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Nothing in life is to be feared. It’s just to be understood.

Marie Curie
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ABSTRACT

Hereditary nonpolyposis colorectal cancer (HNPCC) is a hereditary cancer syndrome,

which manifestates with high penetrance in early middle age, mainly with colorectal and

endometrial tumours. Susceptibility for HNPCC is dominantly inherited with germline

defects in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2. While a

truncating mutation in one of these genes leads to deficient MMR, thereby promoting

genetic instability and tumour formation, a nontruncating mutation can either be a

completely neutral variation or lead to a highly increased cancer risk and HNPCC. The

phenotypic effects of nontruncating mutations are impossible to predict based on genetic

evidence alone. The correct determination of the pathogenicity of different mutations is,

however, very important, as the verification of the causative mutation enables genetic

counselling and surveillance of mutation carriers, which has been shown to lead to

significantly lowered mortality.

The most frequent nontruncating mutations are missense mutations, which alter

only one amino acid in the protein. Unlike in MLH1, where missense mutations have been

characterised extensively, functional studies on nontruncating MSH2 mutations are rarer.

MSH2 is the second most commonly mutated HNPCC susceptibility gene and defects in it

account for 39% of all identified HNPCC mutations. Seventeen percent of all identified

MSH2 variations  are  of  the  missense  type.  The  aim  of  this  PhD  thesis  was  to  gather

functional evidence on the pathogenicity of patient-derived nontruncating MSH2 variants.

We assessed the functionality of 18 mutations and correlated the site of the mutation to the

biochemical and phenotypic effects of the mutated protein. The proteins corresponding to

the original genetic MSH2 variants were expressed and purified. The expression level,

MMR efficiency, interaction with MSH6, mismatch binding, and mismatch release

capabilities of the protein variants were studied. The results of the functional assays were

compared to the clinical characteristics of the mutation carriers.

Twelve of the studied eighteen mutations were found to exhibit severe defects in

the functional assays, supporting the hypothesis that these mutations were the underlying

cause of the cancer phenotype in mutation carriers. In addition, two mutations reduced but

did not abolish the function of the protein. Four mutations showed no or only minor defect

in the assays. The characterisation of the biochemical defects revealed different
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mechanisms  through  which  the  pathogenic  effects  were  mediated.  The  majority  of  the

MMR-deficient mutations which were located in the amino-terminal domains of the

MSH2 polypeptide demonstrated defects in the protein expression level. Most of the

carboxy-terminal mutations, situated in the ATPase domain, had an impact on the ability

of the protein to bind or release mismatched DNA. When comparing the biochemical data

to the tumour phenotype, a significant correlation between the functional deficiency in

vitro and lack of expression of the corresponding protein in the tumour tissue was

observed.

The analyses demonstrated that the location of the mutation may affect not only

the biochemistry of MMR but also the phenotype of MSH2 mutation carriers. This study

significantly contributed to the knowledge of MSH2-associated HNPCC tumorigenesis,

thereby facilitating the diagnostics and counselling of the associated families. In addition,

the study confirmed and supplemented the prevailing knowledge of the biochemical

functions and characteristics of different MSH2 domains.
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INTRODUCTION

In 1993, the molecular background of a familially clustered cancer syndrome, hereditary

nonpolyposis colorectal cancer (HNPCC), was revealed to be associated with germline

mutations in genes encoding DNA mismatch repair (MMR) proteins (Peltomäki et al.

1993a). Due to the great clinical importance of HNPCC, this breakthrough led to intense

research on MMR. To date, MMR is well characterised and germline defects in four

MMR genes, MLH1, MSH2, MSH6 and PMS2, have been shown to predispose to HNPCC

(Peltomäki 2005, Woods et al. 2007).

Tumorigenesis in HNPCC results from genetic instability, which reflects the loss

of the postreplicative DNA repair activity displayed by MMR. This can be observed as the

microsatellite instability (MSI), which is the hallmark of MMR-deficient tumours

(Aaltonen et al. 1993). The most typical tumours in HNPCC syndrome are tumours of the

colon, rectum and endometrium, whereas other types, such as hepatobiliary, small bowel,

gastric, ovarian and brain cancers occur more rarely yet being more frequent than in the

general population (Watson, Riley 2005). The average age of cancer onset in HNPCC is

about 45 years, whereas most sporadic colorectal cancers have a typical onset some

twenty years later (Lynch, de la Chapelle 1999a). HNPCC has a very high penetrance, and

the lifetime risk of developing cancer in MLH1 and MSH2 mutation carriers is close to

100%. The penetrance is somewhat lower in MSH6 and PMS2 mutation carriers

(Peltomäki 2005).

Thanks to intensive research and highly developed cancer surveillance systems, a

large  proportion  of  the  HNPCC related  malignancies,  especially  the  colorectal  ones,  can

be removed already at an early stage. Thus, in countries, such as Finland, where genetic

counselling and cancer surveillance are efficient, HNPCC-related mortality is low

(Mecklin et al. 2007). However, the efficient screening and counselling of HNPCC

patients can only be applied if the predisposing mutation is characterised.

There are several factors that make HNPCC diagnostics challenging. Colorectal

cancer (CRC) is the third most common cancer in the Western world. It accounts for 10%

of all diagnosed cancers, thus affecting up to 150 000 people in the US and 2 500 people

in Finland in a year (Jemal et al. 2008, www.cancerregistry.fi). HNPCC accounts for only

http://www.cancerregistry.fi)./


12

2 – 3% of all CRC cases (Lynch, de la Chapelle 2003, Salovaara et al. 2000). There are no

clear clinical features separating hereditary from sporadic CRC. Traditionally, HNPCC

diagnostics has been done using information on the familial clustering and the early age at

onset as criteria (Vasen et al. 1991, Vasen et al. 1999). This approach, however, leaves

many HNPCC cases unnoticed, when information about family members is lacking or

when  the  family  is  too  small  to  fulfil  the  diagnostic  criteria.  MSI  and

immunohistochemistry (IHC) studies on genetic instability and MMR protein expression

in  the  tumour,  respectively,  give  indications  as  to  the  MMR  defect,  but  as  such  do  not

provide evidence of its heredity. Therefore, mutational analysis is a prerequisite for

reliable diagnostics. The considerable sizes of the four predisposing genes make

mutational analysis laborious. Furthermore, all genetic variations found in MMR genes are

not associated with cancer predisposition, creating further challenges to HNPCC

diagnostics.

Missense mutations, which lead to single amino acid alterations, and small in-

frame insertions and deletions, may change the structure of the protein only slightly and

associate with functional MMR and no increased cancer predisposition. Alternatively,

they can inactivate MMR and lead to HNPCC. When reliable data of the co-segregation of

the cancer phenotype and genetic variation is not available, the pathogenicity and

phenotypic outcome of a nontruncating variant is impossible to predict. In those cases,

only functional analysis can aid in determining the pathogenicity of the mutation.

The aim of this PhD thesis was to study the pathogenicity, functional significance

and clinical phenotype of nontruncating variants in the MSH2 gene. MSH2 is the second

most common predisposing gene for HNPCC, and the studied mutations were found from

cancer patients. Our findings demonstrate that most of the studied mutations indeed affect

MMR, and that the pathogenicity of the mutation is mediated through different

mechanisms, depending on the location of the mutation in the MSH2 protein. The results

of this study facilitate the genetic counselling of all carriers of the studied mutations,

especially those whose pathogenicity was ascertained by our work, confirming the

HNPCC diagnosis.
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REVIEW OF THE LITERATURE

CANCER

The human body is composed of nearly 1014 cells.  In  order  to  maintain  the  appropriate

homeostasis of an individual, the differentiation, division and death of all those cells must

occur in a highly controlled manner, and failures in this regulation may lead to the

formation  of  tumours.  Tumours  are  characterised  by  uncontrolled  growth  of  cells,

resulting in cell division at an abnormal time or rate or in an abnormal space. Cancer is a

group of diseases characterised by malignant tumours, which are differentiated from the

benign ones by their ability to invade adjacent tissues.

Cancer is the second most prevalent cause of death in Western countries. It

develops slowly and thus affects mainly elderly people. Therefore, cancer incidence is

higher in countries where life expectancy in general is high. In Finland, about 27 000

cancers were diagnosed in the year 2006 (Finnish Cancer Registry,

www.cancerregistry.com), and the estimate number of cancers in the US for 2008 is

nearly 1 500 000 (Jemal et al. 2008). In males, the most prevalent cancers occur in the

prostate, lung or bronchus, colorectum, and urinary bladder. In females, breast cancer is

the most prevalent, followed by colorectal, lung and uterine cancer (Jemal et al. 2008,

American Cancer Society, www.cancer.org). The same cancer types are prevalent in all

Western countries. In total, more than one-third of the population develops a cancer at

some point in life, and the general survival rate 5 years from cancer diagnosis is about

66%. (Jemal et al. 2008, www.cancer.org.) Because of its high incidence, and vast effects

on society both in the form of human suffering and costs to health care, cancer research is

one of the most intensive focuses of study in modern biology. The aim of the research is to

understand  the  processes  of  cancer  development  and,  thereafter,  be  able  to  diagnose  the

tumours earlier, apply more efficient cancer therapy, and, eventually, to be able to prevent

tumour formation.

http://www.cancerregistry.com)/
http://www.cancer.org)./
http://www.cancer.org.)/


14

Cancer genetics

Cancer in general is characterised as atypical cell growth resulting from abnormalities in

cellular regulation. Most of the abnormalities are consequences of alterations in DNA, the

molecule which holds the information on how the cell is built and maintained. Cancer

results from the accumulation of defects in genes which regulate cellular homeostasis and

growth. For a cell population to become cancerous, it needs to fulfil several requirements

which are not met by normal cells: self-sufficiency in growth signals, non-responsiveness

to anti-growth signals, avoidance of apoptosis and senescence, formation of vasculature,

and capacity for tissue invasion and metastasis (Hanahan, Weinberg 2000). Furthermore,

evading the body’s own immune response has in recent years been show to be an

important step in tumour pathogenesis (Drake, Jaffee & Pardoll 2006). Fulfilling all these

conditions requires that several genetic changes take place. Therefore, malignant

transformation is believed to occur sequentially through a process where certain genetic

alterations give cells a growth advantage, allowing them to expand more efficiently as

compared to normally regulated cells, and subsequently acquire more alterations. This can

be seen as Darwinian evolution in the cell population: the most efficiently growing cells

survive best. (Weinberg, 2007)

Oncogenes and tumour suppressor genes

Genes which participate in tumorigenic processes are divided into two main classes:

oncogenes and tumour suppressor genes. In general, proto-oncogenes possess growth-

promoting effects under normal circumstances. Transformation of proto-oncogenes to

oncogenes can occur through activating mutations, increased expression, or gene

amplification. Thus, oncogenes increase the cell’s growth potential by gene activation.

Their tumour-promoting effect is dominant, already affecting cell growth with one altered

allele. Oncogenes are typically genes which encode players in signal transduction

pathways, such as growth factor receptor tyrosine kinases (e.g. epidermal growth factor

receptors, ErbB1-4), signal transduction molecules (Ras, Raf), transcription factors (Myc)

or anti-apoptotic proteins (Bcl-2). Many oncogenes, such as Src, Ras, and Myc, have been

identified via their viral homologs, which have been found to promote tumorigenesis upon

viral infection (Diehl, Keller & Ignatoski 2007).
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Tumour suppressor genes possess growth-limiting functions. In their case, the growth

advantage is acquired by gene inactivation, and in most cases both alleles need to be

inactivated before the effect takes place. Therefore, their effect in tumour progression is

recessive. Tumour suppressor genes are further divided into so-called gatekeepers, whose

function is to regulate the cell division, and caretakers, which look after the integrity of

DNA. Typical gatekeepers are for example retinoblastoma (Rb) and INK4a, which

regulate the G1-S cell cycle checkpoint; pro-apoptotic genes of the BAX family; and

regulators of growth-promoting molecular pathways, such as adenomatous polyposis coli

(APC) (Sherr 2004). Caretaker genes encode proteins which participate in the maintenance

of DNA. Absence of this action leads to increased mutagenesis and therefore an increased

occurrence of subsequent alterations in proto-oncogenes and tumour suppressors.

Reflecting the importance of DNA integrity, to date over 100 proteins with a role in DNA

maintenance have been described (Christmann et al. 2003), and defects in many of those

are connected to cancer formation. This will be discussed in detail in later chapters.

Hereditary cancer

Despite being considered a disease of the genome, the great majority of cancers are not

hereditary. However, several rare syndromes characterised by the familial inheritance of

cancer predisposition in a (near-) Mendelian manner have been identified. These inherited

cancer syndromes are very important areas of study mainly because of two reasons.

Firstly, identification of the genetic component predisposing to cancer in a family allows

diagnosis and surveillance of the other mutation carriers, and leads to relief from the fear

of a high cancer risk in non-carriers (Aktan-Collan et al. 2000). Secondly, inherited cancer

syndromes provide starting points for understanding the genetic components involved in

the regulatory pathways which, when altered, may contribute to cancer formation. Thus,

information derived from studies concerning hereditary cancers can be applied to the

management of all cancers (Fearon 1997).

In hereditary cancer syndromes, the resulting tumour usually develops at an earlier

age as compared to the corresponding sporadic cancers, reflecting the skipping of one step

in the chain of somatic mutations needed for tumour development. This skip is a result of

a germline alteration, usually in a tumour suppressor gene. The altered gene can

predispose to cancer in a dominant or recessive mode. However, also the dominantly
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inherited cancer syndromes are believed to act in a recessive manner at the cellular level,

elucidating the requirement for a somatic mutation in the second allele. This “second hit” -

hypothesis was first presented in the context of retinoblastoma, a cancer of the eye.

Retinoblastoma is inherited through an inactivating mutation in one allele of the tumour

suppressor gene Rb,  which  plays  an  important  role  in  regulation  of  the  G1-S  cell  cycle

checkpoint. Based on his observations of retinoblastoma patients, Alfred G. Knudson

created his famous model for the formation of a hereditary cancer (Knudson 1971). In the

two-hit hypothesis, Knudson proposed that both copies of the Rb tumour suppressor gene

have to be inactivated in a cell before the cell acquires a growth advantage. In familial

cases, one allele is inactivated already in the germline, and when the second copy is lost

by somatic inactivation, tumorigenesis is initiated. In sporadic retinoblastoma, both alleles

need to be somatically inactivated. Later, this hypothesis has been expanded to many

tumour suppressor-associated cancer syndromes (Knudson 1996).

The most common hereditary cancers associated with germline defects in tumour

suppressor genes are listed in Table 1. The oncogenes associated with familial cancer are

RET, MET, and CDK4, which, when mutated in the germline, predispose to multiple

endocrine neoplasia type 2A and 2B, hereditary papillary renal cell carcinoma, and

familial melanoma syndromes, respectively (Marsh, Zori 2002).

 Table 1. The most common hereditary cancers associated with germline defects in tumour
suppressor genes.  (Fearon 1997, Marsh, Zori 2002)

Gene Syndrome Primary tumour Function of the gene(s)
APC Familial adenomatous polyposis Colorectal cancer -catenin regulation
ATM Ataxia telangiectasia Lymphoma DNA damage response
BLM Bloom's syndrome Solid tumours DNA helicase
BRCA1 Familial breast and ovarian cancer Breast and ovarian cancer DNA damage response
BRCA2 Familial breast cancer Breast cancer DNA damage response
CDKN2 Familial melanoma Melanoma Cell cycle regulation
FANC1-12 Fanconi anemia Leukemia DNA crosslink repair
LKB1 Peutz-Jeghers syndrome Gastrointestinal tract cancer Serine-threoninen kinase
MLH1, MSH2,
MSH6, PMS2

Hereditary nonpolyposis colorectal
cancer

Colorectal cancer Mismatch repair

NF1 Neurofibromatosis type 1 Neurofibromas RAS regulator
NF2 Neurofibromatosis type 2 Acoustic neuromas,

meningiomas
Cell adhesion and
cytoskeleton

p53 Li-Fraumeni syndrome Sarcomas, breast cancer DNA damage response
PRKAR1A Carney complex syndrome Pituitary adenoma cAMP pathway
PTCH Nevoid basal cell carcinoma syndrome Basal cell skin cancer Hedgehog signalling

receptor
PTEN Cowden disease Breast and thyroid cancer Tyrosine phosphatase
RB1 Familial retinoblastoma Retinoblastoma Cell cycle regulation
SMAD4 Juvenile polyposis coli Colorectal cancer TGF-  signalling mediator
VHL Von Hippel-Lindau syndrome Renal cancer Fibronectin matrix

assembly
WT1 Wilms tumor Paediatric kidney tumours Transcriptional regulation
XPA-G Xeroderma pigmentosum Skin cancer Nucleotide excision repair
XPV Xeroderma pigmentosum Skin cancer Translesion synthesis
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DNA MAINTENANCE

Origins of mutagenesis

If cancer is considered a disease resulting from cumulative genetic alterations, then how

do these alterations come about? DNA, as well as other molecules in the cell, is at all

times exposed to several damaging agents, which alter its chemical features. DNA is the

guidebook for building all other cellular molecules and it exists only in two functional sets

in each diploid cell. Both copies are necessary. DNA molecules are irreplaceable, and

therefore most sensitive to damage. The sources of DNA-damaging agents can be

endogenous, originating from the cell’s own metabolism, or exogenous, deriving from

outside of the body. The most significant source of endogenous DNA damage is reactive

oxygen species, which are unavoidable byproducts of oxidative metabolism. Exogenous

DNA damage is caused e.g. by ionising radiation (IR), such as X-rays or the high-energy

radiation  resulting  from  radioactive  decay,  UV  radiation  from  the  sun,  and  chemical

carcinogens, such as those derived from tobacco smoke or food. These agents cause a

wide variety of chemical modifications in DNA. Importantly, also spontaneous chemical

reactions, such as deaminations, depurinations and depyrimidations take place frequently,

destabilizing DNA even in the absence of any particular genotoxic stress.

In addition to chemical modifications, which alter the structure of DNA bases,

faulty insertions of structurally perfect bases occur rarely but steadily in the course of

DNA replication. Both types of mutagenesis promote tumorigenesis by altering the

properties  of  functionally  important  genes.  Because  of  the  extreme  importance  of  DNA

stablility, and the vast spectrum of lesions which destabilize it, several repair pathways

and damage responses have evolved to maintain the integrity of DNA (Reviewed e.g. in

Rouse, Jackson 2002, Christmann et al. 2003, Hakem 2008). Supporting the idea of

increased mutability leading to cancer formation, inborn defects in many of these DNA

repair systems lead to a predisposition to hereditary cancer syndromes.

DNA repair pathways

Nucleotide excision repair

A link between DNA repair and cancer was first established when it was shown that cells

of xeroderma pigmentosum (XP) patients, who suffered from sensitivity to sunlight and a

predisposition  to  cancer,  were  unable  to  repair  DNA  lesions  after  exposure  to  UV  light
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(Cleaver 1968). The XP syndrome is inherited in an autosomal recessive manner in genes

named XPA-G and V. These XP-associated genes consist of components of a specific

DNA repair system called nucleotide excision repair (NER). NER defects are also

associated with a variety of segmental progeria syndromes, connecting DNA repair

defects not only to cancer but also to ageing (Andressoo, Hoeijmakers & Mitchell 2006).

NER recognises and repairs a variety of DNA adducts, which cause distortions to

the DNA helix, such as UV irradiation-induced pyrimide dimers and 6-4-photoproducts,

and bulky adducts caused by chemical mutagens. NER is functionally divided to two

distinct pathways, transcription-coupled repair (TCR) and global genome repair (GGR)

(Reviewed in Fousteri, Mullenders 2008, Shuck, Short & Turchi 2008). In TCR, the

proteins Cockayne syndrome A (CSA) and CSB are required for lesion recognition, which

occurs when the elongating RNA polymerase II gets blocked at the site of DNA damage.

Therefore, TCR is limited to the template strand of actively transcribed regions of DNA.

In  GGR,  the  lesion  recognition  component  is  hHR23B/XPC,  and  GGR  repairs  DNA

without strand bias. Following lesion recognition, the NER machinery shares the same

components in both subpathways. The transcription factor IIH (TFIIH) complex is

recruited to the site of the lesion and the XPB and XPD helicase subunits of TFIIH

unwind the  DNA.  XPA outlines  the  site  of  repair  and  assembles  the  remaining  essential

NER machinery on the site. The defective strand is incised by endonucleases XPG and

XPF/ERCC1 at the 5’ and 3’ ends of the lesion, respectively, and the resulting gap is filled

by DNA polymerases and the backbone sealed by DNA ligase I. In total, NER reaction

involves over 25 distinct enzymes (Aboussekhra et al. 1995).

Base excision repair

Base excision repair (BER) is mainly responsible for the recognition and correction of

oxidised and alkylated bases, resulting from cellular metabolic events and IR, and the

correction of abasic sites resulting from spontaneous depurination and depyrimidation

events. BER also addresses DNA bases arising from deamination reactions, which for

example  convert  cytosine  into  uracil,  giving  rise  to  C T  /  G A transitions if not

corrected. Furthermore, BER recognises some DNA mispairs, such as G•T mispairs,

which result from the above-mentioned cytosine deamination (Hegde, Hazra & Mitra

2008). The BER machinery is initiated by glycosylases, each of which recognizes a

specific type of DNA lesion. For example, OGG1 and OGG2 recognize oxidised bases,
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TDG detects T and U in T•G and U•G mispairs, UDG uracil, and MYH adenine in 8-oxo-

G•A mispairs. The glycosylases detach the incorrect base from the deoxyribose backbone

of the DNA molecule, leaving behind an abasic site. Abasic site endonuclease (APE) then

cuts the strand to be repaired 5’ from the abasic site, and DNA polymerase  inserts the

correct base to the site of repair. The DNA strand is sealed by DNA ligase. In addition, so-

called long-batch BER, which removes and resynthesizes 4 – 7 bases around the lesion,

has been described (Frosina et al. 1996). Defects in BER are also connected to cancer

predisposition, as biallelic mutations in MYH can lead to multiple colorectal adenomas

and carcinomas (Al-Tassan et al. 2002, Sieber et al. 2003).

Double-strand break repair

DNA double-strand breaks (DSBs) are generated for example by IR or oxidative damage.

They  can  also  form  due  to  the  collapse  of  the  replication  fork  when  the  replication

machinery encounters single-strand breaks or damaged bases. DSBs are a very severe

form  of  DNA  damage,  and  even  one  such  break  can  cause  cell  death  (Rich,  Allen  &

Wyllie 2000). Unrepaired DSBs or incorrect repair leads to chromosome fusions, deletions

and translocations, which are typical rearrangements in cancer cells (Jackson 2002). Two

mechanisms are responsible for double-strand break repair (DSBR): homologous

recombination (HR) and non-homologous end joining (NHEJ).

HR is an error-free repair system, which processes DNA breaks using the intact

identical sister chromatid or, more rarely, the homologous chromosome as the template to

rescue  the  DSB  and  to  construct  an  intact  DNA  molecule.  Therefore,  HR  takes  place

mainly in the S or G2 phases of the cell cycle, when the sister chromatid is available.

Also, HR is believed to account for the processing of most if not all DSBs associated with

replication fork collapse, because in those cases only one free dsDNA end emerges,

making it impossible for the classical NHEJ pathway to repair the lesion (see below).

The MRN complex, consisting of MRE11, Rad50 and NBS1 proteins, is believed

to process the free DNA ends in HR to create single-stranded overhangs, whose ends are

then bound by Rad52 (Stasiak et al. 2000). RPA coats the single-stranded regions; and

Rad51 forms nucleoprotein filaments on ssDNA to promote strand exchange. Rad52 and

Rad54 promote the homology search and strand-exchange events of Rad51-coated ssDNA

with the complementary DNA strand. Strand invasion is followed by branch migration,

gap filling and resolving of the intermediate structures to give rise to two intact DNA
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molecules (reviewed e.g. in Helleday 2003, Li, Heyer 2008). Among the various other

proteins involved in HR are BRCA1 and BRCA2, mutations in which predispose to

familial breast and ovarian cancer (Fackenthal, Olopade 2007).

HR is, in addition to functions in DSBR, also involved in the processing of

intrastrand crosslinks (ICLs), which are detrimental DNA lesions leading to the blockage

of transcription and replication (Dronkert, Kanaar 2001). In response to ICLs, proteins of

the Fanconi Anemia (FA) pathway are important for the initiation of Rad51-mediated HR.

Patients carrying mutations in genes involved in this pathway (altogether 12 identified

FANC genes) are prone to cancers, such as acute myeloid leukemia and squamous cell

carcinoma, and the hallmark of FA patient cells is sensitivity to DNA intrastrand

crosslinking agents, such as Mitomycin C (Patel, Joenje 2007).

The NHEJ pathway is used for DSBR in the G0 and G1 phases of the cell cycle,

when the sister chromatid templates for HR are not available. In the NHEJ reaction, the

MRN complex processes the free DNA ends, followed by DNA end binding by Ku

(Ku70-Ku80 complex). Then, Ku binds the DNA-dependent protein kinase catalytic

subunit (DNA-PKcs), forming an enzyme complex called DNA-PK. DNA-PK activates a

complex of XRCC4 and ligase IV, which link and ligate the broken DNA ends together

(reviewed in Weterings, Chen 2008). NHEJ is error-prone, as deletions occur due to the

degradation of the DNA ends in the search for microhomology before the two DNA ends

can be joined. An exception, however, are the cases where the two DNA ends have

complementary overhangs, such as when the DNA break is induced by nucleases in V(J)D

recombination or class-switch recombination, both important processes in the production

of antibodies, and both of which use the NHEJ machinery for DNA strand reattachment

(Lieber et al. 2004).

Translesion synthesis

Translesion synthesis (TS) is an error-prone mechanism, which uses specific TS

polymerases (e.g. pol  ,  pol  ,  pol   and  Rev1)  to  replicate  the  DNA strand  past  lesions

which block the progress of the replicating high-fidelity polymerases  and . This activity

is called lesion bypass. TS polymerases insert bases opposite to the damaged nucleotides

with low fidelity, resulting in frequent mis-insertions, which promote mutagenesis

(McCulloch, Kunkel 2008). Although it introduces replication errors in DNA, the TS

pathway can circumvent more severe conditions, such as double-strand breaks, which
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occur  when  replication  forks  collapse.  In  addition  to  lesion  bypass,  TS  polymerases  are

also active in some DNA repair pathways, such as HR, NER and BER (Kawamoto et al.

2005, Ogi, Lehmann 2006, Prasad et al. 2003), and defects in them have been connected

to cancer susceptibility in mice and man (Dumstorf et al. 2006, Lin et al. 2006, Broughton

et al. 2002).

DNA damage response pathway

In ideal cases, when DNA damage is detected, the damage is repaired fast and with high

fidelity to ensure DNA integrity and continuation of the cell cycle. However, in some

cases the process is slow or not possible, and the cell cycle has to be arrested until DNA

repair is complete. This activity is mediated by specific signalling cascades, which

activate the DNA damage response (DDR) pathway. DDR co-operates with DNA repair

and contributes to enhanced repair and the activation of cell cycle checkpoints.

Alternatively, if the damage persists, DDR directs the affected cell to apoptosis or

senescence (Rouse, Jackson 2002).

DDR  sensors,  which  detect  damage  to  DNA,  are  probably  the  proteins  of  DNA

repair pathways which recognise and bind to their specific target lesions. If the problem

persists, DDR is activated. The central proteins mediating the DDR signals are the

phosphatidyl-inositol 3-kinase (PI3K) -like protein kinases Ataxia-Telangiectasia mutated

(ATM) and ATM and Rad3-related (ATR). ATM is activated mainly in response to DSBs,

whereas ATR has a more diverse variety of activators (Abraham 2001). Activation of

these kinases leads to the phosphorylation of their downstream targets, which include the

signal transducers checkpoint kinase 2 (CHK2) and CHK1, and the common DNA

damage response signalling protein p53. These phosphorylation cascades lead to e.g.

H2AX histone phosphorylation and the accumulation of repair factors such as the

MRE11-RAD50-NBS1 (MRN) complex at the site of the lesion, cell cycle checkpoint

activation, increased transcription or posttranslational modification of DNA repair factors,

and eventually, if the problem persists, cell death (Rouse, Jackson 2002). Germline

alterations in the DDR pathway genes lead to cancer syndromes, such as ataxia

telangiectasia (the mutated gene is ATM) (Savitsky et al. 1995), Nijmegen breakage

syndrome (NBS1) (Matsuura et al. 1998), and Li-Fraumeni syndrome (p53) (Malkin et al.

1990, Srivastava et al. 1990). Moreover, p53 is sporadically inactivated in about 50% of

cancers, emphasizing the extreme importance of the DDR pathway (Soussi et al. 2006).
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MISMATCH REPAIR

In  the  course  of  DNA  replication,  it  is  estimated  that  despite  efficient  proofreading,  the

replicating polymerase makes an insertion mistake every 106-107 bases it incorporates into

nascent DNA (Kolodner, Marsischky 1999). Mismatch repair (MMR) is the DNA repair

machinery responsible for correcting these errors. The most common mispair is G•T,

which causes only a slight DNA strand distortion (Hunter et al. 1987), and therefore is the

most likely mispair to be ignored by the polymerase’s proofreading activity. Another

common type of error arises during the replication of repetitive sequences such as

common adenine mononucleotide repeats or CA-dinucleotide repeats, so-called

microsatellites. During the replication of these sequences, the two DNA strands

occasionally detach and renature, giving rise to extrahelical unpaired nucleotides

(insertion-deletion loops, IDLs) (Kunkel 1993). MMR screens along the postreplicative

DNA and corrects the mismatches and IDLs, thereby reducing the spontaneous mutation

rate by a further two to three orders of magnitude (Modrich, Lahue 1996).

In addition to their best characterised function in monitoring postreplicative DNA,

MMR  proteins  are  also  involved  in  many  other  cellular  processes,  which  are  briefly

described  here.  For  example,  the  MMR  system  recognises  a  variety  of  DNA  lesions

caused by e.g. alkylating agents, 6-thioguanine, and cisplatin, and mediates cell cycle

checkpoint activation and apoptosis (Karran 2001). MMR also plays a role in somatic

hypermutation, which occurs in B lymphocytes after antigen stimulation. There, MutS  is

believed to recognise the G•U mispairs caused by activation-induced cytidine deaminase

(AID), mediate the excision of the U containing strand, and recruit error-prone translesion

polymerases to fill the single-stranded gap (Peled et al. 2008). The MMR activity in

somatic hypermutation leads to mutations primarily in A•T base pairs, whereas base

excision  repair  glycosylases  and  replication  of  G•U  mispairs  leads  to  mutations  in  G•C

base pairs (Rada et al. 1998). Another function of MMR proteins is to suppress

recombination of similar but not identical, homeologous sequences (Surtees, Argueso &

Alani 2004). On the other hand, large triplet repeat expansions which are associated with

many neurodegenerative diseases, such as myotonic dystrophy and Huntington’s disease,

seem to be dependent on active MMR (Manley et al. 1999, Savouret et al. 2004).

Despite the variety of activities played by MMR, the main function and focus of

this work is the repair of DNA mispairs arising during DNA replication. The fundamental

difference between MMR and the DNA damage repair pathways dealing with chemically
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altered DNA is that in MMR, no malformed DNA bases are involved, thus creating the

dilemma of  which  strand  to  degrade  and  which  one  to  use  as  a  template.  Therefore,  the

repair has to be directed to the newly synthesised strand, which by default contains the

incorrect nucleotide.

MMR in Escherichia coli

MMR was first described in prokaryotes and the reaction was reconstituted in vitro

already in 1989 (Lahue, Au & Modrich 1989). Mismatch recognition in E. coli is

performed by a homodimer of two MutS-proteins. Mismatch-bound MutS complex is then

bound  by  another  protein,  the  homodimeric  MutL.  The  MutS-MutL-DNA  complex

activates MutH which functions as a latent endonuclease and the strand discrimination

sensor. The strand discrimination is based on the transient absence of methylation at the

GATC-sites in the nascent strand, where deoxyadenine (DAM) methylase adds methyl

groups about 2 minutes after DNA synthesis. MutH incises the DNA in the vicinity of the

mismatch by the closest unmethylated GATC-site (Grilley, Griffith & Modrich 1993).

DNA is unwound by DNA helicase II (MutU), allowing exonucleases, such as ExoI, RecJ,

ExoVII or ExoX to excise the incorrect strand past the mismatch. The resulting gap is

filled by DNA polymerase III and sealed by DNA ligase (Burdett et al. 2001, Modrich,

Lahue 1996). Additional proteins required for the reaction include single-strand binding

protein (SSB), which coats the ssDNA gap resulting from exonuclease activity; -clamp

protein, which possibly recruits MutS to mismatches and is required for the processivity of

DNA polymerase III; and  Complex, which loads the -clamp onto DNA (Kunkel, Erie

2005). The outline of the E. coli MMR is depicted in Figure 1.
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Figure 1. Mismatch repair in E.coli. (1) A G-T mispair has escaped the replicative polymerase’s
proofreading activity. (2) A dimer of MutS binds to the mismatch and attracts dimeric MutL to the
site, and the endonuclease MutH is activated. MutH incises the newly synthesised strand in the
vicinity of the closest unmethylated GATC site. (3) Exonucleases degrade the nascent strand until
the mismatched DNA has been removed. (4). The resulting single-stranded gap is bound by single-
stranded protein (SSB). (5) DNA polymerase III fills the gap using the intact strand as a template.
(6) The mismatch has been corrected, sealed by ligase, and the new strand methylated by DAM
methylase.

MMR in eukaryotes

In eukaryotes, the MMR reaction and involved proteins are highly similar to their

prokaryotic counterparts, albeit with some differences. A great deal of work has been done

in yeast, contributing significantly to the knowledge of eukaryotic MMR we have today

(Reviewed in Fishel, Kolodner 1995). In this work, the main focus is on the human

system, but the yeast (Saccharomyces cerevisiae) MutS and MutL homologues are shortly

introduced.

In humans, there are altogether 5 MutS homologues, of which MutS Homologues

MSH2, MSH3 and MSH6 have been associated with MMR (Drummond et al. 1995,

Palombo et al. 1996), whereas MSH4 and MSH5 function in meiosis (Bocker et al. 1999).
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The corresponding protein homologues are also found in yeast. Furthermore, a sixth MutS

homologue, Msh1, not found in mammals, is reported to function in yeast mitochondrial

MMR (Reenan, Kolodner 1992). In contrast to the prokaryotic proteins, which act as

homodimers, MutS and MutL homologues function in eukaryotes as heterodimers. The

mispair recognition is done by a MutS homologue heterodimer, but the exact dimer

composition depends on the type of lesion. Base-base mismatches and small (<2 bp) IDLs

are recognised by a complex of MSH2 and MSH6 (MutS ), whereas an MSH2-MSH3

(MutS ) complex recognises only IDLs (Acharya et al. 1996, Palombo et al. 1996). Thus,

MSH6 and MSH3 play partially redundant roles in MMR.

The human MutL Homologues are MLH1, MLH3, PMS1 (Post-Meiotic

Segregation 1) and PMS2. In yeast, the closest homologue of human PMS2 is Pms1,

whereas yeast Mlh2 corresponds to human PMS1 (Wang, Kleckner & Hunter 1999). In

human MMR, the heterodimer of MLH1 and PMS2 (MutL ) is the most important MutL

complex, but also the MLH1-MLH3 (MutL ) complex is able to repair base-base

mismatches in vitro, and is suggested to act as a backup for MutL  (Cannavo et al. 2005,

Korhonen et al. 2007). In yeast, the main MutL homolog is Mlh1-Pms1, and the Mlh1-

Mlh3 complex has been reported to participate in the repair of >3 bp insertion-deletion

loops (Flores-Rozas, Kolodner 1998). The roles of human MLH1-PMS1 -complex

(MutL ) (Raschle et al. 1999) and yeast Mlh2 (Wang, Kleckner & Hunter 1999) are

uncertain. The eukaryotic MutS and MutL are presented in Table 2.

Table 2. E.coli, yeast, and human MutS and MutL homologues.

E. coli Yeast Human Function in MMR
MutS Msh1 - Mitochondrial MMR

Msh2 MSH2 Mismatch and IDL recognition
Msh3 MSH3 IDL recognition
Msh4 MSH4 (Meiotic recombination)*
Msh5 MSH5 (Meiotic recombination)*
Msh6 MSH6 Mismatch and small IDL recognition

MutL Mlh1 MLH1 MMR assembly
Mlh3 MLH3 MMR assembly and endonuclease

(backup?)
Pms1 PMS2 MMR assembly and endonuclease
Mlh2 PMS1 ?

*These proteins do not have a function in DNA repair

Although several eukaryotic MutS and MutL homologues have been identified,

homologues for the endonuclease MutH have not been found. The excision of the
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incorrect strand in eukaryotes has been suggested to begin from the free DNA end

associated  with  the  progression  of  the  replication  fork,  either  at  the  3’  or  5’  end  of  the

Okazaki fragment in the lagging strand, or the 3’ end of the leading strand (Modrich,

Lahue 1996). Given the lack of GATC methylation in eukaryotic DNA, the strand

discontinuity could also account for the strand discrimination signal. Alternatively, strand

discrimination might be directed through the interaction of MMR proteins with the

replisome-associated proliferating cell nuclear antigen (PCNA) (Bowers et al. 2001, Umar

et al. 1996), which is the processivity factor for replicative DNA polymerases. Recently,

however, the significant finding that MutL  possesses a cryptic endonuclease activity was

reported (Kadyrov et al. 2006). This activated endonuclease introduces several incisions

primarily on the 5’ side of the mismatch in the MMR reaction. The activity is disturbed by

inactivating mutagenesis in the identified endonuclease sequence motif in the C-terminus

of the PMS2 subunit. This endonuclease (DQHA(X)(2)E(X)(4)E) sequence motif is also

present in the prokaryotic endonuclease MutH. Human MLH3, but not PMS1, contains the

motif, supporting the interpretation that MutL , but not MutL , plays a role in MMR.

Eukaryotic MMR has also been reconstituted in vitro (Constantin et al. 2005,

Zhang et al. 2005). The MMR substrate mimicking the replication error was a double-

stranded DNA plasmid with a mismatch and a single-strand nick either 3’ or 5’ of the

mismatch. Such breaks direct the MMR reaction to the correct DNA strand in human cell

extracts (Holmes, Clark & Modrich 1990, Thomas, Roberts & Kunkel 1991b). The factors

required for the 5’ reaction (nick situated 5’ of the mismatch) were MutS ; PCNA;

replication factor C (RFC), which loads PCNA on the DNA; Exonuclease I (EXOI), which

excises the newly synthesised DNA strand; single-strand binding protein RPA, which

binds to the ssDNA gap resulting from the ExoI activity; and polymerase , which fills the

gap using the intact strand as a template. Surprisingly, only the 3’ reaction required MutL

(Constantin et al. 2005). Another study reported that also the protein HMGB1 was needed

for the reaction (Zhang et al. 2005).

The  lack  of  MutL  requirement  in  5’-directed  MMR  reconstitution  is  as  yet  not

understood, as lack of MLH1 is the classical cause for MMR deficiency both in vitro and

in vivo (Li, Modrich 1995, Lindblom et al. 1993),  and  MutL  is  believed  to  be  an

indispensible molecular matchmaker in the MMR reaction (Jiricny, Nyström-Lahti 2000).

The recent finding that MutL  is an endonuclease which provides the 5’ break for excision

initiation for 5’-3’ exonuclease ExoI (Kadyrov et al. 2006) partially explains the
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dispensability of MutL  in the MMR reconstitution with the 5’-nicked heteroduplex. Why

the MMR of 5’-nicked substrates does not occur in MLH1-deficient cell extracts (e.g.

Nyström-Lahti et al. 2002, Raevaara et al. 2005) is yet to be clarified. The proteins

required for MMR reconstitution in prokaryotes and eukaryotes are listed in Table 3. The

overview of the current model of eukaryotic MMR is depicted in Figure 2.

Table 3. E.coli and Human MMR proteins.
E. coli Human Function
MutS MutS , MutS Mismatch recognition

Repairosome assembly
Endonuclease in eukaryotes

MutH - Endonuclease
DNA helicase II (MutU) - DNA helicase
ExoI, RecJ, ExoVII ExoI (and others?) Exonuclease
SSB RPA (and HMGB1) Single-strand gap protection
DNA pol III DNA pol Polymerase
-clamp PCNA Polymerase processivity factor

 Complex RFC Processivity factor loader

MutL MutL , MutL

Figure 2. A model for eukaryotic MMR. (1) Strand discontinuity, either 3’ or 5’ from the
mismatch, serves as the strand discrimination signal in the MMR reaction. How the strand
discrimination  signal  is  communicated  to  the  site  of  nicking  is  unclear.   (2)  MutS  binds  to  the
mismatch and recruits MutL  to the site. (3) MutS  (possibly bound to MutL ) leaves the site of
mismatch in search of strand discontinuity. MutL  makes several incisions in the repairable strand
in the vicinity of the mismatch. (4) RPA covers the resulting ssDNA. (5) DNA polymerase  fills
the gap and (6) DNA ligase I ligates the remaining nick. According to (Jiricny 2006, Kadyrov et
al. 2006).

G
C

5’
3’

3’
5’

1

2 T3’
5’

5’
3’

G
T

5’
3’

T3

4 G
T

5’
3’

3’
5’

3’
5’

5 G3’
5’

5’
3’

6

G
T

5’
3’

3’
5’

G
T

5’
3’

3’
5’

G
T

5’
3’

3’
5’

G
T

5’
3’

3’
5’

MutL DNA Pol RPA

MutS EXOI                      DNA ligase 1



28

Role of MutS  in MMR

When screening postreplicative DNA, MutS  is suggested to be physically attached to the

replication machinery by an MSH6-mediated contact to polymerase processivity factor

PCNA (Kleczkowska et al. 2001). Upon encountering a misintegrated base or an IDL,

MutS  binds to the mismatch. It then recruits MutL  to the site, and releases the mismatch

by sliding from the site along the DNA in order to allow the subsequent repair process to

take place (Blackwell et al. 1998, Gradia et al. 1999). MutS  changes conformational

states from general DNA sliding to mismatch binding and downstream signalling mode by

alternating the binding of adenine nucleotides in its two subunits, both of which possess an

ATP-binding and hydrolysis domain in their carboxy terminus (Warren et al. 2007). As

these ATP / ADP switches control the DNA binding activities of the heterodimer, the

nucleotide binding and hydrolysis activities of MutS  are vital, and mutations in the

ATPase domains of MSH2 and MSH6 have been shown to inactivate functional MMR

(Dufner et al. 2000, Iaccarino et al. 1998). To date, the exact mode of MutS  translocation

along DNA remains uncertain. The two favoured models are known as the “sliding clamp”

model (Gradia, Acharya & Fishel 1997a) and the “active translocation” model (Blackwell

et al. 1998).  These  models  differ  in  terms  of  the  energy  requirement  for  the  movement

along DNA – the former suggests that several MutS  clamps diffuse stochastically in both

directions from the mismatch until they find the strand discontinuity signal, and the latter

proposes that the translocation is ATP hydrolysis-driven. However, both models agree that

MutS  binds mismatches in an ADP-bound state, and that switching of ADP to ATP

mediates a conformational change in the molecule, allowing movement along DNA.

Whether the whole MutS -MutL  ternary complex, which forms upon the mismatch, or

MutS  alone actually slides along the DNA remains unknown.

Structure of MutS

While crystal structures of prokaryotic MutS dimers have been available since 2000

(Lamers et al. 2000b, Obmolova et al. 2000), the human MutS  structure was solved only

recently (Warren et al. 2007). As already demonstrated by the prokaryotic structures, the

two MutS subunits are organised asymmetrically. The human structure confirmed the

previous observations made by mutagenesis experiments that MSH6 is the mismatch

binding monomer of MutS  (Dufner et al. 2000). According to both the prokaryotic MutS

and human MutS  crystal structures, both subunits of the complex are divided into five
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functional subunits: a DNA-binding domain (domain 1), a connector domain (domain 2), a

lever domain (domain 3), a clamp domain (domain 4) and an ATPase domain (domain 5).

Furthermore, the extreme C-terminus in both monomers contains a helix-turn-helix-motif,

which stabilizes the ATPase domains of the MutS  subunits (Lamers et al. 2000a,

Obmolova et al. 2000, Warren et al. 2007). The crystal structure of MutS  is shown in

Figure 3.

DNA DNA

ADP ADP

DNA DNA

ADP ADPA B

Figure 3. The crystal structure of human MutS  on mismatched DNA. A. The MSH6 subunit
of the MSH2-MSH6 heterodimer is displayed on the left, and coloured with light brown. The
MSH2 subunit is on the right and its separate functional domains are coloured differentially.
Yellow: domain I, DNA binding domain; dark blue: domain II, connector domain; green: domain
III, lever domain; grey: domain IV, clamp domain; light blue: domain V, ATPase domain. B. The
same structure rotated 90°. The crystal structure represents MutS  bound to a G•T mismatch, and
both monomers carry ADP. According to Warren et al. 2007.

The DNA-binding domain of MSH2 makes an unspecific DNA contact in the

vicinity of the mismatch, while MSH6 is responsible for the actual binding to the

mismatch. The connector domain connects the DNA-binding subunit to the rest of the

MutS  heterodimer, and is responsible for the intramolecular interactions and allosteric

signalling between different protein domains. The lever domain is a large domain which

connects the ATP-binding subunit to the clamp domain, which makes unspecific DNA

contacts. It is believed to mediate signals between the ATP- and DNA binding parts of the

protein and to communicate the structural transformation messages. The ATP-binding /
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hydrolysis subunit modulates the conformation of the protein dimer by binding either no

nucleotide, ADP or ATP. As the ATP-binding sites can be occupied by different ligands,

the  two  sites  can  exist  in  several  different  combinations.  Because  of  this,  it  has  been

difficult to exclusively determine the nucleotide-binding states of MSH2 and MSH6 in

different stages of the MMR reaction (Gradia, Acharya & Fishel 2000, Warren et al.

2007).

Human MutS  has been crystallised bound to four different DNA lesions (Warren

et al. 2007). The G•T mismatch and the unpaired T nucleotide represent replication errors,

the  classical  MMR  substrates.  As  mentioned  above,  MutS  is  known  to  be  involved  in

other cellular pathways, for example somatic hypermutation and the response to alkylating

damage. A yeast study proposed that the conformation of MutS , bound to its substrate, is

determined by the pathway it is employed in (Drotschmann et al. 2004). To address this

issue in humans, human MutS  complex was also crystallised bound to two other

structures: a G•U mispair, reflecting somatic hypermutation, and an O-6-Methyl-G•T, a

lesion resulting from alkylating damage. All four substrates were bound similarly,

indicating that although MutS  plays a role in several cellular processes, the different

signalling does not represent differences in the substrate binding. Instead, varying

downstream factors are more likely to mediate the variety of responses (Warren et al.

2007).

Defective MMR

As in  other  DNA repair  pathways,  also  defective  MMR leads  to  genetic  instability.  The

main role of MMR is to correct postreplicative errors in DNA, and MMR deficiency gives

rise to point mutations and, in particular, variety in the length of short repetitive

sequences, microsatellites. This variety results from unrepaired IDLs, and is called

microsatellite-instability (MSI). Due to the accumulation of MSI and other replication

errors in the genome, MMR deficiency eventually leads to cancer. MMR defects are

frequently found in sporadic tumours, and inherited MMR deficiency leads to hereditary

nonpolyposis colorectal cancer (HNPCC), also called Lynch syndrome (Lynch, de la

Chapelle 1999a).
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HEREDITARY NONPOLYPOSIS COLORECTAL CANCER

HNPCC is a relatively common hereditary cancer syndrome, accounting for

approximately 2-3% of all colorectal cancers (CRCs) (Lynch, de la Chapelle 2003,

Salovaara et al. 2000). The susceptibility to cancer is inherited in an autosomal dominant

manner. HNPCC was first reported already in 1913, when Aldred S. Warthin described a

family with a hereditary occurrence of gastric cancer (Lynch, Krush 1971). In the 1960s

and 1970s, attention was redrawn to the syndrome by Henry T. Lynch. He characterised

several hereditary cancer families suffering from familial colorectal and some extracolonic

cancers, mainly endometrial tumours (Lynch, Smyrk & Lynch 1998). Thus, the existence

of a familial CRC syndrome was characterised already long before its genetic basis was

revealed. The syndrome was called hereditary nonpolyposis colorectal cancer to

differentiate it from other known hereditary CRC syndromes, such as familial

adenomatous polyposis (FAP), juvenile polyposis and Peutz-Jeghers syndrome, all of

which are characterised by the occurrence of numerous polyps in the large intestine (for a

recent review on colorectal polyposis syndromes,  see e.g. Jass 2008).

Genetics of HNPCC

The connection between germline defects in MMR genes and HNPCC was established

when the first susceptibility genes MSH2 (Leach et al. 1993, Peltomäki et al. 1993b) and

MLH1 (Lindblom et al. 1993, Papadopoulos et al. 1994) were found and mutations in

them were shown to segregate with cancer in HNPCC families. Furthermore, MSI,

resulting from defective repair of IDLs, was found to be the hallmark of HNPCC tumours

(Aaltonen et al. 1993). To date, inherited mutations in MLH1, MSH2, MSH6 and PMS2

have been shown to predispose to HNPCC, whereas the role of MLH3 is elusive and

MSH3 and PMS1 most likely do not participate in cancer predisposition.

To date, over 1500 different variants have been identified in the four HNPCC

genes. By February 2007, 659 unique variants in MLH1 (44% of all identified MMR gene

variants), 595 in MSH2 (39%), 216 in MSH6 (14%) and 45 in PMS2 (3%) had been

published (Woods et al. 2007). The most typical alterations found in MMR genes are

missense mutations and insertions / deletions. Splice site, silent and nonsense variations

are somewhat less frequent. Mutations are not clustered in hot spots. Exon 17 in MLH1

and exon 11 in MSH2 are the most frequently mutated, if the number of variations is
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correlated with the length of the exon (Woods et al. 2007). Founder mutations, affecting

several families in a typical geographical area, are rare. A common splice-site mutation in

MSH2 intron 5 has been found in several countries, for example in the US and England

(Froggatt et al. 1999), and the deletion of exons 1 to 6 is a founder mutation in the US

(Clendenning et al. 2008). In Finland, a splice-site mutation in MLH1 exon 6 and a

deletion of MLH1 exon 16 account for the majority of HNPCC mutations (Nyström-Lahti

et al. 1995). The MSH2 missense mutation A636P is present in about one-third of

HNPCC cases in Ashkenazi Jews (Guillem et al. 2003, Guillem et al. 2004).

Due to the large amount of identified genetic variations in MMR genes, attempts

have been made to collect the information into internet databases to distribute it to

HNPCC researchers and clinicians. The first HNPCC mutation database was established

and maintained by the International Society for Gastrointestinal Hereditary Tumors

(InSiGHT) (www.insight-group.org). This database relies on entries of original data from

investigators and therefore only includes information provided by the depositor. Recently,

a significant contribution to HNPCC mutation compilation has been made by Michael

Woods and colleagues, who have assembled all published MMR mutations in one

database (Woods et al. 2007, www.med.mun.ca/MMRvariants).

According to the two-hit hypothesis, HNPCC is inherited dominantly but, as in the

case of many hereditary cancers, the tumorigenesis requires the inactivation of the second

allele (Knudson 1996). This second hit can occur for example through promoter

hypermethylation, loss of heterozygosity, or gene conversion (Yuen et al. 2002, Zhang et

al. 2006). Thus, the first allele being absent in the germline, the second hit inactivates

MMR. This leads to the failed correction of IDLs and therefore to MSI. MSI, then, affects

several genes by altering their reading frame. Among the most often reported MSI target

genes are TGFßRII, BAX, and IGFIIR, which all contain mononucleotide repeats in the

coding sequence (Markowitz et al. 1995, Rampino et al. 1997, Souza et al. 1996), and act

as suppressors of cellular growth (TGFßRII, and IGFIIR) or as proapoptotic proteins

(BAX).  Also  the  MMR  genes MSH3 and MSH6, and a number of others, have been

described as MSI target genes (Duval, Hamelin 2002, Malkhosyan et al. 1996).

http://www.insight-group.org)./
http://www.med.mun.ca/MMRvariants).
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Clinical characteristics of HNPCC patients

HNPCC-related CRCs have some typical characteristics, although none of those allow

reliable discrimination from sporadic CRC. The average age of HNPCC onset is about 45

years, in contrast to sporadic cancers, which appear some 20 years later (Lynch, de la

Chapelle 1999b, Peltomäki, Gao & Mecklin 2001). In HNPCC, tumours are situated

mainly in the proximal colon, and multiple synchronous and metachronous tumours are

common. HNPCC patients have better prognosis than sporadic CRC patients, and the

tumours have typical histological features, such as tumour-infiltrating lymphocytes and

mucinous differentiation (Umar et al. 2004). HNPCC is also characterised by the frequent

occurrence of various extracolonic tumours, mainly in the endometrium, small intestine,

hepatobiliary tract, stomach and skin (Muir-Torre syndrome, see below). The penetrance

of the cancer phenotype in MSH2 or MLH1 mutation carriers has been estimated to be

close to 100%, whereas MSH6 mutation carriers have slightly reduced and PMS2 mutation

carriers significantly lower penetrance (Peltomäki 2005). The risk of CRC in MMR

mutation carriers is estimated to be around 80% by the age of 70 years, with females

having a somewhat lower risk than males. Endometrial cancer is even more common than

CRC in females, showing about 50 – 60% penetrance (Aarnio et al. 1999a, Vasen et al.

1996). The life-time risk of other extracolonic cancers is estimated to be between 2 and

10% (Watson, Lynch 2001).

Several clinical criteria have been introduced to unify the international practice of

HNPCC  diagnostics  and  to  identity  the  HNPCC  families  from  the  frequent  sporadic

CRCs. The first diagnostic criteria, the Amsterdam criteria (AC), were created 1991

(Vasen et  al. 1991). AC are based on the young age of onset and familial occurrence of

CRC. These criteria were later modified to include the extracolonic tumours of the

HNPCC tumour spectrum in the diagnostic guidelines (ACII), (Vasen et al. 1999). The

Amsterdam criteria are specific and only rarely identify false positive cases, but they are

not  sensitive  and  many  HNPCC  families  will  be  missed  if  these  are  used  as  the  single

criterion. Therefore, the Bethesda guidelines were established to identify the HNPCC

families who, due to e.g. small family size or insufficient information, were not found

with AC (Rodriguez-Bigas et al. 1997). These criteria made use of the MSI phenotype

associated with HNPCC tumours. Also the Bethesda criteria have been later modified

(Umar et al. 2004). Both revised criteria are detailed in Table 4.
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Table 4. The diagnostic criteria for HNPCC.

Amsterdam Criteria II (All of following
conditions fulfilled)

Revised Bethesda guidelines (Any of the following
conditions fulfilled)

•At least three relatives with HNPCC-associated •CRC diagnosed in a patient before age 50
cancer (in colorectum, endometrium, small •Presence of synchronous, metachronous CRC or
bowel, ureter, renal pelvis) other HNPCC associated tumours, regardless of age
•One should be a first degree relative of the •CRC with the MSI-high histology* diagnosed in a
other two patient before age 60
•At least two affected generations •CRC diagnosed in one or more first-degree
•At least one member diagnosed before age 50  relatives with an HNPCC-associated tumour, with
•FAP should be excluded one of the tumours diagnosed before age 50
•Tumours should be verified by pathological •CRC diagnosed in two or more first- or second
 examination degree relatives, with HNPCC-associated tumours,

regardless of age

*For definition of MSI status, see text below.

Microsatellite-instability and immunohistochemistry in HNPCC diagnostics

Management of the cancer families and the applied tumour therapy differs between

HNPCC and sporadic CRCs. Therefore, phenotypic features helping the diagnostics of

HNPCC are very important to indicate the requirement for mutation analysis. Phenotypic

characteristics  of  HNPCC  tumours  include  MSI  and  loss  of  expression  of  an  MMR

protein, reflecting the underlying MMR defect.

MSI analysis is informative for establishing whether the tumour is MMR-deficient

or  not,  but  is  not  specific  to  HNPCC,  due  to  the  frequent  somatic  inactivation  of  the

MLH1 promoter in sporadic CRCs (Thibodeau et al. 1998). However, MSI analysis is

often used as a rough screening method for MMR defect. In MSI testing, a general panel

of 5 microsatellite markers are used. If two or more of those are unstable, the tumour is

classified MSI-high (MSI-H) (Boland et al. 1998).

Immunohistochemical (IHC) assessment of the expression of MMR proteins in

tumours is another widely used method for detecting MMR deficiency. Lack of expression

gives a good indication of the MMR factor behind the MSI phenotype. This holds

especially true for MSH2 (Mangold et al. 2005), whereas lack of MLH1 expression is

often due to promoter hypermethylation. On the other hand, the expression of a protein

does not always indicate that it is functional (Mangold et al. 2005, Raevaara et al. 2005).

It is also to be noted that MMR proteins function as heterodimers, and some monomers

are not stable without their partners (Chang et al. 2000). Thus, if MSH2 is absent, also

MSH6 staining is negative, due to the instability of MSH6 without MSH2. The same is

true for PMS2: without MLH1, PMS2 degrades. Solid knowledge of the expression
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profiles of all four genes gives a good idea where to look for the germline mutation

(Hampel et al. 2005).

Muir-Torre syndrome

Muir-Torre  syndrome  (MTS)  is  a  rare  subtype  of  HNPCC.  A  recent  report  showed  that

about 9% of individuals with HNPCC also exhibit MTS (South et al. 2008). In addition to

tumours of the HNPCC spectrum, the patients also display skin tumours, predominantly

sebaceous gland tumours or keratoacanthomas (Cohen et al. 1995, Schwartz et al. 1989).

Both skin and visceral tumours in MTS display high MSI (Kruse, Ruzicka 2004a),

reflecting the underlying MMR defect. Potentially, a skin tumour with a diagnosed

germline MMR defect could be of strong clinical importance, allowing the diagnosis of

MTS already before the visceral cancer manifestates. This would greatly contribute to

early surveillance and cancer prevention in the mutation carrier.

By 2006, a total of 41 MMR gene mutations linked to MTS had been reported. 38

of these mutations were situated in MSH2 and only three in MLH1, suggesting a strong

bias of MTS syndrome associating with only one MMR gene, MSH2 (Bapat et al. 1999,

Kruse, Ruzicka 2004b, Mangold et al. 2004, Ponti et al. 2005). This is in contrast to

HNPCC, where MLH1 is the most frequently mutated predisposing gene (Peltomäki et al.

2005). In addition, only three of the MTS-linked mutations were of the missense type

(7%), in contrast to the fact that 22% of all reported MMR gene variations and 17% of

MSH2 variations are missense mutations (www.med.mun.ca/MMRvariants). Some recent

systematic studies suggest, however, that MLH1 mutations could play a more frequent role

in MTS than previously thought (Ponti et al. 2006, South et al. 2008), and that also MSH6

mutations are involved (Mangold et al. 2007, Murphy et al. 2008).

NONTRUNCATING MUTATIONS IN HNPCC

Frequency of nontruncating mutations in MMR genes

A major problem in the diagnosis and management of HNPCC is the frequent occurrence

of nontruncating mutations. As in all genes, a point mutation, which changes one amino

acid in the polypeptide, may either have a harmful (or beneficial) effect on protein

function or not affect the function at all. Thus, when encountering a nontruncating

http://www.med.mun.ca/MMRvariants).
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mutation in an MMR gene in a putative HNPCC family, the interpretation can be very

difficult, especially if the co-segregation of the mutation and cancer phenotype cannot be

confirmed. In MMR genes, nontruncating variations are the most common type of

reported mutations (Woods et al. 2007), with missense mutations alone accounting for

24% of MLH1, 17% of MSH2, and 27% of unique MSH6 variations.  Of  the  reported

PMS2 mutations, missense variants account for nearly 50%

(http://www.med.mun.ca/MMRvariants). The pathogenicity of a sequence variation is

classically determined based on the conservation status and biochemical significance of

the amino acid change, segregation of the mutation with the cancer phenotype, and MSI

and IHC status of the tumours of the mutation carriers (Barnetson et al. 2007, Genuardi et

al. 1999). However, the clinical phenotype of a nontruncating mutation may vary within

different  families,  and  segregation  data  is  not  always  available.  Therefore,  functional

assays have been developed to clarify the activity of nontruncating MMR gene mutations.

The following chapters summarize the techniques used in the functional characterisation

of MMR gene defects.

Functional analysis of nontruncating MMR gene variants

Functional assays aim to investigate how a nontruncating mutation affects the biological

and biochemical behaviour of a protein variant as compared to the wild type (WT).

Recently, data concerning the published functional assays on MMR genes has been

collected (Ou et al. 2007) and listed in a database (www.mmrmissense.net). With

functional testing, one can show that the observed genetic variation really reflects the

observed phenotype. In the case of MMR proteins, the functional assays can be divided in

two major classes: the ones which measure the success of an MMR reaction, and the ones

which monitor one specific function of the MMR protein in question. The former ones can

be conducted in vivo in yeast assays, or in vitro using mammalian cell extracts. The latter

ones measure activities such as heterodimer subunit interaction, DNA binding, or

subcellular localization. The two types of MMR assays complement each other, as the

success of an MMR reaction gives information about the functionality of a given variant,

but does not elucidate the reasons behind the putative pathogenicity. Recently, also several

computational methods have been developed to assess the tolerability of MMR gene

amino acid substitutions.

http://www.med.mun.ca/MMRvariants).
http://www.mmrmissense.net)./
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In vivo MMR assays in yeast

Yeast is an optimal model organism to assay MMR functions in vivo due  to  the

conservation between human and yeast MMR systems and the facility of yeast-based

techniques. Two main approaches are in use. Mutations corresponding to patient-derived

MMR gene mutations can be constructed in homologous positions in the yeast genome

and the mutation rate caused by the mutant protein can be determined (Shcherbakova,

Kunkel 1999, Drotschmann et al. 1999, Gammie et al. (2007). Alternatively, the fact, that

human MMR proteins are able to bind yeast MMR factors and block the intrinsic MMR

activity in yeast, has been exploited. WT and functionally intact mutations introduced to a

WT yeast cause a mutator phenotype, whereas non-functional human MMR proteins fail

to  do  so  (Clark et al. 1999, Shimodaira et al. 1998, Clark et al. 1999, Takahashi et al.

2007). The two methods can be used to complement each other (Drotschmann, Clark &

Kunkel 1999).

Although important tools in assessment of the activity of putative HNPCC-related

MMR mutations, yeast MMR assays harbour the problem that they always rely on the

homology between human and yeast proteins, allowing only the conserved amino acids to

be tested. However, Ellison et al. (Ellison, Lofing & Bitter 2001) developed an assay

where they used yeast-human MLH1 hybrid proteins in a yeast context.

In vitro MMR assays in cell lysates

The homology limitation and cross-species difference problems related to yeast assays can

be overcome by using homologous human in vitro assays. These human systems are not

limited  to  conserved  amino  acids,  and  all  reactions  make  use  of  human  proteins.  These

assays are based on mismatched DNA substrates, which mimick the repairable cellular

DNA. These substrates are incubated with human cell extracts. The detection of successful

MMR is based on the in vitro correction of the mismatch, resulting either in a restriction

site (Lahue, Au & Modrich 1989, Nyström-Lahti et al. 2002) or in a change of reading

frame in the lacZ reporter gene (Thomas, Roberts & Kunkel 1991a).

Assays measuring a specific function of MMR proteins

As both MutS  and MutL  function as dimers, one way to study their functionality is to

assess whether the dimer subunits are able to interact with each other. This has been

addressed by several methods: GST pull-down assays, yeast two-hybrid assays, and co-
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immunoprecipitation assays. (Guerrette et al. 1998, Guerrette, Acharya & Fishel 1999,

Nyström-Lahti et al. 2002, Kondo et al. 2003, Kariola et al. 2004, Raevaara et al. 2005).

DNA-binding experiments (bandshift assays or electrophoretic mobility shift assays) are

based on the in vitro binding of purified MutS  proteins to labelled heteroduplex

oligonucleotides. DNA-binding experiments have revealed defective binding to

heteroduplex oligomers with mutated human and yeast MutS  (Clark et al. 1999,

Drotschmann, Clark & Kunkel 1999, Heinen et al. 2002). Despite of being functional in

an in vitro MMR assay, it is possible that in vivo the mutated protein is never localised to

the nucleus or that its expression levels are reduced. Indeed, both expression and

localization have been studied and found to be defective in context of HNPCC-derived

MMR mutations (Raevaara et al. 2005, Gammie et al. 2007).

In silico prediction algorithms

One way to differentiate between nonpathogenic and pathogenic missense variants is to

use computational algorithms. They are based on comparative sequence or protein

structure analysis. Mostly used are PolyPhen (http://coot.embl.de/PolyPhen) and Sorting

Intolerant From Tolerant (SIFT) (Ng, Henikoff 2003)

(http://blocks.fhcrc.org/sift/SIFT.html). They are based on searching for similar sequences

against a database (e.g. SWISS-PROT/TrEMBL), and aligning the protein sequences from

different species to address the conservation of each amino acid. Alternatively, users can

enter a pre-aligned set of sequences. Probabilities are calculated for each amino acid

substitution and those smaller than a chosen cut-off value are predicted to be deleterious.

The validation of computer-based methods requires the simultaneous use of in silico and

functional analyses of missense variations.

http://coot.embl.de/PolyPhen
http://blocks.fhcrc.org/sift/SIFT.html).
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AIMS OF THE PRESENT STUDY

The main aim of this PhD study was to investigate the pathogenicity of nontruncating

patient-derived mutations in MSH2 to facilitate HNPCC diagnostics in families associated

with these variations. The specific aims were:

1. To assess whether nontruncating mutations in MSH2, found in HNPCC and Muir-Torre

families, cause MMR deficiency (I, II)

2. To clarify the biochemical defect underlying the observed MMR deficiencies (IV)

3. To assess the functionality of two frequently occurring MSH2 variants and to estimate

their connection to cancer predisposition based on in vitro biochemical data and literature

searches (III)

4. To determine whether clinical characteristics of the mutation carriers could be

correlated  with  the  results  of  the  biochemical  analyses,  and  with  the  location  of  the

mutations in the MSH2 polypeptide (II, IV)
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MATERIALS AND METHODS

MSH2 MUTATIONS AND ASSOCIATED FAMILIES (I-IV)

The mutations included in this study consisted of 18 nontruncating MSH2 mutations,

which are discussed throughout this work by referring to the amino acid change in the

corresponding MSH2 residue (GenBank accession number AH003235, version U41206.1

to U41220.1). The studied variants were dispersed across different domains of the MSH2

polypeptide, but were somewhat clustered in the amino (N) -terminal connector domain

and in the adenosine triphosphatase (ATPase) domain at the C –terminus  (Figure 3, p. 29

and Figure 4).

Figure  4.  The  schematic  representation  of  the  studied  mutations  along  the  MSH2
polypeptide. According to Lamers et al. 2000b, Obmolova et al. 2000, Warren et al. 2007.

Fifteen of the mutations were found in putative HNPCC families and came to be

studied through international collaborations, due to the pathogenicity of an identified

nontruncating MSH2 variant being uncertain (T33P, V161D, G162R, G164R, L173P,

L187P, A272V, C333Y, D603N, A636P, C697F, Del 745-746, E749K, A834T and

V923E) (II). Some of these mutations have also been reported in databases by other

research groups (www.insight-group.org). The genetic and clinical characteristics of the

associated families, such as MSI and IHC studies, which were assessed by our

collaborators, are shown in Table 5. The L187P and A272V mutations were found in two,

and the D603N, A636P, and C697F mutations in three separate families. In addition to
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HNPCC, mutations L187P and C697F were also associated with families displaying Muir-

Torre syndrome, thus exhibiting concurrent skin and visceral tumours.

Table 5. Genetic and clinical characteristics of the putative HNPCC families associated with
15 nontruncating MSH2 mutations.

 MSH2 MSH6  MLH1

T33P c. 97 A>C 45 / EC 2 / 48  - High  +  +  +
V161D c. 482 T>A 52 / CRC 3 / 53  + High  - ND ND
G162R c. 484 G>A 56 / EC 6 / 52  + High  -  +/-  +
G164R c. 490 G>A 39 / CRC 7 / 39  + ND  - ND  +
L173P c. 518 T>C 36 / CRC 9 / 45  + High*A  - ND  +
L187P c. 560 T>C 41 / CRC 5 / 42  + High  - ND  +
L187P c. 560 T>C 42 / CRC 11 / 48  + High*B  -  -  +
A272V c. 815 C>T 41 / CRC 3 / 40  + Low*C  + ND  +
A272V c. 815 C>T 41 / CRC 1 / 41  - High + + +
C333Y c. 998 G>A 41 / CRC 2 / 41  - ND ND ND ND
D603N c. 1808 G>A 50 / EC 2 / 27  - High  -  -  +
D603N c. 1808 G>A 46 / EC 5 / 55  + Stable  -  -  +
D603N c. 1808 G>A 38 / CRC 1 / 38  - High ND ND ND
A636P c. 1906 G>C 42 / CRC, 44 / EC 2 / 44  + High  -  +/-  +
A636P c. 1907 G>C 43 / CRC 1 / 43  - High - - +
A636P c. 1908 G>C 36 / EC 5 / 49  + High - ND ND
C697F c. 2090 G>T 27 /CRC 5 / 45  + High  - ND  +
C697F c. 2090 G>T 33 / CRC 3 / 38  + High  - ND  +
C697F c. 2090 G>T 40 / EC 3 / 49  + High  -  +  +
Del745-746 c. Del 2235-2240 39 / CRC 4 / 42  + High  -  -  +
E749K c. 2245 G>T 29 / CRC 7 / 29  + High*D  + ND  +/-
A834T c. 2500 G>A 28 / CRC 3 / 39  + High  -  -  +

V923E4 c. 2768 T>A 70 / CRC 6 / 58  + High +/-  -  +

MSH2 variant Amsterdam
Criteria I / II

Nucleotide change
in cDNA

Index patient: Age
at onset (y) / tumor

site

All affected
patients1/ mean
age at onset (y)

MSI2

status

Immunohistochemistry3

For references, please refer to the Original Article II, from which these data are derived. Each line
corresponds to one family. EC, endometrial cancer; CRC, colorectal cancer; ND; no data. 1Number
of affected patients with HNPCC tumours 2MSI analysis was carried out using the Bethesda panel
(Markers BAT-25, BAT-26, D2S123, D5S346, D17S250 or in some cases D18S69). Two or more
unstable markers were considered as MSI-high. In families marked with an asterisk (*) MSI was
examined with other markers: *A D2S123, D2S136, D6S470, D16S663 (unstable) and HBA1
(stable). *B Bat26 and Mdf15 (unstable). *C TP53-Dint (unstable) D8S254, NM23, D18S35,
D5S346, TP53-Penta, D2S123, D1S2883, D3S1611, D7S501 (stable). *D D2S123, D16S663
(unstable) D5S346, HBA1, D18S35 (stable). 3 MSI and immunohistochemistry were analysed on
the primary tumour from the index patient (for exceptions, see II). 4 The index person carries two
mutations, MSH2 V923E and MSH6 S1188N.

In addition to the 15 mutations listed above, MSH2 N127S and G322D were

studied because of their frequent occurrence both in published CRC families and healthy

individuals and, thus, their contradictory classifications in literature and databases. By

functional analysis, we wanted to clarify their pathogenicity status. The published data on

the clinical characteristics of these variants and their occurrence in the healthy population

is collected in Table 6.
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Table 6. The published clinical and population data of the MSH2 N127S (c.380 A>G) and
MSH2 G322D (c.965 G>A) variants.

N127S HNPCCd + ND ND - -
N127S CRC<50, EC<50 + + ND - MSH2 A328P
N127S CRC ND + ND - -
N127S CRC 40 + + ND - MLH1 frameshift c 1877
N127S CRC<60 - + ND - MSH2 N108N, MLH1 IVS15-5T>C
N127S PC 71, BI C 78 - ND ND ND -
N127S No cancer + ND ND ND -
N127S CRC31 + + - ND MSH2 E422X
N127S CRC34 + + - ND MSH2 E422X
G322D ND ND ND ND + -
G322D CRC + ND ND ND -
G322D CRC36, EC45 ND ND ND + -
G322D CRC19 ND ND ND + G322D homozygote
G322D HNPCC + ND ND + -
G322D CRC40 - ND ND ND -
G322D CRC + ND ND + -
G322D CRC + - ND + -
G322D CRC<50 + + - ND -
G322D ND + ND ND ND MSH2 Q518X
G322D CRC - + ND + -
G322D CRC + + - - MSH2 Q518X
G322D CRC - - + - -
G322D CRC ND ND ND + -
G322D CRC and EC ND + ND ND -
G322D ND ND ND ND + -
G322D CRC39 + + ND ND MLH1 T117M
G322D CRC + / - ND ND - -
G322D EC49 + + + / - + MLH1 D203Ne, MSH2 frameshift
G322D CRC + ND ND + -

IHCc /
MSH2

Variant found in
healthy controls

Another MMR gene mutation found in
a mutation carrier

MSH2
variant Tumor/agea

Other
cancers in

family
MSIb

Every row represents one published study. For references, see Original Article III. CRC, colorectal
cancer; EC, endometrial cancer; PC, pancreatic cancer; BI C, biliary tract cancer; ND, no data. a:
The associated cancer type and, when available, age at onset of the index person. b: Microsatellite
instability (MSI) found at least in one tumour of a mutation carrier. c: Immunohistochemical
(IHC) analysis of MSH2 protein expression in tumour tissue. d: Unspecified cancer belonging to
the HNPCC spectrum. e: Somatic mutation.

The mutation G674A (c.2021 G>C) is located in a conserved residue of the MSH2

ATPase domain and was reported to inactivate MMR, but to still be functional in

apoptosis signalling in mouse (Lin et al. 2004). G674A was included in the study because

we wanted to characterise the functional properties of the corresponding human protein.

Another reason was that an HNPCC-associated germline mutation (G674D) has been

reported in the same amino acid residue (Raedle et al. 2001).

The sites of all studied mutations are shown in mapped in the crystal structure of

MutS  in Figure 5.
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Figure 5. Mapping of analysed MSH2 residues in the crystal structure of MutS . The
MSH6 subunit of the MSH2-MSH6 heterodimer is coloured with light brown. The functional
domains of the MSH2 subunit are coloured differentially. Yellow: domain I, DNA binding
domain; dark blue: domain II, connector domain; green: domain III, lever domain; grey: domain
IV, clamp domain;  light  blue:  domain V,  ATPase domain.  DNA is  shown in red and blue in the
lower part of the figure, ADP molecules in red on the upper part. Right: a close-up ribbon structure
of the area containing the studied mutations. According to Warren et al. 2007.

FUNCTIONAL ASSAYS (I-IV)

Protein expression and coimmunoprecipitation (I-IV)

Site-directed mutagenesis and production of baculovirus expression vectors

All used complementary DNAs (cDNAs) were derived from Professor Josef Jiricny’s

laboratory in University of Zürich, Switzerland. WT MSH2 cDNA was cloned into the

pFastBac1 plasmid (Invitrogen) between the vector’s BamHI and XhoI, WT MSH6 cDNA

between its BamHI and XhoI, and WT MSH3 cDNA between its XhoI and XmaI restriction

sites. The MSH6 cDNA construct included a polyhistidine (His6) tag at the N-terminus of

the  MSH6 protein.  The  expression  constructs  for  the MSH2 variants were created using

site-directed mutagenesis as detailed in the original articles.

Production of expression vectors for human cell expression

For protein expression in human cells, WT and mutated MSH2 cDNAs were cloned from

pFastBac1 into the expression vector pDsRed2-N1 (BD Biosciences) between the SacI
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and NotI restriction sites, so that the red fluorescent protein was replaced by the insert.

The WT MSH6 cDNA was cloned from pFastBac1 into the expression vector pEGFP-N1

(BD Biosciences) between the BamHI and NotI  restriction  sites,  replacing  the  enhanced

green fluorescent protein (EGFP) gene. The resulting constructs expressing MSH2 (WT or

mutated) and MSH6 (WT) were named pMSH2-N1 and pMSH6-N1, respectively.

Baculoviral expression of MutS  variants

The recombinant proteins were produced in Spodoptera frugiperda 9 (Sf9) insect cells

using the Bac-to-Bac baculovirus expression system (Invitrogen). The cDNAs of WT

MSH6, WT MSH3 and WT and mutant MSH2 were transferred to baculovirus vectors via

a transposon-mediated reaction in DH10Bac E. coli cells (Invitrogen). The bacmid DNAs

were isolated from bacterial cultures and the baculovirus DNAs, containing the desired

cDNA inserts, were used to transfect Sf9 cells. The secreted baculoviruses were collected

after 3 days and amplified in Sf9 cells for 5 days. For protein production, Sf9 cells were

co-infected with MSH2 and MSH6 baculoviruses, since the functional MutS -complex

requires both proteins and MSH6 is unstable without MSH2 (Chang et al. 2000, Marra et

al. 1998). For control experiments, cells were coinfected with WT MSH2 and WT MSH3

baculoviruses for MutS  dimer production. The total protein extracts (TEs) including the

heterodimeric MutS or MutS were extracted in lysis buffer (25 mM Hepes, 2 mM -

mercaptoethanol, 0.5 mM spermidine, 0.15 mM spermine, 0.5 mM phenylmethylsulfonyl

fluoride (PMSF), and 2 x Complete protease inhibitor mixture (Roche)). 10% glycerol and

110 mM NaCl were added and the protein extracts were rotated for 30 min at +4°C and

then centrifuged for 50 min at 13200 g. The soluble protein fractions, containing the

recombinant MutS  proteins, were aliquoted and stored at -80°C.

MutS  expression in human cells

Production of recombinant MutS  (heterodimer of MSH2 and MSH6) variants in the

LoVo human colon adenocarcinoma cell line (MSH2-/-) (American Type Culture

Collection) was performed as follows: a total of 200 000 cells were seeded (in one well of

a 6-well plate), and transfected after 24 hours with 2 g of pMSH2-N1 (WT or  mutant)

and 2 g pMSH6-N1 vectors using 8 L of Tfx-20 transfection reagent (Promega). After

48 hours from transfection, the cells were collected by trypsinisation. The total protein

content was extracted by incubating the cells for 25 min on ice in 50 l of cold extraction
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buffer (50 mM Tris-HCl pH 8.0, 350 mM NaCl, 0.5% Nonidet-P40, 1 x complete protease

inhibitor mixture). The suspension was centrifuged at 13200 g for  5  min  at  4°C,  after

which the supernatant, containing the desired recombinant proteins, was collected.

Western blot and coimmunoprecipitation analyses

The expression levels and correct sizes of the recombinant proteins were examined by

sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot

analyses.  The  protein  complexes  were  run  in  6%  SDS-PAGE  gels,  blotted  to  nylon

membranes and detected with anti-MSH2 (MSH2 Ab-2, NA27, Calbiochem, 0.4 g/ml in

insect cell and 0.1 g/ml in human cell expression) and anti-MSH6 (MSH6/GTBP, Clone

44, BD Transduction laboratories, 0.17 g/ml in insect cell and 0.5 g/ml in human cell

expression) antibodies. The amount of naturally expressed -tubulin protein (clone 5H1,

anti- -tub; BD Biosciences, 0.5 g/ml) was used as loading control when the expression

levels of MutS  variants produced in LoVo cells were compared.

The interactions of MSH2 variants with their counterpart MSH6-WT were studied

by combined coimmunoprecipitation and Western blot analysis. For immunoprecipitation,

30 – 100 g of Sf9 TEs were adjusted to contain similar amounts of recombinant proteins.

The protein extracts were rotated for 3 hours (III, IV) or overnight (II) on a rotating wheel

with 1 g of anti-MSH6 antibody (see above) in RIPA buffer (150 mM NaCl, 1% Nonidet

P-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-Cl pH 8.0). A total of 30 l of

protein A/G agarose beads (SC2003, Santa Cruz Biotechnology) were added and the

rotation was continued for 1 (III, IV) or 3 (II) hours. The agarose beads, containing the

precipitated antibody-protein complexes, were collected by centrifugation and washed

three times with RIPA buffer. The precipitated complexes were detected by Western blot

(see above) and the amounts of mutated MSH2 proteins in the precipitates were compared

to WT MSH2.

Protein purification (III-IV)

Fast protein liquid chromatography

WT MutS  and the variants T33P, A636P, E749K, A834T and V923D were purified with

fast protein liquid chromatography (FPLC). The TE was first loaded to the Heparin

HiTrap  column  (Amersham  Biosciences)  and  eluted  with  a  NaCl  gradient  from  300  to
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1000 mM. The fractions containing MutS were loaded onto a MonoQ anion exchange

column (Amersham Biosciences) and eluted with a NaCl gradient from 150 to 550 mM.

The MutS -containing fractions were pooled and dialyzed at +4°C for 2 hours against 25

mM HEPES (pH 7.6),  1 mM EDTA, 110 mM NaCl,  10% sucrose,  3 mM DTT, 0.5 mM

PMSF and 1 g/ml leupeptin. The purified proteins were aliquoted, frozen with liquid

nitrogen and stored at -80°C. The WT MutS  purified with FPLC is hereafter referred to

as WT-FPLC.

Ni-NTA affinity chromatography

The variants N127S, A272V, V161D, G162R, G164R, L173P, L187P, G322D, C333Y,

D603N, G674A, C697F, Del 745-746, and WT MutS  (WT-his), were purified with Ni-

NTA (nitrilotriacetic acid) agarose matrix (Qiagen), which binds the (His)6-tag located at

the N-terminus of the MSH6 subunit of MutS . This approach has previously been

successfully used to purify recombinant MutS  (Gradia, Acharya & Fishel 1997b), and

being fast and simple to perform, it was chosen as the method of purification for the

majority of the proteins. For purification of the MutS  complexes, 100 l of Ni-NTA

matrix (Qiagen) was used for every 1 ml of TE. The matrix was equilibrated with PBS and

mixed with TEs. The mixtures were rotated at +4°C for 2 hours and loaded into 1.5 ml

polypropylene columns (Qiagen). The MutS -bound matrix was washed with wash buffer

(25mM HEPES, 300 mM NaCl, 20mM imidazole, 1 g/ml leupeptin, 1x complete EDTA

free, 0.5 mM PMSF) and MutS  was eluted with an increasing imidazole concentration.

The MutS -containing fractions were pooled, dialysed and aliquoted as described above.

The purities of all different MutS  preparations, purified with both methods, were

compared by SDS-PAGE and coomassie staining, and the concentrations were assessed

with the Bradford assay, using bovine serum albumin (BSA) as a standard.

Mismatch repair assays (I-IV)

Preparation of MMR assay substrates

The DNA substrates used in the in vitro MMR experiments were pGEM 13Zf+ (Promega)

plasmid-derived double-stranded circular heteroduplex DNA molecules, which contained

a G•T mismatch or an extrahelical T insertion within the BglII  restriction  site,  and  a

single-strand nick 370 bp 5’ of the mismatch site in the repairable strand (Figure 6). The
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plasmids were a kind gift from Professor Josef Jiricny. The substrates were named 5’G•T

and 5’IDL1, respectively. Both of these are efficiently recognised by MutS  and have

been shown to be functional MMR substrates in vitro (Thomas, Roberts & Kunkel 1991a).

The mismatch and nick were designed to give rise to a complete double-stranded BglII

restriction site upon a successful mismatch repair reaction. For linearisation of the

plasmid, a BsaI digestion site, 1360 bp from the BglII site, was used.

Figure  6.  The  substrates  used  in  the  in  vitro  MMR assays. Left:  5’G•T  substrate.  The  uncut
(bottom) strand contains a complete BglII restriction site (5’AGATCT), whereas the nicked strand
has  G  in  the  place  of  A,  resulting  in  a  G•T  mismatch.  Right:  5’IDL1  substrate.  The  top  strand
carries a deleted A in the BglII site, creating a 1bp loop in the bottom strand. BanII was used to
linearize the top strand for  a  5’  oriented nick 370 bp from the BglII  site.  Upon correction of  the
mismatch,  using  the  bottom strand  as  a  template,  a  complete  BglII  site  emerges.  BsaI  cuts  both
repaired and unrepaired plasmids 1360 bp from the BglII site, while BglII cuts only the repaired
molecules. Thus, restriction analysis can be used in the evaluation of the repair efficiency.

The substrates were constructed of three nearly identical pGEM plasmids, of which one

(pGEM-TA) contained a complete BglII restriction site (5’AGATCT), whereas pGEM-

delA  carried  a  deletion  of  A  (5’-GATCT)  and  pGEM-CG  carried  a  G  instead  of  T

(5’GGATCT) in its BglII site. The circular strand in the substrate, possessing the complete

restriction site, was amplified from pGEM-TA as single-stranded (ss) DNA with

bacteriophage M13KO7 and isolated with standard procedures. The top strand, derived

from pGEM-GC for 5’G•T or from pGEM-delA for 5’IDL1 substrate, was amplified as

dsDNA and digested with BanII restriction enzyme to achieve double-stranded DNA

which was linearized 370 bp 5’ from the BglII site. The circular ssDNA (from pGEM-TA)

and linear dsDNA (either from pGEM-GC or pGEM-delA) were annealed with a 10-fold

molar excess of ssDNA to maximize the yield of the desired circular heteroduplex

molecule, minimizing the self-annealing of the linear dsDNA. The excess ssDNA and the

5’G•T 5’IDL1

BglII BglII

AG   TCT
TC   AGABanII

BsaI BsaI
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linear double-stranded homoduplex DNA were purified with Benzoylated Naphthoylated

DEAE-  (BND)  Cellulose  resin  (Sigma)  and  Plasmid-safe  DNAse  V  (Epicentre),

respectively. Details of the MMR assay substrate preparation are available in

(Baerenfaller, Fischer & Jiricny 2006).

Preparation of nuclear extracts

Nuclear protein extracts (NE) were prepared because MMR occurs in the nucleus and

nuclear extracts contain all the proteins needed for the reaction. LoVo cells were used due

to their intrinsic deficiency in MSH2 expression. First, ~5 x 108 cells were collected,

washed with PBS and swollen in hypotonic buffer (20 mM Hepes, pH 7.9, 5 mM KCl, 1.5

mM MgCl2, 0.2 mM PMSF, 1 x complete EDTA-free protease inhibitor cocktail (Roche),

0.25 g/ml aprotinin, 0.7 g/ml pepstatin, 0.5 g/ml leupeptin) on ice. The cell

membranes were disrupted using a syringe with a narrow gauge (No. 27) needle. The

nuclei were collected by centrifugation and the resulting pellet was suspended in 1/5

volumes of cold extraction buffer (25 mM Hepes/KOH (pH 7.5), 10% sucrose, 1 mM

PMSF, 0.5 mM DTT, 1 g/ml leupeptine). The salt concentration was adjusted to 155 mM

with 5 M NaCl. The mixture was rotated at 4°C for 1 hour and the nuclear debris was

pelleted by centrifugation. The soluble nuclear protein fraction was dialysed for 2 hours

against 25 mM Hepes/KOH (pH 7.5), 50 mM KCl, 0.1 mM EDTA (pH 8.0), 10% sucrose,

1 mM PMSF, 2 mM DTT, 1 g/ml leupeptine. The dialysed extract was centrifuged and

the supernatant aliquoted and frozen in liquid nitrogen. The NEs were stored at -80 C.

MMR assays

The mismatch repair assays were used to compare the repair activity of the mutated

MutS  proteins to that of the WT (I-IV), and to demonstrate the activity of the protein

preparations after purification (IV). 75 g of MSH2-deficient LoVo NE was incubated

with either 4 – 12 g of Sf9 TE, including adjusted amounts of recombinant MutS , or 1

g of purified recombinant MutS  (III-IV). The reaction contained 100 ng of 5’G•T or

5’IDL1 substrate plasmid, 20 mM Tris-Cl (pH 7.6), 110 mM KCl, 5 mM MgCl2, 1 mM

glutathione, 50 g/ml BSA, 0.1 mM of each dNTP, and 1.5 mM ATP. Successful

mismatch repair completed the BglII restriction site. The repair efficiencies were

calculated after a combined BsaI-BglII digestion and agarose gel electrophoresis by
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comparing the intensity of the double-digested bands (repaired) to the BsaI single-digested

bands (unrepaired).

Bandshift assays (III-IV)

Preparation of oligomers

For bandshift assays, two double-stranded 38bp DNA oligomers were constructed: one

which carried a G•T mispair, and one which was otherwise identical but had an A•T base

pair in the corresponding position. The nucleotide sequence of the invariable strand was 5’

TTT CTG ACT TGG ATA CCA TCT  ATC  TAT  CTA  TAA  AAT  AT  3’,  and   the

complementary strand carried either A or G in the indicated (bolded) position. The

sequences were synthesised as ssDNA by Oligomer. 10 pmol of the invariable (T) strand

was labelled with 32P in a reaction which contained 10 pmol of 32P- -ATP, 100 mM DTT,

1X polynucleotide kinase (PNK) buffer and 7,5 units of PNK (Promega). The reaction was

incubated in 37°C for 45 min, after which further 5 units of PNK was added, and

incubation was continued for 30 min. The labelled ssDNA oligomers were purified using

ProbeQuant G-50 Micro Columns (Amersham Biosciences). The complementary ssDNAs

were annealed in 1:1 ratio by incubating them for 5 min in 95°C, followed by 5 min in

37°C and 30 min in RT. The double-stranded, labelled oligomers were stored in +4°C.

Mismatch binding

Bandshift assays were used to assess the ability of the MutS  variants to bind

heteroduplexed DNA. Corresponding homoduplexes were used as nonspecific DNA

controls. 350 ng (65 nM in total) of each MutS  variant was incubated in 10% glycerol,

100 mM KCl, 25 mM Hepes-KOH (pH 7.5), 1 mM DTT, 0.5 mM MgCl2, 0.1 mM ADP,

75 g/ml BSA, and 60 ng poly-d(I-C) (Amersham Biosciences) for 20 minutes at 37°C

with  25  femtomoles  of 32P-labelled 38 bp double-stranded DNA oligomers, which

contained  either  a  central  G•T  mismatch  (GT  heteroduplex)  or  an  A•T  base  pair  in  the

corresponding position (AT homoduplex).

The binding was visualized by running the reactions in 5% nondenaturing

acrylamide gels, which were dried and exposed to a phosphoscreen (Fujifilm BAS-1500).

The MutS -bound oligomers migrate slower than unbound DNA in the gel, thus giving

rise  to  a  bandshift.  The  data  was  quantified  with  the  TINA  software,  version  2.09  (OY



50

Tamro AB), and calculated as percentages of MutS -bound oligomers of the total amount

of labelled DNA.

Mismatch release

MutS  dissociates from DNA mismatches as a consequence of a conformational change,

which follows adenine triphosphate (ATP) uptake, when ATP replaces an ADP molecule

in  the  ATP-binding  motif  of  MutS  subunits.  To  study  the  ability  of  MutS  variants  to

undergo ADP-ATP exchange and to dissociate from G•T mismatches, ATP was added to

the bandshift reactions at different concentrations (0.5, 1 and 2 mM) after 10 minutes of

incubation, followed by another 10 minutes at 37°C. The concentrations were chosen

based on published data, where the addition of 1 mM ATP results in clear but not 100%

loss of MutS  mismatch binding (Dufner et al. 2000). The fraction of MutS -bound DNA

after ATP addition was calculated as a percentage of the binding level in the absence of

ATP in all experiments.

Statistical analysis

All bandshift experiments were repeated at least four times. The binding data were

analyzed in SPSS, version 12.0.1. by one-way ANOVA, followed by a Tukey post hoc

test. The level of statistical significance was set at 0.05.
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RESULTS

Effects of the studied mutations on MSH2 expression, purification and

interaction with MSH6 (II-IV)

Baculovirus expression revealed variance in the protein levels (II, IV)

We expressed WT and all mutated MSH2 proteins variants with MSH6 WT in Sf9 cells.

Variable expression levels were observed (Table 7, page 56). The MSH2 variants T33P,

N127S, A272V, G322D, A636P, G674A, E749K, A834T and V923E were expressed in

amounts similar to WT MSH2. Although V161D, G162R, G164R, L173P, L187P,

C333Y, D603N, and Del 745-746 were also expressed, their expression levels were <5-

fold lower as compared to the wild-type protein. C697F showed an intermediate level of

expression (~30% of the WT). The amount of MSH6 in the extracts was proportional to

the levels of MSH2, supporting the published observations indicating that MSH6 is stable

only in complex with MSH2 (Chang et al. 2000, Marra et al. 1998).

Human cell expression showed no differences in protein levels (II)

To study the stability of the MSH2 alterations in human cells, we transiently expressed 15

patient-derived MSH2 variants (T33P, V161D, G162R, G164R, L173P, L187P, A272V,

C333Y, D603N, C697F, Del 745-746, E749K, A834T, and V923E) together with WT

MSH6 (MutS )  in  the  LoVo (MSH2-/-) cells. Surprisingly, in human cell expression, all

the studied variants showed comparable amounts of MSH2 to the WT protein (Table 7).

However, in general the human cell expression system did not produce enough protein for

functional studies. Therefore, we used the proteins produced in Sf9 cells for all subsequent

assays.

Protein purification was successful with efficiently expressed MSH2 variants (III, IV)

Both purification methods, FPLC and Ni-NTA, resulted in highly pure WT and most

mutated MutS  complexes (T33P, N127S, A272V, G322D, A636P, E749K, A834T, and

V923E). However, adequate purity was not obtained for the variants present in low

amounts in the Sf9 extracts (V161D, G162R, G164R, L173P, L187P, C333Y, D603N, and

Del  745-746)  (see  above).  It  is  therefore  possible  that  these  variants  are  structurally
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imperfect,  leading  to  either  low  expression  or  insolubility  in  the Sf9 protein extract

preparations and to further degradation during the purification process. These variants

were omitted from the bandshift assays, which required purified proteins. One variant

(C697F) showed an intermediate level of expression and purity and was included in all

experiments (Table 7).

MSH2 G674A impaired the MSH2/MSH6 interaction (II-IV)

We performed combined coimmunoprecipitation and Western blot analysis to study the

effect of the mutations on the interaction of the MutS  subunits, MSH2 and MSH6. MSH2

G674A was observed to impair the interaction, while all other variants interacted with

MSH6  similarly  to  WT  MSH2  (Table  7).  Extracts  derived  from  cells  expressing  the

MutS  complex (MSH2 WT / MSH3 WT heterodimer) gave no detectable signals in the

immunoprecipitation assay, confirming that only MSH6 antibody-bound protein

complexes were present in the immunoprecipitate (see Original Article IV, Figure 3).

Effects of MSH2 mutations on mismatch repair and binding and release of

mismatches (I-IV)

Twelve mutations were MMR-deficient and one showed decreased activity in the in vitro

MMR assays (I-IV)

We tested the ability of the recombinant MutS  variants to complement the MMR-

defective LoVo extracts in repairing of G•T or IDL1 mispairs in vitro and  to  verify  the

activity of MutS  after purification (Table 7). By titrating the amount of the WT MutS

TE  in  the  assay,  we  concluded  that  the  the  amount  of  the  variants  which  were  less

efficiently produced in the Sf9 than the WT was still sufficient for MMR analysis.

Altogether 12 out of 18 MutS  variants appeared completely defective in the MMR assay

(V161D, G162R, G164R, L173P, L187P, C333Y, D603N, G674A, A636P, C697F, Del

745-746, and E749K). T33P showed a reduced MMR efficiency, and the variants N127S,

A272V, G322D, A834T, and V923E showed no deviation from WT in their MMR

activity. The WT MutS  was active in MMR assays after purification with both the

applied methods, FPLC and Ni-NTA, indicating that the protein complexes remained

functional during the purification process.
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Mismatch binding was impaired in two and altered in three variants (III-IV)

The bandshift assays were applied to determine the ability of MutS  variants to bind G•T

heteroduplex oligonucleotides in vitro (Table 7). First, the binding levels of differentially

purified MutS  WT extracts were assessed, and both were found to be active in mismatch

binding. His-tag-purified MutS  bound G•T mismatches with lower efficiency (17.8 ±

7.6%) than FPLC-purified MutS  (31.6 ± 12.2%). Therefore, the binding efficiency of the

analysed variants was always compared to the WT purified with the same method.

Variants T33P, N127S, A272V, G322D, G674A, E749K, and A834T recognised and

bound G•T mismatches at levels comparable to MutS  WT. The variants A272V, G674A,

and V923E showed retained, but compared to the corresponding WT, slightly reduced

binding to heteroduplex oligomers (A272V: 9.3 ± 7.6%, G674A: 11.2 ± 5.1%, V923E:

15.7 ± 6.1%). The A636P variant was deficient in DNA binding (2.3 ± 0.5%), displaying

only weak background binding, similar as to homoduplex DNA. Also the C697F variant

failed to bind the heteroduplex oligomers (1.8 ± 0.4%). The loss of binding activity was

not due to interfering proteins in the C697F extract, as mixed with WT MutS  the C697F

extract did not interfere with mismatch binding (data not shown). When statistical analysis

was applied to the data, only A636P, C697F and V923E showed statistically significant

loss of binding activity (p<0.01). The figures showing the mismatch binding levels are

displayed on the Original Articles III and IV.

Mismatch release was abnormal with MSH2 G674A and E749K mutations (IV)

To study the ability of the MutS  variants to release mismatched DNA upon ATP uptake,

ATP was added to the bandshift reaction (Table 7). Only the mismatch binding-proficient

variants (T33P, N127S, A272V, G322D, G674A, E749K, A834T and V923E) and the WT

proteins were included in the experiment. The DNA binding efficiencies after ATP

addition were quantified and calculated as percentages of the maximum amount of

protein-bound DNA (i.e. binding in the absence of ATP). The WT MutS  dissociated

efficiently already at the lowest used ATP concentration (0.5 mM), where the binding was

reduced to 12.9 ± 6.8% (WT-his) or 12.4 ± 6.2% (WT-FPLC) of the maximum. Adding 1

mM ATP further decreased the binding to 7.2 ± 3.2% (WT-his) and 6.1 ± 2.9% (WT-

FPLC), and 2 mM ATP to 7.1 ± 4.3% (WT-his) and 5.0 ± 3.0% (WT-FPLC). The variants

N127S, A272V, and A834T dissociated from DNA as efficiently as WT protein, whereas

the variants T33P, G322D, and V923E showed slightly reduced release compared to WT
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protein (T33P: 0.5 mM: 21.7 ± 4.5%, 1 mM: 16.8 ± 6.7%, 2 mM: 13.3 ± 5.0%, G322D:

0.5 mM: 23.8 ± 23.7%, 1 mM:  15.3 ± 14.0%, 2 mM: 9.6 ± 7.5%, V923E: 0.5 mM: 29.0 ±

13.3%, 1 mM: 16.1 ± 9.6%, 2 mM: 9.7 ± 8.5%). G674A and E749K displayed reduced

mismatch release at all ATP concentrations, E749K dissociating most aberrantly at highest

ATP concentration as compared to the WT protein (G674A: 0.5 mM: 65.5 ± 21.8%, 1

mM: 47.0 ± 19.5%, 2 mM: 33.6 ± 23.1%; E749K: 0.5 mM: 30.8 ± 21.0%, 1 mM: 21.2 ±

15.0%, 2 mM: 21.1 ± 16.3%). E749K and G674A showed statistically significant

impairment of mismatch release (G674A with all ATP concentrations, p<0.01, and E749K

with 1mM and 2 mM ATP, p<0.05). The figures of mismatch release are shown in the

Original Article IV.

Determination of pathogenicity in MSH2 variants

The final interpretation of the pathogenicity of a variation was made based on both

functional  and  clinical  data  so,  that  the  variants  which  showed  a  clear  functional  defect

and were associated with typical HNPCC phenotype, were interpretated pathogenic.

Variants with no or only minor functional defects and variable clinical data were

interpretated non-pathogenic. All studied mutations, together with the location of the

mutation, fulfilment of AC, IHC result, results of functional tests, and the overall

interpretation of their pathogenicity are collected in Table 8. 12 out of 18 studied MSH2

variants displayed severe defects in the functional assays and were interpreted as

pathogenic. In addition, two displayed slight defects two assays, and their interpretation

was left inconclusive. They may have a milder or no phenotypic effect. Four variants were

functional in all assays or had only a minor alteration in one, and were interpreted as non-

pathogenic.

SIFT analysis compared to functional results of MSH2 missense variants (II, III)

In  our  dataset,  SIFT  predictions  on  tolerability  of  MSH2  amino  acid  substitutions  were

performed  by  our  collaborators  Marc  Greenblatt  and  Phil  Chan  from  the  University  of

Vermont. The SIFT predictions were compared to the pathogenicity of the variants, which

was finally determined using both functional and clinical data. SIFT correctly predicted

the outcome (tolerated or deleterious, corresponding to non-pathogenic and pathogenic) of

thirteen analysed amino acid substitutions (Table 7). Only N127S and A636P SIFT

predictions were not confirmed by the functional data. For variants T33P and V923E, the
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interpretation of their pathogenicity was not clear, due to milder clinical phenotype and

reduced but not absent functionality in MMR assays. T33P was predicted non-tolerated by

SIFT. For V923E, only one (otherwise best fitted) comparative sequence alignment

predicted it to be tolerated, while alternative alignments predicted it to be deleterious (II).

The results of all functional assays and the SIFT prediction scores are summarised in

Table 7.
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Table 7. Results of all functional analyses conducted with MSH2 variants

Amino acid
change Protein domaina Human cell

expressionb
Baculovirus
expressionb

MSH6
Interaction Purification MMR

assay
Mismatch
binding

Mismatch
release

SIFT prediction /
cut-off scorec

T33P 1 DNA binding + + + +  +/-  +  + (-) Deleterious / 0.02
N127S 2 Connector NA + + +  +  +  +  Deleterious / 0.01
V161D 2 Connector + - + -  - NA NA Deleterious / 0.00
G162R 2 Connector + - + -  - NA NA Deleterious / 0.00
G164R 2 Connector + - + -  - NA NA Deleterious / 0.02
L173P 2 Connector + - + -  - NA NA Deleterious / 0.00
L187P 2 Connector + - + -  - NA NA Deleterious / 0.00
A272V 2 Connector + + + +  +  + (-)  + Tolerated / 0.79
G322D 3 Levers NA + + +  +  +  + (-) Tolerated / 0.53
C333Y 3 Levers + - + -  - NA NA Deleterious / 0.00
D603N 3 Levers + - + -  - NA NA Deleterious / 0.01
A636P 5 ATPase + + + +  +  - NA Tolerated / 0.20
G674A 5 ATPase NA + - + -  + (-)  -  Deleterious / 0.00
C697F 5 ATPase +  +/- +  +/- -  - NA Deleterious / 0.00

Del745-756 5 ATPase + - + -  - NA NA NA
E749K 5 ATPase + + + + -  + - Deleterious / 0.00
A834T 5 ATPase + + + +  +  +  + Tolerated / 0.10
V923E 5 Helix-turn-helix  +  +  +  +  +  + (-)  + (-) Tolerated / 0.89

All functional assays except for the human cell expression are based on the recombinant proteins produced with the baculovirus system. NA, not assessed.
a, the functional domain in which the mutated amino acid is located. b, +:      expression approximately at the level of WT, -: expression level <20% of
WT.  +/-:  expression  level  about  30%  of  WT.  c,  SIFT  cut-off  score  <  0,05  was  interpretated  as  deleterious.
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Correlation between the functional assays and clinical phenotypes of

mutation carriers (I-IV)

In general, the functional and clinical data correlated well. In summary, MSH2 mutations

V161D, G162R, G164R, L173P, L187P, C333Y, D603N, A636P, G675A, C697F, Del

745-746, and E749K were defective in at least two functional assays and displayed

phenotypic characteristics which supported interpreting them as pathogenic. T33P showed

reduced activity in the MMR assay. V923E exhibited normal MMR activity but reduced

mismatch binding. However, as the functional evidence on their pathogenicity was not

obvious, and the clinical data pointed to a milder than typical HNPCC phenotype, the

interpretation of T33P and V923E was left inconclusive. 10 out of 11 pathogenic

mutations which had available family data were derived from families which fulfilled AC

I or II, although D603N and A636P were also found from AC negative families (Table 5,

p.  41  and  Table  8).  In  contrary,  3  out  of  4  mutations,  which  were  MMR  proficient  and

showed no or only minor changes in mismatch binding or release, N127S, A272V and

G322D, were associated with variable clinical backgrounds and interpretated as non-

pathogenic. In the family carrying the non-pathogenic A834T mutation, an additional

mutation, deletion of exon 8 of MSH2, was found after completion of the functional

studies. This deletion segregated with the cancer phenotype and likely to be the cause for

HNPCC in this family (E. Mangold, personal communication).

Loss or reduction of MSH2 expression in a tumour, as assessed by IHC, was evident in 9

out of 10 studied tumours associated with a pathogenic mutation, proving the loss of

MSH2 expression to be highly indicative of a predisposition to HNPCC. On the other

hand, MSH2 protein was present in three out of four tumours associated with the

functional variants. All variants, which were unstable in the in vitro expression system,

also showed loss of MSH2 in the tumour. E749K was the only variation, which was MMR

deficient and concluded to be pathogenic, but still expressed MSH2 normally.
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Table 8. The clinical and functional characteristics and overall interpretation of the
studied MSH2 mutations.

ACa MSH2 IHCb Repairc Expression Binding Release
T33P - +  + (-)  +  +  +(-) Inconclusivef

N127Sd  -/+  -/+  +  +  +  + Non-pathogenic
V161D + -  -  - NA NA Pathogenic
G162R + -  -  - NA NA Pathogenic
G164R + -  -  - NA NA Pathogenic
L173P + -  -  - NA NA Pathogenic
L187P + -  -  - NA NA Pathogenic

A272Vd  -/+ +  +  +  +(-)  + Non-pathogenic
G322Dd  -/+  -/+  +  +  +  +(-) Non-pathogenic
C333Y - NA  -  - NA NA Pathogenic
D603Nd  -/+ -  -  - NA NA Pathogenic
A636P  -/+ -  -  +  - NA Pathogenic
G674A NA NA  -  +  +(-)  - Pathogenic
C697F + -  -  + (-)  - NA Pathogenic

Del745-756 + -  -  - NA NA Pathogenic
E749K + +  -  +  + - Pathogenic
A834Te + -  +  +  +  + Non-pathogenic
V923E + -  +  +  + (-)  +(-) Inconclusivef

    Clinical data                      Functional data
    InterpretationMH2 mutation

NA: Not assessed. Clinical data is presented in detail in Original Article II. a. Fulfilment of
Amsterdam  Criteria  (AC)  I  or  II.  +:  fulfilled,  -:  not  fulfilled,  -/+:  AC  status  varies  between
associated families. b. Immunohistochemical analysis of MSH2 protein expression in a tumour. +:
MSH2 expressed, -: MSH2 not expressed, -/+: IHC status varies between reported cases. c. in vitro
MMR capability of the mutation. +: functional, -: deficient, + (-): reduced. d. Mutation associated
with variable clinical characteristics. e. In this family, another deleterious MSH2 mutation was
later found and confirmed as the underlying cause of cancer predisposition. f. Variant was
functional but showed reduced efficiency in one assay, suggesting non-pathogenicity or partial
pathogenicity.
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DISCUSSION

In hereditary nonpolyposis colorectal cancer (HNPCC), frequent surveillance significantly

reduces the mortality of the mutation carriers (Aarnio et al. 1999b, Mecklin et al. 2007)

but identification of the family members at risk requires reliable molecular diagnosis. If a

found mutation is nontruncating, the diagnosis becomes complicated, as nontruncating

alterations appear to be associated with a wide variety of clinical phenotypes, ranging

from normal to highly increased cancer risk (Raevaara et al. 2005). Therefore, reliable

establishment of the functional consequence of a found genetic variation is very important

and facilitates the assessment of the risk of cancer. In this study, 18 nontruncating MSH2

mutations, which had been found in cancer patients, were investigated to gain insight into

their participation in HNPCC tumorigenesis, and to clarify the mechanism by which they

interfere with MMR. The patients displayed a variety of phenotypes, ranging from typical

HNPCC and Muir-Torre syndrome (MTS) characteristics to milder cancer phenotypes in

terms of age at onset or tumour penetrance. We assessed the expression, MMR activity,

mismatch binding, mismatch release, and subunit interaction capabilities of the mutated

MSH2 proteins corresponding to the identified HNPCC-associated MSH2 mutations.

The analyses revealed severe defects in 12 out of 18 studied variants in the

functional assays, and, supported by the clinical data, the respective mutations were

interpreted as the causative reason for the cancer phenotype in the mutation carriers. The

associated families were typical HNPCC families, which mostly fulfilled the diagnostic

AC. Two variants showed retained but clearly reduced activity in at least one assay,

suggesting milder pathogenicity. In the case of T33P, only two affected individuals were

identified, and V923E was associated with an abnormally high age of onset. The

determination of pathogenicity regarding these two variants was left inconclusive in this

work. Four variants were completely functional or displayed only a minor, statistically

insignificant alteration in one assay, suggesting that these are non-pathogenic. The carriers

of these 4 variants displayed a variety of phenotypes, ranging from healthy individuals to

CRC phenotypes, which were, however, often associated with atypical characteristics,

such as MSH2 expression in the tumour. This suggests that the cancers in these mutation

carriers were either not hereditary, or due to other, unidentified MMR gene defects. In
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case of patients carrying the A834T variation, the latter was shown to be true. After

completion of the functional analyses, an exonic deletion in MSH2 found and shown to

cosegregate with the cancer phenotype.

MSH2 L187P and C697F predispose to HNPCC and MTS

Muir-Torre syndrome (MTS) is a condition characterised by the metachronous or

synchronous occurrence of skin and visceral cancers (Cohen et al. 1995, Schwartz et al.

1989), and due to its molecular etiology being connected to germline MMR gene

mutations, it is considered a subtype of HNPCC (Kruse et al. 1998). The functionality of

MSH2 L187P and C697F were studied because of their connection to both HNPCC and

MTS  families  and  the  uncertainty  regarding  the  role  of  their  variations  in  cancer

pathogenesis. At the time of the study (I), only 3 out of 41 MMR gene mutations which

were reported in literature to be linked to MTS were of the missense type. This was in

contrast to HNPCC-associated MMR mutations, of which about 22% are missense

variations (www.insight-group.org). None of the missense mutations associated with MTS

had been functionally assessed in homologous human systems. Thus, the involvement of

these alterations in the tumorigenesis of combined skin and visceral cancers remained

unverified. Therefore, in order to validate the connection of MSH2 missense alterations to

the syndrome and to ensure the molecular defect underlying the cancer phenotype in the

associated families, the functional analysis of the two putatively MTS predisposing

variations  was  considered  of  high  importance.  Molecular  analysis  would  then  allow  the

diagnosis  of  MTS  in  patients  carrying  these  germline  alterations  and  exhibiting  skin

malignancies already before the manifestation of a visceral cancer. The analysis revealed

that missense mutations L187P and C697F in MSH2 completely inactivate MMR, thereby

being the underlying cause of the MSI phenotype and tumour formation in the described

families. Our data demonstrate that, albeit rarely, nontruncating mutations do underlie the

MTS phenotype as well as HNPCC. We suggest that an MSI-positive skin lesion

combined with molecular analysis revealing a missense mutation in an MMR gene should

lead to the functional analysis of the given variation to ensure a solid diagnosis.

http://www.insight-group.org)./
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No evidence for MSH2 N127S and G322D -linked cancer predisposition

N127S (c.380 A>G) and G322D (c.965 G>A) are two of the most frequently occurring

MSH2 variants. They are classified inconsistently in the literature (Table 6, page 42), and

conclusive evidence of their role in cancer predisposition is missing or contradictory. In

some databases they are listed as single nucleotide polymorphisms (SNPs) occurring with

a frequency of 0 – 9,2% (N127S) and 0 – 6,5% (G322D) (www.ensembl.org,

www.genome. utah.edu/genesnps/), and as pathogenic variations in others (www.insight-

group.org, www.missense.org). These contradictory reports and the absence of functional

data on the human proteins led us to study the functionality of MSH2 N127S and G322D

to provide support either for their predisposing or non-predisposing roles in HNPCC

tumorigenesis. The MMR assay, co-immunoprecipitation and bandshift assays did not

reveal  differences  in  their  functionality  as  compared  to  WT  MSH2.  In  G322D,  the

dissociation from mismatches was observed to be slightly reduced, but this was not

statistically significant.

However, as several reports found both N127S and G322D to be associated with

HNPCC families, we performed a systematic literature search to gain a broader view on

the occurrence of these mutations. Furthermore, we looked for reports providing evidence

for additive effects of other MMR mutations found in N127S and G322D carriers. Indeed,

we found that both N127S and G322D frequently coexist with other MMR gene mutations

(Table 6), and that there is evidence suggesting that N127S may have an additive effect in

a family where a truncating MSH2 mutation is the primary cause of HNPCC. In the study

of Tanyi et al. (2006), the occurrence of the truncating mutation together with N127S was

observed to lower the age of cancer onset, as compared to the carriers of the truncating

mutation only. Carriers of only N127S were asymptomatic. This suggests that N127S on

its own does not predispose to cancer, but, in combination with a deleterious mutation, it

may have an additive effect.

Based on literature reports, the non-pathogenicity of G322D is more strongly

established than that of N127S. In a recent population study, G322D was even reported to

occur more frequently in the healthy than in the CRC patient population (Barnetson et al.

2007). However, the reports of cancer patients where G322D is the only found MMR

variant (Table 6) rule out the possibility that this variation could be strictly classified as

clinically non-relevant. Our interpretation is that G322D on its own does not cause MMR

malfunction, and thus most likely does not promote colorectal tumorigenesis.

http://www.ensembl.org/
http://www.missense.org)./
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The majority of the studied MSH2 variants inactivated MMR

From previous reports by our research group it was evident that a significant proportion of

MLH1 and MSH6 missense mutations do not inactivate MMR (Kariola et al. 2002a,

Kariola et al. 2004, Raevaara et al. 2003, Raevaara et al. 2005). In MLH1, many variants

were functional in the MMR assay but were shown to be unstable, and some variations

inhibited the correct nuclear transport of the protein (Raevaara et al. 2005). In MLH1, 10

out of 34, and in MSH6, 9 out of 11 studied mutations did not show any functional defects,

and the clinical phenotypes of the cancer patients carrying these non-pathogenic mutations

were variable (Kariola et al. 2002b, Kariola et al. 2004, Raevaara et al. 2005). In MSH2,

we found that 12 of the 18 investigated mutations (V161D, G162R, G164R, L173P,

L187P, C333Y, D603N, A636P, G674A, C697F, Del745-746, and E749K) abolished

MMR totally, and one (T33P) caused a moderate reduction in the MMR activity. Five

mutations (N127S, A272V, G332D, A834T, and V923E) had similar repair activity to WT

MSH2. All mutations with absent MMR activity were interpreted as pathogenic, while the

pathogenicity of T33P remained questionable.

Decreased protein expression was associated with MMR deficiency in N-

terminal MSH2 missense mutations

In order to assess the mechanisms behind MMR deficiency, more detailed analyses in the

characterisation of the MSH2 variants were applied. To assess their mismatch-binding and

release capabilities, the MSH2 variants were re-expressed with his-tagged WT MSH6 and

purified. Notably, the variation in expression levels which occurred already in the first

round of protein expression (II) was repeated in the second round (IV), and led to

difficulties  in  purification  of  some  of  the  variants.  Therefore,  we  concluded  that  the

variants V161D, G162R, G164R, L173P, L187P, C333Y, D603N, and Del 745-746 cause

problems in the expression of MSH2 or its stability. C697F was expressed in amounts

lower than the WT but higher than the other unstable variants, and was classified as

moderately expressed. Seven out of nine poorly expressed variants localised to either the

N-terminal connector or lever domains of the MSH2 protein.

The connector domain connects the DNA-binding subunit of MutS  to the rest of

the MutS  heterodimer. It is responsible for the intramolecular interactions and allosteric

signalling between different protein domains (Warren et al. 2007). (Figure 3, p.29). The
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lever domain connects the ATPase domain to the clamp domain, which makes unspecific

DNA contacts. It is believed to communicate signals defining the conformation of the

protein between the ATP- and DNA-binding parts of the protein. Due to the stabilising

and connecting roles of connector and lever domains, it is not surprising that many

mutations situated in those domains led to protein conformation or stability problems and,

thereby, to defective MMR. The only unstable variants situated outside these domains

were C697F and Del 745-746. These mutations are located in the ATPase domain. C697F

displayed moderate stability, and was purified to reasonable purity. The Del 745-746

mutation is a two amino acid deletion and therefore more severe than a missense mutation.

Thus, it is also likely to have a larger effect on the conformation of the protein.

In  agreement  with  our  results,  reduced  stability  of  MSH2  proteins  has  been  also

reported to be the most frequent explanation for MMR deficiency in a recent yeast study

(Gammie et al. 2007). There, 54 HNPCC-associated missense mutations in MSH2 were

constructed in cognate positions in yeast Msh2 and functionally analysed. 50% of the

mutations, predominantly situated in the connector and lever domains of MSH2, were

shown to be associated with reduced stability.

To investigate the expression of the mutant proteins in human cells, 15 variants

(T33P, V161D, G162R, G164R, L173P, L187P, A272V, C333Y, D603N, A636P, C697F,

Del 745-746, E749K, A834T and V923E) were transiently expressed in MSH2-deficient

human colon carcinoma LoVo cells. Surprisingly, all 15 variants were expressed in similar

amounts as WT MSH2. The reason for this discrepancy between insect and human cell

expression remains unclear, but probably reflects the different conditions within the

different cell types and the differences in the mode of overexpression in the separate

systems. However, the half-life of the studied proteins was not assessed, and thus, even

though the human cells expressed them as WT, the stability may still be affected. The

occasionally observed clonal variation in baculovirus expression is unlikely to be the

reason affecting the varying protein levels, as similar results were obtained in two

completely independent rounds of expression. Due to difficulties in transfecting other

MSH2-negative human cell lines, we were not able to exclude the possibility that the

observed behaviour is unique for LoVo cells.
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Pathogenic  mutations  in  the  ATPase  domain  mostly  interfered  with

mismatch binding or release

The mutations studied in this work were distributed along the length of the MSH2

polypeptide, with some clustering observed in the connector and ATPase domains (Figure

4, p. 40). As discussed, the likely reason for the pathogenicity of the N-terminal mutations

in the connector domain was the low expression or instability of the resulting MSH2

protein. In contrast, only 2 out of 7 studied mutations (C697F and Del 745-746) in the

ATPase domain showed reduced expression. Instead, A636P, G674A, C697F, and E749K

showed clearly impaired mismatch binding or release capabilities, as assessed by

bandshift analysis. V923E, which is situated in the helix-turn-helix (H-T-H) motif in the

extreme C-terminus of MSH2, exhibited reduced mismatch binding. As the H-T-H motif

is involved in the ATPase function by stabilising the ATPase domains in MutS  (Warren

et al. 2007), V923E is discussed along with the ATPase site mutations. Furthermore,

A272V and G674A showed minor impairment of DNA binding, and T33P, G322D and

V923E in mismatch release. These slight alterations were not statistically significant.

Since A636P and C697F were completely deficient in mismatch binding, their

mismatch release activities could not be measured, and the mismatch binding problems

were concluded to be the causative reason for their pathogenicity. V923E showed reduced

binding, and although it was MMR-proficient, the weaker binding could indicate a subtle

MMR defect, too mild to be detected in the in vitro assay. However, a mild defect could

explain the relatively high average age of cancer onset in the V923E family (58 years,

Table 5, p. 41). However, in the absence of an in vitro MMR defect, the interpretation of

V923E remains unconclusive. G674A and E749K bound mismatches similarly to the WT,

but their mismatch release was impaired. These two mutations affect the most conserved

amino acid residues in the superfamily of ABC transporter ATPase domains, to which the

ATPase domains of MSH2 and MSH6 belong (Locher 2004). G674A is located in the

Walker  A and  E749K in  the  Walker  B domain,  two of  the  most  essential  regions  of  the

ATPase domain. As proper ATP processing is vital for MutS  function in MMR, these

mutations cause malfunctions in both mismatch binding and release. Defective mismatch

binding is likely to abolish all MMR-mediated functions, as MutS  needs to recognise the

abnormal base to initiate MMR or any other related process, such as apoptosis signalling,

another important activity of MMR proteins.
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Interestingly, it has been proposed that unlike mismatch binding, the ATP

processing activity is not required for apoptosis signalling mediated by MMR proteins. In

three mouse models for MSH2, MSH6 and MLH1, a point mutation introduced into the

respective ATPase domains inactivates MMR, but the cells of the animals undergo

apoptosis in response to alkylating agents similarly to WT cells (Avdievich et al. 2008,

Lin et al. 2004, Yang et al. 2004). The same phenomenon has been observed in yeast

MutS homologs, where certain ATPase mutants inactivated MMR but remained sensitive

to cisplatin, unlike the Msh2 / Msh6-negative strains (Drotschmann et al. 2004).

Therefore, missense mutations in the ATPase site may be of clinical interest due to the

remaining apoptosis signalling activity, and might result in unaltered responses to certain

anti-tumour therapies, such as cisplatin or temozolomide, which in general are not

effective in MMR-defective tumours (Stojic, Brun & Jiricny 2004).

MSH2 G674A displayed reduced capability to interact with MSH6

Only one protein variant, G674A, interfered with the MSH2/MSH6 interaction in the co-

immunoprecipitation assay, whereas D603N and V923E, which are in the MSH2-MSH6

interaction regions (Guerrette et al. 1998) did not show a decrease in the interaction. This

is probably explained by the fact that MSH2 and MSH6 have two distinct interaction sites

(codons 378-625 and 875-934 in MSH2) and it has been suggested that the loss of function

in one region would not result in complete loss of heterodimer formation (Guerrette et al.

1998). Thus, it is possible that even if some of the mutations interfered with dimerisation,

MSH2 and MSH6 would not be completely detached and would thus precipitate together.

G674A affects the Walker A domain of MSH2 ATPase site, which makes direct contacts

to the ABC transporter unit of MSH6 (Warren et al. 2007). The amino acid substitution in

the  -helix  may  be  sufficient  to  adversely  affect  the  interaction  of  the  two  proteins.

Notably, the interaction problem became evident only in the co-immunoprecipitation

assay, where a stringent RIPA buffer is used. Under more gentle conditions the dimer

remained stable, as demonstrated by the successful purification of MutS -G674A (IV).
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Phenotypic characteristics of the mutation carriers correlated with the

functional data

Most of the families displaying the pathogenic MSH2 mutations fulfilled the international

AC  for  HNPCC,  showed  an  early  age  at  cancer  onset,  as  well  as  high  MSI  and  loss  of

MSH2 protein in tumours (Table 5). Concerning the pathogenic mutations, the C333Y,

one D603N family and two A636P families did not fulfil the ACI/II. However, D603N

and A636P are also connected to AC-positive families, and the functional data support the

pathogenicity of these mutations. In C333Y, data of only two individuals was available,

but they both had early-onsed CRC. In the case of T33P, the MMR activity was reduced

but not absent, and the family did not fulfil AC, nor did it show deficient MSH2

expression. However, the MSI status was high. We concluded that the reduced but

partially retained MMR activity correlates with the milder clinical phenotype in the family

as compared to families connected to fully pathogenic variations. However, as the IHC

staining for MSH2 protein carrying T33P mutation was positive, the cancer accumulation

may also be unrelated to this variant. The variant V923E functioned similarly to WT

MSH2 in the MMR assay but displayed lowered mismatch binding. Although the family

carrying this mutation fulfils the AC, the average age at onset is abnormally high for

HNPCC (58 years, Table 5).

Regarding the non-pathogenic variations, tumours in the A272V mutation carriers

showed MSH2 expression, supporting our interpretation of non-pathogenicity. However,

the tumours displayed an MSI phenotype. MLH1 was expressed normally in the tumour of

the A272V carrier, so MLH1 somatic inactivation by promoter hypermethylation, which is

a frequent cause of MSI in colorectal tumours, is also unlikely. The mutation A834T, also

proficient in the MMR assay, has been found in the healthy control population (Genuardi

et al. 1999). However, the clinical phenotype of the mutation carriers showed an early age

at onset as well as high MSI and loss of MSH2 in the tumour. As discussed previously, (p.

60 – 61), an additional, truncating mutation (deletion of exon 8) in MSH2 was found in

the A834T family after the functional studies were conducted (E. Mangold, personal

communication). This suggests that this deletion, rather than A834T, was the causative

reason of HNPCC phenotype in the investigated family. The phenotypic characteristics of

the N127S and G322D mutation carriers were discussed in detail above.
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IHC as a screening tool for HNPCC

In our set of MMR-deficient MSH2 variants, MMR deficiency was mainly associated with

typical HNPCC characteristics, among them loss of MSH2 protein in the respective

tumours. Only one tumour, which was associated with the pathogenic mutations, E749K,

showed MSH2 expression in IHC analyses. One, T33P was only mildly defective in the

MMR assay, and thus it is possible that it is not the reason for cancer predisposition in the

family. Unlike T33P, E749K showed complete MMR deficiency, defective mismatch

release and a remarkably young age at onset (29 years) in the mutation carrier, reflecting

the strong mutator effect caused by the mutation.

E749K is located in a highly conserved Walker B domain in the MSH2 ATPase

region and it was shown in our analyses to impair ATP-provoked mismatch release. Thus,

we suggest that the mode of MMR impairment connected to this mutation is the

abnormally strong binding to mismatches, which may lead to defects in the recruitment of

the downstream MMR machinery, which is known to require ATP hydrolysis (Dufner et

al. 2000, Iaccarino et al. 1998). The above mode of pathogenicity may explain the

retained expression of the MSH2 protein in the tumour. This result demonstrates, that

certain ATPase mutations in MSH2 may be, although pathogenic, not identifiable by IHC

analysis. The finding is also supported by the report of the missense mutation T1217D in

the ATPase domain of mouse MSH6. This mutation is MMR-deficient, but expresses

MSH6 protein in the tumour (Yang et al. 2004), although pathogenic MSH6 mutations

usually associate with loss of protein expression (Hampel et al. 2005). Unfortunately, data

for MSH2 expression in the tumours of MSH2 G674A mice, or patients carrying the

MSH2 G674D mutation, are not available.

In conclusion, our data suggests that some ATPase site mutations in MSH2 are not

identifiable with IHC, although overall the correlation between the absence of staining for

MSH2 and pathogenicity of the missense mutation was notable and supports IHC analysis

as a sensitive method in HNPCC diagnostics with MSH2 mutations.

Classification of nontruncating MSH2 mutations

In light of investigations by us and others, it seems evident that the prevailing system of

classification of nontruncating MMR (and other genetic) variants to pathogenic and non-

pathogenic is an oversimplification and does not reflect the real situation where a missense
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mutation may compromise the function of the protein in a significantly different way than

a truncating mutation. For example, some missense mutations in MLH1 lead to mild

HNPCC  phenotypes  in  regard  to  cancer  penetrance  or  age  at  onset  (Peltomäki,  Gao  &

Mecklin 2001, Raevaara et al. 2005). Also, low levels of MLH1 are enough for MMR, but

not sufficient for MLH1-mediated cell cycle arrest (Cejka et al. 2003). Accordingly,

shortage of the mutated protein, rather than its MMR deficiency, has been postulated as

the mechanism of pathogenicity in an HNPCC family with a nontruncating MLH1

mutation (Raevaara et al. 2004). Furthermore, many MMR gene variants have been

reported as both pathogenic and neutral (www.insight-group.org). This suggests that other

MMR gene variations in the affected individuals, or the genetic background in general,

may in combination with the nontruncating MMR gene variant raise the risk of cancer.

Thus, in many cases it is simply not possible to evaluate the phenotypic

consequences of a nontruncating variation based on any single parameter. The combined

use of tumour studies, segregation analysis, population data, conservation of the amino

acids in question, and functional analysis provide the most reliable assessment of

pathogenicity. If both population and functional data support the non-pathogenic

interpretation,  the  variant  probably  does  not,  at  least  on  its  own,  contribute  to  familial

cancer. A functionally deficient mutation for which there is positive data showing co-

segregation of the mutation and the cancer phenotype can be classified as pathogenic.

However, the mutations which occur in healthy individuals and cancer families alike, or

which are associated with atypical HNPCC characteristics and display only modest

functional defects, could be classified as low penetrance variants.

http://www.insight-group.org)./
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CONCLUSIONS

The functional studies on 18 nontruncating variants in MSH2, performed as described in

this PhD thesis, led to following conclusions:

In Muir-Torre syndrome, skin tumours combined with the identification of a

germline MMR gene mutation can provide diagnostic clues for consequent visceral

cancers. Nontruncating MMR gene mutations found in skin cancer patients should

therefore be functionally assessed.

Pathogenicity of MSH2 missense mutations is typically associated with an

impaired repair capability of the mutated protein.

MMR deficiency associated with nontruncating mutations in MSH2 is mediated

through different mechanisms. Those include defective protein expression or

stability, and impaired mismatch binding or release.

Reduced protein expression is predominantly associated to mutations in the

connector and lever domains of MSH2.

Mutations affecting the ATPase domain of MSH2 are mostly stable in vitro, but

display problems in mismatch binding or release.

Mutations classified as pathogenic based on functional assays associate mainly

with typical HNPCC phenotypes in mutation carriers.

Mutations, which display only mild defects in functional assays, may associate

with a milder HNPCC phenotype.

Variants, which act like the WT in functional assays, are associated with variable

clinical phenotypes.

Most pathogenic mutations associate with a lack of MSH2 protein expression in

tumour tissue. However, some pathogenic mutations abrogating the mismatch

release but not protein stability may still retain MSH2 expression. Thus,

immunohistochemical analysis is insufficient to exclude a MMR defect.
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FUTURE PROSPECTS

To supplement the present study, it would be interesting to

Further characterise the stability of the studied MSH2 variants in different human

cell lines and by applying protein half-life measurements

Study the effects of nontruncating MSH2 mutations on the MMR-mediated

response to cytotoxic drugs

Study the effects of nontruncating MSH2 mutations on the subcellular localisation

of the protein

Characterise the impact of the mutations on MutS -MutL  ternary complex

formation

Study the mutations in complex with MSH3
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