
RECOMBINANT  HANTAVIRUS PROT EINS: ANT IGENIC PROPERT IES AND

DIAGNOST IC APPLICAT IONS

HANNIMARI KALLIO-KOKKO

DEPARTMENT  OF VIROLOGY

HAARTMAN  INSTITUTE

AND

DIVISION OF GENERAL MICROBIOLOGY

DEPARTMENT  OF BIOSCIENCES

FACULTY OF SCIENCES

UNIVERSITY OF HELSINKI

GRADUATE SCHOOL IN
MICROBIOLOGY

AND

 VIIKKI  GRADUATE SCHOOL IN  BIOSCIENCES

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Sciences of the University of Helsinki,
for public discussion

in the Small Lecture Hall of Haartman Institute, Haartmaninkatu 3, Helsinki,
on Friday November 17 th at 12 o’clock noon

Helsinki 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14917359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SUPERVISORS: Professor Antti Vaheri
Department of Virology
Haartman Institute
University of Helsinki
Helsinki, Finland

Docent Olli Vapalahti
Department of Virology
Haartman Institute
University of Helsinki
Helsinki, Finland

REVIEWERS: Professor Pauli Leinikki
National Public Health Institute
Helsinki, Finland

Professor Christian Oker-Blom
Department of Biological and Environmental Science
University of Jyväskylä
Jyväskylä, Finland

OPPONENT: Professor Detlev Krüger
Institute of Medical Virology
Humboldt University School of Medicine (Charité)
Berlin, Germany

ISBN 952-91-2856-8 (Printed version)
ISBN 952-91-2857-6 (PDF version)

Yliopistopaino
Helsinki 2000



1

Table of contents

List of original publications 3

Abbreviations 4

Summary 5

1. Introduction / Review of literature 6

1.1. Historical background 6

1.2. Structure and coding strategy of hantaviruses 7

1.3. Transmission 8

1.4. Epidemiology 8

1.4.1. NE epidemiology in Finland 12

1.5. Hantaviral diseases 14

1.6. Immune response in hantaviral infections 15

1.7. Laboratory diagnosis 16

1.6. Protective immunity and vaccines against

hantaviral infections 17

2. Aims of the study 18

3. Materials and methods 20

4. Results and discussion 22

4.1. Antibody tests 22

4.1.1. Development of PUUV antibody tests based on

recombinant antigens 22

4.1.1.1.Bacterial expression systems 22

4.1.1.2.Baculovirus expression system 24

4.1.1.3. Kinetics of PUUV-N IgM response 26

4.1.2. Development of DOBV antibody tests based on

recombinant antigens 26

4.1.3. Hantavirus diagnostics: general aspects 30

4.2. Characterization of PUUV-N 31

4.2.1. B-cell epitopes in PUUV-N 32

4.2.2. Protective immunity in natural host by

immunization with PUUV-N 33

4.3. Expression of PUUV proteins in mammalian cells 36



2

Table of contents

5. Concluding remarks and future prospects 40

Acknowledgements 42

References 43



3

Original publications

List of original publications

This thesis is based on the following original articles referred to in the text by their Roman

numerals.

I. Kallio-Kokko H, Vapalahti O, Hedman K, Brummer-Korvenkontio M, Vaheri A (1993)

Puumala virus antibody and immunoglobulin G avidity assay based on a recombinant

nucleocapsid antigen. Journal of Clinical Microbiology 31:677-680.

II. Lundkvist Å, Kallio-Kokko H, Sjölander K, Lankinen H, Niklasson B, Vaheri A,

Vapalahti O (1996) Characterization of Puumala virus nucleocapsid protein: identifica-

tion of B-cell epitopes and domains involved in protective immunity. Virology 216:397-

406.

III. Kallio-Kokko H, Vapalahti O, Lundkvist Å, Vaheri A (1998) Evaluation of Puumala

virus IgG and IgM enzyme immunoassays based on recombinant baculovirus-expressed

nucleocapsid protein for early nephropathia epidemica diagnosis. Clinical and Diag-

nostic Virology 10:83-90.

IV. Kallio-Kokko H, Lundkvist Å, Plyusnin A, Avsic-Zupanc T, Vaheri A, Vapalahti O

(2000) Antigenic properties and diagnostic potential of recombinant Dobrava virus

nucleocapsid protein. Journal of Medical Virology 61:266-274.

V. Kallio-Kokko H, Leveelahti R, Brummer-Korvenkontio M, Lundkvist Å, Vaheri A,

Vapalahti O (2000) Expression of Puumala virus glycoproteins and nucleocapsid pro-

tein in mammalian cells, and use in characterization of human immune responses in

nephropathia epidemica. (submitted).



4

Abbreviations

Aphos alkaline phosphatase
ANDV Andes virus
bac baculovirus
β-gal b -galactosidase
CTL cytotoxic T lymphocyte
DAB 1-1-diaminobenzidine
DOBV Dobrava virus
EIA enzyme immunoassay
FITC fluorescein isothiocyanate
FRNT focus reduction neutralization test
HCPS hantavirus cardiopulmonary syndrome
HFRS hemorrhagic fever with renal syndrome
HPS hantavirus pulmonary syndrome
HTNV Hantaan virus
ID infectious dose
IFA immunofluorescence assay
IgG immunoglobulin G
IgM immunoglobulin M
kb kilobase
kDa kilodalton
KHF Korean hemorrhagic fever
MAb monoclonal antibody
N nucleocapsid protein
DN truncated nucleocapsid protein
NE nephropathia epidemica
OPD o-phenylenediamine dihydrochloride
PCR polymerase chain reaction
Perox peroxidase
PHV Prospect Hill virus
pNPP p-nitrophenyl phosphate
PRNT plaque reduction neutralization test
PUUV Puumala virus
rN recombinant nucleocapsid protein
RT-PCR reverse transcriptase-PCR
SDS-PAGE sodium dodecyl sulfate - polyacrylamide gel electrophoresis
SEOV Seoul virus
SNV Sin Nombre virus
TMB tetramethylbenzidine
TULV Tula virus

Abreviations



5

Summary

Hantaviruses are rodent-borne viruses with a tripartite RNA genome that are transmitted to

humans through excreta of infected rodents; each hantavirus is carried by a specific rodent

host. Hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and

hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative

agent. Hantaviral infections occur world-wide, but are especially common in China, Korea,

Russia, and Northern Europe. In Finland alone on average one thousand nephropathia epidemica

(NE) (a mild form of HFRS) cases are diagnosed annually.

One aim of this study was to develop new enzyme immunoassays  (EIA) based on recombinant

hantavirus antigens for hantavirus diagnosis. In Europe, two hantaviruses, Puumala virus

(PUUV) and Dobrava virus (DOBV), are known to occur. Recombinant PUUV and DOBV

nucleocapsid proteins were expressed in bacterial or insect cells, and based on these antigens,

EIAs were developed to measure IgG and IgM antibody responses in humans. These tests

were found to be highly specific and sensitive in diagnostic use. The best format for early

diagnosis of acute infection was a µ-capture EIA based on baculovirus-expressed full-length

nucleocapsid protein (PUUV-N and/or DOBV-N). Demonstration of IgM-class antibodies was

diagnostic, but in a serum sample taken before the 6 th day after onset of symptoms the IgM test

sometimes remains negative and a second sample is needed. Specific assays based on antigens

from viruses circulating in each geographical region improve the sensitivity of the tests.

In order to further investigate the immune responses in hantavirus infections, PUUV

glycoproteins were expressed in mammalian cells using an alphavirus-derived vector. For

optimal results, co-expression of the recombinant glycoproteins G1 and G2 was found to be

essential. IgG antibodies against glycoproteins appeared only in the late convalescent phase in

NE-patient sera, while IgG antibodies against N were seen already in the acute phase in high

titers. The presence of IgG antibodies to glycoproteins leads to the diffuse type of fluorescence

in native PUUV IgG-immunofluorescence assay typical of old-immunity sera.

In order to map the B-cell epitopes on N by use of monoclonal antibodies, truncated PUUV

nucleocapsid proteins were used as antigens. In experimental animals, the aminoterminal part

of PUUV-N was shown to be highly immunogenic, and in  protection experiments,

immunizations with total recombinant PUUV-N or its aminoterminal aa 1-118 (expressed in

insect and bacterial cells, respectively) were able to induce protection against PUUV infection

in bank voles. The recombinant proteins, DNA vector constructs, and animal model introduced

here provide a valuable tool for future vaccine research.

Summary
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1. Introduction

1.1. Historical background

The first descriptions of a hemorrhagic fever associated with renal syndrome were recorded in

Chinese medical literature about A.D. 960 [80], but it was only in 1951 during the Korean War

that the disease, named Korean hemorrhagic fever (KHF), was first encountered by western

medicine [86].  The causative agent, Hantaan virus (HTNV) was isolated in 1978 from the

rodent Apodemus agrarius and from KHF patients [82], and later propagated in a human cell

line [49].

Nephropathia epidemica (NE) was first described in Sweden in 1934 [108, 169], but the causative

agent, Puumala virus (PUUV), was not isolated until 1977 from a bank vole (Clethrionomys

glareolus) captured in Puumala, Finland [23]. By that time, many NE cases had been detected

and epidemiological and clinical features described [77]. During the early 1980s, virus-infected

lung sections of Clethrionomys glareolus [23] were used as antigen for serologic diagnosis. In

1983 PUUV was adapted to cultured Vero E6 cells [115, 133], which have been the main

source of antigen for immunofluorescence (IFA) and enzyme immunoassay (EIA) [23, 115].

KHF and NE are classified as two distinct forms of hemorrhagic fever with renal syndrome

(HFRS), varying in the severity of symptoms. The causative agents of HFRS are called

hantaviruses according to the prototype member of the genus, HTNV [133].

In the Balkans, the first HFRS cases were reported in 1952, and after that, several clinical

cases have been reported throughout Eastern Europe. In 1995, Dobrava virus (DOBV), originally

isolated from a yellow-necked mouse (Apodemus flavicollis) in Slovenia [17], was characterized

genetically and antigenically [16]. DOBV is associated with severe HFRS, similar to that

caused by HTNV [8, 15, 94].

In the early 1980s, Prospect Hill virus (PHV), considered apathogenic to humans, was found

in the United States in Microtinae rodents [84, 85]. However, it was not until 1993 that

hantaviruses (e.g. Sin Nombre virus (SNV)) carried by New World rodents (Sigmodontinae)

were recognized as the causative agents of a highly lethal human disease, hantavirus pulmonary

syndrome (HPS) [113], recently also named hantavirus cardiopulmonary syndrome (HCPS).

Introduction
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1.2. Structure and coding of hantaviruses

Hantaviruses, members of the family Bunyaviridae [133], are negative-stranded RNA viruses

with a tripartite genome; the S (small) segment encodes a nucleocapsid protein (N) [134], the

M (medium) segment two glycoproteins G1 and G2 [135], and the L (large) segment an RNA

polymerase [147] (Table 1). Some hantaviruses, including PUUV and SNV but not HTNV and

DOBV, have an additional open reading frame overlapping with that of N and coding for a

putative non-structural NSs protein.

The RNA molecules appear circular due to the complementary 5’ and 3’ ends of the segments

which anneal to form panhandle-like structures. The RNA segments and nucleocapsid proteins

form ribonucleoproteins which include the RNA polymerase molecule, and are surrounded by

a host cell-derived lipid bilayer in which the glycoproteins G1 and G2 are embedded, forming

heterodimers (Fig. 1). The two glycoproteins G1 and G2 are cotranslationally cleaved from a

single precursor polypeptide. The virus particles of prototype virus HTNV mature by budding

G1

G2

RNA segments (S, M, and L)

N

RNA polymerase

Figure 1. Schematic structure of hantaviruses.

Table 1. Hantavirus genome and coding

Genome segment Size in kb Protein Size in kDa

S 1.7-2.0 N ~50

NSs* 10

M 3.6-3.7 G1 and G2 ~68 and ~54

L  6.5 RNA polymerase ~ 200

* Putative for PUUV and SNV; not HTNV or DOBV

Introduction
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from the Golgi complex [122].  Hantavirus particles are spherical or oval in shape, with a

mean diameter of 122 nm (range 78 to 210 nm) [148].

During viral entry, the G1 and G2 glycoproteins attach to host cell proteins. Pathogenic

hantaviruses can attach to β3-integrins, which are possible receptors for these viruses, whereas

apathogenic Prospect Hill virus uses β1-integrins [51, 52].

1.3. Transmission

Hantaviruses are carried by specific rodent hosts, in which the viruses cause asymptomatic

infections that can persist for several months. The virus can be detected in different organs of

the animals, although the highest viral loads have been found in the lungs [50, 81-83, 85, 112,

164]. During the viremic period, the virus is transmitted to humans probably via aerosolized

excreta. Among rodents, the virus is transmitted horizontally likely in the same way [18, 68,

69, 81, 164]. Maternal antibodies transmitted either in utero or through breast-feeding protect

the animals against infection during the first weeks of life [36, 37]. Transmission from human

to human does not usually occur, although for some HPS outbreaks caused by Andes virus

(ANDV) in Argentina this route has been reported [117].

Animal trappers, forestry workers, farmers, and mammalogists have an increased occupational

risk of contracting PUUV infection [4, 140, 155, 156, 172].

1.4. Epidemiology

In Europe, only two hantaviruses pathogenic to humans are known to circulate, namely PUUV

and DOBV (Table 2a). The bank vole (Clethrionomys glareolus) is the carrier of PUUV [22,

23], which is found in most of Europe, with the highest incidence of human PUUV infections

reported in Finland, Sweden, and Russia [1-3, 13, 24, 33, 53, 57, 59, 79, 100, 101, 116, 120,

140, 150, 172] (Table 3a). The yellow-necked mouse (Apodemus flavicollis) and the striped

field mouse (A. agrarius) have been shown to carry two genetically distinct lineages of DOBV

[14, 17, 111, 127]. Human DOBV infections have been reported in Albania, Greece, Bosnia-

Herzegovina, Slovenia, Germany, Estonia, and Russia [8, 15, 91, 94, 100, 104]. The two genetic

lineages of DOBV appear to be associated with different pathogenicity of the virus; DOBV in

Introduction
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the Balkans (carried by A. flavicollis) causes more severe symptoms (with mortality rates of 4-

12%) [15] than DOBV in Estonia and Russia (carried by A. agrarius), where no fatal cases

have been observed [91, 100].

Other human-pathogenic hantaviruses include Hantaan virus (HTNV) carried by the field mouse

(Apodemus agrarius), circulating in Asia, and Seoul virus (SEOV) carried by rats (Rattus

norvegicus  and R. rattus) [49, 82, 83] (Table 2a). SEOV has been found in rats throughout the

world, while human illness has been reported primarily in Asia. In the Americas, Sin Nombre

Introduction

Table 3a. Hantavirus seroprevalence and the number of cases in Europe (PUUV/DOBV)

Country Seroprevalence Reference Cases per year
(PUUV/DOBV)

Austria 1.2 [1] <10
Belgium ? [59] up to 200
Bosnia 5 [13] up to several hundred
Estonia 3 (2/1) [101] ?
Finland 5 [24] ˜1000
France ? [79] up to 200
Germany 1.7 [173] up to 200
Greece 4 [121]  10-20
Netherlands 0.9 [57] ?
Norway ? Folkhelsa, Norway** 50-100 (1998:200)
Slovakia 0.84 (0.42/0.42) [141] ?
Russia 1.5-4.3 [151] 2-18/100000
Sweden  5-9* [2, 3] 50-200 (1998:500)

* Northern Sweden; ** Annual Report 1998, National Institute of Public Health, Norway, page 13

Table 3b. Examples of reported HPS cases in the Americas

Country HPS cases Mortality
(cumulative total)

Argentina >270* ~40 %
Brasil
Canada 34*** 38 %
Chile 123**** 49 %
USA 245***** 44 %

* up to 5/2000 (Promed Mail); **up to 10/2000 (Promed Mail)***up to
6/2000 (Health Canada Laboratory Centre for Disease Control); **** up
to 8/2000 (Departomento de Epidemiologica,  Chile); ***** up to 6/2000
(CDC, USA)

65** 60 %
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virus (SNV) carried by deer mouse (Peromyscus maniculatus), and related viruses carried by

other Sigmodontinae rodents circulate [30, 44, 61, 88, 89, 106, 113, 128, 129, 144] (Table 2a).

The main pathogen causing HPS in North America is SNV, and in South America, ANDV.

Several other hantaviruses have been isolated and characterized throughout the world, but

none have been shown to be pathogenic to humans [19, 28, 45, 64, 84, 85, 125, 126, 145, 158,

160] (Table 2b).

The phylogeny of hantaviruses based on aminoacid sequence of the nucleocapsid protein is

presented in Fig. 2 [48].

SEOV

HTNV

DOBV-Slo

DOBV-Saa

PHV
ILVTULV-Rus

TULV-Mor

TOPV

KBRV

PUUV-Belg

PUUV-Sw

PUUV-Fin

PUUV-Rus

RIOSV
ELMCV

NYV SNV
ANDV

LNV

BAYV
BCCV

Figure 2. Phylogenic tree of hantaviruses based on the aa sequence of N (with
Neighbour Joining Method using the PHYLIP program package [49]). Rus = strain
 from Russia;  Fin = strain from Finland; Sw = strain from Sweden; Belg = strain from
Belgium;Saa = strain from Apodemus agrarius in Saaremaa, Estonia; Slo = strain from
Apodemus flavicollis in Slovenia; RIOSV = Rio Segundo virus; ELMV = El Moro Canyon
virus;  LNV = Laguna Negra virus. Figure was provided by  Alexander Plyusnin.

Introduction
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Figure 3. Monthly distribution of NE cases diagnosed  in 
Finland in 1995-1999. 

Source: National Register of Comminicable Diseases, KTL, Finland, 2000

1.4.1. NE epidemiology in Finland

In Finland, the incidence of laboratory-confirmed NE follows the density of rodents during

different years and varies depending on the geographical location. The incidence peaks occur

every 3-4 years. Clinical NE cases are detected throughout the year, but the highest numbers

are diagnosed in November and December in rural populations, and in August in urban

populations [24] (Fig. 3). Eastern Finland  has in general the highest rates (Fig. 4).

Males are infected at a mean age of 40 years and females at 44 years (Fig. 5), and the

male:female incidence ratio is about 2:1. The number of serological diagnoses (19/100 000)

and the antibody prevalence (5%) indicate that at least 70% of PUUV infections remain

undiagnosed [24].

Introduction
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1.5. Hantaviral diseases

Hantaviruses cause two human diseases: HFRS and HPS. NE caused by PUUV is generally

mild form of HFRS, the severity of the disease varying from asymptomatic infection or flu-

like illness to infections demanding intensive care, with a mortality of about 0.1% [24]. SEOV

causes a moderate form of HFRS, and HTNV and DOBV (in the Balkans), a severe form of

HFRS with mortality rates of 4-15%. A connection between the severity of NE and the HLA

haplotype of the patient has been demonstrated [107].

The incubation period in HFRS is 2 to 4 weeks, and the disease usually starts with fever and

headache, followed by gastrointestinal symptoms (nausea, vomiting, diarrhea), abdominal pain,

myalgia and back pain, and, in most cases, by clinical evidence of nephritis with varying

degrees of renal insufficiency [75, 151]. In PUUV infection, the symptoms are generally milder

and severe complications, such as hemorrhages, are rarer than in DOBV or HTNV infections

[6, 15, 75, 120, 139] (Table 4). SNV, ANDV, and related viruses found in the Americas are the

causative agents of HPS (Table 3b), a severe acute respiratory distress syndrome [38, 168]

with a mortality of about 40%.

Ribavirin [27] lowered the mortality of HFRS in a controlled clinical trial carried out in China

Figure 5. Age distribution of NE patients with diagnosed PUUV infection in Finland
(1.1. 1995-22.9.2000). Source: National Register of Communicable Diseases, KTL, Finland, 2000

Age group Males Females Total Males Females
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IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIII
IIIIIIIIIIIIII IIIIIIIIIIIIII

IIIIIIII IIIIIIIII
IIIIII IIIIIII

0..4 6 3 9
5..9 23 15 38
10..14 72 41 113
15..19 146 75 221
20..24 255 107 362
25..29 373 153 526
30..34 486 232 718
35..39 537 262 799
40..44 578 254 832
45..49 529 316 845
50..54 448 304 752
55..59 308 234 542
60..64 216 180 396
65..69 134 131 265
70..74 79 83 162
75.. 61 68 129

All 4251 2458 6709
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Table 4. Clinical characteristics of HFRS

Symptoms  NE* KHF* DOBV infection**
and findings Days after       %

of patients onset of fever
       %
of patients

Fever 100  1-7 100 84-100
Headache 90  2-8 86 50-100
Nausea 70  3-7 82 71-79
Stomachache and backache 70  3-9 90 59-85
Oliguria 50  2-8 67 47-100
Polyuria 97  7-14 92
Increased S-creatinine level 94  2-14 97 95
Proteinuria 94  3-8 100 100
Hematuria 58  3-8 85 100
Dialysis treatment 6 40 19-47
Petechiae 10  3-9 95 59
Hypotension, shock <10  3-5 40 21-59

* [75]; ** [6, 15, 121, 140]

       %
of patients

[66]. However, in HPS, no beneficial effects of its use were observed [29]. The treatment of

HFRS or HPS patients is thus mainly supportive and is based on understanding of the

pathophysiology of the disease and on the evaluation of clinical and laboratory findings.

In some cases, serology can be used as a prognostic marker. The presence of neutralizing

antibodies in HPS-patients indicated better survival from SNV infection [21].

1.6. Immune response in hantaviral infections

The induction of protective humoral immunity to hantaviruses in humans is believed to be

mostly due to viral glycoproteins, since virus-neutralizing activity has been shown to be

connected to MAbs raised against the glycoproteins, but not against the nucleocapsid protein.

Passive transfer of immune sera or MAbs against glycoproteins before challenge with HTNV

protected experimentally infected animals against infection [9, 10, 34, 97, 132, 170].

In humans, IgM, IgG, and IgA antibodies against hantavirus nucleocapsid protein appear soon

after onset of symptoms [35, 40, 96, 118] [III]. The IgM antibodies remain detectable for only

1-3 months, whereas the IgG antibodies, and in some patients also IgA antibodies, persist for

decades [35, 40, 96, 118] [III].
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1.7. Laboratory diagnosis

Serology is the best method to confirm clinically suspected hantavirus infection. Initially, the

laboratory diagnosis of acute infection was based on IgG seroconversion in paired serum samples

using lung sections of infected rodents or virus-infected cell cultures as IFA antigen. IgM-IFA

tests based on cultured cells have also been used [43, 138]. To overcome the specificity problems

connected to IgM-IFA, and to avoid the need of collecting paired sera, an IgG-avidity IFA was

developed [58]. In this avidity assay, which is based on the maturation of the affinity of antibodies

against viral proteins during the course of infection, weak affinity is characteristic of early

phase sera, and strong affinity, of late phase sera [58]. Another single-serum test using IgG-

IFA (discovered by M. Brummer-Korvenkontio) is based on the fluorescent pattern of the sera

in IFA; a granular pattern has been shown to be typical of serum samples collected during the

early phase of immunity, and a diffuse pattern, to be typical of serum samples collected during

the late phase of immunity [156].

Also, EIAs using cell culture-grown hantaviruses as antigen have been developed [114]. Since

hantaviruses are highly pathogenic and grow to low titers in cell culture (demanding at least

Biosafety level 3 laboratory facilities), production of antigen for such antibody tests is difficult.

Therefore, multiple attempts have been made to produce hantavirus antigens by recombinant

DNA technology. Recombinant nucleocapsid proteins have been found suitable, as antibodies

to N appear regularly early after onset of symptoms. Bacterial [39, 41, 47, 55, 118, 172, 174,

175] [I], insect [26, 105, 130, 136, 159], and mammalian [47] expression systems have been

used for antigen production. Different EIA formats have been introduced, including direct

coating-based procedures and various types of capture assays for both IgG and IgM antibodies.

In addition, immunoblotting assays based on recombinant hantavirus N or glycoproteins, or

peptides have been presented [47, 60, 71, 173]. For reliable serotyping, i.e. to distinguish

between e.g. DOBV and HTNV infections, focus- or plaque-reduction neutralization tests

(FRNT or PRNT) [7, 78, 133] run on convalescent phase serum samples are needed due to the

high serological cross-reactivity between hantaviruses [94].

For genetic characterization of hantaviruses, several reverse transcriptase (RT)-PCR protocols

for detection of hantaviral RNA have been introduced [5, 56, 62, 65, 113, 124, 137, 149].

Sequencing of the amplified regions makes identification of the causative agents feasible,

which is of special interest when epidemiological research is conducted in an area where several

closely related viruses co-circulate or when new hantaviruses are identified. However, for
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routine diagnostics RT-PCR is too insensitive, especially in the case of PUUV infections [124].

Virus isolation from human samples is tedious, and has very limited value for diagnostics, as

only a few successful isolations from patients have been obtained [72, 161].

1.8. Protective immunity and vaccines against hantaviral
infections

Several attempts have been made to develop a vaccine against hantaviral infections. In addition

to traditional vaccines based on inactivated viruses, both recombinant N and glycoproteins,

produced in bacterial [152, 153] [II], insect [132, 167] [II], or mammalian [32, 132, 162]

expression systems, have been used in protection studies utilizing rodent models. Both N [II]

and glycoproteins induce protective immunity, although in some studies, glycoproteins were

found to be crucial, and only partial protection was obtained with N alone [132, 162].

Furthermore, studies on DNA vaccination against SEOV [63, 74] and SNV infection [20] have

been carried out in laboratory rodents, and shown to have efficacy.

The protective effect of passively transferred antibodies against hantaviruses has been

demonstrated in several animal experiments [10, 87, 170] designed to evaluate the therapeutic

potential of neutralizing hyperimmune sera or MAbs in post-exposure prophylaxis of hantaviral

infections.

A formalin-inactivated HTNV vaccine (Hantavax™) has been commercially available in Korea

since 1990.  In human vaccine trials, booster vaccinations have been critical for maintaining

the antibody levels for more than one year (antibody levels up to 94-100% of persons

vaccinated); neutralizing antibody responses have, however, remained at only 50% level of

vaccinees [31]. Several other human vaccine trials have been carried out using either inactivated

[90, 143, 171] or recombinant vaccines [102]. The vaccines were shown to be safe and well

tolerated in healthy volunteers, and capable of eliciting seroresponses in the vaccinees. Booster

doses were, however, found to be crucial in order to maintain the antibody levels and potential

protection is still unknown.
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2. Aims of the study

The aims of the present study were:

1. to develop safer and more efficient ways for hantaviral antigen production

2. to develop and evaluate EIAs for hantavirus antibody detection in human infections

caused by European hantaviruses

3. to study the kinetics of human antibody response in hantaviral infections

4. to study the antigenic properties of PUUV-N and its role in protection against PUUV

infection in rodent hosts

Aims of the study
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3. Material and Methods

For detailed descriptions of Material and Methods used in this study, refer to the orignal article(s)

identified by Roman numeral(s).

Methods Used in

Preparative agarose gel electrophoresis I
SDS-PAGE I, II, IV, V

Immunoblotting I, II, IV, V

Enzyme immunoassay  (EIA) I, II, III, IV

Immunofluorescent assay (IFA) I, II, III,  IV,V

Virus cultivation II

Polymerase chain reaction (PCR) II, IV, V
Epitope mapping (PEPSCAN) II

Animal immunization II

Virus challenge II

Focus reduction neutralization test II, IV, V

Bacterial transformation II, IV, V

Transfection IV, V

Electroelution IV
Immunoprecipitation V

Monoclonal antibodies Source/[Reference] Used in

Anti-b-galactosidase Boehringer I

Golgi zone Calbiochem V

PUUV-N specific MAbs
1C12 [93] III, IV

4C3, 3E11, 3G5, 2E12 [93] IV

PUUV-G specific MAbs

G1-1E7-1E5 [95] II

1C9 [98] II

5B7 [97] IV

HTNV-N specific MAbs
G6, F23a1, E5 [166] IV

TUL-N specific MAb

1C8 [99] IV

Material and Methods
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Expression vectors Manufacturer/[Reference] Used in

pEX2 [146] I

pGEX-2T Pharmacia II, IV

pAcYML1 Gibco BRL, [136, 159] IV

pFASTBAC1, Gibco BRL IV

ELVS 2.5 Chiron V

Recombinant proteins Expression vector Used in

β-gal-PUUV-N pEX2 I

PUUV-rN-1a, -3, -2b, -2c, 2/3 pGEX-2T II

PUUV-rN-1b (PUUV-1b-GST) pGEX-2T II, IV

TUL-rN-Tot, -Eco pGEX-2T II
Bac-PUUV-N pAcYML1 III, IV

Bac-DOBV-N pFASTBAC1 IV

Bac-HTNV-N pAcYML1 IV

DOBV-dN-GST pGEX-2T IV

r-PUUV-G1, -G2, -N pELVS 2.5 V

Conjugates Manufacturer/[Reference] Used in

Aphos-anti-human IgG Orion Diagnostica I

Aphos-anti-human IgM -“- I

Aphos-goat anti-mouse IgG -“- II

Aphos-donkey anti-mouse IgG Jackson II

Perox-streptavidin Sigma II
FITC-anti-human IgG Kallestaad III

Perox-anti-human IgM DAKO III, IV

Perox-MAb 1C12 [93] III, IV

Perox-anti-human IgG DAKO III

Perox-anti-mouse IgG DAKO IV

Perox-anti-human IgG Cappel IV

Substrates Manufacturer Used in

pNPP Sigma I, II

DAB Sigma II

TMB Sigma II, III, IV

OPD Sigma III

Material and Methods
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4. Results and Discussion

4.1. Development and evaluation of antibody tests

4.1.1. PUUV antibody tests based on recombinant antigens

The IgG-IFA in conjunction with the IgG-avidity-IFA [58] were considered reference tests for

all recombinant IgG and IgM EIAs developed, since these IFAs could provide a diagnosis of

acute infection from a single serum sample, and were the only tests routinely used in our

diagnostic laboratory. Because the IgM-IFA had been found to have more specificity problems

than the IgG-IFA (data not shown), the IgM-EIAs were not compared with IgM-IFA.

4.1.1.1. Bacterial expression system (I)

Initially, a bacterial expression system with pEX2 vector was used for production of recombinant

PUUV-N as a fusion protein with β-galactosidase (β-gal) [157]. The large size of the fusion

protein made purification by gel electrophoresis possible. According to immunoblotting analyses

using patient sera and rabbit antisera raised against the β-gal -PUUV-N fusion [157], the β-gal

-PUUV-N proved to be suitable for use as a diagnostic antigen. Three EIA tests based on β-gal -

PUUV-N were developed, one measuring IgM antibodies, one IgG antibodies, and one the

avidity of IgG antibodies.

The IgG-EIA correlated well with the reference IgG-IFA. The sensitivity and specificity values

of the IgG-EIA were 97.8% and 98.5%, respectively, suggesting that it is an excellent method

for diagnostic purposes and for screening of human sera in seroprevalence studies.

Also, the PUUV IgG-avidity EIA showed a good correlation with the IgG-avidity IFA (Fig. 6).

With a cut-off value of 20% (ratio of absorbance values of urea-washed and control wells), all

old-immunity sera gave in IgG-avidity EIA results indicative of old immunity (>20%). Likewise,

all of the acute-phase sera gave results below 20%, indicating acute immunity.

The IgM-EIA gave positive results for a few very early sera, in which no antibodies could yet

be detected by IgG-EIA or IgG-IFA, but where subsequent samples confirmed the diagnosis
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by IgG seroconversion. The indirect IgM-EIA seemed, however, to give false-positive results

among some of the old-immunity sera.

The possible cross-reactivity between hantaviruses was examined using a panel of KHF-patient

sera. Approximately one third of the KHF-patient sera showed some reactivity in β-gal-PUUV-

N EIA tests as well as in the immunoblotting assay based on the β-gal -PUUV-N antigen. Due

to the low cross-reactivity level, the EIA tests based on β-gal-PUUV-N cannot be recommended

for the diagnosis of HTNV infections.

Results and Discussion
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4.1.1.2. Baculovirus expression system (III)

A more advanced expression system was introduced for production of recombinant PUUV-N

to increase the expression level of the antigen and to avoid the unspecific reactivities caused

by the bacterial background in diagnostic tests. The antigenic properties of recombinant

baculovirus-expressed PUUV nucleocapsid protein (bac-PUUV-N) were initially shown to be

as suitable for use as a diagnostic antigen as native PUUV [25, 70, 159]. The advantage of bac-

PUUV-N as compared with b-gal-PUUV-N was demonstrated by the reactivities of a panel of

MAbs against the two recombinant proteins. Bac-PUUV-N was recognized by all of the MAbs

used, whereas two N epitopes were not found in β-gal -PUUV-N [159]. The diagnostic value of

bac-PUUV-N was further evaluated using different assay formats, and the kinetics of the

antibody responses studied (III).

After expression in Sf9 insect cells, the insoluble bac-PUUV-N was solubilized by 6 M urea,

and run through a Sephadex G20 column. Due to the high expression level of the antigen, the

signal-noise ratio was sufficiently high to eliminate background problems in EIAs. Five different

EIA test formats were studied: direct-IgM and –IgG EIAs, µ-capture IgM-EIA, Ag-capture

IgG-EIA, and IgG-avidity EIA (Fig. 7). The serum panel included sera from NE-patients where

the first serum sample had been negative for PUUV IFA, but the second sample indicated a

seroconversion. Among routine diagnostic samples, such sera normally comprise 1-5% of all

acute cases, whereas in this panel the proportion of such cases was 35%. Using this selected

serum panel, the possible differences in sensitivities between the IgG-IFA and different EIAs,

especially in the early diagnosis of NE, could be evaluated.

As compared with the reference IgG-IFA, the IgG-EIAs were found to be specific, since no

false-positive reactions were seen when 90 paired negative sera were tested. Certain differences

between the EIAs and IFA could be detected in the sensitivity (Fig. 8a), direct-IgG EIA being

the most sensitive of the three IgG assays. Direct PUUV-IgG EIA was found to be more sensitive

Figure 7. Schematic presentation of the princeples of the different EIA formats used.
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for the very early sera (taken on the third day after onset of symptoms or earlier) (Fig. 8a) than

capture PUUV-IgG EIA, whereas for older immunity sera the sensitivities were equal. The

difference between the two EIAs using the same recombinant antigen was likely to be due to

coating the antigen either directly or in a capture format through MAb 1C12, which might

occupy or shield some of the aminoterminal “early response” epitopes on bac-PUUV-N. Possible

complex formation of bac-PUUV-N might overcome most of this effect, but in some cases, the

“shielding effect” may be the reason for the negative results in the early sera with IgG MAb-

capture assay.

.
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The IgG-avidity assay could detect maturation of IgG molecules in serial sera, making it possible

to differentiate between old-immunity and acute-immunity sera. The test looked promising as

a confirmatory tool for timing IgG responses, although a larger panel of old-immunity sera

would be needed to verify the specificity of the low-avidity results.

The two IgM tests were also evaluated with the positive- and negative-control panels. All of

the patients became IgM-positive within seven days after onset of symptoms by EIAs (Fig.

8b). Of NE-patient sera taken 0-7 days after onset, 88% (97/110) were positive with µ-capture

EIA, 86% (95/110) with direct IgM-EIA, and 65% (72/110) with IgG-IFA.

4.1.1.3. Kinetics of PUUV-N IgM response (III)

Of the bac-PUUV-N EIAs, especially the µ-capture IgM assay seems to be highly suitable for

diagnostics as a single test. Its special advantage is that diagnosis can be made very early after

onset of illness, even though it should be remembered that a few (probably 1-5%) NE patients

can be IgM-negative even 5 days after onset of symptoms (Fig. 8b), in which case, a second

serum sample should be taken to confirm the initially negative result. Interestingly, the antibody

positivity of the samples taken during the first days (0 and 1 st) after onset of symptoms is close

to 100%, declining during the 2nd and 3 rd days, and then rising again to almost 100% (Fig. 8b).

This phenomenon might be random variation due to small sample sizes during the first days,

or due to differences in the severity of the illness in individual patients. The immunological

response may be stronger among those patients seeking medical care earlier than among those

who enter the health care system a few days later.

During the first month after onset of symptoms, rate of IgM-antibody positivity started to

decline. The number of old sera tested was quite small, but by using the µ-capture assay, the

IgM levels declined earlier than by direct-IgM assay (Fig. 8b). The IgG-blocking reagent did

not have a significant effect on the IgM results of rheumatoid factor (RF)- positive sera.

4.1.2. Development of DOBV antibody tests based on
recombinant antigen (IV)

In our study (IV), DOBV Saaremaa strain cDNA (virus isolated from A. agrarius from Estonia)

[111] was used as a template to express DOBV-N in bacterial and insect cell expression systems
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using pGEX-2T and Bac-to-Bac™ vectors, respectively. The antigens produced were used to

develop IgM and IgG EIAs, and to compare the usefulness of different test formats and

recombinant proteins in diagnosis of DOBV infection. In addition, tests based on recombinant

PUUV-N (bac-PUUV-N and PUUV-1b-N) and HTNV-N (bac-HTNV-N) [136] were included

in the comparison.

So far, mainly truncated recombinant antigens, such as either recombinant DOBV-N (aa 1-

117) [41] or HTNV-N (aa 1-117 or aa 1-119) [41, 54] have been used in assays to diagnose

DOBV infections in Europe. Although our truncated construct (DOBV-DN-GST, aa 1-165)

was longer than the previously described ones, the IgM assay as well as the IgG assay based on

the truncated antigen failed to detect DOBV antibodies in several sera, and the full-length

protein (bac-DOBV-N) was shown to be a more sensitive antigen (Fig. 9). Using a large panel

of MAbs, the antigenic properties of bac-DOBV-N were shown to be identical to those of

native DOBV-N, although the absence of MAbs raised specifically against DOBV prevented a

more complete antigenic evaluation (Table 5).
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One of our aims was to evaluate the suitability of EIAs based on other hantavirus antigens

(mainly HTNV and PUUV) for diagnosing DOBV cases in European laboratories. The

evaluation was performed on a DOBV serum panel that had been fully characterized and DOBV-

specific reactions were confirmed by cross-FRNT using several hantaviruses and also including

convalescent sera of the patients. In our study, bac-HTNV-N was found to have nearly the

same ability to detect DOBV antibodies as bac-DOBV-N (Tables 6 and 7). This result is in line

with the high serological cross-reactivity within the HTNV/DOBV/SEOV group, and indicates

that the full-length HTNV-N antigen is generally appropriate for detection of DOBV antibodies.

However, recent data have shown that EIAs based on HTNV antigen may in some cases fail to

detect DOBV-specific antibodies, both in acute-phase and convalescent samples of HFRS

patients [141]. Bac-DOBV-N was not as sensitive in the detection of HTNV-specific antibodies

as bac-HTNV-N (Tables 6 and 7), which further supports the concept that homologous antigens

are preferable for reliable diagnosis of HFRS. The comparison results of bac-DOBV-N and

bac-HTNV-N may, however, have been affected by the expression levels: the expression level

of bac-DOBV-N was significantly lower than that of baculovirus-expressed HTNV-N and

PUUV-N, possibly due to the different baculovirus expression system (Bac-to-Bac™) used.

Despite the low expression level of bac-DOBV-N, the need for purification of the antigen

could efficiently be circumvented by the use of the MAb- or µ-capture format in the EIAs.

Recent data from our laboratory show that DOBV-N can be efficiently expressed at high levels

as a GST fusion protein in insect cells (Koistinen et al., unpublished results).

Table 5. MAb reactivity of recombinant proteins, measured by EIA

MAb   Recombinant antigen  Native antigen
MAb recognition site (aa)

(epitope specificity)* bac-DOBV-N DOBV-dN-GST bac-HTNV-N bac-PUUV-N DOBV- PUUV-
(aa1-429) (aa 1-165) (aa 1-430) (aa 1-430) IFA IFA

1C12 PUUV-N, aa 1-79 (N-f)  +  +  +  +  +  +
4C3 PUUV-N, aa 1-79 (N-h)  +  +  +  +  +  +
3 E 11 PUUV-N, aa 1-79 (N-f)  +  +  +  +  +  +
3G5 PUUV-N, aa 1-79 (N-d)  -  -  -  +  -  +
2 E 12 PUUV-N, aa 1-79 (N-g)  +  +  +  +  +w  +
5B7 PUUV-G2 (G2-b)  -  -  -  -  -  +
G6 HTNV-N, aa 166-176  +  -  +  +  +  +
F23A1 HTNV-N, aa 205-402  +  -  +  +  +  +
E 5 HTNV-N, aa 166-175  +  -  +  +  +  +
C16D11 HTNV-N, aa 244-429  +  -  +  +  +  +
1C8 TULV-N, aa 1-79  -  -  -  +  -  +

*From Table 9 and [166]; w= weak reaction
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Results and Discussion

Table 6a. Results of IgM-EIAs based on different hantavirus antigens

Negat. sera (N=90)                    DOBV-pos. sera (N=60)
      (acute n=28)   (conv./old n=32)

Antigen

bac-DOBV-N

DOBV-dN-GST
bac-HTNV-N

bac-PUUV-N

Pos. Specif. Pos. Sensit. Pos. %
 % (high/gray-zone) % (high/gray-zone)

0 100 28 (28/0) 100 10* (7/3) 31

1 99 24 (22/2) 86 4** (3/1) 13
0 100 28 (28/0) 100 8* (5/3) 25

0 100 8 (1/7) 29 1*(0/1) 3

*All positive sera are convalescent samples (taken between 1 and 3 months after onset of symptoms);
** Three positive sera are convalescent samples, and one positive serum old-immunity sample (taken
later than three months after onset of symptoms)

HTNV-pos. sera (N=20)                      PUUV-pos. sera (N=23)
        (acute)       (acute n=18)   (conv./old n=5)

Pos. Sensit. Pos. Sensit. Pos. %
% (high/gray-zone) % (high/gray-zone)

20    (14/6) 100 2    (0/2) 11 0 0
18    (17/1) 90 5    (2/3) 28 1* (1/0) 25
20    (20/0) 100 5    (3/2) 0 0

8 (3/5) 40 18  (16/2) 0 0

(high/gray-zone)
Antigen

bac-DOBV-N
DOBV-dN-GST
bac-HTNV-N
bac-PUUV-N

28
100

Table 6b. Results of IgM-EIAs based on different hantavirus antigens

Table 7a. Results of IgG EIAs based on different hantavirus antigens

Negative sera (N=90)              DOBV-pos. sera (N=60)
  (acute n=28) (conv./old n=32) Total

Antigen

bac-DOB-N
DOB-dN-GST
bac-HTN-N
bac-PUU-N
PUU-1b-GST

Pos. Specif. Pos. Pos. Sensit.
% (high/gray-zone) (high/gray-zone) %

0 100 27 (26/1) 32 (32/0) 98
0 100 21 (19/2) 32 (32/0) 88
0 100 27 (24/3) 32 (32/0) 98
0 100 21 (16/5) 27 (18/9) 80
1 99 23 (12/11) 22 (11/11) 75

HTNV-pos. sera (N=20)             PUUV-pos. sera (N=23)
              (acute)    (acute n=18) (conv./old n=5) Total

Pos. Sensit. Pos. Pos. Sensit.
(high/gray-zone) % (high/gray-zone) (high/gray-zone) %

15 (14/1) 70 4 (1/3) 3 (1/2) 30
13 (8/5) 65 2 (0/2) 2 (0/2) 17

20 (18/2) 100 7(7/0) 4 (1/3) 48
5 (1/4) 25 18 (18/0) 5 (5/0) 100
9 (3/6) 45 22 (21/1) 5 (5/0) 96

Antigen

bac-DOB-N
DOB-dN-GST
bac-HTN-N
bac-PUU-N
PUU-1b-GST

Table 7b. Results of IgG EIAs based on different hantavirus antigens
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4.1.3. Hantavirus diagnostics: general aspects

The earlier reports, later unconfirmed, on HTNV and SEOV infections in Europe are examples

of the difficulties in hantavirus typing based on serology using IFA, EIA, or immunoblotting

methods. It now appears that the only reliable test for distinguishing the antibody responses

against different closely related hantaviruses is the neutralization test. Notably, in these tests

the maturation of antibodies is crucial for correct typing: very early sera cannot be used due to

cross-reactivity [94] probably caused by IgM-class antibodies. For diagnostic purposes, however,

it is most important that the tests sensitively detect early seroresponses against the local

hantavirus(es), and although the distinction between e.g. closely related viruses can be achieved

in some cases with peptide and truncated recombinant protein based assays, this usually causes

a loss of sensitivity [71, 105] ( Araki et al., unpublished results)..

Serological assays  are needed for hantavirus diagnostics, since only about 67% of PUUV

patients [124] and about 40% of DOBV patients [119] have been shown to be hantavirus

RNA-positive by RT-PCR, and the isolation of hantaviruses from HFRS patients is rarely

successful [72, 161]. For serological diagnosis of hantaviral infections, the assays measuring

IgM antibodies are the method of choice as the IgM levels rise earlier than those of IgG

antibodies, and the IgM antibody response is definitively associated with acute infection [25,

43] [III]. Yet, it should be noted that the format of the assay has a major impact on its specificity

and sensitivity. If the expression level of an antigen is low, the use of a capture format may

minimize the need for purification of the antigen. On the other hand, the less than full length of

the recombinant protein can affect its capacity to bind antibodies to different epitopes and may

thus lower the sensitivity if capture assays are used [25].

Currently, a few diagnostic kits are also commercially available for hantavirus serology. Progen

(Heidelberg, Germany) has provided PUUV and HTNV EIAs for detection of IgM and IgG

antibodies. The tests are based on truncated recombinant nucleocapsid proteins. However,

according to an international evaluation, these PUUV-specific IgM and IgG kits were found to

be of lower sensitivity than FRNT, PUUV-IFA, or in-house EIAs based on bac-PUUV-N, E.

coli-expressed PUUV-DN, or native PUUV [25]. Furthermore, MRL Diagnostics (CA, USA)

has recently introduced EIAs for detection of hantavirus IgM and IgG antibodies; the tests are

based on a cocktail of baculovirus-expressed recombinant DOBV and SEOV nucleocapsid

proteins. IFAs based on Vero E6 cells infected with either PUUV or HTNV have also been

provided by Progen. In addition, a rapid PUUV IgM test using immunochromatography has

been developed based on bac-PUUV-N. The sensitivity and specificity values of this test are

97-100% [67].

Results and Discussion
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The m-capture assay for the early detection of PUUV and DOBV IgM antibodies gave the best

results. Furthermore, if a negative result is obtained from a sample taken before the 6th day

after onset of symptoms, a second sample is recommended to exclude or confirm hantavirus

infection. The level of cross-reactivity between hantaviruses is highest among the HTNV/

DOBV/SEOV group, and within the PUUV/SNV/TUL group, but for accurate diagnosis in

geographical areas in which hantaviruses from both groups cocirculate, at least one antigen

from each group homologous to local viruses should be used; i.e. in Europe PUUV and DOBV.

4.2. Characterization of PUUV-N  (II)

Truncated PUUV-N proteins were produced as GST-fusion proteins in a bacterial expression

system using a pGEX-2T vector (Fig. 10). The sequences for the expressed fragments were

selected according to possible structural domains and hydrophilic/immunogenic regions from

hydrophilicity values and structure predictions. The immunogenicity of truncated recombinant

PUUV-N proteins and bac-PUUV-N was analyzed, and an animal model to investigate the role

of PUUV-N in protective immunity in the carrier rodent was developed. Unlike in previous

experiments using hamsters, the natural host rodent of PUUV, bank vole (Clethrionomys

glareolus), was used in this study (Fig. 11).

Figure 10. Recombinant PUUV-N constructs for immunization studies.

bac-PUUV-N

rN 1a

rN 1b

rN 2/3

rN 3

aa 1 aa 433

aa 1

aa 1

aa 1

aa 79

aa 118

aa 267

aa 327aa 229

GST

GST

GST

PUUV-N

PUUV-N

PUUV-N

PUUV-N

PUUV-N

PUUV S-segment cDNA

GST
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4.2.1. B-cell epitopes in PUUV-N

When truncated PUUV-N constructs were used for epitope mapping of MAbs generated from

a virus-infected bank vole, six of seven epitopes were mapped within the N-terminal 20% of

the PUUV-N (aa 1-79), thereby indicating that this part of PUUV-N is a major antigenic region

(Table 8). This is in agreement with previous results based on additivity and competitive EIAs,

which together with the reactivity patterns with various hantavirus strains suggests that several

of the epitopes were partially or completely overlapping [93, 97]. The MAb 3H9 that had been

characterized previously [92] was also in this study shown to react with the most variable part

of PUUV-N (aa 229-267). Our result is in line with other studies on B-cell epitopes on PUUV-

N, TULV-N, and HTNV-N [92, 99, 166].

Polyclonal sera from naturally or experimentally infected bank voles revealed the presence of

B-cell epitopes over the entire N. Although sera from infected animals were non-reactive with

the rN-2b fragment (aa 135-214), PEPSCAN data indicated the presence of antigenic domains

also within this region. Studies on the human IgG response to PUUV-N have shown a similar

pattern: truncated N proteins indicated that the amino-terminal part is the major antigenic

region, although PEPSCAN data revealed the presence of antigenic domains in other parts of

the protein as well [42, 55, 92, 156, 157]. Similarly, for  SNV and HTNV, the major domain for

the humoral reactivity has been shown to reside within the amino-terminus of E. coli -expressed

N proteins [71, 163, 166].

control construct

PUUV-N constructs

challenge with
10 000 ID50
PUUV Kazan

antibodies
against G1/G2
in sera using
EIA

antigen
in lungs
using EIA

2 weeks after
last booster

21 days post-
challenge

antibodies
in sera using
IFA and FRNT

3x

Look for: Look for:

laboratory colonized
Clethrionomys
glareolus

Figure 11. Schematic representation of the PUUV protection assays in colonized bank voles
(Clethrionomys glareolus).
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4.2.2. Protective immunity in natural host by immunization with
PUUV-N (II)

Examination by IFA revealed that all the different recombinant PUUV-N fragments elicited in

animals significant IgG levels reactive with native PUUV-N (Table 9). The highly immunogenic

nature of the amino-terminal region was further demonstrated by  the relatively high antibody

titers to native PUUV-N evoked in animals immunized with rN-1a (aa 1-79); none of the

pooled antisera raised to the larger rN fragments or to the entire N (i.e. bac-PUUV-N or during

viral infection) showed higher titers to native N (Table 9).

Although HTNV causes systemic infection with lethal outcome in newborn mice [76, 103,

110], nude mice [109], and SCID mice [165], no animal model for HFRS-like disease has been

found, making it impossible to evaluate the ability to moderate or prevent disease by

immunization with PUUV recombinant proteins. Thus, another experimental approach, based

on infection of the natural host, the bank vole, was used for measurement of protection from

Table 8. Summary of MAb reactivity in immunoblotting with truncated rN proteins

Antigen
MAb (epitope)

3H9
(N-a)

-
-

+
+
+

-
-

229-267

5 E1
(N-b)

+
+

+
-
+

-
-

 1-79

5B5
(N-c)

+
+

+
-
+

-
-

 1-79

3G5
(N-d)

+
+

+
-
+

-
(+)

61-79

1C12
(N-f)

+
+

+
-
+

+
+

 1-61

2 E12
(N-g)

+
+

+
-
+

-
+

61-79

4 E5

+
+

+
-
+

+
+

 1-61

(N-h)

PUUV

rN 1a (1-79)
rN 1b (1-118)

rN 2/3 (1-267)
rN 3 (229-327)
bac-PUUV-N

TULV

rN Eco (1-61)
rN Tot (1-430)

Epitope region
(recognized aa's)

 + positive reaction; (+) weak reaction; - negative
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PUUV infection. None of the bank voles immunized with the amino-terminal fragments or

with complete recombinant N (bac-PUUV-N) displayed N antigen in their lungs after challenge

with infectious PUUV. Animals were protected against challenge virus in up to 10 4 infectious

doses. When post-challenge sera of these animals were analyzed, only one (immunized with

the shortest aminoterminal fragment (aa 1-79)) had glycoprotein-specific antibodies and

appeared not to be fully protected (Table 10). Even though the number of  animals in some

groups was small, all animals immunized with proteins corresponding to aa 1-118 or with

larger amino-terminal fragments of PUUV-N, were well protected against infection. Bank voles

have also been shown to be protected against PUUV infection  when hepatitis B virus core

particles carrying PUUV-N constructs were used in similar protection experiments [152, 153].

In other experimental settings, HTNV recombinant N has been shown to protect hamsters and

suckling mice from HTNV infection [132, 167]. The results from our animal model emphasize

the importance of investigating not only the presence of viral antigen, but also the antibody

responses.

Antibodies against envelope glycoproteins carry best protection in passive transfer of antibodies

in experimental models. Also neutralizing activity is detected in vitro for MAbs directed to G1

and G2, but not to N [9, 10, 34, 97, 132, 170].

Table 9.  Immune responses to PUUV in bank voles after immunization with different
recombinant PUUV-N or control constructs, and infection with PUUV

                     Reciprocal end-point titers

Immunogen N animals

2
3
3

3
3
2

5

5
5

2

IFA
Native PUUV

6400
3200
3200

1600
3200
1600

<100

1600
1600

<100

FRNT
Native PUUV

< 40
< 40
< 40

40
< 40
< 40

< 40

1280
1280

< 40

G1/G2 EIA
Native PUUV

< 200
< 200
< 200

< 200
< 200
< 200

< 200

6400
12800

< 200

(aa)

rN 1a (1-79)

rN 1b (1-118)

rN 2/3 (1-267)
rN 3 (229-327)
bac-PUUV-N (1-433)

GST-control

PUUV (wild) a
PUUV (Kazan) b

Non-immune control

 aSera from PUUV IgG-positive wild bank voles trapped in northern Sweden; bSera drawn 3 weeks after
experimental infection with PUUV strain Kazan.
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The significance of the N-specific antibody response in vivo is, however, not yet completely

understood. A MAb specific to HTNV-N has been shown to protect from virus infection, and

N-specific polyclonal sera, to significantly increase the survival time in a mouse model [167].

N-specific MAbs are known to partially protect bank voles from PUUV infection (Lundkvist

et al., unpublished). Accordingly, the humoral response to N may, in addition to the glycoprotein-

specific response, be of importance for the immunity, e.g. via antibody-dependent cell-mediated

cytotoxicity and/or complement-mediated cytolysis.

Cell-mediated response to HTNV has been shown to be induced in experimental infection in

rodents and also to be at least partially protective against infection [11, 12, 167]. Human CD4+

and CD8+ cytotoxic T lymphocyte (CTL) epitopes have been identified on SNV-N (aa 131-

139, aa 234-242, and aa 372-380) during the acute phase of HPS [46], and on HTNV-N (aa 12-

20 and aa 421-429) years after laboratory-acquired subclinical HTNV infection [154]. T-cell

epitopes on HTNV-N (aa 221-228, aa 328-335, and aa 422-429) have also been described

using a mouse model [121]. Recently, CTL responses against both PUUV G1 and G2 were

seen in natural PUUV infection (Van Epps et al., personal communication). Our recombinant

proteins, which were found to be protective in bank voles, covered the same PUUV-N regions

shown to be important as human T-cell epitopes.

Our data suggest that recombinant PUUV-N proteins are capable of inducing a response that

can protect animals from infection after challenge with high doses of infectious virus.

Table 10. Presence of antigen or G1/G2 antibodies after challenge
with PUUV/Kazan  in bank voles immunized with recombinant
PUUV-N constructs

Immunogen (aa) Antigen in lungs G1/G2 antibody

rN 1a (1-79) 0/5a       1/5b

rN 1b (1-118) 0/3       0/3
rN 2/3 (1-267) 0/3       0/3

rN 3 (229-327)  1/3       1/3
bac-PUUV-N (1-433) 0/8       0/8

GST-control  5/5       5/5

Non-immune control  8/8       8/8

 aNumber of N-antigen positive/number inoculated; bNumber of G1/G2-
specific antibody positive/number inoculated

Results and Discussion
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4.3. Expression of PUUV proteins in mammalian cells (V)

To establish a recombinant expression system for the glycoproteins, and to compare the kinetics

of human antibody responses towards recombinant PUUV-N, G1, and G2, these proteins were

expressed in mammalian BHK-21 cells using an alphavirus replicon system. This expression

system was selected to allow proper post-translational processing of the recombinant

glycoproteins in mammalian cells, as our previous experience with the baculovirus expression

system suggested that the glycoproteins were not properly folded in insect cells [159].

The antigenic properties of the recombinant proteins were evaluated using panels of specific

MAbs raised against PUUV-N, G1, or G2. Recombinant PUUV-N and glycoproteins, when

expressed together, were found to react with the MAbs reactive against conformational epitopes

identically to native viral proteins (Table 11), suggesting proper folding of these recombinant

proteins. Co-expression of G1 and G2 was essential, since individually expressed G2 was not

recognized by all G2-specific MAbs, and was thus apparently not properly processed. A stronger

response against MAbs was obtained when G1 and G2 were simultaneously expressed from

separate transcripts as compared with expression from a single open reading frame.

Immunoprecipitation by polyclonal rabbit antisera against G1, G2, and N showed that the

sizes of the recombinant proteins were similar to those of native viral proteins.

Table 11. Reactivity of PUUV-specific monoclonal antibodies with the recombinant
proteins, as analysed by IFA

MAb

recognition site

     PUUV-G1 (a)

     PUUV-G2 (a1)
     PUUV-G2 (a2)
     PUUV-G2 (b)

     PUUV-N (a)
     PUUV-N (b)
     PUUV-N (e)

     PUUV-N (f)
     PUUV-N (g)
     PUUV-N (h)

     Recombinant protein Native
antigen

MAb  (epitope specificity) G1

 +

 -
 -
 -

nd
nd
nd

nd
nd
nd

G2

 -

 +
 +
 -

nd
nd
nd

nd
nd
nd

M*

 +w

 +
 +

 +w

nd
nd
nd

nd
nd
nd

G1+G2**

 +

 +
 +
 +

nd
nd
nd

nd
nd
nd

N

nd

nd
nd
nd

 +
 +
 +

 +
 +
 +

PUUV
Sotkamo

 +

 +
 +
 +

 +
 +
 +

 +
 +
 +

  MAb 5A2

  MAb 4G2
  MAb 1C9
  MAb 5B7

  MAb 3H9
  MAb 5E1
  MAb 5F4

  MAb 1C12
  MAb 2E12
  MAb 4C3

*pELVS-PUUV-M- transfected to express G1 and G2 proteins; **pELVS-PUUV-G1 and
pELVS-PUUV-G2 transfected simultaneously; w= weak reaction; nd=not determined
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Previous studies using vaccinia virus-based expression systems have indicated that HTNV G1

and G2 can be expressed separately, but that the transport of G2 from the endoplasmic reticulum

to the Golgi complex is dependent on coexpression with G1. However, the transport of G1 has

been debated; it has been found to be targeted to Golgi when expressed alone [122] or to be

dependent on coexpression with G2 [131]. Our results on obtaining conformationally properly

folded PUUV G1 and G2  by coexpression further support the close interplay between the two

glycoproteins in hantaviruses, but whether the dependence of proper folding of G2 on the

presence of G1 is associated with Golgi transport awaits further studies. Moreover, hantavirus

glycoproteins may differ in their targeting [128], and no thorough localization studies have

been done for PUUV.

To evaluate the human IgG-antibody responses against recombinant G1, G2, and N, several

panels of sera were tested by IFA. The best reactivity was obtained when G1 and G2 expressed

together were used as antigen. Only 2% of the acute-phase sera (N= 133) contained IgG

antibodies against PUUV G1+G2, whereas of old-immunity sera (N= 100), 87% were G1+G2-

positive (Table 12). These results are in line with previous data obtained by assays based on

native structural PUUV proteins [96]. Using a panel of serial patient sera, it was shown that as

the immunity matures, IgG antibodies against recombinant glycoproteins appear and finally

high titers are reached at late convalescence, while antibodies to nucleocapsid protein are

present in high titers already in the acute phase of infection (Table 13).

Table 12. Presence of IgG antibodies to recombinant PUUV-G1 and -G2-antigens in
PUUV- and DOBV-patient sera by IFA

PUUV-patient sera DOBV-patient sera

Recombinant      Acute-phase

      sera (tot=19)

     Old-immunity

     sera (tot=81)

    Acute-phase

          sera (tot=24)

Convalescent- or old-

immunity sera (tot=16)antigen
N pos.

1

0

1

0

% pos.

5

0

5

0

N pos.

65

27

70

60

% pos.

80

33

86

74

N pos.

nd

nd

0

nd

% pos.

0

N pos.

nd

nd

5

nd

% pos.

31

G1

G2

G1+G2*

M**

*Separate pELVS-PUUV-G1 and pELVS-PUUV-G2 transfected simultaneously; **whole pELVS-PUUV-M
segment encoding for G1 and G2 transfected, nd = not determined
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With a panel of FRNT-verified DOBV sera, the cross-reactivity between the sera and

recombinant PUUV G1+G2 antigen was observed to be quite low (36% of the sera showed

some reactivity) (Table 12), and the intensity in IFA was weak among the old–immunity sera.

Of the acute DOBV sera, none were reactive (Table 12). This result is consistent with the
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finding that glycoproteins are the most variable of hantaviral proteins [123]. Whether the

comparison of the titers of patient serum antibodies against different hantavirus glycoproteins

could be used for typing of the causative agent remains to be seen.

Our results are in contrast to those obtained with early-phase sera of HPS patients, which

reacted with bacterially expressed truncated recombinant SNV G1 protein. However, in those

experiments, no reactions between acute PUUV sera and SNV G1 were seen [60] (no old-

immunity PUUV sera were included in that material). One explanation for the discrepancy

could be that the reactivity is due to antibodies against virus-type specific linear epitopes. A

similar phenomenon has been documented in human parvovirus infections, in which certain

linear epitopes are detectable only in the acute phase of immunity [73, 142].

Sera with IgG antibodies against recombinant N showed in native PUUV IgG-IFA the granular

fluorescence pattern associated with the acute phase of immunity [156] (Table 14). Whereas

sera with IgG antibodies also against the recombinant glycoproteins showed in native PUUV

IgG-IFA the diffuse fluorescence pattern associated with late phase of immunity (Table 14).

This further confirms that the native IgG-IFA fluorescence pattern, which has been used in our

routine diagnostics as a rapid test to distinguish acute PUUV infections from old PUUV

immunity, is highly useful for timing the antibody response. In our panel, a granular fluorescence

pattern had a specificity of 100% and a sensitivity of 97% for acute PUUV infection (Table

14), as compared with m-capture IgM EIA. In addition, all cases with a diffuse fluorescence

pattern were PUUV IgM-negative (Tables 13 and 14).

The pELVS constructs can also be applied in DNA vaccination studies. Preliminary evidence

suggests that the pELVS-PUUV-N construct provides protection in the bank vole model

(Lundkvist et al, unpublished results).

Table 14. Reactivity and fluorescence pattern of sera in native PUUV-IgG-IFA as compared
to IgM-EIA and to reactivity with recombinant PUUV-G1 and -G2 antigens in IgG-IFA

          IgG- IFA (native PUUV) IgM-EIA IgG-IFA

Sera Total

104
9

87

            IFA pattern  bac-PUUV-N ELVS-G1+G2

(PUUV) Positive (%)

101 (97)
9 (100)

0

Granular (%)

101 (97)
0

 -

Diffuse (%)

0
9 (100)

 -

Positive (%)

104 (100)
0

0

Positive (%)

2 (2)
8 (89)

0

Acute-phase
Old-immunity

Negative

Results and Discussion
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5. Concluding remarks and Future prospects

Hantaviruses include several world-wide distributed human pathogens, transmitted to humans

via excreta of infected carrier rodents. These viruses are associated with two clinical diseases,

HFRS and HPS, which vary in severity depending on the causative agent. Hantavirus infections

are especially common in China, Korea, Russia, and Northern Europe; in Finland alone

approximately one thousand cases are diagnosed annually.

This thesis summarizes our results on the production and use of recombinant hantaviral proteins

in studies on the antigenic properties of these proteins, characterization of domains involved in

protective immunity, and development of diagnostic applications for hantaviral diseases.

For hantavirus diagnostics, serology is the method of choice, because virus isolation is rarely

successful, and the value of detecting viral RNA by RT-PCR is limited in practice at least for

PUUV. For optimal sensitivity, assays based on antigens from viruses circulating in each

geographical region are recommended. In Europe, two hantaviruses causing HFRS, namely

PUUV and DOBV, are circulating. Recombinant PUUV and DOBV nucleocapsid proteins

were expressed in bacterial or insect cells, and based on these antigens, EIAs were developed

to measure IgG and IgM antibody responses in humans. These tests were found to be specific

and sensitive for diagnostic use. For diagnosis of acute infection, µ-capture EIA based on

baculovirus-expressed full-length nucleocapsid protein (PUUV-N and/or DOBV-N) is

recommended. Furthermore, if a negative IgM result is obtained from a sample taken before

the 6th day after onset of symptoms, a second sample should be taken to exclude or confirm

hantavirus infection.

Co-expression of the recombinant glycoproteins G1 and G2 was found essential for proper

post-translational processing of the proteins as evaluated by MAbs against conformational

epitopes. IgG antibodies against glycoproteins appeared only in the late convalescent phase,

whereas IgG antibodies against N were seen in high titers already in the acute phase of NE-

patient sera. The appearance of IgG antibodies to glycoproteins was associated with a diffuse

type of fluorescence in native PUUV IgG-IFA; the granular fluorescence due to early anti-N

response was shown to be diagnostic for acute infection.

Determination of the type of the causative agent of hantaviral infection is of interest in

seroepidemiological and clinical studies. The method of choice at the moment is the

neutralization assays performed on convalescent-immunity sera. Attempts have been made to

develop other typing methods based on truncated nucleocapsid proteins as antigens in EIA,

Concluding remarks and Future prospects
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and alternative approaches could also be based on the use of recombinant glycoproteins.

Truncated PUUV nucleocapsid proteins were used to map the B-cell epitopes on N by use of

MAbs. The aminoterminal part of PUUV-N was shown to be highly immunogenic, and in

protection experiments, immunization with recombinant PUUV-N or its aminoterminal

fragments (expressed in insect or bacterial cells) were found to be capable of inducing protection

against PUUV infection in bank voles. Because a rodent model may not be directly comparable

with PUUV infection in man (a dead-end for the virus), our future vaccine prospects will

include the use of a primate animal model to further study the suitability of PUUV-N and

glycoprotein constructs described in this study as recombinant protein or DNA vaccines.

Concluding remarks and Future prospects
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