported. Both factors protect cerebellar

granule cells against apoptosis (Kubo et al., 1995) and support the survival of hippocampal

neurons (Lindholm et al., 1996). However NT-4 knockout (KO) mice appear normal and fertile

without neurological defects unlike mice lacking BDNF (Conover et al., 1995; Ernfors et al.,

1994a; Jones et al., 1994). When compared to trkB KOs, the NT-4 KO mice have normal

motoneuron populations and mainly unaltered sensory neurons (Conover et al., 1995; Klein et

al., 1993). As BDNF heterozygotes, the NT-4 KO mice show deficits in both long-term memory

and late-phase LTP (Xie et al., 2000). Targeted mutation of the Shc-binding site of trkB-

receptor revealed the vital importance of this pathway for neurons depending on NT-4

mediated survival, whereas BDNF dependent neurons are unaffected by this mutation

(Minichiello et al.,1998). Both NT-4 and BDNF signal via the same trkB receptor, however the

two ligands are able to elicit distinct downstream responses.
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2.3. TrkB

Reports by Squinto and Soppett characterising a novel receptor (trkB) for BDNF and NT3

were published at the same time (Squinto et al., 1991; Soppet et al., 1991). The gene

coding the trkB receptor produces several transcripts ranging in size from 0.7 to 9.0 kb.

These transcripts produce at least two types of receptors: the full-length and truncated trkB

(Middlemas et al., 1991; Barbacid, 1994). The extracellular parts of these receptors are

identical but truncated receptors lack the entire intracellular tyrosine kinase region. There

are two such truncated receptors identified, TrkB.T1 and TrkB.T2. The full-length TrkB

receptor is predominantly of neuronal origin, whereas truncated forms are often expressed

by non-neuronal cells such as glia. However, trkB.T1 is widely expressed in the rodent

brain. While T1 is coded by the human trkB gene, T2 form apparently is not (Stoilov et al.,

2002). Instead, the human gene produces another truncated isoform, trkB.shc, with a longer

intracellular tail when compared to T1 (Stoilov et al., 2002).

The trkB mRNA encodes a 145-kDa glycoprotein forming a 821 amino acids long plasma

membrane receptor (Figure 2) (Klein et al., 1989). At the N-terminus, three leucine-rich

repeats are flanked by two cysteine clusters. A recent data obtained from the crystallized

extracellular domain of trkA receptor indicates that these five domains, that are present in all

trk receptors, are essentially integrated as one structural domain (Wehrman et al., 2007).

Adjacent to these, there are two C2-type immunoglobulin-like domains that are followed by a

single transmembrane domain and the cytoplasmic tyrosine kinase region (Schneider and

Schweiger, 1991). The major ligand-binding structure has been localized to the second IgG

domain (O'Connell et al., 2000; Urfer et al., 1998; Urfer et al., 1995), other extracellular

structures contribute to ligand binding as well (Ninkina et al., 1997; Windisch et al., 1995). In

the absence of available ligands the IgG domains regulate the spontaneous dimerization

(Arevalo et al., 2001).

The intracellular domain is the most conserved region between trk family members (Klein et

al., 1989; Middlemas et al., 1991). The intracellular region of the trkB contains ten conserved

tyrosine residues that phosphorylates in response to ligand binding and serve as docking sites

for downstream adaptor molecules. Tyrosines 670, 674 and 675 (according to human trkA

nomenclature) and (in trkB) form the autophosphorylation loop that upon activation potentiates

the phosphorylation of other tyrosines. The activity of Y670/674/675 loop is necessary for

BDNF inducible phosphorylation as well as for mediation of cell proliferation (McCarty and

Feinstein, 1998). Additionally, these tyrosines may also directly bind downstream adaptor

molecules (Huang and Reichardt, 2003). Tyrosine 490 in trkA (Y515 in human trkB) provides
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a docking site for Shc and Frs-2, and tyrosine 785 (Y816 in human trkB) binds phospholipase

 (Huang and Reichardt, 2003; Patapoutian and Reichardt, 2001).

Figure 2: Structure of trkB protein.

2.3.1. TrkB-activation

Two of the neurotrophic factors, BDNF and NT-4, selectively bind to the trkB receptor. They

both have distinct binding domains but BDNF demonstrates a higher affinity to trkB than NT-4

(Klein et al., 1992). NT-3 can also bind to trkB and activate the receptor, albeit with a lower

affinity than with the primary ligands (Ip et al., 1993). However, NT-3 induced

autophosphorylation of trkB produces a different temporal pattern in vitro from BDNF (Soppet

et al., 1991) suggesting different allosteric modulation of trkB by the two factors. In some

neuronal polulations BDNF co-localizes with the full-length trkB indicating that BDNF exerts

autocrine trophic support for these neurons (Kokaia et al., 1993).

The primary activating step for the full-length trkB receptor is the ligand binding to the

extracellular domain. This results in homodimerization and phosphorylation of tyrosines in the

kinase activation loop (Ibanez et al., 1993; Jing et al., 1992). The subsequently activated

tyrosine residues provide the docking sites for cytoplasmic downstream effectors. The adaptor

proteins Shc and phospholipaseC-  were the first recognized trkB substrates that bind to trkB

tyrosine residues at positions 515 and 816, respectively (Figure 1B) (Middlemas et al., 1991;

Stephens et al., 1994; Vetter et al., 1991). However, the formation of heterodimers with .T1 or

homodimers of .T1 abolish this ligand-induced signalling (Figure 1B) (Haapasalo et al., 2001).

NT signaling via trkB generally mediates actions such as survival and plasticity whereas the

p75NTR-mediated actions often stimulate pro-apoptotic pathways (Huang and Reichardt,

2003; Kaplan and Miller, 2000; Patapoutian and Reichardt, 2001). Finally, p75NTR can modify

ligand specificity to trk receptors (Benedetti et al., 1993; Bibel et al., 1999; Hempstead et al.,

1991), binding kinetics (Mahadeo et al., 1994), and receptor activation (Vesa et al., 2000) by

forming heterodimer receptors with trk-receptors. Pro-BDNF can bind with high affinity to

p75NTR and can activate pro-apoptotic actions (Lee et al., 2001; Teng et al., 2005).
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In the absence of ligands, trk receptors can also be activated in response to G-protein coupled

receptor (GPCR) activation. This transactivation of trk receptors has been reported to occur

via the GPCR-ligands adenosine, neuropeptide PACAP and endocannabinoids (Chao, 2003;

Lee and Chao, 2001; Lee FS et al., 2002a; Lee FS et al., 2002b; Berghuis et al., 2005). Two

main differences separate NT-induced trk activation from GPCR transactivation. Firstly, trk

phosphorylation via transactivation occurs at a much slower rate than NT-induced activation

(Lee and Chao, 2001). Secondly, GPCR-mediated trk activation selectively promotes

signaling via the PI3K/AKT pathway, thus promoting survival (Lee and Chao, 2001; Lee et al.,

2002b). Recently, the trk transactivation was reported to take place at the intracellular

membranes instead of the cell surface (Rajagopal et al., 2004). Altogether, transactivation

through GPCRs provides an alternative route for trk signaling in the absence of a neurotrophin

ligand.

2.3.2. Shc-signaling pathway

After the initial trkB phosphorylation at residue Y515, at least two possible adaptor molecules

compete for direct binding to this phosphorylated tyrosine residue, adaptor protein with SH2

domain (Shc) and fibroblast receptor substrate-2 (Frs-2) (Huang and Reichardt, 2001; Huang

and Reichardt, 2003; Meakin et al., 1999; Stephens et al., 1994).

Signaling through the Shc pathway mediates a transient activation of the ERK pathway

(Grewal et al., 1999). In mature neurons binding of the ShcC isoform is preferred over the two

other isoforms (Conti et al., 2001). Upon ligand binding, the Y515-site provides a recruitment

site for the Shc PTB (phosphotyrosine binding) domain. Binding of Shc is followed by the

phosphorylation and recruitment of a protein complex containing the adaptor Grb2 and the

Ras exchange factor SOS. In the following step, SOS activates Ras and the activated Ras

stimulates several downstream pathways including PI3K, c-Raf/ERK and p38MAPK/MAPK-

activating protein kinase 2 (Segal, 2003). The Ras activation has proven to be a critical event

for NT-induced differentiation in neuronal PC12 cells (Segal et al., 1996).

Prolonged extracellular signal regulated kinase (ERK) activation is dependent on a separate

signaling pathway initiated with the recruitment of Frs-2. Activated Frs-2 provides several

binding sites to downstream elements including adaptors Grb-2 and Crk, the protein

phosphatase Shp2, and Src-kinase (Huang and Reichardt, 2001; Huang and Reichardt, 2003;

Meakin et al., 1999). Crk binds and activates the exchange factor C3G that in turn activates a

small G protein Rap-1 that stimulates B-raf, which initiates the ERK cascade (Meakin et al.,

1999; Segal, 2003). Therefore, the Frs-2 provides an alternative, Shc-independent
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mechanism to activate the Grb2/SOS/Ras pathway. Overexpression of the members of the

Frs-2 pathway in PC12 cells promotes differentiation (Hempstead et al., 1994; Meakin et al.,

1999). The standard Ras/MAPK-pathway model consists of a G-protein (such as Ras) initiated

cascade where the three kinases activate one another in a cascade-like manner eventually

leading to activation of a MAP (mitogen activated protein) kinase such as ERK1/2 (Segal and

Greenberg, 1996). Of the various MAP kinases activated through Ras/Raf/MEK pathways,

four are known to respond to NT/trk signaling: ERK 1, 2, 4 and 5 (Segal, 2003). The major role

for neuronal ERKs is the regulation of gene expression. ERK 1, 2 and 5 can for example

activate the members of the RSK protein kinases that further activate transcription factor

CREB.

ERKs may also act directly on the CREB-binding protein (CBP), however for this to hapen;

ERKs have to be translocated to the nucleus. In the nucleus, ERKs regulate transcription

factors such as Elk-1 or Egr-1 (Grewal et al., 1999). In addition to the nuclear actions, MAP

kinase activity can also regulate axonal elongation (Atwal et al., 2000). Together, the multiple

Ras- MAPK signaling pathways of trkB provide a wide variability of signals, both divergent and

convergent, in response to ligand stimulation.

2.3.3. PLC -signaling pathway

Activation of the trkB residue Y816 through ligand engagement, recruits the cytoplasmic

enzyme protein phospholipaseC (PLC) that is directly bound to trkB through its internal SH2-

domain and is in turn itself activated by phosphorylation by the trk kinase (Figure 1)

(Patapoutian and Reichardt, 2001; Segal and Greenberg, 1996). Only the PLC -1 isoform has

been shown to be bound and activated downstream of trkB (Middlemas et al., 1994;

Obermeier et al., 1994; Obermeier et al., 1993; Vetter et al., 1991). Activated PLC -1 then

binds to phosphatidylinositides (PIP2) and enzymatic activity hydrolyzes it to diacylglycerol

(DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 induces an increase in the intracellular Ca2+

levels by releasing Ca2+ from intracellular stores. As a consequence, enzymatic pathways

controlled by intracellular Ca2+ concentrations, such as synaptic Ca2+-calmodulin (CaM)

kinases, are activated (Ouyang et al., 1997). On the other hand, DAG stimulates protein

kinase C isoforms, such as PKC  (Bibel and Barde, 2000; Huang and Reichardt, 2003).

Finally, an increase in the intracellular Ca2+ level enhances neurotransmitter release

(Lessmann, 1998). Targeted mutant mice where the PLC  binding site has been disrupted by

changing the tyrosine residue to phenylalanine (Y816F), demonstrate the importance of

proper PLC  signaling in hippocampal plasticity (Minichiello et al., 2002). Similar to trkB and

BDNF null mice, the PLC  targeted mutants show impaired hippocampal LTP. In agreement,
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in vitro studies have shown that PLC inhibitors block BDNF dependent synaptic potentiation

(Kleiman et al., 2000; Yang et al., 2001). The PLC  pathway is thus critical for the

neurotrophin-mediated effects on synaptic plasticity.

2.3.4. PI3 kinase signaling-pathway

Phosphatidylinositol-3-kinases (PI3Ks) are critical in mediating NT-induced survival and in

regulating vesicular trafficking (Brunet et al., 2001; Datta et al., 1999). The heterodimeric PI3

kinase enzyme that is activated by neurotrophins consists of regulatory (p85) and catalytic

(p110) subunits of which both have several splicing variants (Bartlett et al., 1999; Bartlett et

al., 1997; Fruman et al., 1998). The catalytic and regulatory subunits are constitutively

associated. Activated trks can stimulate PI3 kinase through at least two distinct pathways and

the choice between pathways depends on the cell type (Vaillant et al., 1999). Firstly, PI3

kinase is stimulated when catalytic subunit p110 directly binds to active Ras (Kaplan and

Miller, 2000; Rodriguez- Viciana et al., 1994). This Ras-dependent pathway is utilized by

many survival-promoting signals in neurons (Huang and Reichardt, 2001; Vaillant et al.,

1999). Alternatively, PI3K may be activated through a Shc/Grb-2/Gab-1 pathway in a Ras-

independent manner (Holgado-Madruga et al., 1997; Kaplan and Miller, 2000). Lipid products

generated by the activated PI3K, the phosphatidylinositides, bind and directly activate their

target proteins that include serine/threonine protein kinase (Akt, also known as protein kinase

B, PKB) (Huang and Reichardt, 2001; Kaplan and Miller, 2000; Segal, 2003).

Again, an alternative pathway to Akt activation exists. Phosphatidylinositides can also activate

PDK-1 kinase, which in turn activates Akt (Alessi et al., 1997). Akt substrates include several

important survival regulating proteins: BAD, Forkhead family (FKH) transcription factors, I B

and glycogen synthase kinase 3  (GSK-3 ). The Bcl-2 family member BAD, promotes

apoptosis via Bcl-XL/Baxdependent mechanisms when dephosphorylated. However, Akt-

dependent phosphorylation inactivates BAD and subsequently suppresses BAD-induced cell

death (Bonni et al., 1999; Datta et al., 1999). Neurons from the BAD knockout mice show no

alterations in apoptosis therefore suggesting a non-essential role for BAD in cell survival

(Shindler et al., 1998). Another target, cytoplasmic I B functions as a trapper for the

transcription factor NF- B (Datta et al., 1999). Upon Akt-induced phosphorylation, I B is

degraded and the NF- B is translocated to nucleus where it promotes survival. Furthermore,

Akt kinase phosphorylates members of the Forkhead family of transcription factors (FKHR;

(Biggs et al., 1999; Brunet et al., 1999) and promotes cell survival through regulation of cell

death genes. In the presence of Akt, the phosphorylated Forkhead remains in the cytoplasm

whereas in the absence of Akt activation Forkhead is translocated to the nucleus where it
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promotes the transcription of cell death genes including the Fas ligand (Biggs et al., 1999;

Brunet et al., 1999). Finally, Akt kinase phosphorylates and inactivates the proapoptotic GSK-

 thus enhancing cell survival (Pap and Cooper, 1998). In summary, the PI3K/Akt pathway is

the major regulator of cell survival in neurons (Aloyz et al., 1998; Datta et al., 1999; Mazzoni

et al., 1999). The Akt protein is at the center of several distinct regulatory pathways, probably

mediating survival at a number of levels depending on the cellular surroundings. In addition to

survival, the PI3K-Akt pathway may also regulate vesicular transport and mRNA translation

(see references in reviews by Huang and Reichardt, 2001; Segal, 2003).

2.3.5. Regulation of trkB signalling

The expression of trkB is regulated by diverse neuronal activation. Fiber transections (Beck et

al., 1993), forebrain ischemia (Arai et al., 1996), and seizure inducing activity (Aloyz et al.,

1999; Binder et al., 1999; Dugich-Djordjevic et al., 1995; Merlio et al., 1993) all increase trkB

transcription and receptor activation. Potassium-induced neuronal depolarization increases

the transcription (Kingsbury et al., 2003) and dendritic localization (Tongiorgi et al., 1997) of

the full-length trkB. Long-term locomotor activity (Gomez-Pinilla et al., 2002; Skup et al., 2002)

and circadian rhythm (Dolci et al., 2003) are also shown to modulate trkB in brain. Processes

activated in learning and memory formation also induce trkB transcription and receptor

activation (Broad et al., 2002; Gomez-Pinilla et al., 2001; Mizuno et al., 2003).

Control of the number of trkB receptors present on the cell surface can modulate the

responsiveness to BDNF. Neuronal activity, induced by either depolarization or tetanic

stimulation, and elevation in the second messengers such as cAMP, both increase the

number of trkB receptors on the cell surface (Du et al., 2000; Meyer-Franke et al., 1998). The

increase in the surface trkB presence is observed along dendrites, axons and cell soma.

BDNF rapidly increases the number of trkB receptors on cell surface (Ji et al., 2005;

Haapasalo et al., 2003) Prolonged BDNF treatment has been shown to result in receptor

desensitization (Carter et al., 1995; Frank et al., 1996; Haapasalo et al., 2002). Further,

electrical stimulation, such as LTP-inducing theta burst stimulation, enhances the trkB

internalization in a Ca2+ dependent manner, therefore depleting trkB from the cell surface (Du

et al., 2003). Accordingly, tyrosine kinase activation was suggested to directly regulate

receptor internalization (Du et al., 2003). The activity-dependent regulation of trkB receptors

on the cell surface provides one mechanism as to how BDNF signalling could be restricted to

active neurons.
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The regulation of trk signaling is carefully controlled on several levels. Firstly, the bound ligand

specifies the elicited downstream responses. Site-directed mutagenesis in trkB mice

demonstrated the importance of the stimulating ligand (Minichiello et al., 1998). In mice in

which the Shc docking site was disabled the (Y490F mutation) the NT-4 dependent survival

was dramatically reduced, whereas the BDNF dependent cell populations were only modestly

affected (Minichiello et al., 1998). These results suggest that trkB ligands use separate

downstream pathways when mediating survival. The distinct activities of trkB ligands were

further confirmed by another mouse model where the NT-4 gene was inserted at the BDNF

gene locus (Fan et al., 2000). This study showed differences in the survival promoting

potential of trkB ligands and further corroborated that the trkB-Shc signaling pathway is more

crucial for NT-4 actions (Fan et al., 2000).

Secondly, the timing of the ligand binding regulates downstream responses. A rapid 2-minute

pulse of NGF activates efficiently the PLC-  signaling (Choi et al., 2001). Additionally, a brief

pulse of BDNF triggers a postsynaptic action potential (Kafitz et al., 1999) and exerts the

BDNF-derived effects on LTP in slices (Schuman, 1999).

Finally, the location of the ligand-receptor interaction determines the activated downstream

pathways. Local signaling at the axon terminals regulates the axonal outgrowth. Axonal

neurotrophin stimulation leads to phosphorylation of axonal trks and activation of the

Ras/MAPK pathway (Atwal et al., 2000; Riccio et al., 1997; Senger and Campenot, 1997;

Watson et al., 2001). Conflicting evidence has suggested that the trk signaling pathways via

Shc or PLC  is responsible for the growth cone guidance (Atwal et al., 2000 vs. Ming et al.,

1999). Additionally, local neurotrophin signaling within axons contributes to axonal elongation

and promotes endocytosis (Beattie et al., 2000; Kuruvilla et al., 2000). In contrast, the long-

term trk signaling in the cell body is essential for the survival and differentiation effects. If

neurotrophins are applied to distal axons, trk activation rapidly occurs along the axons and

within the cell body in complex with the stimulating neurotrophin (Bhattacharyya et al., 1997;

Riccio et al., 1997; Tsui-Pierchala and Ginty, 1999; Watson et al., 1999). These complexes

are found within vesicles designated as signaling endosomes together with the downstream

signaling factors PI3 kinase, PLC  and Shc (Beattie et al., 1996; Grimes et al., 1997; Grimes

et al., 1996; Howe et al., 2001). The signaling endosome is formed when the ligand induced

receptor activation leads to the internalization of the ligand –receptor complex through

clathrin-mediated endocytosis. The transport of the signaling endosome is most probably

carried out by the motor protein dynein along the microtubules (Heerssen and Segal, 2002).

The receptors within the endosome remain catalytically active and continue signaling as they

travel towards the cell body however it is unclear how trk activity is maintained in the vesicles.
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Presumably, the basal trk activity is enough to maintain the active state and the vesicular

localization of the complex would protect the phosphorylated trk against the actions of

phosphatases (Miller and Kaplan, 2001).

In the dorsal root ganglion cell cultures, a neurotrophin stimulus applied to the cell body,

activates two separate MAP kinase pathways within the cell body: Erk1/2 and Erk5 (Watson et

al., 2001). However, if the stimulation is applied on distal axons, only the Erk5 activation

occurs in the cell body. Similarly, within the retinal system BDNF has opposing effects on the

dendritic growth depending on the location of stimulation (Lom et al., 2002). These results

suggest that the location of the neurotrophin stimulus is an important regulatory step for the

responses elicited.
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3. Neurotrophins and neuronal plasticity

Neuronal plasticity refers to the capability of neurons to respond to signals from their

surrounding and elicit activity-dependent changes in their morphology, connections and

function. Neuronal plasticity occurs in different levels, from minor changes in activity to a

generation of totally new neuronal cells. Neurogenesis refers to a proliferation of totally new

cells that later differentiate into neurons. Sprouting includes elongation, migration and

branching of neurites towards the target area of each neuron. Formation of new synaptic

connections between neurons is designated as synaptogenesis.  Finally the subtlest form of

neuronal plasticity is strengthening or fading of existing synaptic connections. Even though

primary actions of NTs are related to neuronal survival emerging evidence indicate the key

roles of NTs in mediating the plasticity of neuronal networks in the adult CNS (Thoenen, 1995;

McAllister et al., 1999; Poo, 2001; Castrén, 2005).

3.1. BDNF in LTP and synaptogenesis

Synaptic plasticity refers to an experiment-dependent change in synaptic strength, a

fundamental property of the CNS. Application of a high-frequency stimulation (HFS) of the

presynaptic excitatory pathway rapidly induces a long-lasting enhancement of synaptic

strength that is measured as increased amplitude of excitatory postsynaptic potentials

(EPSPs). In the postsynaptic neuron; this phenomenon is referred as long-term potentiation

(LTP) (Malenka and Bear, 2004). LTP is restricted to the activated synapse and can be

sustained for weeks or even up to several months. LTP occurs in many brain regions,

however the classic experimental design in hippocampal slices monitors the Schaffer

collateral  CA1 (CA3-CA1) synapse responses to stimulation. During measurement, test

stimuli are first delivered repeatedly at a low frequency to induce stable EPSPs for baseline

determination, and eventually LTP is induced by high-frequency stimulation. If LTP is evoked,

the subsequent test stimuli will produce enhanced EPSPs. LTP is divided into two different

modes; early-phase-LTP (E-LTP) requires covalent modification of existing proteins, whereas

formation of late-phase-LTP (L-LTP) requires new gene transcription and protein synthesis

(Voronin et al., 1995). Stress and depression are known to affect synaptic plasticity in several

ways (Popoli et al., 2002) identifying LTP as a putative target for antidepressant drugs.

LTP and long-term depression (LTD) are typically presented as cellular mechanisms for

memory storage. Recently this view has been expanded to cover other long-term adaptive

responses, such as mood, addiction and pain control (Malenka and Bear, 2004). The
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mechanisms behind the maintenance of LTP are complex and partly unknown. The entry of

calcium through glutamate NMDA receptors is considered a key event for the triggering of

LTP. However, not all forms of LTP are NMDA-dependent, even within the hippocampus. LTP

present in the hippocampal mossy fibers is the most marked form of NMDA-independent LTP

(Zalutsky and Nicoll, 1990; Bortolotto et la., 1999). It has been shown that application of a

permeable analog of cAMP, which mimics the late phase of LTP at CA3-CA1 hippocampal

synapses, induces the recruitment of pre-existing presynaptically silent synapses (Ma et al.,

1999). LTP is also associated with the induction of several immediate early genes (eg, arc,

tPA, zif268) (Link et al., 1995).

The contribution of the BDNF-trkB signalling system to LTP is crucial (Ernfors and Bramham,

2003). Induction of hippocampal LTP rapidly increases BDNF mRNA expression (Castrén et

al., 1993; Dragunow et al., 1993; Patterson et al., 1992). Furthermore, induction of LTP at the

CA3-CA1 synapse has been impaired in independent lines of transgenic mice with BDNF

defiency (Korte et al., 1995; Patterson et al., 1996; Pozzo- Miller et al., 1999) of which only

one line, of which, shows defects in the basal synaptic transmission (Patterson et al., 1996;

Pozzo-Miller et al., 1999). LTP can be rescued by re-expression of BDNF through by virus-

mediated gene transfer or exogenous application (Korte et al., 1996; Patterson et al., 1996)

thus suggesting that this impairment is not due to developmental deficits. Likewise, cortical

LTP impairment is observed in heterozygous BDNF null mice in a third independently

generated mutant (Bartoletti et al., 2002). Additional evidence to support the role of BDNF was

provided by studies where LTP was attenuated by the application of function-blocking BDNF

antibodies or BDNF scavenging trkB-IgG proteins to in vitro slices (Chen G et al., 1999;

Figurov et al., 1996; Kang et al., 1997).

Besides the immediate actions in hippocampal potentiation, BDNF is essential during the

long-term LTP (L-LTP) that requires de novo protein synthesis (Bradshaw et al., 2003; Kang

et al., 1997; Korte et al., 1998). Interestingly, microinfusion of BDNF directly into dentate gyrus

induces a long-lasting enhancement of transmission at the perforant path  granule cell (PP-

GR) synapse (Messaoudi et al., 1998; Messaoudi et al., 2002; Ying et al., 2002). LTP-inducing

tetanic stimulation enhances regulated BDNF release and leads to increased CREB activation

through a trkB-ERK pathway (Gooney and Lynch, 2001; Patterson et al., 2001). Interestingly,

during L-LTP, trkB signalling seems to regulate the redistribution of activated MAPK towards

the nuclear compartment (Patterson et al., 2001). Genetically modified mice have also

clarified the role of trkB signalling in synaptic potentiation. Conditional trkB mutant mice, in

which the full-length receptor is eliminated specifically from the forebrain (trkB-CRE), exhibit

markedly reduced CA3-CA1 potentiation in response to stimulation (Minichiello et al., 1999).
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This deficit is comparable to that observed in BDNF null mice (Korte et al., 1995; Patterson et

al., 1996). In accordance with the BDNF null mice, control experiments indicated that basal

synaptic transmission was normal for the trkB conditional mutants (Korte et al., 1995;

Minichiello et al., 1999). Another conditional mouse model lacking all trkB isoforms in the

forebrain region (trkB CA1-KO) confirms the results (Xu et al., 2000a). In these mice, the

absence of trkB in hippocampal CA1 region led to a reduction in CA3-CA1 synapse

potentiation and provides evidence for presynaptic BDNF action in the modulation of LTP.

Mice with targeted mutations in the trkB binding sites for Shc and PLC  have demonstrated

some functional differences among pathways downstream to trkB (Korte et al., 2000;

Minichiello et al., 2002). These studies reported that successful induction of theta burst

stimulation-induced E-LTP and L-LTP in the CA3-CA1 synapse requires PLC -mediated

signalling (Minichiello et al., 2002). More precisely, the concurrent blockade of both pre- and

postsynaptic PLC -mediated signalling is required to reduce LTP (Gärtner et al., 2006).

Interestingly, trkB-Shc mutants display intact E-LTP and L-LTP (Korte et al., 2000) therefore

suggesting that signalling via Shc pathways is not required for hippocampal LTP. These

results are surprising since previous data connected the Ras/MAPK pathway to synaptic

potentiation (English and Sweatt, 1996; English and Sweatt, 1997; Patterson et al., 2001; Ying

et al., 2002). However it is possible that the cross-talk between signalling pathways

downstream of trkB might rescue the Shc-deficit in terms of LTP induction. It seems that

BDNF by itself is sufficient for LTP (Pang and Lu, 2004) even though there have been some

contradictory results (Messaoudi et al., 2002). However, reports that the over-expression of

trkB abolishes LTP (Koponen et al., 2004) suggest that a lot is yet to be resolved.

One possible group of proposed modulators of synaptic plasticity are the pro-neurotrophins

(Lu, 2003b). When pro-neurotrophins are secreted at the synapse, they could regulate

synaptic transmission and plasticity through several mechanisms (Lu et al., 2005). For

example, uncleaved pro-neurotrophins, when secreted (Mowla et al., 2001; Teng et al., 2005),

could act on p75NTR and elicit effects distinct to those mediated by trk receptors. Secondly,

activity dependent control of proteolytic cleavage represents one mechanism for local and

synapse specific regulation by BDNF (Chao and Bothwell, 2002; Pang and Lu, 2004). To

balance BDNF actions, pro-BDNF is able to promote NMDA receptor-dependent hippocampal

LTD (Woo et al., 2005). Hippocampal LTD is impaired in p75NTR deficient mouse strains,

while LTP was found to be unaffected (Rösch et al., 2005). Stress affects both LTP and LTD,

and these effects originate from the corticosterone-induced sustained activation of ERK1/2-

coupled signalling cascades (Yang et al., 2004). It is likely that complexity of factors

modulating both presynaptic and postsynaptic actions will contribute to the generation and

maintenance of LTP; however, the evidence pointing to a significant role of BDNF and trkB
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signaling in LTP is undeniable.

It is widely accepted that neuronal activity plays a pivotal role in synaptic formation. The

number and strength of synapses can be changed by neuronal activity (Bliss and Collinridge,

1993; Linden, 1994; Malenka and Nicoll, 1999; McEwen, 1999). Remodelling of synaptic

structures also contributes to the formation of new synapses. Excitatory synapses on dendritic

spines exhibit a high degree of structural plasticity (Luscher et al., 2000). Such spines are

characterized by dynamic movements triggered by actin-based mechanisms (Fischer et al.,

1998; Star et al., 2002) that may change their shape (Korkotian and Segal, 1999, 2001; Segal

et al., 2000), exhibit remodeling of their postsynaptic density (PSD) (Geinisman, 1993; Buchs

and Muller, 1996; Marrs et al., 2001; Toni et al., 2001), or may be formed de novo (Engert and

Bonhoeffer, 1999; Goldin et al., 2001; Jourdain et al., 2002) under the influence of neuronal

activity and calcium. Studies have shown that the induction of LTP triggers the formation of

dendritic filopodia (Maletic-Savatic et al., 1999), these are considered as precursors of spines

(Dailey and Smith, 1996; Ziv and Smith, 1996; Fiala et al., 1998). LTP may also lead to direct

formation of new spines or new types of synapses (Engert and Bonhoeffer, 1999; Toni et al.,

1999). Remodeling of postsynaptic structures has thus been proposed to play a major role in

activity-dependent synaptogenesis. Other studies also provide evidence for presynaptic

morphological changes. The stimulation of developing neuronal cultures results in actin-

dependent formation and growth of axonal filopodia (Hatada et al., 2000; Chang and De

Camilli, 2001; Colicos et al., 2001; Tashiro et al., 2003) and the formation of functional

presynaptic boutons (Ma et al., 1999; De Paola et al., 2003).

Depending on the external signal (e.g. neuronal activity, neurotransmitters, and hormones) a

neuron can either sprout axons/dendrites or retract them (atrophy). Inappropriate stimuli such

as excessive stimuli or a total lack of activity can ultimately lead to pathological sprouting or to

programmed cell death (apoptosis), respectively. Synaptic connections are continuously

eliminated, generated or modulated (LTD, LTP) depending on their external cues. Regulation

of the relative amounts of pro- and matureBDNF in synapses may be one mechanism behind

these events (Lu et al., 2005). Increased and reduced BDNF levels correlate with increased or

reduced number of synapses, respectively (Causing et al., 1997; Huang ZJ et al., 1999).

Besides the traditional role as a survival factor during development, extensive evidence points

to a perhaps even more important role for BDNF in the regulation of synaptic transmission

(Lu, 2003a; Poo, 2001; Thoenen, 1995; Vicario-Abejon et al., 2002). BDNF potentiates

excitatory synaptic transmission by promoting presynaptic transmitter release. Acute BDNF

application to developing Xenopus neuromuscular synapses rapidly potentiates basal synaptic
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transmission by increasing neurotransmitter release (Lohof et al., 1993). In the central

excitatory synapses, a similar enhancement is observed upon BDNF application into

hippocampal and cortical cultures (Lessmann, 1998; Levine et al., 1995), slice preparations

(Kang et al., 1996; Kang and Schuman, 1995; Kang et al., 1997) and intrahippocampal

infusions (Messaoudi et al., 1998; Ying et al., 2002). Furthermore, addition of BDNF causes

hyperexcitability in slices (Scharfman, 1997) that is similar to that observed in BDNF

transgenic mice (Croll et al., 1999). As expected, the BDNF-induced potentiation of synaptic

transmission is enhanced by simultaneous presynaptic neuronal activity (Boulanger and Poo,

1999). The site of BDNF action is, however, still a matter of controversy. Some studies have

demonstrated that BDNF acts postsynaptically (Henneberger et al., 2002; Kovalchuk et al.,

2002; Levine et al., 1995; Suen et al., 1997) whereas strong data also supports action via

presynaptic transmitter release as well (Frerking et al., 1998; Gottschalk et al., 1998; Lohof et

al., 1993; Olofsdotter et al., 2000; Vicario-Abejon et al., 1998). In line with the presynaptic

actions of BDNF, a reduced number of docked vesicles are observed at excitatory synapses

on CA1 dendritic spines of BDNF knockout mice (Pozzo-Miller et al., 1999). A reduced level of

the vesicular proteins synaptobrevin and synaptophysin is observed in these BDNF mutants.

Furthermore, presynaptic, but not postsynaptic, expression of dominant negative trkB.T1

receptor inhibits synaptic potentiation in cultured neurons (Li et al., 1998). TrkB.T1

overexpressing mice have impaired long-term spatial learning but normal LTP (Saarelainen et

al., 2000b). BDNF-mediated activation of trkB stabilizes synapses while activation of p75

actively removes this (Zagrebelsky et al., 2005).

Since BDNF is known to contribute to synaptic transmission, it is also likely to modulate the

morphology of synapses and spines. Indeed, BDNF promotes the formation and stabilization

of both excitatory and inhibitory synapses (Alsina et al., 2001; Huang ZJ et al., 1999; Martinez

et al., 1998; Seil and Drake-Baumann, 2000; Vicario-Abejon et al., 1998; Vicario-Abejon et al.,

2002). Treatment of hippocampal slices with BDNF enhances spine formation in apical

dendrites, even in the absence of action potentials (Tyler and Pozzo-Miller, 2003; Tyler and

Pozzo-Miller, 2001). Additionally, activity-dependent synapse control in the adult cortex

appears to require BDNF, since the whisker stimulation does not induce increased spine

density in heterozygous BDNF mutant mice as observed in controls (Genoud et al., 2004).

BDNF has been shown to regulate synapse maturation and to promote dentritic spine growth

in hippocampal CA1 neurons (Tyler and Pozzo-Miller, 2003). Specifically, the number of

synaptic vesicles at the active zones is reduced in mice lacking BDNF or trkB (Martinez et al.,

1998; Tyler and Pozzo-Miller, 2001).
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BDNF is also a modulator of the GABAergic transmission although the mechanisms through

which this is mediated are not clear. Evidence suggests that BDNF application reduces

GABAergic inhibitory transmission and mIPSCs in hippocampal CA1 region (Brunig et al.,

2001; Frerking et al., 1998; Tanaka et al., 1997) and depresses the excitatory synaptic

transmission to GABAergic cortical neurons (Jiang et al., 2004) in a trkB-dependent manner.

In contrast, in hippocampal slice preparations from mice lacking BDNF, synaptic inhibition was

enhanced while granule cell excitability was reduced (Henneberger et al., 2002; Olofsdotter et

al., 2000). In support of this, BDNF regulates the development and maturation of GABAergic

inhibitory interneurons (Huang EJ et al., 1999; Marty et al., 1996; Marty et al., 1997), and

modulates the expression of GABAA receptors by recruiting trkB (Brunig et al., 2001; Elmariah

et al., 2004; Jovanovic et al., 2004; Thompson et al., 1998). Chloride transport, which is

maintained by a K+-Cl- transporter (KCC2), plays a critical role in the development and

maintenance of inhibitory GABAergic transmission (Ben-Ari, 2002; Kaila, 1994; Rivera et al.,

1999). The expression and activity of KCC2 is regulated among others by BDNF signaling via

trkB (Rivera et al., 2002; Rivera et al., 2004; Wardle and Poo, 2003). Taken together, BDNF

modulates inhibitory synaptic transmission through regulation of postsynaptic expression

levels of GABAA receptors and chloride transporter KCC2.

3.2. BDNF and Neuronal sprouting

Since the neurotrophin NGF, was originally identified as a stimulator of neurite outgrowth in

peripheral neurons it may be conceivable to propose a similar role for BDNF in central

neurons. BDNF regulates the dendritic growth of cortical neurons (Horch and Katz, 2002;

Horch et al., 1999; McAllister et al., 1996; McAllister et al., 1995) and dentate granule cells

(Danzer et al., 2002). Exogenous BDNF application or transfection, results in increased

dendritic length and complexity in a layer-specific manner. Furthermore, the effect could be

blocked by either inhibiting neuronal activity or by applying tyrosine kinase inhibitor K252a

(Danzer et al., 2002; McAllister et al., 1996). Accordingly, scavenging the endogenous BDNF

causes dramatic dendritic retraction in one study (McAllister et al., 1997). This study also

demonstrate a spatial distinction in the BDNF response of cortical neurons: basal dendrites

were more affected by a BDNF shortage. Besides BDNF, trkB receptor isoforms differentially

regulate dendritic morphology. BDNF produces a significant increase in axonal branching and

in the complexity and length of dendrites in CNS neurons (Cohen-Cory and Fraser, 1995;

McAllister et al., 1995; Gallo and Letourneau, 1998). As transfection of full-length trkB

promoted the proximal dendritic branching and inhibited elongation, the transfected trkB.T1

had counteracting actions instead and the ratio of T1 to full-length trkB was suggested to

serve as a switch between the distinct modes of dendritic growth (Yacoubian and Lo, 2000). If
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so, it may provide an important mechanism in the regulation of dendritic structure, i.e. during

development when trkB isoform ratios are changing.

Analogous to the above in vitro data, transgenic mice overexpressing BDNF display increased

dendritic complexity in the dentate gyrus (Tolwani et al., 2002) whereas both BDNF and trkB

knockout mice exhibit reduced dendritic structure (Gorski et al., 2003; Xu et al., 2000b). In the

latter case, BDNF or trkB is ablated from cortex and hippocampus, and as a result, substantial

loss of dendrites and cell soma shrinkage is observed. Further information on the spatial

restrictions of BDNF responses is provided by studies on Xenopus retinal ganglion cells.

Increase in the tectal target-derived BDNF supports the formation of dendrites in retinal

ganglion cells whereas locally increased BDNF levels within the retina lead to decreased

dendritic branching (Lom et al., 2002; Lom and Cohen-Cory, 1999). Finally, neuronal activity is

a key signal for dendrite formation in general (Lohmann et al., 2002; Miller and Kaplan, 2003).

Two main signaling pathways, the calcium/calmodulin kinases (CaMKs) and the MEK/MAPK

pathway have been suggested to regulate the activity-dependent dendrite formation, often in

cohort (Miller and Kaplan, 2003; Redmond et al., 2002; Vaillant et al., 2002; Wu et al., 2001).

Neurotrophins activate both CaMKII and CaMKIV via a mechanism suggested to engage trk-

mediated activation of PLC , generation of IP3 and subsequent release of Ca2+ (He et al.,

2000; Kaplan and Miller, 2000; Minichiello et al., 2002). Therefore, neural activity and

neurotrophins might act in parallel to promote dendrite formation.

In addition to dendrites, exogenous BDNF can potently enhance the axonal arborization of

retinal ganglion cells (Cohen-Cory, 1999; Cohen-Cory and Fraser, 1995; Inoue and Sanes,

1997) and dentate granule cells (Danzer et al., 2002). These effects are abolished by

antibodies to BDNF or by activity blockade. In cultured Xenopus spinal neurons, BDNF may

act in a chemoattractive manner and trigger growth cone turning via a mechanism requiring

cAMP/ protein kinase A signaling (Markus et al., 2002; Song et al., 1997). Knockout mice

lacking trkB have a reduced number of axonal collaterals and varicosities in the hippocampus

(Martinez et al., 1998). Likewise, axonal fragmentation is present in the amygdala of trkB/trkC

double heterozygous mutants (von Bohlen und Halbach et al., 2003). Plasticity marker, GAP-

43, has been suggested as a mediator of BDNF-derived modifications of axonal plasticity

(Elmer et al., 1996; Klocker et al., 2001; Kobayashi et al., 1996). In conclusion, BDNF

signaling via trkB regulates the formation and maintenance of dendrites and axons, and

therefore promotes the establishment of functional neuronal circuitry.
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3.3. BDNF and Neurogenesis

The general understanding has been that new neurons are not created by the adult brain.

Evidence of newly born neurons was first seen in the 1960’s by Altman (1965) and later by

Kaplan (1981) and others.  For some time these findings were believed an artifact with no

functional relevance. Neurogenesis re-emerged during the 1990’s when research methods

developed such that dividing cells could be identified as neurons. At present neurogenesis in

adult brain is under extensive study and has been well accepted as a phenomenon.

Neurogenesis is found in numerous mammalian species, including rodents (Cameron and

McKay, 2001), primates (Gould et al., 1997; Gould et al., 1999; Kornack and Rakic, 1999) and

human (Eriksson et al., 1998). New neurons are born in two brain areas; the subventricular

zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus (DG) of hippocampal

formation. Neurogenesis has also been reported in several other brain regions, including the

neocortex (Gould et al., 1999), striatum (Dayer et al., 2005) and hypothalamus (Kokoeva et

al., 2005). However it is unclear whether new neurons in these areas are born in situ or

migrated from elsewhere. Neurogenesis is regulated by age (Kuhn et al., 1996; Seki and Arai,

1995), stress (Gould et al., 1997), exercise (van Praag et al., 1999), learning (Gould et al.,

1999) and seizures (Parent et al., 1997). Furthermore, the production rate of new neurons in

aged rats is reportedly restored by the reduction of corticosterone (Cameron and McKay,

1999) and enriched environment (Kempermann et al., 1998).

The majority of neurons born in the adult SVZ migrate along the rostral migratory stream

(RMS) to the olfactory bulb. In the olfactory bulb neurons differentiate into the granule and

periglomerular inhibitory neurons (Doetsch and Hen, 2005). Neurons born in the SGZ migrate

into granular cell layer and mature into granule cells. Hippocampal cells in the SGZ are

classified as neuronal progenitors not as stem cells which are differentiated by their self

renewal rates (Bull and Bartlett, 2005). Only little is known about the factors that affect

differentiation of these newly-born cells. If progenitor cells are grown in the presence of

mitogens alone, only glial cells are generated (Bull and Bartlett, 2005; Seaberg and van der

Kooy, 2002). Growth with even a low concentration of BDNF induces neurogenesis indicating

the high sensitivity of the hippocampal progenitors to this neurotrophin (Bull and Bartlett,

2005). In addition, GABAergic excitation was recently shown to promote neuronal

differentiation in adult hippocampal progenitor cells (Tozuka et al., 2005). After differentiation

the new neurons extend their neurites and integrate into the existing neuronal network (Figure

3) (van Praag et al., 2002; Markakis and Gage, 1999). A recent study showed that SVZ-

derived progenitor cells from the trkB.T1 over-expressing mice possess increased replicative

capacity in vitro (Tervonen et al., 2006).
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This robust form of neuronal plasticity has developed into a theme of great interest among

neuroscientists. For example, the infusion of BDNF into the lateral ventricle of the adult rat

brain leads to new neurons in the parenchyma of the striatum, septum, thalamus, and

hypothalamus (Pencea et al., 2001). Similarly, BDNF infusion to the adult hippocampus (hilus)

increases the formation of new granule cells (Scharfman et al., 2005). Recent evidence also

suggests that BDNF promotes the survival of these newly generated neurons (Barnabe-

Heider and Miller, 2003). Baseline neurogenesis is lower in one BDNF +/- mice indicating that

BDNF is needed for maintaining basal hippocampal neurogenesis (Lee J et al., 2002). Age-

related decline in neurogenesis is associated with reductions in BDNF and pCREB

immunoreactivity (Kuhn et al., 1996; Hattingady et al., 2005).

New-born neurons located near the SGZ produce LTP more readily than mature neurons

(Wang et al., 2000). One reason for this difference is the lack of GABAergic inhibition in the

young neurons. It has been established that the granule neuron excitation is strongly

modulated by GABAergic synapses both in vitro (Wigstrom and Gustafsson, 1983) and in vivo

(Buckmaster and Schwartzkroin, 1995). Induction of LTP in DG in hippocampal slices is often

difficult (Hanse and Gustafsson, 1992; Nguyen and Kandel, 1996) presumably due to the

strong GABAergic inhibition. Results obtained in vivo show a more consistent LTP in DG

perforant pathway synapses (Bramham et al., 1997; Nosten-Bertran et al., 1996). It is also

generally accepted that the LTP induction in the medial perforant pathway (MPP) is NMDA-

receptor dependent in vivo (Morris et al., 1986) and in vitro (Trommer et al., 1995). Two

pharmacologically and physiologically distinct types of LTP in MPP have been found in

hippocampal slices, consistent with the presence of young and mature populations of neurons

(Snyder et al., 2001). One possible explanation might be that during maturation, new neurons

downregulate NKCC1 and upregulate KCC2 expression producing a significant change in

GABAergic inhibition (Ge et al., 2006).

Although the activity-dependent organizations of major neuronal networks are set up during

early brain development these networks are most likely plastic in nature throughout life and

consequently are modulated by variety of factors. BDNF and its receptor trkB, together with

their counter actors pro-BDNF and p75NTR, are important mediators of all the aforementioned

changes in neuronal plasticity in both the developing and adult CNS and are thus crucial

factors for the proper organization and maintenance of neuronal networks.
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Figure 3: Neurotrophic model for the turn-over of hippocampal neurons. I: Neuronal precursors
proliferate in the subgranula cell layer (SGCL) of dentate gyrus (DG). This process is inhibited by stress
and stimulated by antidepressants. II: Newborn cells differentiate into neurons and extend their axons
towards their target region in the CA3 area. III: After synapse formation with the dendrites of CA3
pyramidal neuron, they become dependent on neurotrophic factors. IV: Neurons that fail to form an
active synapse are eliminated by apoptosis. V: Neurons that are able to mediate activity from the
entorhinal cortex (EC) to an active synapse in the CA3 area survive and integrate into the neuronal
network within the hippocampus. VI: In addition, existing granular neurons that lose in the competition
for active synaptic transmission to the newborn neurons are eliminated. BDNF from the CA3 seems to
be essential for integration and survival of the granule neurons. On the other hand, lack of BDNF leads
to decreased integration and increased apoptosis.
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4. Neurotrophins and neuronal plasticity in the actions of

antidepressants and morphine

4.1. Depression

Despite the fact that affective (mood) disorders have been characterised for a long time, little

is known about the cellular mechanisms that lead to these disorders. Today mood disorders

are classified into two major categories: major depression (MD) and bipolar disorder (BD).

Mood disorders are one of the most common and disabling chronic diseases worldwide and

often precipitate or coexist with other psychiatric or somatic diseases (e.g. anxiety or coronary

heart disease, respectively) (Wong and Licinio, 2001; Dubovsky et al., 2003). The estimate of

prevalence of MD varies a lot and in Finland, the estimate for 12-month prevalence of a

depressive episode hes been estimated to be 6.5% in adult population (Pirkola et al., 2005).

MD is about 2-3 times more common in females than males (Wong and Licinio et al., 2001).

However, suicide rates are higher among male patients. The onset age of MD has decreased

rapidly during the last decades from 45-50 to 25-30 years, on average. MD is characterized by

recurring episodes of depressed mood and negative thinking. Although stress often precedes

the first episode of depression, later episodes are more likely to occur without the influence of

psychosocial stress. Even though mood disorders are frequently familial, the exact genes that

are behind affective disorders are still unknown (Dubovsky et al., 2003). However, certain

polymorphisms in BDNF (Val66Met) and serotonin transporter genes have been associates to

an increased susceptibility for affective disorders, although there is variation between the

results from different populations and study samples (Neves-Pereira et al., 2002; Schuele et

al., 2006; Furlong et al., 1998; Caspi et al., 2003; Kendler et al., 2005). The latest report

indicates a significant association between combined polymorphisms in 5-HT1A and BDNF

genes and the risk of treatment-resistant depression (Anttila et al., 2007).

Aetiology of depression is widely unknown. Classical monoamine hypothesis is based to the

observation that depressive patients have lowered levels on monoamines in the brain and

majority of the current antidepressive drugs such as, monoamine oxidase (MAO) inhibitors,

serotonin and noradrenaline reuptake inhibitors (SSRI, SNRI), are targeted to affect

monoaminergic neurotransmitter systems. Stress is also a major contributor to the

development of depression and increased levels of stress hormones and abnormalities in

function of HPA-axis are frequently found in depressed individuals. In fact, glucocorticoid

hypothesis has been developed on the strong and clear role of stress in affective disorders
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(reviewed by Arborelius et al., 1999). In addition, dysfunctions in neuronal circuits and

neuronal loss in distinct brain areas have led to the neurotrophic hypothesis of depression

(Duman and Monteggia, 2006). Due to the obvious multi-origination of the disease, there is

not any single, reliable and valid animal model. Several animal models have been developed

to model the different aspects of depression (Table 1). Despite the limitations, these animal

models of depression have been frequently used (Porsolt, 2000).

Table 1: The most frequently used animal models of depression.

Targeted Animal model

Forced swim test

Tail suspension testBehavioral despair assays

Learned helplessness test

Maternal separation test
Stress assays

Chronic mild stress test

Sensory deprivation assays Olfactory bulbectomy test

4.2. Neuronal atrophy in depression

Recent neuropathological and brain imaging studies suggest that neuronal connections are

compromised in patients suffering from mood disorders (reviewed by Drevets, 2000; Manji et

al., 2001; Castrén, 2004a; Castrén, 2005; Ebmeier et al., 2006). A consistent observation is

that the size of the hippocampus is reduced in patients suffering from major depression and

other stress-related psychiatric disorders (e.g. Bremner et al., 1995; Sheline et al., 1996;

Sheline et al., 1999; Bremner et al., 2000; Steffens et al., 2000; Vythilingam et al., 2002;

MacQueen et al., 2003; Kitayama et al., 2005). The duration of the illness, repeated episodes,

treatment resistance and previous abuse are associated with more pronounced hippocampal

damage (Ebmeier et al., 2006). However, abnormal changes in hippocampal volume are

sometimes observed very early in the disease process (Frodl et al., 2002).

Reductions in mean grey matter volume have been observed in the prefrontal cortex of both

MD and BP patients (Drevets et al., 1997; Rajkovska et al., 1999; Botteron et al., 2002;

Bremner et al., 2002). These structural impairments are also associated with functional

deficits in cerebral blood flow and glucose metabolism (Drevets, 2000). Such reductions in

hippocampal volume do not appear to be due to the loss of cells or reduced neurogenesis

(Lucassen et al., 2001; Reif et al., 2006) suggesting that mood disorders are associated with

neuronal atrophy and a reduced number of synapses (Figure 4). Indeed, mood disorders are
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often associated with abnormal changes in many cognitive functions (for review Ebmeier et

al., 2006). In addition, post-mortem studies indicate that glial cell numbers are reduced in the

cortex of mood disorder patients (Ongur et al., 1998; Rajkowska et al., 1999). Since glial cells

are crucial for the maintenance of synaptic connections, the reduced number of these cells is

an indirect indicator of reduced neuronal connections. Although all the factors mediating these

atrophic changes are not known, it is noteworthy that uncontrollable stress often has a

pronounced (and similar to that seen in mood disorders) impact on cellular survival and

morphology, particularly in the hippocampus (reviewed in McEwen, 1999). For example,

several forms of stress inhibit hippocampal neurogenesis (Gould et al., 1997; Tanapat et al.,

1998; Vollmayr et al., 2003; Pham et al., 2003) and produce atrophy in the hippocampal

pyramidal neurons (Watanabe et al., 1992; Fuchs et al., 1995; Magarinos et al., 1996;

Magarinos et al., 1998). Brain imaging studies demonstrate a reduction in hippocampal

volume in depressed subjects and this reduction is reversible with antidepressant treatments

(Sheline et al., 1996, 2003; Vermetten et al., 2003). Importantly, an effective antidepressant

treatment seems to protect against hippocampal volume loss in humans (Sheline et al., 2003)

and prevents stress-induced atrophic changes in the hippocampus (Czeh et al., 2001) (Figure

4). Hippocampal neurons express high levels of receptors for glucocorticoids, the major stress

reactive adrenal steroid (Sapolsky, 1996; McEwen, 1999) suggesting that glucocorticoid

actions may be direct. The hippocampus has connections with the amygdala and prefrontal

cortex, regions that are more directly involved in emotion and cognition and thereby

contributing to the major symptoms of depression.

Figure 4: Neuronal connections in different phases of depression. Stress decreases functional
connections in existing neurons and beginning atrophy. In clinical depression severe atrophy
and loss of synaptic connections occur. Antidepressant treatment produces excess amount of
new projections and synapses (smaller black dots). After stabilization of new and functional
neuronal network recovery is complete. Schematic drawing of a neuron were the large black
dot is nucleus, smaller black dots are synapses, the axon is facing down, and the dentrites are
pointing upwards.
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4.3. Neurotrophins and action mechanism of antidepressants

The primary action of antidepressants is to elevate monoamine levels in the brain by blocking

their breakdown or re-uptake from the synaptic cleft (for review Duman et al., 1997; Manji et

al., 2001, Nestler et al., 2002). First-generation antidepressants included monoamine oxidase

inhibitors (MAOIs) and tricyclic antidepressants (TCAs). Both increase available

concentrations of extracellular monoamine neurotransmitters and in particular noradrenalin

and serotonin thorough inhibition of catabolism (MAOIs) or of the reuptake transporter (TCAs).

Most of the newer antidepressants, with similar clinical efficacy but an improved side-effect

profile, inhibit the seroronin transporter and are therefore classified as selective serotonin

reuptake inhibitors (SSRIs) (Nemeroff and Owens, 2006).

Alterations in monoamine levels induced by antidepressants occur within minutes while the full

clinical effects takes several weeks to develop (Frazer and Benmansour, 2002; Nestler et al.,

2002). This long delay of antidepressive effects is a major problem in the clinical treatment of

mood disorders. Electro convulsive shock (ECS) therapy is the most effective treatment form

of major depression but the effect needs still repeated administration (Duman and Vaidya,

1998). These data suggest that changes in synaptic connections may underlie the effect of

antidepressants. Neurotrophins and especially BDNF have been shown to function as the key

regulator of neurite outgrowth, synaptic plasticity and selection of functional connections in the

CNS (Katz and Shatz, 1996; McAllister et al., 1999; Mamounas et al., 2000; Huang and

Reichardt, 2001; Poo, 2001). These facts make neurotrophins and above all BDNF a potent

mediator of plastic changes induced by antidepressants (Castren et al., 2004b; Duman and

Monteggia, 2006; Duman, 1997; Altar, 1999; Manji et al., 2001, Nestler et al., 2002). Finally, it

is good to bear in mind that pro-neurotrophin cleavage by tPA/plasmin has proved to be an

essential step in the formation of the mature BDNF and that this process has also been hinted

at in the pathophysiology of depression (Pang et al., 2004; Tsai, 2006).

ECS and chronic antidepressant treatment have been shown to elevate mRNA levels for

BDNF and trkB in the hippocampus and cortex (Nibuya et al., 1995; Russo-Neustadt et al.,

2000). Infusion of exogenous BDNF protein into the adult rodent brain has demonstrated

behavioral effects similar to those produced by antidepressants (Siuciak et al., 1997;

Shirayama et al., 2002). Administration of exogenous BDNF also increases the 5-HT

innervation in brain (Mamounas et al., 2000) and levels of both 5-HT itself and its metabolites

in the forebrain (Siuciak et al., 1994, 1996).

In animal studies chronic stress-related impairment of cognitive functions are associated with

increased plasma corticosteroid levels and decreased BDNF mRNA in the hippocampus



43

(Song et al., 2006). It has been shown that stress diminishes hippocampal BDNF mRNA

levels in a glucocorticoid-dependent manner (Smith et al., 1995; Ueyama et al., 1997;

Rasmusson et al., 2002). This effect is reversible with antidepressant treatment (Smith et al.,

1995). On the other hand, repeated stress has been associated with an increase of trkB

mRNA in the hippocampus (Nibuya et al., 1999). These observations are reminiscent of the

dynamic regulation seen in several brain functions whilst trying to achieve homeostatic

balance.

Increased BDNF immunoreactivity has been observed in humans after antidepressant

medication (Chen B et al., 2001). Post-mortem studies show that the expression of BDNF in

hippocampus is decreased in depressed suicide patients and increased in patients receiving

antidepressant treatment (Chen B et al., 2001; Dwivedi et al., 2003; Karege et al., 2005).

Depressed non-medicated patients show lowered serum BDNF levels than antidepressant

treated patients (Hashimoto et al., 2004), and serum levels of BDNF positively correlate with

the response to medication (Gervasoni et al., 2005; Gonul et al., 2005).

The findings that show that antidepressants increase BDNF gene expression and trkB

signalling suggest that antidepressants produce long-term structural neurotrophic changes in

brain. Duman and co-workers were the first to demonstrate that long-term treatment with

antidepressants produces an increase in cellular proliferation in the hippocampus (Malberg et

al., 2000). In tissue sections, these newborn cells are co-labelled with neuronal, but not glial,

markers (Malberg et al., 2000) further supporting that antidepressants specifically increase the

proliferation of new neurons. Many subsequent studies have confirmed these observations

(Manev et al., 2001; Khawaja et al., 2004). In addition, lithium and ECS, when administered

several times, were also shown to increase hippocampal neurogenesis (Chen et al., 2000;

Madsen et al., 2000). Lithium and antidepressants both seem to induce the division of

hippocampal progenitor cells in vitro (Manev et al., 2001; Kim et al., 2004). The

antidepressant tianeptine also blocks the stress-induced decrease of hippocampal

neurogenesis (Czeh et al., 2001) and reduces hippocampal apoptosis (Lucassen et al., 2004).

Chronic ECS promotes a long-lasting sprouting of mossy fiber axons in the rodent

hippocampus (Gombos et al., 1999; Vaidya et al., 1999). Similarly to BDNF, antidepressants

produce trophic actions on brain monoaminergic neurons (Kitayama et al., 1997). Taken

together, current literature strongly implicates that stress and antidepressants have opposing

effects on adult hippocampal neurogenesis (Warner-Schmidt and Duman, 2006).

The molecular mechanism and role of neurogenesis in mediating the therapeutic actions of

antidepressants is not known. However, the behavioural effects of antidepressants are
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abolished in rodents whose hippocampal neurogenesis has been inhibited (Santarelli et al.,

2003). In addition, in 5-HT1A knock-out mice, fluoxetine failed to induce neurogenesis

(Santarelli et al., 2003). 5-HT1A antagonists have shown to decrease cell proliferation in DG

of hippocampus (Radley and Jacobs, 2002). Yet, 5-HT1A knock-out mice responded to

imipramine and desipramine suggesting that different antidepressants may induce

neurogenesis through separate molecular routes. Furthermore, a recent study implicates that

behavioral effects of chronic fluoxetine do not require hippocampal neurogenesis or 5-HT1A

receptor in some mouse strains (Holick et al., 2007).

Fluoxetine produces a robust increase in the synaptic spine density in the CA1 within 5 days

and in the CA3 after 2 weeks of treatment (Hajszan et al 2005). In addition, chronic but not

acute fluoxetine treatment results in region-specific changes in the activity of translation

factors (Dagestad et al., 2006).

Evidence suggests that cAMP signalling is involved in the action of antidepressants (D’Sa and

Duman, 2002). In contrast, normal CREB function is required for the antidepressant-induced

elevation of BDNF mRNA, but not for the behavioural effects (Conti et al., 2002). Increasing

evidence suggests that antidepressant-induced changes in pCREB and trkB signalling

mediate antidepressant-induced neurogenesis and survival. Increased and decreased

expression of pCREB in the hippocampus promotes and reduces, respectively, hippocampal

neurogenesis (Nakagawa et al., 2002a; Nakagawa et al., 2002b). CREB is one of the key

intracellular targets of trkB activation and thus one of the candidates regulating BDNF-induced

behaviours. Indeed, over-expression of CREB in the hippocampus produces an

antidepressant effect (Chen AC et al., 2001). The behavioural effects of BDNF in the forced

swimming test are dependent on ERK signalling (upstream of CREB) since a selective ERK

inhibitor blocked the effects of BDNF (Shirayama et al., 2002) indicating the key role of Ras-

ERK-CREB cascade in regulating these effects. However, the behavioural response to

antidepressants is not abolished in CREB deficient mice (Conti et al., 2002). In addition,

agents which stimulate the intracellular cAMP cascade increase hippocampal neurogenesis

(Nakagawa et al., 2002b). Importantly, prolonged antidepressant and lithium treatment

reverses or protects against stress induced atrophic changes in hippocampus (Malberg et al.,

2000; Czeh et al., 2001; van der Hart et al., 2002; Vermetten et al., 2003; Wood et al., 2004).

Epigenetic modifications have emerged to be one possible mechanism behind the

development of depression and antidepressive effects. Maternal behavior was found to affect

DNA methylation in the promoter region of the glucocorticoid receptor gene (Weaver et al.,

2004). These studies suggested a causal relationship between epigenomic state,
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glucocorticoid receptor expression and the maternal effect on stress responses in the

offspring. One suggested mechanism behind the functional modulation of NTs suggests the

involvement of post-translational modifications of pre-existing synaptic components by

cytoplasmic effectors of the NT-induced signalling cascade.

Recently, the post-translational modifications of histones, a major form of chromatin

remodelling, were found to be altered at several gene promoters in rat hippocampus after

acute or repeated ECS. Nestler and co-workers (Tsankova et al., 2004) found that, chronic

upregulation of BDNF transcription may be sustained via control of H3 acetylation, selectively

at the BDNF P3 and P4 promoters. This data provided the first in vivo demonstration of the

involvement of chromatin remodeling in ECS-induced regulation of gene expression in the

brain. Another recent report announced that Mecp2, as well as MBD1, were significantly

induced in normal adult rat brain after repeated injections of fluoxetine or cocaine for 10 days

(Cassel et al., 2006). The effect was characterized in three serotonin projection areas, the

caudate-putamen, the frontal cortex, and the dentate gyrus. This data highlighted GABAergic

neurons as major target cells expressing Mecp2 in response to the serotonin-elevating

agents, and suggest that serotonin signaling enhances gene silencing in postmitotic neurons.

Stress has been shown to induce lasting downregulation of BDNF transcripts III and IV and

robustly increased repressive histone methylation at their corresponding promoters (Tsankova

et al., 2006). Chronic imipramine reversed this downregulation and increased histone

acetylation at these promoters. These studies underscore an important role for histone

remodeling in the pathophysiology and treatment of depression and highlight the therapeutic

potential for histone methylation and deacetylation inhibitors in depression.

Administration of other psychotropic drugs, such as opiates, antipsychotics, and

psychostimulants, does not increase BDNF expression in the hippocampus, demonstrating

the pharmacological specificity of antidepressants. Furthermore, other treatments known to

have antidepressant efficacy, such as NMDA receptor antagonists and transcranial magnetic

stimulation (TMS), also increase the expression of BDNF in the hippocampus (Marvanova et

al., 2001; Muller et al., 2000).
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4.4. Opioid-mediated analgesia and neuronal plasticity

Opioid analgesics, such as morphine, are effective for treating many pain conditions. Opioids

modulate pain directly in the spinal cord and through regulation of the descending pain

inhibitory pathways ending in the spinal cord. Significant opioid actions occur in other

supraspinal locations, including higher sensory areas and limbic structures. A high

concentration of endogenous opioids and the presence of opiate receptors suggest that these

areas may be responsible for the emotional component of pain. In a PET study, when the

scores on the affective component of pain were evaluated, increased µ-opioid activity was

found in the bilateral anterior cingulate cortex, thalamus and nucleus accumbens (Zubieta et

al., 2001).

Opioid analgesic tolerance is a pharmacological phenomenon that affects the clinical use of

opioid analgesics. Activation of NMDA receptors and PKC as well as glutamate transporters

has been implicated in the mechanism of opioid tolerance, suggesting a possible link between

neuronal plasticity and opioid tolerance (Trujillo, 2002; Mao and Mayer, 2001). Recent studies

have shown that neuronal plasticity associated with the development of opioid tolerance may

activate a pronociceptive mechanism within the CNS that could counteract the analgesic

effects of opioids. It has been proposed that opioid tolerance is a model of neuronal plasticity

similar to learning and memory. Like cognitive functions, µ-opioid receptor desensitisation by

morphine is dependent on protein kinase C (PKC) (Bailey et al., 2006).

PKC is not only responsible for the induction of morphine tolerance, but is also important in

the long-term maintenance of it (Smith et al., 1999 and 2002). Indeed, PKC inhibitors are able

to reverse tolerance even when they are first administered after 3 days of morphine infusion

and reinstate morphine-induced behaviours in morphine tolerant mice (Smith et al., 1999 and

2006). In addition, there are lines of evidence indicating that NMDA receptors are involved in

the neural plasticity underlying the development of opiate tolerance. Molecular adaptations to

chronic morphine alter cre-mediated transcription during opiate withdrawal in physiologically

salient regions involved in arousal, reward, mood and affective responses. In the locus

coruleus (LC), the phosphorylation of CREB is homeostatically regulated by activity at the µ-

opioid receptor, which inhibits the cAMP pathway via the inhibitory G-protein Gi.

Chronic administration of opioids such as morphine, produce long-lasting plastic changes in

synaptic function and signal transduction in dopaminergic and noradrenergic neurons,

involving cAMP signaling and tyrosine hydroxylase activity (Williams et al., 2001).

Interestingly, chronic morphine administration has been shown to produce morphological
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changes in the mesolimbic dopamine neurons, hinting towards the involvement of an increase

in plastic changes in neuronal network by opioids. It remains to be resolved whether these

changes in the structure and function of synaptic connections are able to explain the

behavioral changes produced by repeated administration of opioids.

LTP was originally demonstrated in the hippocampus but also occurs in the nucleus

accumbens and ventral tegmental area (VTA), where it has been hypothesized to contribute to

addictive processes (Bonci and Malenka, 1999; Nestler, 2001; Wolf, 2002, 2003). Since

elevation of intracellular Ca2+ via glutamate receptors in the VTA has been implicated in

increasing sensitivity to the reward and locomotor activating properties of morphine (Carlezon

et al., 1997), it is conceivable that upregulation of PLC  and IP3 could contribute to morphine

induced  neuronal plasticity by increasing levels of Ca2+ in VTA neurons.

Two systems closely associated with depression, serotonergic and glucocorticoid signaling

are also affected in opioid functions. The spinal serotonergic system strongly affects the

development of morphine tolerance (Li et al., 2001, 1999). More specifically, 5-HT1A

modulation has been shown to play a major role in opioid analgesia and tolerance (Bardin and

Colpaert, 2004). Spinal glucocorticoid signalling also has an important role in the development

of morphine tolerance (Lim et al., 2005a; Mao, 2005); glucocorticoid receptors regulate the

expression of spinal NMDA receptors and PKC  through the CREB-dependent pathway (Lim

et al., 2005b).

4.5. Neurotrophins and opioid-mediated analgesia

There is strong evidence that in a variety of circumstances two neurotrophins, NGF and

BDNF, act as important mediators and modulators of pain (Pezet and McMahon, 2006). NGF

is upregulated in many chronically painful conditions, particularly in inflamed tissues, and acts

as a peripheral pain mediator while BDNF appears to act as a modulator, altering the

effectiveness of the central nociceptive signals. Two other neurotrophins, NT-3 and NT-4,

appear to have a more modest role in pain processing.

In the spinal cord, a form of synaptic plasticity termed central sensitization underlies many

forms of hyperalgesia, and neurotrophins play an important role in this process (Lewin and

Mendell, 1993; Heppenstall and Lewin, 2000). Neurotrophins affect central transmission

postsynaptically by enhancing NMDA receptor responsiveness.
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Nestler and co-workers have in several studies revealed a role for the neurotrophic factors in

the action mechanism of addictive drugs, such as opioids (Nestler and Aghajanian, 1997;

Nestler, 2001; 2002). Chronic morphine treatment induced a modest increase in the BDNF

and NT-3 mRNA levels in neurons in LC but not VTA (Numan et al., 1998). However, in the

same study withdrawal from chronic opioid treatment rapidly increased BDNF and trkB mRNA

levels in the LC. TrkB mRNA was also increased in the VTA by morphine withdrawal. The

injection of BDNF into the VTA prevents many of the adaptational and morphological changes

observed in DA neurons following chronic morphine administration (Sklair-Tavron et al., 1996;

Berhow et al., 1995). Chronic morphine administration to conditional BDNF knockout mice

revealed an essential role for BDNF in neuronal adaptations after opiate treatment in the LC

(Akbarian et al., 2002). Furthermore, these mice failed to upregulate TH levels in the LC

region in response to chronic morphine administration. Chronic administration of morphine

also differentially regulates the activity of downstream pathways of trkB receptor: the PLC

and ERK pathways are potentiated, while PI-3-K pathway is attenuated (Berhow et al., 1996;

Ortiz et al., 1995; Wolf et al., 1999).

4.6. NT-4 in modulation of nociception

While the other trkB-ligand, BDNF, has proven to modulate multiple functions in chronic pain

states (Obata and Noquchi, 2006), there are few studies linking NT-4 to pain-signaling

systems. NT-4 has shown to facilitate, in an NGF-like manner, capsaicin evoked inward

currents in dorsal root ganglion neurons in vitro (Shu and Mendell, 1999). NT-4 appears to

have some sensitizing activity in the response to noxious heat (Shu et al., 1999). All published

studies that have investigated the role of spinal NT-4 in the development of pain have proven

negative (e.g. Yajima et al., 2002; Heppenstall and Lewin, 2001).  A Chinese study found that

NT-4 promotes spinal cord plasticity induced by acupuncture treatment (Long et al., 2005).

Instead of participating in nociception, NT-4 has been linked more closely to the modulation of

plasticity leading to morphine tolerance (Smith 2003). In addition, it was recently shown that

the chronic concomitant treatment of anti-NT-4 with morphine inhibits the development of

morphine tolerance (Hatami et al., 2006). In the same study dextromethorphan produced an

additive effect on the inhibitory effect with anti-NT-4 in the reversal of morphine tolerance.

These findings provide additional support for the hypothesis that the NMDA receptor and NT-4

may be involved in neural plasticity underlying opiate tolerance. Taken together these

observations indicate that NT-4 is required for the synaptic plasticity that mediates opioid

tolerance.



49

EXPERIMENTAL SECTION

AIMS

The purpose of this work was to investigate, using transgenic mice, the participation of

neurotrophic signaling, via the trkB receptor, in drug-induced changes in neuronal plasticity.

Depression and chronic pain are two pathological states associated with dysfunctions in

neuronal plasticity. Our initial aim was to study:

1. the role of trkB-mediated signalling in the action mechanism of antidepressants and

2. the role of trkB-mediated signaling in the action mechanism of morphine.

3. After the findings in the initial studies, we decided to concentrate on the mechanism of

action of antidepressants and BDNF with an aim to identify the distinct brain areas

exhibiting neuronal plasticity induced by the antidepressant treatment.

4. The final goal was to clarify the role of the BDNF-trkB signaling pathway in

antidepressant-induced hippocampal neurogenesis.
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5. MATERIALS AND METHODS

5.1. Animals

In publications I-II, IV transgenic mice with compromised neuronal trkB-signaling were used as

a model.  Production of the trkB.T1 transgenic mice is described in (Saarelainen et al.,

2000a). In summary, viable heterozygote mice overexpress trkB.T1, the dominant negative

splice variant of trkB under the neuronal Thy1 promoter. In publication I adult male mice were

used in all experiments. In publications I and IV heterozygote BDNF null mice (BDNF+/-) and

their corresponding wild-type littermates were used. In publication I NT-3+/- transgenic mice

were used. Production of the BDNF+/- and NT-3+/- mice has been described previously (Ernfors

et al., 1994a; Ernfors et al., 1994b), the genetic background of both strains and their wild type

littermates was 129Sv x BALB/c. In publication II NT-4-/- mice (Liu et al., 1995) and TrkBshc/shc

mice (Minichiello et al., 1998) were also used. In publication III adult male Wistar rats were

used in all experiments. For the fluoxetine study in publication IV, wild type NMRI mice were

also used.

All animals were housed in groups in a temperature- and humidity-controlled environment and

maintained on a 12h light/dark cycle with free access to food and water. In all of the

publications (I-IV) the animal experiments performed in our lab were conducted according to

the guidelines of The Society for Neuroscience and were approved, by the Experimental

Animal Ethics Committee of the National Laboratory center, University of Kuopio, Finland. For

all animal experiments performed there were no corresponding in vitro methods available, and

the number of animals used was kept as low as possible.

Transgenic animals were identified using polymerase chain reaction (PCR) method. Small

pieces of tissue cut from the end of the tail were digested in lysis buffer (200mM NaCl, 20mM

EDTA, 40mM Tris-HCl, pH 8.0, 0.5% SDS, 0.5% -mercaptoethanol, 0.8 mg/ml proteinase K)

overnight at 60ºC. Debris was pelleted by centrifugation and genomic DNA was precipitated

from the lysate using isopropanol and washed with ice-cold 70% ethanol. The precipitate was

briefly air-dried and then dissolved into TE-buffer (pH 8.0). Transgenic animals were identified

by PCR using Flag-trkBT1-primers, while the plasmid construct thy1-flag served as positive

control.
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5.2. Treatments

In I, physiological saline (0.9% NaCl), imipramine HCl (30 mg/kg, Sigma, St. Louis, MO, USA)

or fluoxetine (20 mg/kg, Orion Pharma, Turku, Finland) were injected intraperitoneally (i.p.) to

assess antidepressant responses in transgenic and wild type mice. In II, morphine (3.0 mg/kg,

s.c.) and naloxone (1.0 mg/kg, i.p.) were used to evaluate trkB involvement in opioid-mediated

analgesia. In III, imipramine HCl (Sigma) was administered i.p. either acutely (30 mg/kg) or

chronically (15 mg/kg, 21 days). The acute imipramine group received saline injections for 20

days followed by a single imipramine injection on day 21.  Therefore, the same control group

could be used for the acutely and chronically-treated animals.  Control animals received 0.9%

NaCl solution (i.p.) daily for 21 days. In IV, imipramine hydrochloride (20 mg/kg for BDNF+/-

and 30 mg/kg for trkB.T1, Sigma) and fluoxetine (10 mg/kg, Sigma) was administrated i.p.,

once daily for 20 or 21 d. For the proliferation assay bromo-deoxyuridine (BrdU, 50 mg/kg)

was administered i.p. 4 times at intervals of two hours (total of 200 mg/kg) during the day

following the last antidepressant injection. During chronic administrations the i.p. injection site

was alternated between the left and right sides. There was no irritation at the injection sites

observed in any of the studies.

5.3. Tissue processing

In I and II animals were rapidly dissected at the times indicated after saline or drug injections.

For western blot analysis, tissue samples were lysed in buffer containing 137 mM NaCl, 20

mM Tris (pH 8.0), 1% NP-40, 10% glycerol, 50 mM sodium fluoride, 2x Complete Mini (Roche

Diagnostics) and 2 mM sodium vanadate. After homogenization, homogenate was incubated

at +4ºC for 20 min and centrifuged at 13,000 rpm for 15 min. For immunohistochemistry in I, III
and IV, animals were deeply anesthetized with pentobarbital (Mebunat, Orion Pharma, Espoo,

Finland) and transcardially perfused with cold PBS followed by 4% paraformaldehyde

(PFA/PBS). Brains were removed and postfixed in 4% PFA/PBS, cryoprotected in 20%

sucrose/4% PFA/PBS over night at +4ºC and stored at -70ºC.  Floating coronal sections were

sliced with a microtome (Leica SM2000R), and stored at +4ºC in tissue collection solution

(TCS).

5.4. Western blotting

In publications I and II western blotting was used to detect antidepressant and morphine

modulated activation of trkB receptor via phosphorylation. Western blot was performed

according to previously described methods (Aloyz et al., 1999) with slight modifications. TrkB
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was precipitated using either 50 µl wheat germ agglutinin (WGA, Pharmacia) or 10 µl of anti-

trk antibody (sc-11, St. Cruz Biotechnology) and collected using protein-A sepharose

(Pharmacia).  Electrophoresis was performed with 7.5% SDS-polyacrylamide gels. Samples

were transferred to PVDF filters (Amersham). Anti-phosphotyrosine (4G10, UBI, dilution

1:10000), anti-phospho-trk pY490 (New England Biolabs), pY674/675 (New England Biolabs)

and anti-trkBout (provided by Dr. David Kaplan, dilution 1:5000) antibodies were used to detect

phosphorylated and total trkB, respectively. Western blots were scanned and image intesity

was quantitated with image analysis software. Data are presented as mean percentages of

the ratio of phosphorylated trk (4G10, pY674/675, pY490) to the full-length trkB (anti-trkBout)

signal intensity found in saline treated animals.

5.5. Behavioral tests

Behavioral tests were performed mainly by Tommi Saarelainen (I) and Guilherme Lucas (II).
For the analysis of behavioral effects of antidepressant drugs in publication I, the forced swim

test (FST) was used. FST has a rather high predictive value for antidepressant activity and is

applicable to mice (Porsolt et al., 1977; Cryan et al., 2002).  Adult male transgenic mice and

wild-type littermates were allowed to adapt to the test room for several days and were then

randomly submitted to a forced swim test without a pre-swim. Saline, imipramine or fluoxetine

were injected i.p., and after 30 min, the mice were placed in a clear glass cylinder of diameter

of 16 cm, half-filled with clear water at 24°C (water depth of 14 cm did not allow the mice to

reach the bottom of the cylinder, water was changed after each mouse) for a total of 6 min.

Immobility was recorded during the last 4 min by an investigator blind to the genotype and

treatment.

The hot-plate test and tail-flick assay were used to asses pain behaviour in II. In the hot-plate

test the animal was placed on a heated metal surface and the latency to the first heat related

reaction was recorded. Similarly, the tail flick test measures the latency until the animal moves

its tail when heated. For the hot-plate test, mice were individually placed on the hot-plate at

55ºC and the latency until mice showed first signs of discomfort (hindpaw-lifting, -licking/biting,

-shaking or jumping) were recorded. To avoid tissue damage, an artificial maximum time for

exposure was imposed (cut-off time), which was 30 sec. The tail-flick test consists of lightly

restraining the mice and immersing two thirds of the tail in water heated to 50ºC (cut-off time

15 sec). The latency to the first movement of the tail was recorded. The basal threshold for

each test was obtained by running the assay twice a day (2 hours apart), for 3 consecutive

days. The last 3 measurements were averaged and considered as the 'basal' latency for each

animal. Morphine dose-response experiment was performed on the fourth day. Paw
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withdrawal latencies were measured 30 min after the first dose of morphine (3.0 mg/kg, s.c.).

At this time point animals were repeatedly injected every 30 min with morphine to yield a final

cumulative dose of 12 mg/kg in the hot-plate test and 24 mg/kg for the tail-flick assay.

Immediately after the last withdrawal latency measurement, mice were injected with naloxone

(1.0 mg/kg; i.p.) and the antinociception was assessed again after 15 min. In some

experiments, the heat stimulus source was a highintensity beam (Η 45 W) from a projector

lamp bulb aimed at the 3 cm far from the end of the tail (cut-off time 15 sec). Latency to

respond to the heat stimulus with vigorous flexing of the tail was measured to the nearest

0.1s. Three separated withdrawal latency determinations (30 min apart) were averaged as the

'basal' latency for each mouse.

5.6. Immunohistochemistry

Several markers of neuronal plasticity were chosen for immunohistochemistry. These markers

are expressed in different phases of neuronal plasticity (Figure 5).

CREB is a transcription factor regulating the expression of several proteins related to neuronal

plasticity (Shaywitz and Greenberg, 1999). We used an activated, phosphorylated, form of

CREB (pCREB) to assess plastic events in the adult brain. For example, virtually all immature

neurons, identified by BrdU and PSA-NCAM immunostainings, are also positive for pCREB

(Nakagawa et al., 2002b). Furthermore, antidepressants have been shown to upregulate

CREB-mediated gene expression (Thome et al., 2000). In addition, CREB phosphorylation is

accompanies long-term LTP in hippocampus (Impey et al., 1996). Over-expression of CREB

in the dentate gyrus, but not in the CA1 or PFC, produces an antidepressant effect in the

learned helplessness test (Chen AC et al., 2001). Although behavioural and endocrine

responses may occur through CREB-independent mechanisms, CREB has proven to be

critical to target gene regulation after chronic antidepressant administration, which may

contribute to long-term adaptations of the system (Conti et al., 2002). Based on these

observations, pCREB is an excellent marker to quantify activation of plastic events.

The polysialylated-nerve cell adhesion molecule (PSA-NCAM) is a developmental form of

NCAM. In hippocampus NCAM is essential both for correct axonal growth and synaptogenesis

and for long-term changes in synaptic strength (Cremer et al., 1998)

The growth associated protein 43, GAP-43, is a neural cell specific phosphoprotein associated

with the development and regeneration of axons and the functional modulation of synaptic

relationships (Jacobson et al., 1986; Skene, 1989). It is especially prominent in the neuronal
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growth cone (Skene et al., 1986). Levels of GAP-43 are highly elevated during development

(Gorgels et al., 1987; Perrone-Bizzozero et al., 1993) and after injury (Curtis et al., 1993;

Sommervaille et al., 1992). Levels of GAP-43 are reduced in the hippocampus and cingulate

cortex in an age-dependent manner and so decrease the ability to sustain synaptic turnover

(Casoli et al., 1996). GAP-43 has also been shown to be altered in stressed and

antidepressant treated animals (Iwata et al., 2006).

TOAD/Ulip/CRMP-4 (TUC-4) is expressed early in neuronal differentiation and its expression

is largely suppressed in the adult brain (Minturn et al., 1995). TUC-4 has a major role in

axonal outgrowth and pathfinding (Qiunn et al., 1999 and 2003).
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Figure 5: Hippocampal plasticity in temporal perspective. Activity dependent phosphorylation of
CREB (anti-pCREB stained) in subgranular cell layer (sGCL) of dentate gyrus (A) occurs just
minutes after original stimulus (for exemple antidepressant treatment). Approximately a week
later activated cells are increasingly proliferated in sGCL (B) (BrdU tagged). Faith of the newly-
born cells is to die or they can differentiate into glial cells or neurons (C) (anti-TUC-4 stained)
New neurons elongate their axons and dendrites (anti-PSA-NCAM stained) (D) to integrate into
existing neuronal network. This whole process takes up to several weeks and could explain the
delayed effect of antidepressants in clinical use.

In publication I we used pCREB (New England Biolabs, Ipswich, MA, USA), a marker known

to be activated by trkB and antidepressants, to confirm earlier observations. We counted

stained cells in the anterior cingulate and prefrontal cortex using an unbiased stereological

method (StereoInvestigator, MicroBrightField Inc., Williston, VT, USA).

In publication III for preliminary semi quantitative screening of antidepressant-induced

changes in protein expression, pCREB was used as a plasticity marker based on the available

literature (Nibuya et al., 1996). Areas with a clear increase in the expression of pCREB after

imipramine treatment were searched for throughout the brain. Once affected brain regions had

been identified, subsequent quantitative analyses were performed using 10-12 sections per
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animal. The following primary antibodies were used: rabbit anti-pCREB, 1:1000, Cell

signaling; mouse anti-PSA-NCAM, 1:3000, courtesy of Prof. Seki (Department of Anatomy,

Juntendo University School of Medicine, Tokyo, Japan); mouse anti-GAP-43 antibody, 1:2000,

Sigma, St. Louis, MO, USA.

In publication IV for BrdU detection, animals were injected with BrdU prior to sacrifice.

Proliferation was detected using the anti-BrdU antibody (Sigma, 1:400). Newborn neurons

were identified with the anti-TUC-4 antibody (Chemicon, 1: 4000). Cells undergoing apoptosis

were detected with DeadEndTM colorimetric TUNEL system (Promega).

Quantitation of BrdU, TUNEL and TUC-4 positive cells was performed with Olympus BX50

microscope and Stereo Investigator software. Three coronal sections were randomly selected

from throughout the hippocampus for each mouse and immunopositive cells in the granule cell

layer of the dentate gyrus were counted.

5.7. Data and statistical analyses

All the data in I-IV are presented as means ± SEM.  In publication I Student’s t-test and one-

way analysis of variance (ANOVA) together with Bonferroni as a post-hoc test were used for

statistical analysis. II The behavioral results are presented as percent MPE (maximum

possible effect) in which MPE = (test - control)/(cut-off - control) X 100. Statistical comparisons

were made with repeated measures ANOVA. The effects of treatments in III and IV were

analyzed by one-factor ANOVA. Comparison of individual treatment groups with their

respective control group was conducted using Dunnett’s t-test.  The pairwise effect on pCREB

immunoreactivity in III was analyzed using Student’s t-test. SPSS software was used for all

analyses. For all comparisons, P < 0.05 was used as the criterion for statistical significance.
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6. RESULTS

Publication I used two transgenic mice lines with compromised trkB signalling to demonstrate

that normal trkB activation is necessary for the behavioural effects produced by the

antidepressants. There were no differences observed between saline treated trkB.T1 and

wild-type mice in the immobisation time in FST. Both imipramine and fluoxetine significantly

reduced immobility in the wild-type mice. Neither of the antidepressants had any significant

effect on the immobilisation time in trkB.T1 mice. Examination of cortical 5-HT levels with

HPLC revealed no basal differences between transgenic and wild-type mice. However, the 5-

HT metabolite, 5-HIAA, levels were reduced in the prefrontal cortex, but not in the anterior

cingulate cortex, of trkB.T1 mice. Treatment with SSRI, fluoxetine, as expected increased the

levels of 5-HT in both genotypes. To investigate ligand specificity of the behavioural effects

seen in trkB.T1 mice we used BDNF+/- and NT-3+/- heterozygote mice. After imipramine

treatment the immobilisation times of wildtype and NT-3+/- mice were reduced this was not

observed for BDNF+/-. These results suggest that BDNF-mediated trkB activation is required

for a normal behaviour response to antidepressants in the FST.

Western blot studies with cortical extracts revealed that both imipramine and fluoxetine

significantly increased trkB phosphorylation at 30 min after the injection. However, the total

trkB levels were not altered by antidepressants. In trkB.T1 mice trkB activation was inhibited

by the dominant-negative isoform. Further experiments revealed that phosphorylation of the

autophosphorylation site, but not the shc-signaling pathway, was involved in antidepressant

induced trkB signaling. The time course analysis of trkB activation revealed that an increase in

trkB activation, at 30 min after injection, was followed by a reduction in phosphorylation levels

at 6h, most probably reflecting desensitisation after stimulation. At 24 h, autophosphorylation

was again at the baseline level. In chronically (21 days) treated mice similar increase was

observed at 30 min after the last injection. This increase was again attenuated at the 6 h and

24 h time points. No desensitization was seen at 6 h after the chronic treatments, as was

observed after the acute injection.

To investigate brain area-dependent differences in the response of trkB phosphorylation to

antidepressants, various areas were dissected from brains of mice treated either acutely (30

min) or chronically (21 d) with imipramine. Acute imipramine treatment was followed with a

small but consistent increase in trkB phosphorylation in all cortical areas examined, with the

exception of the anterior cingulate cortex which showed a robust response to antidepressants.

After chronic treatment significant increase was also observed in the hippocampus.
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We investigated whether trkB activation in response to antidepressants is followed by

activation of CREB. A robust increase in CREB activation was seen at 30 min after imipramine

injection in the anterior cingulate and prefrontal cortex. A similar, albeit less pronounced

response was also seen in the prefrontal cortex after a single fluoxetine injection. In trkB.T1

mice induction of CREB phosphorylation was weaker.

Finally, to correlate the lack of behavioural responsiveness to antidepressants in trkB.T1 mice

with the trkB autophosphorylation status, we investigated the trkB phosphorylation status in a

group of mice subjected to the FST. FST alone did not alter the trkB phosphorylation,

indicating that observed changes can be attributed to the antidepressant treatment. In trkB.T1

mice, the basal trkB phosphorylation status was significantly lower than in wild-type mice.

Fluoxetine injection did not increase trkB phosphorylation in these transgenic mice, which is

consistent with the behavioural effects of fluoxetine in same mice. In short, these data indicate

that antidepressants rapidly phosphorylate the trkB-receptor and that BDNF-mediated

signaling is needed for the behavioral effects of antidepressants in the FST.

In publication II acute morphine injection significantly increased trkB autophosphorylation in

the brain stem, spinal trigeminal nucleus and locus coeruleus within 30 min. However, saline

and morphine injected mice did not differ in phosphorylation at the shc-binding site. In

contrast, morphine did not increase autophosphorylation or shc-site phosphorylation in NT-4-/-

mice. To assess the physiological role of trkB activation in morphine-induced analgesia, we

measured subraspinally and spinally mediated nociceptive responses after acute morphine in

NT-4-/- mice. The basal thermal nociception of NT-4-/- mice was normal. Wild-type and NT-4

KO mice showed dose-dependent and naloxone-reversible morphine anti-nociception, but

responsiveness to morphine was significantly reduced in NT-4-/- mice. In spinal morphine

analgesia, both genotypes again responded to morphine in a dose-dependent manner, as

evaluated using tail-flick test although NT-4-/- mice required a higher dose of morphine to

produce an equivalent analgesic effect to the control mice. The time course of the responses

was similar between genotypes, although the maximum response at the dose of mg/kg was

markedly attenuated in NT-4-/- mice. TrkB.T1 mice, with compromised trkB signalling, also

showed normal basal nociception and dose-dependent and naloxone-reversible morphine

analgesia. As with the NT-4-/- mice, trkB.T1 mice needed a higher dose of morphine to

produce similar analgesia to control littermates. The participation of BDNF in activation of trkB

after morphine was assessed using transgenic mice with a point mutation at the shc-site.

TrkBshc/shc mice showed similar analgesia to control littermates, further indicating that the Shc

site was not involved.



61

These results indicated that morphine induces NT-4 release. Superfusion of brainstem slices

with morphine consistently increased NT-4 release, which was abolished by naloxone. In

addition, different administration paradigms excluded an independent analgesic effect induced

by NT-4. Taken together, NT-4 participates in opiate –mediated analgesia and is required for

the development of morphine tolerance.

In publication III an activated form of transcription factor CREB (pCREB) was used as a

marker for plasticity. All of the brain areas were analysed in a semi quantitative manner to

select for areas of interest for a more detailed analysis using multiple markers to detect any

plastic effects. Antidepressant treatment markedly changed the expression of pCREB in the

medial prefrontal cortex, hippocampus and piriform cortex. In a subsequent analysis, chronic

imipramine increased expression of PSA-NCAM in the mPFC, especially in layer II.

Expression of PSA-NCAM was strongly elevated in DG after chronic imipramine treatment.

Finally, PSA-NCAM was also increased in the piriform cortex. Expression of pCREB was

significantly increased in mPFC after both acute and chronic imipramine treatment. In the

hippocampus an acute injection significantly elevated pCREB expression but chronic

administration produced an increase of borderline significance (P=0.054). However, the effect

of chronic treatment in piriform cortex on pCREB levels was clear. Neither acute nor chronic

imipramine altered GAP-43 immunoreactivity in mPFC. In the hippocampus chronic, but not

acute, imipramine treatment increased GAP-43 immunoreactivity in the IML of DG and LML of

CA1. These results demonstrate that antidepressants selectively induce neuronal plasticity in

certain brain areas.

The studies presented in IV show that in wild-type mice, chronic antidepressant treatment

increases the number of BrdU-positive cells in the DG. A corresponding and parallel increase

in the number of apoptotic, TUNEL-positive, cells was seen following chronic imipramine

treatment. Similar results were also obtained with another antidepressant, fluoxetine. The

increase in proliferation and apoptosis were temporally matched. The number of both BrdU-

and TUNEL-positive cell were not different after 5 days of treatment compared to control

levels, but a significant increase in both was observed after 10 and 20 days fluoxetine

treatment.

Imipramine was administered for 21 days to BDNF+/- and trkB.T1 transgenic mice to assess

the role of BDNF-mediated trkB signalling in hippocampal neurogenesis. In wild-type mice

imipramine significantly increased cell proliferation. Unexpectedly, both transgenic mouse

lines presented an elevated basal proliferation rate in DG, when compared to saline treated

wild-type mice. Nevertheless, imipramine produced an additional and significant increase in
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cell proliferation in transgenic mice. The effect was of the same magnitude to that seen in

wild-type mice. The role of BDNF/trkB-signalling in the long-term survival of newborn neurons,

as identified by BrdU and TUC-4 staining, was evaluated. Three weeks after the cessation of

chronic imipramine treatment and BrdU administration, about half of the new cells were still

alive when compared to the number of labelled cells at 24 h after antidepressant treatment. In

the imipramine-treated wild-type animals, the increased proliferation rate was still seen in the

form of increased number of surviving neurons. In transgenic BDNF+/- and trkB.T1 mouse lines

the number of BrdU-positive cells was significantly decreased when compared to wild-type

mice, suggesting the importance of BDNF-TrkB-signalling for the long-term survival of newly-

born neurons in the adult hippocampus. Furthermore, no significant drug effect was seen in

BDNF+/- mice at three weeks after cell labelling. In summary, antidepressants increase

neuronal turnover in the normal adult hippocampus. BDNF-mediated signaling via trkB is not

required for the proliferation of new cells but is essential for the long-term survival of new-born

neurons.
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7. DISCUSSION

Major depression and chronic pain, among other neuronal disorders, have been associated

with dysfunctional neuronal circuitry. There is a huge effort trying to resolve factors and

pathways behind these dysfunctions and to develop drugs able to repair these dysfunctional

neuronal networks. Increasing evidence indicates that neurotrophins are important modulators

of neuronal plasticity. Based on these notions, we aimed to partly clarify the role of trkB and its

ligands, BDNF and NT-4, in drug-induced changes in neuronal plasticity. In publications I and

II, we investigated the role of trkB-mediated signalling in the mechanism of action of two types

of drugs, antidepressants and opioids. In these studies BDNF involvement proved to be

closely linked to the effects of antidepressants and NT-4 to opiate-mediated analgesia.

Following these observations we decided to continue to explore closely the involvement of

trkB in the mechanisms of antidepressant action. In III we screened for brain areas showing

observable changes in the markers of neuronal plasticity following antidepressant treatment.

Finally, in IV we studied the role of trkB-mediated signalling in antidepressant induced

neurogenesis.

7.1. Methodological considerations

Transgenic (TG) animals are very often used in research when addressing the physiological

function of single factor. When TG animals are used, it should be remembered that with the

knocking down or over-expressing genes that the target could also have different functions

during development and adulthood. This has led to the use of conditional knock-out mice. In

addition, the promoter used critically affects the function of the target and is crucial for the

relevancy of the used TG animals. With these considerations in mind, all data produced using

TG animals should be interpreted carefully.

BDNF heterozygous mice have approximately half of the normal amount of BDNF throughout

their body and may still exhibit developmental abnormalities that further complicate the utility

of these mice in studies of the role of BDNF in the adult brain. It is possible that half of the

normal amount of BDNF is sufficient to sustain some but not all the physiological actions that

are critical to responses in the models of depression. Conditional KO mice, in which BDNF or

trkB has been deleted in the broad forebrain regions of adult animals, did not show a

depressive phenotype when compared to normal littermates but displayed an attenuated

response to antidepressants in the FST (Monteggia et al., 2004; Zorner et al., 2003).
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The biggest challenge in histological staining methods was the optimization of tissue

permeabilisation and DNA denaturation steps so that brain sections remained in one piece

during the staining procedures. Immunohistological markers were chosen based on the

literature. CREB is a transcription factor that is well validated marker for plastic events.

Activation of CREB by phosphorylation is followed by transcription of several plasticity related

genes, such as bdnf and Blc2.  pCREB is excellent marker for studying rapid activation of

plastic events. Quantification of nuclear markers, such as pCREB and BrdU, was simple when

compared to markers located in neurites (PSA-NCAM and GAP-43).

The behavioral assays used (FST, hot-plate and tail-flick) have good prediction value, but are

still highly dependent on the performer. Although several drugs give false positive results in

the FST, the test is excellent for screening for novel drug with potential antidepressant effects.

Observed behavioral effects should be repeated and extended in behavioral paradigms such

as learned helplessness or chronic mild stress. The pain assays used are validated for

thermal pain processes. Similar experiments using chronic pain models and additional test

measuring also inflammatory and mechanical pain would be interesting in clarifying the

precise function of NT-4 in opioid function.

In IV, the selected time points (5, 10, and 20 days) in fluoxetine study were chosen based on

a previous report that hippocampal cell proliferation increases slowly and reaches a significant

level at between 5 and 14 days (Malberg et al., 2000). Long-term (around 3 weeks)

antidepressant treatment is followed by a significant increase in cell proliferation (Malberg et

al., 2000; Manev et al., 2001).  We wanted to add some time points to resolve the delay in cell

proliferation after initiation of the antidepressant treatment. The same time points were also

chosen to resolve whether apoptosis precedes or follows changes in hippocampal cell

proliferation.

7.2. TrkB-mediated signaling in action mechanism of antidepressants

As their primary pharmacological function antidepressant drugs, such as MAO inhibitors,

tricyclics, and SSRI´s, increase the intrasynaptic availability of monoamine neurotransmitters

(Duman et al., 1997; Manji et al., 2001; Skolnick, 1999). Although changes in the monoamine

levels appear rapidly, the therapeutic effects emerge after a delay of several weeks. Clinically

effective long-term antidepressant treatment and ECS therapy have been shown to increase

BDNF mRNA expression in the brain (Duman et al., 1997; Nibuya et al., 1995). The role of

neurotrophins, as mediators of antidepressive effects was under examination in these studies.

We measured the action of the BDNF-elicited signalling by assaying the phosphorylation of

trkB in mouse cortical samples. The data obtained indicates that two commonly used
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antidepressants elicit a rapid and significant induction of trkB phosphorylation in the mouse

cortex. Consequently, our laboratory has provided evidence which suggests that rapid

increase in trkB phosphorylation may be a common mechanism for all antidepressant drugs

(Rantamäki et al., 2006)

We also analyzed the time course within which the trkB phosphorylation is increased after

antidepressant injection. Our results suggest that trkB activation by antidepressants is

dynamically regulated, acute phosphorylation was gone within six hours but even after long-

term treatment no desensitization was observed and trkB was activated as after first injection.

Furthermore, previous studies have demonstrated that trkB activation and chronic

antidepressant treatment induce the phosphorylation of transcription factor CREB. We also

showed that the phosphorylation of CREB was significantly increased in the cingulate cortex

after acute imipramine and this response was attenuated in trkB.T1 mice.

The most obvious explanation for the increased trkB activation would be that antidepressants

promote an increased release of BDNF, which then binds to trkB. However, no differences

were detected in the BDNF protein levels between antidepressant and saline treated mouse

cortex samples. It seems that using BDNF protein levels as indicators of release may not be

the best approach. Even if the BDNF levels between individual synapses would vary, the total

amount of BDNF in the brain area could remain unaltered.  Indeed, the rapidi nature of the

antidepressant induced p-trkB response suggests that it is independent of BDNF synthesis.

Even though acute antidepressant treatments produce significant changes in BDNF mRNA

levels (e.g. Zetterström et al., 1999) this does not directly indicate that BDNF is released

(Mowla et al., 1999). It seems that the rapid trkB activation is dependent on activity induced

release of BDNF but not transcription from the BDNF gene.

We also tested whether the behavioural effects of antidepressant in forced swim test (FST)

are dependent on trkB signalling. The data gathered showed that antidepressants produced

the expected reduction in immobility time in wild-type mice. TrkB.T1 mice, however, did not

respond to the administered antidepressants, as shown by an unchanged immobility time. We

also tested BDNF+/- and NT-3+/- mice which revealed that this effect was ligand specific. Using

another set of wild-type and transgenic mice we further examined trkB phosphorylation after

FST and fluoxetine treatment and found that reduced trkB signalling is associated with

unresponsiveness to antidepressants. These observations have subsequently been confirmed

using forebrain-selective conditional BDNF KO mice (Monteggia et al., 2004). This data is

further supported by a study which showed that repeated intracerebral injections of BDNF into

rats results in an antidepressant-like behaviour in the FST (Siuciak et al., 1997). Interestingly,
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reduced BDNF mediated trkB signalling did not augment depressive-like behaviours in this

test (I; MacQueen et al., 2001). On the other hand, a recent study suggests that the effect of

BDNF defiency on depressive behaviour may be sex-dependent (Monteggia et al., 2006).

Another reason may be that antidepressants may exert their therapeutic actions in a disturbed

(stressed) system but not in a normal brain (Tsankova et al., 2006). Subsequent studies in our

laboratory have shown that whereas the behavioural effects of the selective serotonergic

antidepressant citalopram were abolished in the FST, the behavioural effects of a selective

noradrenergic antidepressant were not (Rantamäki, 2006). This result together with earlier

findings supports a role for trkB signalling in mediating the plasticity and functionality of

serotonergic networks (Altar, 1999). Finally, enhanced trkB signalling produced by the

overexpression of trkB in brain is sufficient to promote antidepressant-like behaviour in the

FST (Koponen et al., 2005). The pronounced phenotype of TrkB.TK+ mice was not further

augmented with acute fluoxetine treatment.

7.3. TrkB-mediated signaling in action mechanism of morphine

We investigated the participation of NTs in the action mechanisms of opiates. Chronic opiate

treatment is known to induce a variety of changes in neuronal plasticity. In publication II, we

found evidence that NT-4, but not BDNF, is closely linked with the action mechanism of

morphine. In NT-4 null mice, a larger dose of morphine was needed to produce an analgesic

response of the same magnitude as that observed in wild-type mice. This altered effect in

analgesic response may be due to an altered opiate tolerance in these mice. One

interpretation of the results was that the activation of opioid receptors directly or indirectly

increases the release of NT-4, followed by trkB activation. This is supported by the finding that

BDNF infusion in the midbrain region produces naloxone-reversible analgesia (Siuciak et al.,

1994). Our results offered a new perspective where NT-4 and trkB activation participate on

opioid-mediated anti-nociception. At the same time with publication II there was a report

(Smith et al., 2003) that linked NT-4 into morphine tolerance. In the same study the authors

showed that NT-4 KO mice had impaired tolerance to morphine. Opiod tolerance is suggested

to be a model of neuronal plasticity similar to learning and memory (Xie et al., 2000). There is

some evidence indicating the involvement of NMDA receptors in the neuronal plasticity

underlying the development of opiate tolerance (Trujillo and Akil, 1991). Furthermore, a recent

article by Hatami and co-workers (2006) demonstrated that NT-4 modulation of opioid

tolerance indeed depends on NMDA receptor activation.

Even though, tricyclic antidepressants are known to alleviate certain types of pain (Duric and

McCarson, 2006; Tsai, 2005), different mechanisms lie behind the action mechanisms of
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antidepressants in pain and depression. In one study antidepressants have been shown to

elevate the levels of BDNF mRNA, but morphine had no measurable effect (Nibuya et al.,

1995). Same study also suggested that NT-4, rather than BDNF, is involved in the action

mechanism of opioids. According to our findings chronic morphine administration leads to the

chronic release of NT-4, and trkB-signalling is required for tolerance. Since in NT-4 KO mice

have impaired development of opiate tolerance (Smith et al., 2003) and anti-NT-4 attenuates

the development of morphine tolerance (Hatami et al., 2006), these studies are therefore in

line with each other, and indirectly indicate that NT-4 is required for opiate tolerance and pain

relief. In future, attenuation of morphine tolerance will be one key target to improve the clinical

use of morphine. Indeed, the novel antinociceptive drug, gabapentin, attenuates morphine

tolerance, probably via suppression of morphine-evoked excitatory amino acid release in the

spinal cord (Lin et al., 2005). In addition, kappa-agonist, nalbuphine, and D3/2 agonist, 7-OH-

DPAT, have shown to attenuate the development of a morphine tolerance (Jang et al., 2006;

Cook et al., 2000).

7.4. Antidepressant induced changes in neuronal plasticity

Depression is closely associated with structural impairments in the prefrontal cortex and

hippocampal formation. We investigated whether antidepressants could correct these

morphological atrophies by enhancing neuronal plasticity at these sites. Chronic

antidepressant treatments are shown to affect function of transcription factors in the

hippocampus and prefrontal cortex (Frechilla et al., 1998) thus indicating molecular changes

in these brain areas. There is evidence that antidepressants affect the expression of markers

implicated in neuronal plasticity (Laifenfeld et al., 2005). We presented new evidence that

chronic antidepressant treatment elevated expression of the plasticity marker PSA-NCAM in

the mPFC, thus indicating enhanced sprouting. Our findings were simultaneously confirmed

by Varea and co-workers (Varea et al., 2006). They also found an increase in PSA-NCAM

expression in rat mPFC after a chronic (14d) fluoxetine treatment. In addition, they had

evidence that at least the 5-HT3 receptor is involved in this form of neuronal plasticity.

Earlylife stress also affects to the PSA-NCAM/NCAM expression ratio in adult rats with

depressive behavior, suggesting a potential relevance of PSA-NCAM alterations for mood

disorders (Tsoory et al., 2007). Fluoxetine has been associated in changed fibroblast growth

factor 2 (FGF2) levels in the prefrontal cortex (Maragnoli et al., 2004), suggesting multiple

antidepressant-induced plasticity related changes in this brain area.

Antidepressants and ECS induce cell proliferation in the PFC, a region where proliferation of

new cells is not found under normal conditions (Kodama et al., 2004; Madsen et al., 2005).
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However, these cells fail to differentiate into neurons but, differentiate into non-neuronal cells,

such as glia (Madsen et al., 2005). In addition, it was recently shown that a cluster of

previously unrecognized nestin immunoreactive neurons were found in the basal forebrain

(Wang et al., 2006). The basal forebrain neurons mainly receive cholinergic and GABAergic

projections from hippocampus (Rye et al., 1984; Freund, 1989).  However, these newly

identified neurons did not express markers for these populations, indicating a new functional

population of septo-hippocampal neurons.

It is well established that both the hippocampus and the PFC are affected by depression and

antidepressant drugs. The signaling and function between these two brain areas may be

crucial for the development and treatment of depression.  In fact, there is a direct

monosynaptic pathway between the hippocampus and the prefrontal cortex (Ferino et al.,

1987; Jay and Witter, 1991). This pathway presents synaptic plasticity in the forms of LTP and

LTD (Jay et al., 1996; Takita et al., 1999). In addition to memory processing (Wang and Cai,

2006; Degenetais et al., 2003) this pathway is linked to psychiatric disorders. Stress affects

LTP in this pathway and this alteration can be corrected with antidepressant treatment

(Rocher et al, 2004) thus highlighting the importance of this pathway for future research.

Although hippocampal neurogenesis was shown to be essential for the behavioral effects of

antidepressants (Santarelli et al., 2003) and contextual fear conditioning (Saxe et al., 2006),

adult neurogenesis is apparently not needed for the behavioral effects of environmental

enrichment (EE), spatial learning or anxiety (Meshi et al., 2006). EE, however, is known to

enhance hippocampal neurogenesis (Kempermann and Gage, 1999), and this event requires

BDNF (Rossi et al., 2006). These studies suggested that the hippocampus participates in the

formation of some but not all behavioral responses and that neurogenesis is an

epiphenomenon correlating with other unrelated events. With these assumptions, it seems

that antidepressant induced hippocampal neurogenesis is a balancing event in the process of

producing a sufficient number of synaptic connections to maintain a functional neuronal

network. Furthermore, a depression resistant phenotype was recently observed in Kcnk2-/- KO

mice (a background potassium channel) (Heurteaux et al., 2006). Although antidepressants

produced a robust increase in hippocampal cell proliferation in these mice no other behavioral

changes were observed. A recent report, however, indicates that as new granule cells mature,

they are increasingly likely to be incorporated into the neuronal network when compared to the

existing granule neurons in memory formation (Kee et al., 2007). This suggests, on the other

hand, a significant role for adult hippocampal neurogenesis in behavioral modulation. In non-

pathological conditions, enhanced neurogenesis is accompanied by apoptosis because there

is no loss of connections, or need for additional ones (IV).  In contrast, stress and disrupted



69

neuronal network benefit from the AD-induced neurogenesis when repairing formed damage.

Apoptosis is not present because these new cells are integrated into the neuronal network

(Czeh et al., 2001). Based on these and other studies a new model for stress-related mood

disorders has been developed (Sandi and Bisaz, 2007). This hypothesis implicates alterations

in the levels of neuronal cell adhesion molecules among the mechanisms contributing to mood

disorders and, potentially, in antidepressant action.

7.5. Role of TrkB in antidepressant mediated effect on neurogenesis

Participation of BDNF in hippocampal neurogenesis in the adult brain has been well accepted

for some time. However, the precise role of BDNF in hippocampal neurogenesis is still

unresolved. Classically NTs have been associated as survival-factors. Our goal was to clarify

the role of BDNF-mediated signaling in adult neurogenesis. We discovered that trkB-mediated

signalling is not needed for the antidepressant induced increase in cell proliferation. However,

BDNF and trkB proved to be essential for the long-term survival of new born neurons. Similar

results are seen in vitro (Tervonen et al., 2006) although these studies were performed using

progenitors of subventricular origin. The increased proliferation rate seen in trkB.T1 mice may

be due to a compensatory effect to the decreased survival of new neurons. This increased

proliferation was also seen in BDNF+/- mice and reported in in vitro neurospheres derived from

trkB.T1 mice (Tervonen et al., 2006). Increased apoptosis has also been reported in BDNF

deficient mice (Linnarsson et al., 2000). However, the role of BDNF as a survival factor for

new neurons was questioned with the observation that the chronic mild stress test did not

affect cell proliferation but rather impaired survival of new neurons even if BDNF mRNA levels

were unaltered in granule cell layer (Lee et al., 2006). This finding contrasts with earlier

studies that have reported decreased BDNF expression following stress (Smith et al., 1995).

This discrepancy underlines the importance of the BDNF protein levels and trkB receptor

number or that crucial trophic support of new neurons is produced from their target areas.

7.6. Neuronal plasticity as a target for novel antidepressant treatments

Neuronal plasticity has emerged as an exciting target for novel antidepressant drug

development. This is due to the fact that plastic events take time and are thought to be behind

the delay of action of antidepressant treatments observed in depressive patients. The BDNF

protein itself is not a functional drug candidate because it does not penetrate the blood brain

barrier. Some of the current approaches being pursued by the pharmaceutical companies,

looking beyond monoamines are summarized below.
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Direct BDNF mimetics present a very appealing way to affect disrupted neuronal networks

seen in depressive patients. A recent review by Fletcher and Hughes (2006) updated new

progress in the design of BDNF mimetics to treat neurodegenerative diseases. The biggest

problems so far have been the size of the current mimetics. Another attempt to utilize BDNF-

mediated actions can be seen with the drugs called ampakines (Rex et al., 2006). Primary

function of ampakines is to elongate the “open-time” of AMPA-channels. Indirectly these novel

drugs increase BDNF levels and so restore the age-related deficit in hippocampal LTP.

Directly affecting the cAMP-CREB system has identified phosphodiesterase-4 (PDE4)

inhibitors as a therapeutic target for depression. These inhibitors, such as rolipram, block the

breakdown of cAMP, thus increasing the phosphorylation of CREB. Unwanted side-effects

have however prevented the launch of these drugs. Specificity has emerged as the main

problem since there are several members of the PDE4 family and variability of

compartmentalisation and since cAMP is the key second messenger in all cells (Houslay et

al., 2005). It seems that there is still a lot to be done in this field. The fact that noradrenergic

afferents make direct contact with the hippocampal neurons (Loy et al., 1980) has driven

interest to study other approaches to modulate plasticity via the noradrenergic system in the

hippocampus. Recently, an alpha-2-adrenoceptor antagonist was shown to enhance

hippocampal neurogenesis by increasing BDNF-mediated survival of new born neurons (Rizk

et al., 2005). In a near future, a receptor subtype specific alpha-2-adrenergic antagonist could

be a potential drug candidate for affective disorders.

A reduced tone in the fibroblast growth factor (FGF) system might alter brain development, or

remodelling, and result in a predisposition or vulnerability to mood disorders, including major

depression (reviewed in Turner et al., 2006). Antidepressants increase the expression of

FGF2 in the hippocampus (Mallei et al., 2002). Altered expression of FGF2 and FGF

receptors has been reported in depressive patients (Evans et al., 2004): medicated patients

had FGF transcript levels more similar to control subjects than unmedicated patients. One

approach was based on the fact that NCAM signals via a direct homophilic interaction with the

fibroblast growth factor receptor (FGFR) (Reviewed in Kiselyov et al., 2005). FGFR1 is one

possible drug target because it promotes the proliferation of both hippocampal progenitors

and stem cells during development (Ohkubo et al., 2004). There is already a synthetic NCAM-

derived peptide (FGL by ENKAM pharmaceuticals A/S, Denmark), that is under development

to treat Alzheimer’s disease. This peptide drug is a FGFR agonist and has proven to activate

FGFR1. The drug positively affects the sensorimotor development and enhances social

memory (Secher et al., 2006). In addition, this drug induces neurite outgrowth and neuronal

survival (Neiiendam et al., 2004) and protects hippocampal neurons against ischemic insult

both in vitro and in vivo (Skibo et al., 2005). The drug has thus proven to be safe and well
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tolerated in clinical testing. If the development of this drug continues it will be interesting to

find out the efficacy and effect on mood after long-term treatments.

Also under development is an activator of GAP-43 transcription, HUO622 (Uwabe et al.,

2006). The strategy behind this approach is somewhat different. While the molecule mimics

the effects of NGF by activating the ERK-signaling pathway, this is achieved without actual

trkA activation. Under intensive research is the role of the glial cell in neuronal plasticity. The

negledged glial cells may be a novel direction for future drug development. It has been shown

that CNS synapse number can be profoundly regulated by nonneuronal signals (Ullian et al.,

2001), and thus raise the possibility that glia may actively participate in synaptic plasticity. A

recent study (Stellwagen and Malenka, 2006) demonstrated that synaptic scaling can be

induced by activity-dependent changes in release of the cytokine tumor necrosis factor-alpha

(TNF-alpha) and, surprisingly, that the source of TNF-alpha is glial rather than neuronal. In

addition to providing insight into the mechanisms of homeostatic plasticity, these data argue

for the first time, that equal partnership between glial cells and neurons is needed in the

generation of an important form of synaptic plasticity.

Several other interesting drug candidates, including CRF1 antagonists, CRF2 agonists and

various serotonin receptor subtype selective drugs, are also under active development and

the number is increasing. Several of these drug candidates target hippocampal plasticity and

are primarily designed to treat memory deficiencies, due to the observation that changes

occur in “the memory center”, hippocampus. The heterogeneity seen among depressive

patients and a strong placebo-effect might also be factors affecting strategy in the clinical

testing of novel antidepressants.

Although rapid events, such as the strengthening of available synapses and synaptogenesis

in existing neurons could be induced by novel antidepressant drugs it may be that in major

depression the cell loss is too massive and the brain has not enough processes to repair the

damage quickly enough. This hypothesis (Figure 6) leads to the conclusion that in major

depression the treatment delay is inevitable due to requirement for a sufficient amount of new

neurons and glial cells to repair the damaged networks. However, there is a need for novel

drug therapies to temporarily alleviate symptoms while antidepressant-induced repair of the

neuronal network takes place. If these new connections do not receive adequate support from

the molecular factors and not actively used they will perish quickly. This may be the

mechanism behind the recurrent episodes seen in humans. It should be kept in mind that new

synaptic connections in the brain, induced by drugs or physiological stimuli, rely on neuronal

activation and will again perish without usage.
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Figure 6: Role of neuronal plasticity and trkB-mediated signalling in different phases of
depression. I: BDNF supports existing neuronal network. II: Polymorphism and histone
modifications in the BDNF gene have been associated into increased susceptibility for mood
disorders. III: Rapid activation of trkB IV: Pivotal role in L-LTP V: BDNF stabilizes the new
functional neurons. The positive effects of BDNF/trkB-signaling can be counteracted by stress
hormones and pro-BDNF/p75NTR-signaling.

Based on the current literature and results from the present thesis patophysiology of

depression includes neuronal atrophy and dysfunctional neuronal networks. Neuronal network

restoring and neuroprotective disease modifying drugs might be achievable when targeted to

affect plastic events such as modification of synaptic connections. On the other hand, there is

still a need for more fast-acting symptomatic drug therapies, targeted to affect directly

monoaminergic or other neurotransmitter systems.
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8. CONCLUSIONS
Taken together, the present results have revealed the essential role of trkB-receptor mediated

signalling in action mechanism of antidepressants and morphine. Furthermore, we have partly

clarified the role of neuronal plasticity at least as a one potential mechanism of action of

antidepressants.

Essential findings:

1. Antidepressant drugs rapidly increase the phosphorylation of trkB receptor

2. BDNF-mediated activation of trkB is crucial for the behavioural effects of

antidepressants.

3. Morphine increases NT-4 release in brain, and NT-4-mediated activation of trkB is

involved in the modulation of morphine induced analgesia and development of

tolerance.

4. Antidepressants induce plastic changes in distinct brain sites, hippocampus, medial

prefrontal cortex and piriform cortex.

5. Antidepressants increase neuronal turn-over in adult rodent hippocampus.

6. BDNF-mediated activation of trkB is essential for the long-term survival of newborn

neurons in hippocampus.
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