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3. Abstract

Biomanipulation, by removing planktivorous and benthivorous fish, has proved to be an effective 
method for restoration of eutrophicated lakes. Despite the increasing knowledge of complex food 
webs in lakes, problems and uncertainty still remain. Some of the main questions are related to fish 
and their role in attaining the objectives or sustaining the improvements.

In Finnish eutrophicated lakes, biomanipulation is among the most common restoration measures. 
Problems and neglects have, however, often appeared in obtaining the foreknowledge and studying 
the responses of fish community. This thesis is based on the results of a research program related to 
the effects of biomanipulation in different kind of lakes and the applicability of gillnet test fishing 
as a research tool. The specific objectives of this thesis were to (1) explore the factors regulating the 
fish biomass and community structure in south-Finnish lakes; (2) study how the characteristics of 
lake affect the target catch and the outcome of biomanipulation; and (3) evaluate the applicability of 
experimental gillnetting especially in estimating the catch-need of biomanipulation and the conse-
quent changes in the fish biomass and community structure.

In the study of 36 lake basins, the total fish biomass as well as the number of species increased 
with the nutrient concentration. The shift from percid to cyprinid domination from mesotrophic to 
eutrophic lakes was not supported since cyprinids already dominated in mesotrophic lakes. Bream 
and white bream had a biomass peak in more eutrophic lakes compared to bleak and roach. Large 
lake size and high transparency enabled high biomass of perch in spite of abundant cyprinids. Thus, 
in Finnish lakes, fish biomass and community structure can depend, besides on the nutrient concentra-
tion, also on the lake area and depth, and turbidity.

The methodological studies revealed that, when fish accumulate in the gillnet, the catching effi-
ciency decreases noticeably at a relatively low catch level. The reliability of gillnetting results could 
be, however, improved by reducing the set time of gillnets. When comparing the trawl CPUE and the 
gillnet CPUE of 4 h, the CPUE of Nordic multimesh gillnet as an index of fish abundance was quite 
reliable for ≥6 cm fish. As a conclusion, experimental gillnetting can be used to roughly estimate the 
target catch of biomanipulation, and to follow the responses in fish community.

In the study of 14 biomanipulated lake basins, the general shifts in the fish assemblage of effec-
tively (> 200 kg ha–1 3yr–1) biomanipulated lakes were: 1) the reduction of large cyprinids, 2) the 
expansion of juvenile cyprinids and, to the lesser extent, percids, and 3) the increase in the proportion 
of piscivores. Cladocerans responded positively in most of the basins. In the basins with effective 
cyprinid-removal , the biomass of cyanobacteria decreased, and the duration of the blooms shortened 
and shifted towards the autumn. Successful and sustainable biomanipulation is more likely if the 
external loading is low, clay-turbidity is modest and the juvenile expansion of cyprinids is prevented.
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4. Introduction

4.1. Starting point for the study

Since the successful restoration of Lake Vesi-
järvi (see Horppila et al. 1998), biomanipulation 
has been one of the most common restoration 
methods in Finnish lakes. By the end of the 
century, dozens of biomanipulation projects had 
been started (Äystö 1997, Penttilä 2002). Often 
however, the mass removal of fish has been 
conducted without foreknowledge of the charac-
teristics of fish community or the adequate target 
catch, and even without appropriate study of the 
responses. In 1997, Finnish Game and Fisheries 
Research Institute, together with Finnish Envi-
ronment Institute, University of Helsinki and 
local water authorities, initiated a 5-year research 
project called HOKA (Effects of biomanipula-
tion in Finnish lakes). The aim was to explore 
the effects of biomanipulation in different kind 
of lakes and study whether the gillnet test fishing 
would be a suitable method for estimating the 
sufficient target catch and responses in fish com-
munity. This thesis is based on the results of the 
HOKA project.

4.2. Biomanipulation

4.2.1. Theory

Biomanipulation is a restoration method in which 
the lake’s water quality is improved by modify-
ing the food web (Shapiro et al. 1975, Lam-
mens et al. 1990, Carpenter & Kitchell 1993, 
Reynolds 1994, Perrow et al. 1997, Hansson et 
al. 1998, Drenner & Hambright 1999, Meijer 
et al. 1999, Mehner et al. 2002). Usually, the 
biomanipulation is conducted by mass removal 
of planktivorous and benthivorous fish (Drenner 
& Hambright 1999). According to the trophic 
cascade hypothesis (Carpenter et al. 1985), the 
impacts at the top trophic level cascade down 
to the lower trophic levels, and thus the top-
down forces can regulate algal biomass. When 
the abundance of planktivorous fish is reduced, 
the density and size of cladocerans increase, 
which results in increased grazing pressure on 
phytoplankton. This in turn leads to lower algal 

biomass and higher water transparency. The 
potential of planktivores to reduce zooplankton 
biomass is evident (Brooks & Dodson 1965, 
Shapiro & Wright 1984, Hambright 1994). The 
ability of zooplankton to control phytoplankton 
biomass in lakes has found to be more variable 
(Brooks & Dodson 1965, McQueen et al. 1986, 
1989, Kerfoot et al. 1988, de Bernardi & Gius-
sani 1990, Lammens et al. 1990, Sarvala et al. 
2000a). According to some authors (McQueen 
et al. 1986), the top-down forces attenuate when 
moving down several trophic levels, and the 
bottom-up forces have stronger effect on phy-
toplankton than on the higher levels of the lake 
food web.

Importantly, fish can affect the bottom-up 
forces and regulate phytoplankton directly by 
increasing the amount of suitable nutrients. 
Cyprinids are the most abundant fish group in 
eutrophicated north temperate lakes, and many 
cyprinid species are omnivorous feeding on zoo-
plankton, detritus, algae, macrophytes and ben-
thic invertebrates (Niederholzer & Hofer 1980, 
Persson 1983, Prejs 1984, Lammens et al. 1987, 
Vinni et al. 2000). Cyprinids release nutrients 
from the bottom sediment when foraging food 
and keep the uppermost sediment layer loose and 
vulnerable to wind resuspension further acceler-
ating nutrient escape from the sediments (Sha-
piro & Carlson 1982, Tatrai & Istvanovics 1986, 
Lammens et al. 1990, Horppila & Kairesalo 
1992, Breukelaar et al. 1994, Karjalainen et al. 
1997, Scheffer 1998). Cyprinids perform diur-
nal migrations from littoral to pelagial or from 
hypolimnion to epilimnion (Bohl 1980, Helfman 
1981). During these migrations, fish transfer 
nutrients from one habitat to another (Lamarra 
1975, Brabrand et al. 1990, Tatrai & Istvanovics 
1986). The nutrients excreted by cyprinids are in 
suitable form for the nutrient uptake of phyto-
plankton (Brabrand et al. 1990).

With the increasing knowledge of the com-
plex interactions in lake food webs, the bioma-
nipulation research has proceeded towards a 
more holistic view compared to original bioma-
nipulation concept (Shapiro et al. 1975). Marten 
Scheffer has developed a hypothesis of alter-
native stable states in eutrophic shallow lakes 
(Scheffer 1989, 1990, 1998, Scheffer et al. 
1993). A shallow lake can be either turbid with 
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high algal and cyprinid biomass or clear and 
dominated by macrophytes, cladocerans and pis-
civores. With high nutrient loading the previous 
state is the only option, and with low loading 
the latter state is valid. In the middle ground, 
either one can be possible. Both states have 
self reinforcing mechanisms. For example, high 
algal biomass reduces the amount of light induc-
ing decreased macrophytes vegetation, which 
increases the availability of nutrients enabling 
high algal biomass. The high biomass of macro-
phytes stabilizes the bottom sediment and pro-
vides refuge for zooplankton, thus reducing the 
nutrients for algae and increasing the grazing 
pressure. The water stays clear and macrophytes 
can colonise the lake. Due to high resistance, 
the shift from one state to another requires a 
shock event e.g. storm, changes in water level 
or biomanipulation. According to Hansson et al. 
(1998), biomanipulation can act as a trigger to 
several secondary processes including recover-
ing of submerged macrophytes, and reduction of 
resuspension and internal loading.

In relation to fish community, the practical 
target of biomanipulation is usually to reduce 
the cyprinid density and to increase the propor-
tion of percids and pike. Compared to cyprinids, 
percids are less harmful in nutrient circulating 
(Andersson et al. 1988) and have a higher eco-
nomic value (Moilanen 2004). Mass removal of 
cyprinids should increase perch biomass and the 
individual growth rate in two ways: 1) in short-
term, food competition with roach decreases 
with decreasing roach density (Persson 1986), 
2) in long-term, with increasing water transpar-
ency and colonisation of submerged vegetation, 
the changed environment favours perch more 
than roach (Winfield 1986, Diehl 1988, Persson 
et al. 1991). Pikeperch, adapted to turbid waters, 
may not have positive responses to biomanipula-
tion. Higher water transparency could make the 
fry more vulnerable to predation (Neuman et 
al. 1996) and the adults less effective piscivores 
(Ali et al. 1977, Disler & Smirnov 1977). In the 
response to increased transparency by pikeperch, 
the lake size can be important: in deep waters of 
large lakes there will probably be enough suita-
ble habitat for pikeperch (I). Further, abundance 
of humic substances in Finnish lake waters (see 
Henriksen et al. 1998) may also support light 

conditions favourable for pikeperch. The pos-
sible juvenile expansion of cyprinid fishes after 
mass removal (Brabrand et al. 1986, Romare & 
Bergman 1999) should benefit pikeperch due to 
increased prey availability. This type of slightly 
positive response in pikeperch growth has been 
recorded also in one of the recent study lakes 
(Rask et al. in print). The response of ruffe 
to biomanipulation can be twofold, as well. If 
occurrence of anoxia is reduced in the hypolim-
nion and zoobenthos recovers, ruffe profits from 
biomanipulation. If the predation by perch is 
increased, however, the response can be nega-
tive. As a visual predator ambushing from the 
cover of vegetation (see Bry 1996), pike should 
benefit from biomanipulation.

Once established, pikeperch, large perch and 
small pike prey on juvenile fish thus hindering 
the expansion of cyprinids and shifting the size 
structure of prey species towards larger size 
classes (Persson et al. 1991, Prejs et al. 1994, 
Berg et al. 1997). Large pike can consume adult 
cyprinids as well (Skov et al. 2002). Decreasing 
abundance of juvenile cyprinids should release 
cladocerans from high predation pressure espe-
cially during spring before the recruitment of 
young-of-the-year (YOY) fish (Temte et al. 
1988, Vanni et al. 1990, Rudstam et al. 1993). 
The grazing-induced clear water phase in spring 
is essential for the development of submerged 
macrophytes (Scheffer 1998). Besides direct 
effects on mortality, piscivores may change the 
behavior of cyprinids, restricting them to refuges 
thus reducing the transfer of nutrients (Brabrand 
& Faafeng 1993).

4.2.2. Potential and problems

Biomanipulation has proved to be an effective 
lake restoration method according to several 
reviews since 1990 (e.g. Benndorf 1990, Lam-
mens et al. 1990, Perrow et al. 1997, Hansson et 
al. 1998, Drenner & Hambright 1999, Mehner et 
al. 2002). According to Mehner et al. (2002), ca. 
60% of the biomanipulations have achieved to 
improve water quality. Prerequisites for success-
ful biomanipulation are potential for intensive 
fish reduction (> 75%, see Hansson et al. 1998) 
and bearable external loading (see Mehner et 
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al. 2002). Still, some problems and confusion 
remain after two decades of research including 
(1) deteriorating effect of juvenile expansion 
(i.e. effective reproduction of remaining fish, 
e.g. Romare & Bergman 1999), (2) complexity 
of food-web interactions (e.g. different time and 
size scales of organisms and ontogenetic niche 
shifts, see Mehner et al. 2002), (3) applicability 
to deep lakes (Hansson et al. 1998, Mehner et al. 
2002), (4) sustainability of effects (Hansson et 
al. 1998, Mehner et al. 2002), and (5) required 
proportion of piscivores after the biomanipula-
tion (Mehner et al. 2002). To answer these open 
questions, it is essential to increase the under-
standing of the interactions between fish species 
in eutrophic lakes.

4.3. Fish communities in eutrophic lakes

According to Tammi et al. (1999), eutrophication 
is one of the main environmental problems in 
lakes of Finland affecting the fish community of 
more than 2000 lakes. The mechanisms through 
which eutrophication shapes fish communities 
are changes in the habitats and modifications in 
inter- and intraspecific competition and preda-
tion. The primary changes in habitats are reduced 
water transparency (Scheffer 1998), poor oxygen 
concentration in the hypolimnion (Harper 1992) 
and decreased structural complexity, that is, 
the diminished area of submerged macrophytes 
(Persson et al. 1991, Scheffer 1998). Eutrophica-
tion increases the importance of competition as a 
mechanism regulating fish community structure 
(Lodge et al. 1988, Persson et al. 1988, Persson 
1994). At the same time, the importance of pre-
dation is reduced.

Eutrophication-induced alterations in fish 
assemblages are documented in many studies 
since early 1970s. According to a theory of 
Hartmann & Nümann (1977), (see also Svärdson 
1976, Kitchell et al. 1977, Leach et al. 1977, 
Persson et al. 1991, Jeppesen et al. 2000) the 
fish communities from oligotrophic to eutrophic 
lakes undergo several dominance shifts: Sal-
moniformes is often the dominant fish group in 
oligotrophic lakes, percids in mesotrophic lakes 
and cyprinids in eutrophic lakes. The restriction 
of Salmoniformes to the low and medium pro-

ductive lake is due to their high oxygen demand 
and adaptation to relatively cold water (Colby et 
al. 1972, Nümann 1972). At a species level there 
are certain exceptions to this general rule so that 
coregonids (whitefish, Coregonus lavaretus and 
vendace, Coregonus albula) may have their bio-
mass peak in mesotrophic lakes (Persson et al. 
1991) and smelt (Osmerus eperlanus) can form 
a dense stock even in eutrophic lakes (Keto & 
Sammalkorpi 1988).

The dominance of percids in mesotrophic 
lakes is related to clear water and structural com-
plexity, which favours especially perch (Perca 
fluviatilis) (Winfield 1986, Diehl 1988, Pers-
son 1991). Ruffe (Gymnocephalus cernuus) and 
pikeperch (Sander lucioperca) can feed effec-
tively in turbid waters, and their biomass peak 
is at a higher productivity level (Bergman 1988, 
Persson 1994).

Cyprinids are generally well adapted to 
eutrophic conditions. Roach (Rutilus rutilus), 
bream (Abramis brama), white bream (Abramis 
bjoerkna) and bleak (Alburnus alburnus) are 
species that have been documented to profit from 
eutrophication (Svärdson 1976, Lammens et al. 
1987, Persson et al. 1991). This is due to their 
effective feeding in turbid waters (Townsend & 
Risebrow 1982, Lessmark 1983, Lammens et 
al. 1987, Persson 1987, Diehl 1988), general-
ist feeding behaviour including ability to uti-
lise plant material (Niederholzer & Hofer 1980, 
Lessmark 1983, Persson 1983, Prejs 1984, Vinni 
et al. 2000), and large capacity and flexibility in 
reproduction (Barthelmes, 1983).

Moreover in eutrophic lakes, the predatory 
pressure on cyprinids is lowered because the 
abundance of predatory fish species or stages is 
often reduced. The decrease of predatory fishes 
is related to asymmetric competition/predation 
interactions and size-structured interactions 
(Werner & Hall 1979, Persson et al. 1988). Many 
predatory species undergo several ontogenetic 
niche shifts before a piscivorous stage. Com-
petition of prey species can reduce the growth 
and survival of young piscivores, leading to a 
juvenile competitive bottleneck. In turbid condi-
tions with poor submerged vegetation, perch, as 
a visual predator (Bergman 1988), is an inferior 
competitor compared to roach (Winfield 1986, 
Diehl 1988). The adult population of a predator 
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can in turn regulate the biomass of their prey, as 
described between perch and roach by Lennart 
Persson and co-workers (Persson 1986, 1987, 
1988, Persson & Greenberg 1990).

Eutrophication changes the fish community 
but a cyprinid-dominated fish community can 
also maintain and even increase the eutrophica-
tion problems (e.g. Tatrai & Istvanovics 1986, 
Horppila & Kairesalo 1990, Brabrand et al. 
1990). So also from the lake management point 
of view, understanding the mechanisms leading 
to conditions that favour cyprinids is important.

4.4. Challenges in fish sampling

4.4.1. Significance of and difficulties in fish 
stock assessment

Successful management or biomanipulation of 
fish stocks requires estimates of fish abundance, 
community structure and size distributions. This 
information is essential when deciding the target 
species and the fishing effort. Unfortunately, 
especially the fish abundance can be difficult 
to evaluate particularly in large and deep lakes. 
As the 75% reduction in fish biomass has been 
the rule of thumb in several biomanipulation 
projects (e.g. Jeppesen et al. 1990, Meijer et al. 
1999), the knowing of original fish biomass is 
essential before these measures.

The major problem is that all sampling meth-
ods are, more or less, dependent on the catch-
ability or perceptivity of fish, which vary greatly 
due to number of factors (Backiel & Welcomme, 
1980). Gillnet is a passive and selective gear, 
catching only fish that swim to and retain in the 
net (Hamley 1975, Backiel & Welcomme 1980, 
Kurkilahti 1999). A trawl, as an active gear, is 
less selective but the catch depends on how large 
proportion of the total fish population is in the 
trawling area (Backiel & Welcomme 1980) and 
on the amount of fish that avoid the gear (Rich-
ardson 1956, Bethke et al. 1999, Hjellvik et al. 
2001).

Further to the catchability problems, the dis-
tribution and activity of fish community under-
goes drastic diurnal changes. Many species have 
diurnal vertical or horizontal migrations (Bohl 
1980, Helfman 1981). This produces diurnally 

deviating samples even from the same site within 
the same day.

4.4.2. Gillnet as a sampling gear

The gillnet catch is the result of a complex 
process having several stages. Fish have to 
(1) encounter, (2) contact and (3) retain in the 
net (Hamley 1975, Kurkilahti 1999). The first, 
encounter factor relies on the swimming activity 
and speed. Thus, the encounter factor varies due 
to species, size, time of year, time of day, water 
temperature, weather conditions etc. Once the 
fish encounters the net it can avoid it (visually 
or due to other senses) swim through it or get 
caught in it. In this stage, the catch depends on 
the size and morphology of the fish but also on 
the perceptiveness and saturation of the gillnet 
(Kennedy 1951, Hamley 1975, Minns & Hurley 
1988, Hansen et al. 1998, IV). If the fish girth is 
close to the mesh size or the fish has projections 
(e.g. percids), the fish has high catchability. The 
perceptiveness and saturation (amount of occu-
pied meshes) increase as the fish accumulate 
in the gillnet thus decreasing the catching effi-
ciency. In the last stage, the fish can retain in the 
net or escape from it. Fish size and morphology 
as well as gillnet properties (e.g. hanging ratio, 
twine diameter, saturation) interact at this stage 
(Hamley 1975, Kurkilahti 1999).

Due to passiveness, selectivity, perceptive-
ness and saturation, the reliability of gillnet 
CPUE as an index of fish abundance is very 
variable. Both studies where the gillnet CPUE 
correlated with the fish abundance estimated by 
an active gear or echo sounder (Borgstrøm 1992, 
III), and studies without the correlation (End-
erlein & Appelberg 1992, Hansson & Rudstam 
1995, Peltonen et al. 1999) have been published. 
Nevertheless, gillnet CPUE has been used as 
an index of fish abundance in several ecologi-
cal (e.g. Forney 1977, Svärdson & Molin 1981, 
Tonn et al. 1990, Persson et al. 1991, Jeppesen 
et al. 2000, I) and fisheries studies (e.g. Hubert 
1983, Hyvärinen & Salojärvi 1991). The bias in 
the deductions concerning the size of fish popu-
lations can result in over- or under-exploitation.

Gillnet characteristics induce flaws to the fish 
species structure and species’ size structure. For 
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example, percids can be overestimated compared 
to cyprinids (Prchalová & Kubečka 2004, III) 
or smaller size classes are underestimated com-
pared to large ones (Hamley 1975, Kurkilahti 
1999, III). Thus, the gillnet catch may overvalue 
the condition of a fish community.

Given the shortcomings, the characteristics 
of gillnets have to be known in order to make 
right decisions on the basis of the gillnet catch. 
Numerous studies concerning the mechanical 
selectivity of gillnets have been published (e.g. 
Hamley 1975, Kurkilahti 1999). The catchabil-
ity-effects of fish activity or fish accumulation 
are less studied (IV). Studies concerning simul-
taneous fish sampling with different gears are 
also rare (Peltonen et al. 1999, Pierce et al. 
2001). However, best results in fish monitoring 
can be obtained by standardising gears and fish-
ing time, and by combining different methods 
(Backiel & Welcomme 1980).

5. Study objectives

From the starting point of demands, three gen-
eral goals were appointed to produce more infor-
mation for assessing the need and the results of 
biomanipulation in Finnish lakes:

1. to increase the information concerning the 
fish communities in different types of Finnish 
lakes,

2. to explore the effects of biomanipulation on 

fish communities, and further on zooplankton 
and phytoplankton in these lakes, and

3. to test the suitability of sampling fish with 
Nordic gillnets for the purposes above.

More specifically (see Fig. 1), the objectives 
were to:

1. explore how nutrient concentration, size and 
turbidity of a lake affect the total fish biomass 
and the fish species (cyprinids vs. percids) 
interactions,

2. study how the characteristics of lakes affect 
the target catch and outcome of biomanipula-
tion, and

3. evaluate the applicability of experimental 
gillnetting as a research tool especially in 
estimating the target catch of biomanipula-
tion and the consequent changes in the fish 
biomass and community structure.

6. Material and methods

6.1. Study and control lakes

6.1.1. Summarized characteristics

The whole set of lakes in this thesis includes 54 
lakes or basins (Table 1). In Table 1, the lakes are 
divided into three groups that are sorted accord-
ing to area. The first group contains the most 
studied and biomanipulated lakes. The second 
group includes the non-biomanipulated lakes 
that have fishery and water quality information. 
The third group consists of the water quality ref-
erence lakes from the data basis (Hertta) of the 
Finnish Environment Institute.

The size of the lakes ranged between 8 and 
4018 ha and mean and maximum depths between 
0.3 and 11.2 m, and 1 and 39.5 m, respectively. 
According to the classification by Wetzel (1983), 
the trophic state of the lakes varied from mes-
otrophic to eutrophic (average value in the grow-
ing season in 1 m depth: 12–130 µg TP l–1). 
According to the algal biomass, the trophic state 
of the lake set ranges from oligotrophic to hyper-
eutrophic (2–107 µg chlorophyll a l–1). Some 
of the lakes were turbid while other had clear 
water (Secchi depth: 0.5–4.3 m). The average 

FISH
COMMUNITY

EXPERIMENTAL
GILLNETTING

BIOMANIPULATION

NUTRIENT
CONCENTRATION

LAKE
SIZE

WATER
TURBIDITY

ZOOPLANKTON

ALGAE

III, IV

V, VII, II
VII, II

I, II

II, V, VI

V, VIV, VI

VI

Fig. 1. Interactions between abiotic (ellipses), biotic 
(boxes) and human impacts (stars) that are studied or 
discussed in this thesis. Note that only a small fraction 
of all possible factors and interactions are drawn.
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Table 1. Characteristics of study lakes.

Lake Year Area z z
m
 C. a. TP TN chl a S

d
 Fishes T

BPUE
 Cyp% Article

Takajärvi 1997–2001 15 2.1 3.8 2.46 38 700 41 1.4 6 2.06 50.7 I, II, VI
Etujärvi 1997–2001 16 3.2 5.1 3.52 38 690 45 1.4 5 1.46 44.0 I, II, VI
Otalampi 1997–2001 31 3.3 6.8 1.44 24 524 30 2.3 6 1.15 57.7 I, II, IV, VI
Rusutjärvi 1997–2001 133 2.0 3.5 9.6 50 1066 44 0.8 10 3.20 76.6 I, II, VI
Pusulanjärvi 1997–2001 207 4.5 9.5 226 47 853 24 1.1 13 2.23 61.1 I, II, VI
Enäjärvi 1997–2001 492 3.4 10 34 102 1019 57 0.7 10 2.80 63.2 VI
Tuusulanjärvi 1997–2001 592 3.2 10 92 93 1176 49 0.6 12 3.48 74.5 I, II, VI
Lehijärvi 1997–2001 704 6.0 18 83 37 592 15 2.0 13 1.78 53.4 I, II, VI
Äimäjärvi 1997–2001 852 2.6 10 93 58 835 30 1.2 12 3.34 68.4 I, II, VI
  Ä1 1997–2001 370 2.0 4 53 71 1002 40 0.9 12 4.59 75.7 I, II, V, VI
  Ä2 1997–2001 480 3.0 10 40 44 668 20 1.5 10 2.09 61.2 I, II, V, VI
Hiidenvesi# 1997–2001 2910 6.6 33 934 66 1097 31 0.7 15 2.71 66.5 I, II, VI
  H1 1997–2001 160 0.9 4 – 88 1159 39 0.5 12 3.31 72.7 I, II, IV, VI
  H2 1997–2001 260 2.0 4.5 – 87 1152 46 0.5 10 3.39 76.3 I, II, III, VI
  H3 1997–2001 360 2.6 6 – 52 1065 26 0.7 12 2.69 58.2 I, II, VI
  H4 1997–2001 970 11.2 33 – 37 1011 14 1.0 13 1.43 58.8 I, II, VI
R. Valkjärvi 1999 8 4.5 9 0.36 14 353 6 2.5 4 0.53 12.2 I
Hervonjärvi 1998 8 3.5 13 0.29 30 649 8 3.0 2 1.75 11.5 I
Gallträsk 1999 11 1.0 1.7 0.82 45 760 13 1.7 3 6.31 74.6 I
Pakkaselanjärvi 1999 12 4.7 14 5.00 18 776 9 1.6 5 0.48 65.1 I
Kaukasenjärvi 1999 13 3.6 6 5.68 30 855 11 1.6 5 1.26 69.7 I
Kyynäröjärvi 1998 24 1.3 3 29.16 61 2115 26 0.7 7 0.59 55.4 I
Iso Vehkajärvi 1998 32 – 4 7.08 30 773 13 1.0 5 0.97 62.8 I
Kastanajärvi 1998 33 3.5 9 2.85 17 365 2 4.2 4 0.79 32.1 I
Pannujärvi 1998 36 3.8 10 2.36 27 442 13 2.2 2 1.15 67.3 I
Harasjärvi 1999 41 2.4 5 2.50 24 544 20 2.0 5 1.17 77.4 I
Lippajärvi 1999 57 2.2 4.5 6.46 130 1100 33 0.6 10 3.66 60.7 I
Ekojärvi 1998 73 2.5 7 114.20 24 733 12 1.3 8 0.50 53.3 I
Lehee 1998 104 1.5 2 8.44 31 660 17 1.3 8 1.80 70.0 I
Kataloistenjärvi 1999 107 1.2 1.9 10.68 31 735 20 1.3 6 4.55 75.7 I
Teuronjärvi 1998 132 1.8 5 27.77 55 914 46 1.4 6 1.62 64.3 I
N. Valkjärvi 1999 152 6.8 12 6.51 28 640 24 1.6 8 1.89 60.7 I
Pitkäjärvi 1999 171 2.3 5.6 65.81 110 590 22 0.7 11 4.22 91.2 I
Tevänti 1999 194 – 9 14.07 22 471 6 2.4 4 0.58 60.1 I
Suolijärvi 1998 203 4.7 10.4 56.81 27 778 23 1.7 8 0.71 65.7 I
Ormajärvi 1998 653 10.7 30 79.52 28 726 11 2.3 13 1.05 57.9 I
H. Pyhäjärvi 1998 949 10.1 35 78.00 18 517 10 3.0 10 0.60 60.0 I
Enonselkä* 1998 2600 6.8 33 84 27 509 9 2.3 12 1.23 40.1 I
K. Vesijärvi 1999 4018 6.2 39.5 221 20 375 12 1.9 13 1.50 55.0 I
  V1 1999 1553 3.6 22 160.9 27 400 17 1.4 13 1.05 56.2 I
  V2 1999 2465 7.9 39.5 60.1 12 350 6 2.3 11 1.95 53.7 I
Stora Lonoks 1997–2001 48 – – 48.2 82 864 – 0.5 – – – VI
Valkjärvi Vitsjön 1997–2001 72 3.4 12.1 2.94 23 458 7 1.8 – – – VI
Vuorenselkä 1997–2001 92 – – – 79 1054 107 0.8 – – – VI
Källträsket 1997–2001 105 – – – 36 436 25 1.9 – – – VI
Tjusträsk 1997–2001 114 4.4 9.8 410.7 74 1000 33 0.7 – – – VI
Averia 1997–2001 138 3.2 6.5 232.1 80 1016 – 0.8 – – – VI
K. Pyhäjärvi 1997–2001 138 0.3 1 – 22 570 – 1.4 – – – VI
Vikträsk 1997–2001 187 4.4 15 477.5 59 985 31 0.8 – – – VI
Tiiläänjärvi 1997–2001 213 4.4 10.3 38.1 53 950 29 0.5 – – – VI
Sakara 1997–2001 231 – – 132.3 22 340 6 2.8 – – – VI
Kytäjärvi 1997–2001 267 4.5 – 138.7 48 846 22 0.9 – – – VI
Humaljärvi 1997–2001 429 4.0 – 11.7 32 404 13 0.9 – – – VI
Kernaalanjärvi 1997–2001 446 – – – 45 978 25 1.1 – – – VI
Nuijamaanjärvi 1997–2001 528 – – – 26 666 9 1.5 – – – VI
Punelia 1997–2001 819 – – 101.8 21 240 4 4.3 – – – VI
Vanajavesi# 1997–2001 1030 – – – 58 1484 36 0.9 – – – VI

Year = study year, Area = lake area (ha), z = mean depth (m), z
m
 = maximum depth (m), C. a. = catchment area 

(km2), TP = total phosphorus (µg l–1), TN = total nitrogen (µg l–1), chl a = chlorophyll a (µg l–1), S
d
 = Secchi depth 

(m), Fishes = number of fish species caught by gillnetting, T
BPUE

 = total biomass per gillnet, Cyp% = percentage of 
cyprinids from T

BPUE
. Article refers to the I–VI articles of this thesis. – = missing data. *= basin of L. Vesijärvi of Lahti, 

# = the whole area of the lake is not included in the study.
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total biomass per unit effort (BPUE, arithmetic 
mean) ranged between 0.5–6.3 kg net–1. The fish 
community varied from 2 species lakes to mul-
tispecies lakes (15 species) and from percid to 
cyprinid domination.

6.1.2. Selection criteria

In the fish community study (I), the lakes con-
sisted of 36 lake basins that were part of several 
simultaneous projects, using similar fish sam-
pling methods.

In the zooplankton and fish communities 
study (II), all nine lakes had more or less severe 
eutrophication problems and had an extensive 
research programme.

In the methodological gillnetting studies (III, 
IV), Lake Hiidenvesi was selected due to its 
suitability for trawling and due to its high fish 
biomass. Lake Otalampi had clearly lower fish 
biomass and higher transparency compared to 
Hiidenvesi. Both lakes had been monitored for 
several years.

In the biomanipulation studies (V, VI), 
the ten study lakes, including 14 basins, were 
selected due to their eutrophication problems 
and because of the high cyprinid biomass. In 
addition, the lakes had background information 
and the mass removal of fish was considered 
possible. The control lake-group of 16 lakes 
was selected from the database (Hertta) of the 
Finnish Environment Institute for comparison in 
water quality responses with the biomanipulated 
lakes. The size and nutrient concentration in the 
control lakes was within the ranges of the study 
lakes.

6.2. Mass removal

During the study years 1997–2001, mass removal 
was conducted in 10 lakes including 14 basins 
(Table 1, first lake group, V, VI). The fishing 
methods were mainly motorised seining in the 
autumn or in the winter and fyke netting during 
the spring spawning time. The seining based 
on the localisation of shoals by echosounder 
(Turunen et al. 1997, Sammalkorpi 2000). Usu-
ally, the people of local lake protection associa-
tions conducted fyke netting, whereas a profes-
sional team was hired for seining.

The target catch was set for 200 kg ha–1 in 
three years based on the successful biomanipula-
tion of Vesijärvi (Horppila et al. 1998). In each 
fishing day, the weight of the mass removal catch 
(MRC) was estimated from the volume of the 
catch. The species composition was estimated 
from subsamples of ca. 30 kg.

6.3. Fish sampling

6.3.1. Experimental gillnetting and trawling

The fish samples were taken mostly in July–
August between years 1997 and 2001 by test 
fishing with NORDIC multimesh gillnets (I–VI). 
The gillnet (Fig. 2) consists of twelve 1.5 ¥ 2.5 
m panels having mesh sizes 5, 6.25, 8, 10, 12.5, 
15.5, 19.5, 24, 29, 35, 43 and 55 mm (from knot 
to knot) (Appelberg et al. 1995, Kurkilahti 1999, 
IV). The mesh sizes of the panels followed a 
geometric series (Baranov 1914) the adjacent 
mesh sizes ratio being on average 1.24 in order 
to reduce size selectivity (Kurkilahti 1999).

33 m

2.5 m

1.
5 

m

43 10 55 8 12.5 24 15.5 35 2956.2519.5

30 m

Fig. 2. Schematic illustra-
tion of Nordic multimesh 
gillnet. Length of upper and 
bottom rope, and width and 
height of panel are shown. 
Small tags below panels 
indicate mesh size.
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The sampling procedure was stratified and 
random (Kurkilahti 1999). The lakes were 
divided into depth zones from which the net sites 
were chosen randomly (Fig. 3). In the shallowest 
zone only bottom gillnets were used. Depending 
on the water depth, surface and 1–2 mid-water 
gillnets were used in addition to bottom nets. In 
I, II, V and VI, fishing time was one night (12 
h). The sampling effort varied between 10–80 
gillnets per lake per year, and it was adjusted to 
the size of the lake or depth zone (Table 2). Every 
lake and depth zone was sampled 2–5 times per 
year. In the methodological studies III and IV, 
the gillnetting was conducted diurnally. In III, 
the set time was 4 hours and the fishing effort 
was 6 ¥ 12 gillnets. In IV, continuous 12 h and 4 
h set time was compared to three consecutive 4 h 
or four consecutive 1 h set time, respectively. In 
the previous experiment, the sampling effort was 
24 continuous (12 h) and 3 ¥ 24 consecutive (4 
h) gillnets within one lake. In the latter experi-
ment, the corresponding effort was 12 continu-
ous and 4 ¥ 12 consecutive gillnets.

Each gillnet and panel was treated individu-
ally. The catch was assorted to species and then 
counted and weighed. For length distributions, 

every fish was measured (TL, 1 cm size-classes), 
or a random sample of at least 50 individuals 
was taken on every fishing day.

Trawl was used for fish sampling in addi-
tion to gillnets in III. A small pelagic pair-trawl 
(theoretical opening 1.5 m ¥ 5 m, cod-end 3 mm) 
was towed (mean: 1.34 m s–1) diurnally in 4 h 
periods in two depth layers (0–1.5 m and 3–4.5 
m). Total fishing effort was 19 trawl hauls. Sub-
sample of ca. 30 kg was taken from every trawl 

>6 m
3-6 m

<3 m

R
K TL

R
K TL R

K TL

R
K TL R

K TL

Depth zones

<3 m
3-6 m

>6 m

Randomly selected
gillnet sites

Fig. 3. Schematic illustration of stratified random sam-
pling.

Table 2. Stratified sampling procedure of biomanipulated lakes.

   < 3 m 3–6 m 6–12 m 12–20 m
 Area z

m
 tot.    Total

    sur bot tot. sur mid1 bot tot. sur mid1 mid2 bot tot. FE FE:ha

Takajärvi 15 3.8 6 2 2 4 – – – – – – – – – 10 0.67
Etujärvi 16 5.1 4 3 3 6 – – – – – – – – – 10 0.63
Otalampi 31 6.8 6 3 3 6 – – – – – – – – – 12 0.39
Rusutjärvi 133 3.5 20 – – – – – – – – – – – – 20 0.15
Pusulanjärvi 207 9.5 12 5 5 10 6 6 6 18 – – – – – 40 0.19
Enäjärvi 492 10 18 16 16 32 – – – – – – – – – 50 0.10
Tuusulanjärvi 592 10 30 5 5 10 5 5 5 15 – – – – – 55 0.09
Lehijärvi 704 18 16 7 7 14 8 7 7 22 2 2 2 2 8 60 0.09
Äimäjärvi 852 10 34 6 6 12 5 5 4 14 – – – – – 60 0.07
  Ä1 370 4 24 – – – – – – – – – – – – 24 0.06
  Ä2 480 10 10 6 6 12 5 5 4 14 – – – – – 36 0.08
Hiidenvesi* 2910 33 40 9 9 18 4 4 4 12 3 3 2 2 10 80 0.05
  H1 160 4 4 – 2 2 – – – – – – – – – 6 0.04
  H2 260 4.5 5 – 5 5 – – – – – – – – – 10 0.04
  H3 360 6 10 4 4 8 – – – – – – – – – 18 0.05
  H4 970 33 14 5 5 10 4 4 4 12 3 3 2 2 10 46 0.05

sur, bot, mid1 and mid2 = gillnets in the surface, bottom, mid–water 3 m and mid-water 6 m, respectively. * = whole 
area of the lake is not included in the study. In the deeper basins (H3 and H4) of Hiidenvesi, the depth zones were 
< 5, 5–10, 10–20 and > 20 m; mid1 was in 6 m and mid2 in 12 m depth. FE = fishing effort, FE:ha = fishing effort in 
relation to the lake area.
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haul and assorted to species before counting and 
weighing. At least 50 individuals of each species 
in one haul were measured (total length, 1 mm 
accuracy). The trawl data were transformed to 
number ha–1 and kg ha–1 estimates.

6.2.3. Age and growth

The age of roach was determined from scales 
and the age of perch from opercular bones (V). 
The growth was backcalculated with the Fraser-
Lee procedure for roach and with the Monas-
tyrsky procedure for perch (Bagenal & Tesch, 
1978).

6.3. Water chemistry and plankton 
studies

Samples for water quality (surface water 0–2 
m) were taken during the growing season at the 
deepest part of each basin (I–VI). The analyses 
of TP, TN and chlorophyll a (chl a) were con-
ducted according to the Finnish standard meth-
ods (Niemi & Heinonen 2003). The number of 
observations per growing season ranged from 5 
to 17 in the first lake group (Table 1), between 
2–4 in the second group and between 1–12 in the 
third group.

The zooplankton and phytoplankton sam-
ples were taken only from the biomanipulated 
lakes and from the deepest part of each basin 
(Tallberg et al. 1999, II, V, VI). Phytoplankton 
samples (5–10 per basin per year) were taken 
during the growing season from 0–2 m depth 
with a tube sampler and preserved with Lugol 
solution. Phytoplankton taxa were identified and 
cells counted by using an inverted microscope 
technique (modified from Utermöhl 1958, see 
e.g. Tikkanen & Willén 1992). The results were 
converted to wet weight (Edler 1979, Tikkanen 
& Willén 1992).

Zooplankton samples (3–6 per basin each 
year) were collected mainly in July–August. The 
samples (28–105 l) were taken with tube sam-
plers from the whole water column in shallow 
lakes or from surface water (0–4 m) in deeper 
basins (see Tallberg et al. 1999, II, V for details). 
After filtration (50-µm net) and preservation 

(formaldehyde 4%), the crustacean zooplankton 
were identified, calculated and measured. The 
results were transformed into carbon contents 
according to Luokkanen (1995). The potential 
grazing pressure (PGP) was estimated according 
to Jeppesen et al. (1994).

6.4. Statistical analyses

In article I, the effects of trophic state (TP con-
centration) and basin morphology (area, mean 
depth) on different variables of gillnet catch 
(species no, total BPUE, BPUEs of fishes and 
cyprinids:percids biomass ratio) were studied 
with mixed linear models (PROC MIXED in 
SAS version 8.01). In II, linear regression was 
used to explain the relations between basin area, 
water quality, zooplankton density and size, and 
gillnet catch.

In III and V, the between-hours or years dif-
ferences in the gillnet CPUE were tested with 
ANOVA. Non-parametric sign test was used to 
test the between-gear differences in species com-
position and size distribution in III. In articles I–
III and V, variables were ln(x + 1)-transformed 
when necessary.

In IV and VI, the differences between gill-
netting method or years were analysed with gen-
eralized linear model (PROC GENMOD, SAS, 
1999) with the assumption of Poisson or nega-
tive binomial distribution (McCullach & Nelder, 
1989).

The reduction of gillnet catchability in rela-
tion to catch rate (IV), measured as share of 
occupied meshes, was modelled by fitting a 
segmented nonlinear model (PROC NLMIXED, 
SAS, 1999) in the data of consecutive and con-
tinuous gillnetting.

The responses to biomanipulation in the char-
acters of fish groups, zooplankton, phytoplank-
ton, nutrients and transparency were tested with 
Kruskal-Wallis non-parametric rank test (VI). 
Before testing the basins were divided into two 
groups (loC and hiC) according to the attained or 
unattained mass removal target catch (200 kg ha–1 
in three years). Control lakes were included as 
the third lake group in the statistical analyses 
concerning nutrients, chl a and Secchi depth. 
The relations between the cyprinid BPUE and 



 Fish communities in South-Finnish lakes and their responses to biomanipulation 15

the cladoceran biomass, between the cladoceran 
and phytoplankton biomass, and between MRC 
and G. semen biomass were studied with linear 
regression. Correlation analyses was used for 
explaining Secchi depth with chl a.

In the summary, principal component analy-
sis (PCA) was used to arrange the gillnet BPUE 
of different species and species groups on two 
main components. To normalize the variances, 
all variables were ln-transformed. The relation 
between log10-transformed gillnet catch and the 
following catch in autumn seining was analyzed 
with mixed linear model (PROC MIXED in 
SAS version 8.01) including basin and year as 
explaining variables. Kruskal-Wallis non-para-
metric rank test was used to test the dependence 
between relative mass removal efficiency and 
proportion of improved variables in the bioma-
nipulated lakes.

7. Results and discussion

7.1. Differences in fish communities in 
Finnish lakes in relation to different 
nutrient concentration and lake size

7.1.1. Species number

According to the gillnet dataset of 36 lake basins, 
the number of fish species is positively related 
to lake area and trophic status (I). This was in 
accordance with the earlier studies (e.g. Tonn et 
al. 1990, Helminen et al. 2000, Jeppesen et al. 
2000). The increasing size of a lake increases the 
diversity (Matuszek & Beggs 1988) and stabil-
ity (Tonn et al. 1990) of habitats, thus enabling 
the survival of number of species with different 
habitat demands. The high trophic status corre-
lates with the high availability of energy, which 
is thought to be related to the variety of resource 
types (Wright 1983). In our study (I), the higher 
species number in eutrophic lakes was mainly 
due to cyprinids, such as rudd, white bream and 
blue bream (Abramis ballerus), all favouring 
a eutrophic environment. In general, the most 
common species in the lakes were perch, roach, 
ruffe and bream (I, II), which was congruent 
with earlier results in Finland (Tonn et al. 1990, 
Tammi et al. 1999, Helminen et al. 2000).

7.1.2. Total BPUE and cyprinids:percids 
dominance

Both total BPUE and cyprinid BPUE increased 
with TP concentration (I) as found in earlier stud-
ies (Persson et al. 1991, Helminen et al. 2000, 
Jeppesen et al. 2000). Contrary to expectations 
(Hartmann & Nümann 1977, Svärdson 1976, 
Kitchell et al. 1977, Leach et al. 1977, Pers-
son et al. 1991, Jeppesen et al. 2000), cyprinids 
dominated the gillnet catch from mesotrophic 
to highly eutrophic lakes (I, II). Thus, no actual 
shift from percid to cyprinid dominance occurred, 
although the biomass ratio of cyprinids to perc-
ids increased with the phosphorus concentration. 
As gillnets catch percids more effectively than 
cyprinids (Prchalová & Kubečka 2004, III), the 
actual domination of cyprinids in the lakes might 
have been even more pronounced. The reason 
for the high dominance of cyprinids in Finnish 
lakes, when comparing to e.g. Swedish lakes 
(Persson et al. 1991) of same trophic state, is 
unclear. It could be possible, that the active and 
selective recreational fishing (Moilanen 2004), 
as well as the prevalence of low water transpar-
ency (SYKE unpublished) favour cyprinids over 
percids in Finnish lakes.

Lake size may also affect the cyprinids:perc-
ids dominance due to lower competition between 
percids and cyprinids in large lakes. In small 
eutrophic lakes, perch and roach can severely 
compete with each other (Persson 1983). In 
eutrophic, large Lake Vesijärvi (Horppila et al. 
2000), both cyprinids and percids were simulta-
neously abundant. Congruently, we found posi-
tive effect of lake area on percid BPUE (I). 
In older studies (Tonn et al. 1990, Ranta et al. 
1992), percids dominated fish biomass in small, 
oligo-mesotrophic forest lakes with few fish spe-
cies including perch. The acidity of small forest 
lakes may have contributed to the low biomass 
of roach (Tammi et al. 2004). Thus in Finland, 
percids may dominate only in small lakes with 
few species and low trophic state and in meso-
eutrophic large lakes with plenty of different 
habitats. If the negative effects of cyprinids 
on perch are more likely in small lakes, the 
relatively small average size of Finnish lakes 
(Eloranta 2004) can promote the cyprinids domi-
nance if the lakes are eutrophicated.
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7.1.3. Species relations to abiotic and biotic 
factors

In the species level, cyprinids were not a homog-
enous group responding similarly to trophic state 
(I). Bream, and especially white bream, seemed 
to benefit more from strong eutrophication than 
roach and bleak, which was previously found 
by Svärdson & Molin (1981) (Fig. 4). This 
can be explained by interspecific competition. 
Bream and white bream can feed effectively in 
turbid waters (Lammens et al. 1987), whereas 
bleak and roach are adapted to less turbid waters 
(Lammens et al. 1987, 1992, Winkler & Orellana 
1992). However, the ability of roach to feed on 

plant material enables it to build high biomass 
even in very eutrophic conditions (Persson et al. 
1991). The low mean size of roach (II) and other 
cyprinids (Fig. 4) in eutrophic lakes support the 
ability of cyprinids to reproduce effectively and 
probably also reflect the slow growth rate in 
dense populations indicating severe food com-
petition. As expected, the dense cyprinid fish 
stock seemed to strongly change the zooplankton 
community towards smaller species and lower 
mean size (II). This may also indicate high food 
competition of fish in eutrophic lakes.

No separate biomass peaks for perch and 
other percids, pikeperch and ruffe, were detected 
(I) as in the study of Persson et al. (1991) and 
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Jeppesen et al. (2000). This was partly due 
to lower nutrient levels of lakes compared to 
Jeppesen et al. (2000). In addition, high perch 
biomass was observed in two highly eutrophic 
lakes. Perch seemed to be related to biotic rather 
than to abiotic factors. This could be due to 
the asymmetric competition-predation interac-
tion between perch and roach (Persson 1986, 
1987, Persson & Greenberg 1990). Our results 
support that a dense roach stock has a negative 
effect on perch biomass in eutrophic lakes (I). 
In addition, water transparency seemed to have a 
positive effect on perch biomass. We found some 
evidence that the predation of perch might affect 
the roach population in mesotrophic lakes but 
not in eutrophic lakes (I). Likewise, the competi-
tion effect of roach on perch seems to be valid 
in mesotrophic lakes but not in higher nutri-
ent concentration. It could be that in eutrophic 
lakes with a higher number of abundant species, 
the relations between perch and roach may be 
hidden behind more complex interactions.

The catch of pikeperch was related both to 
nutrient content and water turbidity, but the tur-
bidity seemed to have a more significant effect 
(I). The importance of turbidity is likely related 
to effective feeding in low light (Ali et al. 1977, 
Disler & Smirnov 1977) and the survival of 
yearlings (Neuman et al. 1996).

The biomass of ruffe seemed to be depend-
ent on lake size, depth relations and trophic state 
(I). High nutrient concentration had a negative 
effect in small and deep lakes but a positive 
effect in large and shallow lakes. This could be 
due to the higher possibility of eutrophication-
induced oxygen depletion in small and deep 
lakes (Wetzel 1983) that greatly affects this strict 
benthivore (Bergman 1988, 1991). In large and 
shallow lakes, eutrophication may increase suit-
able habitats and food availability for ruffe with-
out severely reducing the oxygen content.

As analysed with the PCA, the gillnet data 
deviated into several components of which the 
first two explained 65% of the total variation. 
The first factor (explaining 44% of total varia-
tion) was regarded as “the eutrophication com-
ponent” and it had a high score for white bream, 
bream, total BPUE, cyprinids, pikeperch and 
ruffe (in this order) (Fig. 5). Burbot (Lota lota), 
vendace, bullhead (Cottus gobio), salmonids, 

and whitefish had negative values for this factor. 
The second factor was “the lake volume compo-
nent”. It explained 21% of the variation and had 
a high score for smelt, species number, bleak, 
vendace and burbot. The above-mentioned spe-
cies are pelagic or demand cool and well-oxy-
genated water (Colby et al. 1972, Nümann 1972, 
Tammi et al. 1999, Vinni et al. 2000). The high 
score of species number can be explained by the 
linkage between lake size and habitat stability 
(Matuszek & Beggs 1988) and diversity (Tonn et 
al. 1990), as explained above. Perch, roach, pike, 
tench and crucian carp had high negative scores 
for “the lake volume component”. This group of 
species included littoral-oriented or general spe-
cies. Both the mixed linear model (see above) 
as well as the PCA indicated that white bream 
and bream favour higher nutrient concentrations 
than roach and bleak. Congruently, pikeperch 
and ruffe seem to be better adapted to eutrophic 
conditions compared to perch.

7.2. Experimental gillnetting as a fish 
sampling method

7.2.1. Gillnet CPUE as an index of fish 
abundance

The factors affecting the reliability of gillnet 
CPUE as an index of fish abundance include activ-

Fig. 5. Values of total BPUE, species BPUEs and spe-
cies number along first two factors, “the eutrophication 
component” and “lake volume component”, in PCA 
analysis. SALMONIDS include coregonids and smelt.
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ity, selectivity, avoidance, and saturation (Hamley 
1975, Minns & Hurley 1988, Borgstrøm 1992, 
Enderlein & Appelberg 1992, Hansson & Ruds-
tam 1995, Hansen et al. 1998). Activity, and thus 
CPUE, is largely dependent on water temperature 
and weather conditions. In our studies, CPUE was 
considerably lower in cold and rainy summers 
in 1998 and 2000 compared to warm summers 
of 1997, 1999 and 2001 (VI). Part of this might 
be due to lower fry production, slower growth 
and later recruitment of 0+ fish to Nordic nets, 
but lower activity may also have affected. The 
effects of varying fish activity on gillnet CPUE 
can be levelled down to some extent by sampling 
several times within the season and by keeping a 
few days gap between samplings. The activity of 
fishes varies a lot also during a short time scale 
(Helfman 1981), resulting in a considerable diur-
nal variation in gillnet CPUE (III, IV).

Due to selectivity, the reliability of gillnet 
CPUE index can largely depend on the structure 
of the fish community. As compared to the trawl 
catch, gillnets considerably underestimated the 
relative abundance of small (< 5 cm) fish (III, 
Fig. 6). Thus, the higher the proportion of small 
fish, the more unreliable is the CPUE index. For 
fish ≥ 6 cm, however, the CPUE index of abun-
dance can be quite reliable (III and Fig. 7).

The catching efficiency of a gillnet strongly 
declines as the fish accumulate in it during the 
12 h set time (IV and Fig. 8). This results in 
relatively lower CPUEs in high than in low fish 
density. Avoidance, rather than space limitation, 
seemed to be the main reason for decreasing 
efficiency because the reduction in catching effi-
ciency was relatively higher in a clear water lake 
and during daytime.

When considering a biomanipulated lake and 
a possible positive response in transparency, the 
gillnet CPUE can decline besides due to lowered 
fish density also due to increased visual avoidance 
in clear water conditions (IV). It is also possible 
that the increased proportion of piscivores after 
biomanipulation reduces catchability of cyprinids 
due to declining migration from littoral to pelagial 
(Brabrand & Faafeng 1993). If the original fish 
density before biomanipulation is very high and 
thus the catching efficiency of gillnet decreases 
noticeably during 12 h set time, the responses for 
fish removal in gillnet CPUE can be minor due to 

increased catching efficiency after reduced fish 
abundance. The latter may have been the situa-
tion in our biomanipulation experiments, as the 
original CPUE was often high and decreases in the 
cyprinid CPUEs were mainly modest (VI).

Despite the varying reliability of gillnet 
CPUE as an index of fish abundance, is it pos-
sible to predict a mass removal catch on the 
grounds of gillnet results? According to our 
results, there is a relation between gillnet BPUE 
and the corresponding BPUE in autumn seining 
(Fig. 9). Roughly it can be estimated that gillnet 
BPUEs of 1, 2 and 4 kg predicts seine BPUEs of 
500, 900 and 1300 kg, respectively. However, 
the between-year variation is high (Table 3), and 
the relation is not linear but becomes gentler as 
the gillnet BPUE increases. This is not expect-
able, as the reduced efficiency of gillnets in high 
fish densities should affect vice versa: steeper 
relation with higher gillnet BPUE. The numer-
ous factors affecting the fish aggregation and 
the seine catch, including lake size and depth 
relations, size of seine, biological interactions, 
weather conditions and turbidity (see Sammal-
korpi 2000 and the references therein), should 
have effects on the relation, as well.

7.2.2. Gillnet catch in reflecting fish 
community structure

The consistency of gillnet CPUE in reflecting 
fish community structure is dependent on the 
factors that affect the fish activity and gillnet 
efficiency (Hamley 1975). More active species 
tend to have higher proportions compared to 
stationary species. In our study, this was seen as 
a low proportion of pike compared to actively 
swimming percids and cyprinids (I, III). The 
diurnal changes in species activity reverberated 
to the gillnet catch composition (III, IV). White 
bream and pikeperch had relatively high catches 
during night and perch during daytime.

The mechanical selectivity of gillnets strongly 
affects the species and size structure of the catch 
(Hamley 1975). According our comparison of 
gillnet and trawl (III), gillnets gave unreliable 
estimates of small individuals and species with 
low catchability due to smooth body outline, e.g. 
smelt. In addition, the proportion of large speci-
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mens (ca. > 30 cm) of Abramis sp. was low com-
pared to the trawl catch. Some piscivores prob-
ably avoided or escaped from the trawl. For other 
fish species and size classes, the gillnet CPUE 
was quite congruent with the trawl estimate.

The decrease of gillnet catchability due to 
fish accumulation had minor effect on species 

composition in the catch (IV). This was prob-
ably due to quite similar diurnal rhythm of the 
main species resulting in comparable possibility 
to encounter an empty gillnet. However, if the 
activity pattern of fishes is highly different the 
accumulation likely affects the species propor-
tions in gillnets (see Minns & Hurley 1988).

7.3. Varying responses to biomanipulation

7.3.1. Fish

In the biomanipulation study of 14 basins, 
the target mass removal catch (200 kg ha–1 
3 year–1) was attained in seven basins (Fig. 10, 
VI). According to the achieved or non-achieved 
target MRC, the basins were respectively divided 
into two groups hiC and loC both including 7 
basins. The proportion of cyprinids in the MRC 
varied between 63% and 97% in the basins. 
Roach and bream were usually the most impor-
tant removed species. Besides roach, small perch 

0

5000

10000

15000

20000

25000

30000

0 50 100 150
NPUE (n gillnet-1 4h-1)

T
ra

w
lc

at
ch

 (
n 

ha
-1

)

Fig. 7. Relation between gillnet NPUE and fish density 
estimated by trawl catch. Trawl catch (n ha–1) = 99.3 ¥ 
gillnet catch (n gillnet–1 4h–1), r2 = 0.451, F = 9.032, P 
= 0.013. Combined data of two years 2001 and 2002 
(only data of 2001 was presented in III). Only fish ≥ 6 
cm are included.

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

(a)

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 

(b)

5 6.25
8 10
12.5 15.5
19.5 24
29 35
43 55
lin nlin

C
on

tin
uo

us
 g

ill
ne

tti
ng

 (
ac

cu
m

ul
at

io
n 

%
)

Consecutive gillnetting (accumulation %)

Fig. 8. Curve of decreasing catching efficiency for 
Nordic multimesh gillnet (nlin) in turbid (a) and clear 
water lake (b) (IV). In relation to fish accumulation, con-
secutive gillnetting represents the catch of constant effi-
ciency and continuous gillnetting is the catch of declined 
efficiency. Accumulation % is the mean number catch 
in a panel of a given mesh size divided by number of 
meshes in the same panel. Each mesh size (5–55 mm) 
is marked with a different symbol. Hypothetical curve 
for stable efficiency (lin) is also shown.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000

Gillnet BPUE (g net-1 night-1)

S
ei

ne
B

P
U

E
 (

kg
 h

au
l-1

)

Fig. 9. Relation between gillnet BPUE and BPUE in 
seining in the following autumn. Each circle represents 
a lake-year. Predicted values and 95% confidence 
limits of mixed linear model (Table 3) are shown.

Table 3. Results of the general linear model predicting 
seine BPUE (log

10
 kg haul–1) from gillnet BPUE (log

10 

grams of cyprinids net–1 night–1) and year. Model: d.f. = 
42, r2 = 0.418, P < 0.001.

Parameter Estimate S.E. P

Intercept 0.595 0.570 0.303
log

10
 cyprinids 0.653 0.178 0.001

1997 0.283 0.125 0.030
1998 0.089 0.113 0.438
1999 0.296 0.108 0.010
2000 0.247 0.110 0.030
2001 0.000
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and bleak were among the major species in 
less eutrophic lakes. In Hiidenvesi, blue bream, 
bream and smelt had similar MRC with roach.

The total gillnet BPUE decreased in most 

of the hiC basins but increased in almost all of 
the loC basins (VI, Fig. 11). This could indicate 
that a moderate mass removal effort can affect 
negatively and increase the fish biomass due to 

Fig. 10. Total mass 
removal catch (MRC) 
and species’ MRCs from 
autumn 1997 to spring 
2001 in study basins. 
Weight of catch is pre-
sented as columns and 
the total number catch 
as open squares. Basins 
are divided into two cat-
egories (loC: target catch 
200 kg ha–1 3 yr.–1 not 
achieved and hiC: target 
catch achieved).
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responses in reproduction and growth rate. Even 
in the hiC basins, the magnitude of responses in 
the total gillnet BPUE was moderate (VI), and 
no 75% reductions (Meijer et al. 1999) were 
observed. This can be due to several reasons. 
Firstly, the fishing effort was too low to induce 
severe reduction in the fish biomass. However, in 
the most efficiently fished lakes, the effort should 
have been high enough in relation to the target 
catch estimated by the equation of Jeppesen & 
Sammalkorpi (2002) (V, VI). Secondly, the fish 
production may have compensated the fished 
biomass. Evidence for this was found from many 
lakes as the reproduction and the fish growth 
increased considerably (Rask et al. in print, V, 
VI). Thirdly, the catching efficiency of gillnets 
may have increased as the fish density reduced, 
as mentioned above.

Besides the changes in the total biomass, the 
responses in the fish community structure have 
likely had wide-ranging effects in the lake eco-
system. The general shifts in the fish assemblage 
were (1) the reduction of large cyprinids, (2) the 
expansion of the cyprinid fry and, to the lesser 
extent, percid juveniles, and (3) the increase 
in the proportion of piscivores (VI). The shifts 
likely have depressed the internal loading and 
nutrient recycling due to fish. The reduction in 
the large cyprinids and the increment in juveniles 
result in less individuals disturbing the bottom 
sediment and releasing nutrients, and more spec-
imens eating zooplankton but not adding “new” 
nutrients from the sediment (Shapiro & Carlson 
1982, Tatrai & Istvanovics 1986, Lammens et al. 
1990, Horppila & Kairesalo 1992, Breukelaar et 
al. 1994, Vinni et al. 2000). The smaller average 
size of cyprinids enables better top-down control 
by piscivores (Lammens 1999). In addition, the 
observed higher proportion of piscivores can 
alter the behaviour of prey, reducing the migra-
tion from shelter to the open water (Brabrand 
& Faafeng 1993). With the diminishing littoral-
pelagic coupling, the nutrients recycling from 
the littoral to the pelagial (Schindler et al. 1996) 
and the predatory pressure on pelagic zooplank-
ton (Gliwicz & Dawidowicz 2001) decrease. 
The direct effect of nutrient removal due to fish 
bound nutrients might also have contributed as 
TP concentration decreased most evidently in 
the basins where the fish removal was highest in 

relation to the water volume (VI). Moreover, it 
seems reasonable, that part of the nutrients that 
otherwise could be used to algal production, 
are absorbed to fast growing fish biomass, even 
though especially YOY fish mobilize and excrete 
nutrients as well (e.g. Post et al. 1997). However, 
as the water P concentration and P storage in the 
sediment of shallow lakes are in balance (Søn-
dergaard et al. 2001), the water P concentration 
may not reduce until the sediment is impover-
ished or the P flux is otherwise restricted.

As to the individual fish species, roach and 
bream decreased as a result of the biomanipula-
tion (Fig. 11). In 1997, the average BPUEs of 
roach and bream were higher in the hiC basins 
compared to loC basins (Tukey, P < 0.1 and 
P < 0.05, respectively). Until 2001, roach and 
bream decreased in most of the hiC basins but 
increased or remained the same in almost all 
loC basins so that the lake groups differed no 
more. The reason for the clear response of these 
species could be high catchability. The BPUEs 
of white bream and bleak increased in almost 
every basin. For white bream, the increment 
was higher in the hiC lakes, yet not significantly. 
The response might reflect the low catchability 
of this species, and the higher production due 
to released resources. The response of bleak 
was negative soon after the biomanipulation 
started (Olin & Ruuhijärvi 2000), but the BPUE 
increased in many lakes during the last year 
of this study possibly reflecting the decreased 
intensity of biomanipulation.

In many basins, perch did not respond 
positively to the biomanipulation contrary to 
expected. For two basins, Etujärvi and Takajärvi, 
the obvious reason for the negative response is 
the relatively high by-catch of perch in the mass 
removal catch (Fig. 10). It could be that the 
high pressure of recreational fishing in Finland 
(Moilanen 2004) makes perch vulnerable for 
even a low by-catch in biomanipulation. Pike-
perch BPUE increased in other cases except in 
the basins of Hiidenvesi. Pikeperch might have 
gained from the increased abundance of juvenile 
fish but also from the warm summers (VI). The 
reason for the exceptional negative trend in Hii-
denvesi is unclear. Ruffe responded clearly nega-
tively in all basins even though the catch of ruffe 
in biomanipulation was fairly low (Fig. 10 and 
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11). It could be that the increased biomass and 
predation of pikeperch together with the moder-
ate removal catch had induced the collapse of 
ruffe BPUE.

7.3.2. Zooplankton

The responses in zooplankton biomass and in 
the potential grazing pressure were moderately 
positive in most of the biomanipulated basins 
(V, VI). As the median size of herbivorous 
cladocerans did not respond, however, the posi-
tive response in cladoceran biomass was due to 
the increase in numbers not in size. Likely, the 
reason for the modest response in cladocerans 
was the high recruitment of YOY fish (VI), 
which are strict and effective zooplanktivores 
(e.g. Post et al. 1992). Nevertheless, increased 
grazing might have contributed to the decreased 
phytoplankton biomass (V, VI, Rask et al. in 
print). The reduction of chl-a:TP ratio in several 
effectively biomanipulated basins can indicate 
increased herbivore control (Mazumder 1994; 
Meijer et al. 1999, Sarvala et al. 2000b). The 
potential grazing pressure (Jeppesen et al. 1994), 
increased in many basins (VI) indicating higher 
herbivorous control after biomanipulation. In 
addition, the role of grazing became more impor-
tant as the phytoplankton communities shifted 
towards more edible algae than cyanobacteria 
(Mazumder 1994). It should be also noted that 
since the samples were collected from the deep-
est point of the basin (VI), the responses in the 
littoral zone were not detected.

Changes in zooplankton might have effects 
on the nutrient balance, as large cladocerans 
store more nutrients than smaller ones (Carpen-
ter et al. 1992). Though we did not find positive 
response in cladoceran size, the higher total 
biomass of cladocerans should contain more 
nutrients that are temporary withdrawn from the 
circulation.

7.3.3. Phytoplankton

The biomass of cyanobacteria decreased, and 
the duration of the blooms shortened and shifted 
towards the autumn in effectively biomanipu-

lated lakes (V, VI). As we found decreased 
nutrient concentrations in some basins, nutrient 
shortage might be one reason for the decline 
of cyanobacteria. In the fall turnover, the nutri-
ent storage in the water column replenishes 
and a delayed peak of cyanobacteria can occur. 
Besides the nutrient concentrations, the speed of 
nutrient cycling might also have changed. The 
reduction of chl-a:TP ratio in almost all effec-
tively biomanipulated basins (VI) indicates that 
with a certain level of phosphorus, algae can not 
build up as high a biomass as before biomanipu-
lation. Besides increased grazing, this can be due 
to changed nutrient availability (Meijer et al. 
1999, Sarvala et al. 2000b). The effects of fish 
and zooplankton on the changed nutrient cycling 
were discussed in 7.3.1 and 7.3.2. In addition, 
the colonisation of macrophytes, benthic algae 
and macroinvertebrates can be other reasons 
for the changes in nutrient cycling increasing 
the nitrogen retention (Van Donk et al. 1993, 
Jeppesen et al. 1998, Scheffer 1998, Meijer et al. 
1999, Svensson et al. 1999). A direct observation 
of macrophytes, benthic algae and macroinverte-
brates we have only from Tuusulanjärvi, where 
all three increased substantially (Venetvaara 
et al. 2003 and unpublished), probably induc-
ing the observed reduction in TN concentration 
(VI). Two other effectively fished basins had 
decreased TN concentrations (Table 4), but those 
lakes lacked the corresponding data.

7.3.4. Transparency

Only minor increments in Secchi depth occurred 
in the biomanipulated basins, likely due to high 
fraction of non-algal turbidity caused by clay and 
humic substances (VI). This may suggest that 
the positive effects of biomanipulation are tran-
sient. According to Scheffer (1998), the alterna-
tive stable state with low algal and fish biomass 
and high zooplankton and macrophyte biomass 
is attained only with substantial increase in 
water clarity. In a shallow lake, however, even a 
minor increase in the transparency substantially 
extends the euphotic bottom area. In Tuusulan-
järvi, rather moderate enhancement in the Secchi 
depth in 2000 induced a notable expansion of the 
submerged vegetation (Venetvaara et al. 2003).
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7.3.5. Success-failure review

When considering the overall success or failure 
of biomanipulation in our study lakes, the judge-
ment was based on the improvement (≥ 15%) in 
the essential variables from 1997 to 2001 (Table 
4). The boundary of 15% was the same as Hans-
son et al. (1998) used in their review. No general 
agreement of the correct definition for the suc-
cessful biomanipulation exists. Drenner & Ham-
bright (1999) judged simply by the direction, not 
the amount, of a change, in water quality vari-
ables, and Meijer et al. (1999) by “lake bottom 
view” i.e. the bottom of the lake became visible.

In our study, eight basins had the success% 
of ≥ 50 i.e. at least 50% of the essential variables 
improved until 2001 (Table 4). In the hiC basins, 
only one basin had ≤ 50 success% compared to 
five basins in the loC basins. Of the single objec-
tives, increment in cladoceran biomass and in 
the Secchi depth, and the reduction in biomass 
of cyanobacteria (or G. semen) were most often 
attained. The reduction in nutrient concentrations 
or in cyprinid biomass failed most often.

High mass removal catch in relation to trophic 
state was likely the reason for success in six basins 

(Table 5). These included two lakes, Otalampi and 
Lehijärvi where the target catch was not achieved 
but the original cyprinid biomass seemed to be 
low enough to enable successful biomanipulation 
with a lower catch. In spite of the attained target 
catch, mass removal catch seemed to be too low 
in two highly eutrophic basins Rusutjärvi and 
Ä1 and was likely one reason for partial failure 
of biomanipulation. It seems reasonable to set 
the target catch according to an original cyprinid 
biomass if possible. The mass removal target 
catch can be roughly estimated from the BPUE 
of the Nordic gillnet. Based on the mass removal 
catch in the lakes where cyprinids decreased and 
the original gillnet BPUE of cyprinids in 1997, 
each kg of cyprinid BPUE should mean the target 
catch of at least 100 kg ha–1 in 2–3 years. If the 
original fish biomass cannot be estimated, as 
often is the case, the target catch can be estimated 
from TP concentration according to Jeppesen 
& Sammalkorpi (2002): catch-need (kg ha–1) = 
16.9 × TP0.52. When proportioning this catch-need 
to the attained catch from our study lakes and 
comparing it to the succession%, the proportion 
of improved variables was higher in the basins 
where the attained catch was close to the catch-

Table 4. Summary of changes in the essential variables in biomanipulated basins. Basins are sorted according 
to the increasing mass removal catch (VI), which was lower or higher than 200 kg ha–1 3yr–1 in loC or hiC basins, 
respectively. The signs +, – or 0 denote ≥ 15% increase, ≥ 15% decrease or < 15% change from 1997 to 2001 (in 
July–August). MRC, mass removal catch (kg ha–1 4y–1), %c-n = proportion of the calculated catch need (Jeppesen & 
Sammalkorpi 2002, see text) after the best fishing season, Cyprin. = BPUE of >10 cm cyprinids, Clad. = cladoceran 
biomass, TP = total phosphorus, TN = total nitrogen, Phytop. = total phytoplankton biomass, Cyanob. = cyanobac-
terial biomass, except for Gonyostomum semen (G) in Otalampi, Takajärvi and Etujärvi, chl:TP = chlorophyll-a:TP 
ratio, Secchi = Secchi depth, Succ% = proportion of the improved variables (Clad. and Secchi should increase, 
other variables should decrease).

 Basin MRC %c-n Cyprin. Clad. TP TN Phytop. Cyanob. chl:TP Secchi Succ%

loC H1 44 13 + + 0 + 0 – 0 + 25
 Lehi 90 59 + + – 0 – – + 0 50
 Ota 119 67 0 + 0 0 – –G – + 63
 H4 121 33 + + + + 0 + 0 – 13
 H3 153 43 + 0 – 0 0 0 0 0 13
 Pus 182 43 + + + + + – – – 38
 Enä 190 36 + ? + + + 0 + 0 0

hiC Rus 201 90 – + + 0 – – – – 63
 Ä2 226 84 – + + – – – – + 88
 Ä1 257 58 – + 0 0 – – – 0 63
 Taka 295 81 – – – 0 – –G 0 + 63
 Etu 348 68 0 – + 0 0 +G 0 + 13
 H2 411 80 – – – – + + + + 50
 Tuu 472 99 + + – – – – – + 88
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need (Fig. 12). Thus, the equation of Jeppesen & 
Sammalkorpi (2002) seems to predict the target 
catch relatively well. In addition, the observed 
dependence between the succession% and the 
relative mass removal efficiency indicates that 
the intensity of biomanipulation was among the 
main factors inducing the positive changes in the 
lake basins.

According to Hansson et al. (1998), high pro-
duction of YOY fish after the biomanipulation 
is probably the main reason for biomanipulation 
failure. This was also supported in our study, as 
in ten basins the juvenile expansion was one of 
the causes of failure restricting the cladoceran 
response (Table 5). As the proportion of pisci-
vores was lower (≤ 20% in all basins in 2001, 
VI) than recommended (30%–40%, Benndorf 
& Kamjunke 1999), the relatively low predation 
pressure might contributed to the juvenile expan-
sion of cyprinids. However, Otalampi, Lehijärvi 
and Ä2 which lacked the juvenile expansion, had 
even lower percentage of piscivores compared to 
the other basins. It could be that, the relatively 
low trophic state has affected the weakness of 
cyprinid reproduction in Otalampi and Lehijärvi.

A low or moderate external loading is gener-
ally argued to be a prerequisite for success in 
biomanipulation (e.g. Scheffer 1998, Hansson 
et al. 1988, Benndorf et al. 2002). This is also 
supported by our results. Of the eight cases with 
succession% at least 50, five had an external 
loading lower than or close to the critical level, 
as defined by Vollenweider (1976). In the other 
basins Takajärvi, Tuusulanjärvi and H2, high 

external loading was one possible reason main-
taining high nutrient concentration and algal bio-
mass or enabling high fish production after resto-
ration measures. It should be noticed, however, 
that in our study, the rates of external loading, as 
well as the nutrient concentrations, were gener-
ally much lower compared to biomanipulated 
lakes in Denmark (Jeppesen et al. 1999) and in 
The Netherlands (Gulati & van Donk 2002).

According to Scheffer (1998) high back-
ground turbidity may reduce the potential for 
successful biomanipulation. Thus, low back-
ground turbidity might have enabled the positive 
responses in five study basins (Tables 4 and 5). 
However, only Otalampi and Ä2 of these basins 
had ≥ 15% improvement in the transparency. 
On the other hand, of nine basins with high 

Table 5. Probable explanations for success (upper) or failure (lower) in biomanipulation of the study lakes.

Reasons for success Basin
   High MRC (in relation to trophic state) Taka, Ota, Tuu, Lehi, Ä2, H2
   No juvenile expansion Ota, Lehi, Ä2
   Low external loading Ota, Lehi, Ä1, Ä2
   Low background turbidity Ota, Rus, Lehi, Ä1, Ä2
   Artificial mixing during summer Tuu

Reasons for failure
   Low MRC (in relation to trophic state) Pus, Rus, Ä1, H1, H3, H4
   Short fishing period (< 3 yr) Rus, Lehi
   Effective Cyprinid compensation Taka, Etu, Rus, Pus, Tuu, Ä1, H1, H2, H3, H4
   Gonyostomum semen Taka, Etu, Ota
   High external loading Taka, Etu, Pus, Tuu, H1, H2, H3, H4
   High wind resuspension Enä, H1, Ä1, H2
   High background turbidity Taka, Etu, Pus, Tuu, Enä, H1, H2, H3, H4
   Artificial mixing during summer Enä, Tuu

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100
Proportion of the catch-need (%)

S
uc

ce
ss

%

Fig. 12. Percentage of improved variables in relation to 
attained proportion of the catch-need in study basins. 
See Table 4 for the variables. Proportion of the catch-
need is calculated as mass removal catch of the best 
fishing season divided by the catch-need of Jeppesen 
& Sammalkorpi (2002, see text). Spearman rank cor-
relation: r

s
 = 0.774, P < 0.01.
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non-algal turbidity only three basins, Takajärvi, 
H2 and Tuusulanjärvi, had succession% ≥ 50. 
Clay turbidity in particular might be crucial 
for effective biomanipulation, because clay has 
extended effects on the ecosystem functioning 
(see the review by Lind 2003). Clay turbidity 
reduces the feeding efficiency of visual preda-
tors (Benfield & Minello 1996) and the filtration 
rate of large cladocerans (McCabe & O’Brien 
1983, Hart 1987). In addition, clay turbidity 
might contribute to cyanobacterial blooms, as 
they are adapted to shady conditions (Scheffer 
1998). Loose clay sediment is readily disturbed 
by fish and wind thus preventing the invasion of 
submerged vegetation due to light limitation and 
up-rooting (Scheffer 1998, Meijer et al. 1999, 
Nurminen 2003). In our study, wind induced 
resuspension may have prevented or reduced 
the positive responses in four shallow basins 
having a long fetch in the prevailing wind direc-
tion (Table 5), as was also found by Meijer et al. 
(1999). The potential of biomanipulation in clay 
turbid lakes may depend on depth. In deep lakes, 
clay turbidity favours the larvae of invertebrate 
predator Chaoborus sp. that effectively consume 
zooplankton (Cuker 1993, Horppila et al. 2000, 
Liljendahl-Nurminen et al. 2003). It also seems 
reasonable, that in shallow lakes, where fish may 
directly affect the clay turbidity by disturbing 
the sediment, the decreased fish biomass induces 
more obvious response in the transparency com-
pared to deep lakes. In this study, the only clay 
turbid lake having a highly successful bioma-
nipulation was shallow Tuusulanjärvi.

Artificial mixing during summer stagnation 
may have affected the responses in three lakes. 
The mixing was most efficient in Tuusulan-
järvi, preventing the thermal stratification during 
the growing season. This might have averted 
the blooms of Microcystis sp. (Gulati & van 
Donk, 2002) and favoured other cyanobacteria 
as the blooms diminished and consisted of sev-
eral genera. The mixing also kept the bottom 
sediment oxygenated, restraining the mobilisa-
tion of phosphorus. However, the mixing also 
increases the shear stress, temperature and pH 
near the bottom sediment which all can increase 
the release of phosphorus from the sediment (see 
Scheffer, 1998). Thus, artificial mixing might 
have had both positive and negative effects on 

the water quality in Tuusulanjärvi. In Pusulan-
järvi and Enäjärvi, the artificial mixing was less 
effective in order to keep only the hypolimnion 
oxygenated without breaking the summer strati-
fication. However, in both lakes hypolimnetic 
water was concentrated with nutrients, and the 
stratification was weakened, resulting in high 
internal loading during wind turbulence. This 
may explain the high phytoplankton biomass 
in Enäjärvi in 1999. After the summer artificial 
mixing had ceased, the lake returned to the pre-
vious better condition.

8. Concluding remarks

According to the results of the present study, the 
fish biomass and species interactions in Finnish 
lakes depend on, besides the nutrient concentra-
tions, also on lake area and depth, and turbidity. 
The shift from percid to cyprinid dominance 
from mesotrophic to eutrophic lakes was not 
recorded as cyprinids dominated already in the 
mesotrophic lakes. Large lake size and / or low 
turbidity can enable a high biomass of perch in 
spite of abundant cyprinids.

Experimental gillnetting can be used to 
roughly estimate the target catch of biomanipula-
tion and the CPUE in seining, as well as the fol-
lowing responses in fish community. The valid-
ity of gillnet CPUE as an index of fish density 
is fairly good for mid-sized (6–30 cm) fish and 
active species, and when the set time is short 
enough to diminish the effects of the lowering 
catching efficiency.

The results of the biomanipulation experi-
ments indicated that in meso- and eutrophic 
Finnish lakes the blooms of cyanobacteria can 
be decreased considerably by effective cyprinid 
removal (200–400 kg ha–1 3 yr.–1). Successful 
and sustainable biomanipulation is more likely 
if the external loading is low, clay-turbidity is 
modest and the juvenile expansion of cyprinids 
is hindered.

9. Future aims

When considering the fish communities in Finn-
ish lakes, more information is needed on the 
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interactions of species in different environments. 
Also, the role of recreational fishing and high 
frequency of turbid lakes need more attention as 
potential reasons of the unexpectedly common 
cyprinid dominance.

The dependence between fish abundance and 
community structure and gillnet CPUE should 
be examined further. Some questions in need 
of further investigation are: how is the catching 
efficiency affected by different fish density and 
water turbidity, what is the role of weather con-
ditions, and how should the gillnet sampling of 
fish be performed in a most cost-effective way?

Concerning the biomanipulation, we still 
need more information on the restoration pos-
sibilities in humic or clay turbid-lakes, and about 
the possibilities of reaching alternative stable 
states of lake ecosystems in Finland.
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