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‘I used to do a little  
but a little wouldn’t do  
so the little got more and more’ 

W. A. Rose 
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Essays on Corporate Hedging: an overview 

1 Corporate hedging 

Corporate hedging should be understood far more broadly than as the use of financial 

derivatives to hedge specific risks in the firm’s cash flow. Concern for risks is reflected in 

investment and portfolio decisions, financing decisions, decisions on payout policies, as well 

as in the decision on whether to use financial derivatives or not. This is not to say that risk 

management subsumes all corporate decision making. Rather, the modern perspective on 

corporate hedging acknowledges that the amount of risk and the capacity to bear risks can be 

influenced through operating, financing, as well as explicit risk management decisions. 

Determining where risks are managed most efficiently is a significant part of the corporate 

hedging decision. 

The fundamental risk choice for a firm is the selection of its operating policy. Were there 

no financial market imperfections, operating policy could be determined without a special 

concern for risks, and financing and risk management decisions would follow from the choice 

of operating policy. This separation is implied by the Modigliani-Miller (MM) theorems 

(1958, 1961). A corresponding separation takes place when there is no operational flexibility, 

say because the operating policy is fixed by external constraints. In both cases, financing and 

risk management policies are determined as optimal reactions to the given operating policy. 

Given a fixed operating policy, a corporate may hedge through all of the following 

financial decisions (this is by no means a complete list): a financial risk management policy 

which smoothens fluctuations in the firm’s earnings (Froot et al., 1993); a debt choice which 

takes into account earnings risks and the expected costs from financial distress (Leland, 

1994); a choice of dividend policy which delays dividends and accumulates buffer stocks of 

capital to control for the probability of bankruptcy (Milne and Robertson, 1996). These 

examples are to emphasize that even when the operating policy is taken as given, risk 

management with financial derivatives is only one way to hedge. Capital structure choice, 

payout policies, and liquidity management matter alike. In many cases, some of these non-

explicit risk management tools may be more effective than risk management through financial 



 

derivatives, and in other cases financial derivatives may not be available at favorable terms to 

the risk management needs of the particular firm. 

In the other extreme, the firm may have considerable operating flexibility, while the 

firm’s financial flexibility may be very limited due to severe financial market imperfections. 

Then the choice of operating policy will be largely dictated by financial constraints, and 

corporate hedging will have a very operational content. In particular, many strategic decisions 

can be thought to take place between several mutually exclusive operating policies that are 

each associated with a distinct combination of risk and return. The concern for volatility 

induced by the financial constraints will be reflected in the choice of operating policy. An 

example of this type of corporate hedging analysis is Radner and Shepp (1996). 

Arguably, most firms will be located between these two extremes, possessing some 

financial as well as operational flexibility. Financial constraints will be reflected in the choice 

of operating policy, while constraints on operational adjustment will impose restrictions on 

feasible financial policies. Whether risks are managed through operational adjustment or 

financial adjustment will ultimately depend on the degree of financial flexibility in contrast to 

operational flexibility. 

2 Literature on corporate hedging 

Corporate hedging in the presence of linear investor utility is usually motivated by some type 

of financial market imperfections. The modern corporate hedging literature is reviewed in the 

following, organized according to the type of market imperfection. 

Smith and Stulz (1985) show how taxes create a motive for corporate hedging. When the 

effective tax function is convex in income, a firm may reduce its expected tax liability by 

smoothing its income. This argument is essentially an application of Jensen’s inequality. 

Within the same framework, Smith and Stulz show that the optimal degree of hedging 

depends on the cost of hedging. 

Froot et al. (1993) show how costly external capital motivates corporate hedging. The 

cost of external capital may exceed the cost of internally generated funds due to informational 

asymmetries. Hedging adds value by ensuring that the firm has sufficient internal funds to 

take advantage of attractive investment opportunities. In the presence of costly external 



 

capital the firm may underinvest if internally generated funds fall short of profitable 

investment opportunities. Financial derivatives can be used to shift internally generated funds 

into those states and times when they are most needed, i.e. when profitable investment 

projects requiring large capital investments need to be undertaken. This principle determines 

optimal risk management strategies. 

Froot and Stein (1998), building on the model of Froot et al. (1993), show how costly 

external capital and incompleteness of capital markets influence capital budgeting and capital 

structure choice in corporations and financial institutions in particular. Non-traded risks need 

to be priced according to each bank’s internal valuation of cash flows. A bank’s ability to 

absorb losses depends on its capital structure. Hedging against non-traded risks can only be 

accomplished through adjustment of capital structure, i.e. reduction in leverage. The cost of 

this hedging, the value of lost tax benefits, has to be passed on to the pricing of the risks. 

Alternatively, when the adjustment of capital structure is very costly, the bank may invest less 

aggressively in non-traded risks. Hedging of those risks that are traded will increase the 

bank’s tolerance of leverage and adds value since tax benefits of debt may be taken advantage 

of. Investment choices, capital structure choices, and risk management choices in this theory 

are jointly and endogenously determined. 

A significant synthesis of capital structure theory was achieved by Leland (1994) (also 

Leland, 1998), who examined the joint determination of corporate capital structure and 

corporate debt values. Methodologically, Leland’s model is an extension of the classical 

Merton (1974) model of the firm. Optimal capital structure is influenced by firm risk, taxes, 

and bankruptcy costs, like in the classical theories, but also by the valuation of corporate debt, 

which in turn depends on the capital structure of the firm. Leland therefore accounts for the 

endogenuity of debt values within the context of the problem of determining the optimal 

capital structure. Equity holders may also choose the timing of bankruptcy optimally to 

maximize the valuation of levered equity, so that operational flexibility is present in this 

model as well. Leland (1994) essentially brings together three branches of literature: i) the 

classical literature on optimal capital structure that deals with taxes and bankruptcy costs, ii) 

the literature on the valuation of risky debt in structural models, initiated by Merton (1974), 

and iii) the literature on endogenous termination of operations (Brennan and Schwartz, 1985, 

Dixit, 1989). 



 

Mello and Parsons (2000) analyze optimal hedging strategies in the presence of an 

exogenous borrowing constraint. Optimal hedges are shown to have the feature that they 

minimize the variability in the marginal value of the firm’s cash balances. They do this by 

transferring cash from states in which the marginal value of cash balances is low to states 

where the marginal value of cash balances is at its highest. In the presence of stochastic 

factors affecting firm profitability, the marginal value of the firm’s cash balances is not 

perfectly correlated with the firm’s actual cash balances. Therefore optimal hedging generally 

differs from hedging the firm’s cash flow. The same holds for other commonly used hedging 

strategies, such as hedging firm value or hedging sales revenues. 

Corporate dividend policies and risk choices in the presence of liquidity constraints have 

been analyzed e.g. by Milne and Robertson (1996), Radner and Shepp (1996), and Hojgaard 

and Taksar (1999). In these models, firms generate buffer stocks of liquid assets by delaying 

dividend payments. Hedges can be simultaneously undertaken to control for the drift and the 

volatility of the firm’s cash flow. Optimal dividend policies and risk reduction strategies are 

jointly determined. They have the feature that most risk reduction takes place when the capital 

stock is close to the firm’s liquidation point, while dividends are only paid once the capital 

stock exceeds an endogenously determined safety level. When the capital stock is at the 

dividend barrier, the firm is locally risk neutral and is run at the risk level delivering maximal 

expected profits. 

The models cited above demonstrate that investment, financing, and payout decisions 

may be driven by the concern to reduce volatility or the firm’s sensitivity to volatility, so that 

there can be a hedging element to each of these decisions. Moreover, hedging considerations 

may be reflected in these financial and operating decisions even if financial derivatives are 

present. 

Besides the general literature on corporate hedging cited above, there are several research 

streams which analyze the implementation or construction of hedges in specific contexts. 

First, the classical literature on the mechanics of hedging for risk (variance) averse agents 

concentrates on hedging by futures (e.g. Anderson and Danthine, 1981, Stulz, 1984). 

Corporate hedging of this type is only a part of corporate financial policy. Second, the plain 

term ‘hedging’ in the asset pricing literature refers to the process of replication, i.e. the 

manufacturing of more complex financial payoffs from more simple ones through dynamic 



 

trading based on Merton’s (1973) idea. This is a literature that to a large extent takes the 

hedging objective as given, and as such is detached from the corporate hedging literature that 

is concerned with the principles that determine the optimal method and degree of hedging. 

3 Overview of the essays 

The essays in this collection study both financial and operational hedging from a theoretical 

point of view. Essays 1 to 3 analyze hedges that are implemented through adjustment of 

financial policies. Essay 1 studies optimal dividend and capital raising policies for a firm 

which faces an exogenous minimum capital requirement. Essay 2 studies a similar firm but 

subject to different capital market imperfections. Essay 3 analyzes banks’ choice of capital 

buffers under the proposed new Basel Capital Accord. Essays 4 and 5 analyze hedges which 

are operational in nature. Essay 4 analyzes the value of collateral as a hedging instrument for 

banks. Essay 5 studies models where operational flexibility is related to an option to abandon 

and to restart operations at a given cost. With the exception of essay 3, the essays share a 

common methodology in that uncertainty is represented by continuous time diffusion 

processes. 

The essays are motivated by pragmatic issues that risk management professionals in 

corporates and banks are currently facing. In particular, essay 2 is an attempt to test whether 

current levels of bank capitalization are adequate from the perspective of a fully optimizing 

model of bank behavior. Essay 3 is strongly motivated by the ongoing changes in banking 

regulation and the speculated increases in required bank capital. Essay 4 is an attempt to 

enrich the theoretical literature on defaultable loan pricing by drawing on common bank 

practices. 

Essay 1: Dividends, costly external capital, and firm value: the case of constant scale 

This essay studies optimal dividend and capital raising policies for a constant scale firm 

operating under a minimum capital requirement. The capital requirement states that the firm 

at all times must have a positive stock of capital to absorb potential losses from the productive 

activity, if the firm is to continue operating as a going concern. The productive asset is 

completely illiquid, so that extra capital can not be obtained through liquidating the 

productive asset. The firm has access to external capital, but raising of external capital is 



 

subject to a proportional cost and can only take place at a bounded rate. The minimum capital 

requirement, together with these capital market imperfections, induces the firm to maintain 

buffer stocks of capital. Dividends are paid out of the capital stock, but only to the extent that 

the optimal buffer stock of capital can be maintained. 

The essay extends the model of optimal dividends studied earlier by e.g. Milne and 

Robertson (1996) and Asmussen and Taksar (1997), by introducing the option to issue new 

capital. The option to issue capital lowers the optimal buffer stock of capital, identified as the 

dividend barrier, by an amount that depends on the severity of the capital market 

imperfections. In the general case, optimal policies are described by two non-zero barriers, 

such that dividends are paid, at maximal admissible rate, when the capital stock is above an 

endogenously determined barrier, and capital is issued, again at maximal admissible rate, 

when the capital stock is below another endogenously determined barrier. The dividend 

barrier exceeds the capital issue barrier by a margin which depends on the cost of capital 

issuance. Severe enough capital market imperfections will cause the firm to abstain from 

issuing external capital altogether. A separate analysis is also provided for all the limiting 

cases where the capital market imperfections vanish. 

The assumption of constant scale abstracts from investment considerations, yielding quite 

explicit results. Yet it is well known that models with decreasing, and ultimately vanishing, 

scale returns generate qualitatively similar optimal policies (Radner, 1998, Alvarez, 2001). 

Moreover, it is shown in an Appendix to this essay that the model can be interpreted as a 

normalized form of a more general model with positive scale effects and time dependent 

profit flow. 

Essay 2: Optimal bank capital with costly recapitalization 

This essay analyzes the same basic model as essay 1, but under different capital market 

imperfections. Here the issuance of new capital is subject to a fixed cost and an 

implementation delay. The fixed cost can be interpreted as a fee to an investment bank 

organizing the capital issue, and the implementation delay represents the time it takes to get 

access to external capital. 

The fixed cost prevents continuous adjustments of the capital stock by means of new 

capital issues. The optimal capital issuance policy is by nature an impulse control policy, so 



 

that capital is issued at stopping times which are the first-hitting times of endogenously 

determined barriers. A characterization of the solution in terms of a set of quasi-variational 

inequalities is provided, and a quasi-analytic solution in terms of two barriers which solve a 

pair of non-linear equations is obtained. The limiting cases of the model where the capital 

market imperfections are not present are also solved. The study of the limiting cases reveals 

that the fixed cost is not the characteristic that drives the qualitative results from the model. In 

terms of the qualitative nature of the solution, the delay in organizing the capital issue is more 

fundamental than the fixed cost. This result may have certain methodological value which 

extends outside the particular interpretation of variables in this model. 

The model is calibrated to data on actual bank returns over the period 1994-2001, and is 

found to be unable to explain the high bank capital levels that are observed empirically. This 

failure is partly due to banks’ accounting options for provisioning of expected losses, which 

smoothen banks’ accounting income. The assumption of normally distributed bank returns is 

also counterfactual. In the numerical applications, the model is used with implied bank return 

volatilities analogously to the manner the Black-Scholes formula is used in practice. 

Essay 3: A Value-at-Risk approach to bank capital buffers: an application to Basel II 

This essay analyzes the determination of bank capital in a more realistic institutional setting 

compared to essays 1 and 2. It is assumed that bank capital is determined by a Value-at-Risk 

type criterion which takes into account the volatility in the minimum capital requirement. 

Monte Carlo simulation techniques are then applied to quantify banks’ potential capital 

holdings under the proposed new Basel Capital Accord (Basel Committee, 2001). 

By their design, the minimum capital requirements under the proposed new capital 

regimes will be sensitive to banks’ portfolio quality. A bank’s capital charge will therefore 

vary over time in accordance with its portfolio ratings distribution. Costs associated with 

capital adjustment and portfolio adjustment create a motive for banks to hedge against shocks 

to capital. Holding of buffer capital constitutes the natural hedging vehicle, and in fact the 

only feasible hedging vehicle when the bank’s portfolio is highly illiquid and access to 

external is subject to high costs. Assuming that hedging is based on a targeted confidence 

level, increased volatility in minimum capital requirements will lead to higher capital buffers 

in relative terms, i.e. as a percentage of the minimum requirement. Yet the proposed new 

requirements will simultaneously lower the minimum capital requirements of some banks and 



 

increase those of other banks. Therefore, the effect of the regulatory reform on total capital 

held by different banks is not immediately obvious. It is shown in this essay that bank capital 

buffers, as well as banks’ total capital holdings, under the new regime are likely to depend in 

a nontrivial way on the individual banks’ portfolio risk and on the selected capital regime. 

This simulation based analysis is, to the best of the authors' knowledge, the first 

quantitative exploration of the implications of risk sensitive bank capital requirements in a 

stochastic framework and at this level of institutional detail. This is a partial equilibrium 

analysis, however, which takes a bank’s portfolio as given and derives its capital needs based 

on a choice of risk level by the bank’s management. Equilibrium models of the banking sector 

where capital requirements play a role have been recently studied e.g. by Danielsson et al. 

(2001). These models abstract from the accurate description of minimum capital rules and 

bank portfolios that the analysis in this essay is based on. 

Essay 4: A structural model of risky debt with stochastic collateral 

This essay studies a problem of great practical importance in bank risk management, the 

evaluation of the protective value of collateral. The Merton (1974) model of risky debt is 

extended by allowing an explicit collateral value process which is correlated with the asset 

value process that determines default. The model yields a quasi-analytic expression for the 

loss-given-default (LGD). The LGD estimate takes into account the key drivers of recovery in 

the event of bankruptcy: current collateral value, collateral value volatility, and the correlation 

of collateral value with the default probability of the obligor. LGD estimates are frequently 

needed in portfolio credit risk models which are run with constant LGD parameters for 

computational reasons. 

As a second application, the model is used to set collateral requirements on bank loans 

according to a number of criteria which appear to correspond to common bank practices. The 

analysis is based on the observation that a bank can substitute risk sensitive pricing of its 

loans with appropriate adjustment of collateral requirements. This is because sufficient 

protective collateral limits potential losses in the event of default and makes loans 

homogenous in terms of their riskiness to be eligible for a uniform pricing. Casual evidence 

suggests that bank loans in a number of countries are priced in this manner. 



 

This essay solves the pattern of collateral requirements implied by the uniform price 

criterion. Then two alternative criteria for setting collateral requirements are studied which 

circumvent the problem of pricing the loan in the first place. These criteria are based on 

limiting the risk from the collateralized exposure in a probabilistic sense. Non-price criteria 

may have practical value in that the pricing of illiquid bank loans is arguably much greater 

challenge than the evaluation of the probabilistic behavior of the exposure and the collateral. 

It is found that one of the probabilistic rules studied yields collateral requirements whose 

qualitative behavior is closely in line with the uniform price criterion. 

Essay 5: On the markup interpretation of optimal stopping rules 

This essay studies models where firms' profitability fluctuates stochastically and operational 

flexibility is present in the form of abandonment and restart options. Firms maximize their 

value through selection of optimal option exercise policies. Exercising the options is costly, 

resulting in behavior which is referred to as hysterisis in the real option literature. 

The models analyzed here have earlier been studied in Dixit (1989) and in Dixit and 

Pindyck (1994). The main goal of this essay is to demonstrate, extending on an idea presented 

by Dixit et al. (1999), that the optimal stopping policies in these models can be characterized 

through first-order conditions that have the markup property familiar from classical producer 

theory. These first-order conditions are arrived at when the objective function of the problem 

is evaluated directly as a function of the unknown stopping barriers. The solution procedure is 

an alternative to the dynamic programming/variational inequality route. It is claimed that in 

many cases the direct route, which relies on an appropriate representation of the objective 

based on renewal arguments, has some clear benefits over the dynamic programming 

approach. The direct route is also very intuitive and as such may have pedagogic value. 
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Essay 1: Dividends, costly external capital, and firm value: the 

case of constant scale 

 

Abstract 

We study optimal dividend and capital raising policies for a constant scale firm 
operating subject to a minimum capital requirement. Operating profits and losses 
drive the firm's capital stock. Owners derive value from the stream of dividends 
distributed out of the capital stock, but the threat of capital shortage constrains 
dividend distribution. Owners may obtain external capital to reduce the 
probability of capital shortage, but recapitalization is subject to proportional cost, 
and can only take place at limited rates. We solve for the optimal policy and the 
resulting firm valuation, and analyze the effects of costly external capital on firm 
value. We identify the conditions on the capital market imperfections under which 
costly recapitalization is optimal, and study the limiting cases of the model as the 
capital market imperfections vanish. Finally we compare capital issues and 
operational risk reductions as alternative methods of hedging against capital 
shortages. 

 

Keywords: dividends, capital issues, firm valuation, proportional cost 

JEL classification: G22, G32 

 

1  Introduction 

A stream of recent research has studied optimal dividend and risk choices for a constant scale 

firm which faces an exogenous minimum capital requirement (Jeanblanc-Pique and Shiryaev, 

1995, Milne and Robertson, 1996, Radner and Shepp, 1996, Asmussen and Taksar, 1997, 

Hojgaard and Taksar, 1999, 2001, Asmussen, Hojgaard, and Taksar, 2000). In these models 

the capital stock in the absence of controls evolves as an arithmetic Brownian motion. 

Dividends are paid out of the capital stock, and the value of the firm is the present value of 

optimally chosen dividends. The basic model of dividend optimization in the absence of risk 

control is treated in Jeanblanc-Pique and Shiryaev (1995), Milne and Robertson (1996) and 

Asmussen and Taksar (1997). Simultaneous risk choice between a finite number of drift-



 

volatility coefficient pairs which together satisfy certain monotonicity requirements is 

analyzed in Radner and Shepp (1996). In Hojgaard and Taksar (1999), the volatility of the 

diffusion may be scaled down, in which case the drift is scaled down in the same proportion. 

This risk choice is interpreted as cheap reinsurance for an insurance corporation. Asmussen, 

Hojgaard and Taksar (2000) analyze a variation of the previous called excess-of-loss 

reinsurance. In Hojgaard and Taksar (2001), cheap reinsurance is available, and additionally 

the capital stock earns a possibly stochastic rate of return. 

In this paper we extend the basic model of dividend optimization by allowing for costly 

issues of external equity capital. The value of the firm in our model is the present value of net 

equity distributions, i.e. the present value of the dividend payout less the present value of the 

capital issued. We assume that capital issuance carries a proportional cost, and that capital 

issues can only be implemented at a limited rate. The proportional cost can be interpreted e.g. 

as the fee to an organizer of the capital issue, and the limited rate reflects the time it takes to 

obtain external finance. These capital market imperfections create a motive for buffer stocks 

of capital, the optimal size of which depends on the severity of the imperfections, as well as 

on the characteristics of the firm’s cash flow. We allow dividend payments at unbounded 

rates. 

Both capital issues and risk reductions can be interpreted as risk management tools which 

allow the firm (a bank or an insurance company) to operate with less buffer capital. There is 

usually a cost associated with both types of hedges: capital issues come with a proportional 

cost, while risk reductions as in Radner and Shepp (1996) or Hojgaard and Taksar (1999) 

involve a partial sacrifice of expected profit. Our model yields a decomposition of the firm 

value into the value of the capital issue option and the value of the non-optional firm, and 

enables us to compare the value of capital issues against the value of risk reductions. We 

illustrate these comparisons in Section 4 of this paper. Our analysis also contributes to the 

literature that studies optimal corporate hedging mechanisms in the presence of capital market 

imperfections, in particular in the presence of costly external capital. Froot et al. (1993, 1998) 

e.g. have shown that costly external capital leads to the interaction between investment and 

financing, and creates a motive for risk management1. Our model demonstrates that even in 

                                               

1 A related work is also Mello and Parsons (2000), who show how a liquidity constraint generates a motive for 
risk management and determines the nature of optimal risk management policies.  



 

the absence of investment considerations (our model assumes a fixed portfolio), optimal 

dividend and capital issuance policies depend on the degree of capital market imperfections 

associated with capital issuance. Our model does not capture explicit risk management 

technologies, such as financial derivatives. Risk management takes place by regulating the 

firm's buffer stock of capital through dividends and capital issues. 

The optimal policy in our model, which we obtain by combined regular/singular control 

methods, is of the barrier control type. In particular, for not-too-extreme parameter values 

there exists a positive barrier b1, such that new capital issues are implemented at maximal 

admissible rate when the firm’s capital stock is below b1. The firm starts distributing 

dividends, again at the maximal admissible rate, when the capital stock is above another 

barrier b2. The difference b2 – b1 is positive when the cost of capital issues is positive, 

approaches zero when the cost of capital issues approaches zero, and does not depend on the 

maximal admissible rate of capital issuance. Moreover, as the cost of capital issues exceeds a 

critical barrier, it is no more optimal for the firm to resort to capital issues. In this case the 

optimal policy is described by a single barrier above which dividends are paid. The value of 

the firm then reduces to one of a firm in the absence of the capital issue option. 

The assumption of constant scale in a firm’s operational cash flow could seem overly 

restrictive. We present two arguments in favor of the view that constant scale is a very 

relevant benchmark case. First, we present in the Appendix a model with stationary growth 

which reduces to our model with constant scale through a simple normalization. Second, we 

note here that there are theoretical results which assure that there is some robustness in the 

assumption of constant scale. In particular, Radner and Shepp (1996) have shown that when 

constant scale (in this type of model but without capital issues) is replaced with constant 

returns to scale, the basic problem no longer leads to a reasonable solution, but to one where 

either all capital is paid as dividends immediately (the drift is less than the discount rate), or 

dividends are withhold indefinitely and the value of the objective is infinite (the drift is higher 

than the discount rate). This reflects the mathematical incompatibility of linear discounting 

and constant returns to scale. Moreover, Alvarez (2001) and Radner (1998) have analyzed a 

variation of the basic model with linear utility where technology experiences positive scale 

effects that ultimately converge to a sufficiently low value, and has found that the optimal 

dividend policy is the same type of barrier policy than in the presence of constant scale. 

Constant scale is therefore not a necessary condition for the qualitative results of the model, 



 

and qualitatively similar results are obtained from any model with e.g. declining and 

ultimately vanishing returns to scale. 

There is a sizable literature on the singular stochastic control of (arithmetic) Brownian 

motion. The references that are closest to our work have already been mentioned in this 

Introduction. Other areas where singular control has been applied include inventory control 

(Harrison and Taksar, 1983, Harrison, 1985), portfolio optimization under proportional 

transaction costs (Constantinides, 1986, Davis and Norman, 1989), and optimal firing and 

hiring (Bentolila and Bertola, 1990, Shepp and Shiryaev, 1996). 

The rest of the paper is organized as follows. Section 2 presents our model. Optimal 

policies and the value function are derived in section 3. Numerical illustrations and 

comparative static analyses are in section 4. Section 5 concludes with a number of remarks 

concerning possible extensions and variations of the model presented here. 

2  The model 

We analyze a firm with a cumulative profit flow Y which evolves according to 

tt dWdtdY σµ += ,         (1) 

where { }0: ≥tWt  is a standard Wiener process, and the parameters µ and σ are positive 

constants. The standard filtration generated by the Brownian motion { }0: ≥tWt  is denoted 

{ }0: ≥tFt . This implies that instantaneous profit flow is non-predictable, and that both 

positive and negative instantaneous profits occur with positive probability. 

A dividend-capital raising policy is a two-dimensional stochastic process ( )SD, , where 

tD  is the cumulative amount of dividends paid up to time t and tS  is the cumulative amount 

of new capital raised up to time t. We denote by Π the set of policies ( )SD,  which are non-

decreasing right-continuous processes, adapted to Ft, satisfy 000 ======== −−−−−−−− SD , and where St 

satisfies the constraint 



 

∫=
t

ut dusS
0

,    δ≤≤ ts0  for all t. 

The firm’s capital stock, as a function of a policy ( )SD, , is denoted SD
tX ,  and evolves 

according to 

( )
( )( ) ttt

ttt
SD

t

dDdWdts

dSdDdYdX

−+−+=
−+−=

σαµ
α

1

1,

.      (2) 

Any profits and losses feed to the capital stock, dividends are paid out of the capital stock, 

and issues of new equity add to the capital stock. The parameter α ∈  (0,1) is the proportional 

cost rate of external capital. We interpret this so that for each unit of new capital raised, α 

units are used to pay external parties which facilitate the collection of external capital, and 1 - 

α units are retained to accumulate the firm’s capital stock. The initial stock of capital X0 is 

assumed to be non-negative and is generically denoted by x. 

The firm operates until the capital stock for the first time hits zero, i.e. until the stopping 

time 

{ }0:0inf ,
, ≤≥= SD

tSD Xtτ , 

where X evolves according to (2). Zero is assumed to be the (normalized) default boundary, 

the violation of which destroys the firm’s potential to continue operating as a going concern. 

Firm value under policy ( )SD, , given an initial capital stock x, is the expected 

discounted present value of dividends less new capital issues until default time 

( ) ( )∫
−

− −=
SD

tt
t

SD dSdDeExV
,

0

,

τ
ρ .       (3) 

where ρ is a positive parameter denoting the excess required return on equity over the riskless 

rate. The value function of the problem is defined by 

( ) ( )xVxV SD
SD

,
,

sup
Π∈

= ,         (4) 



 

and corresponds to the value of an optimally managed firm. The problem is to identify V as 

defined in (4) and an optimal policy ( )∗∗ SD ,  such that ( ) ( )xVxV
SD ∗∗=

,
. We note that the 

problem has five parameters (µ, σ, ρ, α, δ). The first two of these describe the profit dynamics 

from the productive technology, the third is the risk premium on equity, and the last two 

describe the capital market imperfections which constrain the acquisition of external capital. 

The model defined by (1-4) describes a firm whose capital dynamics does not depend on 

time or on the size of the firm’s capital stock. Hence there are no returns to scale in our 

model. This firm may be interpreted as a bank which has access to an infinitely elastic supply 

of zero cost (insured) deposits, and which has an illiquid portfolio of a fixed size. This 

interpretation has been suggested by Milne and Whalley (2001) in the context of the same 

basic capital dynamics. The capital dynamics in (2), however, can also be derived from a 

more general capital dynamics which is neither time nor state homogenous, through an 

appropriate normalization. We present this extension of our model in Appendix A, and show 

how (2) and (3) are obtained from the more general model. 

3  Value function and optimal policies 

The problem defined by (4) is a mixed regular and singular control problem. That V is 

concave follows from the linearity of the objective and the linearity of the capital dynamics 

using standard arguments as illustrated e.g. in Hojgaard and Taksar (1999). Assuming that V 

is twice continuously differentiable on (0, ∞), standard dynamic programming arguments (see 

e.g. Fleming and Soner (1993), or Hojgaard and Taksar (1999)) then imply that V satisfies the 

Hamilton-Jacobi-Bellman (HJB) variational equation 

( ) ( )( ) ( ) ( ) ( ) 0'1,'1''
2
1

maxmax 2

0
=







 −






 −−−++
≤≤

xVsxVxVsxV
s

ραµσ
δ

, x > 0 (5) 

V(0) = 0.          (6) 

Our main task in this section is to construct a twice continuously differentiable, concave 

solution to (5) and (6). We find it useful to separate the analysis of the general case where α ∈  



 

(0, 1) and δ ∈  (0, ∞) from the various limiting cases which are obtained as either α = 1 or α = 

0, or as δ = 0 or δ → ∞. These limiting cases are discussed in section 3.2. 

3.1 The general case αααα ∈∈∈∈  (0, 1), δδδδ ∈∈∈∈  (0, ∞∞∞∞)  

We seek to construct a concave solution to (5) that satisfies (6). We denote such a solution by 

f. Then f satisfies (5) written in an equivalent form 

( ) ( ) ( ) ( ) ( )( ) ( ) 0'1,1'1'''
2
1

maxmax 2

0
=







 −






 −−+−+
≤≤

xfsxfxfxfxf
s

αρµσ
δ

,  (7) 

x > 0. We define barriers b1 and b2 in terms of f as 

 ( ) ( ){ }1'1:0inf1 =−≥= xfxb α ,       (8) 

 ( ){ }1':0inf2 =≥= xfxb .        (9) 

By concavity and twice continuous differentiability of f, b1 < b2. We denote by s(x) the 

function that achieves the inner maximum in (7) for any x. Then it follows from the concavity 

of f and (7) that 

( )




>
≤

=
1

1

,0

,

bx

bx
xs

δ
.         (10) 

This implies that optimal policies have the following form: i) capital is issued at the maximal 

admissible rate δ when the capital stock is at or below b1, ii) no controls are applied when the 

capital stock is in the interval (b1, b2), iii) dividends are paid at maximal admissible rate when 

the capital stock is above b2. Since dividends may be paid at an unbounded rate, the process 

for capital is reflected at b2. 

The behavior of f can then be classified into three regions. For 0 < x < b1, f satisfies 

 ( ) ( )( ) ( ) ( ) 0'1''
2

1 2 =−−−++ δρδαµσ xfxfxf . 

This has the general solution, denoted f1, 



 

 ( )
ρ
δ−+= −+ xdxd ececxf 11

12111 ,       (11) 

where 

 ( )( ) ( )( )[ ]22

21 211
1 ρσδαµδαµ

σ
+−+±−+−=±d .    (12) 

For b1 < x < b2, f satisfies 

 ( ) ( ) ( ) 0'''
2

1 2 =−+ xfxfxf ρµσ , 

which has a general solution, denoted f2, 

 ( ) xdxd ececxf −+ += 22
22212 ,        (13) 

where 

 [ ]22
22 2

1 ρσµµ
σ

+±−=±d .       (14) 

For x > b2, f satisfies 

 ( ) 33 cxxf += .          (15) 

We therefore conjecture the following solution to (7) 

 ( )
( )
( )
( )








>+=
<<+=

<<−+=

= −+

−+

233

2122212

112111

22

11 0

bxcxxf

bxbececxf

bxececxf

xf xdxd

xdxd ρδ
. 

The five yet unknown constants (c11, c12, c21, c22, c3) and the two endogenous boundaries 

(b1, b2) are to be solved from the value matching and smooth pasting conditions associated 

with the problem (see Dumas (1991) or Dixit (1991) for a discussion of these). We note that 

the + and - signs in the known constants d1+, d1-, d2+, d2- indicate the signs of these constants. 

We will use this information repeatedly below when we derive the signs of the other 

constants. 



 

The smooth pasting conditions at b2 are 

 ( ) ( ) 1'' 2322 == bfbf  

 ( ) ( ) 0'''' 2322 == bfbf . 

Solving this system for c21 and c22, and inserting these into (13), yields 

 ( ) ( ) ( )2222
22212

bxdbxd eAeAxf −− −+ += ,       (16) 

 ( )+−+

−

−
=

222

2
21 ddd

d
A ,         (17) 

 ( )−+−

+

−
=

222

2
22 ddd

d
A .         (18) 

The signs of the d’s indicate that A21 > 0 and A22 < 0. Then evaluating (16) at b2 yields 

( ) ρµ=+= 222122 AAbf . A value matching condition at b2 now determines c3, so that (15) 

becomes 

 ( ) ( )23 bxxf −+=
ρ
µ

. 

When b1 is positive, f2 satisfies the boundary condition ( ) ( ) 1
12 1' −−= αbf  by definition (8) of 

b1. Substituting (16) into this condition yields an equation that implicitly determines b2 - b1 

 ( ) ( )

α−
=+ −−

−
−−

+
−+

1

1
122122

222221
bbdbbd edAedA .      (19) 

We cannot solve this explicitly for b2 - b1, but the following lemma establishes the existence 

of a unique positive solution to (19). 

Lemma 1. There exists a unique positive b2 - b1 that solves (19). 

Proof: Define the continuous function g: [0, ∞) → R by 

 ( ) ydyd edAedAyg −+ −
−

−
+ += 22

222221 .       (20) 



 

We record the following properties of g: 1) g(y) > 0 0≥∀ y ; 2) g(0) = 1; 3) g’(0) = 0; 4) 

g’’(y) > 0 0≥∀ y ; 5) g is unbounded. 

1) holds since A21 > 0 and A22 < 0. To show 2) and 3), we evaluate g and g’ at 0 and use the 

expressions for A21 and A22 

 ( ) 10
22

22

22

2

22

2
222221 =

−
−=

−
+

−
−=+=

−+

−+

−+

+

−+

−
−+ dd

dd

dd

d

dd

d
dAdAg  

 ( ) 00'
22

22

22

222
222

2
221 =

−
−

−
=−−=

−+

−+

−+

−+
−+ dd

dd

dd

dd
dAdAg  

To show 4), we differentiate g twice and determine the signs of the coefficients. 5) follows 

from the fact that the exponential function is unbounded, and –d2- > 0. Properties 3 and 4 

imply that g is increasing, so that for α > 0, g crosses (1-α)-1 at a single point y*(α) > 0, which 

is the value of b2 - b1 that solves (20). End of proof. 

We observe from (19) that b2 - b1 does not depend on δ, but is driven by the cost rate α. 

The next result characterizes the dependence of b2 - b1 on α. 

Lemma 2. b2 - b1 = 0 when α = 0, b2 - b1 is an increasing function of α, and 

( )
∞=

∂
−∂

=0

12

αα
bb

. 

Proof: Let g be the function defined in (20). The first claim follows since g(0) = 1. By totally 

differentiating (19) w.r.t. b2 - b1 and α, we obtain 

 
( )

( ) ( ) 0
'

1

1

1
2

12 >
−

=
∂

−∂
∗yg

bb

αα
, 

when α ∈  (0,1), since g’(y) > 0 when y > 0, and y*(α) > 0 when α > 0. The third claim 

follows since g’(0) = 0 and y*(0) = 0. End of proof. 

As α approaches 1, the right-hand side of (19) approaches infinity. The value of b2 - b1 

solving (19) therefore also increases without bound. This solution, however, is valid only for 

those values of α which are consistent with f2 at the dividend barrier b1 being positive. The 

following lemma gives an upper bound on α. 

Lemma 3. f2(b1) > 0 when α < α̂ , where α̂  is given by 
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







−
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+

− −+

−+
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


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


−−=

22

22

2

21ˆ
dd

dd

d

dα .        (21) 

Proof. We know that ( ) ρµ=22 bf  for any b2, and the left-hand side of (19) shows that the 

partial derivative of f2(b1) with respect to (b2 - b1) is negative. Therefore there is a critical 

value b0 for b2 – b1 which yields ( ) 012 =bf . Substituting (16) into this condition yields 

 00202
2221 =+ −+ −− bdbd eAeA ,        (22) 

from which b0 can be solved explicitly. Since (b2 - b1) is increasing in α, corresponding to b0 

there is a critical value of α, denoted α̂ , such that b0 solves (19) when α is at its critical value, 

i.e. 

 
α̂1

1
0202

222221 −
=+ −+ −

−
−

+
bdbd edAedA . 

Substituting in (22) and solving for α̂  gives (21). End of proof. 

We observe from (21) that α̂  ∈  (0,1) since –d2- > d2+ > 0. Moreover, α̂  is a function of 

µ, σ and ρ, but does not depend on δ. This may appear a little surprising. One could a priori 

expect that higher capital issuance rates would cause the firm to tolerate higher costs of 

capital issuance. 

When α equals its critical value, the marginal value of capital at 0 just equals the hurdle 

rate for issuance of costly external capital, (1-α)-1. Figure 1 graphs the critical value α̂  as a 

function of σ, for selected values of the drift rate µ. The figure indicates that the critical value 

of α is a declining function of the cash flow volatility, and an increasing function of the cash 

flow drift. As volatility converges to zero, the critical value converges to one. The critical 

value is also remarkably high at such values of the drift and the volatility parameters which 

may be deemed typical. When the (µ, σ, ρ) triple is at (1, 2, 0.1), e.g., the critical value for α 

is 0.76, implying that the marginal value of capital at zero is 4.2.  

We continue with the solution of the general case where α < α̂ . Given the solution (16) 

for f2 as a function of b2, we solve c11 and c12 from the smooth pasting conditions at b1, 

 ( ) ( )1211 '' bfbf = , 



 

 ( ) ( )1211 '''' bfbf = . 

Solving this pair of linear equations for c11 and c12 and inserting these into (11) yields 

 ( ) ( ) ( )

ρ
δ−+= −− −+ 1111

12111
bxdbxd eAeAxf ,       (23) 
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ddd

ddd
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ddd

ddd
AA −−

+−−

+−−−−
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+++ −+
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−
−= .   (25) 

Analysis of the signs of the coefficients shows that A11 > 0 and A12 < 0. 

In (24) and (25), b2 - b1 is assumed to be the unique positive solution to (19). b1 is 

therefore the only unknown, and can be determined from the remaining boundary condition 

( ) 001 =f . Substituting (23) into this condition yields an equation that implicitly determines 

b1, 

 
ρ
δ=+ −+ −− 1111

1211
bdbd eAeA .        (26) 

The following lemma verifies the existence of a unique solution to (26). 

Lemma 4. A unique solution b1 to (26) exists. The solution is strictly positive when α < α̂ . 

Proof:  We define the function h: R×(0,1) → R by ( ) ( ) ( ) ydyd eAeAyh −+ −− += 11
1211, ααα , where 

A11 and A12 have been defined by (24) and (25), and do not depend on y. The argument 

emphasizes their dependence on α. 

I Existence and uniqueness. We know that A11(α) > 0 and A12(α)  < 0 for all α ∈  (0, 1). 

Differentiation of h w.r.t. y then shows that h1(y, α) < 0 for all y. Moreover, h(y,α) → ∞ as y 

→ -∞, and h(y, α) → -∞ as y → ∞. This implies that for all α ∈  (0, 1), there exists a unique 

y*(α) such that h(y*(α),α) = δ/ρ. 

II Positivity. We note that ( ) 012 >bf  when α < α̂  by Lemma 3. Because of value matching at 

b1, ( ) ( ) 01211 >= bfbf . Value matching at b1 follows from the smooth pasting conditions at 



 

b1. Differentiation of (23), on the other hand, shows that ( ) 0'1 >xf  for all x. This, combined 

with ( ) 001 =f  (condition (26)) and ( ) 011 >bf  implies that b1 is positive. End of proof. 

We have now determined the constants (c11, c12, c21, c22, c3) as explicit functions of the 

endogenous barriers (b1, b2), and the two endogenous barriers (b1, b2) as implicit functions of 

the problem parameters. To summarize, when 0 < α < α̂ , we propose the following solution 

to (7) subject to f(0) = 0, 

 ( )

( ) ( )

( ) ( )

( )













≥−+
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≤≤−+

= −−
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−+

−+

22

212221

11211

2222

1111 0

bxbx

bxbeAeA

bxeAeA

xf bxdbxd

bxdbxd

ρ
µ

ρ
δ

,    (27) 

where b1 solves (26), b2 – b1 solves (19), A11 and A12 are given by (24) and (25), and A21 and 

A22 are given by (17) and (18). The next lemma verifies that (27) is a concave solution to (7). 

Lemma 5. f given by (27) is a concave, twice continuously differentiable solution to (7) 

subject to f(0) = 0. 

Proof: We first show that f defined by (27) is concave. We know that f’’(x) = 0 for all x ≥ b2, 

and f is therefore (weakly) concave on [b2, ∞). The smooth pasting conditions at b2 imply that 

f2’’(b2) = 0. Differentiating f2 given by (16) three times, and analyzing the signs of the 

coefficients, shows that f’’’(x) > 0 on (b1, b2). f therefore has an increasing second derivative 

on (b1, b2), which, combined with the fact that f’’(b2) = 0, implies that f’’(x) < 0 on (b1, b2). 

Thus f is concave on (b1, b2). Similar reasoning can be used to establish the concavity of f on 

(0, b1). Differentiating f1 given by (23) three times and using the established fact that A11 > 0, 

A12 < 0, shows that f’’’(x) > 0 on (0, b1). Again, this combined with the fact that f’’(b1) < 0 

because of smooth pasting with f2, implies that f’’(x) < 0 on (0, b1).  

(27) is twice continuously differentiable by construction. By concavity, f’(x) > 1 for x < 

b2, so that 1 - f’(x) < 0 and (27) satisfies (7) for x < b2 by construction. Since f’(x) = 1 for x ≥ 

b2, we need to show that Lsf(x) ≤ 0 for x ≥ b2, for all s ∈  [0, δ], where 

 ( ) ( ) ( ) ( ) ( ) ( )( )sxfxfxfxfxfLs 1'1'''
2

1 2 −−+−+= αρµσ . 

Substituting (27) into this, we get 
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for all s ∈  [0, δ]. End of proof. 

By a sufficiency argument similar to the one proved in Hojgaard and Taksar (1999), the 

solution (27) coincides with the value function defined in (4). Moreover, an optimal barrier 

policy exists. We state the result in the following proposition, but will not show the proof 

since the argumentation is essentially identical to the proof in Hojgaard and Taksar (1999). 

Proposition 1. Let 0 < α < α̂ , and f(x) be defined by (27). Then ( ) ( ) ( )xVxVxf
SD ∗∗==

,
 for 

all x, where ( )∗∗ SD ,  is the policy defined by the system of equations 

 ( ) ( ) ∗−+−++= ∫
∗∗∗∗

tt

t
SD

u
SD

t DWduXstxX σαµ
0

,, 1 , 

2
, bX SD

t ≤
∗∗

, t ≥ 0, 

 ( ) 0
0

2
, =<Ι∫

∞
∗∗∗

t
SD

t dDbX , 

where s(x) is the function defined in (10), and b1 and b2 - b1 are the solutions to (27) and (19). 

3.2 The limiting cases 

We can distinguish three different limiting cases to our model, according to the nature of the 

resulting solution, as the two parameters α and δ describing capital market imperfections 

approach their limiting values. 

Case I: δδδδ = 0 or αααα ≥≥≥≥ α̂  

In the limiting case δ = 0 the capital issue option is not available. Also, it was shown in the 

previous section that whenever α is equal or greater to the critical value given by (21), the 

optimal policy does not involve capital issues. In both cases the solution reduces to the special 

case which has been solved by Milne and Robertson (1996), among others. The optimal 

policy is now described in terms of a single barrier b0, which is a reflecting dividend barrier 



 

for the capital stock. The barrier b0 satisfies the condition ( ) 002 =f , which is written out in 

(22), and can be solved for b0 explicitly as 

 
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where d2+ and d2- are as in (14). The resulting value function is 

 ( )
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Case II: αααα = 0 

As α → 0, it follows from the definitions (8) and (9) and continuous differentiability of f that 

b2 - b1 → 0. Lemma 2 in fact shows that b2 - b1 = 0 when α = 0, so that the optimal policy in 

this case is characterized by a single barrier b*, above which dividends are paid at unlimited 

rate (so that the process is reflected at b*), and below which new capital is raised at the 

maximal admissible rate δ. The value function and the barrier b* are characterized by the 

following result, whose derivation proceeds as in the general case. 

Proposition 2. Let α = 0. The dividend barrier b* is the unique positive solution to the 

equation 

 
ρ
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∗
+ −− bdbd eAeA 21 ,        (30) 

and the value function is 
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where 

( )+−+

−

−
=

ddd

d
A1  > 0,  ( )−+−

+

−
=

ddd

d
A2  < 0, 
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d . 

Case III: δδδδ = ∞∞∞∞ 

As δ increases, the firm’s control on the minimum level of the capital stock improves. In the 

limit, as δ is unbounded, the control on the minimum level of the capital stock is of ‘barrier’ 

type, so that the capital stock is reflected at b1. In this situation the owners would clearly 

prefer to set the barrier b1 as close to zero as possible. Yet the barrier cannot equal zero, since 

this would not be enough to prevent bankruptcy. Unsurprisingly, then, optimal policy does not 

exist in the case where the rate of capital injection is unbounded. 

We can derive the ‘unreachable’ value function by the following heuristic argument. We 

know that when the rate of capital injections is unbounded, the capital injection barrier b1 is 

arbitrarily close to zero. Then a decision to raise a small amount ∆ of new capital at b1 raises 

the capital stock to b1 + (1 - α)∆. Since this is the approximately optimal action at barrier b1, 

the value function at b1 equals the net value from this operation. Thus we have 

 
( ) ( )( )
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Solving the previous approximate equality for V’(b1), and letting both b1 and ∆ approach zero 

yields 

 ( )
α−

=
1

1
0'V .          (32) 

The value function in the case δ = ∞ can be found by solving the HJB equation (5) subject to 

the boundary condition (32). The solution, which can be obtained by straightforward 

adaptation of earlier arguments, is given in the following proposition. 

Proposition 3. Let δ = ∞. When α < α̂ , the value function is given by 
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where A21 and A22 are given by (17) and (18), and the dividend barrier b̂  is the unique 

positive solution to (19). Else, the solution is given by (28) and (29). 



 

The condition on α in the proposition means that even though δ approaches infinity, 

capital issues may not be optimally used when the cost rate is sufficiently high. The critical 

value of α is in fact the same as in the general model with finite δ. This is consistent with our 

earlier finding that α̂  does not depend on δ. When α is below the critical value, the barrier b̂  

solves the same equation as the difference b2 – b1 in the general model. Also the value 

function (33) is simply a left-shifted version of the value function (27) of the general model 

with finite δ, to the right of b1. In other words, as δ approaches infinity, b1 approaches zero, 

but the difference b2 – b1 remains constant. We noted already in connection with Lemma 2 

that b2 – b1 does not depend on δ. 

We finally look at what happens when α approaches zero and δ simultaneously 

approaches infinity, i.e. both capital market frictions disappear. This limit corresponds to 

frictionless capital markets, and as such is an interesting benchmark. Based on our previous 

results, in this case b2 – b1 approaches zero (due to vanishing α) and b1 approaches zero (due 

to δ approaching infinity). Both b1 and b2 therefore converge to zero, and the optimal policy 

converges to one where the capital stock is trapped at zero indefinitely. Of course, the optimal 

policy in the limiting case does not exist, but ε-optimal policies which keep the capital stock 

(most of the time) between two barriers, set arbitrarily close to each other as well as arbitrarily 

close to zero, can be implemented. The value function in the limiting case is obtained as the 

limit of (31) when b* approaches zero, or alternatively, as a limit of (33) when b̂  approaches 

zero, and takes the affine form 

 ( ) xxV +=
ρ
µ

. 

4  Numerical illustrations 

4.1 The value of the capital issue option 

The value function (27) is the value of an optimally managed firm which has access to costly 

external capital. The value function (29) is the value of an otherwise identical firm which does 

not have access to external capital. The difference between (27) and (29) is the value of the 

option to issue new capital. 



 

Figure 2 illustrates both value functions for different values of the parameter α. The cost 

of capital injections is zero in picture (1), 0.2 in picture (2), 0.4 in picture (3), and 0.6 in 

picture (4). The maximal rate of capital injections in all pictures is equal to the volatility rate. 

The value of the option to issue new capital declines with the cost rate α. This is because the 

value (27) of the firm with the capital issue option declines with the cost rate, while the value 

of the non-optional firm does not depend on the cost rate. 

Figure 3 shows the value of the capital issue option for the cases considered in Figure 2. 

The upper picture shows the absolute value of the capital issue option, while the lower picture 

shows the value of the option as a percentage of the cum-option firm value. Concerning the 

absolute value of the capital issue option, we observe a pattern that appears to be qualitatively 

robust to variations in the parameter values. First, the capital issue option has little value 

when the capital stock is very close to zero. The volatility of a diffusion locally dominates its 

drift, and therefore capital issues which are just changes in the drift of the diffusion process 

for the capital stock, have little effect on near-term bankruptcy probability. At a reasonable 

distance from zero, however, changes in the drift rate begin to have a more significant effect 

on the near-term probability of bankruptcy, and the value of the capital issue option therefore 

increases with the initial capital level. The higher the capital stock, on the other hand, the less 

likely will be near-term bankruptcy, even in the absence of the additional drift due to capital 

issuance. The value of the capital issue option therefore peaks at an intermediate level of the 

capital stock, and then begins to decline, ultimately converging to a non-negative constant. 

Specifically, the value of the capital issue option is constant and equal to b0 – b2 when the 

capital stock is above b0, which is obtained through subtracting (29) from (27). This value is 

non-negative since the barrier b2 in the general model may never exceed the barrier b0 in the 

model without capital issues. This result highlights the fact that the value of the capital issue 

option derives from the ability to advance dividend payments, i.e. to reduce the barrier b2 

relative to the barrier b0. 

The lower part of Figure 3 shows that the value of the capital issue option, as a proportion 

of the cum-option firm value, declines monotonically with respect to the capital stock. We see 

that the option to issue new capital can more than double the firm value when the capital 

stock is low and the cost rate α is not prohibitively high. As the capital stock increases 

without bound, on the other hand, the proportional value of the option converges to zero. This 

is because the absolute value of the option converges to a finite constant (as discussed above) 



 

while the value of the firm is unbounded. The proportional value of the option when the 

capital stock is at the dividend barrier b2 measures the value of the capital issue option for an 

optimally capitalized firm. At this point the value of the optional firm is ρµ , while the value 

of the non-optional firm is obtained by evaluating (29) at b2. In the cases α = 0.0 and α = 0.2 

in Figure 3, the corresponding value of the option is 16% and 7%, respectively. These 

percentages represent the portion of firm value attributable to the flexibility to issue new 

capital, for a firm which is optimally capitalized (capital stock equals the dividend barrier). 

4.2  Sensitivity of b1 and b2 to capital market imperfections 

We have shown in the previous section that the optimal policy is to issue capital at the 

maximal admissible rate when the capital stock is below b1, and to pay dividends so as to 

prevent capital stock from rising above b2. The barriers b1 and b2 depend on the magnitude of 

the capital market imperfections described by the parameters α and δ. Here we illustrate this 

dependence. 

Figure 4 shows b1 and b2 as a function of the cost rate α. For a given δ, b2 – b1 is an 

increasing function of α (Lemma 2). Moreover, b2 – b1 does not depend on δ, so that changing 

δ either increases or decreases b1 and b2 by equal amounts, given a fixed α. When α 

approaches its critical value defined in (21) from below, b1 approaches 0 and b2 approaches 

b0. It is noteworthy that α̂  is the smallest value of α at which b1 equals 0, and also the 

smallest value of α at which b2 equals b0. 

The most surprising aspect of Figure 4 is the fact that b1 may sometimes increase with α. 

In particular, when δ is relatively high, such as the case where δ = 30, there is a region of α-

values over which b1 is increasing. There are two counteracting effects which play a role here. 

On one hand, a larger α makes capital issues more expensive, suggesting that the capital issue 

barrier b1 should be lowered. On the other hand, a larger α means that the net rate of capital 

issuance δ(1-α) is reduced, suggesting an increase in b1. It turns out that for relatively low 

values of δ, the former effect dominates, while for high δ the latter effect may dominate, 

which is what we observe in Figure 4. 

The capital issue barrier b1 is non-increasing with respect to δ in all the cases considered 

in Figure 4, although we have not proven this in general. A higher δ allows the firm to wait 



 

longer before initiating capital issues. As δ converges to infinity, the capital issuance barrier 

b1 converges to zero, and the dividend barrier b2 converges to the positive value solving (19). 

This limiting case has been analyzed in Proposition 3. 

4.3  Comparison of capital issues with temporary risk reductions 

In this section we compare the value of capital issues with the value of temporary risk 

reductions, which have been analyzed by Hojgaard and Taksar (HT) (1999). Their basic 

model is the same as in this paper, but instead of capital issues, HT allow the firm to reduce 

the volatility of its cash flow, in which case the drift of the cash flow is reduced 

proportionally. The controlled capital stock in their model evolves according to 

 tttt
Da

t dDdWadtadX −+= σµ, , 

where the coefficient of risk reduction a is allowed to take values in the interval [0, 1]. The 

optimal risk reduction policy in the HT model is the following: for x ∈  [0, u1], 
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and for x > u1, a(x) = 1 , where 
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The dividend policy is the same form of barrier policy as in our model, so that every excess 

above boundary u2 is distributed away instantly, where the boundary u2 is given by 
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The value function in the HT model, using our notation, is 



 

 ( ) ( ) ( )

( )














≥−+

<<+

≤≤








= −− −+

22

212221

1
1

2

2222

0
2

uxux

uxueAeA

ux
u

x

xV uxduxd

ρ
µ

σ
λµ

γ

,    (35) 

where A21 and A22 are as defined in (17) and (18). 

Figure 5 plots three value functions: i) the value function of the basic model in the 

absence of risk reductions and capital injections (dotted line), given in (29); ii) the HT value 

function in the presence of risk reductions (broken line), given in (35); iii) the value function 

with capital injections (solid line), given in (27). The option to issue new capital or to reduce 

risk cannot reduce firm value, so that the value functions associated with these alternatives 

dominate the value function of the basic model. Moreover, we observe from Figure 5 that in 

general, neither of the two risk management techniques is superior to each other in terms of 

their effects on firm value. When the maximal rate of capital issuance is low, such as in 

pictures (1) and (3), the value of risk reductions exceeds that of capital issues, irrespective of 

the level of the capital stock. This outcome changes, however, when the maximal rate of 

capital issuance increases. In pictures (2) and (4) new capital may be obtained at a rate that is 

three times the asset volatility rate. Here the value of risk reductions dominates the value of 

capital issues at low capital levels, but at higher levels of the capital stock the situation is 

reversed. It is intuitively clear that risk reductions are relatively most valuable at very low 

levels of the capital stock. This is because the volatility of a diffusion locally dominates its 

drift, and bankruptcy can only be avoided if the diffusion can be turned off. Capital issues 

only control for the drift of the diffusion, and therefore cannot completely eliminate the 

possibility of bankruptcy, given bounded drift rates. Risk reductions, on the contrary, under 

certain conditions are able to completely eliminate bankruptcies (bankruptcy under the 

optimally controlled cash flow process then becomes a zero probability event). 

The probability of bankruptcy under optimal policies can be analyzed with the help of the 

scale function associated with the controlled diffusion. Karlin and Taylor (1981) show that the 

probability of bankruptcy in finite time is zero if the scale function of the diffusion, which in 

the context of our model is defined by 
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takes an infinite value for some x > 0. Hojgaard and Taksar (1999), based on this result, show 

that in their model the probability of bankruptcy in finite time is zero whenever 

 ρ
σ
µ >

2

2

2
. 

It is easy to show that in the model of this paper the scale function is finite for all positive x. 

The controlled capital stock is reflected at a finite barrier b2, has a bounded drift, and a 

volatility coefficient bounded from below. It is well known (and can be shown using the 

methods in Karlin and Taylor, 1981) that under the these conditions the probability of 

bankruptcy in finite time equals 1. 

We finally look at how the dividend barrier in the model with capital issues is related to 

the dividend barrier in the model with risk reductions. Figure 6 provides a comparison of the 

dividend barriers in the three models. The dividend barrier b0 in the basic model is an upper 

bound on the dividend barriers in the models with capital issues and risk reductions. We 

observe that the dividend barrier with risk reductions, u2, is approximately 10% lower than b0. 

These barriers do not depend on α or δ, while the dividend barrier with capital issues b2 is a 

function of both α and δ. As δ increases and α is below its critical value, b2 falls. When α is 

sufficiently low, b2 ultimately (for sufficiently high δ) falls below the barrier u2. The lower is 

α, the lower is the value of δ at which b2 intersects u2. When α is close to the critical value α̂ , 

however, b2 does not fall below u2 even though δ approaches infinity. This is because b2 – b1 

does not depend on δ and will exceed u2 when α is sufficiently close to α̂ . 

5  Extensions 

5.1  Direct bankruptcy costs 

The model in this paper embeds an indirect or opportunity cost of bankruptcy. This is the 

value lost due to irreversible discontinuation of operations which are fundamentally profitable 

on average. We can add direct bankruptcy costs to the model with little added difficulty. Let 

us assume that a positive cost K is incurred upon bankruptcy. The problem structure then 



 

remains unchanged, with the exception that the boundary condition upon bankruptcy, V(0) = 

0, is replaced by V(0) = -K. This affects b1 through condition (26), but the condition (19) 

determining b2 - b1 remains unchanged. It is easy to show that b1 is non-decreasing with 

respect to K, which is in line with immediate intuition. 

5.2 Different capital market imperfections 

The proportional cost and the bounded rate of capital issuance may be replaced with 

alternative capital market imperfections. One alternative set of assumptions, consisting of a 

fixed cost of capital issuance and a delay in implementing the capital issue, is analyzed in 

Peura and Keppo (2002). 



 

Appendix A 

We present here a model with stationary growth in time, and show how this model, through a 

simple normalization, reduces to the model presented in Section 2. In the extended model, the 

scale of the cumulative profit flow grows at a constant (risk free) rate in time, 

t
rtrt

t dWedteYd σµ +=ˆ ,                 (A1) 

where { }0: ≥tWt  is a standard Wiener process. The parameters µ and σ and the riskless rate r 

are positive constants. 

As in the model of Section 2, a dividend-capital raising policy is a two-dimensional 

stochastic process ( )SD ˆ,ˆ , where tD̂  is the cumulative amount of dividends paid up to time t, 

and tŜ  is the cumulative amount of new capital raised up to time t. We denote by Π̂  the set 

of policies ( )SD ˆ,ˆ  which are non-decreasing right-continuous processes, adapted to Ft, satisfy 

0ˆˆ
00 ======== −−−−−−−− SD , and where tŜ  satisfies 

∫=
t

ut dusS
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ˆˆ ,    rt
t es δ≤≤ ˆ0  for all t. 

This implies that the upper bound on the capital issue rate also grows at the risk free rate. The 

firm’s capital stock as a function of policy ( )SD ˆ,ˆ  is denoted SD
tX

ˆ,ˆˆ  and evolves according to 

( ) ttt
SD

t
SD

t SdDddYdtXrXd ˆ1ˆˆˆ ˆ,ˆˆ,ˆ α−+−+= − .                (A2) 

The capital stock itself in this model earns the riskfree rate. The dynamics for the capital stock 

in (A2) is neither time nor state homogenous. The initial stock of capital 0X̂  is assumed to be 

non-negative and is generically denoted by x. 

The firm operates until the capital stock for the first time hits zero, i.e. until the stopping 

time 

{ }0ˆ:0infˆ
ˆ,ˆ

ˆ,ˆ ≤≥= SD
tSD

Xtτ , 



 

where X evolves according to (2). 

The firm value under policy ( )SD ˆ,ˆ , given an initial capital stock x, is the expected 

discounted present value of dividends less new capital issues until default time 

( ) ( ) ( )∫
−

+− −=
SD
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tr
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ˆ,ˆ
ˆˆˆ

τ
ρ .                 (A3) 

where ρ is a positive excess required return on equity, over the risk free rate (we note that 

here the discount rate is different from that in the model of Section 2). The value function of 

the problem is defined by 

( ) ( )xVxV
SD

SD
ˆ,ˆ

ˆˆ,ˆ

ˆsupˆ
Π∈

= ,                   (A4) 

and corresponds to the value of an optimally managed firm. 

We now show how the model defined by (A1-A4) can be reduced to (1-4). In the context 

of the model (A1-A4), we define the normalized capital stock Xt as 

 rt
tt eXX −= ˆ .                    (A5) 

Also for each policy ( )SD ˆ,ˆ  in Π̂ , we define the corresponding normalized policy ( )SD,  by 
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We observe from (A6) and the definitions of Π̂  and Π  that if ( ) Π∈ ˆˆ,ˆ SD  then ( ) Π∈SD, , 

where ( )SD,  has been obtained from ( )SD ˆ,ˆ  through (A6). 

Now applying Ito’s formula to (A5), using (A1), (A2) and (A6), yields 
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where ( )SD,  has been obtained from ( )SD ˆ,ˆ  through (A6). We also have that xXX ======== 00
ˆ . 

Given (A6), the default times satisfy 
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Therefore for any ( )SD ˆ,ˆ  ∈  Π̂ , we can rewrite (A3) as 
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which shows that the value of the objective (A3) in the extended problem, equals the value of 

the objective (3) in the original problem, once the policy ( )SD ˆ,ˆ  has been transformed through 

(A6) into a corresponding normalized policy. Now because ( ) Π∈ ˆˆ,ˆ SD  implies ( ) Π∈SD, , 

we have from (A8) that 

( ) ( ) ( ) ( )xVxVxVxV SD
SD

SD
SD
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,
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ˆ,ˆ
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Moreover, we can reverse the reasoning in (A6) and for each normalized policy ( )SD,  in Π  

define the corresponding policy ( ) Π∈ ˆˆ,ˆ SD  by 

 ∫=
t

u
ru

t dDeD
0

ˆ , ∫=
t

u
ru

t dSeS
0

ˆ ,  for all t ≥ 0.            (A10) 

Then performing the analogous but reverse steps to (A7) and (A8) gives a reverse inequality 

to (A9). This makes it clear that ( ) ( )xVxV ˆ= , where ( )xV  is defined by (4) and ( )xV̂  is 

defined by (A4). Therefore solving of the time-homogenous constant scale problem (4) also 

yields a solution to the time-dependent problem with constant returns to capital, (A4). 
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Figure 1. The critical value of αααα 

The vertical axis is the critical value of α given by formula (21). Fixed parameter value ρ  = 

0.1. α̂  does not depend on δ. 
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Figure 2. Firm value with (solid line) and without (dotted line) the capital issue option 

Horizontal axis: initial capital stock x. Vertical axis: firm value. Fixed parameter values: µ = 

1, σ  = 2, ρ = 0.1, δ = 2. Variable problem parameter: α = 0.0 in (1), 0.2 in (2), 0.4 in (3), and 

0.6 in (4). 
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Figure 3. The value of the capital issue option 

The upper picture shows the absolute value of the option, the lower picture shows the value of 

the option as a percentage of the (cum-option) firm value. Fixed parameter values: µ = 1, σ  = 

2, ρ = 0.1, δ = 2. Given these parameters, b0 equals 5.74. 
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Figure 4. b1 and b2 as a function of αααα 

The picture shows the optimal b1 and b2 as a function of α, for given values of δ (legend). 

Fixed parameter values: µ = 1, σ  = 2, ρ = 0.1. The critical α given by formula (21) is 0.76. At 

the critical α, b1 equals 0, and b2 equals the dividend barrier b0, 5.74. 
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Figure 5. Firm value with the capital issue option (solid line), with the risk reduction 

option (broken line), and without the options (dotted line) 

Horizontal axis: initial capital stock x. Vertical axis: firm value. Fixed parameter values: µ = 

1, ρ = 0.1, α = 0.2. Variable parameters: σ  = 1 in (1) and (2), σ  = 2 in (3) and (4); δ = 1 in 

(1) and (3), δ = 3 in (2) and (4). 
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Figure 6. Comparison of dividend payment barriers 

The dotted lines are the optimal dividend payment barriers b2 as a function of the maximal 

capital injection rate δ (horizontal axis), at three different values of α (legend). The thin solid 

line is the dividend payment barrier b0 (28), in the basic model with no capital issuance or risk 

reduction option, and the thick solid line is the dividend barrier u2 (34) in the model of 

Hojgaard and Taksar (1999) with risk reductions. Fixed parameter values: µ = 1, σ  = 2, ρ = 

0.1. 
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Essay 2: Optimal bank capital with costly recapitalization 

Joint work with Jussi Keppo* 

 

Abstract 

We study optimal bank capital holdings in a dynamic setting where the bank has 
access to external capital, but this access is subject to a fixed cost and a delay. Our 
model indicates that a recapitalization option may be valuable despite substantial 
fixed costs, and that a significant fraction of the value of low capitalized banks 
may be attributable to the option to recapitalize. When calibrated to data on actual 
bank returns, the model yields capital ratios that are significantly lower than 
actual bank capital ratios. This shortfall is, at least partly, explained by the 
skewness of the distribution of actual bank returns and by the banks’ accounting 
options for the provisioning of credit losses. We operate the model with implied 
bank return volatilities, in the same way as Black-Scholes model is used in 
practice. Analysis of the limiting cases where the capital market imperfections 
vanish reveals that the capital issue delay rather than the fixed cost determines the 
qualitative nature of the solution. 

 

Keywords: bank capital, dividends, capital issues, fixed cost, delay 

JEL classification: G32, G35 

 

1 Introduction 

A general risk management lesson from models with frictions is that, in the absence of 

explicit risk management tools such as financial derivatives, firms may choose to hold buffer 

stocks of liquid assets and capital as hedges against liquidity and earnings risks. The argument 

for the buffer stock role of liquid assets has been theoretically presented and empirically 

verified by e.g. Kim et al. (1998) and Opler et al. (1999), who find that firm liquid asset 

holdings are positively related to cash flow risks. The buffer stock role of equity capital, on 

the other hand, is supported by many empirical studies on capital structure (e.g. Harris and 
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Raviv, 1990, Booth et al., 2001, and Titman and Wessels, 1988), who find that firm leverage 

is negatively related to earnings volatility. In other words, we observe risk management 

considerations to influence both corporate investment decisions and corporate financing 

decisions1. 

In banks the capital structure decision is in its very essence a risk management decision. 

Capital2 in banks is not predominantly a form of financing, but a buffer against asset risks 

which is needed to ensure the stability of the callable deposit based banking system. Banks 

rely on high leverage to achieve high equity returns, and operate subject to an explicit 

minimum capital requirement. As Froot and Stein (1998) have demonstrated, a bank investing 

in illiquid products may adjust its capital structure in order to accommodate the illiquid risks 

it chooses to bear. Data on banks confirms that they do hold buffer stocks of capital in excess 

of their minimum requirements: in the US, commercial banks' median total capital ratio was 

12.1% in 2001, and the median total capital ratio of even the largest banks (those with capital 

in excess of 3 m$) was over 11% (figures based on Bankscope data). The minimum 

requirement imposed by the Basel Accord is 8%, implying that the median bank capital buffer 

among US commercial banks is in excess of 4%. A qualitative explanation for banks' capital 

holdings could be based on the illiquidity of their asset risks and on some imperfections in 

their capital raising transactions. There are several models in the banking literature which can 

deliver predictions on buffer holdings of capital (a review of these models is given below). 

Yet what appears to be missing from the literature is a calibration of a model of this type to 

data on actual bank returns and risks, and a comparison of the model predictions against 

actual bank capital holdings. In this paper we develop a model of a capital constrained bank 

and perform such calibration. 

Our model of a capital regulated bank is an extension of the Milne and Robertson (1996) 

model of firm dividend policies under the threat of liquidation. In our model, bank equity 

holders optimize over dividend and equity issuance policies in order to maximize the present 

value of net distributions from the bank. Capital regulation is characterized by a strict 

                                               

1  By now there is a large literature on the interactions between financing, investment, and risk management in 
the presence of capital market frictions (e.g. Acharya et al., 2000, Froot et al., 1993, Froot and Stein, 1998, 
Leland, 1998, Mello and Parsons, 2000). 
2 Consistent with common bank parlance, our use of the term bank capital refers to banks' book equity. This is 
the relevant measure of capital in an analysis of bank capital adequacy since minimum capital requirements 
under the Basel Accord apply to book equity.   



 

minimum capital requirement, the violation of which results in liquidation and loss of 

continuing value. The bank portfolio is completely illiquid and is of constant size (an 

assumption of constant scale). Because the bank may finance its assets using zero cost 

(insured) deposits, any capital held in the bank carries an opportunity cost. Optimal capital 

level is determined from the trade-off between the opportunity cost of holding capital and the 

expected deadweight costs from liquidation. The bank has access to external (equity) capital, 

but this access is subject to a fixed cost3 and a delay. These capital market imperfections 

influence the level of optimal bank capital. 

The optimal policies in our model are of the barrier control type. Unless the fixed cost or 

the delay in capital issues are too high, there is a positive barrier u1 such that capital issues are 

ordered at the first time the capital buffer is at or below u1. If the bank has not been liquidated 

by the end of the delay, the owners pay the fixed cost K and raise new capital to the amount 

that makes aggregate capital buffer equal to a barrier u2, which is strictly above u1. When 

capital is between u1 and u2, the bank neither pays dividends nor raises additional capital. 

Above the barrier u2, the bank distributes dividends at maximum admissible rate, which in our 

model is assumed infinite, effectively preventing the capital buffer from rising above u2. Both 

the barriers u1 and u2 are sensitive to the degree of capital market imperfections. 

We also solve the limiting cases of our model as the capital market imperfections vanish. 

When the capital issue delay equals zero, an optimal policy does not exist, but we derive the 

limiting value function. When the fixed cost from capital issues converges towards zero, the 

optimal policy does not converge to a degenerate limit, and the optimal policy exists even in 

the limiting case when the fixed cost equals zero. These results imply that the delay in capital 

issues, rather than the fixed cost, determines the qualitative nature of the solution. Moreover, 

as either the fixed cost or the delay are sufficiently high, optimal policies do not involve 

capital issues and our model reduces to the Milne and Robertson model without the capital 

issue option. 

The defining properties of the Milne and Robertson (1996) model (also analyzed in 

Asmussen and Taksar, 1997) are the assumption of constant scale in banking activities and 

                                               

3 The cost of raising capital is likely to be positively related to the amount of capital raised. In section 5.4 of this 
paper we show how to determine the fixed cost as a function of the other model parameters so as to give a 
desired expected cost rate in capital issuance.  



 

the objective function which is the present value of dividend distributions. We extend the 

model by allowing for equity issues, and redefining the objective function as the present value 

of net distributions. Endogenous determination of bank capital has also been studied using 

other variants of the same basic model. A closely related paper to ours is Milne and Whalley 

(2001), where the basic model is extended with Poisson distributed bank capital audits and a 

fixed cost of recapitalization. In their model, a forced liquidation following bank capital 

violation is replaced by an option to recapitalize, given an observed violation in a randomly 

occurring audit. Hojgaard and Taksar (1999) have extended the basic model into an insurance 

company setting by assuming that risk reduction at a proportional cost is available, which is 

interpreted as cheap reinsurance. Finally, Peura (2002) has analyzed the effects of an equity 

issuance option which is subject to a proportional cost, and an upper bound on the rate at 

which external capital can be raised. 

Each of the models listed above predicts that some amount of buffer capital will be 

optimally held. The models also demonstrate that buffer capital will be the lower, the more 

effective hedging mechanisms are available or the less expensive is external recapitalization. 

In fact, optimal capital holdings are the highest in the basic model where no risk reduction or 

recapitalization options are present, and each of the ‘variants’ will predict lower capital levels. 

Yet none of the papers has tested this class of models’ ability to explain empirically observed 

bank capital levels. In this paper we perform a simple calibration of our model (and as its 

special case the basic model of Milne and Robertson) to empirical data on bank returns, and 

compare the resulting model capital ratios against observed bank capital ratios. Our findings, 

stated briefly, indicate that this class of models does not generate sufficiently high capital 

buffers when calibrated with the empirically observed volatilities of bank returns. The models 

are able to generate capital ratios of the correct size when volatility is roughly tripled from its 

empirically observed value. This need for volatility adjustment is partly due to the fact that 

accounting based estimates of bank return volatility are likely to be downward biased because 

of banks’ income smoothing options (most notably, the provisioning for expected losses). 

Some part of this adjustment is also explained by the skew distribution of bank portfolio 

returns. Actual bank capitalization is likely to reflect the potential for large losses that banks 

may experience during severe economic downturns, while our model assumes normally 

distributed asset returns. Our dataset from 1994-2001 indicates that there is negative skewness 

in banks’ accounting returns, despite the fact that banks’ provisioning policies are likely to 



 

reduce the negative skewness inherent in banks’ portfolio returns. Due to this model error, we 

operate our model with implied bank return volatilities, which are chosen so as to replicate 

observed bank capital levels. This is analogous to how the Black-Scholes model is used in 

practise. Our model yields simple quasi-analytic solutions for optimal policies, and can be 

used to study the effects of the capital market imperfections on optimal capital raising and 

dividend policies. The model also provides a decomposition of the value of a bank into the 

value of the capital raising option and the value of a non-optional bank. We illustrate these 

issues in section 5. 

The variants of the Milne and Robertson (1996) model are formulated in continuous time, 

and rely on stochastic and singular control techniques to obtain optimal policies. The 

determination of bank capital has also been studied in discrete time by Estrella (2001) and 

Furfine (2000). Estrella (2001) uses a variant of the classical inventory or cash management 

models (see e.g. Karlin and Taylor, 1981, pp. 211-212 for the classical cash inventory model). 

In his model, the objective is to minimize the combined costs from over- and 

undercapitalization, as well as from adjustment of capital. In Furfine (2000), the objective is 

the present value of net distributions, net of any adjustment costs. His model is therefore a 

combination of the inventory theoretic analysis of Estrella (2001) and the present value of 

dividends optimizing approach on which the variants of the Milne and Robertson (1996) 

model are based on. Furfine also performs a calibration of his model to panel data on bank 

capital and profitability, but does not explicitly analyze the absolute capital levels generated 

by his calibrated model. 

Methodologically, our paper is distinguished by the joint presence of an implementation 

delay and a fixed cost.  Both of these frictions have been analyzed in several contexts in the 

corporate finance literature. Fixed costs from transacting have been analyzed e.g. in the 

classical inventory control literature, in the literature on optimal portfolio choice with 

transaction costs (see e.g. Eastham and Hastings, 1988, Korn, 1998, Morton and Pliska, 

1995), and in connection to risky debt valuation by Fan and Sundaresan (2000). Fixed costs 

lead to impulse controls, i.e. controls that change state variables in discrete magnitudes and 

are applied at discrete stopping times. Impulse control techniques have been elaborated in 

books by Bensoussan and Lions (1982) and Fleming and Soner (1993). The effects of delays 

in implementing impulse controls within continuous time models have been analyzed e.g. by 

Bar-Ilan and Strange (1996) and Alvarez and Keppo (2001) in connection with exercising of 



 

real investment options, and by Subramanian and Jarrow (2001) in connection with optimal 

liquidation. 

The rest of the paper is organized as follows. Section 2 presents our model. The solution 

is characterized in terms of a set of quasi-variational inequalities in Section 3. Optimal 

policies and the value function are derived in section 4. Model parameters are calibrated, and 

results based on the calibrated parameter values are presented in section 5. Section 6 derives 

the probability of default of an optimally managed bank, and Section 7 concludes with a 

number of remarks concerning the extendability of the model presented here. 

2 The model 

We imagine a bank with a fixed portfolio of non-tradable assets. In order to simplify the 

empirical implementation of the model, we normalize the asset size so that the portfolio’s 

regulatory risk weighted assets (RWA) are equal to unity4. The state variable in the model is 

the bank’s (book) capital stock, which is denoted Xt. Since the bank’s risk weighted assets are 

normalized to one, Xt is also the bank’s regulatory capital ratio. Bank capital is driven by 

profits and losses, and in the absence of controls evolves according to  

tt dWdtdX σµ += ,         (1) 

where { }0: ≥tWt  is a standard Wiener process, and µ and σ are constant drift and diffusion 

coefficients, which are both assumed to be positive. We assume that the initial capital stock, 

X0, is nonnegative and generically denoted by x. We also denote the standard filtration 

generated by the Wiener process { }0: ≥tWt  as { }0: ≥tFt . 

Given our normalization RWA = 1, we can interpret µ as the bank’s expected return on 

(risk weighted) assets, and σ as the volatility of the bank’s return on (risk weighted) assets. 

That neither µ nor σ depend on the level of bank capital is due to the fact the bank’s deposits 

                                               

4 Risk weighted assets, under the current Basel Accord from 1988, are calculated as a weighted sum of the 
banks’ nominal exposures, where the weigths depends on product type and counterparty sector. For large banks, 
risk weighted assets are typically between 65 and 70 percent of total assets. Capital ratio is book equity divided 
by risk weighted assets. 



 

are assumed to be insured and zero cost (this assumption is motivated in Milne and Whalley, 

2001). 

The bank’s owners control the bank capital ratio through dividend payments and issues of 

new capital. Formally, a control policy π is a collection { }( )πππ
ii stL ,, , where πL  is a non-

decreasing process representing the cumulative amount of dividends paid under policy π, { }π
it  

is an increasing sequence of order times of new capital issues, and { }π
is  are the amounts of 

capital raised at each issue of capital. We assume that π
tL  is a non-decreasing right-continuous 

process adapted to Ft such that 00 =−
πL , that each π

it  is a stopping time of the filtration Ft, 

and that each π
is is measurable with respect to ( )−∆+π

it
F . Additionally, admissible controls 

satisfy 

11 ≥∆≥−+ i all for  tt ii
ππ ,        (2i) 

 ( ] 1,,0 ≥∆+∈= i  ttt all fordL iit
π .       (2ii) 

The positive parameter ∆ is the length of the delay associated with a capital issue. When a 

capital issue is ordered at time ti, the capital can be raised at time ti + ∆. The measurability of 

si with respect to ( )−∆+it
F  means that the owners may decide on the actual amount of capital to 

be raised at time ti + ∆ based on all then available information, i.e. they do not need to 

precommit to any quantity of capital at time ti when they order the capital issue. Condition 

(2i) states that a new issue may not be ordered while a previously ordered issue is still waiting 

to be completed. Condition (2ii) states that dividends may not be paid during the periods 

between the ordering of a capital issue and the actual capital collection. The condition has 

important technical merit, but also has an economic justification, in that ruling out dividend 

payments while a capital issue is under preparation is likely to make the issue more easily 

marketable, and to help reduce conflicts of incentives between existing and new equity 

holders. We do not analyze the division of bank value between existing and new equity 

holders, so the potential incentive conflicts are not explicitly present in our model. We simply 

think of constraint (2ii) as a restriction set by the capital markets. 



 

The class of admissible policies satisfying the restrictions in (2) is denoted Π. The 

conditions (2i) and (2ii) together ensure that the capital stock remains uncontrolled during the 

waiting periods following each order of a new capital issue, and will be solely driven by the 

diffusion (1). The fact that the diffusion remains uncontrolled during the waiting periods is 

essential for the tractability of the solution. 

The capital stock, as a function of policy π, is denoted π
tX , and can be expressed in 

integral form as 

{ }∑ ≤∆+Ι+−++=
i

ttittt
i

sLWtxX π
πππ σµ ,      (3) 

where I{⋅} is the indicator function of the event defined in the parenthesis. Dividend payments 

represent a leakage from the capital stock, while new issues feed to the capital stock. 

The minimum capital requirement under the current Basel Accord states that bank capital 

ratio Xt must at all times exceed 8%. In this paper we assume that the corrective action from 

violation of the minimum capital requirement will be liquidation5. The model bank therefore 

only operates up to the liquidation time 

{ }%8:inf ≤= π
πτ tXt , 

where X evolves according to (3). However, because the capital dynamics in (1) is 

independent of the level of capital, we can without loss of generality reinterpret the state 

variable Xt as the capital ratio in excess of the minimum capital requirement, or the bank’s 

capital buffer. The time of liquidation is then defined as 

 { }0:inf ≤= π
πτ tXt .         (4) 

The value of bank under policy π to its owners, given initial level of capital x, is the 

expected discounted present value of dividends less capital issues until liquidation 

                                               

5 In practice, violation of the minimum capital requirement may not lead to immediate liquidation, but will 
generate additional costs to the bank due to increased regulatory monitoring. Also the bank's competitive 
position is likely to be affected. Therefore the bank's owners are likely to lose a significant amount of the bank's 
economic rent, while our model assumes that all of the economic rent is lost. 
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where ρ is a positive rate used to discount future periodic cash flows (and determines the size 

of the opportunity cost from holding of buffer capital), and K is a positive constant 

representing the fixed costs from a capital issue. The integral in (5) is considered from 0- to 

τπ, and hence includes the possible initial dividend payment ππ
−− 00 LL , where we take 

00 =−
πL . The value function of the problem is the value of an optimally managed bank 

( ) ( )xVxV π
π Π∈

= sup .         (6) 

The problem is to identify V(x) and, if one exists, an admissible policy ∗π  such that 

( ) ( )xVxV *π=  for all x > 0. The problem has five parameters in total. Of these, µ and σ 

characterize bank returns, ρ is the discount rate (opportunity cost) associated with bank 

capital, and ∆ and K determine the magnitude of the capital market imperfections. 

3 Characterization of optimum 

The model is time-homogenous outside the order periods, in which case the current capital 

stock is sufficient as a state variable. We will characterize the value function to the problem 

through a set of quasi-variational inequalities. For this purpose, we define the following 

auxiliary operators. 

Let D be the set of real-valued functions on R+. We define the operator M:D → D by 

 ( ) ( )[ ] { } 




 Ι−−+= ∆>∆
∆−

0
sup τ

ρ KssXfeExMf
s

x      (7) 

for all x ≥ 0 and f ∈  D, where X∆ is the value at time ∆ of X defined in (1), τ0 is the first hitting 

time of 0 of X defined in (1), and the expectation is conditioned on X0 = x. Mf(x) is the 

expected discounted value of the decision to order new capital when the capital stock is x, 

given that the ‘continuing value’ of the problem is f. If f is continuous and concave and such 



 

that ( ){ } ∞<=≥= 1':0inf2 xfxu , the maximizing s satisfies 1)(' =+ ∗
∆ sXf . In terms of u2, 

this is ∆
∗ −= Xus 2 . 

Also we define the infinitesimal generator A associated with the process (1) by 

 ( ) ( ) ( )xfxfxAf '''
2

1 2 µσ += ,        (8) 

for all x > 0 and sufficiently regular f. Then, the following characterization of optimum can be 

established using standard arguments (see e.g. Hojgaard and Taksar, 1999, or Fleming and 

Soner, 1993). 

Proposition 1. Assume that the value function (6) satisfies Ito’s formula. Then it satisfies the 

following set of inequalities: 

i) ( ) 00 =V  

ii) MVV ≥  

iii) ( ) 0≤− VA ρ          (9) 

iv) 1'≥V  

v) ( )( ) ( ) 01' =−−− VVAMVV ρ . 

(9) is a system of quasi-variational inequalities, which are the first order conditions to our 

problem and follow from standard dynamic programming arguments applied to the Bellman 

equation. The first equation follows from 0 being an absorbing state in our model. Inequality 

(9ii) holds for all x since the value of immediate order of new capital can never exceed the 

value function by definition of the value function. (9iii) holds since applying no control to the 

capital stock is always an admissible policy. (9iv) must hold for all x since paying dividends 

is an admissible policy. (9v) states that in an optimum, one of the inequalities must be tight. 

That is, for all x either taking no action or taking some of the admissible actions must always 

represent the optimal policy. 

In Proposition 1, we are not assuming that the value function is twice continuously 

differentiable everywhere. It is well known that the second derivative of a value function in 

general exhibits a discontinuity at the boundary of the region where impulse control actions 



 

are optimal (see Dumas, 1991). This does not prevent Ito's formula from applying, but the 

differential generator in inequality (9iii) is to be interpreted in terms of left or right 

derivatives. Consequently, when we say that a function 'satisfies Ito's formula' we mean that 

the function is continuously differentiable everywhere, and twice continuously differentiable 

everywhere except at the boundary of the region where impulse control actions are optimal. 

Let f be a solution to (9) which is continuous and concave, and satisfies 

( ){ } ∞<=≥= 1':0inf2 xfxu . Then an admissible control policy ∗π  can be constructed 

recursively from f as follows: 

i) ( ) ( ){ }***
1 :0inf πππ

tt XMfXftt =≥= , 

( ) ( ){ }****
1 :inf ππππ

ttii XMfXfttt =∆+≥=+ , i ≥ 1;    (10) 

ii) ( )( )[ ] ( )
*

2
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'
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ii tts
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iii) { }** , ππ
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{ }
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*
πππ

πσµ t
i

ttitt LsWtxX
i

−Ι+++= ∑ ≤∆+  

2
* uX t ≤π   on  R+\O 

{ } 0
0

*

2
* =Ι∫

∞

<
π

π tuX
dL

t
, 

where ( )∆+∪=Ο ** , ππ
ii

i
tt  are the periods between the ordering of capital issues and actual 

capital collections. The maximum in (ii) exists by the assumptions on f. The interpretation of 

i) is that every time Mf and f coincide outside order periods, a new capital issue is ordered. ii) 

states that at every capital collection, just enough capital is raised to shift the capital stock to 

u2. According to iii), dividends are paid so as to never let the capital stock rise above u2 

outside order periods. During order periods, capital stock cannot be controlled. 

Appendix A proves the converse to Proposition 1, verifying that the set of inequalities (9) 

are sufficient conditions for the value function in our problem. 

Proposition 2. (‘verification theorem’) Let f be a concave solution to (9) which satisfies Ito’s 

formula and is such that ( ){ } ∞<=≥= 1':0inf2 xfxu . Let ∗π  be the admissible policy 



 

constructed from f according to (10). Then f coincides with the value function in (6) and ∗π  is 

the optimal policy which attains f, i.e. ( ) ( ) ( )xVxVxf ∗==
π

. 

4 Value function and optimal policies 

Constructing a concave solution to (9) requires a guess on its form, i.e. on the order of the 

'optimality regions' for each of the policies. We will make a guess that we will verify later in 

this section to be the correct one. We denote a solution to (9) by f. We assume that there are 

two boundaries 0 ≤ u1 < u2 < ∞ defined by 

 ( ) ( ){ }xMfxfxu >≥= :0inf1 ,       (11) 

 ( ){ }1':0inf2 =≥= xfxu ,        (12) 

so that f solves (9ii) with equality for x ≤ u1, f solves (9iii) with equality for x ∈  [u1, u2], and 

that f solves (9iv) with equality for x ≥ u2. Then f also solves (9i) and (9v) for all x ≥ 0. In the 

following, we denote the general solution to (9iii) by f1 and the general solution to (9iv) by f2. 

The coefficients in the general solutions, as well as the locations of the barriers u1 and u2 are 

to be found from the value matching and smooth pasting conditions at the barriers. In 

particular, based on standard results (e.g. Dumas, 1991, and Dixit, 1991) we expect f to be 

continuously differentiable at the impulse control barrier u1 and twice continuously 

differentiable at the singular control barrier u2. If we can find such a solution to (9), then by 

Proposition 2 this coincides with the value function of our model. 

Stated differently, we assume that the optimal policy is of the following form: i) for x ∈  

(0, u1], it is optimal to immediately order new capital, ii) for x ∈  (u1, u2), it is optimal neither 

to order new capital nor to pay dividends, and iii) for x ∈  [u2, ∞) it is optimal to pay 

dividends. Furthermore, we expect to have u1 < u2 and u2 finite. u1 may be 0 when the capital 

market imperfections are prohibitively high. Figure 1 illustrates the model with this form of 

solution. 

We analyze each of the three regions in turn. For x ∈  (u1, u2), (9iii) holds with equality, 

so that f satisfies 



 

 ( ) ( ) ( ) 0'''
2

1 2 =−+ xfxfxf ρµσ .       (13) 

The general solution to (13) is the exponential function 

 ( ) xdxd ececxf −+ += 11
211 ,        (14) 

 [ ]22
21 2

1 ρσµµ
σ

+±−=±d . 

As x → u2, twice continuous differentiability requires that ( ) 1' 2 =−uf  and that ( ) 0'' 2 =−uf . 

Substituting these limits into (13) gives 

 ( )
ρ
µ=2uf .          (15) 

For x > u2, we must have ( ) 1' =xf . Solving this first order differential equation with the 

boundary condition (15) yields 

 ( ) ( ) 222   , uxuxxf >−+=
ρ
µ

.        (16) 

Twice continuous differentiability at u2 is guaranteed by equating the first and second 

derivatives of (14) and (16) at u2. This determines the coefficients in (14), which then takes 

the form 

 ( ) ( ) ( )xudxud eaeaxf −−−− −+ += 2121
211 ,       (17) 
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For 0 ≤ x ≤ u1, (9ii) holds with equality, so that f is determined as the fixed point of the 

operator M defined in (7). We analyze this operator, assuming that it is applied to a concave 

function f. As noted before, the supremum within the operator is achieved by ∆
∗ −= Xus 2  

for all x > 0. Also using (15), we can simplify (7) to 

 ( ) ( ) { }[ ]∆>∆
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0τ
ρ βXEexMf x        (7') 



 

where 2uK −−= ρµβ  measures the net benefits from new issues of equity. Since β is 

deterministic, equation (7') further simplifies to 
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where { }βτ β == tXt :inf  and ( )β+∆ xyg ,;  is the density of the absorbed process 

)( βτ∧∆∆X  that starts at x + β. The first equality in (7'') is due to the spatial homogenuity of 

arithmetic Brownian motion, the second equality follows since the values of X outside the 

event defined in the indicator function do not affect the expectation, and the third equality is 

due to the fact that for the absorbed process )( βτ∧∆∆X , the event in the indicator function is 

exactly the event that the process has not been absorbed by time ∆. Using the Reflection 

Principle (see e.g. Borodin and Salminen, 1997), the density can be written as 

 ( ) ( ) ( ) ( )∆+−∆−−∆++∆=+∆ σβµϕσβµϕβ
σ
µ ,;exp,;,; 2

2 xyxyxyg x   (18) 

where ( )σµϕ ,;y  denotes the density of a normal distribution with mean µ and variance σ2, 

i.e. 
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By integrating, we get from (7'') and (18) that 
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where Φ(y) and ϕ(y) are the cumulative standard normal distribution and its density. Direct 

substitution shows that Mf(0) = 0. In general, Mf need not be increasing or concave. The 

derivatives of Mf are quite complicated expressions, and it is difficult to find necessary and 



 

sufficient conditions on the primitive problem parameters that would guarantee e.g. that Mf is 

increasing or concave. The following sufficient condition, however, proven in Appendix B, is 

very useful. 

Lemma 1. If 2uK −−= ρµβ ≥ 0, then Mf'(x) > 0 and Mf''(x) < 0 for all x. 

The importance of Lemma 1 is due to the fact that capital issues cannot be optimal policies in 

our model unless β ≥ 0. This is evident from (7') because if β < 0, we have 
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where the first inequality is due to β < 0, the second is due to (9iv), and the third is due to the 

fact that the expression after the second inequality is the value of doing nothing over the 

period [0,∆]. By Lemma 1, we know a priori that if Mf constitutes part of the solution to (9), 

that part must be concave. This enables us to show that the entire solution to (9) is concave. 

The solutions for the functions Mf, f1 and f2 in (19), (17) and (16) are in terms of the 

barrier u2. In particular, we observe from the definition of β (see (7')) and from (19) that the 

function Mf(x) depends on f only through u2. Therefore we introduce the notation M(x,u2) = 

Mf(x) and f1(x,u2) = f1(x), where Mf(x) is given by (19) and f1(x) is given by (17). The 

remaining unknowns are the barriers u1 and u2, which are to be solved from the following 

value matching and smooth pasting conditions at u1  

( ) ( )21121 ,, uufuuM =                   (20i) 
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This non-linear system of equations is quite complicated algebraically, and closed form 

solutions for u1 and u2 do not exist. Hence ultimately solutions to equation (20) have to be 

found numerically. The following lemma, proven in Appendix B, provides a sufficient 

condition under which a positive solution to (20) exists. The condition is expressed in terms 

of a positive barrier u0 defined by ( ) 0,0 01 =uf , which can be solved for 
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u0 is the dividend barrier in the model of Milne and Robertson without the capital issue 

option, and represents an upper bound on the dividend barrier in our model. 

Lemma 2. If 
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uxM
, then there exists a solution (u1,u2) to (20) 

satisfying 0 < u1 < u2 < u0 such that ( ) ( )212 ,, uxfuxMf ≤  for all 0 ≤ x ≤ u2. 

Lemma 2 states that if the derivative of the value of new capital issues at x = 0 is sufficiently 

high, then there will be a positive solution to (20), which implies that the option to issue 

capital will be optimally exercised for all x ≤ u1. Consequently, in cases where a solution to 

(20) satisfying 0 < u1 < u2 < u0 exists, we propose the following solution to (9) 
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where Mf is given by (19), f1 is given by (17) and f2 is given by (16). The boundaries u1 and u2 

are the solutions to (20). Appendix B proves the following. 

Lemma 3. Assume that a solution to (20) as described in Lemma 2 exists and that f is defined 

by (22). Then f is a concave solution to (9) and satisfies Ito's formula. 

Lemma 3 implies that formula (22) satisfies the conditions of Proposition 2, and hence 

coincides with the value function (6). The solution is also unique by the uniqueness of the 

value function. This is an indirect proof that a solution to (20) in the region 0 < u1 < u2 < u0 is 

unique. 

Figure 2 illustrates the solution in this general case. The solution f to (9) coincides with 

Mf for x < u1, with f1 for u1 < x < u2, and with f2 for x > u2. The functions Mf and f1 (f1 and f2) 

connect to each other smoothly at the barrier u1 (u2). At u1, the values and first derivatives of 

Mf and f1 coincide, but the second derivatives differ. Mf is more concave at u1 than f1, and the 

second derivative of the solution at this point experiences a discontinuity. In particular, we 

have ( ) ( ) ( ) ( )−=>=+ 11111 '''''''' ufuMfufuf . At u2, the first and the second derivatives of f1 

and f2 coincide, and the solution f at u2 therefore has a continuous second derivative. Mf, f1, 

and f2 each have continuous first and second derivatives on their entire domains of definition. 

f therefore possesses a continuous second derivative everywhere except at the point u1. 



 

When no solution to (20) in the feasible region exists, the solution to (9) reduces to a 

special case corresponding to the Milne and Robertson (1996) model without the capital issue 

option. In this case u1 equals zero, u2 equals u0 given in (21), and the value function reduces 

to (23) below. A necessary condition for this is 
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Figure 3 illustrates one such case. In this example, the fixed cost K is relatively high so that 

the benefits from new capital issues, net of their cost, are low. For sufficiently high fixed cost 

K, it is even possible that Mf has a negative right derivative at zero, in which case Mf will take 

negative values. We note that Mf need not be globally concave, either. In the following 

subsection, we will systematically analyze the various limiting cases of our model. 

4.1 Limiting cases 

In this section, we analyze the limiting cases of the model as either the cost or the delay of 

capital issues equals zero, or as either of these increases above a critical value. The limiting 

cases help to understand the comparative statistics of the general model, and show exactly 

which of the capital market imperfections drive the qualitative results from our model. 

Case I: K →→→→ ∞∞∞∞ or ∆∆∆∆ →→→→ ∞∞∞∞ 

Let V be the value function (6). When K > µ/ρ, so that β < 0, we have from (7') that 

 ( ) { }[ ] ( ) { }[ ] ( )xVXVEeXEexMV xx ≤Ι≤Ι< ∆>∆
∆−

∆>∆
∆−

00 τ
ρ

τ
ρ , 

for all x > 0, where the first inequality follows directly from (7'), the second follows from the 

fact that the value function satisfies (9iv), and the third holds because the expression after the 

second inequality is the expected value of doing nothing (taking no controls) during a period 

of length ∆. Therefore µ/ρ is an upper bound on those K under which ordering of new capital 

may be an optimal policy for some x > 0. Also, we get from (7') that 

 ( ) 0lim =
∞→∆

xMV  

uniformly in x on bounded intervals of the form [0,u0]. This implies that for sufficiently high 

∆ capital issues are also ruled out as optimal policies.  



 

As either K or ∆ are above their critical values, the optimal policies and the value 

function of our model reduce to those of the Milne and Robertson (1996) model without the 

capital issue option. The value function is obtained as a special case of (22), by setting u1 = 0 

and u2 = u0 given by (21) (this enforces (9i)). The value function takes the form 
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where d1+ and d1- are as in (14), and a1 and a2 are as in (17). 

Case II: ∆∆∆∆ = 0 

In the absence of a delay in capital raising, new capital can be issued instantaneously and 

there is perfect control on the minimum level of capital. Given the opportunity cost of capital 

in our model, it is clearly optimal to wait until the capital stock falls arbitrarily close to zero 

before issuing new capital. As zero is an absorbing boundary for the capital stock, however, 

new issues still have to be implemented before the capital stock actually hits zero. Non-

surprisingly, then, an optimal policy in the model without delays does not exist. ε-optimal 

policies however can be constructed which set the capital issue barrier arbitrarily close to 0. 

Setting ∆ equal to 0, the operator M in (7') simplifies to 

 ( ) KuxxxMV −−+=+= 2ρµβ , 

for all x > 0, where u2 is defined as in (12). Taking the limit of this operator, as we let the 

capital issue point approach zero, we obtain the boundary condition satisfied by the limiting 

value function in the ∆ = 0 case 

( ) ( )( ) ( )0,max0,limmax0 200
KuxVMV

x
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ρµ . 

This boundary condition is to replace (9i). This condition is an endogenous equation in the 

value function, unlike the original boundary condition V(0) = 0, where the right-hand side is 

exogenous. Yet the solution to this special case is considerably easier to obtain than the 

solution to the general model, and we derive this in Appendix B. The reason for the relative 

simplicity of this special case is that instead of two endogenous barriers, the solution in the 

special case ∆ = 0 only has one free barrier. The free barrier whose optimal value we now 



 

denote by û  represents both the dividend barrier, i.e. the level of the capital stock above 

which dividends are paid, and the level up to which the capital stock is replenished each time 

a new capital issue is implemented. The solution is given in the following proposition that is 

proved in Appendix B. 

Proposition 3. If K < µ/ρ - u0, where u0 is given by (21), the value function is 

 ( )
( ) ( )









≥−+

<+
=

−−−− −+

uxux

uxeaea

xV

xudxud

ˆˆ

ˆˆ
2

ˆ
1

11

ρ
µ       (24) 

where û  < u0 is the unique positive solution for u2 in the equation 
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Else, the value function and the barrier û  are identical to (23) and (21). 

We note that the parametric form of (24) is the same as that of (23), the difference being the 

location of the barriers u0 and û . As Proposition 3 shows, û  < u0 when the condition of the 

proposition holds, and in this case (24) is a left-shifted version of (23). 

We also note that if both ∆ and K are equal to 0, then (25) is solved by û  = 0. This 

limiting case represents perfect market conditions. In perfect markets, no buffer stocks of 

capital are held, and all profits are immediately paid out as dividends. When losses are 

realized, the capital to cover the losses is instantaneously raised from capital markets that 

operate frictionlessly. The controlled capital stock for the firm is a constant at zero. 

Case III: K = 0 

We can say little more about this limiting case than about the general case. The reason is that 

the limit K = 0 does not involve a degeneracy as the limit ∆ = 0 does. This is easily seen from 

the expression (7') for the operator M, where K is present in the β term. Setting K to zero does 

not influence the qualitative properties of M, and hence the solution for the case K = 0 is not 

qualitatively different from the solution in the presence of positive K. This implies that in a 

model with delays the presence of a fixed cost is not necessary to ensure the existence of 

optimum and interior solutions. We will demonstrate this further in the numerical examples 

on the behavior of the barriers u1 and u2. This is in sharp contrast to the ∆ = 0 case, where 



 

optimal policies do not exist, but where the limiting ‘unreachable’ value function reduces to a 

simpler form as compared to the general case. 

5 Calibration and numerical examples 

In this section we calibrate the model parameters to data on US banks’ asset returns, and 

analyze the model’s ability to explain the empirically observed bank capital ratios. We then 

illustrate optimal policies as functions of the capital market imperfections, and demonstrate 

how the value of the capital issue option behaves as a function of the bank capital ratio. 

Finally, we show how to interpret and determine the fixed cost K to be used in our model. 

5.1 Calibration of parameters and comparison to actual bank capital ratios 

The accounting identity that governs the evolution of bank equity is of the form 

 ttttt SDNICC ++++−−−−++++==== −−−−1 , 

where Ct is bank equity (in excess of the minimum capital requirement) at time t, NIt is net 

income over period t, Dt is dividends over period t, and St is equity issuance over period t. The 

state variable in our model, Xt, is defined as the bank’s capital ratio (in excess of the minimum 

requirement 8%), so that the relationship between Ct and Xt is 
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Our model assumes that the bank has constant risk weighted assets, so that a discrete version 

of the model capital dynamics (3), expressed in terms of accounting variables, becomes 
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This expression and equation (3) suggest that we should interpret the model parameters µ and 

σ in terms of accounting data as 
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where SD denotes standard deviation. For the estimation, we use annual Bankscope data on 

US commercial banks over the period 1994-2001. The total sample contains 276 banks whose 

2001 total assets exceed 1 billion USD. For each bank, we calculate the time-series average of 

the net income to risk-weighted asset ratio, over the sample period, and the standard deviation 

of that ratio. Then we take as an estimate of µ the median of the time-series averages across 

all banks, and as an estimate of σ the median of the volatilities across all banks. We take 

medians rather than means since we think that medians better describe the typical bank in the 

data set that includes a small number of banks with exceptionally high mean returns. The 

resulting estimate for µ is 2.0%, implying that the median US bank’s return on risk-weighted 

assets has averaged 2.0% over the 1994-2001 period. The estimate of σ from the data is 

0.5%6. 

The parameter ρ may be interpreted as the margin between the bank’s cost of equity and 

its deposits. Alternatively, ρ may be interpreted as the earnings-to-price ratio of an optimally 

capitalized bank within our model, i.e. one whose capital ratio is equal to the dividend barrier 

u2. This follows from (15) which states that the value of the bank (i.e. its market 

capitalization) in our model is equal to µ/ρ when the capital ratio is at u2. We use this 

interpretation to fix the parameter ρ. In particular, we set ρ equal to 1/15, consistent with a 

price-to-earnings ratio of 15 for an optimally capitalized bank in our dataset. 

The median total capital ratio over the US commercial banks in the Bankscope data is 

12.4%. This is the median of the time-series averages of the individual banks’ capital ratios 

over the 1994-2001 period, and we use it as our estimate. The variation in the capital ratios 

across years is moderate, in that the median capital ratio varies between 11.6% and 12.6% 

during the period 1994-2001. We are interested in comparing the observed capital ratio to the 

corresponding prediction from our model. We interpret the dividend barrier u2 in our model as 

the target level of buffer capital7, and will compare this barrier to the observed average bank 

capital buffer, which is 12.4% - 8% = 4.4%. Our main comparison is based on Figure 4, 

                                               

6 Had we taken means rather than medians across banks, the corresponding estimates for µ and σ would have 
been 2.2% and 0.8%, respectively. Hence the ratio of the average volatility to the average drift is somewhat 
higher than the ratio of the median volatility to the median drift.    
7 u2 is an upper bound on capital ratios for optimizing banks in our model, and an average capital ratio in the 
model would be somewhat below u2. Moreover, there is no single obvious definition of average here because the 
stationary distribution for the capital ratio in our model is a degenerate distribution at 0. This is due to the result 
(proved in Section 6) that an optimally managed bank in our model bankrupts with probability one in finite time.  



 

which shows the model dividend barrier as a function of the volatility parameter σ, given the 

calibrated values for the parameters µ and ρ. 

The immediate conclusion from Figure 4 is that neither our model, nor the basic model of 

Milne and Robertson (1996), is able to explain the observed median bank capital ratio when 

volatility is at its observed value, 0.5%. The model of Milne and Robertson, obtained as a 

special case of our model through setting ∆ equal to infinity, yields capital ratios which are 

upper bounds on the capital ratios in the presence of the capital issue option, for any given 

values of the parameters (µ, σ, ρ). The capital buffer generated by the Milne and Robertson 

model, given the observed bank return volatility of 0.5%, is mere 0.8%, or less than one fifth 

of the observed value of 4.4%. The presence of a capital issue option with reasonable cost 

only worsens the fit of the model against empirical data. This conclusion is also independent 

of the estimate of the fixed cost K, set equal to 1 in Figure 4, since the dividend barrier in the 

basic model of Milne and Robertson does not depend on K.  

The volatility observed in the bank return data, 0.5%, is obviously far too low relative to 

the average bank return, 2.0%, for our model to generate capital buffers in the range of 4% or 

above. Bank return volatility in our model would need to be roughly tripled in order to 

replicate the observed capital ratios. In particular, we observe from Figure 4 that the limiting 

model of Milne and Robertson yields a capital ratio of 4.4% when evaluated at a volatility of 

1.5%, given the calibrated values for the parameters µ and ρ. When the capital issue option is 

present at reasonably low cost, volatilities in the order of 2% are needed to explain actual 

bank capital holdings. 

We find that there is good reason to expect our model to yield downward biased estimates 

of bank capital buffers, given the empirically observed volatility. First, our model assumes 

normally distributed bank returns, while bank portfolio returns are expected to display a skew 

distribution with a stretched lower tail. This is evident from the results of portfolio models 

such as CreditMetricsTM (J.P.Morgan, 1997), which simulate bank portfolio returns based on 

returns on individual counterparties. Also the Bankscope data over the period 1994-2001 

indicates that there is negative skewness in bank returns. The median coefficient of skewness 

across banks in our data is -0.13, even though this dataset hardly contains any bad years in 

terms of the overall performance of the US banking sector. Moreover, the share of negative 

returns in our dataset is 1.8%, while the share of negative returns suggested by a normal 



 

distribution with a mean of 2.0% and a volatility of 0.5% is only 0.003%. A volatility of 

roughly 1% would generate the 1.8% probability of negative returns, given a mean of 2.0%. 

This is a strong indication that the normal distribution is not a good proxy for bank returns.  

Second, and perhaps more importantly, we would expect the volatility of bank returns, 

estimated from data on banks’ net income, to be a downward biased estimate of the true 

volatility in bank portfolio returns8. This is because of the options for the provisioning of 

credit losses that are available to banks, which allow banks to distribute credit losses that 

often are realized only during a fraction of quarters over each ‘credit cycle’, more evenly over 

time. The smoothing of banks’ net income is in fact likely to create both a downward bias in 

the estimates of volatility of bank returns, and an upward bias in the estimates of skewness of 

bank returns. The bias in the volatility estimate may explain some of the poor fit of our 

model, and suggests that the volatility could be scaled up to improve the fit of the model. 

Unfortunately, determining the correct magnitude of such volatility adjustment is extremely 

difficult since data on the true timing of banks’ losses is not publically available. The bias in 

the skewness estimate, on the other hand, may explain the low degree of negative skewness 

observed in our data, and suggests that the normal distribution is even less descriptive of 

actual bank portfolio returns than does the data on banks’ net income indicate9. 

An improved estimate of true bank returns will be a double edged sword from the 

perspective of our model. A higher volatility is likely to enhance the empirical fit of our 

model, but at the same time a larger negative skewness is likely to indicate a more serious 

departure from the normality assumption. We find that the estimation of banks’ true return 

distributions be an interesting challenge for future research10. In the absence of such 

estimates, however, we suggest that our model be used with implied bank return volatilities 

which correspond to observed bank capital ratios, in an analogous manner as Black-Scholes 

model and its extensions are used in practice. Our model is analytically quite tractable and 

easy to implement, and yields many conclusions on the optimal dividend and capital raising 

strategies, as well as on the behaviour of bank value, as functions of the capital market 

imperfections. These analyses are illustrated in the next subsections. 

                                               

8 This has been acknowledged in the literature on bank capital, see e.g. Estrella (2001), p. 19. 
9 Managerial risk aversion is another possible explanation for the high observed capital ratios. This would imply 
that the bank is managed according to a concave (managers’) objective, while our model assumes a linear 
(owners’) objective. 



 

5.2 Comparative statistics with respect to capital market imperfections 

Our model predicts that optimal bank capital ratios and optimal bank equity issuance policies 

are influenced by the degree of capital market imperfections. In figures 5 and 6 we show the 

response of the barriers u2 and u1 to the values of the parameters K and ∆. We have drawn the 

figures keeping µ and ρ equal to their calibrated values (2% and 1/15, respectively), and we 

have set σ equal to an implicit value of 1.5%. Based on the results in the previous subsection, 

this value generates a capital ratio for the median bank that is of the same order of magnitude 

as the actual median capital ratio. 

Figure 5 shows the behavior of the dividend barrier u2 as a function of K and ∆. 

Unsurprisingly, we observe that u2 is non-decreasing with respect to both K and ∆. The 

optimal dividend barrier is determined by balancing the expected cost of new capital issues as 

well as the expected loss from liquidation against the time value of delayed dividends. The 

dividend barrier is non-decreasing relative to the fixed cost since this increases expected 

capital raising costs. The dividend barrier is non-decreasing relative to the length of the delay 

since a longer delay, ceteris paribus, implies a higher probability of liquidation. We also 

observe from Figure 5 that the optimal dividend barrier is quite sensitive to the introduction of 

small fixed costs from capital issuance when the fixed cost is initially zero. When the cost is 

already sizable, the dividend barrier is relatively insensitive to small increases in that cost. 

In the limiting case where ∆ equals zero, u2 is equal to its limiting value û  given in 

Proposition 3. This limit is positive when K is positive. When K is below its critical value µ/ρ  

- u0, u2 is increasing in K (this can be easily verified from (25)). When K is at or above this 

critical value, capital issuance ceases to be an optimal policy, and u2 then equals u0 given in 

(21). 

Figure 6 shows the barrier u1, the highest order point for new capital issues, as a function 

of ∆ and K. We observe that u1 is non-increasing with respect to K, for all plotted values of ∆. 

This is intuitive, since a higher fixed cost reduces the net benefit from capital issuance. 

However, u1 does not behave monotonically with respect to ∆. When ∆ is relatively low, 

implying a quick access to new capital, the optimal response to an increase in ∆ is to raise u1. 

In this case a longer delay induces ‘earlier’ ordering of new capital, i.e. at a higher level of the 

                                                                                                                                                  

10 There are other motivations for this task, such as the backtesting of banks’ credit portfolio models. 



 

capital stock. On the other hand, when ∆ is relatively high the optimal response to an increase 

in ∆ is to lower the barrier u1. This happens because the value of ordering a new capital issue 

is affected two ways through changes in ∆. First, an increase in ∆ increases the probability of 

liquidation during the delay, ceteris paribus, inducing an increase in u1. Second, our model 

forbids dividend payments during the capital issue delay, so that an increase in ∆ defers 

potential dividend payments further into the future, should a capital issue be ordered now, 

suggesting a decrease in u1. It turns out that for low ∆, the former effect dominates, while for 

sufficiently high ∆, the latter effect dominates. Moreover, Figure 6 suggests that the higher is 

K, the lower is the point where the positive response of u1 with respect to ∆ turns negative. 

We also observe that, consistent with Proposition 3, u1 converges to its limiting value zero as 

∆ approaches zero. 

5.3 Value of the capital issue option 

The opportunity to issue new equity, being an option, cannot reduce firm value. The value of 

the capital issue option in our model is the difference between the value functions (22) and 

(23), for a given initial capital ratio x. In Figure 7, we show the value of the capital issue 

option as a function of the initial capital ratio, for different values of the fixed cost K. We 

make a number of observations. First, the value of the capital issue option is monotonically 

declining in the fixed cost K (and also in the delay ∆). This is not surprising, since the delay 

and the fixed cost in our setting are pure business constraints. Second, the value of the capital 

issue option, as a function of the initial capital ratio, displays a humped shaped behavior that 

appears to be qualitatively independent of the value of K. The option value is at its highest 

when the capital ratio is somewhat below the optimal capital order boundary u1. When capital 

is close to u1, capital issues both achieve their intended effectiveness and will be used with 

high probability (indeed with probability 1 when the capital stock is less than u1). The value 

of the new issue option decreases as the capital stock falls significantly below the optimal 

capital order barrier since it becomes increasingly unlikely that the firm is alive when capital 

becomes available. As the capital stock approaches zero, the value of the capital issue option 

therefore approaches zero as well. The value of the capital issue option is also reduced when 

capital increases significantly above u1, because there the probability of capital shortages in 

the near future is low, and the expected present value of the gains from future capital issues is 

therefore low as well. To conclude, the option to issue new capital is most valuable in 



 

absolute terms to banks that are likely to issue new capital either immediately or in the near 

future, but are still at a reasonable distance from the point of liquidation. 

The examples in Figure 7 indicate that the option to issue capital has some value despite 

substantial capital market imperfections. In Figure 7 the bank has an annual expected return 

on risk weighted assets equal to 2%. The option to issue capital still has value when the fixed 

cost of a capital issue is 3% of the risk weighted assets, i.e. one and a half year's expected 

profit. Therefore it may pay to recapitalize, even when this means paying out several years' 

worth of expected earnings in fixed expenses. Also, the value of the capital issue option may 

constitute a substantial portion of the bank's equity value. In the case where K equals 1% (of 

the bank's risk-weighted assets) in Figure 7, the value of the capital issue option is at its 

highest (2.2%) when the firm’s capital ratio is 0.6% above the liquidation point. This peak 

option value is 13% of the corresponding value of a bank which does not posses a capital 

issue option. Moreover, the value of the new issue option in relative terms (as a percentage of 

the bank value in the absence of the capital issue option) is monotonically declining in the 

capital ratio. Hence the proportion of bank value which is attributable to the new issue option 

is highest with banks that are just above their minimum capital requirement. 

5.4 The effective cost of capital issuance 

Here we attempt to provide more insights into the interpretation and estimation of the fixed 

cost K. In practice, we would expect the costs of raising capital to be proportional, or at least 

positively related, to the size of the equity issue. This in turn suggests that there should be a 

relation between K and the other model parameters which determine the average size of an 

equity issue. We find it informative to express the effective cost of equity issuance in our 

model as the ratio of K to K+E[s]. Here E[s] is the expected intake of new capital (notation as 

in (7)), net of all the costs, so that K+E[s] can be interpreted as the total amount of capital 

raised, while K is the amount paid in fees and other costs to outsiders. Table 1 presents both 

the expected size of a new issue, E[s], and the effective cost of a new issue, K/(K+E[s]), as a 

function of the capital market imperfections ∆ and K. 

We observe from Table 1 that the effective cost of a new issue can be substantial, ranging 

up to 40% under those circumstances where issues of new capital will be optimally 

undertaken. Moreover, the effective cost of equity issuance increases with K, but at a lower 



 

rate than K. This is because the expected size of a new issue is also increasing in K. In other 

words, the bank’s owners optimally issue new equity in larger quantities, but less frequently, 

when K is high, relative to the case where K is low. Such behavior is a natural response to the 

presence of a fixed cost, and is descriptive of impulse control policies in general. Table 1 also 

indicates that the increase in the issue size with increasing K is due to both increases in the 

dividend barrier u2 and decreases in the capital order barrier u1. Finally, we observe that the 

effective cost of a new issue is quite insensitive to the delay ∆, given a fixed K. 

The results in Table 1 are useful in helping to determine the value of K to be used in our 

model. Let us assume that the management has an opinion on the effective cost rate in capital 

issuance, as well as an opinion on ∆. Then the implied value of K may be read from (an 

extension of) Table 1. This provides an alternative way to parameterize our model, one where 

the degree of capital market imperfections faced by the bank is expressed in terms of the 

delay ∆ and the effective cost rate of equity issuance, given in terms of our notation as 

K/(K+E[s]). In section 5.1 we have already given empirical interpretations to the parameters 

µ, σ and ρ. On these grounds we believe that the empirical implementation of our model is 

relatively straightforward. That the model only has five parameters should also be an 

advantage. 

6 The probability of bankruptcy in finite time 

Does an optimally managed firm in our setup bankrupt in finite time? The probability of 

bankruptcy is not explicitly present in the corporate objective, but is determined 

endogenously as a function of the optimal policies. Previous analysis has shown that value 

maximization may be consistent with a probability of bankruptcy in finite time that equals 

one. This is the case in the basic model of Milne and Robertson (1996), in the model with risk 

choice of Radner and Shepp (1996), and in the model with a recapitalization option of Peura 

(2002). In the model with proportional risk reductions of Hojgaard and Taksar (1999), on the 

other hand, bankruptcies may under some parameter combinations be completely eliminated. 

As for our model, the following lemma is proven in Appendix B. 

Lemma 4. The probability of bankruptcy in finite time equals 1. 



 

It should be noted that the result depends crucially on the assumption that the capital issue 

delay ∆ is strictly positive. As we have shown, in the limiting case where ∆ equals 0 (where 

an optimal policy does not exist) there are ε-optimal policies under which bankruptcies are 

zero probability events. 

7 Possible extensions 

We find that the failure of our model, and of this class of models in general, to explain 

observed bank capital ratios is most likely attributable to the shared assumption of normally 

distributed asset returns. The assumption is crucial for analytic tractability, but it would be of 

great interest to analyze the consequences of replacing that assumption with an asymmetric 

distribution of bank returns. The asymmetric distribution could correspond in form e.g. to the 

distributions implied by portfolio models, such as the CreditMetrics (1997) framework. Bank 

portfolio returns generated in a bottom-up manner from individual asset returns are 

distinctively asymmetric and long-tailed (relative to the normal distribution) in the presence 

of positive correlations between individual asset returns. These departures from normality 

should preferably be taken into account in the solution of the bank’s optimization problem, 

but without sacrificing the dynamic structure of the model and the fully optimizing behavior 

of the bank. We find that this is an interesting challenge for future research on banks’ 

capitalization and financing decisions. 

A second obvious extension were to factor investment considerations, and hence growth 

possibilities, into our model. The model of constant scale is most convenient analytically, and 

may provide a reasonable approximation to some banks. Yet it is very likely that a bank that 

is planning to increase its asset size will choose to hold ‘extra’ capital temporarily. Similarly, 

a bank that is expecting its assets to be reduced is likely to factor that expectation into its 

capitalization decision. The empirical data on banks will contain both banks that are 

expanding in asset size, as well as banks that are diminishing in asset size. We have taken the 

median capital ratio of large US banks as a proxy for the capital ratio of a constant scale bank. 

An extension of our model would take investment options into consideration explicitly. A 

highly stylized analysis of this type is Sethi and Taksar (2002). A related work based on a 

discrete time model is Cummins and Nyman (2001). Finally, the assumption that the liquid 

capital stock does not earn a return may seem problematic. In our model, as in Milne and 



 

Whalley (2001), this was motivated by the perfectly elastic presence of zero cost (insured) 

deposits. We note that the basic model of Milne and Robertson (1996) has been generalized 

into this direction by Hojgaard and Taksar (2001), who analyze a model where the capital 

earns a (possibly stochastic) return, and solve the model explicitly in special cases, such as 

when the return on the capital equals the risk-free rate (a constant). 
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Appendix A: Proof of Proposition 2 

We will show the equivalence of a solution to (9) and the value function. First, we utilize the 

inequalities in (9) and a generalization of Ito's formula to show that a solution to (9) majorizes 

the value of any serious candidate for an optimal policy, and therefore also the value function. 

As a second step we show that the value of the policy defined by (10) coincides with the 

solution to (9). These two steps together imply that a solution to (9) coincides with the value 

function, and that the policy defined by (10) in terms of the solution to (9) achieves the 

optimum. 

Let f be as assumed in the proposition and choose an admissible policy { }( )πππ
ii stL ,,  such that 

2usi ≤π  for all i. This restriction is harmless, since optimal policies can never have 

2uX
it

>∆+
π  by constraint (2ii). Associated with this policy is the set { }ππ
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of Lπ. Let T̂  be a nonnegative stopping time that satisfies 
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It is a consequence of (2i) that such stopping time exists. Then we can write 

( ) ( ) ( )
( ) ( ) ( ) ( ){ }

{ }
( ) ( ) ( ) ( ){ }

( ) ( ) ( )xfXfe

XfeXfe

XfeXfe

xfXfe

Tt

Tt

j

i
t

t

t

t

Tt

j

i
Tt

Tt

Tt

Tt

Tt

Tt

i

i

i

i

i

i

i

i

i

j

j

−+

−Ι+

−=

−

∧∧
∧∧−

=
∧

∧−
∧∆+

∧∆+−
<

=
∧∧∆+

∧∧∆+−
∧∧

∧∧−

∧∧
∧∧−

∑

∑

−

−

−

−

−

−

−

π
τ

τρ

π
τ

τρπ
τ

τρ

π
τ

τρπ
τ

τρ

π
τ

τρ

π
π

π
π

π
π

π
π

π
π

π
π

π

π
π

π
π

π
π

π
π

π
π

π
π

ˆ

ˆ

2
ˆ

2
ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

1

1

1

1

1

1

1

1

1

             (A1) 

where we have just decomposed the change in the discounted value of f(X) into those changes 

that occur during order periods, and outside order periods, respectively. By the generalized Ito 

formula (Dellacherie and Meyer, 1980), we can express the individual terms in the first row 

on the right-hand side of (A1) as 



 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )[ ]∑∫

∫∫

∧∧≤<∧∧∆+Λ∈
−

−
∧∧

∧∧∆+

−

∧∧

∧∧∆+

−
∧∧

∧∧∆+

−

∧∧∆+
∧∧∆+−

∧∧
∧∧−

−−

−−

−

−

−+−

+−=

−

TtsTts
ss

s
Tt

Tt

ss
s

Tt

Tt

ss
s

Tt

Tt

s
s

Tt

Tt

Tt

Tt

ii

i

i

i

i

i

i

i

i

i

i

XfXfeLdXfe

dWXfedsXfAe

XfeXfe

ˆˆ,

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

11

11

1

1

~
'

'

π
π

π
π

π
π

π
π

π
π

π
π

π
π

π
π

π
π

π
π

π
π

π
π

ττ

ππρ
τ

τ

ππρ

τ

τ

πρ
τ

τ

πρ

π
τ

τρπ
τ

τρ

σρ               (A2) 

The first term on the right-hand side of (A2) is nonpositive since f satisfies (9iii). Also,  

( ) ( ) ( )ππππππ
−−− −−=−≤− ssssss LLXXXfXf  since f'(x) ≥ 1. Substituting these inequalities into 

(A2) yields 
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Let ε > 0 and define { }ετ πε
π == tXt :inf . Then (A3) also holds with πτ  replaced by ε

πτ . 

Taking expectation of (A3) yields 
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where the expectation of the Ito integral is zero since ( ) ( )επ ''0 fXf s ≤≤  by concavity of f. 
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where the convergence is monotone from below. Also, 
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but the convergence need not be monotone. By concavity of f, we have 
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where the inequality follows from the definition of T̂  and the assumed restriction on the 

policies π. The same holds also for the second random variable in (A6). Consequently, the 

random variables on the left-hand side of (A6) are majorized by a positive random variable 

with finite expectation. Letting ε → 0, we can use monotone convergence theorem and 

dominated convergence theorems, respectively, to all the terms in (A4), yielding 
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By the exactly same steps, we have for the third row on the right-hand side of (A1) 
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As for the second row on the right-hand side of (A1), we get from the definition of M that  
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In (A9), the equality follows from the facts that, first 
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due to the definition of the indicator function, and second, that the indicator function 

'disappears' from the first term after the equality since f(0) = 0 by (9i). Substituting (A9) into 

the second row on the right-hand side of (A1), we get 
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where the second inequality follows since f ≥ Mf by (9ii). Taking expectations of (A1), and 

substituting in (A7), (A8), and (A10), we get 
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Since π is admissible, Lπ satisfies (2ii). Accounting for this, and letting j → ∞, (A11) 

simplifies to 
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We note in particular that ∞→π
jt  as j → ∞ due to condition (2i). Letting T → ∞, we have 
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where we have again utilized the concavity of f. The convergence above follows from the fact 

that the expectation of X has a linearly bounded growth rate, 
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where the convergence is due to monotone convergence on the part of the first term in (A14). 

On the part of the second term, the convergence follows from the boundedness from above of 

π
is  and K, and from (2i). Combining (A12), (A13), and (A14), we have shown that 

 ( ) ( )xVxf π≥ .                  (A15) 

Since π is arbitrary among the class of policies which may be candidates for optimal policies, 

we have that ( ) ( )xVxf ≥ . On the other hand, if we take the admissible policy ∗π  defined in 

(10), we can go through the same steps as above and we will get (A15) with equality. In 

particular, we have equality in (A3) because of (10iii) (dividends are never paid below the 

region where f'(x) equals 1) and the 'complementary slackness' condition (9v) that f must 

satisfy (f therefore satisfies (9iii) with equality in the region of 'inaction'). We have equality in 

(A9) due to (10ii), and equality in (A10) due to (10i). These imply that ( ) ( ) ( )xVxVxf ≤= ∗π
. 

Combining this and (A15), we have ( ) ( ) ( )xVxVxf == ∗π
. End of proof. 

 



 

Appendix B: Other proofs 

Auxiliary lemma 1 (this will be needed in the proofs of lemmas 1 and 2). 
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The first equality follows from the linearity of the expectation, the second from the law of 

total probability, the third from the Strong Markov property of arithmetic Brownian motion, 

the fourth just rearranges, and the fifth follows from integration by parts. End of proof. 

Lemma 1. If 2uK −−= ρµβ ≥ 0, then M f'(x) > 0 and Mf''(x) < 0 for all x. 

Proof: Let us rewrite the operator M starting from (7') as follows 
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where again ( ) [ ]xXtPtxp =≤= 00, τ and the third equality utilizes the Auxiliary lemma 1. 

We know that p satisfies the Kolmogorov backward equation, and that its partial derivatives 

satisfy 
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for all (x,t) ∈  R++ × R++. We differentiate the final expression in (B1) once and twice with 

respect to x and obtain 
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where the inequalities hold for all non-negative β because of the signs of the partials of p(x,t). 

End of proof. 

Auxiliary lemma 2. Let K ≥ 0. For all 0 < u2 ≤ u0, ( ) ( ) 22 uxxfxMf −+=<
ρ
µ

  for all x ≥ u2. 

Proof. We use here the notation Mf(x) = Mf(x,u2) and f2(x) = f2(x,u2). Beginning with (7'), we 

get 
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where p(x,t) is as defined in Auxiliary lemma 1. The fourth equality utilizes Auxiliary lemma 

1, the first inequality is due to setting K to 0, the second inequality is because u2 ≤ u0 < µ/ρ  

(this is due to (15) and (9iv)), the third inequality is because  
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and the final equality is due to (16). End of proof. 

Lemma 2. If 
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, then there exists a solution (u1,u2) to (20) 

satisfying 0 < u1 < u2 < u0 such that ( ) ( )212 ,, uxfuxMf ≤  for all 0 ≤ x ≤ u2. 

Proof. We use here the notation Mf(x) = Mf(x,u2) and f1(x) = f1(x,u2). Throughout, we suppose 

that the condition 
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i) From (17) we get that 
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, while in (21) we have defined u0 such that 

( ) 0,0 01 =uf . Therefore ( ) ( )010 ,00,0 ufuMf == , while ( ) ( )212 ,00,0 ufuMf <=  for 0 < u2 < 

u0. On the other hand, by Auxiliary lemma 2, ( ) ( )
ρ
µ=< 22122 ,, uufuuMf  for 0 < u2 ≤ u0. The 

previous facts imply that there is a positive x within (0,u0) such that ( ) ( )010 ,, uxfuxMf > , and 

that in general the crossing between ( )0,uxMf  and ( )01 ,uxf  is not smooth. 

ii) From (19) and (17) we get (given positive ∆) 
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Based on Lemma 1, if 02 ≥−− uKρµ  then Mf(x,u2) is increasing and concave in x, while 

from (17) we get that for x < u2 also f1(x,u2) is increasing and concave in x. This, together with 

the previous inequality, implies that one can always find a (sufficiently small) u2 satisfying 0 

< u2 < u0 such that ( ) ( )212 ,, uxfuxMf <   for 0 ≤ x ≤ u2.  

iii) Based on i) and ii), and the continuity of Mf(x,u2) and f1(x,u2) with respect to x and u2, 

there will also exist a u2 satisfying 0 < u2 < u0 such that for some 0 < u1 < u2, 

( ) ( )21121 ,, uufuuMf = , while ( ) ( )212 ,, uxfuxMf ≤  for all 0 ≤ x ≤ u2. (By Auxiliary lemma 2, 

we then also have ( ) ( )222 ,, uxfuxMf <  for all x > u2). But at this choice of (u1,u2), 

continuous differentiability of Mf(x,u2) and f1(x,u2) with respect to x also implies that 
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∂

. This is because two continuously differentiable functions 

whose values coincide in the interior of their domain, but which do not cross, must posses 

equal derivatives at the point. End of proof. 

Lemma 3. Assume that a solution to (20) as described in Lemma 2 exists and that f is defined 

by (22). Then f is a concave solution to (9) and satisfies Ito's formula. 

Proof: f is concave: By construction f''(x) = 0 for x ≥ u2. Differentiating f1 given by (17) three 

times shows that f''' > 0 on (u1, u2). Therefore f has an increasing second derivative on (u1, u2), 

which combined with the fact that f1''(u2) = 0 implies that f''(x) < 0 on (u1, u2). Finally, we 

know from Lemma 1 that Mf is globally concave, and therefore f is concave on (0, u1). 

Equality of first derivatives of Mf and f1 at u1 then implies that f is globally concave. 

f satisfies Ito's formula because each of the component solutions is twice continuously 

differentiable, while f satisfies the smooth pasting conditions at the barriers u1 and u2.  

f solves (9): 

(9i): f(0) = 0 because Mf(0) = 0. 

(9ii): f(x) = Mf(x) for 0 ≤ x ≤ u1 by construction. By Lemma 2, f(x) = f1(x) ≥ Mf(x) for 0 ≤ x ≤ 

u2, and by Auxiliary lemma 2 f(x) = f2(x) > Mf(x) for x ≥ u2. 

(9iii): For 0 < x < u1, we have f(x) = Mf(x), and we get from Itô’s formula  
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where τ is a stopping time defined by εττ ε ∧= , for some ε > 0 such that x - ε > 0, x + ε < u1, 

and ( ){ }xXxxXt t =+−∉≥= 0,:0inf εετ ε . Taking expectations and noting that the last 

term is a martingale because Mf(x) is concave, we obtain 
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where ( )[ ]τ
ρτ XMfeEx

−  is the value of waiting untill τ prior to ordering a new capital issue. 

Because immediate ordering of capital is the optimal action at x < u1, we have  
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Combining the last two equations and the fact that f(x) = Mf(x) for x < u1, we get 
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A limit operation then gives us 
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for x < u1. 

For u1 ≤ x ≤ u2, we have (A-ρ)f(x) = 0 by construction.  

For x > u2, we have f(x) = µ/ρ + x - u2, f'(x) = 1, f''(x) = 0, so that  
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for all x > u2. 

(9iv): f'(x) = 1 for x ≥ u2 by contruction. That f'(x) > 1 for x < u2 follows from the concavity of 

f (proved above). 

(9v): Follows directly from construction. 

End of proof. 

Proof of Proposition 3. When ∆ = 0, we get from (7') that ( ) KuxxMf −−+= 2ρµ , for all 

x > 0, where u2 is the dividend barrier defined in (12). The boundary condition that replaces 

(9i) is given by the maximum of ( ) KuxMf
x

−−=
+→ 2

0
lim ρµ  and zero. With this modification, 

the set of quasi-variational inequalities in (9) becomes 

( ) ( )0,max0 2 Kuf −−= ρµ  

( ) 0≤− fA ρ  

1'≥f  

( ) ( ) 01' =−− ffA ρ . 



 

Solving ii) and iii) as previously, and enforcing smooth pasting at u2, yields expressions (16) 

and (17) in the text. The barrier u2 is solved by substituting (17) into the boundary condition 

i). Assuming that the maximum in i) is achieved by the first term, u2 is determined from the 

equation 
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21210
ρ
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.               (B3) 

We record the following easily verifyable properties of the function g: R+ → R defined in 

(B3): i) ( ) ρµ=0g , ii) ( ) 0' <ug , u ≥ 0, iii) ( ) ∞→−∞→ uasug , iv) ( ) 00'' =g , v) 

( ) 0''' <ug , u ≥ 0, where the convergence in iii) is exponential. Since K is positive, we have 

( ) Kg −>=
ρ
µ

ρ
µ

0 . g is concave by iv) and v), and therefore crosses the linear function 

Ku −− 2ρµ  at a unique û  > 0 which satisfies (B3). 

For the maximum in i) to be achieved by the first term, the solution to (B3) must satisfy 

 ( ) ( ) 0ˆˆ0 >−−== Kuugf
ρ
µ
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i.e. g(u2) must be positive at the point of intersection with the function Ku −− 2ρµ . Setting 

( ) 0=ug , we get that u = u0, where u0 is given by equation (21) in the text. Then a necessary 

and sufficient condition for (B4) to hold is that 00 >−− Kuρµ , or equivalently that 

0uK −< ρµ , which is the condition in the proposition. Since g is declining in u, in this case 

also 0ˆ uu < . End of proof. 

Lemma 4. The probability of bankruptcy in finite time is 1. 

Proof: We only need to analyze the case u1 > 0 since the case u1 = 0 (the basic model in the 

absence of capital issues) the result is known to hold. When u1 > 0, default can occur only 

during the capital issue’s time delay. Capital issue is ordered when Xt ≤ u1 and, because u1> 0, 

we get from (7'') that the probability of no default during ∆ is given by 
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density of a normal distribution with mean µ and variance σ2, i.e. 
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The above equation implies that the probability of default during the delay is 

( )[ ] 100 <=∧∆∆ τXP . The probability of capital issue on [0,T] is bounded below as follows 
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We have the inequality because on the right-hand side the dividends are not considered and 

the process starts at u2. Now taking limit we get ( )[ ] 1lim 11
=≤∧

∞→
uTXP uT

T
τ  because  
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From (B5) we also get that the capital stock without capital issues satisfies 

 ( )( ) ( )( )[ ] 11lim 1211 121
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uunuXP uunuT
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π   for all n ∈  {1, 2, … }, 
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ππ σµτ

121121121121 1111 uunuTuunuTuunuuunuT LWTxX −−−∧−−−∧−−−−−−∧ −+∧+=  and n 

indicates the number of capital issues we should have done. This implies that the capital stock 

process with capital issues hits u1 infinite often. Therefore, the probability of no default over 

infinite time horizon is given by ( )[ ] 00lim 0 =>∧∆∆∞→

n

n
XP τ  because ( )[ ] 100 <>∧∆∆ τXP . 

The company has finite default time with probability 1. End of proof. 



 

Figure 1. Illustration of the model structure 
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Figure 2. Illustration of the value function in a case where both u1 and u2 are positive 

Parameter values: µ = 2%, σ = 2%, ρ = 1/15, ∆ = 0.5 years, K = 1%. The optimal barriers u1 = 

1.80% and u2 = 6.25% are marked with vertical dotted lines. The optimal dividend barrier in 

the absence of the equity issue option u0 = 6.51%. 
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Figure 3. Illustration of the value function in a case where u1 = 0 

In this case D1M(0,u0) < D1f1(0,u0). Parameter values: µ = 2%, σ = 2%, ρ = 1/15, ∆ = 1 year, 

K = 6%. The optimal barriers u1 = 0 and u2 = u0 = 6.51%, where u0 is the optimal dividend 

barrier in the absence of the option to issue new capital, given by equation (21) in the text. 
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Figure 4. Model capital buffers as a function of volatility 

The barrier u2, which is interpreted as the optimal capital ratio (in excess of the 8% 

minimum), as a function of volatility. The fixed parameters are equal to their calibrated values 

µ = 2%, ρ = 1/15. The fixed cost K = 1%. The calibrated value for σ is 0.5%. The observed 

median bank capital ratio is 4.4%. 
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Figure 5. The dividend barrier u2 

Fixed parameter values: µ = 2%, σ = 1.5%, ρ = 1/15. As ∆ approaches zero, u2 converges to 

its limiting value given in Proposition 3, and which is positive for positive K. As ∆ or K 

approach infinity, u2 converges to its maximum value u0, which in this example equals 4.4%. 
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Figure 6. The capital issue barrier u1 

Fixed parameter values: µ = 2%, σ = 1.5%, ρ = 1/15. As ∆ approaches zero, u1 converges to 

0. As ∆ or K approach infinity, u1 converges to 0. 
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Figure 7. The value of the capital issue option for different levels of K 

Fixed parameter values: µ = 2%, σ = 1.5%, ρ = 1/15, ∆ = 0.25 years. 
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Table 1. Effective cost of capital issuance 

Fixed parameter values: µ = 2%, σ = 1.5%, ρ = 1/15. E[s] is the expected net amount of 

external capital raised, calculated at the order time of a new capital issue. K/(K+E[s]) is the 

cost of capital issuance, as a proportion of the expected total amount of new capital. 

∆∆∆∆    K (%) u1 (%) u2 (%) E[s] (%) K/(K+E[s]) 

0.08 0.25 1.10 3.22 1.95 11 % 

0.08 0.5 1.00 3.46 2.29 18 % 

0.08 1 0.89 3.70 2.64 27 % 

0.08 2 0.75 3.94 3.02 40 % 

0.25 0.25 1.53 3.78 1.75 13 % 

0.25 0.5 1.33 3.95 2.12 19 % 

0.25 1 1.09 4.11 2.52 28 % 

0.25 2 0.79 4.26 2.97 40 % 

0.50 0.25 1.66 4.11 1.45 15 % 

0.50 0.5 1.34 4.22 1.88 21 % 

0.50 1 0.93 4.30 2.37 30 % 

0.50 2 0.21 4.35 3.14 39 % 

 

 



Essay 3: A Value-at-Risk approach to banks’ capital buffers: 

an application to the new Basel Accord* 
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Abstract 

The rating-sensitive capital charges under the New Basel Accord will increase the 
volatility of banks' minimum capital requirements, which may necessitate banks 
to hold larger capital buffers in excess of the minimum requirements. We evaluate 
this claim through numerical simulations on representative bank portfolios, in 
which bank's choice of capital buffer is assumed to satisfy a Value-at-Risk type 
constraint. According to our results, the size of the buffer depends on bank's credit 
portfolio risk and on the chosen approach to calculating the minimum capital 
requirement. Although the more rating-sensitive Internal Ratings Based Approach 
imposes lower minimum capital requirements on sufficiently high-quality credit 
portfolios than the Standardised Approach, this capital relief is reduced by the 
need for relatively higher buffers in the former approach. The buffers induced by 
rating-sensitive capital charges may influence banks' choice between the proposed 
approaches to calculating the capital requirement, as well as the overall level of 
bank capital after the reform. Banks’ response to the volatility of the minimum 
capital requirements should therefore be given due consideration in the final 
calibration of the Basel risk weights. 
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1 Introduction 

The second-round proposal for The New Basel Accord in January 2001, following the first 

initiative published in summer 1999, is a serious attempt to increase the risk-sensitivity of the 

rules according to which banks are required to hold capital. The purpose of the reform is to 

further improve the stability of banking, to correct possible distortions in the market and to 

contain capital arbitrage which has gradually undermined the effectiveness of the current 

accord. To increase risk-sensitivity, new risk-weight categories for the currently recognized 

risk types are added and entirely new risk types, such as operational risks, are incorporated. 

Highly detailed rules are planned for taking into account various risk mitigation techniques 

ranging from traditional collateral to credit derivatives in determining net exposures, and 

treatment for securitised assets are being developed. Moreover, an overall evolutionary 

approach is emphasized in that the framework offers different options of varying degrees of 

sophistication, which banks can pursue as their resources and capabilities develop. Finally, to 

complement the reforms in the area of direct risk measurement and the minimum capital 

requirements based on them, the supervisory review process will be strengthened and banks’ 

disclosure requirements will be increased. 

Perhaps the most important and visible part of the reform is the differentiation of 

corporate credits, currently all receiving 100 per cent risk-weight, into a number of risk-

weight categories based on credit ratings provided either by external rating agencies or banks 

themselves. The use of external ratings constitutes the new standardised approach (SA) in 

which unrated counterparties still receive the 100 per cent weight but in which rated 

counterparties receive weights ranging from 20% to 150%. The approach based on internal 

ratings (IRBA) is the more sophisticated and detailed one, also making use of additional 

elements such as the credit portfolio’s degree of diversification. Moreover, two options, the 

foundation and the advanced approach, are available within the IRBA. While the SA 

constitutes the obligatory part of the new capital framework, a bank can choose to use the 

IRBA instead, subject to supervisory approval of the bank’s internal credit rating systems. On 

the whole, the IRBA offers potentially much more risk-sensitivity than the SA. Many banks 

have expressed great interest in using the IRBA which would be much better aligned with 



 

their economic capital models and which would more accurately reward low-risk portfolios 

with a lower capital requirement. 

The increased risk-sensitivity of the regulatory risk weights will be reflected in the 

volatility of the regulatory capital requirement. While under the current accord shocks to 

banks’ regulatory solvency ratios mainly result from unexpected losses, under the new 

framework these will also result from unexpected changes in risk-weighted assets due to 

ratings migration. If the volatility in minimum capital requirements rises relative to the 

current accord, banks are likely to increase their capital buffers above the minimum 

requirements. This is because – as both theory and empirical evidence since the introduction 

of the Basel 1988 Accord suggest - banks prefer to hold buffer capital in order to avoid the 

various costs, related to supervisory intervention and market discipline, which would result 

from approaching, let alone falling below, the regulatory minimum capital ratio (see Furfine, 

2000). In this thinking the 8 per cent minimum capital ratio is analogous to a (regulatory) 

default point in excess of which banks need to hold their actual capital. 

Banks’ response to the reform will impact the overall level of capital in the banking 

sector. The buffers that banks prefer to hold may also have implications for banks’ choice 

between the standardised approach and the internal ratings based approach. As the minimum 

capital requirement under the IRBA is likely to be substantially more volatile than under the 

SA, banks’ capital buffers are likely to be higher under the IRBA as well (this is something 

that we study). The minimum capital requirement plus the required additional buffer, not the 

minimum capital charge alone, is likely to influence banks’ choice between the two 

approaches. Basel obviously should take this into account in the final calibration of the risk-

weights, one of the aims of which is to provide banks with capital incentives to start using the 

more sophisticated internal ratings based approach. 

In this paper, we attempt to estimate the likely effect of the new Basel regimes on bank 

capital buffers. Our analysis is based on a small number of illustrative bank portfolios. We 

assume that a bank’s choice of capital buffer satisfies a Value-at-Risk type constraint, one 

which states that the capital buffer should cover the bank’s (credit) losses, as well as the 

change in the bank’s minimum capital requirement, at a sufficiently high confidence level, 

and over a horizon which reflects the illiquidity of the bank’s assets. In order to solve the 

capital buffer from this constraint, we implement a Monte Carlo simulation on a credit 



 

portfolio model of the CreditMetricsTM type, but one which is extended to account for the 

regulatory minimum capital requirement. Effectively, we simulate bank credit losses and 

capital requirements simultaneously, and the Value-at-Risk requirement applies to the 

distribution of the sum of these two random variables. Given the complexity of the proposed 

Basel rules, our numerical approach is the most effective way to calculate the Value-at-Risk 

requirement with reasonable accuracy. As far as we are aware of, our simulation setup is 

novel. 

Our results indicate that especially for low-risk portfolios, the capital buffers under the 

internal ratings based approach are likely to be substantial. Interestingly, for high-risk 

portfolios the additional cushions would be reduced relative to the current capital accord. A 

failure to account for these effects in the final risk-weight calibration could result in a 

different subset of banks opting for the internal ratings based approach from what is intended 

by Basel. We also argue that it is important to understand the way banks would likely respond 

to the reform when interpreting, and comparing across banks, the regulatory capital ratios in 

the new regime. 

2 The setup 

We consider a bank having all its assets in illiquid corporate loans. We argue that there are 

essentially three constraints that the bank would need to meet when determining how much 

capital to reserve against its portfolio. First, there is the minimum regulatory capital 

requirement associated with the bank’s current portfolio. Second, the bank will want to 

reserve enough capital to absorb its credit losses and the fluctuations in its minimum capital 

requirement over its planning horizon1, one year in our examples, with a reasonable 

confidence level, without recourse to new external funds. This confidence level would reflect 

the various implicit costs the bank would incur from approaching the minimum capital ratio. 

The higher these costs are, the higher a confidence level the bank would choose. A confidence 

level of e.g. 95% would imply that the bank would tolerate a violation of the minimum capital 

                                               

1 Our use of the term planning horizon may not be taken literally. In theory, the horizon should be related to the 
time it takes to liquidate the portfolio, or alternatively, to obtain external capital. Also the estimates for the key 
parameters needed in credit Value-at-Risk models to calculate economic capital, such as probabilities of default, 
are not readily available for frequencies higher than one year, which may determine the horizon to be used. 



 

ratio on average once in every 20 years. Third, the bank will also want to satisfy an economic 

capital constraint, which states that capital must cover the bank’s credit losses over its 

planning horizon, with a sufficiently high probability. This probability would typically be 

chosen to be consistent with the bank’s overall rating target. An Aa target would imply a 

solvency probability of order 99.95% in a year. We suggest that the bank would choose the 

minimum amount of capital that satisfies each of these three constraints. We call this amount 

the minimum acceptable capital held by the bank. This divided by the risk-weighted assets is 

called the minimum acceptable capital ratio. 

We develop the capital requirements here from an accounting identity governing the 

bank’s capital dynamics. We let E0 denote current bank capital (ex time 0 dividends), I1 be the 

bank's profit, prior to any credit losses, during period 1, and L1 be the bank's credit losses 

during period 1. We denote by k
tR  the bank’s regulatory capital requirement at time t ∈  

{0,1}, and under regulatory capital regime k ∈  {CA (current approach), SA (new standardised 

approach), IRBA (internal ratings based approach)}. We assume the period length to be one 

year, but the formulas here apply for any period length. Finally, we define the bank’s capital 

buffer in the capital regime k, k
tB , as 

 k
tt

k
t REB −−−−==== . 

Assuming that no time 1 dividends are paid, the bank's capital dynamics satisfies the 

accounting identity 

 1101 LIEE −+= , 

where E1 denotes time 1 bank capital. We denote E[L1] the time 0 expectation of credit losses 

during year 1. We assume that the bank’s pricing of its loans is actuarially fair, so that its 

profit before credit losses equals its expected credit losses 

 [ ]11 LEI = . 

Credit losses over period 1 can be decomposed into expected losses and unexpected losses 

 [ ] 111 ULLEL += , 

where UL1 is the unexpected credit loss, defined by [ ]111 LELUL −= . Combining the previous 

three formulas, we obtain the capital dynamics 



 

 101 ULEE −−−−==== . 

From this simple dynamics we obtain the constraints that determine bank capital buffers. The 

first condition is the current minimum capital requirement 

 0000 ≥⇔≥ kk BRE .        (1) 

The second condition is concerned with capital adequacy at time 1. The bank’s capital at time 

1 satisfies the time 1 regulatory capital requirement if kRULE 110 ≥− . This may be expressed 

in terms of the time 0 capital buffer as 

 kk RULB 110 ∆+≥ , 

where kkk RRR 011 −−−−====∆  is the change in the bank’s regulatory capital charge between time 0 

and time 1. Denoting the required confidence level for regulatory capital adequacy at time 1 

by α, we obtain the Value-at-Risk constraint 

 [ ] α≥∆+≥ kk RULBP 110 ,        (2) 

which is a requirement on time 0 capital buffers. It is clear from (2) that in order to calculate 

the minimum acceptable capital buffer, we must identify the distribution of the sum of two 

random variables, the unexpected losses and the change in the minimum capital requirement. 

Both of these are driven by rating transitions and defaults in the bank’s portfolio. 

The third condition for capital adequacy is what is commonly known as ’economic 

capital constraint’, which states that the bank’s time 1 capital must be non-negative, at a 

sufficiently high confidence level β 

 [ ] β≥≥ 01EP . 

This may be expressed as a requirement on time 0 capital buffers as 

 [ ] [ ] β≥−∆+≥=−≥ kkkkk RRULBPRULBP 1110010 .     (3) 

Because the regulatory capital charge is non-negative, a comparison of (2) and the second 

expression in (3) reveals that if the confidence levels α and β are equal, the constraint (2) 



 

imposes a higher initial capital buffer. In practical applications, however, we usually have β > 

α. In fact one of the advantages of our dynamic regulatory capital criterion (2), over the 

economic capital criterion (3), is that the applied confidence level need not be as close to 1, 

making it easier to achieve a given numerical accuracy in Monte Carlo simulations. 

Numerical simulations indicate that for typical values of α and β (such as 99% and 99.9%) 

and for average bank portfolios, the economic capital requirement (3) is not binding, and the 

dynamic regulatory requirement (2) determines the minimum acceptable capital buffer. 

Assuming that (2) determines the minimum acceptable capital, we let kB0
ˆ  the smallest 

value that satisfies (2). Then minimum acceptable bank capital is kk BR 00
ˆ++++ , and the minimum 

acceptable capital ratio can be expressed as 

 %8
ˆ

0

00 ⋅









 +
k

kk

R

BR
.         (4) 

We explain briefly how we solve for the minimal initial capital satisfying criteria (2) and (3). 

We denote the distribution function of the random variable kRUL 11 ∆+  with F, and the 

distribution of the random variable UL1 with G. Given a hypothetical portfolio, we solve for F 

and G from a credit portfolio model of the CreditMetrics type, which is appropriately 

modified to produce realisations of kRUL 11 ∆+  and UL1 under the alternative capital regimes. 

In the model, latent correlated normal random variables representing customer firms’ asset 

values are used to simulate correlated rating migrations and defaults (see J.P. Morgan, 1997, 

for details). In terms of F and G, we can restate the constraints (1-3) as  

 00 ≥kB ,          (1’) 

{ }α≥≥ )(|min0 bFbBk ,        (2’) 

{ } kk RbGbB 00 )(|min −≥≥ β ,        (3’) 

so that the solution reduces to finding the percentile points of the distributions F and G 

corresponding to α and β, respectively.  



 

2.1 Discussion of the set-up 

Our reduced form approach is intended to be a tool for capital adequacy planning in banks. 

We introduce a probabilistic constraint associated with regulatory capital adequacy into a 

standard credit portfolio model. We simulate (changes in) regulatory capital requirements as 

well as unexpected losses simultaneously, and determine the required capital buffer based on 

their joint dynamics from a Value-at-Risk type criterion. Our extension is non-trivial because 

for reasonable choices for the confidence levels α and β, the dynamic regulatory capital 

constraint (2) is the binding one and determines the required capital buffer. Economic capital 

in the standard sense of the term, i.e. the solution to (3), is mostly redundant within our 

approach. 

In a fully optimizing model of a bank, the optimal level of bank capital would be 

determined as a trade-off between the various benefits and costs associated with holding 

capital (see e.g. Furfine, 2001 or Estrella, 2001). Without doubt, a fully optimizing approach 

would only be feasible at the cost of abandoning the realistic model for bank portfolio 

dynamics considered here, as well as the detailed consideration of the Basel II rules. The 

confidence levels α and β in our model reflect the many tradeoffs that would be explicitly 

present in a fully optimizing model. In particular, the values of α and β reflect the costs and 

penalties associated with a violation of the regulatory capital constraint, the capital market 

frictions that affect the recapitalization of the bank, the sensitivity of the bank’s funding cost 

to the amount of capital held by the bank, and the availability of growth options to the bank. 

3 Numerical results 

3.1 Example portfolios and parameter values 

We perform our analysis under three capital regimes: the current Basel Accord (CA), the 

Standardized Approach under Basel II (SA), and the foundation Internal Ratings Based 

Approach under Basel II (IRBA). The minimum capital requirements under the three regimes 



 

are displayed in Table 12. As for the IRBA regime, the minimum capital requirements are 

based on long term average annual default frequencies in Moody’s data, and a uniform 50% 

recovery rate assumption, consistent with the proposed new Basel rules for uncollateralized 

senior exposures.  

Table 1. Minimum capital requirements in the three capital regimes 

PD = probability of default, CA = current approach, SA = standardized approach, IRBA = internal ratings based 

approach. The IRBA capital requirements are based on default probabilities which are from Moody’s data over 

the period 1970-1999, and an assumed LGD of 50 %. 

 

Rating PD CA SA IRBA 
Aaa 0.01 % 8 % 1.6 % 1.1 % 
Aa1 0.02 % 8 % 1.6 % 1.1 % 
Aa2 0.02 % 8 % 1.6 % 1.1 % 
Aa3 0.03 % 8 % 1.6 % 1.1 % 
A1 0.05 % 8 % 4 % 1.5 % 
A2 0.06 % 8 % 4 % 1.7 % 
A3 0.09 % 8 % 4 % 2.2 % 
Baa1 0.13 % 8 % 8 % 2.8 % 
Baa2 0.16 % 8 % 8 % 3.1 % 
Baa3 0.70 % 8 % 8 % 8.0 % 
Ba1 1.25 % 8 % 8 % 11.5 % 
Ba2 1.79 % 8 % 8 % 14.4 % 
Ba3 3.96 % 8 % 8 % 23.2 % 
B1 6.14 % 8 % 12 % 29.7 % 
B2 8.31 % 8 % 12 % 35.0 % 
B3 15.08 % 8 % 12 % 47.2 % 
Caa 29.87 % 8 % 12 % 50.0 % 

 

We consider nine hypothetical corporate debt portfolios, which differ in two risk dimensions: 

the obligor ratings distribution (aggregate, investment grade and non-investment grade), and 

the degree of exposure concentration (500, 100 and 50 obligors, respectively). Total exposure 

within each portfolio is 100, and a given portfolio always consists of loans of equal size. Each 

obligor is assumed to be equivalently rated externally and internally, based on the rating scale 

                                               

2 In the SA exposures are assigned a capital charge according to their rating only. In the IRBA capital charges 
are derived from a continuous function based on the obligor’s probability of default and the exposure’s loss 
given default. Moreover, an adjustment depending on the portfolio’s degree of exposure concentration is added 
to the total capital requirement calculated in the first stage. The details of calculating the capital charge in the SA 
and in the IRBA are described in Basel Committee (2001). In the CA all exposures regardless of rating receive a 
common 8 per cent capital charge. 



 

of Moody’s3. To obtain a realistic distribution of obligors over rating categories, we use 

annual data over the period 1987-99 on total U.S. corporate long-term debt by rating category 

as rated by Moody’s. In the aggregate portfolio, the share of obligors in each rating category 

corresponds to the time-series average of the share of that rating category on total debt over 

the sample period. The investment grade and the non-investment grade portfolios are 

constructed in a similar fashion. In the former, we only include debt in investment grade 

categories each year, whereas the latter includes total debt in categories Ba1 or below. All 

exposures in each portfolio are assumed to be senior and uncollateralized. Table 2 displays 

the rating distributions of the example portfolios. 

Table 2. Compositions of example portfolios 

Each cell gives the percentage of portfolio nominal value invested in the particular rating category. The average 

probability of default has been calculated using on the probabilities in Table 1. The portfolio weights are from 

Moody’s data 1987-1999. 

 
Rating Investment Aggregate Non-inv. 

 grade  grade 
Aaa 7.8 % 6.2 %  
Aa1 3.0 % 2.4 %  
Aa2 6.7 % 5.4 %  
Aa3 12.4 % 9.9 %  
A1 16.9 % 13.6 %  
A2 16.9 % 13.5 %  
A3 11.1 % 8.9 %  
Baa1 9.0 % 7.2 %  
Baa2 8.7 % 7.0 %  
Baa3 7.4 % 5.9 %  
Ba1  2.5 % 12.8 % 
Ba2  2.1 % 10.9 % 
Ba3  2.7 % 13.8 % 
B1  3.0 % 15.2 % 
B2  4.0 % 20.1 % 
B3  3.8 % 19.0 % 
Caa  1.6 % 8.2 % 
Average PD 0.1 % 1.9 % 8.8 % 

                                               

3 In calculating the IRBA capital requirements we implicitly assume that the bank is using an internal rating 
system that would produce equivalent ratings and default probabilities as if it were using the Moody’s system 
and data. The Moody’s system consists of 17 nondefault rating categories ranging from Aaa to Caa. According 
to the Basel Committee (2001), the IRBA approach would only require a minimum of 6-9 rating grades (for 
performing loans), so the 17 categories represents a case where the bank takes full advantage of the risk-
discriminating opportunities within the IRBA. The number of rating categories used and the probabilities of 
default assigned to these categories will affect our quantitative results, but hardly their qualitative implications. 



 

 

In simulating losses and capital requirements for these portfolios, we use a rating transition 

probability matrix for one-year horizon which is based on annual transition frequencies over 

the period 1970-1999 reported by Moody’s4. The default probabilities from the same data are 

used in the calculation of the IRBA capital charges. We assume a uniform 20% asset 

correlation between each pair of obligors, as well as a uniform recovery rate of 50% across all 

obligors, corresponding to the underlying assumption made by the Basel Committee in 

producing the capital charges for the IRBA. 

3.2 Capital requirements 

Table 3 shows the statistics of the credit loss distribution and the economic capital constraints 

for each portfolio. In this table, the unexpected loss corresponding to a confidence level β is 

the β’th percentile of the distribution G of the random variable UL1. The unexpected loss with 

confidence level β hence coincides with the economic capital requirement under the same 

Table 3. Credit risk statistics and the economic capital constraint 

Unexpected loss is defined as the given percentile of the credit loss distribution less expected loss. Total 

exposure in each portfolio equals 100. 

Unexpected loss Portfolio Expected 
loss 

Standard 
deviation ββββ = 99% ββββ = 99.9% ββββ = 99.95% 

“500” 0.1 0.1 0.6 1.5 1.8 

“100” 0.1 0.2 1.0 1.9 2.4 

Investment 
grade 
 

“50” 0.1 0.3 1.5 2.1 3.0 

“500” 1.0 0.8 2.8 4.8 5.8 

“100” 1.0 1.0 3.5 5.5 6.5 

Aggregate 

“50” 1.0 1.2 4.0 6.0 7.0 

“500” 4.4 3.5 11.8 18.4 20.1 

“100” 4.4 3.7 12.1 19.1 21.1 

Non- 
investment 
grade 

“50” 4.4 3.9 13.5 19.6 22.1 

 

                                               

4 Again, these are assumed to be representative of the probabilities with which the model bank updates its 
internal ratings. We note that banks may use rating systems with different quantitative transition characteristics, 
which entail higher off-diagonal transition probabilities than the Moody’s matrix (see e.g. Kealhofer et al., 
1998). This would further increase the volatility in minimum capital requirements.  



 

confidence level, expressed as a minimum level of equity (rather than as a capital buffer). We 

observe from Table 3, as expected, that the degree of diversification of the portfolio does not 

influence expected losses, whereas measures of loss dispersion increase as diversification is 

reduced. For a well-diversified portfolio with 500 assets, the standard deviation of the credit 

loss distribution is of the same order of magnitude than the mean of the distribution. We 

observe that diversification still offers considerable benefits for credit portfolios with over 

100 assets. In relative terms, the benefits of diversification appear the higher, the better the 

portfolio credit quality. Finally, Table 3 provides evidence that the skewness of the credit loss 

distribution is the more extreme, the better the average credit quality of the portfolio. For an 

investment grade portfolio with 500 assets, the ratio of the 99.9th percentile of the distribution 

to the standard deviation of the distribution is 15. For a corresponding non-investment grade 

portfolio the same ratio is only around 5. 

Table 4. Minimum capital requirements 

The regulatory 8 per cent minimum capital requirements. Total exposure in each portfolio equals 100. The lower 

of the minimum capital requirements in the SA and in the IRBA is indicated with gray shading. 

Portfolio CA SA IRBA 

“500” 8.0 4.3 2.4 

“100” 8.0 4.3 3.4 

Investment 
grade 

“50” 8.0 4.3 4.7 

“500” 8.0 5.6 7.9 

“100” 8.0 5.6 9.4 

Aggregate 

“50” 8.0 5.6 10.8 

“500” 8.0 10.5 29.9 

“100” 8.0 10.5 31.1 

Non- 
investment 
grade 

“50” 8.0 10.5 33.2 

 

In Table 4 we report the 8 per cent regulatory minimum capital requirements. We make some 

obvious remarks. First, while the current Basel regime does not differentiate corporate 

exposures according to their credit risk, the SA and the IRBA indeed do so. Second, only the 

IRBA punishes or rewards portfolios according to their degree of diversification, measured by 

exposure concentration. The effects of diversification are captured by the granularity 

adjustment term in the IRBA, not the baseline risk weights themselves. Table 5 shows this, by 

decomposing the IRBA minimum capital requirements in Table 4 into components due to the 



 

baseline risk weights and the granularity adjustment, respectively. Table 5 further shows that 

the effect of the granularity adjustment is the largest in relative terms in high-quality 

portfolios. Moreover, both negative and positive granularity adjustments occur among our 

example portfolios. Third, the SA looks very competitive against the IRBA based on the 

minimum capital requirements. In fact the IRBA minimum capital requirement is lower than 

the SA minimum capital requirement in case of the 500 and 100 asset investment grade 

portfolios only. 

Table 5. The effects of granularity adjustment in the IRBA 

RWA = risk-weighted assets, GA = granularity adjustment. 

Portfolio  RWA GA RWA+GA 8%* 
RWA 

8%* 
(RWA+GA) 

“500” 28.0 2.0 30.1 2.2 2.4 

“100” 27.7 14.7 42.4 2.2 3.4 

Investment 
grade 

“50” 28.6 30.5 59.1 2.3 4.7 

“500” 99.4 -0.5 98.9 7.9 7.9 

“100” 103.7 13.4 117.1 8.3 9.4 

Aggregate 

“50” 103.4 31.1 134.5 8.3 10.8 

“500” 385.6 -11.5 374.0 30.8 29.9 

“100” 384.4 4.1 388.6 30.8 31.1 

Non- 
investment 
grade 

“50” 390.9 23.5 414.4 31.3 33.2 

 

The minimum acceptable capital amounts, calculated from (2’), are presented in Table 6. All 

results are based on the confidence level α = 99%. In those cells in Table 6 where the 

economic capital constraint (3’) is binding, the resulting minimum acceptable capital amount 

is reported in parentheses in the respective cell. In all cases economic capital has been 

calculated based on a confidence level β = 99.95%, so that the figures correspond to the right-

most column in Table 3. We observe that the economic capital constraint is binding under the 

CA and the SA for the non-investment grade portfolios. This reflects the fact that the CA and 

the SA are not sensitive enough to portfolio risk, so that the bank’s own economic capital 

requirement comes into play. Under the IRBA, the economic capital requirement is not 

binding for any of the portfolios considered. This is not very surprising, knowing that a 

multiplier greater than one has been used in deriving the current IRBA benchmark risk-

weights relative to an underlying economic capital model (for an explanation of the derivation 

of the IRBA risk-weights, see Wilde, 2001). 



 

 

Table 6. Minimum acceptable capital amounts 

The minimum amounts of capital satisfying (2) for the example portfolios, given α = 99%. Figures in 

parentheses are the economic capital requirements (3) where it is the binding constraint, given a confidence level 

β = 99.95%. Total exposure in each portfolio equals 100. The lower of the capital requirements in the SA and in 

the IRBA is indicated with gray shading. 

Portfolio CA SA IRBA 

“500” 8.5 5.6 4.8 

“100” 8.8 5.8 6.1 

Investment 
grade 

“50” 9.3 6.0 7.7 

“500” 10.3 8.4 10.6 

“100” 10.8 8.8 12.1 

Aggregate 

“50” 11.2 9.1 13.6 

“500” 17.2 (20.1) 19.0 (20.1) 33.2 

“100” 17.5 (21.1) 19.4 (21.1) 34.6 

Non- 
investment 
grade 

“50” 18.7 (22.1) 20.1 (22.1) 36.6 

 

Since the nominal value of each portfolio has been normalized to 100, the capital amounts in 

Table 6 also represent effective equity ratios for the portfolios. These equity ratios, which are 

obtained by dividing capital by nominal assets, are different from the usual bank capital 

ratios, which refer to capital over risk-weighted assets. The equity ratios are very informative 

in comparisons that take place between capital regimes, as we do here, because the risk-

weighted assets used to calculate standard capital ratios are not constant across capital 

regimes. 

Figure 1 illustrates the contents of tables 4 and 6, by decomposing the acceptable capital 

amounts for the 500 asset portfolios into the minimum requirement and the buffer, in each 

capital regime. This brings out the relative size of the buffer with respect to the minimum 

requirement. We note that buffers are very large in relative terms for investment grade 

portfolios in the IRBA, although the total acceptable capital amount in this case is quite low. 

Buffers are also large in relative terms for non-investment grade portfolio under the current 

Basel regime as well as under the SA. Perhaps surprisingly, however, the relative size of the 

buffer is quite low for non-investment grade portfolios in the IRBA. We provide an 

explanation to this below. 



 

 

Figure 1. Decomposition of acceptable capital into minimum capital and capital buffer 

Based on the results for the 500 asset portfolios. The figure combines information from tables 4 and 6. To focus 

on the effect of rating sensitivity, the economic capital constraint (the figures in parentheses in Table 6) is 

ignored. 
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Table 7 shows the capital ratios for all the example portfolios. These have been calculated 

from the minimum acceptable capital amounts through formula (4). All the capital ratios 

exceed the 8% regulatory minimum. We observe that the highest capital ratios are for well 

diversified investment grade portfolios under the IRBA, and for poorly diversified non-

investment grade portfolios under the current regime. In general, we observe that capital ratios 

of investment grade portfolio rise, going from the current regime to the more risk-sensitive 

regimes, while the capital ratios for non-investment grade portfolio are reduced. The capital 

ratios for average quality portfolios are virtually equivalent under the current regime and the 

IRBA. As an example, we note that the minimum acceptable capital ratio for the 500 asset 

investment grade portfolio in the current regime in 8.5%, whereas in the IRBA the ratio is 

16.0%. The corresponding ratios for the 500 asset non-investment grade portfolio are 17.2% 

and 8.9%. Table 7 also shows that the capital ratios under the current regime and under the 

SA decline when portfolio diversification increases, whereas in the IRBA the reverse 



 

happens. The odd behavior of the capital ratio in the IRBA with respect to portfolio 

diversification is due to the granularity adjustment, which results in lower minimum capital 

charges for well-diversified portfolios, but as Table 7 confirms, part of this capital savings is 

consumed by the need for relatively larger capital buffers. 

Table 7. Minimum acceptable capital ratios 

The minimum acceptable capital ratios for the example portfolios, given α = 99%, calculated from (4). Figures 

in parentheses indicate the minimum acceptable capital ratio in cases where the economic capital constraint (3) is 

binding for the most conservative choice of β = 99.95%. Total exposure in each portfolio equals 100. 

Portfolio CA SA IRBA 

“500” 8.5% 10.4% 16.0% 

“100” 8.8% 10.7% 14.4% 

Investment 
grade 

“50” 9.3% 11.2% 13.1% 

“500” 10.3% 12.0% 10.7% 

“100” 10.8% 12.7% 10.4% 

Aggregate 

“50” 11.2% 13.0% 10.1% 

“500” 17.2% (20.1%) 14.5% (15.3%) 8.9% 

“100” 17.5% (21.1%) 14.8% (16.1%) 8.9% 

Non- 
investment 
grade 

“50” 18.7% (22.1%) 15.3% (16.8%) 8.8% 

 

That the relative size of the capital buffer for a given portfolio is not always higher in the 

more risk-sensitive IRBA, relative to the SA or the current regime, may appear as somewhat 

surprising. In fact, Table 7 indicates that the IRBA gives rise to higher minimum acceptable 

capital ratios than the SA only for the investment grade portfolios. A related observation is 

that in the CA and in the SA, the minimum acceptable capital ratio increases as the risk of the 

portfolio increases, whereas in the IRBA the reverse happens5. In order to understand why, 

we analyze the two random components that determine the capital requirement (2). The first 

component is the unexpected loss, and the second component is the change in the minimum 

capital requirement. In a high-quality portfolio there can be mainly rating downgrades but 

very few losses. This implies that in a rating-sensitive capital regime, like the IRBA, rating 

migration can cause considerable variation in the minimum capital requirement, whereas in a 



 

capital regime relatively insensitive to ratings this is not the case. Therefore the minimum 

acceptable capital ratio for the investment grade portfolio is the highest in the IRBA, the 

second-highest in the SA, and the lowest in the current regime, CA. As for low credit quality 

portfolios, the unexpected loss component now contributes significantly to the capital 

requirement. Hence the minimum acceptable capital ratios in the risk-insensitive capital 

regimes are relatively high. In the risk-sensitive IRBA, on the other hand, the opposite 

happens because of two reasons. First, relative to a high-quality portfolio, there is more scope 

for rating upgrades which the risk-sensitive regime rewards with a lower minimum capital 

requirement. Secondly, and perhaps more importantly, the initial capital requirement in the 

more risk-sensitive approach already accounts for much of the potential losses in the planning 

period because the lowest rated assets receive capital charges which are of the same order of 

magnitude as realized losses in the event of default. Indeed, the highest-risk exposures receive 

the cap risk-weight in the IRBA, which implies that their capital charge equals their loss-

given-default. When losses are realized on such assets, there is an exactly compensating 

reduction in the amount of risk-weighted assets, and the net effect on the bank’s capital buffer 

is zero. 

Finally, returning to Table 6, we have indicated by gray shading the capital regime that 

the bank would choose on the basis of the lowest acceptable amount of capital, ignoring other 

factors that could affect its choice. We observe that only for the 500 asset investment grade 

portfolio would the bank opt for the IRBA, otherwise it would select the SA. This is a rather 

striking result, given that the Basel Committee and the EU have indicated that they would like 

to see a fairly large number of banks moving to the IRBA6. Moreover, it is interesting to note 

that only in investment grade portfolios would better diversification provide sufficient 

incentives to move from the SA to the IRBA. 

                                                                                                                                                  

5 In the IRBA this is the case in moving to portfolios of poorer credit quality, keeping the degree of 
diversification fixed, and also in moving to less diversified portfolios, keeping the portfolio’s overall credit 
quality fixed. The capital ratio of non-investment grade portfolios, however, is practically insensitive to the 
degree of portfolio diversification. 
6 We acknowledge that the assumption that all counterparties in our portfolios possess external ratings is likely to 
bias this comparison in favor of the SA. In the absence of external ratings, the SA basically collapses to the CA, 
which looks significantly less advantageous relative to the IRBA. Another possible reason for obtaining results 
strongly in favor of the SA is that we do not consider all the risk mitigation techniques which would benefit 
banks more in the IRBA than in the SA.  



 

4 Implications and conclusions 

The effect of the capital regulation reform on overall bank capital depends on the amount of 

buffer capital that banks prefer to hold in excess of the new minimum requirements. The 

Basel Committee has stated as its goal that, after the reform, the overall level of capital should 

stay at about the same level as prior to the reform. An important implication of our analysis is 

that in order to achieve this goal, the banks’ likely adjustment of their capital buffers should 

be taken into consideration in the calibration of the new capital requirements. In particular, 

assume that regulators’ implicit criterion in determining the level of bank capital is to achieve 

a socially desirable level of default probabilities for banks. If the minimum capital 

requirement is set at a level that implies a given default probability, then the minimum 

acceptable amount of capital chosen by a prudent bank, in light of our results, would imply a 

substantially lower effective probability of default. Comparing tables 4 and 6, we observe that 

for investment grade portfolios the minimum acceptable capital amount under the IRBA is 

roughly twice the minimum requirement, indicating that actual bank default probability may 

turn out to be much lower than the one pursued. Banks should be made safe, but not too safe, 

because holding of idle capital has a cost from both microeconomic and macroeconomic 

points of view. 

Second, the additional buffers may give certain banks a disincentive to start using the 

IRBA. Other things being equal, a bank would choose the regulatory approach that would 

give it the lowest acceptable capital level. Basel has indicated that in the final stage of the 

reform the IRBA risk-weights would be calibrated in such a way that a representative bank – 

and obviously banks with risks that are lower than those of the representative bank - would 

have an incentive in the form of a lower minimum capital requirement to use the IRBA rather 

than the SA. A calibration done in this way could lead to problems such as in the case of the 

investment-grade 100 asset portfolio, for which the minimum capital requirement in the IRBA 

is lower than in the SA, whereas the minimum acceptable capital level in the SA is lower than 

in the IRBA (see the different coverage of the shadings in tables 4 and 6). This incentive 

problem is further illustrated in Figure 2. There we have graphed out the simulation results for 

the 500 asset portfolios from Tables 4 and 6. These show that the set of portfolios for which 

the minimum acceptable capital in the IRBA is lower than in the SA (portfolios to the left of 

A), is different than the set of portfolios for which the minimum capital requirement in the 



 

IRBA is less than in the SA (portfolios to the left of B). Hence ignoring the capital buffers 

could lead Basel to provide capital incentives towards using the IRBA for a somewhat smaller 

set of banks from what was intended. 

Figure 2. Illustration of capital incentives 

The figure illustrates the fact that because of its lower risk-sensitivity, the SA may be a preferred alternative to 

the IRBA, when evaluated based on minimum acceptable capital amounts (which take into account the required 

capital buffer), even though the IRBA yields a lower minimum capital requirement (this happens between points 

A and B). Based on numerical results for the 500 asset portfolios in tables 4 and 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Third, we suggest that after the reform, banks’ capital ratios will have to be interpreted with 

care. In the IRBA, the lowest-risk banks are likely to have the highest capital ratios (i.e. 

capital relative to risk weighted assets), although their absolute capital amounts will be the 

lowest. Consequently, unlike in the current accord or in the SA, a high capital ratio of an 

IRBA bank will not be an indication of high portfolio risk, but to the contrary. We suggest 

that a simple leverage ratio – capital over nominal, not risk-weighted, assets - is more directly 

related to a bank’s portfolio risk after the reform, and that banks operating in different capital 
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regimes can only be compared based on common denominator. In our example the portfolio 

size has been normalized to 100, so that the minimum acceptable capital amounts in Table 6 

can be directly interpreted as such leverage indicators. 

Fourth, our analysis indicates that banks may have incentives to try to dampen the 

volatility in their capital requirements, particularly so in the IRBA where banks are allowed to 

use their internal ratings. This may give rise to new types of capital arbitrage activities, where 

banks obtain the image benefits from being an ‘IRBA bank’, while simultaneously attempting 

to smoothen the variability in their internal ratings, so as to keep regulatory capital volatility 

at a low level. 

Finally, our analysis suggests that banks’ adjusting their capital cushions may help in 

alleviating the pro-cyclical effects of more risk-sensitive capital requirements that have been 

pointed out in the literature (see Blum and Hellwig, 1995). An increase in the volatility of 

banks’ minimum capital requirements, ceteris paribus, will increase the probability that a 

bank will face a regulatory capital shortage in an economic downturn. A regulatory capital 

shortage, on the other hand, may force banks to cut back on lending or to liquidate assets, and 

therefore provides an enforcing feedback to the original shock in the economy. Increased 

capital buffers will help banks to tolerate larger fluctuations in their minimum capital 

requirements, alleviating the effects of this procyclical mechanism. 
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Essay 4: A structural model of risky debt with stochastic 

collateral* 
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Abstract 

We present an extension of the Merton model of risky debt in which collateral 
value is a separate random variable correlated with the probability of default. The 
model is particularly suited for studying the behaviour of the expected loss-given-
default, as a function of collateral value parameters, and could be used for 
estimating losses-given-default in many popular models of credit risk which 
assume them constant. We also examine the problem of determining sufficient 
collateral amount to secure a loan to a desired degree. The estimation of the 
expected loss-given-default is of increased interest to bank practitioners and 
regulators due to the proposed new Basel Accord. 

 

Keywords: debt valuation, collateral, loss-given-default, loan-to-value 

JEL classification: G13, G21 

 

1  Introduction 

The effect of collateral values, and recovery rates in general, on the value of defaultable debt 

is evident from the generic debt valuation formula 

 ( )PDELGDPVF ⋅−= 1 .        (1) 

The value F of a risky dollar to be received in the future is obtained by applying an 

appropriate present value operator to the expected payoff at maturity, where the expected 

payoff is calculated by deducting the product of expected losses-given-default (ELGD) and 

                                               

* This is a modified version of the authors’ paper 'Incorporating collateral value uncertainty in loss-given-default 
estimates and loan-to-value ratios', forthcoming in European Financial Management, 2003, and is printed here 
by the permission of Blackwell Publishing Ltd. 
♣ Esa Jokivuolle is at the Bank of Finland, P.O.Box 160, 00101 Helsinki, Finland. E-mail: esa.jokivuolle@bof.fi. 



 

the probability of default (PD), from the promised payment. The formula implies that a 10% 

change in the ELGD has an equivalent effect on the value of risky debt as a 10% change in 

the probability of default. In this sense, the ELGD and the probability of default are equally 

important determinants of risky debt values. Moreover, collateral value, the main determinant 

of ELGD, is in many cases an observable and traded quantity, whereas default probabilities 

are not directly observable. These arguments suggest that the modelling of collateral value 

dynamics should be of high priority in the valuation of risky debt. 

In the seminal work on debt valuation based on structural models of Merton (1974), the 

asset value (which determines default) and the collateral value (which determines the payoff 

to risky debt in the event of default) are the same process. Consequently, the correlation 

between the default determining variable and the collateral value in this model is perfect. It 

should be of interest to analyse situations where the determinant of default and the value of 

collateral are less than perfectly correlated. An example of such a situation is a bank loan 

backed by a pledged asset which is not owned by the borrowing firm but by a third party. In 

this case it is possible that the collateral value is relatively high even though the borrower’s 

asset value is low, or vice versa. In general, however, we would expect the collateral value 

and the borrower’s default probability to be negatively correlated. The values of most assets 

depend positively on overall business conditions, so that in a bad macroeconomic realisation 

where most defaults take place, the values of collateral items are likely to be low as well1.  

In this paper, we develop and analyse a model of risky debt where the default probability 

of the borrower and the value of the collateral supporting the debt obligation are less than 

perfectly correlated. Our model extends Merton's (1974) structural model in that we add a 

separate collateral value process which is correlated with the default determining asset value 

process. We interpret the collateral variable as the market value of the assets that the debt 

holder has a claim on in the event of a liquidation sale. We do not attach any particular asset 

stock interpretation to the underlying asset process, but rather think of the normalised 

difference between the asset value and the default boundary, representing a measure of 

distance to default, as a sufficient statistic for the likelihood of default. For this reason, we use 

                                               

1 Schleifer and Vishny (1992) present an equilibrium analysis of why collateral values tend to decline just when 
defaults abound.  



 

the term default determining variable interchangeably with asset value. In line with this 

interpretation, our preferred implementation of the model does not require estimation of the 

asset value parameters individually, but relies on a one-to-one mapping between the distance 

to default measure and the default probability. Our non-concrete interpretation of the 

underlying asset value is similar to the interpretation suggested e.g. by Longstaff and 

Schwartz (1995)2. Alternatively, since our structural assumptions restrict the evolution of 

default probabilities, but without implying a stringent interpretation of the default 

determining variable, our model can be classified as a reduced form model with special 

structure. The classification into structural and reduced form models of debt valuation is a 

shady one, and we think that our model can be interpreted to represent either class. 

Our model is particularly suited for answering two questions of great interest to bank 

practitioners as well as to regulators. The first is the issue of how should losses given default, 

that are stochastic, be estimated for the purpose of using them in credit risk models that often 

for practical reasons take them as constants. We provide a simple expression for the ELGD 

within our model, which could be the basis for loss-given-default estimates to be used in 

several reduced form models of risky debt (e.g. Jarrow and Turnbull, 1995, Jarrow, Lando 

and Turnbull, 1997, and Duffie and Singleton, 1999), as well as in portfolio models such as 

J.P. Morgan (1997) or Credit Suisse Financial Products (1997). In particular, when credit 

portfolio models are applied to bank loan books with a very large number of individual 

exposures, loss-given-defaults are often treated as constants for computational reasons. The 

question is then to find the constant estimates that give the best approximation to the results 

obtained from a full-scale portfolio model with stochastic collateral values. The ELGD for 

each individual exposure, calculated on a stand-alone basis, is a natural, yet not necessarily 

the theoretically correct, estimate to this end3. Effectively the same problem is also 

encountered by regulators who are currently working on reforming capital adequacy 

                                               

2 Longstaff and Schwartz (1995) assume an asset value process identical to ours, and a constant boundary 
whose first-crossing time determines default. They offer both an asset stock and a cash flow based interpretation 
to this default mechanism. Moreover, they emphasize that the critical determinant of default is the value of the 
default determining variable relative to the default boundary, and not the value of the default determining 
variable in itself. 
3 In portfolio models, conditional expectations are frequently substituted for the values of stochastic variables in 
order to speed up computations. The correct conditioning event, however, depends e.g. on the chosen Value-at-
Risk confidence level. See e.g. Praschnik, Hayt, and Principato (2001) on this.  



 

requirements to be more in line with economic capital models (Basel Committee, 2001). The 

internal ratings based approach to setting capital requirements on credit risk within the new 

Basel Accord is based on a one-factor version of the CreditMetricsTM framework, and the 

issue of how to estimate loss-given-defaults consistently with the dynamics of collateral 

values is also present here. 

As a second application, we suggest that our model could be used by banks in setting 

limits on loan-to-value ratios to be applied in lending. A limit on the loan-to-value ratio 

refers to the maximum amount of credit that may be granted against a given collateral. Such 

limits appear to be widely used by banks, and may partially substitute for risk sensitive 

pricing of loans. Often, however, there may not be a transparent quantitative theory which 

could explain the structure of the chosen limit system. We believe that existing practices 

could potentially be much improved upon by a model based quantitative approach. To this 

end, we calculate limits on loan-to-value ratios based on an uniform value principle, in which 

the choice of the loan-to-value ratio equalizes the valuation of loans across risk classes, as 

well as two other related probabilistic criteria. 

Our model yields a number of comparative static predictions on the behaviour of the 

ELGD with respect to the model parameters. We show that the ELGD is a decreasing 

function of the drift of the collateral value, an increasing function of the volatility of the 

collateral value, and an increasing function of the correlation between the collateral value and 

the default determining variable. Moreover, the ELGD is a decreasing function of the initial 

default probability of the borrower, given that the correlation between the collateral and the 

default probability is negative (the usual case). This last result at first appears counter-

intuitive, but we present an explanation to it. Our numerical results indicate that this effect 

may not be negligible in all cases. 

There is a large literature on the analysis of risky debt based on structural models. The 

seminal model of Merton (1974) has been extended to allow for endogenous bankruptcy e.g. 

by Black and Cox (1976), Leland (1994), and Leland and Toft (1996). Stochastic interest 

rates have been considered by Kim, Ramaswamy and Sundaresan (1993), Longstaff and 

Schwartz (1995), and Briys and de Varenne (1997). Liquidation costs and the resulting 

bargaining game in the event of bankruptcy have been analysed by Andersen and Sundaresan 



 

(1996), Fan and Sundaresan (2000), and Mella-Barral and Perraudin (1997). However, the 

only analysis that has considered the effects of less than perfect correlation between the firm 

asset value and the collateral value, that we are aware of, is Frye (2000a, 2000b). Fry uses the 

ELGD concept in proposing improved constant loss-given-default estimates in a portfolio 

context, where asset values and collateral values are assumed to be normally distributed. Our 

qualitative results regarding the ELGD are consistent with his, but we believe that the 

Mertonian lognormal framework that we use is a more realistic model of asset and collateral 

values. 

The rest of the paper is organized as follows. The next section presents our extension of 

the Merton model. Section 3 solves the model for debt prices and derives some of their 

properties which are relevant concerning the implementability of the model. Section 4 

analyses the comparative statics of debt values and the ELGD, while Section 5 illustrates 

loan-to-value ratios derived from the model. Section 6 contains a discussion of the potential 

applications of our model within the new Basel Accord. 

2 The model 

We build on Merton's classic model of risky debt. We study a defaultable zero-coupon debt 

contract with a face value of B, and a maturity of T years, which is backed by stochastic 

collateral V. The following assumptions characterize our model. 

Assumption 1. The default determining variable A satisfies the stochastic differential 

equation 

 1AdWAdtdA AA σµ += ,        (2) 

where the drift µA and the diffusion term Aσ  are positive constants, and { }0:1 ≥tW t  is a 

standard Brownian motion. 

Assumption 2. The collateral value  V satisfies the stochastic differential equation 

 2VdWVdtdV VV σµ += ,        (3) 



 

where Vµ  and Vσ  are positive constants, and { }0:2 ≥tW t  is a standard Brownian motion, 

whose instantaneous correlation with W1 is ρdt. 

We interpret V as the market value that the lender can realize in an asset sale, when she 

liquidates both the collateral explicitly pledged against the debt obligation, as well as her 

share of the nonpledged assets. Thus we use the word collateral in a wide sense, and not only 

to mean the value of the pledged assets. 

Assumption 3. The risk-free interest rate r is independent of the variables A and V. 

Since our objective is to study the behaviour of credit spreads and loss-given-defaults, we can 

assume without loss of generality that the riskfree rate is a constant. We do this in all 

subsequent presentation to economize on notation. 

Assumption 4. Default occurs at T when the value of the default determining variable A at T 

is less than a positive constant D. 

According to the classical interpretation of A as total asset value, default is triggered if the 

asset value at maturity is less than the face value of the zero coupon debt. In this case our 

default boundary D would equal the face value of the zero coupon debt, B. We do not need to 

make such stringent interpretations concerning the capital structure of the firm. Even if we 

interpreted A as total asset value, we could allow several forms of debt by defining D as the 

total amount of debt. As suggested in the introduction, we prefer not to think of A as total 

asset value, but rather think of A and D jointly as a mechanism that generates a term structure 

of default probabilities for the firm. This interpretation is supported by the fact (which will be 

shown in the next section) that debt value is homogenous of degree zero in A and D. Thus 

only their relative magnitude matters for pricing of credit risk, not their absolute values. 

Default only occurs at the maturity of the debt contract in our model. We acknowledge 

that this is a shortcoming of the Merton model, and precludes coupon debt from being priced 

consistently. The portfolio models, on the other hand, which are the intended application for 

the ELGD estimates calculated from our model, share a similar one-periodic structure to our 

model. 

Assumption 5. The payoff to the holder of the zero coupon debt at T equals  

 ( ) ( ) ( )DAIBVMinDABI TTT <+≥ , ,       (4) 



 

where I( ) denotes the indicator function for the event defined in the parenthesis. 

Assumption 5 implies that the payoff to the debt holder at maturity depends on A and V 

through their terminal values only. The value of A alone determines whether the firm is in 

default at T or not. If the value of A at T exceeds the default barrier D, the debt holder 

receives the promised amount B. When the value of A at maturity is below D, the firm is in 

default and the holder of the zero coupon debt receives ( )BVMin T , . This implies that a debt 

holder can never benefit from default through receiving more than her promised share of the 

value of the firm. 

So far we have assumed that A and V are correlated but have not defined their functional 

relationship. According to the asset value interpretation of A, there are basically two 

alternatives. If the debtor owns the collateral, then V is part of A. It is also possible that the 

collateral is not owned by the debtor but is provided by a third party. A common example of 

this would be an entrepreneur whose privately held company is the debtor but who provides 

the collateral to the lender as a private person. In this case V and A are correlated inasmuch 

as macroeconomic developments tend to affect all asset values in the economy, whether they 

be corporate assets or e.g. housing real estate. 

In the case where the debtor owns the collateral, we could specify A = A’ + V, where A’ 

and V are correlated lognormal diffusion processes. The correlation between A and V would 

then be effectively derived within the model from the processes of A’ and V. As the sum of 

two lognormal variables is not lognormal, such additive relation between A and V is not likely 

to work analytically. We have chosen to keep V and A separate, which, if the asset value 

interpretation is taken literally, corresponds to the case where the debtor does not own the 

collateral. But since we do not enforce the asset value interpretation in the first place, there is 

no need to combine A and V in any way. After all, if A is only a sufficient statistic for a 

default probability, A and V do not need to be in the same scale, and trying to force any 

summing between them would be a pointless exercise. 

Assumption 6. Sufficiently perfect capital markets. 

In our analysis, we ignore transactions costs, taxes and indivisibilities, and assume that 

agents are price takers. Short sales are allowed, and trading can take place continuously in 

time. Many of these assumptions can be relaxed without changing the conclusions materially. 



 

3 Value of risky debt 

Let F(A,V,t) denote the value of the zero coupon debt as a function of the stochastic variables 

and (calendar) time t. At maturity the value is just the terminal payoff to the zero coupon 

debt, given by equation (4) above 

 ( ) ( ) ( ) ( )DAIBVMinDABITVAF TTTTT <+≥= ,,, . 

Simple manipulations yield an equivalent form of the terminal payoff 

 ( ) ( ) ( )DAIVBMaxBTVAF TTTT <−−= ,0,, ,     (5) 

which reveals that the payoff from this risky debt is equivalent to a payoff from the 

corresponding riskfree debt, less the payoff from a European put option written on the 

collateral value, with strike B and maturity T, whose realisation is conditional on the value of 

the stochastic variable A. We will utilize this representation in what follows. 

Time 0 expected payoff, under an arbitrary probability P, is  

( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( )[ ]DAIEDAIVBMaxEB

DAIVBMaxEBTVAFE

T
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TT
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TT
P

TT
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<<−−=
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,0

,0,,
.  (6) 

We define formally the expected loss given default (ELGD) associated with the zero coupon 

debt contract as 

 ( ) ( )[ ]DAIVBMaxEELGD TT
P <−= ,0 ,      (7) 

and the default probability of the borrower (PD), under probability P, as 

 ( )[ ]DAIEPD T
P <=  

Given these definitions, we can write (6) as 

 ( )[ ] PDELGDBTVAFE TT
P ⋅−=,, .       (8) 

Analogously to (1), we can value any payoff by taking its discounted expectation under a 

martingale probability measure Q. Evaluating (7) and (8) under a risk neutral measure yields 

the value of the risky zero coupon debt as (see Appendix for the proof). 



 

Proposition 1. The value of the risky zero coupon debt is 

 ( ) ( ) ( ) ( ){ }TdQQTbLTrBVAF AV ,,;,,,1,0,, 22
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where ( )N  is the standard normal distribution function, and ( )n  is the standard normal 

density function. 

The solution (9) is not quite an analytic formula in that it involves a one-dimensional 

integral which has to be evaluated numerically. Such one-dimensional quadrature is not 

computationally intensive, though, and can be performed very quickly using some of the well-

known numerical integration schemes (see e.g. Press et al., 1992). 

Formula (9) is exactly of the same form as (1). In the formula (9), B(r,T) is the present 

value of B to be received at time T, or the price of a risk free discount bond. This is multiplied 

by the expected payoff, per unit face value, of the debt at maturity. This expected payoff is 



 

just the promised unit payment, from which the product of the ELGD and the default 

probability is deducted, both calculated under the martingale measure. The function 

( )QTbL V ;,,, 2 ρσ  is the ELGD, expressed as a percentage of the face value of the debt. This is 

a function of the quasi loan-to-value ratio, b, as well as the parameters of the collateral value 

process. The function ( )TdQ A ,, 2σ  is the default probability of the counterparty under the 

martingale measure. This is a function of the quasi leverage ratio of the firm, d, as well as the 

volatility of the asset value process. 

The roles of the stochastic variables A and V are separated in a useful manner in our 

model. First, the default probability is only a function of the parameters of the asset value 

process (including d), and does not depend on the values of the collateral value parameters, 

nor on the particular debt contract’s loan to value ratio b. Second, the ELGD is a function of 

the parameters of the asset value process only through Q, the quasi default probability. Thus 

it is possible to implement the model and to calculate the ELGD with external estimates of 

default probabilities, similarly to reduced form debt pricing models, without having to 

estimate the asset value parameters in the first place. The parameters of the collateral value 

process as well as the correlation between the collateral and the default determining variable 

could be estimated using appropriate proxy variables such as stock market industry indexes, 

or real estate indexes in the case of real estate collateral. 

The debt value satisfies two useful homogeneity properties, which we record in the 

following. The proofs can be carried by substitution into the debt value formula (9). 

Proposition 2. The value of the risky zero coupon debt given in (9) is  

(i) homogenous of degree 1 in V0 and B, 

(ii) homogenous of degree 0 in A0 and D. 

The fact that debt value is linearly homogenous in the face value of the debt and the value of 

the collateral is an implication of the linearity of pricing: as long as the loan–to-value ratio 

remains unchanged, the terms of the loan do not change in relative terms. That debt value is 

homogenous of degree zero in the values of the default determining variable and the default 

boundary implies that debt value only depends on the ratio of the two variables. This supports 



 

our interpretation of A and D as a stylized description of a mechanism for creating a term 

structure for default probabilities, rather than as concrete asset values. 

The debt value in (9) has an intuitive form, which becomes even simpler if we assume 

that the collateral value and the default determining variable are uncorrelated. Evaluating (9) 

with ρ = 0 yields the following expression for the debt value 

 ( ) ( ) ( )[ ] ( )TBVBSDAIETrBVAF V
Put

T
Q ,,,,0,, 2

000 σ<−= ,    (10) 

where BSPut is the Black and Scholes value of a put option on V, with strike B. Equation (10) 

shows that the value of risky debt in this case is the value of the corresponding riskless debt, 

deducted by the default probability of the firm times the value of a put option on the collateral 

value. Since default probability is less than 1, the risky debt is more valuable than the 

portfolio consisting of the riskless debt and a short position in the put option on the collateral 

value. This holds even if the collateral value and the asset value are positively correlated. The 

holder of the risky debt is hurt by low collateral values only when the firm actually defaults. 

As far as the correlation between collateral and asset values is less than perfect, defaults do 

not always take place when collateral values are low. 

Merton’s original model of risky debt can be obtained as a special limit of our model, 

which can be achieved by merging the asset value and the collateral value processes 

appropriately. Our model thus incorporates the Merton model as a special case, and is 

therefore a genuine extension. We record this in the next proposition. 

Proposition 3. Merton’s model of risky debt, where the value of a zero coupon bond is given 

by 
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is obtained as a limit of the debt value in (9) when A0 = V0, B = D, and the collateral and 

asset value parameters coincide, so that ρ = 1. 



 

4 Sensitivity analysis 

Formula (9) shows that the value of risky debt depends on the collateral value parameters 

only through their effect on the ELGD. Since the ELGD has a negative sign in the debt value 

formula, the partial derivatives of debt value with respect to the collateral value parameters 

are of opposite sign than the corresponding partial derivatives of the ELGD. In this section 

we therefore only analyse the sensitivities of the ELGD. The brute force way to derive these 

sensitivities would be to analyse the explicit solution for L( ) in (9). A perhaps easier way to 

derive the sensitivities is based on manipulating the definition of the ELGD, (7), as 
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The last row in (11) shows that the ELGD can be expressed as the sum of the expected 

terminal payoff from a (long) put option on the collateral value, with strike equal to the face 

value of the debt, and a second term involving the covariance of the put option payoff with 

the indicator function of default. If the default determining variable and the collateral value 

are uncorrelated, then this term is zero, so that the ELGD equals the first term on the last row 

in (11). As the value of a put is an increasing function of the volatility of its underlying asset, 

the ELGD is the higher, the higher is the volatility of the collateral. 

The functions ( )TVBMax −,0  and ( )DAI T <  are both non-increasing in V and A, 

respectively. This implies that when the correlation between A and V is positive, the 

covariance between these functions (viewed as random variables) is also positive. Therefore 

under positive correlation between V and A, collateral volatility contributes positively to the 

ELGD also via the second term in (11). Moreover, the correlation between ( )TVBMax −,0  

and ( )DAI T <  increases with increasing correlation between V and A, so that the ELGD is 

also increasing with respect to the correlation parameter. These conclusions are in line with 

immediate intuition. 

Numerical examples of the behaviour of the ELGD, expressed as a percentage of the face 

value of debt, are presented in figures 1 and 2. Figure 1 shows the ELGD as a function of 



 

collateral value volatility and the correlation parameter, for a firm with 0.5% default 

probability over a one year horizon, and for a debt with one year maturity and initial loan-to-

value ratio of 1. As proved above, the ELGD is increasing in the volatility and the correlation 

parameters. The variation of the ELGD as a function of these parameters appears 

economically quite significant. Given a correlation of 40%, doubling the volatility from 20% 

to 40% nearly doubles the ELGD from 22% to 39 %. We also note that in the presence of 

zero collateral value volatility, the ELGD in Figure 1 equals zero since the initial loan-to-

value ratio equals 1. 

As a reservation to these result, we note that we have not varied the collateral value drift 

as a function of its volatility and correlation. We simply assumed the drift to equal the 

riskless rate. For long maturity credits in particular, the effects of the drift on the ELGD can 

be substantial. Asset pricing theories suggest that the collateral value drift should be related 

to the collateral value volatility and the correlation. Stocks with high volatility would have 

high expected growth rates as well, ceteris paribus, which would produce a dampening effect 

on the conditional loss expectation. In principle, all the collateral value parameters – its drift, 

volatility and the correlation with asset value – should be jointly estimated by taking into 

account the asset pricing relationships which are not explicitly considered in our model. 

Figure 2 illustrates the relationship between the ELGD and the probability of default. We 

observe that for positive correlation between collateral value and the firm asset value, the 

ELGD is the lower, the higher is the likelihood of default. This might at first appear 

counterintuitive. The logic behind this ceteris paribus result is that the lower is the probability 

of default, the more the firm asset value has to decline before default will occur. Positive 

correlation between the asset value and the collateral value in turn implies that, for a given 

initial collateral value, the future collateral value in the event of default will an average be the 

lower, the lower is the initial default probability. Hence the negative relationship between 

initial default probability and the ELGD. We also note from Figure 2 that this relationship 

vanishes for zero correlation between the collateral and the firm value. Although the effect 

does not appear economically very significant for a wide range of parameter values, in some 

cases it may not be without significance. Figure 2 e.g. shows that for a collateral volatility of 

15% and correlation with the asset value of 60%, the ELGD estimate for a top quality credit 



 

(one year default probability close to zero) is about twice that of a quite low quality credit 

(default probability higher than 10%) with similar collateral position. 

5 Loan-to-value ratios 

As a second application of our model, we analyse several rules that banks could use in 

determining limits on loan-to-value ratios (the ratio of the face value of the debt to the 

collateral value pledged against the debt, B/V0 in our model) in lending. Limits on loan-to-

value ratios can at least partially substitute for risk sensitive pricing of loans, in that sufficient 

protective collateral limits potential losses in the event of default, and thus makes loans 

‘sufficiently riskless’ to be eligible for a uniform, risk insensitive pricing. Loan-to-value 

ratios, or implied collateral haircuts, set according to such objectives should itself be sensitive 

to both the default risk of the counterparty, and the risk characteristics of the collateral value. 

In order to implement the previous idea, a definition of ‘sufficiently riskless’ is required. 

Clearly value could be used as a criterion: one might require that the value of the loan, 

calculated from (9), implies a credit spread of 10 basis points or less. On the basis of this 

uniform value criterion, one could calculate limits on loan-to-value ratios as a function of the 

default probability and the parameters of the collateral value, then apply those limits in 

lending, and price all loans uniformly at 10 basis points over the riskless rate4. We present 

loan-to-value ratios calculated according to this rule in Table 1A. 

We note from Table 1A that the loan-to-value ratios calculated according to the uniform 

value criterion decline with increasing collateral value volatility, decline with increasing 

correlation between collateral and asset value, and decline with increasing default probability 

of the borrower. Loan-to-value ratios also usually decline as the maturity of the contract is 

increased (in which case the cumulative default probability is also increased appropriately). 

The opposite happens, however, when the volatility of the collateral value is very low. This is 

because in these cases the collateral value drift begins to dominate the collateral value 

volatility as maturity lengthens. 

                                               

4 In practitioner parlance, this would be called ‘lending on collateral’. 



 

The uniform value criterion to setting loan-to-value ratios essentially takes a loan value 

as given, and maps it into a corresponding loan-to-value ratio, or equivalently, a collateral 

requirement. Solving for the loan-to-value ratio requires valuing the loan in the process. 

Sometimes this can be a laborious task that one would like to avoid, in particular since 

valuation may require the estimation of non-observable quantities such as risk-neutral 

probabilities of default. We are interested in finding out whether there could be other rules for 

setting loan-to-value ratios which would depend on the statistical model of the collateral and 

the asset value only, and which would produce results which are qualitatively similar to the 

ones based on the uniform value criterion? We test two probabilistic criteria below. 

A Value-at-Risk type rule based on the conditional probability of loss is the following: 

allow loan-to-value ratios up to the point where the conditional probability of the collateral 

value falling below the face value of the debt in the event of default is at most X%. Table 1B 

presents loan-to-value ratios based on this rule for different values of the collateral value 

parameters. We observe that under this rule, loan-to-value ratio declines as either the 

collateral value volatility or the correlation between collateral value and asset value increases. 

Also, loan-to-value ratios decline as the maturity of the loan increases, unless the volatility of 

the collateral value is very low. This behaviour is in line with the sensitivity results obtained 

from the uniform value rule. Contrary to the uniform value rule, however, the loan-to-value 

ratio increases as the credit quality of the firm declines, given that the correlation between 

collateral and asset value is positive. In some cases this effect can be quite significant. This 

result is analogous to the negative relation between default probability and the ELGD 

observed previously. Yet the result is counterfactual, since casual empirical evidence suggests 

that loan-to-value ratios actually decline with increases in the default probability of the 

borrower. More seriously, this kind of limit system violates basic economic principles of 

value, in that if pricing is not risk sensitive, one should clearly not lend more to a lower 

quality customer, provided he can pledge the same collateral as a better quality customer. 

This odd behaviour is of course due to the fact that pricing cannot be based on information 

which is conditioned on default having taken place alone. The probability of default must 

clearly be reflected in the loan-to-value criterion, if this is to be substituted for risk sensitive 

pricing. 



 

We have tested an alternative criterion based on unconditional probability of loss, 

stating: allow loan-to-value ratios up to the point where the unconditional probability of a 

credit loss is at most X%. Interpreted differently, the probability that the customer defaults 

and that, simultaneously, the collateral value falls below the nominal loan amount must not 

exceed a certain percentage. A immediate implication of this criterion is that any loan-to-

value ratio is acceptable with borrowers whose default probability is below the unconditional 

loss probability which is used in the criterion5. In table 1C, we illustrate loan-to-value ratios 

determined based on this criterion. The criterion, with 0.1% as the maximal allowed 

probability of loss, produces both infinite loan-to-value ratios, as well as loan-to-value ratios 

above one hundred percent. In contrast to the previous criterion, however, the loan-to-value 

ratios calculated based on this criterion decline as the default probability of the borrower 

increases. This criterion in fact displays all the same comparative statics as the uniform price 

rule, and is therefore the more recommendable of the two probabilistic criteria analysed here. 

6 Conclusions and discussion on the applicability under Basel II  

In essence this paper is an attempt to provide insights to the estimation of a central credit risk 

quantity, loss-given-default, that is often treated as a constant for practical reasons, but that 

really is stochastic because of the uncertainty regarding the future value of collateral. 

Although our model is rather simple and stylized, we believe it can be a useful quantitative 

tool. Be it the estimation of the expected loss-given-default to be used in credit risk models, or 

determination of loan-to-value ratios for lending guidelines, the model helps to understand 

which parameters are relevant to consider and what are their likely effects. Moreover, we 

believe that our framework could be useful in estimating losses-given-default in the advanced 

internal ratings based approach of the new Basel capital accord. 

Although the document of Basel Committee (2001) already contains many highly 

structured proposals for determining banks' minimum capital requirements for credit risk, 

some of them leave considerable room for banks themselves to decide what particular 

techniques to employ. The prime proposal in this category is the advanced internal ratings 

                                               

5 In bank practitioners’ parlance, this is sometimes called as ‘lending against name’. 



 

based approach for corporate credit exposures, in which banks would be allowed to provide 

their own loss-given-default estimates subject to certain qualitative minimum requirements. 

In forming these estimates, any type of collateral could in principal be considered. The loss 

concept would be that of expected loss-given-default (Basel Committee, 2001, paragraph 

326). We suggest that our model could be applied for this purpose. As we have shown above, 

our method can be used to answer the question of how much is one expected to lose, in the 

event of default, from a given exposure which is protected by a given amount of collateral. 

Our approach takes this estimation problem down to the fundamental structural parameters, 

namely the drift and volatility of the collateral value, its correlation with the obligor’s default 

probability, and the obligor's default probability. Of course a prerequisite for the acceptance 

of any internal model is the validation of the model-based estimates against empirical data. 

The advanced IRB approach is not the only potential application of our framework 

within the new Basel Accord. In the so called foundation IRB approach, Basel Committee 

(2001) has suggested collateral haircuts for various asset types. It would be interesting to 

study whether these are consistent with those that can be obtained from our model. Moreover, 

the January 2001 proposal of the Basel Committee (2001) was rather short on the treatment 

of retail portfolios. Our framework might be useful in assessing losses-given-default in retail 

loans often backed by various types of physical collateral as well. 

The Basel Committee's proposal has provoked critique (e.g. Frye, 2001) for ignoring the 

systematic risk component of loss-given-default, which results from the exposure of collateral 

values to the common risk factors driving defaults. We believe that this criticism could be at 

least partly accounted for within the current Basel proposal by using appropriate collateral 

haircuts which take into account the systematic risk. A collateral haircut percentage y is by 

definition a number which satisfies  

 ( ) 01 VyERGD −=  

where ERGD stands for the expected recovery given default. Within our model, the ERGD 

and the ELGD of a zero coupon bond are related by ERGD + ELGD = B, so that our ELGD 

estimates can easily be mapped into haircut percentages. When e.g. the face value of the debt 

equals the current collateral value (B = V0), the ELGD percentages in figures 1 and 2 directly 

correspond to the haircut percentage. 



 

A more subtle point concerns the correct definition of the event on which the expectation 

should be conditioned in the calculation of the ELGD. We have calculated ELGD conditional 

on the borrower’s own default. In a portfolio context, where the task is to allocate capital 

which is estimated as a given percentile point of a portfolio distribution, to individual 

obligors and exposures, the correct conditioning event is one where the portfolio value is 

equal to the given percentile point in its distribution. This event is much more complicated 

than a default of a single counterparty, since in general there are several possible 

combinations of defaults by different obligors which all give rise to the same portfolio loss. 

Praschnik at al. (2001) discuss one way to numerically calculate such expectations. 

 



 

Appendix 

The value of risky debt is obtained be taking a discounted expectation, under a martingale 

measure Q, of the payoff at T which is given by equation (5) in the text, 
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where ( ) rTBeTrB −=,  is the present value of the riskless payoff B to be received at time T in 

the future. In the presence of a stochastic riskless term structure, the function B(r,T) would be 

the price of a riskless discount bond under the chosen term structure model. The challenge is 

to evaluate the term [ ])(),0( DAIVBMaxE T
Q <− . For this purpose, let us denote the joint 

density function of AT and VT as f(A,V), the density function of VT, conditional on AT, as 

fV|A(A,V), and the marginal density function of AT as fA(A). The expectation can then be 

evaluated as follows (we have dropped time-subscripts) 
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where y and z are jointly standard normally distributed random variables with correlation ρ, 

rTeV
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From the properties of the bivariate normal distribution, we know that conditional on y, z is 

normally distributed as ( )z y N y| ~ ,ρ ρ1 2− . Using this knowledge, the first term in the final 

expression in (A2) can be written as 
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The second term in the final expression in (A2) can be completed into a square prior to 

integrating. The expression inside the inner integral becomes 
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Substituting this expression into the last row in (A2) yields 

( ) ( )∫
∞−















−

−−−







 +−
1

2

2
222

1

1

2

1
exp

1
h

V
VV dyyn

yTh
NyTT

b ρ
ρσρρσσρ .            (A4) 

Combining (A2), (A3) and (A4) gives 
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Noting that ( ) ( )[ ]TdhNTdQ AA ,,,, 2
1

2 σσ = , substituting (A5) into (A1), and using the 

definition of conditional expectation, we get equation (9) in the text. 
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Figure 1. The ELGD as a function of collateral volatility and correlation 

Constant parameters: (one year) default probability 0.5%, loan-to-value ratio 1, debt maturity 

1 year, riskless rate 5%, collateral value drift 5%, residual recovery rate 0%. 
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Figure 2. The ELGD as a function of default probability 

Constant parameters: loan-to-value ratio 1, debt maturity 1 year, riskless rate 5%, collateral 

value drift 5%, collateral value volatility 15%, residual recovery rate 0%. 
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Table 1. Loan-to-value ratios 

The (cumulative) one/three-year default probabilities for A, BB, and B rated counterparties 

are 0.03%/0.22%, 1.32%/6.01%, and 5.58%/15.6%, respectively. These are obtained by 

assuming a time-homogenous transition matrix of annual rating transition probabilities, 

based on Standard and Poor’s default statistics (see J.P. Morgan, 1997, table 6.11). Risk free 

rate is 5% and collateral value drift is 5%. 

1A: Loan–to-value ratios based on uniform value criterion 

Highest ratio of loan amount to current collateral value such that the yield spread on the loan, 

over the riskfree rate, is less than 0.1%. 

 volatility 5 % 15 % 30 % 
correlation rating 1-yr 3-yr 1-yr 3-yr 1-yr 3-yr 
0 % A * * * * * * 
 BB 113 120 109 99 94 67 
 B 105 111 93 87 72 52 
30 % A * * * * * * 
 BB 109 113 97 87 75 51 
 B 101 107 85 78 61 42 
60 % A * * * * * * 
 BB 105 109 87 77 62 41 
 B 99 105 80 72 54 36 
* All loan-to-value ratios satisfy the criterion. 

 
1B: Loan-to-value ratios based on conditional loss probability 

Highest ratio of loan amount to current collateral value such that the conditional probability 

of loss, given bankruptcy, is less than 5.0%.  

 volatility 5 % 15 % 30 % 
correlation rating 1-yr 3-yr 1-yr 3-yr 1-yr 3-yr 
0 % A 97 100 81 73 61 43 
 BB 97 100 81 73 61 43 
 B 97 100 81 73 61 43 
30 % A 92 93 69 59 45 27 
 BB 93 96 73 64 50 33 
 B 94 97 75 66 53 36 
60 % A 87 88 61 49 35 19 
 BB 90 92 67 57 42 27 
 B 92 94 71 62 46 31 

* All loan-to-value ratios satisfy the criterion. 



 

1C: Loan-to-value ratios based on unconditional loss probability  

Highest ratio of loan face value to current collateral value such that the unconditional 

probability of loss is less than 0.1%.  

 volatility 5 % 15 % 30 % 
correlation rating 1-yr 3-yr 1-yr 3-yr 1-yr 3-yr 
0 % A * 114 * 109 * 98 
 BB 95 95 84 63 66 34 
 B 94 93 74 58 53 27 
30 % A * 106 * 86 * 62 
 BB 94 91 77 56 53 26 
 B 90 90 70 53 46 22 
60 % A * 98 * 67 * 36 
 BB 90 89 71 52 45 22 
 B 89 89 67 51 41 21 

* All loan-to-value ratios satisfy the criterion.    

 



 



Essay 5: On the markup interpretation of optimal stopping 

rules* 

 

Abstract 

In the context of the standard irreversible investment problem, Dixit et al. (1999) 
derived a first-order condition for optimal stopping rules that has a markup 
interpretation familiar from classical producer theory. We show here that optimal 
policies can be characterized through first-order conditions that have the markup 
interpretation also in stopping models with flow payoffs and multiple (an infinite 
sequence of) stopping decisions. We do this by analyzing two well known models 
in the real options literature: a model of abandonment where the objective is the 
present value of a flow payoff, and Dixit’s (1989) regenerative model of 
investment and abandonment. The markup formulas follow from conveniently 
representing the objective function as a function of the stopping barriers, taking 
advantage of renewal arguments. In many cases this approach is equally tractable 
as the dynamic programming approach, provides a different economic intuition 
into the solution, and is pedagogically very appealing. 

 

Keywords: optimal stopping, investment, abandonment, markup 

JEL classification: D21, G31 

 

1  Introduction 

The standard approach to optimal stopping is via dynamic programming/variational 

inequalities, as illustrated e.g. in Bensoussan and Lions (1982) or Oksendal (1995). A 

textbook example of an optimal stopping problem whose dynamic programming differential 

equation can be solved explicitly is the plain vanilla irreversible investment problem first 

solved by McDonald and Siegel (1986) and extensively analyzed by Dixit and Pindyck 

(1994). It is well known that this particular problem can also be solved using a direct 

approach, whereby the objective function is represented in terms of the unknown stopping 

                                               

* I thank Luis Alvarez for very helpful comments that led to numerous improvements in this paper. 



 

barrier, and then optimized with respect to the location of the barrier. Moreover, as noted by 

Dixit et al. (1999), the direct approach yields a first-order condition for the optimal 

investment barrier that has exactly the same form as the optimal pricing rule of a firm that 

faces a downward sloping demand curve, generally referred to as the markup pricing rule. 

Dixit et al. hence refer to this first-order condition as the markup interpretation of optimal 

investment rules. 

The markup first-order condition obtained by Dixit et al. (1999) follows automatically 

from the representation of the objective in terms of the unknown barrier. The direct approach 

therefore provides a different economic intuition into the solution relative to dynamic 

programming, an intuition that most economists may be more familiar with and which could 

be lost if the problem were attacked through solution of the HJB equation. The direct 

approach also has other merits relative to dynamic programming. First, solution of the optimal 

policies in the direct approach reduces to solving a system of algebraic equations, as opposed 

to solving a differential equation. Second, the system of algebraic equations in the direct 

approach does not involve other unknowns besides the stopping barrier(s). The dynamic 

programming approach eventually leads to first-order conditions for the barrier(s) as well, but 

this system is of higher dimension since it contains unknown coefficients of the general 

solution to the HJB equation. 

In this paper, we apply the direct approach to some straightforward variations and 

generalizations of the basic irreversible investment problem, and obtain first-order conditions 

that have ‘classical’ mark-up interpretations in terms of relevant elasticities. We first study a 

problem of optimal abandonment of a firm generating a flow of rewards. We find this 

particular model well suited for demonstrating the simplicity of the technique, for 

regenerating the closed form solutions obtained earlier based on dynamic programming, and 

for showing that with the direct approach, variations in the problem structure can be handled 

very efficiently. We then apply the direct approach to a regenerative stopping problem with 

both flow rewards and lump-sum payments at stopping times, i.e. to Dixit’s (1989) model of 

sequential investment and abandonment. As for both of these models, we claim that the direct 

approach is conceptually simpler and (at least) equally tractable as dynamic programming, 

and yields first-order conditions with clear economic interpretations. 



 

A necessary condition for the direct approach to work is that the objective function be 

represented as a function of the stopping barriers in terms of components that are suitable for 

explicit computation. As for the standard irreversible investment problem, the representation 

obtained by Dixit et al. (1999) is a product of two terms, both of which are functions of the 

barrier. The essential argument that Dixit et al. (1999) need to obtain this representation is the 

time-homogeneity of the problem. The generalizations that we analyze preserve time-

homogeneity, and we assume the state variable to be a strong Markov process. We use 

renewal arguments which take advantage of just these properties to obtain convenient 

‘product’ representations of the objective. We acknowledge that other methods could be 

applied to represent the objective as a function of the barriers. A representation based on 

Green functions has been used by Alvarez (1998, 1999, 2001) to solve one-off stopping 

problems using the direct approach. The first-order conditions obtained by Alvarez however 

do not have the mark-up character. In regenerative problems, in particular, it appears that 

renewal techniques are essential for representing the objective in terms of components that 

that are amenable to explicit computation (these component solutions may be obtained using 

the method of Green functions, but as for the models analyzed in this paper, the technique is 

unnecessarily general). Related techniques have also been utilized in the (s,S) inventory 

literature (e.g. Porteus, 1971, 1972, Harrison, 1985, Bentolila and Bertola, 1990), but these 

papers have not been concerned with the mark-up interpretation of the first-order conditions. 

The paper most related to ours is Sodal (2002), which analyzes the stochastic rotation 

problem of Faustmann using the same methods that we use in this paper. The model in 

Section 5 of this paper is a generalization of the model analyzed by Sodal. 

The paper is organized as follows. Section 2 presents a brief summary of Dixit et al.’s 

(1999) results. Section 3 introduces an optimal abandonment problem with flow rewards and 

derives the markup first-order condition. Section 4 presents explicit solutions to this problem 

under two different stochastic processes for the state variable, and demonstrates the efficiency 

of the direct method in accommodating a variation in the problem structure. Section 5 applies 

the direct approach to a model of joint investment and abandonment, derives first-order 

conditions analogous to those in the simpler models, and obtains the objective function in 

closed form in the case of geometric Brownian motion price dynamics. Section 6 concludes. 



 

2 An overview of Dixit et al. (1999) 

Dixit et al. (1999) developed the markup interpretation in the context of the standard 

irreversible investment problem first analyzed by McDonald and Siegel (1986). The state 

variable P representing the net present value of an investment project is assumed to follow a 

time-homogenous diffusion process (not necessarily geometric Brownian motion). The 

objective is to maximize the value V of the option to undertake this investment against a fixed 

investment cost I, by optimally choosing the exercise time of the investment option 

 ( ) ( )[ ]IPeEPV P −= −
τ

ρτ

τ
sup         (1) 

where the optimization is over all stopping times τ of the filtration generated by the state 

variable P. The discount rate ρ is taken to be a constant. Since the optimal stopping times in 

problem (1) are hitting times of a fixed barrier b, the problem reduces to 

( ) ( )[ ] [ ]( ) ( )( )IbbPLIbeEIbeEPV
b

P
b

P
b

bb −=−=−= −− ,supsupsup ρτρτ   (2) 

where bτ  denotes the first hitting time of P to the barrier b from below, defined as 

{ }bPt tb ≥≥= :0infτ , and L(P,b) denotes the Laplace transform of bτ , given that P0 = P. 

The elasticity of the Laplace transform of the hitting time, with respect to the barrier b, is 

defined by 

 ( ) ( )
( )bPL

bbPL
b b

Lb ,

,
−=ε .         (3) 

Dixit et al. show that this elasticity is independent of the starting value P, although in general 

the elasticity depends on the value of the barrier b. The first-order condition to (2) then takes a 

specially intuitive form when expressed in terms of the elasticity, 

 ( )∗∗

∗

=−
bb

Ib

bLε
1

,         (4) 

which is identical in form to the markup pricing rule of a firm facing a declining demand 

curve. Indeed, interpret I as the marginal cost of the firm’s output (assumed constant), b as the 

output price, and L(P,b) as the demand curve facing the firm (which is declining in b, and 

increasing in P which may be interpreted as a shift parameter). Then equation (2) is a standard 



 

one-period profit maximization problem, and (4) is the optimal pricing rule, 
bLε  in this case 

being the price elasticity of demand. 

Returning to the optimal investment problem, rearranging (4) in terms of ∗b  yields an 

implicit expression for the optimal investment threshold in terms of the elasticity 
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This is in general only an implicit expression since 
bLε  may depend on b. It is obvious from 

this expression that when the elasticity is positive and larger than 1 in absolute value, the 

optimal barrier ∗b  will exceed the break even value I. 

For some typical diffusion processes used to model project values, explicit expressions 

for L(P,b) are known. When P satisfies a geometric Brownian motion with parameters µ > 0 

and σ > 0, we have 

( )
1

,
β








=
b

P
bPL ,         (6) 

where 1β  is the positive solution to the fundamental quadratic associated with geometric 

Brownian motion, 

 ( ) 01
2

1 2 =−+− ρµβββσ , 

and is larger than 1 in well behaved cases, i.e. when µ < ρ. Substituting (6) into (3), we 

observe that the elasticity of the Laplace transform with respect to b is constant and equal to 

1β . Substituting this into (5), we obtain the familiar result for the optimal investment barrier 
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3  An abandonment problem 

Our analysis here is in the context of a stopping problem which has earlier been studied based 

on dynamic programming methods by Dixit (1989) and Leland and Toft (1996), among 



 

others. A firm with unit output and a constant unit cost C experiences a stochastic output price 

P, which follows a time-homogenous diffusion process which satisfies the strong Markov 

property. Hence the firm's instantaneous profit flow is Pt - C. The firm value is the present 

value of this profit flow, based on a constant discount rate ρ, allowing for the firm's option to 

irreversibly terminate its operations, should the profit flow become sufficiently negative. 

Again, we know from the problem structure that the optimal stopping times must coincide 

with first hitting times of a constant barrier. Denoting the stopping barrier by b, we write firm 

value as 
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where bτ  denotes the first hitting time of P to the barrier b from above, defined by 

{ }bPt tb ≤≥= :0infτ . We want to write this objective in a form that is suitable for explicit 

calculation, and then optimize the barrier by differentiating the resulting expression with 

respect to b. We first write (7) as 
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where we have used the fact P is assumed to be a strong Markov process. In order to 

economize the presentation, we define the following functions 
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Here as before, L(P,b) is the Laplace transform of the first hitting time of P to the barrier b. 

Note, however, that although we use the same notation L(P,b) for the Laplace transform in the 

optimal investment problem and in the optimal abandonment problem, the hitting times are 

not the same and therefore the Laplace transforms in the two models are two different 

functions. 

Substituting the definitions (9a-c) into (8), we have 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )bWCWbPLCWPWbPV −+−= 00 ,; .     (10) 

This is a decomposition of the firm value into two terms. The component inside the first 

parentheses is the present value of the profit flow, given the current price, assuming that the 

firm is operated indefinitely. This term may be negative for sufficiently low P, and does not 

depend on b. The second component ( ) ( ) ( )( )bWCWbPL −0,  is the value of the option to 

terminate operations irreversibly. The present value factor ( )bPL ,  is always non-negative, so 

that for the option value to be positive, W(b) must be less than ( )CW0 . When P is a growing 

process, this already implies that the optimal b must be less than C. Optimal choice of b 

maximizes the option value and hence the firm value. The first-order condition for optimality 

of b in (10) is 

 ( ) ( ) ( ) ( )( ) ( ) ( ) 0',,; 0 =+−= ∗∗∗∗∗ bWbPLCWbWbPLbPV bb .    (11) 

We define the elasticity of the Laplace transform L(P,b) with respect to b as in (3). Again, the 

elasticity only depends on b since similar reasoning as in Dixit et al. (1999) can be used to 

show that the elasticity must be independent on P. The first-order condition (11) now can be 

expressed as 
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which is closely analogous to the markup formula (4) of the optimal investment problem. 

Moreover, when W(b) is first-degree homogenous in b, as will be the case when P follows a 

geometric Brownian motion, we have ( ) ( )bbWbW '= , so that equation (12) becomes 
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This is like the markup formula (4) of the optimal investment problem, with the exception that 

the optimal stopping barrier for the value of the investment project ∗b , and the investment 

cost I, have been replaced by the expected present values ( )∗bW  and ( )CW0  of the price flow 

and the cost flow, as defined in (9a) and (9b). These expectations are conditional on the 

current value of the price level being at the optimal stopping barrier. Solving the previous 

equation in terms of ( )∗bW  gives 
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which is completely analogous to (5). 

There is one more form for the first-order condition that is very useful, in particular to 

show the analogy between the current problem where a single stopping decision is analyzed, 

and the more general problem in Section 5 where successive investments and abandonments 

are studied. Let us denote the present value of the undiscontinued profit flow as 

( ) ( ) ( )CWPWPW 0

~ −= , and define its elasticity with respect to P as 

 ( ) ( )
( )PW

PPW
P P

WP
~

~
~ =ε . 

Then we can write condition (12) as 

 ( ) ( )∗∗ = bb
bP

LW
εε ~ .         (14) 

This states that the elasticity of the present value of the profit flow equals the elasticity of the 

discount factor, when both are evaluated at the optimal exit barrier. 

4  Explicit solutions 

Applying formula (12) is very straightforward if explicit expressions for the functions W(P), 

( )CW0 , and L(P,b) defined in (9a-c) can be found. We show this under two assumptions 

concerning the dynamics of P which yield well known closed form solutions to (9a-c). 

4.1 Geometric Brownian motion 

Let P satisfy the stochastic differential equation 



 

 PdBPdtdP σµ += , 

where B is a standard Brownian motion and µ and σ are positive parameters such that µ < ρ. 

Then explicit solutions to (9a-c) are (see e.g. Dixit, 1993) 
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Here 2β  is the negative solution to the fundamental quadratic associated with geometric 

Brownian motion, 

 ( ) 01
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1 2 =−+− ρµβββσ . 

Substituting (15c) into formula (3) for the elasticity, we get 02 <= βε
bL . Under geometric 

Brownian motion, the elasticity is constant as in the model of optimal investment. Moreover, 

since (15a) is first degree homogenous in P, we can utilize the markup formula (13) to 

determine the optimal abandonment barrier. Substituting in (15a), (15b), and 2β  for the 

elasticity, yields the optimal barrier 
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Since 2β  < 0 and ρ > µ, we have ∗b  < C. In the case of abandonment, the optimal barrier is 

below the cost rate, which is due to the option value of waiting. This is the same formula that 

could have been obtained based on dynamic programming methods. 

4.2  Arithmetic Brownian motion 

Now assume that P satisfies 

 dBdtdP σµ += , 



 

where B is a standard Brownian motion and µ and σ are positive parameters. Then for the 

formulas (9a-c) we get 

 ( )
2ρ

µ
ρ

+= P
PW ,                 (16a) 

 ( )
ρ
C

CW =0 ,                  (16b) 

 ( ) ( )( )bPbPL −= 2exp, λ ,                (16c) 

where λ2 is the negative root of the fundamental quadratic associated with arithmetic 

Brownian motion,  

 0
2

1 22 =−+ ρµλλσ . 

Substituting (16c) into (3), we get that ( ) bb
bL 2λε = . Substituting this as well as (16a) and 

(16b) into (12), we get the optimal barrier 

 
σ
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λ
−+=∗

2

1
Cb . 

Since λ2 is negative, the optimal abandonment barrier is less than the unit cost C. 

4.3  Geometric Brownian motion and concave profit function 

Equation (10) clearly shows that the objective function in our abandonment problem is 

composed of three components, which are the present value of the revenue flow, the present 

value of the cost flow, and the discount factor. These can be evaluated independently of each 

other. Therefore variations to the problem structure that perturb any of the three components 

can be accommodated by re-evaluating the affected component only. This is one of the 

benefits of the approach taken in this paper. As an example, let P follow geometric Brownian 

motion as in Section 4.1, but assume that the profit function in our problem is changed from 

Pt - C to CPt − . This profit function could result e.g. from a constant elasticity demand 

curve of the form ( ) 5.0−= PPD . A power function of geometric Brownian motion is still a 

geometric Brownian motion, so that the present value corresponding to (9a) but with Pt 

replaced by tP  is readily calculated, 
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On the other hand, neither the function ( )CW0  nor the Laplace transform L(P,b) will change. 

The optimal stopping barrier is then calculated through substituting (15b), (15c), and (17) into 

the markup formula (12). The optimal barrier is 
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while the breakeven price level, i.e. the price yielding zero instantaneous profit, is C2. 

5  A problem of investment and abandonment 

Both the optimal investment problem and the optimal abandonment problem analyzed in the 

previous sections are examples of one-off termination problems, where the choice variable of 

interest is a single stopping time. We demonstrate here that the direct approach applies also to 

regenerative problems with multiple (an infinite sequence of) stopping decisions, and that the 

first-order condition(s) still have interpretations in terms of elasticities of relevant economic 

quantities. 

The problem that we analyze here is a generalization of both the standard optimal 

investment problem and the optimal abandonment problem studied in the previous section. 

This problem has previously been analyzed based on dynamic programming methods by Dixit 

(1989) (see also Dixit and Pindyck, 1994, pp. 215-218). As before, P is a price that follows a 

time-homogenous diffusion process, C is a constant unit cost, and the firm has a technology 

that produces a single unit per unit time. The firm may begin to operate by incurring a fixed 

lump-sum investment cost I, and may cease to operate by incurring a lump-sum abandonment 

cost D. Once a firm has ceased to operate, it may begin to operate again by incurring the 

investment cost I. The value of the firm is the present value of profits less the present value of 

the costs of investment and abandonment. As a function of the abandonment barrier b1 and the 

investment barrier b2 (b1 is less than b2), the value of an idle firm, i.e. one that is not 

operating, is 
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where ,..., 21

11 bb ττ  are successive hitting times of the barrier b1, and similarly for the hitting 

times of b2. The hitting times are formally defined by 
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This is regenerative problem which starts anew at each stopping time. The firm value can be 

expressed in a concise form by taking advantage of this regenerative structure, as well as the 

strong Markov nature of the state variable. Let us define the functions 
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Here W(P) and ( )CW0  are exactly as in the previous problem, L(b1,b2) is the Laplace 

transform of the time interval it takes for the state variable P to first-hit b1, starting from b2, 

and U(b1,b2) is the Laplace transform of the time interval it takes for the state variable P to 

first-hit b2, starting from b1. Appendix A shows that, assuming that the firm is idle initially, 

the objective function (18) can be expressed with the help of (19a-d) as 
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so that the objective function (18) takes the form 

( ) ( ) ( )21
2

21
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21 ,,;,; bbVbbPVbbPV = .       (20) 

Here V1 is the expected present value of a stream of 1’s received at times ,..., 21

22 bb ττ  , and is 

therefore a multiperiod discount factor. V2 is the expected value of the profit flow during the 

time interval it takes for the state variable P to first-hit b1, given that P starts at b2, added with 

the value of the lump-sum payments at b1 and b2. This is the value of one recurrent sequel in 

this regenerative problem, the sequels of which are ex ante identical probabilistically. The 

objective function then has a very natural interpretation as the multiperiod discount factor 

times the value of a typical sequel. This representation of the objective is entirely analogous 

to the representations (2) and (10), respectively, in the one-off stopping problems. Therefore it 

is clear that the first-order conditions will have similar look out as well. 

We write the first-order conditions to (20) in terms of the elasticities of the functions V1 

and V2 with respect to the barriers b1 and b2, 
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where the elasticities have been defined as 
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All elasticities are generally functions of both b1 and b2. In order to interpret the equations, 

remember that V1 is a multiperiod discount factor, and V2 is the value of a single sequel or 

turnaround in the regenerative problem. As the abandonment barrier b1 is increased, the 

expected length of a sequel is reduced, so that the multiperiod discount factor increases. 



 

Raising b1 at the optimal pair (b1, b2) simultaneously reduces the value of a single turnaround, 

and at the optimum these two effects are balanced according to (21a). As the investment 

barrier b2 in increased, the expected length of a sequel is increased, and the multiperiod 

discount factor is therefore reduced. Raising b2 at the optimal pair (b1, b2) on the other hand 

increases the value of a single turnaround. At the optimum pair (b1, b2) the effects are 

balanced according to (21b). 

The first-order conditions (21a-b) are entirely analogous to the first-order condition (14) 

in the one-off abandonment problem. The essential difference between (14) and (21a-b) is that 

in (14) the discount factor is a single period one, whereas in (21a-b) the discount factor is the 

multiperiod discount factor V1. 

In order to obtain the value of the objective in closed form as a function of b1 and b2, it is 

sufficient to know (19a-d) in closed form. When P is a geometric Brownian motion, the 

expressions for W(P), ( )CW0 , and L(b1,b2) are as in (15a-c). For U(b1,b2) we have 

 ( )
1

2

1
21 ,

β









=

b

b
bbU , 

where β1 is the positive solution to the fundamental quadratic associated with Geometric 

Brownian motion. We have therefore a closed form expression of the objective as a function 

of b1 and b2. The first-order conditions for b1 and b2 however are quite complicated and it 

does not appear to be possible to solve them for b1 and b2 in closed form. 

Dixit (1989) and Dixit and Pindyck (1994) have analyzed this problem based on dynamic 

programming methods. They also obtained a system of first-order conditions which could not 

be solved explicitly for the barriers. As compared to our direct approach, the dynamic 

programming route resulted in a system of four equations in four variables (equations (12-15) 

in Dixit, 1989). The unknowns in these equations included the two barriers, as well as two 

unknown coefficients of the general solution to the HJB differential equation. In reference to 

the solution of Dixit (1989), the direct approach leads us directly into a situation where the 

unknown coefficients of the HJB equation have been solved in terms of the unknown barriers. 

Moreover, the first-order conditions in the direct approach do have clear economic 

interpretations as conditions equating marginal benefits with marginal costs, and have a 



 

format which is familiar from e.g. classical producer theory. This is hardly the case with the 

first-order conditions (12-15) in Dixit (1989). 

Conclusions 

We have shown that the direct approach yields first-order conditions with markup 

interpretations in optimal stopping problems with flow payoffs as well as in regenerative 

problems. The markup conditions are necessary conditions for optima, while we have not 

discussed the sufficiency of these conditions. In our specific examples we have demonstrated 

that the solutions to the markup necessary conditions coincide with those obtained based on 

dynamic programming arguments. Sufficient conditions for optimal solutions in related 

problems can be found in the relevant mathematical literature, e.g. Alvarez (2001) and Brekke 

and Oksendal (1994). 

Interesting extensions of the techniques applied here are to problems where the state 

variable experiences jumps, such as the cash management model of Bar-Ilan et al. (2002). It 

appears that these problems are quite untractable using dynamic programming methods, but 

that renewal arguments can be of great value. In general, it appears that the dynamic 

programming approach has often been pursued in the economic literature in place of the more 

direct approach, even in cases where the direct approach would have been equally (or more) 

tractable and conceptually simpler. The models analyzed in this paper, as well as in Sodal 

(2002), are simple demonstrations of this. 

 

Appendix A. Derivation of a sum-of-geometric-series representation for formula (18) 

The objective function (18) is 
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The expectation of the first summation can be written as 



 

 

( )

( )( ) ( ) ( )( )









































+−+−=














−

∫∫

∑ ∫

−−−−−−−

−

Λ
2
1

2
2

2
2

1
2

2
2

1
1

1
2

1
2

1
2

1

2

b

b

bbb

b

b

bb

i
b

i
b

dtCPeedtCPeeE

dtCPeE

t

t

t

t

P

i
t

t
P

τ

τ

τρττρ
τ

τ

τρρτ

τ

τ

ρ

          (A2) 

By the strong Markov nature of the state variable, any of the flow integrals can be written as 
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Taking expectations in (A2) term by term, substituting in (A3), and using the notation defined 

in (19a-d), (A1) becomes 
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which the term inside the outer parenthesis is an infinite geometric sum where the multiplier 

is ( ) ( )2121 ,, bbUbbL  and the initial term is ( ) ( ) ( ) ( ) ( )( )( )CWbWbbLCWbW 012102 , −−− . Hence 

the first summation in (A1) can be written as 
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Entirely analogous steps yield the expressions 
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for the second and the third summations in (A1). Summing (A4), (A5) and (A6) gives the 

representation found in the text.
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