
An XML Messaging Service for Mobile Devices

Jaakko Kangasharju

Helsinki, February 4, 2006
Licentiate Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14917014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

First of all, I would like to thank the advisor of my postgraduate studies,
Professor Kimmo Raatikainen, for the opportunity to work on this topic.
He has permitted me the freedom to pursue my own interests, but has al-
ways been available to advise and has provided many pointers on interest-
ing avenues to consider.

The Fuego Core project, where the work for this thesis was performed,
is an excellent environment for research. The atmosphere in the project
is very relaxed, and all of its past and present members very competent.
Discussions within the group have been very stimulating for my own work,
and I hope I have contributed similarly to others’ work.

As I have noticed during this work, a middleware platform cannot ex-
ist in a vacuum. Design of the system and its interfaces needs to be driven
by the needs of messaging applications, and these needs cannot all be un-
derstood in advance. In that spirit, I would like to thank Sasu Tarkoma
and Marko Saaresto for early use of the messaging system and for discov-
ering several issues, Tancred Lindholm for using the XAS API and prompt-
ing generalization of many initially-specific parts, and Oriana Riva, whose
needs in data transmission were the reason for designing the Object Repre-
sentation Language described in section 4.5.

Finally, I would like to thank Dr. Jussi Kangasharju and Sasu Tarkoma
for reading a draft version of this thesis. Their comments were very helpful
in preparing the final version. Any omissions, unclarities, or mistakes that
remain are, naturally, my responsibility.

i

ii

Contents

1 Introduction 1

2 XML and the Mobile Environment 5
2.1 XML and the XML Stack . 5

2.1.1 Basic XML . 6
2.1.2 XML Schema Languages 7
2.1.3 XML Data Models . 10
2.1.4 XML for Messaging 11

2.2 Web Services . 12
2.2.1 XML Protocols . 12
2.2.2 Protocol Extensions . 15
2.2.3 Service Description and Discovery 16

2.3 The Mobile Environment . 16
2.4 Review of XML Performance Measurements 18

3 Message Transfer Service Overview 23
3.1 Requirements Analysis . 23
3.2 System Architecture . 25

4 XML Processing Interfaces 29
4.1 Existing Interfaces . 29
4.2 The XAS Data Model . 30
4.3 The XAS API . 32
4.4 Typed Data in the XAS API 34
4.5 Example of Typed Data Handling with XAS 35

5 Alternate XML Serialization 39
5.1 XML Compression . 39
5.2 XML Binary Characterization 41
5.3 Tokenization Techniques . 42

5.3.1 Existing General-Purpose Formats 43
5.3.2 Basic Xebu Format . 44

5.4 Using Schemas to Improve Compactness 45
5.4.1 Existing Schema-Based Formats 46

iii

5.4.2 Schema Optimization Design 47
5.4.3 Codec Omission Automaton 49
5.4.4 Schema Optimization Implementation 52
5.4.5 Automaton Build Rules for RELAX NG Constructs . 54

6 Message Transfer Protocol 57
6.1 Basic Protocol Semantics . 57

6.1.1 Protocol Requirements 57
6.1.2 The Transfer Layer . 58
6.1.3 Transfer Layer Mappings 59

6.2 Extension Modules for AMME 61
6.2.1 Sequence Number Module 62
6.2.2 Connection Persistence Module 63
6.2.3 Message Compaction Modules 63
6.2.4 Measuring Round-Trip Time 64

7 Experimental Results 67
7.1 Experimental Platforms and Data 67
7.2 Indicative Measurements of the XAS API 69
7.3 Xebu Performance . 71
7.4 AMME Functionality . 74
7.5 General Messaging Performance 75

8 Conclusions 81
8.1 Useful Ideas . 81
8.2 Proposed Enhancements . 82
8.3 Future Work . 83

iv

List of Figures

2.1 An example XML document 6
2.2 An example XML document with namespaces 7
2.3 An example DTD for the example XML document 8
2.4 A partial XML Schema for the example XML document . . . 9
2.5 The SOAP message structure 13

3.1 The Message Transfer Service architecture 26

4.1 An example XAS event sequence 33
4.2 An example Java class and its XML-encoded form 36
4.3 Example encoding code . 36
4.4 Example decoding code . 37
4.5 An example ORL file . 38

5.1 An example COA . 51
5.2 Selecting whether to enter a subautomaton 53
5.3 A problematic use of the star construct 53
5.4 Subautomaton construction for element 55
5.5 Subautomaton construction for group 55
5.6 Subautomaton construction for choice 56

6.1 The AMME message syntax 59
6.2 Token and data messages in HTTP Transfer mapping 61
6.3 Computing round trip times in AMME 64

7.1 Per-invocation times over the LAN connection 76
7.2 Per-invocation times over the WLAN connection 77
7.3 Per-invocation times over the GPRS connection 77
7.4 Amounts of total data sent . 78
7.5 Per-invocation times using a mobile phone 78

v

vi

List of Tables

3.1 Requirements on message transfer service components . . . 25

4.1 Event types of the XAS data model 31

6.1 Implemented Transfer layer mappings with code line counts 60

7.1 The platforms used in the experiments 68
7.2 Networks used in experiments 68
7.3 The data sets for XML processing experiments 69
7.4 The APIs in the XAS measurements 69
7.5 XAS processing measurements 70
7.6 Formats for the Xebu experiments 71
7.7 Performance of XML serialization formats 72
7.8 Performance of XML serialization formats on mobile phones 73
7.9 Footprints of XML serialization format implementations . . 74
7.10 Actual and AMME-measured round-trip times 75
7.11 Protocols of the MTS experiments 76

vii

viii

List of Abbreviations

AMME Abstract Mobile Message Exchange

API Application Programming Interface

ARC Adaptive Replacement Cache

ASN.1 Abstract Syntax Notation One

BEEP Blocks Extensible Exchange Protocol

COA Codec Omission Automaton

CORBA Common Object Request Broker Architecture

DOA Decoding Omission Automaton

DOM Document Object Model

DTD Document Type Definition

EOA Encoding Omission Automaton

EXI Efficient XML Interchange

GPRS General Packet Radio Service

GSM Global System for Mobile communications

GUI Graphical User Interface

HIP Host Identity Protocol

HTTP Hypertext Transfer Protocol

I/O Input/Output

JIT just-in-time

JVM Java Virtual Machine

LAN Local Area Network

ix

LRU Least Recently Used

MEP Message Exchange Pattern

MHM Multiplexed Hierarchical Modeling

MIDP Mobile Information Device Profile

MIME Multipurpose Internet Mail Extensions

MPEG Moving Picture Experts Group

MTOM Message Transmission Optimization Mechanism

MTP Message Transfer Protocol

MTS Message Transfer Service

NAT Network Address Translation

OASIS Organization for the Advancement of Structured Information
Standards

ORL Object Representation Language

PDA Personal Digital Assistant

PER Packed Encoding Rules

PPM Prediction by Partial Matching

REST Representational State Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

SAX Simple API for XML

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

StAX Streaming API for XML

TCP Transmission Control Protocol

UDDI Universal Description, Discovery, and Integration

UMTS Universal Mobile Telecommunications System

x

URI Universal Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAN Wide Area Network

WAP Wireless Application Protocol

WBXML WAP Binary XML

WG Working Group

WLAN Wireless LAN

WS-I Web Services Interoperability Organization

WSDL Web Services Description Language

WWW World Wide Web

XBC XML Binary Characterization

XFSP Cross-Format Schema Protocol

XML Extensible Markup Language

XOP XML-binary Optimized Packaging

XSBC XML Schema-based Binary Compression

xi

xii

Chapter 1

Introduction

Current trends indicate that computing in the future will be radically dif-
ferent from what it is today. The significant revolution is driven by minia-
turization of computing devices, which makes it possible to include com-
puting capabilities in more and more devices as well as for people to carry
considerable computing capabilities with them at all times.

This new environment, with computing capabilities available every-
where, often vanishing into the background, is an active research topic,
popularly called ubiquitous [99] or pervasive [80] computing. Our research
is concentrated on the support layers for new applications, built on per-
sonal mobile devices, and therefore we use the term mobile environment for
this future computing scenario.

Whatever the applications of the future will be, they will be highly in-
terconnected, with a need to communicate both with other devices and
with available network infrastructure services. A system providing an inte-
grated interface to such communication capabilities and auxiliary services
is typically called middleware [1], and a general-purpose middleware plat-
form is a powerful tool for distributed application development.

Existing deployed middleware platforms are typically based on one of
two paradigms. Distributed objects, exemplified by Common Object Re-
quest Broker Architecture (CORBA) [64], provide object-oriented interfaces
to clients, with communication happening by invoking methods over the
network. Message-oriented middleware, like IBM’s MQSeries [36], provides a
more loosely-coupled interface. Here the middleware does not impose any
syntax on messages, but only provides addressing and delivery. However,
existing middleware is typically designed for fixed networks, even Local
Area Networks (LANs), and is not suitable for the mobile environment.

For the new environment a new approach to building systems will be
needed. To provide an easy way to build applications, it is fruitful to start
this work with a middleware platform. Since communication is a fun-
damental component of middleware, we will focus on providing a mes-

1

sage transfer service to be used by other components of the middleware
and by applications. Furthermore, we will concentrate solely on point-to-
point communication and leave concerns such as application-level routing
to users of the service.

The internals of the message transfer service are dependent on two
main issues: the protocol to be used for communication and the syntax
of messages that are sent. As the message transfer service needs to provide
a general messaging capability, it need not provide any semantics for mes-
sages. Externally, a design point will also be the interface that is provided
to messaging applications.

A common design for application-layer protocols on the Internet [52,
24] has been to use plain text as the communication syntax. This is seen
as beneficial for simplicity of implementation and for ease of debugging.
However, Internet protocols typically do not have a unified syntax for their
messages, each adapting some common principles to its own purposes.

In recent years, a common text-based syntax for interoperable data has
emerged in XML [119]. XML provides a standard way to represent struc-
tured data in a tree format, and it has been intentionally designed to be
simple to implement. An abundance of implementations and technologies
related to processing XML in various manners is a testament to the success
of this design. As a standard way to represent structured data, XML would
appear to be ideal to select as the message syntax.

However, XML is not obviously suitable for the future computing en-
vironment of small weak devices and expensive wireless communication.
XML is a very verbose format and its text-based nature makes it more ex-
pensive to process than previous binary formats. Furthermore, the pro-
tocols typically used for XML messaging are designed for fixed network
use, so wireless networks may bring out latent inefficiencies. A prominent
example where the design of an application-layer protocol interacts badly
with TCP is provided by Java RMI [13].

In spite of XML’s apparent unsuitability, the trend in fixed networks is
clearly towards XML messaging. We believe it to be important for mobile
devices to participate equally in the full networked infrastructure, so in
our view it is important to select the same technologies for both fixed and
mobile networking. Therefore we have investigated the issues that XML
has, and have attempted to come up with solutions.

Our solution, presented in this work, is a Message Transfer Service
based on XML messaging. This service has been designed as a component
of a larger middleware platform, and its requirements are driven by our
analysis of the problem areas of XML messaging. We have implemented
solutions for each of the identified problematic areas and consider our mes-
sage transfer service to demonstrate that XML is a feasible selection as the
message syntax.

We begin with an introduction to XML messaging and the mobile en-

2

vironment in chapter 2 where we also include a review of existing mea-
surements of XML performance. Then, chapter 3 describes the architecture
and interfaces of our message transfer service and gives an overview of
the three key components. These components are the detailed topics of
the next three chapters: chapter 4 shows our Application Programming
Interface (API) for processing XML data, chapter 5 defines our XML se-
rialization format, and chapter 6 presents our work in the protocol area.
We present experiments comparing our solutions to more standard ones in
chapter 7. Finally, chapter 8 concludes the thesis by listing the lessons we
have learned and our planned future work.

3

4

Chapter 2

XML and the Mobile
Environment

Extensible Markup Language (XML) [119] has, since its inception, become
a widely accepted markup language for all kinds of data. Its basic model of
data is that of a tree of nodes. Since trees are also a fundamental construct
in programming language data, XML has been applied to representing gen-
eral structured data. This is useful for interchange purposes as it provides
a standard way to represent the data to be exchanged between applications
on varied platforms.

A multitude of technologies have sprung up around XML. Many of
these are specifications of the World Wide Web Consortium (W3C), but due
to the large interest in XML some of these are not even mature enough for
standardization. This collection of XML-based technologies is often called
the XML stack, based on the idea that they are stacked on top of the XML
base. In addition to XML itself, we also cover those parts of the XML stack
that we consider relevant to our topic.

2.1 XML and the XML Stack

XML was originally born from the desire to streamline Standard General-
ized Markup Language (SGML) [38] for use on the World Wide Web. For
this purpose the designers set the following design goals (from [119]):

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5

<?xml version="1.0" encoding="UTF-8"?>
<person nationality="DE">

<name>
<first>Richard</first>
<last>Wagner</last>

</name>
<occupation>Composer</occupation>
<born>1813-05-22</born>
<died>1883-02-13</died>

</person>

Figure 2.1: An example XML document

5. The number of optional features in XML is to be kept to the absolute
minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

The intent of many of these design goals was to eliminate complexities in
SGML that made it hard to implement processors and to understand docu-
ments.

2.1.1 Basic XML

The original XML definition [102] was completed in 1998. Currently XML
version 1.0 is in its third edition [119], and there is also version 1.1 [120] to
address Unicode [95] evolution and concerns about whitespace handling.
However, due to XML 1.1 being incompatible with XML 1.0 (this incompat-
ibility was, in fact, the reason for the increased version number), adoption
has not been enthusiastic.

We show an example XML document in Figure 2.1. The top line is the
XML declaration, which declares common information about the document
such as the version of XML that it conforms to. It also declares the en-
coding used for XML’s character set, Unicode. The values shown are the
defaults. The <person> tag starts the person element and the </person> tag
ends it; an XML document may contain only one element at its top level.
Elements may contain other elements (like name here), text (Wagner), or at-
tributes (nationality).

6

<?xml version="1.0" encoding="UTF-8"?>
<favorite-composers xmlns:p="http://example.org/people">

<p:person>
<p:name>

...
</p:name>
...

</p:person>
<p:person>

...
</p:person>

</favorite-composers>

Figure 2.2: An example XML document with namespaces

While XML did achieve its goal of simplicity, at least when compared
with SGML, use on the heterogeneous World Wide Web (WWW) requires
more. The basic XML definition suffices for single-source vocabularies
where every element’s meaning is defined by a single entity. However,
for wide-area distributed use it is beneficial to be able to define common
vocabularies for general areas that can then be used for parts of such docu-
ments. For example, we could imagine the person element of Figure 2.1 to
be defined by a genealogy institute and then used by anyone who wants to
include data about people in their XML document.

A solution to this is provided by XML Namespaces [103]. This specifica-
tion defines that Universal Resource Identifiers (URIs) function as ways to
group related XML names together, thus separating unrelated names from
each other. Then the complete name of an XML item will be the combi-
nation of its namespace URI and its local name. To represent these names in
XML documents, URIs will need to be mapped to prefixes. The complete
name of an element is then presented as a combination of its namespace
URI’s prefix and its local name. An XML document that conforms to this
specification is called namespace-well-formed.

The use of namespaces is demonstrated in Figure 2.2 where we have
placed the person element of Figure 2.1, and the elements it contains, into
the namespace http://example.org/people. This namespace is mapped
to the prefix p by the attribute xmlns:p of the document’s root element. The
prefix is then used with the colon (:) as the qualified name of the elements
from the corresponding namespace. The root element favorite-composers
does not belong to any namespace.

2.1.2 XML Schema Languages

Applications using XML will typically not expect to process arbitrary doc-
uments, but only documents having certain elements and attributes ar-

7

<!DOCTYPE person [
<!ELEMENT person (name,occupation?,born,died?)>
<!ATTLIST person nationality CDATA #IMPLIED>
<!ELEMENT name (first,middle?,last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT occupation (#PCDATA)>
<!ELEMENT born (#PCDATA)>
<!ELEMENT died (#PCDATA)>

]>

Figure 2.3: An example DTD for the example XML document

ranged in a certain way. For instance, a processor for the document in Fig-
ure 2.2 will expect a favorite-composers root element containing several
p:person elements. To define these kinds of syntactic constraints for XML
documents, there exist various schema languages.

XML documents conforming to the syntax rules of the XML definition
are commonly called well-formed (though many will point out that this term
is not needed, since there can be no non-well-formed XML). Schemas di-
vide the class of XML documents into two sub-classes: valid documents
conform to the schema that is being used, and invalid ones do not. An im-
portant point is that there does not need to be a fixed specification of which
schema is used to validate an XML document, and in many applications the
schema used will be solely determined by the document processor without
input from the document creator.

The first schema language, originally defined for SGML but also in-
cluded in the XML specification [119], is called Document Type Definition
(DTD). Rules expressible in a DTD provide a simple context-free grammar
to describe the contents of XML documents. The XML specification allows
an XML document to contain a hard-coded reference to its DTD or to even
contain this DTD as an internal subset.

A DTD for the XML document in Figure 2.1 is given in Figure 2.3. The
name in the DOCTYPE part defines the root element of valid XML docu-
ments. The content of each element is given in sequence, with optional
parts marked with a ?. Attributes of elements are given separately with
the ATTLIST declaration, which gives the name, type, and default value for
each attribute. The #PCDATA stands for parsed character data, i.e., text.

There are two problems with DTDs, both visible in Figure 2.3. The first
is that they do not support namespaces at all. To get the effect of name-
spaces, the names in a DTD need to be declared with their prefixes, and
hence the same prefixes need to be used everywhere when validating. The

8

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
targetNamespace="http://example.org/people"
xmlns:p="http://example.org/people">

<xs:element name="person">
<xs:complexType>

<xs:sequence>
<xs:element ref="p:name"/>
<xs:element minOccurs="0" ref="p:occupation"/>
...

</xs:sequence>
</xs:complexType>

</xs:element>
...
<xs:element name="born" type="xs:date"/>

</xs:schema>

Figure 2.4: A partial XML Schema for the example XML document

second problem is that there is no support for data types. In our example,
the elements born and died are clearly dates, so it would be very useful if
the schema language were to support declaring that.

These two omissions are fixed with XML Schema [109, 110], an XML
schema language developed by the W3C. Semantically speaking, XML
Schema is a superset of DTDs [61], i.e., for any DTD there exists an XML
Schema that validates exactly the same XML documents.

We show a part of an XML Schema for our example document in Fig-
ure 2.4. This only shows a part of the definition of the person element and
the born element. As we can see, the p prefix for our namespace is declared
in the root xs:schema element and used later in element names. The tar-
getNamespace attribute ensures that the defined elements are also in our
namespace. Finally, the born element illustrates the use of data types, also
defined by XML Schema.

In addition to DTD and XML Schema, there exist several other schema
languages. Many of these were merged into either XML Schema or another
schema language, RELAX NG [66]. This latter is based on the theory of tree
languages and automata [10], and is seen by many to be a much cleaner
solution than XML Schema. RELAX NG is strictly more expressive than
either DTD or XML Schema [61].

The last well-known current schema language is called Schematron [45].
This language takes a different approach to the other schema languages de-
scribed above in that it does not use any form of grammars to define XML

9

document structure. Instead, it uses patterns, which are matched against
nodes of the XML document tree. These patterns then contain rules, which
define how the environment around the matched pattern needs to look like.

Schematron can be seen to be a higher-level tool than the other schema
languages, as the pattern language is strictly more expressive. Further-
more, Schematron is also recommended to be used as an additional tool
with other schema languages, by using the other language to validate the
many simple structural constraints, and then using Schematron to process
the few constraints that are not expressible in other languages.

2.1.3 XML Data Models

The XML definition considers only the character-level syntax of XML (also
called “Unicode with angle brackets”). However, an application that uses
XML will often view it as representing a tree consisting of elements, at-
tributes, and text, or as James Clark, co-author of RELAX NG, puts it [96],

The abstraction is a labelled tree of elements. Each element
has an ordered list of children in which each child is a Unicode
string or an element. An element is labelled with a two-part
name consisting of a URI and local part. Each element also has
an unordered collection of attributes in which each attribute has
a two-part name, distinct from the name of the other attributes
in the collection, and a value, which is a Unicode string.

The W3C has produced two different data models for XML. The oldest
one is XML Infoset [123], which attempts to faithfully capture all relevant
information from a namespace-well-formed XML document and present
it as a tree consisting of information items, each containing a small amount
of information. In most XML-related specifications produced by the W3C
XML is viewed through the Infoset specification.

Another data model from the W3C, currently in its last stages to be-
coming a W3C Recommendation, is the XQuery 1.0 and XPath 2.0 data
model [137]. This was produced for the needs of the XML processing lan-
guages XQuery [136] and XSLT [138], and their associated addressing lan-
guage XPath [135]. It extends the Infoset with support for type information
and collection representation.

It can also be said that any API for XML processing induces a data
model on XML derived from the information presented by the API. For
instance, the Document Object Model (DOM) [118] provides an essentially
tree-like view of XML with support for both namespace use and namespace
ignorance. Another API, Simple API for XML (SAX) [9], provides a sequen-
tial view of XML, splitting it into events, each approximately corresponding
to an Infoset information item.

10

For the purposes of many applications, these various data models are
perfectly suitable. However, as is pointed out in [132], distinctions even in
whether attribute values use single or double quotes can be significant for
some applications (as an addition to the mentioned XML editors, we offer
version control systems where tools should not change any such data indis-
criminately). Furthermore, when signing XML documents it is imperative
that the exact bytes that were signed can be produced by the verifier.

We can naturally see XML, produced by the grammar in the XML def-
inition and complemented with a character encoding, as a byte-sequence-
based data model in its own right, which would be the perfect candidate
data model for some applications. However, since XML processing systems
typically cannot preserve this representation, there is a way to canonicalize
XML [107]. Canonical XML is a way to have several independent XML
processors produce the same byte sequence from two “equivalent” XML
documents. There is no explicit definition of this equivalence, but Canoni-
cal XML has been constructed so that people in the XML community would
agree that two XML documents are equivalent if they have the same canon-
ical form.

This proliferation of data models is a natural consequence of specifying
only a character-level representation without attaching any semantics to
any pieces of data. This is widely seen as a good thing [86], as it allows
XML to be modeled according to the application’s needs, which is reflected
in the number and variety of data models.

2.1.4 XML for Messaging

The technologies described above can be considered to form a basis for
XML-based messaging. Clearly the basic specification defines the syntax of
messages. Use of namespaces makes it possible to specify pieces of generic
functionality that can be added to any message. This is useful for, e.g., rout-
ing information, so namespace support is another necessary component.

As messaging is typically machine-to-machine communication, the syn-
tax of messages can be more rigidly specified than with human-produced
XML. The various schema languages can be used for this purpose. Since it
will be quite common that a message envelope will be specified generically,
ancillary information such as routing also generically but independently of
the message envelope, and the actual message content by each application,
namespace support is crucial, as is the ability to easily combine different
schemas.

As we noted, messaging applications will typically view XML through
some data model, as an interoperable representation format for their data.
Serialization of such data is typically performed by traversing the atomic
components of the data in some well-defined order, emitting the serialized
form of each component as it is encountered. This kind of implementation

11

does not have an explicit data model for XML. Rather, it will implicitly use
some streaming model such as SAX.

We also briefly touched on the XML processing and query languages
XSLT, XQuery, and XPath while discussing data models. These technolo-
gies also have their place in a messaging application. For instance, XPath
expressions can be used to select routing information from a message, ei-
ther by locating a specific header or by making a decision based on a va-
riety of content extracted from the message. Conceivably, XSLT could be
used to transform messages, and possibly combine several messages into
one. However, we are not aware of such use of XSLT; the typical imple-
mentations of message transformations appear to be based on non-XML
technologies.

Finally, with messaging there are always the questions of security, pri-
vacy, and trust. These issues can be handled with digital signatures for
authentication and encryption for confidentiality. In the XML world it is
possible to selectively encrypt and sign XML documents using XML En-
cryption [113] and XML Signatures [114]. As alluded to in subsection 2.1.3,
the XML Signature specification is complemented by Canonical XML [107]
and Exclusive XML Canonicalization [111], which provide a distinguished
form for serializing XML fragments. These two canonicalization specifica-
tions differ in how they treat the context of a fragment, e.g., the namespaces
that are declared in some ancestor element of the fragment.

2.2 Web Services

To use XML for messaging, some form of infrastructure needs to be built,
containing at least a syntax for messages and a description of the transfer
protocol. Furthermore, various auxiliary specifications will be needed for
different systems and services that can be built on top of messaging. XML-
based messaging infrastructure is commonly called Web services.

We will here cover the SOAP-style “structured” approach to XML mes-
saging. An alternate method of implementing Web services is Representa-
tional State Transfer (REST) [23], which is based only on the capabilities of
Hypertext Transfer Protocol (HTTP), and in all ways attempts to build sys-
tems in the same manner as the WWW itself is built.

2.2.1 XML Protocols

The first well-known use of XML for interchange of programming language
data was the XML-RPC [101] system of UserLand Software. This is a sim-
ple way to do Remote Procedure Calls (RPCs) using XML over HTTP. It
supports encoding of structured data and arrays in the form expected of
programming languages.

12

<soap:Envelope xmlns:soap=’http://www.w3.org/2003/05/soap-envelope’>
<soap:Header>

<target soap:role=’http://www.w3.org/2003/05/soap-envelope/role/next’
soap:mustUnderstand=’true’>

...
</target>
<priority soap:relay=’true’>

...
</priority>
...

</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

Figure 2.5: The SOAP message structure

While XML-RPC is evidently suitable for a variety of applications, it
lacks the kind of extensibility that is often required of distributed applica-
tions. To improve on this, Simple Object Access Protocol (SOAP) [105] was
devised. The main design was still to use XML as a data format for mes-
sages, but other considerations were relaxed; however, HTTP was still the
only specified protocol.

The SOAP 1.1 specification also describes how to encode programming
language data into XML, the so-called SOAP encoding rules, which define
how to encode arbitrary programming language data as XML, including
cyclic structures. These rules are used in the also-specified SOAP for RPC.

The SOAP 1.1 specification was published as a Note of the W3C. After
that, the W3C decided to work on XML-based protocols and formed the
XML Protocol Activity, which was later transformed into the XML Protocol
Working Group (WG)1 of the Web Services Activity2. This Working Group
produced version 1.2 of SOAP [115], which relegates most of the areas spe-
cific to protocols and usage scenarios to its adjuncts [116].

The SOAP 1.2 specification only defines the outer structure of a SOAP
message, illustrated in Figure 2.5. This figure shows the root element, Enve-
lope, with its optional Header and mandatory Body children. The children
of the Header element are called header blocks, and the example illustrates
the common attributes that SOAP 1.2 defines for header blocks.

The specified attributes for header blocks are used by the SOAP pro-
cessing model. This model begins with the initial sender sending a message,
the message passing through zero or more SOAP intermediaries, and finally

1http://www.w3.org/2000/xp/Group/
2http://www.w3.org/2002/ws/

13

http://www.w3.org/2000/xp/Group/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/2002/ws/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/2002/ws/

being processed by the ultimate receiver. The role attribute specifies which
processors in this chain are intended to process the header block, the must-
Understand attribute set to true specifies that if the header block’s proces-
sor does not understand it, it must respond with an error message, and the
relay attribute set to true specifies that the header block’s processor is to
retain the header block in the message instead of removing it.

The SOAP 1.2 specification does not concern itself with the specifics of
message transfer. It defines a protocol framework that can be used to spec-
ify how an underlying protocol can be used to transmit SOAP messages,
and defines a protocol binding for HTTP. This binding allows both one-
way and request-response messaging. Other protocol bindings have been
specified for email [112] and XMPP [26].

The XML Protocol WG has also produced some other specifications on
message formats. These specifications were driven by the need to transmit
binary data inside SOAP messages, a concern that was handled by SOAP
with Attachments [106] for SOAP 1.1. The desired characteristics of this
attachment feature were first specified on an abstract level [121].

The main issue solved by an attachment feature for SOAP is transmis-
sion of binary data, e.g., images. If embedded as such inside an XML docu-
ment, there will need to be a Base64 encoding [27], which both takes signifi-
cant processing time and increases the size of the data by one third. Further
concerns were the ability to embed XML from other sources: a complete
XML document is not embeddable inside XML, and even for fragments
there are the questions of namespace prefix mappings and different char-
acter encodings. Finally, XML element delimiters can only be recognized
by reading delimiters from the serialized form, so embedded binary data
will create overhead as the parser will need to read every character in it.

The solution that the XML Protocol WG came up with was XML-bi-
nary Optimized Packaging (XOP) [134], a generic mechanism for includ-
ing binary data in XML. XOP was intentionally limited to the case where
data to be optimized is Base64-encoded in the Infoset representation of
the XML. XOP allows the separation and direct binary representation of
such data. It requires that the XML document, along with any such bi-
nary data, be packaged inside a format such as Multipurpose Internet Mail
Extensions (MIME) multipart/related [55]. Any binary content inside the
Infoset representation is then replaced with a pointer to the corresponding
part in the package.

A method of using XOP to optimize SOAP performance with binary
data is specified by SOAP Message Transmission Optimization Mechanism
(MTOM) [125]. This defines how a SOAP message is packaged in MIME
format using XOP, and defines a feature for the SOAP HTTP binding to
indicate that this optimization is being used. A later specification [124]
defines how the MIME type [28] of the binary data can be included also in
the XML instead of just in the packaging.

14

2.2.2 Protocol Extensions

The SOAP processing model allows a very flexible manner of defining ex-
tensions to the protocol. An extension will specify one or more new header
blocks, and semantics for them. The standard attributes defined for the
header blocks allow a robust manner of using the extensions, as even un-
aware processors are required to recognize what to do with these extension
headers, even if they do not implement the actual extension.

The Web Services Activity includes an Addressing WG3 that is char-
tered with defining how messages are addressed so that they can be de-
livered to their proper destination. As a basis for this work there exists a
submission [122] from a group of W3C members. The Addressing WG has
so far produced Candidate Recommendations for the core principles [126]
and for a SOAP binding [127].

The core Addressing specification defines an endpoint reference that can
be used to describe a Web service message recipient. The specification fur-
ther defines addressing properties, which allow correlation of messages, e.g.,
to indicate the destination of a message or to specify a request being re-
sponded to. These are all defined using an XML Infoset representation,
which also allows extensibility. The SOAP binding for Addressing defines
how a SOAP message can indicate that Addressing is in use, and how the
abstract core concepts are mapped to SOAP headers.

In addition to W3C, Organization for the Advancement of Structured
Information Standards (OASIS) has been very active in defining standards
related to Web services. One of the main specifications of OASIS is the
ebXML Message Service [67], which defines a messaging service on top
of SOAP 1.1 to support secure and reliable messaging. These reliability
and security features have since been further refined by OASIS into Web
Services Reliability [70] and Web Services Security [71].

Web Services Reliability (WS-Reliability) is intended to provide reliabil-
ity guarantees to SOAP messaging, including at-most-once, at-least-once,
and exactly-once semantics, as well as ordered delivery of messages. These
are handled by SOAP headers, in which the sender will include elements
indicating its requirements.

Web Services Security (WS-Security) makes it possible to sign and en-
crypt parts of SOAP messages. This complements transport layer security
solutions such as Secure Sockets Layer (SSL) [29] by allowing true end-to-
end security for SOAP messages, since SSL can only be used to secure traf-
fic between SOAP intermediaries. Furthermore, being able to selectively
encrypt and sign message parts makes it much easier to compartmentalize
processing, since the outward-facing systems of a Web service need not do
any security processing, just routing based on (unencrypted) headers.

3http://www.w3.org/2002/ws/addr/

15

http://www.w3.org/2002/ws/addr/
http://www.w3.org/2002/ws/addr/

WS-Security specifies a SOAP header that can contain a Signature el-
ement of XML Signature [114] to indicate signed parts of a message, and
an EncryptedKey element of XML Encryption [113] that contains an en-
crypted (symmetric) key and references to message parts encrypted with
that key. In addition, it is possible to send security tokens, such as X.509
certificates [39], to authenticate the message sender to the recipient.

2.2.3 Service Description and Discovery

While this thesis concentrates only on SOAP messaging, Web services in-
clude much more than just the messaging protocol. The intent is that Web
services would be automatically discoverable and that this discovery pro-
cess would produce information on how to invoke the services, i.e., what
is the syntax of the SOAP messages expected by the service. Using XML
everywhere and preferring late binding to the interfaces are seen as good
options to support evolving of service interfaces (experience has demon-
strated that evolving statically defined interfaces is extremely complicated).

To describe Web services, the W3C is currently specifying Web Services
Description Language (WSDL) [128, 129]. This language allows the defi-
nition of service interfaces, which consist of the messages that the service
accepts, responses that it produces, and any protocols that are available to
invoke the service. These are all separated into different compartments so
that the individual parts can be reused across different services.

The necessary late binding of services means that the WSDL description
of a service will typically not be available to an application at compile time.
To discover services at run time, OASIS has defined Universal Description,
Discovery, and Integration (UDDI) [69], which allows the dynamic discov-
ery of Web services and access to their WSDL descriptions. This description
can then be interpreted by the application to construct a proper invocation
to the service.

While in theory the specifications are all that is needed, in practice spec-
ifications are often implemented incorrectly or only partially. To remedy
this, Web Services Interoperability Organization (WS-I), an organization
dedicated to promoting Web service interoperability, has defined the WS-I
Basic Profile [98], which clarifies the various specifications in an attempt to
ensure better interoperability. However, the Basic Profile uses the old ver-
sions of SOAP [105] and WSDL [108], so it is of little help for more modern
Web service systems.

2.3 The Mobile Environment

In recent years, the capabilities of devices such as mobile phones have in-
creased so that they are now capable of more complex tasks than previous

16

mobile devices. This includes participating in computer networks as full-
fledged members, providing functionality that is only possible through net-
working.

In this environment, however, there are several issues that are absent in
the more typical fixed network setting with desktop computers and servers.
The most obvious concern is that due to the required mobility of the de-
vices, their connection to the network needs to be wireless, and one that
supports efficient roaming between base stations on the fixed network side.

Commonly used current wireless networking systems include Wire-
less LAN (WLAN) [37], General Packet Radio Service (GPRS) [12], and
Bluetooth [8], with third-generation mobile phone systems like Univer-
sal Mobile Telecommunications System (UMTS) [65] intended to supplant
GPRS eventually. Of these technologies, Bluetooth is a short-range tech-
nology originally planned for replacing home computer system intercon-
nections with wireless communication. However, it can feasibly be used to
build small-scale ad hoc networks among independent devices as well [35].
WLANs are mostly suitable for indoor use as a replacement for fixed LANs,
as their range of full-speed communication is not very long.

Since modern mobile phones and Personal Digital Assistants (PDAs)
support several of these wireless communication technologies, it would
also be beneficial to be able to switch between them. For example, when
moving outdoors, GPRS is typically the network of choice, as it is most
widely available without interruptions. However, when arriving at the of-
fice, using the office WLAN is the better option due to the lower speed,
much higher latency, and higher cost of GPRS. Similarly, when encounter-
ing other devices outdoors, direct communication over Bluetooth is prefer-
able to routing over GPRS through some central server.

Designing programs for mobile devices is different from the case of typ-
ical desktop computers. The most visible issue is the requirements that the
device’s form factor places on the user interface. A typical modern program
for desktop computers has a mouse-based Graphical User Interface (GUI)
consisting of several different components, such as buttons and text entry
fields, to control the interaction.

This kind of interface does not work very well on mobile devices. For
one, there is no mouse available, but a stylus is often used with PDAs to
serve a similar role. A more pressing concern is the size of the screen, which
simply cannot accommodate a complex GUI. Instead, style guides suggest
reserving the screen for the most frequent commands and relegating less-
used commands to menus [72].

However, as we focus on middleware, user interface design is not our
concern. Instead, we must consider more the capabilities of the mobile
device as compared with a desktop system. The main capabilities to con-
sider are processor speed, memory size, and network characteristics such
as bandwidth and latency.

17

In current mobile phones, processor clock frequency is on the order of
100 MHz and available memory is typically several megabytes. These capa-
bilities are clearly more than sufficient for even sophisticated applications.
On the networking side WLAN can achieve bandwidth of up to 54 Mbps
with latency of a few milliseconds, which is clearly acceptable. However,
GPRS can manage only 56 Kbps with a latency measured in hundreds of
milliseconds. While UMTS increases the theoretical bandwidth to 2 Mbps,
latency will still be very high.

The most pressing concern for mobile devices, though, is their bat-
tery-powered nature. All processing, memory use, and especially network
use consume the battery. The battery needs to be recharged periodically,
and currently outlets for such are typically available only at home or in
the workplace. Furthermore, users will not wish to recharge their device
batteries too often. For instance, a typical modern laptop computer can
be used continuously for only a few hours before the battery needs to be
recharged, which is unacceptable for a device such as a mobile phone that
is expected to remain turned on at all times.

The concern for battery usage needs to permeate software design for
mobile devices. In particular, transmission of data over a wireless network
consumes a lot of energy, so the amount of communication needs to be min-
imized. Processing time is not quite as crucial, though it is clear that mo-
bile devices are not capable of performing heavy-duty computational tasks.
The proper tradeoff between communication and computation is likely to
be highly device-dependent, so locking the design to certain figures would
be a mistake.

For programming mobile devices there are several possible program-
ming languages available. Our main focus has been on the Symbian OS4

for mobile phones, for which Symbian C++ [34] and Java Mobile Infor-
mation Device Profile (MIDP) [91] are the main development platforms.
Lately, Python [97] has also become available, but we have no experience
with that as of this writing. Of the two main platforms, we see Java as the
better option, as the Java MIDP platform is quite similar to the Java Stan-
dard Edition [32], making skill transfer and code sharing much easier than
with C++. However, skill transfer is not immediate, as there are several
new issues to consider when programming for mobile devices [63].

2.4 Review of XML Performance Measurements

The rise of XML for purposes that were previously handled by specific bi-
nary formats has naturally raised concerns over the performance of XML
compared to existing systems. This concern has been extremely strong in
the mobile community, due to the limitations of the environment outlined

4http://www.symbian.com

18

http://www.symbian.com
http://www.symbian.com

in section 2.3. There exist therefore several measurements of the effect of
XML in various contexts. Below we summarize the work done in this area.

One of the oldest and best-known performance measurements of SOAP
was done in the context of Grid computing [16]. This study investigated the
bottlenecks that are present in an ordinary SOAP invocation in a typical
scientific computing scenario. Various bottlenecks are then optimized, and
the resulting system analyzed again.

For XML serialization and parsing this work introduces specialized im-
provements, especially for the case of handling arrays. The main goal is to
process everything with a single pass through the data, all the way between
the application and the Input/Output (I/O) buffer. Another improvement
was the use of HTTP 1.1 to provide both persistent Transmission Control
Protocol (TCP) connections and chunking of content.

The final performance issue, which in the end took 90 % of total process-
ing time, was the marshalling and unmarshalling of floating point data.
This kind of data was abundant in the messages due to the investigation
being performed in the context of scientific computing. The authors pro-
pose extending SOAP with the capability to transfer some data in binary
and to negotiate these extensions. Later, a similar desire was driving work
in alternate XML serialization formats [133].

In its early years, SOAP and Web services were positioned as an alter-
native to existing technologies for distributed computing such as Java Re-
mote Method Invocation (RMI) [90] and CORBA [64]. The concept was that
SOAP would be usable over the Internet, something that RMI and CORBA
had failed to deliver.

Earliest comparisons between these three technologies [19] were con-
cerned with the latency of invocations. It was noted that CORBA and RMI
deliver approximately the same performance, and the performance of even
the best SOAP implementation was worse by a factor of 10 for a simple
invocation.

This is explained by noting that the larger SOAP message needs to be
split into several TCP segments, causing TCP’s slow start to delay delivery
by a network round trip. A further consideration was the Nagle algorithm
of TCP: it turned out that SOAP implementations would push data over
the network in non-full TCP segments, delaying the sending of any further
data.

More complex measurements of this work provide similar or worse per-
formance for SOAP implementations. As was the case with [16], large ar-
rays are again measured as a significant problem in SOAP performance. In
particular, the measured SOAP toolkits scale very poorly when array sizes
are increased.

Further work in this area [22] looked at how various parameters of the
SOAP implementation affect its performance in comparison with CORBA.
Again, it was noted that the Nagle algorithm in conjunction with small

19

TCP segments decreased SOAP performance. Furthermore, the two XML
parsers that were used had a factor of 5 difference in performance.

The conclusions of this work are that using HTTP 1.1 with persistent
connections may be beneficial, especially over a high-latency connection.
Similarly, the choice of the XML implementation can affect performance
significantly. By calculating the improvements possible using various tech-
niques, the work concludes that, using technology current at the time, it
would have been possible to have SOAP performance only a factor of 7
worse than CORBA, in contrast with the factor of 400 that was initially
measured.

A later comparison with RMI [46] examines different ways to imple-
ment distributed applications in Java. The benchmarked methods use only
values of simple types such as integers and floating point values. The con-
clusion of the work is that Web services are a factor of 8 slower than RMI,
with the SOAP implementation spending a majority of its time in mar-
shalling and unmarshalling.

The above measurements have all concentrated mainly on SOAP pro-
cessing performance. The networks in all of these have been high-speed
LANs. There is little to no consideration of Wide Area Networks (WANs)
such as the Internet or wireless networks such as WLAN or GPRS, and no
measurements in either environment. From the observations made regard-
ing Nagle’s algorithm and TCP slow start, we would expect latency to be a
significant issue when using wireless networks.

Our own performance measurements of SOAP [51] tested four different
connections: loopback network, hosts on the same LAN, hosts on the same
WLAN, and routing from our WLAN to our LAN. These measurements
also explored compression of XML messages, using both generic compres-
sion and a simple binary format.

From these measurements we concluded that the main bottleneck in
our wireless network was the need to open new connections. After net-
work latency achieved a certain limit, adding compression did not worsen
performance noticeably. We also noted that compression with a non-persis-
tent connection still sends more data in total than a persistent connection
without compression due to the additional TCP segments that are needed
for opening of new connections.

Finally, [54] provides Web service measurements over both WLAN and
Global System for Mobile communications (GSM), the latter invoking over
a public GSM network. Furthermore, measurements were also made on
actual mobile phones. Invocation time is split into several components and
each component measured separately to better identify bottlenecks.

The conclusion of this work is that for the slowest networks processing
time is dominated by network latency. This is observed to be the case even
with the weakest processors. Using GSM the time taken by communication
is measured to be over 90 % for even a very complex query. In contrast,

20

using WLAN, the time taken by communication remains under 30 % even
in the case where there is little processing involved.

As a conclusion to all of these measurements we can see that SOAP
messaging in the mobile environment is problematic in several different
ways. Processing XML, especially with off-the-shelf tools, is costlier than
processing a binary format. This applies in particular to typed data, which
we expect to be present in abundance in SOAP messages. Furthermore,
off-the-shelf SOAP toolkits do not appear to consider interaction between
HTTP and TCP, causing performance degradation. This is particularly ex-
acerbated by the high latencies in wireless networks.

21

22

Chapter 3

Message Transfer Service
Overview

Based on the measurements presented in section 2.4 we compiled a set of
requirements for an XML-based messaging system for mobile devices. We
present these requirements below in section 3.1. Based on these require-
ments, we designed our XML-based Message Transfer Service (MTS) [48].
The design of the MTS is described in section 3.2 and details of its compo-
nents in chapters that follow.

The MTS is a component of the Fuego service set1, a middleware plat-
form for the mobile Internet. In addition to messaging, this platform in-
cludes facilities for event notification [94], data synchronization [58], and
presence information dissemination. The event notification service builds
on top of the messaging, and the synchronization service uses the XML
processing API that was originally developed for the MTS.

3.1 Requirements Analysis

As detailed above in section 2.4, several independent measurements in-
dicate that there are two concerns with XML in the mobile environment.
The size of XML is a problem because of wireless networks, and process-
ing requirements are a problem because of weak devices. Therefore neither
XML compression nor improvements in XML processing technology alone
can satisfy these requirements. This is why an alternate serialization format
based on some XML data model is seen by many as the best approach.

Currently there are several such alternate XML formats, and we cover
them in detail in section 5.2 below. At the time of our design, the only
public format for which information was available was WAP Binary XML
(WBXML) [104]. This could not be adopted as such, as its design was for

1http://www.hiit.fi/fuego/fc/

23

http://www.hiit.fi/fuego/fc/
http://www.hiit.fi/fuego/fc/

a very specific purpose, and therefore not suitable for general XML-based
messaging. Furthermore, while WBXML can be generalized [31], its fea-
tures are still geared towards a very static form of data, and we wished
to support many kinds of use cases efficiently. For these reasons, we de-
cided to develop our own “binary XML” format, described in more detail
in chapter 5 below.

The focus of the binary format needs to be on representing application
data as SOAP messages for small mobile devices. The characteristics of the
device require the implementation to have a small footprint so that it fits
into available memory, and to be able to process the format efficiently, in both
time and used dynamic space. The format itself needs to provide a compact
representation of the data. As it is only used for interchange, it needs to
be readable and writable directly between the serialized form and application
data. Saving buffer space during processing is also important, so reading
and writing should be possible in a streaming manner.

We also expect the application data contained in messages to consist of
application-defined types at the programming language level. Therefore
the format implementation will need to support efficient encoding and decod-
ing of such typed data. Furthermore, as a complete or partial schema for
messages is often available, a useful feature is to be able to use this schema
information to improve efficiency. However, to retain some semblance of
loose coupling, the schema needs to be allowed to evolve in common ways
without invalidating existing processors.

In a binary XML format, compatibility with XML on some level is typi-
cally required. In our view, it is beneficial to achieve this compatibility at
a low-level API, since that makes directly available all the functionality that
has already been implemented for XML. A requirement for the system is
therefore to include an abstract model for XML and an API to go with it
that allows processing both XML and a binary format.

The ideal would be to be able to use an existing API for this purpose.
Indeed, in our original version of the MTS we used the SAX interface [9]
for processing XML. However, the needs of messaging are more focused
on what is called data-oriented XML, meaning XML that mostly consists of
structured data. The decoding of such typed data proved to be an arduous
task with SAX, so we decided to design our own API to provide better
type-handling capabilities.

Still, we wished to preserve compatibility with XML, so we based our
API on another actual XML API. Our requirements for this were that it
be possible to both read and write XML in a streaming manner, to easily
encode and decode typed data, and to have standard APIs for both reading
and writing, the latter of which SAX lacks. Our contribution is mainly in
extending our selected API with typed data handling and in formalizing
the data model associated with it.

Even now, many are of the opinion that an alternate serialization for-

24

Table 3.1: Requirements on message transfer service components

Component Requirements
XML API compatibility with XML, low level, data-oriented,

streaming, typed data, input and output
XML Serialization small footprint, processing time, processing

space, compact representation, directly stream-
able, typed data, schema enhancements, schema
evolvability

Message Protocol asynchronous interface, small headers, sending
and receiving

mat for XML is sufficient to solve the issues with XML usage. However,
the mobile environment has requirements beyond small message size and
efficient processing. The synchronous RPC interface provided by typical
SOAP implementations is very wasteful over wireless connections where
network round trips can last on the order of seconds. This necessitates the
use of asynchronous interfaces as the main ones for two-way messaging.

Furthermore, the most commonly used protocol is HTTP. HTTP itself
is a very useful protocol, and has some features that make it very suitable
in the case of client mobility (we encounter these later in section 6.2). How-
ever, typical HTTP usage adds a large amount of headers onto each message,
potentially doubling the size of a simple SOAP message. Per the law of
diminishing returns, an alternate serialization format for XML will not be a
significant improvement if most of a message consists of protocol headers.

Another consideration on the protocol layer is its precise semantics. To
be a full-fledged member of a larger network, a node needs to be able to
both send and receive messages. However, typical ways of connecting a mo-
bile device to the Internet use Network Address Translation (NAT) [87],
which makes it impossible for the outside to initiate contact with the mo-
bile device. For this reason, the protocol needs to support two-way com-
munication, which HTTP as a single-request-response protocol with clearly
defined client and server roles does not do.

We summarize our collected requirements in Table 3.1. We note that
many of the requirements are shared between the processing API and seri-
alization format. This indicates a potential for coupling their designs very
closely. The requirements for the protocol are not very specific to XML, but
are applicable to any messaging system for the mobile environment.

3.2 System Architecture

The overall view of the MTS, as currently implemented, is shown in Fig-
ure 3.1. The message service component on the upper left binds the com-

25

Service API

Protocol Framework

Message
Service

Axis API

Axis Lye

Protocol API

AMME
Protocol

Mobility layer

Meep MOP

EM BM

Serializer

Parser

Xebu

X
A

S
A

PI

serialize

parse

Figure 3.1: The Message Transfer Service architecture

ponents together and is the main interface for applications. We describe
this main component in this chapter and leave the internals of other com-
ponents to later chapters. In the figure, EM is an encodable message that
will be serialized by the protocol layer, and BM is a sequence of bytes that
will be parsed by the message service component.

The MTS is divided into three separate components, the message service,
the message protocol, and the XML serialization. All of these provide generic
interfaces and have at least two implementations each. The message proto-
col and XML serialization components are the topics of later chapters.

In Figure 3.1 the message service component provides two interfaces
to the outside world: the service API and the protocol framework. The for-
mer is for use by messaging applications, and the latter is for pluggable
protocols. We have, in fact, implemented several different protocols using
the message service’s protocol framework, but Abstract Mobile Message
Exchange (AMME) is the most featureful of these.

The service API provides a class for messages, instances of which are
constructed by applications and passed to the message service for delivery.
The data in messages can be specified either as XML or as a collection of
name-value pairs. The names in the latter are hierarchical, and also seri-
alized as hierarchical XML. SOAP headers may also be specified for mes-
sages, but for them only XML is available.

Various properties required by the MTS to direct and correlate messages
are specified in SOAP headers. This is similar to Web Services Address-
ing [126], except that we use simple strings and numbers instead of URIs.
For example, each message gets a unique identifier so that responses to
messages can be dispatched to the proper target.

Messages are always directed at destinations. In essence, a destination
is a Uniform Resource Locator (URL) separated into component parts. Its

26

components are protocol, server address, server port, and target. The pro-
tocol names a Message Transfer Protocol (MTP), and may in addition in-
clude features that specify additional information on the type of connection
required. The server address and port are the same as in normal HTTP
URLs. The target is the local name of the target on the server side and is
used to dispatch the message.

The two basic message sending operations are send for one-way mes-
sages and sendCallback for asynchronous two-way messages. The basic
two-way messaging operation needs a callback object provided by the ap-
plication that is then invoked when the response arrives. The callback style
of two-way messaging is simple, yet powerful, permitting different Mes-
sage Exchange Patterns (MEPs) to be easily implemented.

The invocation method of the callback interface permits a message to
be returned by the application. If the received message was one for which
a response was expected, indicated by a specific SOAP header, the service
will send the returned message back. As the application can also mark this
message as one to which a response is expected, the callback style can easily
be used to implement the conversation MEP, which consists of a sequence
of messages sent back and forth between the parties.

The service supports two different kinds of callback objects. Persistent
ones are explicitly registered by the application and they remain known
until the application deregisters them. Transient ones, on the other hand,
are generated by the service for a single MEP and are deregistered after the
MEP has completed. Each non-one-way message carries a SOAP header to
identify its sender. If this sender is a persistent one, the receiver can store it
and use it at any later time as a message target. This can be used to provide
the subscribe/notify MEP.

We also provide other semantics for two-way messaging, all imple-
mented generically on top of the callback interface. The other major asyn-
chronous two-way style, polling, is implemented as a future object [33] that
is registered as the callback. By forcing a synchronization of the future
object immediately, it is possible to provide a synchronous two-way invo-
cation. For reasons detailed above, we do not, however, recommend using
the synchronous request-response pattern. These other semantics only sup-
port request-response interaction, as specifying more flexible semantics for
these styles is not feasible.

As with the rest of the system, the service API is a generic one, permit-
ting multiple implementations. We provide two of these, which we call the
Axis service and the Lye service. The Axis service is built around the Apache
Axis2 SOAP implementation, and only alters the protocol processing and
serialization performed by Axis. As Figure 3.1 shows, we also provide the
standard Axis API to applications to permit some compatibility with stan-

2http://ws.apache.org/axis/

27

http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://ws.apache.org/axis/

dard Web services. As Axis is not usable on mobile devices, we imple-
mented from scratch the Lye service for the Java MIDP platform. The Lye
service is intended as a very simple one that should be suitable for mobile
devices.

28

Chapter 4

XML Processing Interfaces

The traditional view of XML comes from its roots as a document markup
language. According to this document-oriented view, an XML document is
mostly composed of text, is intended to be read and modified by people
and therefore has descriptive names, and element content can be mixed,
i.e., consisting of both text and elements. Furthermore, XML is processed
by applications as XML, and commonly the whole document, the size of
which can be quite large, is kept in memory.

The emerging data-oriented view that we are concerned with treats XML
as a standard data interchange format. The actual data is kept in an appli-
cation-specific form inside the system, and therefore XML is visible only
to programs, not people. Elements are typically rigidly structured, and
contain either only other elements or a stringified representation of some
programming language data value. Documents can be very small, and the
preference is to transform them in a streaming manner between XML and
their application-specific form.

4.1 Existing Interfaces

The two best-known interfaces for processing XML data are SAX [9] and
DOM [118]. Of these two, SAX is intended for streaming parsing. During
SAX parsing the parser is in control and invokes a registered callback han-
dler for each SAX event encountered during parsing. DOM, on the other
hand, represents the entire XML document in a tree format, and provides a
multitude of links needed to navigate the document.

When selecting the XML processing interface for our messaging sys-
tem, we immediately rejected DOM for consideration. Our interest in XML
is purely as a data interchange format, and application-level representa-
tion of any transferred data will be tailored specifically to that application.
Adopting DOM as the model would therefore require applications to hold
two different representations of data in memory, with the DOM version

29

taking a large amount of additional space to represent the required naviga-
tional links. Since we endeavor to save space usage in our system, DOM
cannot be considered appropriate for our purposes.

Our first implementation of the MTS used the SAX API for XML pro-
cessing. Since SAX does not preserve any state specific to itself, it is very
well suited to the mobile environment. However, a general message trans-
fer service will need to exchange arbitrary application data structures, so
it needs a data binding system [89] that can be extended with application-
specific types.

This data binding requirement was ultimately the reason why we had
to reject SAX. The SAX processing model keeps the parser in control of
the parsing. If the application wishes to construct a complex data structure
from XML data, it will need to remember partial data that has been fed by
the SAX parser and to finally construct the structure when encountering
an element end event. In short, this means that the decoder will need to
be implemented with state that is updated as callbacks from the parser are
received.

In contrast, a pull-style API where the application is in control and re-
quests the parsed events from the parsing API one at a time provides a
much more natural way for decoding structured data. In this case the pro-
gram counter is sufficient to tie the element start events to the content of
their respective elements, and required state is naturally kept in local vari-
ables. Furthermore, processing distinct elements appearing in arbitrary or-
der is no more difficult than it is with a push-style parser such as SAX.

Later well-known APIs include JDOM1 and Streaming API for XML
(StAX) [7], the former of which is similar to DOM and the latter to SAX.
As we rejected DOM for fundamental reasons, we did not even consider
JDOM. StAX, having a pull model, would have been more suitable to our
needs, but it did not appear early enough to be considered. However, our
adopted solution is a precursor to StAX, so a future migration to StAX as
the more standard API is not ruled out.

4.2 The XAS Data Model

For the reasons above, we decided to base our data model on a pull-style
event-based API. As the underlying API we chose XmlPull [84], in part
because that API is used in the kXML2 implementation of XML parsing
and serialization for mobile phones.

Our model, XAS [47], formalizes the implicit data model provided by
the XmlPull API. The basic object in the model is an event. This represents
a single event as detailed in Table 4.1. These types are the same as those

1http://www.jdom.org/
2http://www.kxml.org/

30

http://www.jdom.org/
http://www.kxml.org/
http://www.jdom.org/
http://www.kxml.org/

Table 4.1: Event types of the XAS data model

Event Data
DOCUMENT START none
DOCUMENT END none
PREFIX MAPPING name
ELEMENT START name
ELEMENT END name
ATTRIBUTE name, value
CONTENT value
TYPED CONTENT name, value
COMMENT value
PROCESSING INSTRUCTION value
ENTITY REFERENCE value

provided by the low-level getEventType method of the XmlPull’s XmlPull-
Parser interface, and the data in each event is what is provided for the
XmlSerializer interface.

In Table 4.1 the name in event data refers to a pair consisting of a name-
space URI and a local name. The only representation of namespace prefixes
in XAS is present in the PREFIX MAPPING event that contains a namespace
URI and the prefix to map it to. This decision was made because XML
Namespaces distinguishes names based on their namespaces and not on
any prefixes that the namespaces might be mapped to.

The XAS data model leaves out document type declarations. Since our
main purpose is to use this model for SOAP messaging, this is reasonable
because SOAP prohibits these declarations. Furthermore, we consider val-
idation better to perform after converting a document into its XAS repre-
sentation. The model also leaves out CDATA sections, since their existence
(as well as that of the standard entities <, &, etc.) is an artifact of the
XML serialization format, and has nothing to do with an abstract model.

A new event type in the XAS model is the TYPED CONTENT event. This
represents typed data that will need to be encoded according to the rules
of the serialization format. This event was created because our messaging
system supports alternate serialization formats, which might have more
efficient ways to encode common data types. Hence, typed data needs to
be represented abstractly at the data model level, so that it can stay in its
internal representation until it needs to be serialized. In a TYPED CONTENT

event the name is the name of the type in the manner of XML Schema [109]
and the value is the data itself, represented in a manner appropriate to the
language used.

A complete XML document is represented as a sequence of XAS events.
The first and last events of this sequence are a DOCUMENT START event and

31

a DOCUMENT END event, respectively. An ELEMENT START block consists
of a sequence of PREFIX MAPPING events, followed by an ELEMENT START

event and a sequence of ATTRIBUTE events. Either of the sequences may
be empty. An ELEMENT START block therefore corresponds to the start
tag of an element in an XML document. An element is a sequence starting
with an ELEMENT START block and ending with an ELEMENT END event
of the same name as the block’s ELEMENT START event. The scope of the
namespace prefix mappings in an ELEMENT START block is the element
started by it.

Between an ELEMENT START block and its corresponding ELEMENT

END event is element content, a sequence of elements and CONTENT events.
Two consecutive CONTENT events are equivalent to a single CONTENT

event whose value is the concatenation of the two events. Element con-
tent may also be a single TYPED CONTENT event. Of the other event types,
COMMENT and PROCESSING INSTRUCTION events are permitted between
any two events in the sequence except within an ELEMENT START block.
ENTITY REFERENCE events are permitted in the same places as CONTENT

events are.
An example XML document and its mapping to a sequence of XAS

events are shown in Figure 4.1 where we represent names as pairs of a
prefix and a local name to save space. In reality, each p, apart from the
one in the PREFIX MAPPING event, would be http://example.org/people.
For the TYPED CONTENT events we use the prefix xsd to refer to the XML
Schema datatypes namespace.

4.3 The XAS API

XML processing in our messaging system is based on an API derived from
the XAS data model. The XAS event maps to a Java class Event, which is
a discriminated union of the possible XAS event types. The class contains
fields for all possible data contained in a XAS event and accessor methods
for these. A sequence of events is represented by the interface EventSe-
quence. This interface has several alternate implementations, each appro-
priate for a different use.

At the lowest layer are the XmlPull APIs, XmlPullParser and XmlSe-
rializer, both extended with handling of TYPED CONTENT events de-
scribed above. When using XAS, the former is typically wrapped inside an
EventStream, an EventSequence implementation that (lazily) calls on the
parser to produce new events only when the application demands them.

The other EventSequence implementations are EventList and Event-
Serializer, both of which are used for application-controlled EventSe-
quence construction. The EventList class implements methods similar to
Java’s standard List interface, and the EventSerializer class implements

32

<?xml version="1.0" encoding="UTF-8"?>
<composers xmlns:p="http://example.org/people">

<p:person p:nationality="DE">
<p:name>

<p:first>Richard</p:first>
<p:last>Wagner</p:last>

</p:name>
<p:occupation>Composer</p:occupation>
<p:born>1813-05-22</p:born>
<p:died>1883-02-13</p:died>

</p:person>
</composers>

DS(UTF-8) PM(http://example.org/people,p) ES(,composers)
ES(p,person) A(p,nationality,DE) ES(p,name) ES(p,first)
TC(xsd,string,Richard) EE(p,first) ES(p,last) TC(xsd,string,Wagner)
EE(p,last) EE(p,name) ES(p,occupation) C(Composer) EE(p,occupation)
ES(p,born) TC(xsd,date,1813-05-22) EE(p,born) ES(p,died)
TC(xsd,date,1883-02-13) EE(p,died) EE(p,person) EE(,composers) DE

Figure 4.1: An example XAS event sequence

XmlPull’s XmlSerializer interface to allow an application to produce an
EventSequence in lieu of outputting an XML document.

All of these classes provide only an event-by-event view of an XML
document. To provide a more XML-like view, we implemented two higher-
level classes, XmlWriter and XmlReader. The former is a wrapper around
an XmlSerializer and provides methods for inserting complete elements.
The latter is basically a cursor into an EventSequence, but also includes
methods for accessing complete elements at the cursor’s position.

One intent of the XAS API was to allow simple chaining of various XML
processors as classes that wrap and implement the EventSequence inter-
face. We implemented an abstract TransformedEventSequence class that
worked acceptably for this purpose, but mostly on the input side. This class
wraps an underlying EventSequence and defines an abstract transform
method that can perform arbitrary m-to-n transformations of the events
from the underlying sequence.

As the XAS API was originally designed for our messaging system,
it also includes the possibility of selecting a serialization format different
from XML. The serializers and parsers for the actual serialization format
are accessed through a collection of factories [30], which are registered based
on the MIME type associated with their serialization format (like text/xml
or application/soap+xml for XML data).

As many existing XML-using systems process XML through more stan-
dard APIs such as SAX or DOM, we also implemented compatibility inter-

33

faces for both of these. The SAX interface is a two-way converter that con-
verts SAX events into XAS events and vice versa (note that an element start
event in SAX also contains the element’s attributes, and therefore is con-
verted to several XAS events). The DOM compatibility interface takes an
EventSequence representing a complete document and converts this into a
DOM tree, or vice versa.

4.4 Typed Data in the XAS API

One reason for designing a new API for XML processing was to integrate
typed data handling into the system. Our main purpose in doing this tight
integration was to allow the serialization format described in chapter 5 to
handle typed data efficiently. Otherwise typed data would have to be con-
verted to and from a string representation, which would have eliminated
any performance benefits gained from the binary form used by our format.

In the XAS API, the value in a TYPED CONTENT event is a Java Object,
so it can be any value representable in Java, including one defined by the
application programmer. The XAS system includes a mapping between
XML Schema types and Java classes so that the typed data handler can
always determine an appropriate type when converting.

Encoding and decoding of typed data are handled by objects of classes
ContentEncoder and ContentDecoder, respectively. Such objects are in-
stalled into the serializer and parser, and whenever typed data needs to
be handled, the installed encoder or decoder is invoked. Typically these
objects are chained: if one does not support the given type, it will pass its
arguments unchanged to the next one in the chain. Only if the last proces-
sor in the chain does not recognize the type, is an error raised.

In our view, typed data can be divided into two classes, primitive and
complex. Primitive typed data is data that would appear as the (sole) text
content of a single element whereas complex typed data is everything else.
Our preference is that the serialized form of complex typed data would
always consist of a sequence of elements, and not have mixed content.

The cause of this division is that encoders and decoders for primitive
typed data need to be implemented separately for each distinct serializa-
tion format. On the other hand, if our preference for complex typed data
is followed, their encoders and decoders will be independent of the under-
lying serialization format. The system, as currently implemented, does not
support application programmers defining new kinds of primitive typed
data, except by directly modifying the source code of every format imple-
mentation.

The encoding interface is very simple. There is one method, encode
that takes as arguments the type name and the object to be encoded. The
method is also passed the serializer to use. As the serializer interface does

34

not allow access to the output stream, it is not possible for the encode
method to directly output any data, so primitive typed data cannot be han-
dled.

The decoding process is more complex. It is handled by two mutu-
ally recursive methods, decode and expect. Of these, the expect method’s
implementation is shared by all ContentDecoder objects whereas decode
needs to be implemented for each type separately. The arguments of the
decode method are the type name and an XmlReader where the cursor is
positioned after the ELEMENT START block of the element to be decoded.
The method is expected to decode the element’s content as a typed object,
return this decoded object, and to leave the cursor immediately before the
ELEMENT END event ending the decoded element.

The expect method starts at an ELEMENT START block. It reads the type
attribute from the ELEMENT START block, and then calls the decode method
giving this type as an argument, with the cursor positioned correctly. For
primitive typed data our parsers provide the TYPED CONTENT events di-
rectly so there is nothing for the decode method to do. For complex typed
data the code of the decode method typically consists of a sequence of calls
to expect for each of the components of the data to decode.

We used the TransformedEventSequence class to implement a trans-
formation of a regular event sequence into a typed event sequence. This
TypedEventSequence class takes an EventSequence and a ContentDecoder,
and produces an EventSequence, which contains TYPED CONTENT events
for all the types that the supplied decoder understands.

4.5 Example of Typed Data Handling with XAS

We next provide an example of typed data encoding and decoding. An
example Java class and an XML encoding of its instance are shown in Fig-
ure 4.2. We will further assume that the Person and Name classes follow
the Java Beans framework [88] by providing public accessor and mutator
methods for each of their private fields. We also assume a constructor for
both classes that takes all the components as arguments. We will omit all
namespace handling, as that would just clutter the example without pro-
viding any additional insight.

The encoding process in Figure 4.3, shown in Java-like pseudocode, is
straightforward. The encoder is provided with the object to be encoded,
the name of its type, and the serializer to use. An XmlWriter is constructed
from the serializer to make the encode process a simple sequencing of the
individual components of the object.

The decode process in Figure 4.4 is not much more complicated. How-
ever, we have here omitted all error handling. If the expect method does
not manage to decode any typed data, it will return null and not advance

35

public class Person {
private Name name;
private String nation;
private String work;
private Calendar born;
private Calendar died;

}

public class Name {
private String first;
private String last;

}

<person nation="DE">
<name>

<first>Richard</first>
<last>Wagner</last>

</name>
<work>Composer</work>
<born>1813-05-22</born>
<died>1883-02-13</died>

</person>

Figure 4.2: An example Java class and its XML-encoded form

PERSON-ENCODE(o, type, ser)

1 if type = "person"
2 then
3 XmlWriter writer← new XmlWriter(ser)
4 Person person← (Person) o
5 writer.addEvent(Event.attribute("nation", person.getNation()))
6 writer.typedElement("name", "name", person.getName())
7 writer.typedElement("work", "string", person.getWork())
8 writer.typedElement("born", "date", person.getBorn())
9 writer.typedElement("died", "date", person.getDied())

10 else
11 chain.encode(o,type,ser)
12

NAME-ENCODE(o, type, ser)

1 if type = "name"
2 then
3 XmlWriter writer← new XmlWriter(ser)
4 Name name← (Name) o
5 writer.typedElement("first", "string", name.getFirst());
6 writer.typedElement("last", "string", name.getLast());
7 else
8 chain.encode(o, type, ser)
9

Figure 4.3: Example encoding code

36

PERSON-DECODE(type, reader)

1 if type = "person"
2 then
3 Event at = reader.advance()
4 String nation = (String) at.getValue()
5 Name name = (Name) expect("name", reader)
6 String work = (String) expect("work", reader)
7 Calendar born = (Calendar) expect("born", reader)
8 Calendar died = (Calendar) expect("died", reader)
9 return new Person(name, nation, work, born, died)

10 else
11 return chain.decode(type, reader)
12

NAME-DECODE(type, reader)

1 if type = "name"
2 then
3 String first = (String) expect("first", reader);
4 String last = (String) expect("last", reader);
5 return new Name(first, last);
6 else
7 return chain.decode(type, reader)
8

Figure 4.4: Example decoding code

the reader. Any implementation of the decode method needs to behave in
the same manner.

We can see from these examples that writing encoding and decoding
code can be tedious and repetitive, as the procedure to be followed is es-
sentially the same in all cases. Furthermore, the error handling that we
omitted is also the same everywhere. This is why we designed a language
called Object Representation Language (ORL), which can be used to de-
scribe the structure of a Java class. To accompany this, we implemented a
program that generates the appropriate encoder and decoder classes from
the ORL definition. The ORL definition of our example is shown in Fig-
ure 4.5.

The ORL syntax is intentionally very simple. The type keyword intro-
duces the name of a structured type. The content of the type is enclosed in
braces {}, and consists of pairs of type name and component name. The

37

type name {
string first
string? middle
string last

}

type person {
name name
string nation
string? work
date born
date? died

}

Figure 4.5: An example ORL file

type name may be either a predefined one, such as string, or a structured
type defined in ORL, such as name. Additional syntax not shown here is
available to handle namespaces for the types and Java packages for the
generated encoders and decoders. Our code generator produces essentially
the code in Figures 4.3 and 4.4, but with error handling, from the file in Fig-
ure 4.5.

The example in Figure 4.5 shows a feature that our encoding and decod-
ing example did not cover. In ORL, a component can be marked with a ? to
indicate optionality and with a * to indicate repetition. The generated en-
coder and decoder will automatically deal with these cases. Furthermore,
the decoding process using ORL allows more flexibility, as the construction
of the object is left to the application. This permits using either a construc-
tor as in our example above, mutator methods, or factories.

We note that an ORL definition for the encoding of a datatype essen-
tially provides a schema for the part of the document consisting of that
datatype. In light of the techniques presented later in section 5.4 it could
be useful to integrate ORL into any schema-handling present in our sys-
tem, and to allow such an application-defined schema to also be used for
optimization.

38

Chapter 5

Alternate XML Serialization

The idea of an alternate serialization format for XML is not a new one. As
one design principle of XML, as listed in 2.1, was “Terseness [. . .] is of min-
imal importance”, there have been several attempts to reduce the amount
of space that an XML document takes. We will below cover the most im-
portant XML compression ideas, and then move on to binary serialization
formats and the work done at the W3C in that area. The second half of this
chapter presents our own serialization format.

5.1 XML Compression

XML documents have much textual redundancy, so they compress very
well with generic text compression tools. However, XML has structure be-
yond the linear one expected by a generic compressor. For instance, it could
be expected that elements with the same name (e.g., multiple occupation
elements) would have more similar content than just consecutive elements
(such as occupation and born).

In the early days of XML there was much interest in XML-specific com-
pression. The main interest was in getting better results than the very pop-
ular general-purpose compressor gzip [20], which implements the Lempel-
Ziv compression algorithm [139].

One of the best-known XML-specific compressors was XMill [57]. The
basic principles of how XMill works are separation of structure (tags) and
data (text content), grouping related data items (e.g., elements with the
same name), and using different compressors for different groups. XMill
is a very flexible system, allowing these principles to be used to different
extents.

The XMill transform reads an XML document using SAX and splits the
generated events into different streams. There is one stream for the structure
(tags), and a number of data streams. A user can specify the names of
elements that are included in each data stream. Default data streams are

39

then constructed individually for each element type that was not included
in the user’s definitions. The structure stream also contains pointers to
the data streams so that the XML document can be reconstructed after the
transform.

XMill allows the user to specify semantic compressors for data streams.
For example, a user could specify that the content of some specified ele-
ment was always a date value, so the semantic compressor could represent
these in an efficient binary format. Semantic compressors can also match
regular expression templates against the data value to eliminate common
parts directly.

In the final phase, gzip is applied individually to each stream (to the
data streams after semantic compression), and the streams are concate-
nated to form the final document. Measurements on XMill reported in [57]
indicate that XMill performs better than gzip on many kinds of XML data,
and furthermore that an original text document converted to XML and
compressed with XMill is smaller than the original document compressed
with gzip. Timing measurements indicate that XMill is approximately as
fast as gzip, both compressing and decompressing.

However, while XMill performs well when combined with gzip, there
exist better algorithms for textual data compression. A currently-popular
one is bzip21, which uses the Burrows-Wheeler transform [11] to prepro-
cess the data into a more compressible form. Bzip2 achieves a compression
ratio comparable with state-of-the-art compressors while being much faster
than them.

Since the XMill algorithm only transforms the data to be compressed,
it can be used with any compression algorithm. It would therefore be con-
ceivable that using, e.g., bzip2 as XMill’s compression algorithm would
yield even better compression. However, this has been observed not to be
the case; in fact, applying the XMill transform to an XML document can
worsen the performance of state-of-the-art compressors [15].

After noticing that XMill’s modeling of XML data is not sufficient, the
author of [15] proposes a technique called Multiplexed Hierarchical Modeling
(MHM), which is based on the well-known Prediction by Partial Matching
(PPM) compression technique [17]. The idea behind MHM is roughly sim-
ilar to XMill: split the XML into different streams based on the item type,
and model each of these streams independently.

The MHM algorithm is performed on an Encoded SAX stream; this is
essentially the sequence of events produced by a SAX parser from an XML
document. It builds different models for document structure and various
kinds of names and text content. An additional improvement to inject ele-
ment start symbols at various places inside the element improves the mod-

1http://www.bzip.org/

40

http://www.bzip.org/
http://www.bzip.org/

els even further. This process has been implemented in the XMLPPM2 tool.
Based on investigating the activity (development, mailing list discus-

sion, etc.), both XMill and XMLPPM seem to be very unused. In particular,
XMill appears to have been abandoned after publication, and its authors
have moved on. The situation is even worse for the many commercial tools
that existed five years ago, as they have completely disappeared.

Our main concern, though, is with XML messaging. Here typical XML
documents are small and contain much structural information instead of
text. The methods described above are all generic XML compressors, so
it seems believable that there could exist messaging-specific ways to com-
press XML better.

Considering messages to a single destination, there will very probably
be a large amount of similarity among them. Especially in the case of SOAP
there will always be the SOAP framing, and possibly some extension head-
ers. If we can assume a session between two messaging applications, we
could use differential encoding techniques that have proved useful for In-
ternet protocols [44, 14].

Even if we do not assume a session, there may still be a WSDL descrip-
tion of a service endpoint. This description can be used to create a template
message, to which differential encoding is applied [100]. However, it ap-
pears that this technique does not yet provide substantial benefits, nor is
the XML differencing and patching technology used sufficiently robust to
run automatically.

5.2 XML Binary Characterization

However, for use in the resource-constrained environment of the wireless
world, XML compression methods are of little benefit. The goal there is not
merely to reduce the size of the documents but also to reduce processing
time and memory consumption in serialization and parsing. An additional
compression step, while beneficial for bandwidth usage, only exacerbates
these other concerns.

What is needed is an XML representation format that can be directly
read and written in a streaming manner. This is typically the case where
the term “binary XML”, as first articulated by WBXML [104], is mentioned.
This term refers to a binary serialization format that is designed to be com-
patible with XML and according to the same principles, permitting stream-
ing between the serialized form and an application data model.

The concept of binary XML has become popular in the recent years. The
W3C has followed the situation, and in September 2003 organized a work-
shop on Efficient Interchange of XML Information Item Sets [117]. Several
participants in this workshop presented their own binary formats, and as

2http://xmlppm.sourceforge.net/

41

http://xmlppm.sourceforge.net/
http://xmlppm.sourceforge.net/

a result, the W3C chartered the XML Binary Characterization (XBC) WG3

(the author of this thesis participated in this WG representing the Univer-
sity of Helsinki). The WG’s purpose was to determine use cases for an
alternate serialization format, to find out why XML is not suitable for these
use cases, and to provide a recommendation on whether the W3C should
continue work in this area.

The XBC WG concluded its work at the end of March 2005 with the
publication of its findings [130], supported by use cases [133], required for-
mat properties derived from the use cases [132], and ways to measure the
properties [131]. The findings were that a binary format that supports the
use cases is feasible to build and that the W3C should standardize such a
format. Based on this recommendation, the W3C chartered the Efficient
XML Interchange (EXI) WG4 to provide such a format, either by develop-
ing one itself or by adopting an existing format (our format described in
this chapter has been submitted to the EXI WG for consideration).

For our purposes, the most interesting one of the use cases identified
by the XBC WG is called Web Services for Small Devices. This use case co-
incides with our application area very closely, and the analysis of require-
ments in the use case matches our own, presented in section 3.1, nearly
exactly. However, our analysis lifted as necessary properties also Schema
Extensions and Deviations to permit evolution of message schemas and Spe-
cialized Codecs to permit integration of application-specific data structures.

Binary XML techniques can roughly be divided into Infoset-based and
schema-based [74]. Of these, the former is suitable for any XML data while
the latter may require information on a schema that documents conform to.
We must handle general XML in our messaging system, so the basic format
needs to be Infoset-based. However, often a complete or partial schema
for the messages is available, so schema-based optimizations should be in-
cluded if possible.

5.3 Tokenization Techniques

One basic concept of binary XML formats that has been used by many of
the existing well-known formats is called tokenization. This is similar to
what generic compressors like gzip [20] do in that a recurring string in the
data is replaced by a short integer token. This provides both increased com-
pactness, as the string is shortened to often one or two bytes, and improved
processing speed, as there is no need to perform as much string processing
on the parser side.

While generic compression takes quite a bit of processing power, the to-
kenization performed by binary XML formats is much more efficient. This

3http://www.w3.org/XML/Binary/
4http://www.w3.org/XML/EXI

42

http://www.w3.org/XML/Binary/
http://www.w3.org/XML/EXI
http://www.w3.org/XML/EXI
http://www.w3.org/XML/Binary/
http://www.w3.org/XML/EXI

is because the tokenization does not consider every substring of the serial-
ized form to be tokenizable, only the names in XML items. For instance,
of an element name, a binary XML tokenizer tokenizes only the namespace
and local name instead of considering all possible substrings of the full
qualified name.

5.3.1 Existing General-Purpose Formats

The oldest format, WBXML [104], is a simple tokenizer. Its tokens come
from a space of 65536 (216) available values, and at each point of a WBXML
document there is a current code page, which gives 8 bits of this value, al-
lowing a token to be represented in a single byte, yet enabling a large space
of possible tokens. Code pages are switched with special tokens; obviously
the placement of tokens into code pages needs to be done with care to avoid
too many code page switches.

While WBXML is an old and established format, it is poorly suited to
the XML messaging world. Its largest deficit is that it only works for the
specific format used with Wireless Application Protocol (WAP), and any
modification to this would require a round of standardization. However,
even if this would be remedied, it would still leave the problem of name-
spaces, which are not at all supported by WBXML.

Millau [31] extends the WBXML format by splitting the document into
a structure stream and a content stream. This allows separation of structure
from content as well as separate compression of content. Millau also ex-
tends WBXML to permit binary encoding of common data types such as
bytes, integers, or floating point values. Finally, the Millau implementa-
tion provides binary versions of the SAX and DOM APIs, which were mea-
sured to have a positive effect on application performance. However, like
WBXML, Millau does not support namespaces, so it cannot be considered
a modern format suitable for our purposes.

The best-known modern general-purpose binary format is indubitably
Fast Infoset [79]. This format represents the information items of XML In-
foset in an Abstract Syntax Notation One (ASN.1) schema [41]. Then, it
is possible to use the well-established encoding rules of ASN.1 [40, 42] to
serialize a document represented as an Infoset into a more compact form.

The main benefit of Fast Infoset comes from the indexing of strings and
qualified names, i.e., tokenization. Another benefit, which is also common
to most binary formats, is the ability to embed binary content directly into
an XML document without encoding it in Base64. It is also possible to
preserve the state of the indexing from one document to another, which is
very useful for message streams containing similar messages.

Another somewhat similar general-purpose format is XBIS [85]. XBIS
is designed to be one-to-one compatible with Canonical XML, which is a
deviation from most other binary formats that consider some more abstract

43

data model. This makes XBIS a very stream-oriented format.
The basic concept in XBIS is again tokenization. Names of elements

and attributes are always tokenized, while tokenizing text and attribute
values is optional. A document is serialized as a sequence of nodes, each
of which represents some piece of XML data. The serialization format of
nodes has been chosen so that more commonly used types of nodes, e.g.,
element start nodes, are serialized in a smaller number of bytes than, e.g.,
processing instructions.

In contrast to the use of qualified names in Fast Infoset, XBIS tokens
always reference the actual namespace URIs. As all element and attribute
names of a single namespace will simply reference the first instance of that
namespace (which should be a namespace declaration in namespace-well-
formed XML), this does not consume additional space. It also makes the
XBIS format somewhat more independent of the actual namespace prefix
mappings.

In contrast to WBXML and Millau, Fast Infoset and XBIS do not limit
the space of available tokens in any manner. Instead, they define ways to
encode arbitrary integers, and this encoding is also used for the tokens.
This makes these formats more widely applicable, as the tokenization does
not degrade for any documents, but it can cause an increase in the sizes
of documents, since larger token values will take more space in serialized
form.

5.3.2 Basic Xebu Format

Our format, Xebu [50], is derived directly from the XAS model presented in
section 4.2. Each event of XAS maps directly to a serialized form in Xebu.
The serialization of an event begins with a one-byte type token that contains
the event’s type and some flags to indicate how the rest of the event is to be
processed. This is followed by the content of the event.

Each string in an event’s content is given either as a one-byte token or
as a length-prefixed string. If Xebu has been set to tokenize dynamically, the
latter form also includes a one-byte token for later appearances of the same
string. Tokenization can happen either only for namespaces and names or
for all strings in an event’s content. In our messaging system these tokens
can be specified beforehand, and dynamic tokenizations can persist across
messages in a single communication channel.

Xebu includes four separate token mappings, for namespaces, names,
values, and text. Namespaces are simply the namespace URIs. Names
consist of pairs of a namespace and a local name. Values denote attribute
values and have a namespace, a local name, and a value. Finally, text is
simply text content. By tokenizing complete names instead of each com-
ponent separately, Xebu achieves additional size reduction. We considered
the case where the same local name belongs to two different namespaces to

44

be semantically insignificant to optimize for.
We chose to use only one byte for a token, since we believe that the

number of actually-common strings will be quite small for each separate
communication channel. Allowing more tokens would have either wasted
space (both in the messages to represent the values and in memory to store
larger token mappings) or complicated processing. For example, the code
pages of WBXML are usable for the very static case that it considers, but
would be extremely complex to implement for the more dynamic docu-
ment sets that Xebu considers.

The second design decision was to include token values explicitly in the
serialized form. This does waste space in comparison with the approach
of having them be selected implicitly. However, since the token space is
limited in size, the implicit approach would require the eviction policy of
expired tokens to be specified for interoperability. In our approach the se-
rializer can select its token replacement policy freely, and can even vary it
dynamically without synchronization problems.

We have considered various token replacement policies in our work.
The current implementation uses the Least Recently Used (LRU) policy to
determine which token to evict. However, when considering the names
in XML messages, we note that some names are repeated in many mes-
sages while others are very rarely present. Because of this, a technique
like Adaptive Replacement Cache (ARC) [59] that provides two classes of
tokens, persistent and temporary, could be beneficial.

At the moment we are considering a three-level split of the token space
where a temporary token can either persist until replaced or be invalidated
when the depth of the processed tree goes above the one where the token
was assigned. The latter kind would allow self-contained XML fragments
to be serialized, while still retaining most of the benefits of tokenization. As
mentioned above, the design of Xebu makes experimenting with alternate
policies very simple, since only the serializer side needs to be modified.

Another Xebu feature, also common in other binary XML formats, is
the binary encoding of known data types. The TYPED CONTENT event of
XAS was designed to allow this kind of alternate encoding without going
through a string representation. This will save space in many cases and can
also improve performance for certain data types.

5.4 Using Schemas to Improve Compactness

In SOAP messaging we can say that there is always partial schema infor-
mation available, namely the high-level SOAP message structure presented
in section 2.2. Furthermore, in many cases there will be schema informa-
tion on existing header blocks and the message body. It can therefore be
useful to allow the binary format to take advantage of available schemas.

45

However, since a schema for messages can be a composite of several inde-
pendent schemas, the format needs to be flexible enough to allow partial
schema information to also have benefits.

5.4.1 Existing Schema-Based Formats

Existing binary formats that can take advantage of schema information
include BiM of MPEG-7 [62], Fast Web Services [78], and XML Schema-
based Binary Compression (XSBC) (formerly called Cross-Format Schema
Protocol (XFSP) [82]). There is also a schema-optimized version of Mil-
lau [92]. These all take a slightly different approach to using the schema,
and we present these approaches next.

XSBC [82] is a very simple format. Its approach is basically pre-tok-
enization based on the element names in the schema combined with encod-
ing typed data specially, determining the correct encoding from schema in-
formation. In this it resembles the original version of our Xebu format [49].
Each element gets a unique token based on the XPath expression that points
to it. This is necessary so that elements with the same name but differently-
typed content can be distinguished from each other.

Performance measurements on XSBC [6] indicate that XSBC achieves
approximately the same serialized form size as Fast Infoset. This is ex-
pected, since the tokenization technique used is principally the same, and
binary encoding of primitive typed data often does not reduce the size.
Furthermore, parse times for XSBC are clearly worse than for Fast Infoset.

The Millau extension [92] is based on DTDs. The mechanism of the
schema optimization is to perform as a validator against a DTD by travers-
ing both the XML document and the DTD simultaneously. There is only a
need to produce some structure information when the DTD allows several
choices as to the next item.

The measurements reported in [92] are performed only for content-
heavy XML. This is puzzling, since this schema optimization is very slow
and does not perform any content compression, so the measurements in-
dicate it being a very poor choice. Furthermore, the presence of DTD op-
erators deep in the tree is a significant cause of poor performance for this
optimization, requiring that the DTDs used with this technique do not have
too many choices available.

Fast Web Services [78], like its sister technology Fast Infoset, is based
on ASN.1. Here, however, instead of defining an ASN.1 schema for the
XML data model, a mapping from XML Schema to ASN.1 schema [43] is
specified. Then, XML instances conforming to a given schema can be trans-
formed into ASN.1 instances of the mapped schema. A standard ASN.1 en-
coding, such as Packed Encoding Rules (PER) [42], is then used to produce
the serialized form.

The performance of Fast Web Services appears to be better than that of

46

the Millau extension. The measurements in [78] indicate that over 60 %
of total time in a Web service invocation is spent on processing the SOAP
body, and that Fast Web Services can cut this time down to one tenth. This
factor increases with document size; the reported result is for a 50-kilobyte
XML message, which is 10 kilobytes encoded in the Fast Web Services for-
mat.

However, if the complete schema for a message is available, the ASN.1-
based technique of Fast Web Services can perform significantly better. Mea-
surements on a large corpus of XML messages [18] indicate that ASN.1
PER can achieve up to 50-fold improvement in document size compared to
XML. However, timing measurements were not included in this work.

The BiM format [62] was designed for use with the MPEG-7 metadata
format [5] of Moving Picture Experts Group (MPEG)5 used to represent
audiovisual content. The basis of BiM is generation of automata from either
a DTD or an XML Schema. The serialization automaton is driven by the
items of the XML document and produces the serialized form directly. The
parsing automaton performs the reverse transformation.

The automata of BiM allow a very compact serialized form to be gen-
erated. At each point in an XML document there is typically only a very
small number of possible following items, and the BiM automaton transi-
tions can then output the minimal number of bits required to distinguish
between these alternatives. Measurements [18] indicate that BiM is capable
of achieving over 10-fold reduction in document size.

None of the formats above permit deviations from the given schema,
but XSBC at least would be simple to extend for this. We see this rigidity
as a liability, since in real use it is not uncommon that schemas are not
universally available or are not exactly the same everywhere. Furthermore,
different use cases may require different schemas to be applied to the same
XML document at various times.

Reputedly, Efficient XML [81] is capable of performing schema-based
optimizations without sacrificing the ability to serialize any XML docu-
ment. This is based on principles of information theory [83] by noting that
a document conforming to a schema has less entropy with respect to the
schema than other documents. However, there is little technical informa-
tion available of Efficient XML so these claims cannot be evaluated.

5.4.2 Schema Optimization Design

Our approach to schema-based optimization is similar to that of BiM with
its automata. We construct what we call a Codec Omission Automaton (COA),
which is a pair of automata, Encoding Omission Automaton (EOA) for the
serializer side and Decoding Omission Automaton (DOA) for the parser side.

5http://www.chiariglione.org/mpeg/

47

http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/

Their input and output are both XAS event sequences, in contrast with BiM
where the output of the serializer side and the input of the parser side are
bit sequences.

By outputting event sequences instead of the final serialized format we
make our schema optimization more independent of the underlying for-
mat. We note that it will not be completely independent as the transformed
event sequence may not obey the rules established for modeling XML as
XAS sequences, which were described in section 4.2. A sufficient require-
ment for the format is that the serialization of a XAS event is context-free,
i.e., a serialized XAS event can be read without knowing the events that
were read previously.

XML itself is not context-free as we have defined the term. One reason is
that recognizing an attribute requires first the processing of the attribute’s
start tag, and therefore an attribute cannot be reliably recognized if its EL-
EMENT START event is omitted. Of the formats covered above, we believe
that at least XSBC satisfies the requirements for context freedom.

The schema optimization that we perform is simply the omission of
events from the input event sequence of the EOA. Since we perform only
a transformation to another XAS event sequence, there is little else to be
done. We do not see any other feasible actual improvements that could be
made while still producing XAS event sequences.

The omission of events introduces issues that are not covered by the
XAS model, but will need to be handled by the serialization. An issue that
could break the system is the coalescence of CONTENT events. The XAS
model allows an element’s text content to be represented as multiple con-
secutive CONTENT events. However, if events are omitted so that two sep-
arate text contents become adjacent, the parser side will need to recognize
where the first content ends. To solve this, we introduce a coalesce flag into
CONTENT events; this flag determines whether a CONTENT event is a part
of the same text content as an immediately preceding CONTENT event.

The other case where we extend the XAS model is not a matter of cor-
rectness, but simply an optimization. In the Xebu format a TYPED CON-
TENT event is typically not length-prefixed since the decoder is written so
that it reads a correct number of bytes. If now event omission brings two
TYPED CONTENT events next to each other, these would normally be se-
rialized as separate TYPED CONTENT events. To improve space usage we
introduce a TYPED MULTICONTENT event, which gathers a sequence of en-
coded typed data elements and prefixes these with the length of the whole
sequence. This eliminates the need for separate discriminator tokens for
each piece of data, which especially helps, e.g., the case of lists of integers.

As our schema language we chose RELAX NG, mainly because it has,
in addition to XML syntax, a standardized compact syntax [68] more re-
sembling traditional programming languages. This compact syntax is both
easier for humans to handle and more amenable to traditional parsing tech-

48

niques.
Our language of choice for implementing the COA generator was Stan-

dard ML [60], whose features are a good match for implementing compil-
ers [3]. As we were not sure what subset of RELAX NG would be sup-
ported, a flexible parsing system was necessary. The powerful structured
data manipulation capabilities of Standard ML made evolution of the gen-
erator easy. We also used the combinator technique for our parser [25],
which is well suited for implementing understandable easily extensible
parsers for simple languages like the RELAX NG compact syntax.

The parser implementation that we wrote to construct abstract syntax
trees for RELAX NG eventually ended up parsing the complete RELAX NG
compact syntax, as there were unexpected dependencies and conveniences
in parts that we originally thought would be safe to discard. However, for
automaton generation we omitted two, perhaps central, features.

RELAX NG supports the interleave operator which takes a set of se-
quences and allows these sequences to be interleaved with each other. Each
component sequence, however, must match as some subsequence of the
combined sequence. This operator is responsible for much of the power of
RELAX NG, but we did not manage to find satisfactory semantics in our
event omission model that would allow concrete improvements for inter-
leaved sequences. Our automaton construction therefore does not process
the interleave operator in any manner.

The other feature we left out were recursive definitions. Like all schema
languages, RELAX NG allows naming of schema rules and referring to
these named rules even within the same rule. Our choice to use finite au-
tomata as such precluded the use of recursion, though. In our most central
use cases the messages are encodings of non-recursive data, so this omis-
sion was not as crucial as it could be in a more general context. We have
briefly considered adding a stack of states to the COA to allow the possibil-
ity of recursing in the automata, but this has not yet materialized to even a
design.

5.4.3 Codec Omission Automaton

We next give a description of how the COA operates. Both the EOA and
the DOA are event-driven automata: their input is a XAS event sequence,
and their transitions on these XAS events have specifications on what XAS
events to output. In both automata transitions also have, in addition to a
XAS event, a type that determines (some of) the processing to perform on
that transition.

The event of a transition may be either a wildcard event or a XAS event.
In the case of a XAS event, some of its components may be wildcards. The
set of matching transitions for an input event is selected by collecting all the
transitions whose event matches the input event according to the following

49

rules:

1. A COMMENT or a PROCESSING INSTRUCTION input event does not
match any event

2. A wildcard event matches any other input event

3. A non-wildcard event matches the input event if they have equal non-
wildcard components

After the set of matching transitions is collected, the most specific of these
is selected. Basically, this means the transition whose event has the fewest
wildcards. If the set of matching transitions is empty, the default transition is
taken. This default transition does not change the state that the automaton
is in; we will cover below what processing happens for each of EOA and
DOA.

In the EOA transitions can be of two types, out and del. Of these,
the out transition specifies that the transition outputs the XAS event that
triggered the transition. The del transition specifies that no output is pro-
duced. In both cases the input event is consumed from the sequence. The
default transition is an out transition, i.e., it outputs the input event with-
out changing state.

The DOA has two kinds of transitions: read and peek. However, these
are not the main part of the transitions in the DOA. In addition to the event
and type, each transition in the DOA also has two lists, the push and queue
lists. These lists contain events that were omitted by the EOA; the transition
semantics provide for their insertion into the DOA’s output sequence.

When the DOA makes any transition, it begins by outputting the tran-
sition’s push list. If the transition is a read transition, it will then output the
event that triggered the transition. And, independently of the type of the
transition, it will then output the transition’s queue list. The default tran-
sition is a read transition with empty push and queue lists, i.e., the default
transition produces exactly the input event in its output.

The semantics of the peek transition are otherwise the same as those
of the read transition except that the input event is not consumed from
the input sequence and the DOA does not output it. This provides a way
for the DOA to perform one-event lookahead. The main uses of the peek
transition in our implementation are for wildcard names: the transition’s
event will have a type, but no name, so that it matches any event of that
type. Our implementation is constructed so that the DOA never contains
cycles consisting only of peek transitions, which ensures that processing
will always terminate.

An example RELAX NG schema and its associated generated COA are
given in Figure 5.1. The schema (a) says that a person element is a sequence
of elements name, whose content is a string, and age, whose content is an

50

start = element person {
element name { xsd:string },
element age { xsd:int }

}
(a) Schema

ES ELEMENT START

EE ELEMENT END

A ATTRIBUTE

TC TYPED CONTENT

p person
n name
a age
s type=xsd:string
i type=xsd:int

(b) Legend

del ES(p) del ES(n)

del A(s)

del EE(n)

del ES(a)

del A(i)

del EE(a)

del EE(p)

(c) EOA

peek TC[ES(p),ES(n),A(s)]

read TC[EE(n)]

peek TC[ES(a),A(i)]

read TC[EE(a),EE(p)]

(d) DOA

Figure 5.1: An example COA

integer. The legend (b) provides some abbreviations for the EOA in (c) and
the DOA in (d).

From Figure 5.1 we can clearly see how an element with typed content
is converted to a COA. On the EOA side the ELEMENT START and ELE-
MENT END events are omitted as is the ATTRIBUTE event giving the type of
the content. On the DOA side a peek transition first inserts the ATTRIBUTE

event for the type to allow the parser to decode the TYPED CONTENT event
properly, since Xebu does not contain explicit typing information. The tran-
sitions then insert the omitted events around the decoded TYPED CONTENT

event.
In the figure the read transitions for the TYPED CONTENT event have

the omitted events in their queue list, since they get inserted back after the
read TYPED CONTENT event. In this case we do not see the possibility of

51

both push and queue lists being non-empty. Such a situation could happen
if the element content was just a CONTENT event. In this case it would
be sufficient to have a read transition on the CONTENT event that had the
ELEMENT START event in its push list and the ELEMENT END event in its
queue list.

5.4.4 Schema Optimization Implementation

Our RELAX NG parser constructs an abstract syntax tree from its input
RELAX NG schema. Our implementation then performs some of the sim-
plifications specified by RELAX NG [66]; as we are not implementing a
RELAX NG validator, we only implemented such simplifications that were
useful, including some that were our own invention. These simplifications
were easily implemented with the catamorphism technique [4] that trans-
forms a recursively-defined structure by recursing on it and applying a
node-specific function to the results on substructures.

After simplifying the RELAX NG abstract syntax tree, we generate the
COA from it. This transformation recurses on the RELAX NG structure
using again the catamorphism technique. We implemented the catamor-
phism by specifying trivial processing for every piece of RELAX NG syntax
and then replacing these as the implementation progressed. This made it
easy to gradually develop the system and to leave out the processing of the
interleave operator without affecting anything. We call the intermediate
results of this process subautomata.

The main construct to process for the automaton generator is the el-
ement construct. After all, elements are the most common pieces of XML
syntax, and the regularity of their placement offers the most benefits for
our event omission semantics. The processing of the grouping constructs
did prove interesting, as they necessitated the addition of new semantics
for the intermediate form of the constructed COA.

In general, it is not possible to determine, when transforming a lan-
guage construct into a subautomaton, whether entry to that subautomaton
happens always or only sometimes. For example, if an element is the sec-
ond item in a group construct, it will always be present, but if it is a part of a
choice construct, it might not appear in the processed document. Therefore
the decision of what events to omit cannot be made fully when processing
a piece of syntax.

An example of this is illustrated in Figure 5.2. Here the subautomata for
name and age are always used inside the person element, but only one of
them is used inside the data element. Thus, in the former case it is possible
to omit the ELEMENT START and ELEMENT END events of both name and
age elements, but in the latter case it is not possible to omit the ELEMENT

START events.

52

element name { xsd:string }
element age { xsd:int }

element person { name, age }
element data { name | age }

Figure 5.2: Selecting whether to enter a subautomaton

element pair { seq, seq }
seq = element seq { element item { xsd:int }* }

Figure 5.3: A problematic use of the star construct

A subautomaton will need entry and exit points that are used to at-
tach it to the higher level constructs that get created. Because of the issue
described above, we implemented two entry and exit points for each sub-
automaton, the known and unknown points. The known points will be used
when it is known that the subautomaton itself will be used; otherwise the
unknown points are used.

The entry and exit points in the EOA are states whereas in the DOA they
are transitions. This choice was made because using states was simpler,
but it was not sufficient for the more complex process required of the DOA
construction.

However, using states as entry and exit points introduces the problem
of chaining the subautomata. To solve this, we introduce at build time
equivalences between states, e.g., when two subautomata are grouped con-
secutively, we mark the first one’s exit point as equivalent with the second
one’s entry point. After the complete automaton is constructed we collapse
each set of equivalent states into a single state. We also reduce the con-
structed automata to the start state’s strongly connected component, i.e., to
those states which are mutually reachable from the start state.

As we mentioned before, repetition constructs also have some inter-
esting points. An example is provided in Figure 5.3, which shows two
consecutive elements both containing a sequence of indeterminate length
composed of the same elements. In this case it is known that these subau-
tomata will be used, so naïve processing would omit all ELEMENT START

and ELEMENT END events, thus destroying the information of where the
boundary between the sequences was.

For this reason, we added the concept of open subautomata. An open
subautomaton is one whose length is determinable only by the presence of
its ELEMENT END event, and not by anything internal. For the repetition
constructs we build such an open subautomaton, and the builder of the ele-
ment subautomaton will always construct the known exit point identically
to the unknown exit point (note that the beginning is not indeterminable, so
the known entry point can still be different from the unknown entry point).

This concept could also be used to provide additional schema evolv-

53

ability. Marking a subautomaton as an open one would allow the addition
of new content at the end of the corresponding element’s content, since the
default transitions would let all content through until the ELEMENT END

event. While there is no direct support for such specification in our cur-
rent implementation, its addition would only require local modification to
recognize it and no modification of other processing.

Finally, we need to have special processing of optional components in a
group construct on the DOA side. Normally, a group construct will chain
its subautomata, connecting each exit point to the next subautomaton’s en-
try point. However, in the presence of optional components, a connection
also needs to be made to the subautomaton following the optional compo-
nent. To handle this case, we mark the subautomata of optional compo-
nents specially in DOA construction and handle them when constructing a
subautomaton from the group construct. On the EOA side there is no need
for this, as we just mark the entry and exit points of the optional component
to be equivalent.

5.4.5 Automaton Build Rules for RELAX NG Constructs

Above we have covered on a general level the building of the COA from
a RELAX NG schema. To provide some concreteness to our description,
we next go over some of the more interesting RELAX NG constructs and
show how they are converted into a COA. In these examples an M (possi-
bly with a subscript) denotes either a part of a schema or a subautomaton
constructed from that schema.

The automata in the figures will also show whether their known or un-
known entry and exit points are used. These are indicated with a k or a
u at the point, respectively. We adopt the convention that entry points are
always at the left and exit points at the right. Furthermore, we also mark
the exit point of an open subautomaton with an o and those of an optional
construct on the DOA side with a q. These markings appear only where
they are introduced in the construction.

We begin by showing the element construct in Figure 5.4. In this figure,
as in all the rest, we shorten all event names, transition types, etc., to a
single letter whose meaning should be clear from the context. We show
both the normal case and the case where the subautomaton is an open one.
Note that in the case of an open subautomaton the known exit point is
constructed in the same way as the unknown one.

Most of the constructs in RELAX NG only take subschemas as argu-
ments, so they will rarely produce events in the transitions. Apart from the
element construct, only the construction processes for the attribute and
data constructs produce events for transitions; the others may transform
existing transitions, but will not produce new ones.

The next one we cover is the group construct in Figure 5.5. On the EOA

54

Schema EOA DOA

element x { M }

Mk k

Mk o

kd Ex

ko Ex

k d Sx

u o Sx uo Ex

k d Sx

u o Sx uo Ex

Mk k

Mk o

k
q Ex

• k
r Ex

k p Sx

• •u
r Sx

u
r Ex

k p Sx

• •u
r Sx

u
r Ex

Figure 5.4: Subautomaton construction for element

Schema EOA DOA

M1, M2?, M3

M1
k
u k

M2k k

M3k k
u

M1
k
u k

M2u q

M3k k
u

p *
•

•

Figure 5.5: Subautomaton construction for group

we have marked a double line to indicate that one subautomaton’s exit
point is marked equivalent to the next subautomaton’s entry point. These
equivalent states will then be collapsed to a single one at the end. The
constructed automaton will have its known and unknown entry points be
the same as the first subautomaton’s, and analogously with the exit points
and the last subautomaton.

On the DOA side we see that the M2 subautomaton has been marked
optional. We do not show this in the EOA construction, but the result is
that in the EOA M2’s entry and exit points would be marked equivalent,
and thus collapsed at the end of automaton construction.

As we see from the DOA construction, the grouping here creates two
additional states. Using the unknown entry point for M2 ensures that it
will be recognized if it is present. The peek transition between the two new
states will be taken if M2 is not entered, so the processing can continue with
M3. Note that since the most specific transition is always selected, the peek
transition can be made only if M2 is not entered.

In full, the DOA-side processing of the group construct is extremely
complex. In our implementation it takes approximately 100 lines of code
whereas the next largest, element processing for either the EOA or the
DOA, only takes 30 lines. Our example can only capture a part of this

55

Schema EOA DOA

M1|M2|M3

M1u u

M2u o

M3u u

ok
u

M1u u

M2u o

M3u u

• •k
u o

Figure 5.6: Subautomaton construction for choice

complexity, since it is the result of needing to handle several different cases
depending on the types of the subautomata.

The final interesting subautomaton construction is the choice construct
in Figure 5.6. On the EOA side we need to select the unknown entry and
exit points for each subautomaton, as we cannot know which option in the
choice is taken by the document. As can be seen, the entry and exit points
of the subautomata are collapsed respectively. Furthermore, both known
and unknown points of the constructed automaton are the same, and the
constructed automaton is an open one if even one of the alternatives in the
choice is.

The DOA is very similar to the EOA, except that since the DOA’s entry
and exit points are transitions instead of states, the construction will create
a new state to scatter the entry points and to gather the exit points. Again,
as in the EOA, the entry point selects all the unknown entry points, and the
exit point selects the unknown exit points, and is open if even one of the
subautomata is.

56

Chapter 6

Message Transfer Protocol

Improving the processing of application messages helps only to the extent
that the processing is a bottleneck of the system. A messaging system needs
to consider also the protocol used for transferring messages. We noted in
our measurements [51] that the default manner of using HTTP in conjunc-
tion with SOAP is significantly suboptimal, especially in wireless networks.
For this reason our messaging system also includes an improved protocol.

Our implemented protocol is divided into two layers, the Transfer layer
and the Mobility layer. The Transfer layer provides a very simple uniform
messaging semantics, and each underlying protocol has a separate Transfer
layer implementation. The Mobility layer is composed of modules that
can be independently composed to provide features that the underlying
protocol lacks. Since the Transfer layer provides a common interface and
unified semantics, the modules of the Mobility layer are independent of
any underlying protocol.

6.1 Basic Protocol Semantics

The basic purpose of the protocol is to be flexible enough to accommodate
a variety of messaging styles. As noted in section 3.2, the callback-style
interface of our messaging system directly supports a variety of MEPs. Im-
plementing these should not be too contrived using whatever protocol is
used for message transfer.

6.1.1 Protocol Requirements

The basic unit in the protocol should be the message, and not a stream of
bytes or characters. We made the decision that the protocol should not pro-
vide the needed MEPs itself, but these should be implemented on the ser-
vice layer using SOAP headers, as is done in WS-Addressing [126]. There-

57

fore the basic protocol should only provide one-way messaging as a prim-
itive.

If the protocol is connection-oriented, this connection should not limit
which side can send messages at which time. While a connection will al-
ways have client and server roles based on who initiated the connection,
these roles should not reflect on the communication. TCP is an example
that satisfies this requirement whereas the request-response interaction of
HTTP is not directly suitable.

The messaging system will also need some reliability guarantees from
the protocol. At-most-once semantics is clearly desirable. This can further
be extended to exactly-once semantics when we can assume that connec-
tivity for sending a message is available infinitely often. Messages should
not be garbled in transit, but for this it should be sufficient to rely on lower
layers. Ordered delivery is a nice feature to have, especially considering
that messages will be sent asynchronously before replies to previous mes-
sages have been received. However, messaging itself does not place this as
a requirement, so it can be dropped if need be.

6.1.2 The Transfer Layer

Our original message protocol implementation used Blocks Extensible Ex-
change Protocol (BEEP) [75] directly as its underlying protocol, since the ca-
pabilities of BEEP matched the above requirements well. In BEEP a session
is opened between two peers. Such a session is then divided into channels,
each of which can be opened from either side of the connection.

BEEP itself does not specify what transport protocol is used under-
neath, but the only standard mapping is on top of TCP [76], so that was
what we used. At the time that we made our decision to use BEEP, there
was quite a bit of interest in it, and also a standardized SOAP binding [73].
However, none of the available BEEP implementations reached release sta-
tus, and interest in BEEP seems to have mostly waned. This is somewhat re-
grettable, since in our opinion BEEP is a well-designed protocol with many
applications.

However, we could not use BEEP on mobile phones, as version 1.0 of
the MIDP API, which we targeted, only supports HTTP for communica-
tion. Therefore we decided to implement the Transfer layer to provide
BEEP-like semantics on top of various other protocols and to implement
the more sophisticated features of our original protocol generically on top
of this.

The message syntax of the Transfer layer is the same as that used by
HTTP and BEEP, namely a header consisting of name-value pairs followed
by an opaque body as shown in Figure 6.1. Note that the actual representa-
tion in the Transfer layer is abstract, and the format shown in the figure is
simply the serialization format chosen by HTTP and BEEP. For simplicity

58

Content-Type: application/x-ebu+item
Content-Length: 1245
...
<body data>

Figure 6.1: The AMME message syntax

of implementation we map the Transfer layer headers to headers in HTTP
and BEEP, but this is not a requirement of AMME. It is merely sufficient to
specify how the headers are represented on lower layers.

On the Transfer layer communication happens over point-to-point con-
nections. One party of a connection is always designated as the client and
the other the server. This distinction has significance only during connec-
tion opening where the client is the party actively initiating the connection
and the server is passively waiting for connection attempts.

The actual opening of a Transfer layer connection happens by the client
initiating connectivity with the protocol under the Transfer layer. After this
the client and server exchange a single request-response pair of messages.
These messages do not contain any data, but may contain headers specified
by higher layers to, e.g., negotiate parameters for the connection.

After a Transfer connection is established, messages can be sent by ei-
ther party at any time. Transfer layer connections are divided into pipes;
each message will be sent through a specified pipe. This provides multi-
plexing of connections for higher layers without requiring the opening of
new connections. At the Transfer layer messages are strictly one-way and
there is no acknowledgement mechanism.

6.1.3 Transfer Layer Mappings

We have implemented four different mappings of the Transfer layer. The
underlying protocols and their source lines of code1 are shown in Table 6.1.
Code that is shared between all mappings comes to an additional 285 lines
by the same measurement. Of these protocols, the TCP mapping is a very
simple one that we built to have a Transfer layer implementation quickly,
and the Bluetooth L2CAP mapping is a modified version of the TCP map-
ping to act more as a proof of concept than as something that gets used. We
do not consider these two mappings further.

The Transfer layer is also responsible for interpreting the protocol fea-
tures mentioned in section 3.2. Currently the only specified feature is called
enc, and it indicates that the connection should be encrypted. For HTTP
this is accomplished with SSL [29]. For TCP we implemented a Java inter-

1Measured using David Wheeler’s sloccount tool

59

Table 6.1: Implemented Transfer layer mappings with code line counts

Protocol Line count
BEEP 354
HTTP 612
TCP 280
L2CAP 270

face on top of the native Host Identity Protocol (HIP) API [53] (also devel-
oped in the Fuego Core project), and used that for encryption. BEEP also
includes a native capability to use SSL, but our main interest was in pro-
viding the HIP API to Java applications, so we left the enc feature unimple-
mented for the BEEP mapping.

Since the Transfer layer design was inspired by BEEP, its mapping is
very straightforward. A connection on the Transfer layer is mapped to a
BEEP session and a pipe to a BEEP channel. An implication of this is that
opening a new pipe in the Transfer layer requires a network round trip in
this mapping. The mapping of the header-body structure is also straight-
forward, since BEEP uses the exact same semantics.

While BEEP uses a control channel, this control channel is not avail-
able to applications. Therefore a BEEP data channel needs to be opened to
perform the AMME connection establishment. This channel is later repur-
posed to carry AMME messages.

The HTTP mapping is much more complex, since the basic semantics
of HTTP is a single synchronous request-response pair, and the required
semantics of the Transfer layer is continuous asynchronous one-way mes-
saging in both directions.

The initial request-response pair is handled by the client issuing an
HTTP GET request to a known URL handled by the server. The body of
the server’s response will contain a unique URL for this particular Transfer
connection. HTTP headers in these messages are used to carry any meta-
data provided by higher layers.

For actual communication the client will use the unique URL provided
by the server. In our implementation the client will now start a number
of threads that will handle the messaging. On a phone the client uses two
threads, on a desktop computer between 4 and 8. Half of these threads will
be token threads and the other half will be data threads. The purpose of the
token threads is to permit the server to send messages to the client, but they
also act as a rudimentary flow control device.

Each token thread will begin its execution by sending an empty HTTP
request, a token message, to the server. These messages contain a header that
lets the server know they do not contain any data. The server will let these
wait for a response. If the server needs to send a message to the client, it

60

Client 1
Client 2
Client 3
Client 4

Server

To
ke

n
To

ke
n

M
essage To

ke
n

M
es

sa
ge Token

M
es

sa
ge

M
essage

Figure 6.2: Token and data messages in HTTP Transfer mapping

will send it as a response to one of these waiting requests. This is similar to
the PAOS reverse HTTP binding for SOAP [56], but our solution is a more
general one.

The process is shown in Figure 6.2 with four client threads, the first two
of which are token threads. The client begins by sending two token mes-
sages. Next, when the server has a message to send, it sends it as a response
message to one of the tokens. The token thread receiving this response will
pass the message to higher layers, and then resends a token message to the
server. The next two cases illustrate the client sending an actual message.
In the first case, the server has no data to send, so it responds with a token
message, which the client knows to ignore. In the second case the server
has data to send, so it can send it as a response to the client’s message.

One consideration, which surfaced especially with mobile phones, was
the time that a request could remain unanswered. HTTP client implemen-
tations will break the underlying TCP connection if the server does not
respond sufficiently quickly; this time can be as low as 5–10 minutes on
mobile phones. For this reason the server has a timeout, after which it will
respond to a token message with a token message of its own. The client
knows not to process this, but the token thread receiving it will resend its
token, thereby resetting the timeout.

6.2 Extension Modules for AMME

The header-body split offers a way to extend AMME by defining new head-
ers and their semantics. We implemented several such extension headers,
which we divide into separate modules; each module supports certain be-
havior and specifies headers to achieve this. The main considerations in
the extension modules were to improve the quite weak semantics of the
Transfer layer and to provide supporting functionality for mobile clients.

As mentioned before, the split into Mobility and Transfer layers was
made because we wished to utilize several different underlying protocols,
but did not wish to implement essentially the same functionality for each.

61

The sensibility of this approach is also partially validated by noting that
the amount of Mobility layer code, counting all the extensions described
below, is 1197 lines, almost the same as is taken by our two main Transfer
mappings, BEEP and HTTP.

The splitting of the extra functionality into independent modules is also
beneficial because different underlying protocols can give different guaran-
tees to the Transfer layer. If an underlying protocol provides some useful
functionality, we can disable the module providing the same functionality
when the Mobility layer is used in conjunction with that mapping.

Note that, for clarity, we provide readable header names for all of the
modules below. In our actual implementation using these names would
waste bandwidth needlessly, so the header names going over the network
are only two characters long. Furthermore, any numbers or lists of numbers
appearing in headers are encoded in a compact binary form.

6.2.1 Sequence Number Module

Since the Transfer layer does not provide any guarantees for reliable or
ordered delivery of messages, we needed to implement a sequence num-
bering system. Such a system cannot be avoided even if the underlying
protocol provides reliability, like, e.g., TCP does. This is because we also
target mobile clients, and during mobility (TCP) connections will break.
Any new connection established afterwards will not share the old connec-
tion, so TCP’s reliability does not extend to such situations.

When using this module every message contains a SEQUENCE-NUM-
BER header, the value of which starts at 0 and increases by one for each
message. Acknowledgements are of two kinds. A CONSECUTIVE-AC-
KNOWLEDGEMENT header’s value is a single number indicating that all
messages up to that sequence number have been received (and can there-
fore be deleted from any buffers). An INDIVIDUAL-ACKNOWLEDGEMENT

header contains a list of sequence numbers for messages that have arrived
out of sequence.

Use of individual acknowledgements typically indicates lost messages,
so upon reception the receiver should resend all unacknowledged mes-
sages. However, we have noticed that especially the HTTP mapping with
more than one data thread is prone to messages arriving out of order, so
this should not be an immediate trigger.

The Mobility layer also passes all received messages to the application
in the order of their sequence numbers. The service components of our
messaging system preserve this order, thus giving applications a guarantee
of ordered delivery. Furthermore, the messaging service guarantees that
response messages will be delivered back in the same order as the requests
came, as long as the application processes and responds to the messages in
a single-threaded fashion.

62

6.2.2 Connection Persistence Module

The Mobility layer also provides more direct support for mobility with per-
sistent connections. On first opening of a connection the server will return
a CONNECTION-IDENTIFIER header containing a unique identifier for this
connection. If the client later wishes to continue this previous connection,
it will send this identifier in the CONNECTION-IDENTIFIER header when
reopening the connection. Thus the connection can be logically continued
even across mobility.

Naturally the server cannot remember every connection from every
client indefinitely. Therefore the server’s response also includes a CON-
NECTION-PRESERVE header, giving the time that the server is willing to
retain the state after a connection has been dropped. The client can also
provide this header to request a certain value, but the server’s provided
value is authoritative.

This feature is also useful to applications, for two reasons. The first is
that applications, both at the client and server, will see a unique persistent
identifier for any communicating peer, and can use this identifier instead
of using an IP address, which will change when the other end is mobile.
The second benefit is that we are able to retain Xebu state, specifically the
tokenizations, across mobility, and do not need to rebuild it at every con-
nection break.

We note that this module is not needed with the HTTP mapping, since
the unique URL given at the initial request already provides a unique iden-
tifier. Furthermore, connection persistence, as implemented by this mod-
ule, is mostly usable for connection-oriented Transfer layers which provide
notices of disconnection to applications. As it stands, it is not meaningful
to speak of an HTTP-based Transfer connection closing or breaking.

6.2.3 Message Compaction Modules

The Mobility layer also contains some modules to reduce the amount of
data that is transmitted. The most significant of these in high-frequency
messaging is the ability to bundle several messages into a single AMME
message. To do this, the Mobility layer can insert a MESSAGE-BUNDLE

header, the value of which is a list of numbers. Each of these numbers is a
byte-based index into the message body, and indicates where a new appli-
cation-level message starts. These individual messages are then separated
by the receiver and passed to the application as individual messages.

Another feature is the ability to specify types of messages and to allow
default values to be omitted. At the Transfer connection opening, both par-
ties will send, in an ACCEPT-TYPE header, a list of message types that they
understand. The intent is that these types are alternate ways to serialize
the same message. Later, if a message’s type is the same as the first one

63

not = ct

rpt = not + t

t
t

(a) Round-trip
time computation

not = ct

rot = ct
t

t

(b) Timestamp up-
date

Figure 6.3: Computing round trip times in AMME

in the receiver’s understood list, the CONTENT-TYPE header marking the
type can be omitted; the receiver will then default to its preferred type.

6.2.4 Measuring Round-Trip Time

The final module of the Mobility layer provides round-trip time measure-
ments. At connection opening both parties will inform the other of their
local time in milliseconds in an OWN-TIMESTAMP header. After that, each
message may contain a new OWN-TIMESTAMP header updating this value,
and a PEER-TIMESTAMP header, giving the time that the sender believes
the receiver to have. By subtracting the received PEER-TIMESTAMP value
from its actual time, the receiver will get an estimate of the round-trip time.

The precise formulas used in calculating timestamps are

sot = ct
spt = not + (ct− npt)
rtt = ct− rpt

not = rot− (ct− npt)

where sot, spt, not, npt, rot, rpt, ct, and rtt denote, respectively, the OWN-
TIMESTAMP and PEER-TIMESTAMP values to send in a message, the origi-
nal received OWN-TIMESTAMP value and the local time at that value’s re-
ception, the OWN-TIMESTAMP and PEER-TIMESTAMP values received in a
message, the current time, and the calculated round-trip time.

A graphical demonstration of how these equations work to compute the
round-trip time is given in Figure 6.3(a). Here we see the right side sending
the original message at time not = ct. After time t has passed, the left side
sends a message (this can be independent of the message sent by the right
side), containing the PEER-TIMESTAMP value of spt = not + t. When this

64

message arrives at the right side, the time that has actually passed from
not is t plus the round-trip time. Hence a subtraction of the received value
from the current time gives the round-trip time.

Round-trip time consists of two individual times: the time for a mes-
sage to reach the recipient and the time for the recipient’s reply to come
back. In this calculation the first of these components will always be the
time that the initial message took. Since changing network conditions, es-
pecially during mobility, will affect round-trip times, the OWN-TIMESTAMP

value can be updated to provide more current information.
Figure 6.3(b) shows how this works. The second message sent by the

right side contains its current time in an OWN-TIMESTAMP header. The left
side will then recompute its new not value to be rot− t. The new value of
not will affect the later calculations so that the initial message is perceived
to have taken the time that the latest message containing an OWN-TIME-
STAMP header took.

65

66

Chapter 7

Experimental Results

During the course of this work we have continually run experiments on the
system. In addition to writing examples and test cases for nearly all of the
functionality we have performed extensive performance measurements to
determine how usable the system is in our target environment. Naturally
several of these measurements have been performed on mobile phones in
real network conditions.

The experiments that we have performed consist of both experiments
on individual components of the MTS as well as experiments on the whole
system. Many of these measurements have been published elsewhere in
some form [47, 48, 50], but the below exposition should provide more de-
tail.

7.1 Experimental Platforms and Data

For our measurements we had several different machines available. This
partly reflects the fact that the measurements were performed over a long
period of time, during which our available computing systems were up-
graded. We provide the names and characteristics of each of the platforms
in Table 7.1. We ran the Java Virtual Machines (JVMs) mostly at default
settings, but for some experiments needed to increase the maximum heap
size.

The different networks that we measured and the machines on each
network are shown in Table 7.2. All network experiments terminated with
Beagle being the server. We also show ICMP round-trip times (measured
with the ping program and shown in its minimum/average/maximum
format) and hop counts from the client machine to Beagle (measured with
the traceroute program).

For the most part we are interested in the speed of the components that
we measure. However, as we noted in section 2.3, memory consumption
is also an issue, so for XML processing we include measurements of the

67

Table 7.1: The platforms used in the experiments

Platform Description
Beagle Desktop PC, 1333 MHz AMD Athlon processor, 512 MiB of

main memory, operating system Debian GNU/Linux 3.1,
Sun Java 2 SDK 1.4.2

Clement HP Omnibook laptop, 500 MHz Intel Pentium III processor,
512 MiB of main memory, operating system Debian GNU/-
Linux 3.1, Sun Java 2 SDK 1.4.2

Mekong IBM ThinkPad R51 laptop, 1.6 GHz Intel Pentium M pro-
cessor, 1 GiB of main memory, operating system Debian
GNU/Linux 3.1, Sun Java 2 SDK 1.4.2

Lugburz Desktop PC, 3 GHz Intel Pentium 4 processor, 1 GiB of
main memory, operating system Debian GNU/Linux 3.1,
Sun Java 2 SDK 1.5.0

3660 A Nokia 3660 model mobile phone supporting MIDP 1.0
7610 A Nokia 7610 model mobile phone supporting MIDP 2.0

Table 7.2: Networks used in experiments

Network RTT (ms) Hops Machines
LAN 0.1/0.1/0.2 1 Beagle, Clement
WLAN 2.8/3.7/21.1 5 Clement
GPRS 690/830/1330 12 Clement, 3660

amount of memory that is spent in total during the processing. For net-
working experiments we measure the amount of data that is transmitted
over the network, as that is one of the most crucial pieces of information
for messaging applications.

For XML serialization and parsing experiments we collected three dif-
ferent data sets from different components of the Fuego middleware plat-
form, as shown in Table 7.3. The Flood and Event sets are intended to reflect
the expected use of the messaging system while the Syxaw set is for testing
whether the system works for large XML documents. The Event-C set is
one for which we have a complete schema available, and we use that only
for a part of the Xebu experiments.

All of these data sets exist as individual XML files in the file system.
In the experiments we load all files into memory. For the experiments on
Xebu we also parse them first into XAS event sequences and use these event
sequences as input to the serialize-parse cycle of the experiments. Every-
thing is always done inside memory for these experiments; no I/O time is
included in the measurements.

We also need to eliminate various anomalies caused by the JVM. The
first of these is just-in-time (JIT) compilation, which is eliminated by run-

68

Table 7.3: The data sets for XML processing experiments

Name Amount Size (B) Origin
Flood 2000 1874168 The flood example application for

the messaging system
Event 2647 5821016 The restaurant example application

for the event system
Event-C 698 2117437 The notifications of the Event data

set
Syxaw 1 13223476 A large example directory hierar-

chy from the Syxaw file system

Table 7.4: The APIs in the XAS measurements

Format Description
SAX The Xerces parser using the SAX API
DOM The Xerces parser using the DOM API
XAS The regular XAS API with the kXML parser
XASSAX The SAX compatibility API of XAS
XASDOM The DOM compatibility API of XAS

ning a long enough loop of the experiment before starting the measure-
ment, so that no JIT compilation happens during the actual measurement
phase. The length of this loop was determined experimentally. The sec-
ond issue is garbage collection. We force this to happen at selected points
in the execution where timing is turned off so that it does not interfere
with the measurement itself. We also compensate for garbage collection
in our memory consumption measurements by including collected mem-
ory in our figures. In memory measurements we follow recognized best
practices [77].

7.2 Indicative Measurements of the XAS API

We performed some measurements of the XAS API, mostly to make sure
it was not unacceptably slow. We do not consider these measurements to
show anything, just to give rough indications of performance. They may be
useful in conjunction with the measurements of section 7.3 to show some
idea of the differences between XML parsers.

The tests for the Flood and Event data sets were made on Beagle with
the maximum heap size increased to 256 MiB. The test on the Syxaw data
set was run on Mekong with the maximum heap size increased to 768 MiB,
as the memory ran out with smaller heap sizes. We used a total of five
different APIs, all described in Table 7.4. The SAX experiments discarded
the results whereas all the other experiments left their results in memory.

69

Table 7.5: XAS processing measurements

Processor Time (ms) Memory (MB) Left-over (MB)
Flood

SAX 4860, 5370 176, 198 0.2, 0.2
DOM 9880, 7820 315, 328 138, 63
XAS 1590, 1710 50, 52 46, 46
XASSAX 710, 1020 58, 84 0.2, 0.2
XASDOM 5700, 5970 220, 234 14, 14

Event
SAX 6860, 7910 261, 309 0.3, 0.3
DOM 12960, 12720 446, 491 190, 107
XAS 3810, 4420 105, 107 84, 84
XASSAX 1970, 2790 136, 185 0.3, 0.3
XASDOM 11680, 12500 401, 424 52, 52

Syxaw
SAX 1700, 3240 2.6, 2.9 0.002, 0.002
DOM 3730, 7320 88, 131 85, 117
XAS 4960, 6180 105, 105 102, 102
XASSAX 5380, 6720 107, 110 0.003, 0.003
XASDOM 11440, 12740 154, 154 119, 119

The processing in each case was the same. The XML document was
parsed as XML from memory, and then optionally serialized. The complete
results are shown in Table 7.5. Each column shows two figures, the first
one with just parsing and the second one with serialization included. The
memory measurement refers to total memory used during the experiment
and the left-over measurement to the memory that is still spent after a full
garbage collection.

We note that for XAS the total processing time appears to be directly de-
pendent on the size of the processing and not at all on the number of doc-
uments. In contrast, Xerces does much better with the large single Syxaw
document than with the many small Flood and Event documents. This is
indicative of a large startup cost for the Xerces parser.

We also note an anomaly in the DOM results: adding serialization de-
creases the time that is spent and the memory that persists for the sets of
small documents. While the former is not explainable, a cause for the latter
could be that during document traversal the DOM tree is also optimized in
some manner by the serializer. This is a likely explanation as the experi-
ment without serialization does not traverse the resulting data structure.

Finally, we note that with the DOM compatibility API of XAS we get
much smaller data structure sizes than with Xerces DOM, as indicated by
the amount of left-over memory with the sets of small documents. We

70

Table 7.6: Formats for the Xebu experiments

Format Description
Xerces XML with the Xerces SAX parser
kXML XML with the kXML parser and XAS API
FI Fast Infoset with the SAX API
Xebu Xebu with the XAS API

did not investigate the differences in the DOM trees built by the two ap-
proaches, but we suspect that the Xerces DOM building is much more so-
phisticated. However, the XAS compatibility API does build a correct DOM
tree for XML as we have verified with extensive test data, so the difference
is not caused by XAS omitting some necessary information.

7.3 Xebu Performance

Xebu performance testing was done on the Lugburz machine and on the
two mobile phones. Here we used only the Event data set, as we felt that to
be the closest to real-world data. Furthermore, we had a complete schema
available for the Event-C data set, which we could use to construct a COA
and test that.

We measured several different implementations, which we refer to as
formats, that are given in Table 7.6. In addition, we suffix a format with Z
to indicate the use of gzip on top of the serialized form. The Xebu measure-
ments also use two other suffixes. F indicates forgetful processing, i.e., the
token mappings are not preserved from one document to the next. The Fast
Infoset was used only in a forgetful mode. The S suffix for Xebu indicates
that the COA was used.

We collect the performance measurements made on Lugburz for all the
formats in Table 7.7. This table shows the final document sizes, the times
and memory spent in processing, as well as the throughput in messages
per second for each format. All values are average values for a single doc-
ument. Sizes are shown both as absolute values and as a percentage of
the XML document size. We do not show error ranges, as the memory
consumption did not vary at all, and timing deviations were all between
0.01 and 0.02 ms.

We also measured data binding speed for all the formats, i.e., the time
that was taken to process primitive typed data, but there was no difference
between Xebu’s binary representation and the text representation of XML.
This is because all typed data in these documents consisted of strings and
small integers, for which there is little performance difference between text
and binary. A quick experiment confirmed that for date and floating point
values the binary encoding of Xebu is approximately 2–3 times faster than

71

Table 7.7: Performance of XML serialization formats

Serialization Parsing

Format
Size
(B)

Size
(%)

Time
(ms)

Thr
(1/s)

Mem
(kB)

Time
(ms)

Thr
(1/s)

Mem
(kB)

Xerces 3033 100.0 0.45 2201 39.77 0.76 1315 113.23
XercesZ 675 22.3 0.74 1356 42.45 0.87 1144 114.22
FI 1689 55.7 0.35 2825 13.88 0.48 2072 37.63
FIZ 687 22.7 0.62 1608 17.67 0.55 1833 39.11
kXML 3033 100.0 1.06 941 141.23 0.93 1078 73.69
kXMLZ 674 22.2 1.36 736 141.45 0.95 1050 74.79
XebuF 1304 43.0 0.53 1874 55.51 0.83 1198 58.48
XebuFZ 695 22.9 0.93 1079 56.04 0.91 1094 60.14
Xebu 807 26.6 0.45 2230 38.63 0.76 1309 50.87
XebuZ 390 12.9 0.64 1565 41.20 0.82 1219 52.26
XebuFS 493 16.3 0.56 1794 38.92 0.79 1264 55.78
XebuFSZ 312 10.3 0.61 1644 43.68 0.80 1254 59.68
XebuS 493 16.3 0.42 2357 34.52 0.77 1299 47.13
XebuSZ 312 10.3 0.55 1809 34.96 0.80 1251 48.76

the text encoding of XML.
The results indicate that Xebu achieves quite a good message size, even

in forgetful mode when compared to Fast Infoset. However, while Xebu
clearly defeats the kXML implementation in speed and memory use, Xerces
achieves performance similar to Xebu. Fast Infoset is markedly better than
Xerces or Xebu in these figures. We would expect that the Fast Infoset im-
plementation has seen much more optimization work than our Xebu im-
plementation.

The results after applying gzip are interesting. In this case when com-
paring between the forgetful binary formats and XML we see that after
compression there is little difference in size. As the tokenization is fun-
damentally a similar operation to that performed by gzip, this is to be ex-
pected. The results for regular and COA-using Xebu versions are obvi-
ously better, as both of these formats remove additional redundancy from
the documents before gzip sees them.

We also note that there is no difference in document size between forget-
ful and regular Xebu when schema optimizations are used. As the schema
optimizations include pre-tokenization of strings appearing in the schema,
this is clear. Namely, we have the complete schema available, so there will
not appear any unknown names in the documents. In fact, some of our
experiments indicate that we could also turn the dynamic tokenization of
Xebu completely off in this case without it affecting the document size.

We also measured on both of our phones. As the Xerces and Fast Infoset
implementations are written for Java Standard Edition, we could only use

72

Table 7.8: Performance of XML serialization formats on mobile phones

Serialization Parsing

Format
Time
(ms)

Thr
(1/s)

Mem
(kB)

Time
(ms)

Thr
(1/s)

Mem
(kB)

7610
kXML 56.0± 3.1 17.9 23.2±3.3 134.0± 5.5 7.5 50.5±2.8
Xebu 60.0± 5.1 16.7 33.1±2.2 134.1± 4.4 7.5 50.9±3.5
XebuS 45.0± 4.1 22.2 25.5±2.0 123.7± 6.7 8.1 49.4±5.1
3660
kXML 250.0± 6.4 4.0 8.1±0.3 527.5± 2.9 1.9 29.3±3.0
Xebu 211.1±15.6 4.7 22.9±2.5 503.8±43.9 2.0 30.7±4.1
XebuS 159.5± 7.6 6.3 18.6±0.3 406.9±11.9 2.5 25.7±0.3

kXML and Xebu. All of Xebu’s schema optimizations are also available for
the MIDP platform. The results for the phones are presented in Table 7.8.
Sizes are the same as in Table 7.7, so they are omitted, but we observed
more fluctuation in the results in this case, so we include error limits at one
standard deviation.

We note that in this case the kXML implementation performs signifi-
cantly better. As profiling support on the MIDP platform is not at all good,
we cannot offer precise causes, but simply note that the JVMs clearly differ
between the desktop and the phones. Otherwise the results are consistent
with those of Table 7.7.

As we noted in section 2.3, one concern stemming from the available
memory on the mobile devices is application footprint. As we expect XML
processing to be an integral component of future messaging, the footprint
of the processor implementation needs to be very small. We therefore mea-
sured the footprint of each implementation by adding together the sizes of
all the classes of that implementation that were loaded into memory during
a single run of the experiment.

The footprints are shown in Table 7.9. The Foot column gives the nor-
mal footprint measured on the desktop experiment. For the formats usable
on mobile phones, we also obfuscated the implementation with Proguard1,
which would be done in real deployment. We then added together the sizes
of the same classes that we did without obfuscation.

In addition to the actual classes, we also include the size of data en-
coding and decoding code that we wrote for the non-Xebu formats. As
Xebu includes this functionality as an integral part, including the size of
that code for all implementations makes the measurement more realistic.
For the other formats this code comes to 7.6 kB normally and 4.8 kB in ob-
fuscated form.

1http://proguard.sourceforge.net

73

http://proguard.sourceforge.net
http://proguard.sourceforge.net

Table 7.9: Footprints of XML serialization format implementations

Format Foot (kB) Obf (kB)
Xerces 510.5 –
kXML 36.7 21.1
FI 199.4 –
Xebu 52.1 22.0
XebuS 87.7 44.3

From the footprints we can see that Xerces is completely unsuitable for
mobile devices, even if the implementation could be rewritten for MIDP.
The efficiency of Fast Infoset appears to come at the cost of a very complex
implementation; much of this may be spent for general ASN.1 processing,
but we did not investigate the implementation closer.

Xebu’s footprint, especially when obfuscated, approaches that of the
kXML implementation, indicating that Xebu is also suitable for mobile de-
vices. For the schema-based optimization we note that our current imple-
mentation builds different Java classes to implement the COA for each dif-
ferent schema. The COA could also be implemented generically, and we es-
timate that such a generic implementation would take approximately 10 kB
(5 kB obfuscated), with the automata of our measurements requiring 10 kB
of dynamic memory during execution.

7.4 AMME Functionality

There is little that can be tested of AMME performance, but it is possible to
verify various pieces of functionality. AMME guarantees ordered delivery
of messages, including ordered delivery of response messages, and pro-
vides resending of messages for reliability. In addition, AMME includes a
new method for round-trip time estimation that does not require an actual
round trip to be performed. These features can all be tested.

Our test application consisted of a client and a server where the client
periodically sends a message to the server and processes the response asyn-
chronously. We ran the server on Beagle and the client on Clement, using
all three available networks, LAN, WLAN, and GPRS.

The reliability guarantee was tested by implementing a new Transfer
layer that dropped messages randomly. Since this is acceptable behavior
for the Transfer layer, the reliability module of the Mobility layer is ex-
pected to cope with it. Indeed, we verified that all messages were eventu-
ally received by the server in this case.

For testing ordered delivery it was sufficient to use the HTTP mapping
with a 0-second delay between messages, as due to multithreading in the
client the Transfer layer can in this case deliver messages out of order. This

74

Table 7.10: Actual and AMME-measured round-trip times

Conn Client AMME Client BEEP Server AMME Server BEEP
LAN 25.1±8.1 39.7±4.6 26.0±12.0 47.6±5.1
WLAN 25.0±10.9 48.6±5.0 26.9±14.0 51.1±10.1
GPRS 2628.4±508.7 2675.2±536.9 2591.6±288.7 2697.5±358.2

will especially be the case if different TCP connections are used for different
HTTP requests, which will be the case unless both ends support persistent
connections and pipelining. We verified this out-of-order delivery to hap-
pen at the Transfer layer by observing network traffic directly. The Mobility
layer performed the correct reordering in all cases.

Finally, for the round-trip time estimation we set the client’s delay be-
tween messages to be sufficiently large so that only a single message would
be in transit at a time. We inserted code in the BEEP mapping imple-
mentation to measure actual round-trip times by printing timestamps at
message sending and acknowledgement times. As the BEEP mapping ac-
knowledges each message immediately, this will provide accurate results.

The results we got are shown in Table 7.10 with mean times and stan-
dard deviations, both from the client and the server side. As the BEEP
protocol is symmetric, we could get these measurements from both sides.
The first measurement was excluded as that included the time to set up
the BEEP connection, and was therefore several times as large as the other
measurements.

We can see that AMME’s measurement is apparently an accurate way
of getting round-trip times. The figures are consistently lower than those
measured by BEEP. This is explained by Figure 6.3(a), which shows that
AMME’s measurement only takes into account the time taken on the net-
work. The timestamp difference method that we used with BEEP also in-
cludes the remote processing to send the acknowledgement. We verified by
observation that this remote processing took approximately the difference
that is shown in Table 7.10.

7.5 General Messaging Performance

The test scenario that we used for the full MTS performance test consisted
of a client on Clement and a server on Beagle. Again, we used all of
the three available networks. We compared the BEEP mapping of AMME
against regular Apache Axis, and Apache Axis using persistent HTTP con-
nections, as shown in Table 7.11.

In our scenario the client sends messages as quickly as it can. A single
message consists of a string, a date, and a floating point value that all re-
main constant throughout the test, and a sequence number that increases

75

Table 7.11: Protocols of the MTS experiments

Protocol Description
HTTP The default HTTP 1.0 shipped with Apache Axis using XML

with synchronous invocations
PHTTP A version of HTTP 1.0 hacked to keep connections persistent

using XML with synchronous invocations
AMME The MTS with the BEEP mapping of AMME using Xebu

with asynchronous invocations

 HTTP
 PHTTP

 AMME

2

3

4

5

6

7

50 100 150 200 250
Number of invocations

Total times

Ti
m

e
(s

)

 HTTP
 PHTTP

 AMME

0.02

0.03

0.04

0.05

0.06

0.07

50 100 150 200 250
Number of invocations

Times per invocation

Ti
m

e
(s

)

Figure 7.1: Per-invocation times over the LAN connection

for each message. The server verifies that it receives the messages in se-
quence and responds with the sequence number. The number of messages
that we used varied between 50 and 250.

The first results in Figures 7.1, 7.2, and 7.3 show the total time for the
experiment as well as the total time divided by the number of invocations
for each of the three networks. The total times are drawn as regression lines
whereas for the per-invocation times the average values are connected. In
both cases, error bars are shown at one standard deviation.

The MTS has a significant overhead over the LAN connection when
compared to Axis. As the implementation of the MTS we used was a wrap-
per around Axis, this is as expected. However, even on the WLAN connec-
tion we are starting to see the benefits of asynchronous invocations when
AMME catches up to even PHTTP, and would for a larger number of mes-
sages surpass it.

The deviation in the times for HTTP over WLAN is very large. We
note that a lost TCP SYN segment will, with the implementation in Linux,
cause a 1.5-second timeout before retrying. As the HTTP implementation
needs to constantly open new connections, the likelihood of this happening
grows. With the small latencies of the WLAN, such delays effect a large
variation in the results.

76

 HTTP

 PHTTP
 AMME

2

4

6

8

10

12

50 100 150 200 250
Number of invocations

Total times

Ti
m

e
(s

)

 HTTP

 PHTTP
 AMME0.03

0.04

0.05
0.06
0.07

0.08

50 100 150 200 250
Number of invocations

Times per invocation

Ti
m

e
(s

)
Figure 7.2: Per-invocation times over the WLAN connection

 HTTP

 PHTTP

 AMME0

200

400

600

50 100 150 200 250
Number of invocations

Total times

Ti
m

e
(s

)

 HTTP

 PHTTP

 AMME0

1

2

3

50 100 150 200 250
Number of invocations

Times per invocation

Ti
m

e
(s

)

Figure 7.3: Per-invocation times over the GPRS connection

In the measurements over GPRS the benefits of asynchronous invo-
cations materialize most clearly. Here the dominant factor in the timing
is network latency. As the MTS uses both asynchronous invocations and
the message bundling of AMME, the effects of network latency are much
smaller for it. Comparing the two HTTP protocols we see that one network
round trip is spent by plain HTTP to open each connection.

We also measured the total amount of data sent in the 250-message ex-
periment, shown in Figure 7.4. The data is split into three parts, the ap-
plication data (indicated as XML), the data used by the application proto-
col (HTTP or AMME), and finally TCP segments containing no application
data.

Clearly the amount of XML data sent by AMME is much lower, since
it uses Xebu instead of XML. We also note that the amount of protocol
overhead for AMME is much lower than for the two HTTP protocols. The
two HTTP protocols send approximately the same amount of application
data, but the constant opening of new TCP connections makes HTTP send
significantly more data in total.

77

LAN
WLAN
GPRS

LAN
WLAN
GPRS

LAN
WLAN

GPRS

0 200 400 600

HTTP

PHTTP

AMME TCP
Data
XML

Total data (KB)

Pr
ot

oc
ol

Figure 7.4: Amounts of total data sent

30

40

50

60

70

10 20 30 40 50 60 70 80 90100
Number of invocations

Total times

Ti
m

e
(s

)

0.5
1

1.5
2

2.5
3

3.5

10 20 30 40 50 60 70 80 90100
Number of invocations

Times per invocation

Ti
m

e
(s

)

Figure 7.5: Per-invocation times using a mobile phone

We can see that the amount of overhead caused by the AMME proto-
col in this scenario is only approximately 25 % of the total data sent, even
at its highest over the LAN. This appears to be similar to the overhead
caused by HTTP for XML. However, taking absolute figures, we can see
that Xebu combined with HTTP would make the protocol overhead to be
approximately 75 % of the total message size. This therefore provides val-
idation for our observation in section 3.1 that a binary format for XML is
not sufficient on its own.

Finally, we ran a similar scenario with the 3660 phone as the client using
the HTTP mapping of AMME. There is no comparison point for these mea-
surements, so Figure 7.5 shows only the total time and time per invocation
for this single case. Note that we used a fewer number of messages for this
experiment.

By extrapolating the figure for total times we can see that the overhead
of the experiment is approximately 30 seconds. As we started each exper-
iment from a clean slate, this includes all network setup that was required
for the phone, and is therefore understandable. If network connectivity had

78

been available from the start, this delay would have been much smaller.
The average time per invocation appears to settle to around 0.5 seconds,

which is much higher than it was for AMME in Figure 7.3. This is explained
by the use of the HTTP mapping with its thread-based flow control. Since
in our phone implementation only one message can be in transit in either
direction at the same time and message size is bounded, the largeness of
this figure is also explained.

79

80

Chapter 8

Conclusions

We have used the MTS described here as a component of the mobile mid-
dleware platform built by the Fuego Core project. While we consider it
usable for basic XML messaging, further experience with real-world sce-
narios has revealed certain areas of improvement. We first describe what
we have found useful and then consider some simple enhancements of the
current system as well as larger areas of future work.

8.1 Useful Ideas

The selection of Java as the programming language was useful in getting
the system to work on mobile phones without too much effort. The similar-
ity of the language and especially of its use on all platforms was a crucial
enabler for this. Frequent compilation for the phone quickly revealed any
code which accidentally used features not available on the MIDP platform.
We intend to continue using Java in our future work on the system.

We believe that our decision to make the basic messaging interfaces
asynchronous to be a correct one. As we noted in section 3.1, the laten-
cies involved in wireless networks make mandatory synchronous program-
ming infeasible. In addition, as we noted in section 3.2, the callback style
makes it simple to implement different MEPs. However, so far we have lit-
tle experience in advanced uses of these asynchronous APIs, so final eval-
uation needs to be postponed.

The pull-style sequence-based interface for XML processing appears to
be more natural than the alternatives. After all, this kind of interface is
essentially what programmers have always been using for serialization of
structured data, though more typically with byte- or character-based out-
put. The usage experiences reported in [47] support this view.

Based on the measurements in section 7.3 we note that while Xebu
achieves the best results only in document size, its other qualities are well
balanced. Both Xerces and Fast Infoset have very large implementations,

81

and the small kXML uses more time and dynamic space than any of the
others. Therefore Xebu can be said to be a very good fit for the mobile
environment.

Compared to other existing binary XML formats, Xebu has been de-
signed to be more loosely coupled, in a sense. The two main reasons for
claiming this are the explicit presence of assigned tokens in the serialized
form and the default transitions of the COA. The explicit presence of tokens
permits us to keep the space of available tokens limited without needing to
specify any token replacement policy.

The default transitions in the COA were designed to accommodate cer-
tain schema changes. At least in certain cases it is possible to add elements
or attributes not present in the schema, and the definition and our con-
struction would allow slightly more of this than our current implementa-
tion. This is in contrast to other formats which require explicit preparation
for extensibility when designing the schema. However, we have not per-
formed a formal analysis of the allowable schema extensions, and suspect
an exact analysis is not even feasible.

Message transfer protocols have not been our focus in this research. We
especially have not considered ad hoc communication or multicasting, both
of which have come up as potential enhancements. In our view, the peer-
to-peer model of BEEP is better suited to this environment than the request-
response style of HTTP, but so far we do not have sufficient experience to
give definite conclusions.

8.2 Proposed Enhancements

While the use of Java permitted the same implementation to be used on
both desktop machines and mobile phones, this was not without its down-
side. The implementation was mostly tested on desktop-class machines,
so the mobile phone platform was not given the attention that it deserved.
One indication of this are the measurements in section 7.3 where the per-
formance of kXML was clearly lower than Xebu’s on the desktop but com-
parable on mobile phones.

We still consider the interfaces of the system to be a good fit for the
phones too. However, the implementation, especially the XAS system, is
perhaps too massive and split too finely to be most efficiently usable on the
phone. As mentioned in [63], good application design and suitability for
mobile phones may be at odds with each other.

While the XAS API served its purpose well, it turned out that its in-
tended purpose had a much smaller scope than its eventual requirements.
We noted in [47] that extending XAS with an indexing scheme to provide
tree-like handling could make it competitive with DOM, and are currently
working on such a scheme. Furthermore, messaging applications seem to

82

need much better handling of XML fragments, an area where DOM domi-
nates. As we do not consider DOM-like APIs to be suitable, we will need
to extend XAS to provide these capabilities.

The Xebu format itself appears to be acceptable. Our measurements in-
dicate that there are still some performance improvements to be made, but
we do not believe these to be infeasible. We might consider extensions to
the schema optimization to make it handle more cases (e.g., some improved
handling of choice and interleave, as well as considerations of recursive el-
ements), and it would also be useful to chart exactly how the schema can
be extended without breaking the COA.

The protocol layer we do not see as needing much improvement. We
intend to write a light-weight version of it to better work on mobile phones.
Furthermore, it might be useful to reconsider addressing, since a messag-
ing target may be able to use several different underlying protocols (e.g.,
WLAN, GPRS, Bluetooth), and it might be useful to provide a near-trans-
parent way of selecting the most appropriate one.

8.3 Future Work

Our future work has three main directions. First, while low-level API com-
patibility with XML has proved beneficial in integrating a binary format
into the XML stack, the required string processing is still a source of ineffi-
ciency. Providing a way for binary-aware applications to use the XAS API
to directly access the tokens could give a performance boost. However, this
will most likely complicate the API significantly, and needs to be evaluated
carefully.

A major topic for all binary XML formats are security features such as
XML Encryption [113] and Signatures [114]. Since these rely directly on the
serialized form for interoperability, API compatibility does not help. As
secure messaging will likely be important in the future, it would not be
acceptable to require XML there and leave binary XML only for the non-
secure uses.

Security processing will also require a way of handling XML documents
as trees and of processing XML fragments. As we noted above, the current
XAS API is not suited for this type of work. However, we believe that it is
possible to extend XAS to cover these cases while still retaining the efficient
sequence-based processing model.

Finally, the Fuego Core project has done work on efficient content-based
routing [93], but this work has focused on simple filters. In XML messag-
ing content-based routing is typically handled using the much more com-
plex XPath. The concept of matching several XPath expressions against the
same XML document simultaneously has received much attention [2, 21],
but these systems are limited in the kinds of XPath expressions that can

83

be handled. Furthermore, the propagation of filters and the necessity of
covering optimizations shown in [93] are not addressed at all.

As a final statement, our experience with the MTS suggests that XML
messaging is not incompatible with mobile devices. While we have iden-
tified several issues with our current implementation above, none of these
appear to be fundamental problems. Rather, they are specific to our im-
plementation, and are typical of application development where the full
requirements are revealed only after a system has seen actual use. Our fu-
ture work should address all of these concerns in a manner that provides
an efficient XML-based messaging system for the needs of future commu-
nication applications.

84

Bibliography

[1] Bob Aiken, John Strassner, Brian E. Carpenter, Ian Foster, Clifford
Lynch, Joe Mambretti, Reagan Moore, and Benjamin Teitelbaum. RFC
2768: Network Policy and Services: A Report of a Workshop on Middle-
ware. Internet Engineering Task Force, February 2000. (Cited on
page 1.)

[2] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML
documents for selective dissemination of information. In 26th In-
ternational Conference on Very Large Data Bases, pages 53–64. Morgan
Kaufmann Publishers, September 2000. (Cited on page 83.)

[3] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, United Kingdom, 1998. (Cited
on page 49.)

[4] Lex Augusteijn. Sorting morphisms. In S. Doaitse Swierstra, Pe-
dro R. Henriques, and José N. Oliveira, editors, Advanced Functional
Programming, volume 1608 of Lecture Notes in Computer Science, pages
1–27. Springer-Verlag, Heidelberg, Germany, September 1998. (Cited
on page 52.)

[5] Olivier Avaro and Philippe Salembier. MPEG-7 systems: Overview.
IEEE Transactions on Circuits and Systems for Video Technology,
11(6):760–764, June 2001. (Cited on page 47.)

[6] Matthew E. Bayer. Analysis of binary XML suitability for NATO tac-
tical messaging. Master’s thesis, Naval Postgraduate School, Mon-
terey, California, USA, September 2005. (Cited on page 46.)

[7] BEA Systems Inc., San Jose, California, USA. JSR 173: Streaming API
for XML, October 2003. (Cited on page 30.)

[8] Bluetooth SIG. Specification of the Bluetooth System, Core Package version
2.0, November 2004. (Cited on page 17.)

[9] David Brownell. SAX2. O’Reilly, Sebastopol, California, USA, Jan-
uary 2002. (Cited on pages 10, 24, and 29.)

85

[10] Anne Brüggemann-Klein, Makoto Murata, and Derick Wood. Regu-
lar tree and regular hedge languages over unranked alphabets. Tech-
nical Report HKUST-TCSC-2001-05, Hong Kong University of Sci-
ence and Technology, April 2001. (Cited on page 9.)

[11] Michael Burrows and David J. Wheeler. A block-sorting lossless data
compression algorithm. Research Report 124, Systems Research Cen-
ter, Digital Equipment Corporation, May 1994. (Cited on page 40.)

[12] Jian Cai and David J. Goodman. General packet radio service in GSM.
IEEE Communications Magazine, 35(10):122–131, October 1997. (Cited
on page 17.)

[13] Stefano Campadello. Middleware Infrastructure for Distributed Mo-
bile Applications. PhD thesis, University of Helsinki, Department of
Computer Science, Helsinki, Finland, April 2003. http://ethesis.
helsinki.fi/julkaisut/mat/tieto/vk/campadello/. (Cited on
page 2.)

[14] Stephen L. Casner and Van Jacobson. RFC 2508: Compressing
IP/UDP/RTP Headers for Low-Speed Serial Links. Internet Engineering
Task Force, February 1999. http://www.ietf.org/rfc/rfc2508.txt.
(Cited on page 41.)

[15] James Cheney. Compressing XML with multiplexed hierarchical
PPM models. In Data Compression Conference, pages 163–172, March
2001. (Cited on page 40.)

[16] Kenneth Chiu, Madhusudhan Govindaraju, and Randall Bramley. In-
vestigating the limits of SOAP performance for scientific computing.
In 11th IEEE Symposium on High Performance Distributed Computing,
pages 246–254, July 2002. (Cited on page 19.)

[17] John G. Cleary and Ian H. Witten. Data compression using adaptive
coding and partial string matching. IEEE Transactions on Communica-
tions, 32(4):396–402, April 1984. (Cited on page 40.)

[18] Michael Cokus and Daniel Winkowski. XML sizing and compression
study for military wireless data. In XML Conference and Exposition,
Baltimore, USA, December 2002. (Cited on page 47.)

[19] Dan Davis and Manish Parashar. Latency performance of SOAP im-
plementations. In 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 377–382, May 2002. (Cited on page 19.)

[20] L. Peter Deutsch. RFC 1952: GZIP File Format Specification Version 4.3.
Internet Engineering Task Force, May 1996. http://www.ietf.org/
rfc/rfc1952.txt. (Cited on pages 39 and 42.)

86

http://ethesis.helsinki.fi/julkaisut/mat/tieto/vk/campadello/
http://ethesis.helsinki.fi/julkaisut/mat/tieto/vk/campadello/
http://www.ietf.org/rfc/rfc2508.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt

[21] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang, and
Peter Fischer. Path sharing and predicate evaluation for high-
performance XML filtering. ACM Transactions on Database Systems,
28(4):467–516, December 2003. (Cited on page 83.)

[22] Robert Elfwing, Ulf Paulsson, and Lars Lundberg. Performance of
SOAP in Web service environment compared to CORBA. In Ninth
Asia-Pacific Software Engineering Conference, pages 84–93, December
2002. (Cited on page 19.)

[23] Roy Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.
(Cited on page 12.)

[24] Roy Fielding, James Gettys, Jeffrey Mogul, Henrik Frystyk Nielsen,
Larry Masinter, Paul Leach, and Tim Berners-Lee. RFC 2616: Hyper-
text Transfer Protocol — HTTP/1.1. Internet Engineering Task Force,
June 1999. http://www.ietf.org/rfc/rfc2616.txt. (Cited on
page 2.)

[25] Jeroen Fokker. Functional parsers. In Johan Jeuring and Erik Mei-
jer, editors, Advanced Functional Programming, volume 925 of Lecture
Notes in Computer Science, pages 1–23. Springer-Verlag, Heidelberg,
Germany, May 1995. (Cited on page 49.)

[26] Fabio Forno and Peter Saint-Andre. JEP-0072: SOAP Over XMPP.
Jabber Software Foundation, October 2005. http://www.jabber.
org/jeps/jep-0072.html. (Cited on page 14.)

[27] Ned Freed and Nathaniel Borenstein. RFC 2045: Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet Message Bodies.
Internet Engineering Task Force, November 1996. http://www.ietf.
org/rfc/rfc2045.txt. (Cited on page 14.)

[28] Ned Freed and Nathaniel Borenstein. RFC 2046: Multipurpose Internet
Mail Extensions (MIME) Part Two: Media Types. Internet Engineering
Task Force, November 1996. http://www.ietf.org/rfc/rfc2046.
txt. (Cited on page 14.)

[29] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Protocol
Version 3.0. Netscape Communications, November 1996. http://wp.
netscape.com/eng/ssl3/draft302.txt. (Cited on pages 15 and 59.)

[30] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, Massachusetts, USA, 1995. (Cited on
page 33.)

87

http://www.ietf.org/rfc/rfc2616.txt
http://www.jabber.org/jeps/jep-0072.html
http://www.jabber.org/jeps/jep-0072.html
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://wp.netscape.com/eng/ssl3/draft302.txt
http://wp.netscape.com/eng/ssl3/draft302.txt

[31] Marc Girardot and Neel Sundaresan. Millau: an encoding format
for efficient representation and exchange of XML over the Web. In
Ninth International World Wide Web Conference, May 2000. http://
www9.org/w9cdrom/154/154.html. (Cited on pages 24 and 43.)

[32] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification. Addison-Wesley, Boston, Massachusetts, USA, 3rd
edition, June 2005. (Cited on page 18.)

[33] Robert Halstead, Jr. New ideas in parallel Lisp: Language design,
implementation. In Takayasu Ito and Robert Halstead, Jr., editors,
Parallel Lisp: Languages and Systems, volume 441 of Lecture Notes in
Computer Science, pages 2–57. Springer-Verlag, Heidelberg, Germany,
October 1990. (Cited on page 27.)

[34] Richard Harrison. Symbian OS C++ for Mobile Phones Volume 1. Sym-
bian Press, April 2003. (Cited on page 18.)

[35] Leping Huang, Hongyuan Chen, T. V. L. N. Sivakumar, Tsuyoshi
Kashima, and Kaoru Sezaki. Impact of topology on Bluetooth scatter-
net. Journal of Pervasive Computing and Communications, 1(2):123–134,
June 2005. (Cited on page 17.)

[36] IBM. MQSeries Everyplace for Multiplatforms Version 1, Release
2, 2002. (White paper), http://www-3.ibm.com/software/ts/
mqseries/everyplace/v12/whitepaper.html. (Cited on page 1.)

[37] Institute of Electrical and Electronic Engineers, Piscataway, New Jer-
sey, USA. IEEE Std 802.11 — Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, March 1999. (Cited on
page 17.)

[38] International Organization for Standardization, Geneva, Switzer-
land. ISO 8879:1986. Information Processing — Text and Office Systems
— Standard Generalized Markup Language (SGML), 1986. (Cited on
page 5.)

[39] International Telecommunication Union, Telecommunication Stan-
dardization Sector, Geneva, Switzerland. Public-key and attribute cer-
tificate frameworks, March 2000. ITU-T Rec. X.509. (Cited on page 16.)

[40] International Telecommunication Union, Telecommunication Stan-
dardization Sector, Geneva, Switzerland. Abstract Syntax Notation
One (ASN.1) Specification of Basic Encoding Rules (BER), Canonical En-
coding Rules (CER) and Distinguished Encoding Rules (DER), 2002. ITU-
T Rec. X.690. (Cited on page 43.)

88

http://www9.org/w9cdrom/154/154.html
http://www9.org/w9cdrom/154/154.html
http://www-3.ibm.com/software/ts/mqseries/everyplace/v12/whitepaper.html
http://www-3.ibm.com/software/ts/mqseries/everyplace/v12/whitepaper.html

[41] International Telecommunication Union, Telecommunication Stan-
dardization Sector, Geneva, Switzerland. Abstract Syntax Notation
One (ASN.1) Specification of Basic Notation, 2002. ITU-T Rec. X.680.
(Cited on page 43.)

[42] International Telecommunication Union, Telecommunication Stan-
dardization Sector, Geneva, Switzerland. Abstract Syntax Notation
One (ASN.1) Specification of Packed Encoding Rules (PER), 2002. ITU-T
Rec. X.691. (Cited on pages 43 and 46.)

[43] International Telecommunication Union, Telecommunication Stan-
dardization Sector, Geneva, Switzerland. Mapping W3C XML Schema
Definitions into ASN.1, 2004. ITU-T Rec. X.694. (Cited on page 46.)

[44] Van Jacobson. RFC 1144: Compressing TCP/IP Headers for Low-Speed
Serial Links. Internet Engineering Task Force, February 1990. http:
//www.ietf.org/rfc/rfc1144.txt. (Cited on page 41.)

[45] Rick Jelliffe. The Schematron Assertion Language 1.5. Academia Sinica
Computing Centre, October 2002. http://xml.ascc.net/resource/
schematron/Schematron2000.html. (Cited on page 9.)

[46] Matjaz B. Juric, Bostjan Kezmah, Marjan Hericko, Ivan Rozman, and
Ivan Vezocnik. Java RMI, RMI tunneling and Web services compar-
ison and performance analysis. ACM SIGPLAN Notices, 39(5):58–65,
May 2004. (Cited on page 20.)

[47] Jaakko Kangasharju and Tancred Lindholm. A sequence-based type-
aware interface for XML processing. In Mohamed H. Hamza, editor,
Ninth IASTED International Conference on Internet and Multimedia Sys-
tems and Applications, pages 83–88. ACTA Press, February 2005. http:
//www.cs.helsinki.fi/u/jkangash/xml-interface.pdf. (Cited on
pages 30, 67, 81, and 82.)

[48] Jaakko Kangasharju, Tancred Lindholm, and Sasu Tarkoma. Require-
ments and design for XML messaging in the mobile environment.
In Nikos Anerousis and George Kormentzas, editors, Second Inter-
national Workshop on Next Generation Networking Middleware, pages
29–36, May 2005. http://www.cs.helsinki.fi/u/jkangash/xml-
messaging-mobile.pdf. (Cited on pages 23 and 67.)

[49] Jaakko Kangasharju and Kimmo Raatikainen. Byte-efficient repre-
sentation of XML messages. In W3C [117]. http://www.w3.org/
2003/08/binary-interchange-workshop/08-xebu.pdf. (Cited on
page 46.)

89

http://www.ietf.org/rfc/rfc1144.txt
http://www.ietf.org/rfc/rfc1144.txt
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://www.cs.helsinki.fi/u/jkangash/xml-interface.pdf
http://www.cs.helsinki.fi/u/jkangash/xml-interface.pdf
http://www.cs.helsinki.fi/u/jkangash/xml-messaging-mobile.pdf
http://www.cs.helsinki.fi/u/jkangash/xml-messaging-mobile.pdf
http://www.w3.org/2003/08/binary-interchange-workshop/08-xebu.pdf
http://www.w3.org/2003/08/binary-interchange-workshop/08-xebu.pdf

[50] Jaakko Kangasharju, Sasu Tarkoma, and Tancred Lindholm. Xebu:
A binary format with schema-based optimizations for XML data.
In Anne H. H. Ngu, Masaru Kitsuregawa, Erich Neuhold, Jen-Yao
Chung, and Quan Z. Sheng, editors, 6th International Conference on
Web Information Systems Engineering, volume 3806 of Lecture Notes
in Computer Science, pages 528–535, New York, USA, November
2005. Springer-Verlag. Short paper, http://dx.doi.org/10.1007/
11581062_44. (Cited on pages 44 and 67.)

[51] Jaakko Kangasharju, Sasu Tarkoma, and Kimmo Raatikainen. Com-
paring SOAP performance for various encodings, protocols, and con-
nections. In Marco Conti, Silvia Giordano, Enrico Gregori, and
Stephan Olariu, editors, Personal Wireless Communications, volume
2775 of Lecture Notes in Computer Science, pages 397–406, Venice, Italy,
September 2003. Springer-Verlag. http://www.cs.helsinki.fi/u/
jkangash/soap-performance.pdf. (Cited on pages 20 and 57.)

[52] John C. Klensin. RFC 2821: Simple Mail Transfer Protocol. Inter-
net Engineering Task Force, April 2001. http://www.ietf.org/rfc/
rfc2821.txt. (Cited on page 2.)

[53] Miika Komu. Application programming interfaces for the Host
Identity Protocol. Master’s thesis, Helsinki University of Technol-
ogy, Department of Computer Science and Engineering, Espoo, Fin-
land, September 2004. http://hipl.hiit.fi/hipl/hip-native-
api-final.pdf. (Cited on page 60.)

[54] Mikko Laukkanen and Heikki Helin. Web services in wireless net-
works — what happened to the performance? In Liang-Jie Zhang,
editor, Proceedings of the International Conference on Web Services, pages
278–284, June 2003. (Cited on page 20.)

[55] Edward Levinson. RFC 2387: The MIME Multipart/Related Content-
type. Internet Engineering Task Force, August 1998. http://www.
ietf.org/rfc/rfc2387.txt. (Cited on page 14.)

[56] Liberty Alliance Project. Liberty Reverse HTTP Binding for SOAP Spec-
ification, Version 1.0, 2003. (Cited on page 61.)

[57] Hartmut Liefke and Dan Suciu. XMill: an efficient compressor for
XML data. In Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data, pages 153–164, May 2000. (Cited on
pages 39 and 40.)

[58] Tancred Lindholm. XML three-way merge as a reconciliation engine
for mobile data. In Third ACM International Workshop on Data Engi-
neering for Wireless and Mobile Access, pages 93–97, September 2003.

90

http://dx.doi.org/10.1007/11581062_44
http://dx.doi.org/10.1007/11581062_44
http://www.cs.helsinki.fi/u/jkangash/soap-performance.pdf
http://www.cs.helsinki.fi/u/jkangash/soap-performance.pdf
http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc2821.txt
http://hipl.hiit.fi/hipl/hip-native-api-final.pdf
http://hipl.hiit.fi/hipl/hip-native-api-final.pdf
http://www.ietf.org/rfc/rfc2387.txt
http://www.ietf.org/rfc/rfc2387.txt

http://www.hiit.fi/fuego/fc/papers/mobide03-pc.pdf. (Cited
on page 23.)

[59] Nimrod Megiddo and Dharmendra S. Mocha. ARC: A self-tuning,
low overhead replacement cache. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, March 2003. (Cited on
page 45.)

[60] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, Cambridge, Mas-
sachusetts, USA, 1997. (Cited on page 49.)

[61] Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of
XML schema languages using formal language theory. In Extreme
Markup Languages 2001, August 2001. http://www.extrememarkup.
com/extreme/2001/index.htm. (Cited on page 9.)

[62] Ulrich Niedermeier, Jörg Heuer, Andreas Hutter, Walter Stechele,
and Andre Kaup. An MPEG-7 tool for compression and streaming
of XML data. In IEEE International Conference on Multimedia and Expo,
pages 521–524, August 2002. (Cited on pages 46 and 47.)

[63] Nokia, Espoo, Finland. Efficient MIDP Programming Version 1.1,
March 2004. (Cited on pages 18 and 82.)

[64] Object Management Group, Needham, Massachusetts, USA. Com-
mon Object Request Broker Architecture (CORBA/IIOP), version 3.0.3,
March 2004. (Cited on pages 1 and 19.)

[65] Tero Ojanperä and Ramjee Prasad. An overview of third-generation
wireless personal communications: A European perspective. IEEE
Personal Communications, 5(6):59–65, December 1998. (Cited on
page 17.)

[66] Organization for the Advancement of Structured Information Stan-
dards, Billerica, Massachusetts, USA. RELAX NG Specification,
December 2001. http://www.relaxng.org/spec-20011203.html.
(Cited on pages 9 and 52.)

[67] Organization for the Advancement of Structured Information Stan-
dards, Billerica, Massachusetts, USA. Message Service Specification,
Version 2.0, April 2002. http://www.oasis-open.org/committees/
ebxml-msg/documents/ebMS_v2_0.pdf. (Cited on page 15.)

[68] Organization for the Advancement of Structured Information Stan-
dards, Billerica, Massachusetts, USA. RELAX NG Compact Syn-
tax, November 2002. http://www.relaxng.org/compact-20021121.
html. (Cited on page 48.)

91

http://www.hiit.fi/fuego/fc/papers/mobide03-pc.pdf
http://www.extrememarkup.com/extreme/2001/index.htm
http://www.extrememarkup.com/extreme/2001/index.htm
http://www.relaxng.org/spec-20011203.html
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://www.relaxng.org/compact-20021121.html
http://www.relaxng.org/compact-20021121.html

[69] Organization for the Advancement of Structured Information Stan-
dards, Billerica, Massachusetts, USA. UDDI Version 3.0, July
2002. http://uddi.org/pubs/uddi-v3.00-published-20020719.
htm. (Cited on page 16.)

[70] Organization for the Advancement of Structured Information Stan-
dards, Billerica, Massachusetts, USA. Web Services Reliable Messag-
ing: WS-Reliability 1.1, August 2004. http://docs.oasis-open.org/
wsrm/2004/06/WS-Reliability-CD1.086.pdf. (Cited on page 15.)

[71] Organization for the Advancement of Structured Information Stan-
dards, Billerica, Massachusetts, USA. Web Services Security: SOAP
Message Security 1.0, March 2004. http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-soap-message-security-1.0.
(Cited on page 15.)

[72] Jean Ostrem. Palm OS user interface guidelines. Document 3101-001-
HW, PalmSource Inc., Sunnyvale, California, USA, February 2003.
(Cited on page 17.)

[73] Eamon O’Tuathail and Marshall T. Rose. RFC 3288: Using the Sim-
ple Object Access Protocol (SOAP) in Blocks Extensible Exchange Pro-
tocol (BEEP). Internet Engineering Task Force, June 2002. http:
//www.ietf.org/rfc/rfc3288.txt. (Cited on page 58.)

[74] Santiago Pericas-Geertsen. Binary interchange of XML Infosets. In
XML Conference and Exposition, Philadelphia, USA, December 2003.
(Cited on page 42.)

[75] Marshall T. Rose. RFC 3080: The Blocks Extensible Exchange Pro-
tocol Core. Internet Engineering Task Force, March 2001. http:
//www.ietf.org/rfc/rfc3080.txt. (Cited on page 58.)

[76] Marshall T. Rose. RFC 3081: Mapping the BEEP Core onto TCP. In-
ternet Engineering Task Force, March 2001. http://www.ietf.org/
rfc/rfc3081.txt. (Cited on page 58.)

[77] Vladimir Roubtsov. Java tip 130: Do you know your data size?
On the JavaWorld Web site. http://www.javaworld.com/javaworld/
javatips/jw-javatip130.html. (Cited on page 69.)

[78] Paul Sandoz, Santiago Pericas-Geertsen, Kohuske Kawaguchi, Marc
Hadley, and Eduardo Pelegri-Llopart. Fast Web services. On Sun De-
veloper Network, August 2003. http://developer.java.sun.com/
developer/technicalArticles/WebServices/fastWS/index.html.
(Cited on pages 46 and 47.)

92

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://docs.oasis-open.org/wsrm/2004/06/WS-Reliability-CD1.086.pdf
http://docs.oasis-open.org/wsrm/2004/06/WS-Reliability-CD1.086.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0
http://www.ietf.org/rfc/rfc3288.txt
http://www.ietf.org/rfc/rfc3288.txt
http://www.ietf.org/rfc/rfc3080.txt
http://www.ietf.org/rfc/rfc3080.txt
http://www.ietf.org/rfc/rfc3081.txt
http://www.ietf.org/rfc/rfc3081.txt
http://www.javaworld.com/javaworld/javatips/jw-javatip130.html
http://www.javaworld.com/javaworld/javatips/jw-javatip130.html
http://developer.java.sun.com/developer/technicalArticles/WebServices/fastWS/index.html
http://developer.java.sun.com/developer/technicalArticles/WebServices/fastWS/index.html

[79] Paul Sandoz, Alessandro Triglia, and Santiago Pericas-Geertsen. Fast
Infoset. On Sun Developer Network, June 2004. http://java.sun.
com/developer/technicalArticles/xml/fastinfoset/. (Cited on
page 43.)

[80] Mahadev Satyanarayanan. Pervasive computing: Vision and chal-
lenges. IEEE Personal Communications, 8(4):10–17, August 2001.
(Cited on page 1.)

[81] John Schneider. Theory, benefits and requirements for efficient en-
coding of XML documents. In W3C [117]. http://www.agiledelta.
com/EfficientXMLEncoding.htm. (Cited on page 47.)

[82] Ekrem Serin. Design and test of the cross-format schema protocol
(XFSP) for networked virtual environments. Master’s thesis, Naval
Postgraduate School, Monterey, California, USA, March 2003. (Cited
on page 46.)

[83] Claude E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27, 1948. (Cited on page 47.)

[84] Aleksander Slominski. On using XML pull parsing Java APIs. On
XmlPull Web site, March 2004. http://www.xmlpull.org/history/
index.html. (Cited on page 30.)

[85] Dennis M. Sosnoski. XBIS XML Infoset encoding. In
W3C [117]. http://www.w3.org/2003/08/binary-interchange-
workshop/09-Sosnoski-position-paper.pdf. (Cited on page 43.)

[86] C. M. Sperberg-McQueen. XML and semi-structured data. ACM
Queue, 3(8):34–41, October 2005. (Cited on page 11.)

[87] Pyda Srisuresh and Matt Holdrege. RFC 2663: IP Network Address
Translator (NAT) Terminology and Considerations. Internet Engineering
Task Force, August 1999. http://www.ietf.org/rfc/rfc2663.txt.
(Cited on page 25.)

[88] Sun Microsystems Inc., Santa Clara, California, USA. JavaBeans, Au-
gust 1997. (Cited on page 35.)

[89] Sun Microsystems Inc., Santa Clara, California, USA. JSR 31: Java Ar-
chitecture for XML Binding (JAXB), January 2003. http://jcp.org/
aboutJava/communityprocess/final/jsr031/index.html. (Cited
on page 30.)

[90] Sun Microsystems Inc., Santa Clara, California, USA. Java Remote
Method Invocation Specification, 2004. (Cited on page 19.)

93

http://java.sun.com/developer/technicalArticles/xml/fastinfoset/
http://java.sun.com/developer/technicalArticles/xml/fastinfoset/
http://www.agiledelta.com/EfficientXMLEncoding.htm
http://www.agiledelta.com/EfficientXMLEncoding.htm
http://www.xmlpull.org/history/index.html
http://www.xmlpull.org/history/index.html
http://www.w3.org/2003/08/binary-interchange-workshop/09-Sosnoski-position-paper.pdf
http://www.w3.org/2003/08/binary-interchange-workshop/09-Sosnoski-position-paper.pdf
http://www.ietf.org/rfc/rfc2663.txt
http://jcp.org/aboutJava/communityprocess/final/jsr031/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr031/index.html

[91] Sun Microsystems Inc. and Motorola Inc. Mobile Information Device
Profile Version 2.0, November 2002. (Cited on page 18.)

[92] Neel Sundaresan and Reshad Moussa. Algorithms and program-
ming models for efficient representation of XML for Internet appli-
cations. In Tenth International World Wide Web Conference, pages 366–
375, May 2001. http://www10.org/cdrom/papers/542/index.html.
(Cited on page 46.)

[93] Sasu Tarkoma. Efficient and Mobility-aware Content-based Routing Sys-
tems. Licentiate thesis, University of Helsinki, Department of Com-
puter Science, Helsinki, Finland, June 2005. (Cited on pages 83
and 84.)

[94] Sasu Tarkoma, Jaakko Kangasharju, and Kimmo Raatikainen.
Client mobility in Rendezvous-Notify. In Second International
Workshop on Distributed Event-based Systems, pages 1–8, June
2003. http://www.eecg.toronto.edu/debs03/papers/tarkoma_
etal_debs03.pdf. (Cited on page 23.)

[95] Unicode Consortium. The Unicode Standard, Version 4.0. Addison-
Wesley, Boston, Massachusetts, USA, August 2003. (Cited on page 6.)

[96] Eric van der Vlist. RELAX NG. O’Reilly, Sebastopol, California, USA,
December 2003. (Cited on page 10.)

[97] Guido van Rossum and Fred L. Drake, Jr. The Python Language Ref-
erence Manual. Network Theory Ltd., September 2003. (Cited on
page 18.)

[98] Web Services Interoperability Organization. Basic Profile Version 1.1,
August 2004. http://www.ws-i.org/Profiles/BasicProfile-1.1-
2004-08-24.html. (Cited on page 16.)

[99] Mark Weiser. Some computer science issues in ubiquitous comput-
ing. Communications of the ACM, 36(7):75–84, July 1993. (Cited on
page 1.)

[100] Christian Werner, Carsten Buschmann, and Stefan Fischer. Com-
pressing SOAP messages by using differential encoding. In IEEE
International Conference on Web Services, pages 540–547, July 2004.
(Cited on page 41.)

[101] Dave Winer. XML-RPC Specification, June 2003. http://www.xmlrpc.
com/spec. (Cited on page 12.)

94

http://www10.org/cdrom/papers/542/index.html
http://www.eecg.toronto.edu/debs03/papers/tarkoma_etal_debs03.pdf
http://www.eecg.toronto.edu/debs03/papers/tarkoma_etal_debs03.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec

[102] World Wide Web Consortium, Cambridge, Massachusetts, USA. Ex-
tensible Markup Language (XML) 1.0, February 1998. W3C Recommen-
dation, http://www.w3.org/TR/1998/REC-xml-19980210. (Cited on
page 6.)

[103] World Wide Web Consortium, Cambridge, Massachusetts, USA.
Namespaces in XML, January 1999. W3C Recommendation, http:
//www.w3.org/TR/REC-xml-names/. (Cited on page 7.)

[104] World Wide Web Consortium, Cambridge, Massachusetts, USA.
WAP Binary XML Content Format, June 1999. W3C Note, http:
//www.w3.org/TR/wbxml/. (Cited on pages 23, 41, and 43.)

[105] World Wide Web Consortium, Cambridge, Massachusetts, USA. Sim-
ple Object Access Protocol (SOAP) 1.1, May 2000. W3C Note, http:
//www.w3.org/TR/SOAP/. (Cited on pages 13 and 16.)

[106] World Wide Web Consortium, Cambridge, Massachusetts, USA.
SOAP Messages with Attachments, December 2000. W3C Note, http:
//www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211. (Cited
on page 14.)

[107] World Wide Web Consortium, Cambridge, Massachusetts, USA.
Canonical XML Version 1.0, March 2001. W3C Recommendation,
http://www.w3.org/TR/xml-c14n/. (Cited on pages 11 and 12.)

[108] World Wide Web Consortium, Cambridge, Massachusetts, USA. Web
Services Description Language (WSDL) 1.1, March 2001. W3C Note,
http://www.w3.org/TR/wsdl. (Cited on page 16.)

[109] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Schema Part 1: Structures, May 2001. W3C Recommendation,
http://www.w3.org/TR/xmlschema-1/. (Cited on pages 9 and 31.)

[110] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Schema Part 2: Datatypes, May 2001. W3C Recommendation,
http://www.w3.org/TR/xmlschema-2/. (Cited on page 9.)

[111] World Wide Web Consortium, Cambridge, Massachusetts, USA. Ex-
clusive XML Canonicalization Version 1.0, July 2002. W3C Recommen-
dation, http://www.w3.org/TR/xml-exc-c14n/. (Cited on page 12.)

[112] World Wide Web Consortium, Cambridge, Massachusetts, USA.
SOAP Version 1.2 Email Binding, June 2002. W3C Note, http://www.
w3.org/TR/2002/NOTE-soap12-email-20020626. (Cited on page 14.)

95

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/wbxml/
http://www.w3.org/TR/wbxml/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/xml-c14n/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/2002/NOTE-soap12-email-20020626
http://www.w3.org/TR/2002/NOTE-soap12-email-20020626

[113] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Encryption Syntax and Processing, December 2002. W3C Rec-
ommendation, http://www.w3.org/TR/xmlenc-core/. (Cited on
pages 12, 16, and 83.)

[114] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Signature Syntax and Processing, February 2002. W3C Rec-
ommendation, http://www.w3.org/TR/xmldsig-core/. (Cited on
pages 12, 16, and 83.)

[115] World Wide Web Consortium, Cambridge, Massachusetts, USA.
SOAP Version 1.2 Part 1: Messaging Framework, June 2003. W3C Rec-
ommendation, http://www.w3.org/TR/soap12-part1/. (Cited on
page 13.)

[116] World Wide Web Consortium, Cambridge, Massachusetts, USA.
SOAP Version 1.2 Part 2: Adjuncts, June 2003. W3C Recommenda-
tion, http://www.w3.org/TR/soap12-part2/. (Cited on page 13.)

[117] World Wide Web Consortium. W3C Workshop on Binary Interchange
of XML Information Item Sets, September 2003. http://www.w3.org/
2003/08/binary-interchange-workshop/Report.html. (Cited on
pages 41, 89, and 93.)

[118] World Wide Web Consortium, Cambridge, Massachusetts, USA. Doc-
ument Object Model (DOM) Level 3 Core Specification, April 2004. W3C
Recommendation, http://www.w3.org/TR/2004/REC-DOM-Level-3-
Core-20040407/. (Cited on pages 10 and 29.)

[119] World Wide Web Consortium, Cambridge, Massachusetts, USA.
Extensible Markup Language (XML) 1.0, 3rd edition, February
2004. W3C Recommendation, http://www.w3.org/TR/2004/REC-
xml-20040204/. (Cited on pages 2, 5, 6, and 8.)

[120] World Wide Web Consortium, Cambridge, Massachusetts, USA. Ex-
tensible Markup Language (XML) 1.1, February 2004. W3C Recommen-
dation, http://www.w3.org/TR/2004/REC-xml11-20040204/. (Cited
on page 6.)

[121] World Wide Web Consortium, Cambridge, Massachusetts, USA.
SOAP 1.2 Attachment Feature, June 2004. W3C Note, http://www.
w3.org/TR/2004/NOTE-soap12-af-20040608/. (Cited on page 14.)

[122] World Wide Web Consortium, Cambridge, Massachusetts, USA.
Web Services Addressing (WS-Addressing), August 2004. W3C
Member Submission, http://www.w3.org/Submission/2004/SUBM-
ws-addressing-20040810/. (Cited on page 15.)

96

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/2003/08/binary-interchange-workshop/Report.html
http://www.w3.org/2003/08/binary-interchange-workshop/Report.html
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/NOTE-soap12-af-20040608/
http://www.w3.org/TR/2004/NOTE-soap12-af-20040608/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

[123] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Information Set, 2nd edition, February 2004. W3C Recommen-
dation, http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.
(Cited on page 10.)

[124] World Wide Web Consortium, Cambridge, Massachusetts, USA.
Describing Media Content of Binary Data in XML, May 2005.
W3C Note, http://www.w3.org/TR/2005/NOTE-xml-media-types-
20050504. (Cited on page 14.)

[125] World Wide Web Consortium, Cambridge, Massachusetts, USA.
SOAP Message Transmission Optimization Mechanism, January 2005.
W3C Recommendation, http://www.w3.org/TR/2004/REC-soap12-
mtom-20050125/. (Cited on page 14.)

[126] World Wide Web Consortium, Cambridge, Massachusetts, USA.
Web Services Addressing 1.0 — Core, August 2005. W3C Candidate
Recommendation, http://www.w3.org/TR/2005/CR-ws-addr-core-
20050817/. (Cited on pages 15, 26, and 57.)

[127] World Wide Web Consortium, Cambridge, Massachusetts, USA. Web
Services Addressing 1.0 — SOAP Binding, August 2005. W3C Candi-
date Recommendation, http://www.w3.org/TR/2005/CR-ws-addr-
soap-20050817/. (Cited on page 15.)

[128] World Wide Web Consortium, Cambridge, Massachusetts, USA. Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
August 2005. W3C Last Call Working Draft, http://www.w3.org/TR/
2005/WD-wsdl20-20050803/. (Cited on page 16.)

[129] World Wide Web Consortium, Cambridge, Massachusetts, USA. Web
Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts, Au-
gust 2005. W3C Last Call Working Draft, http://www.w3.org/TR/
2005/WD-wsdl20-adjuncts-20050803/. (Cited on page 16.)

[130] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Binary Characterization, March 2005. W3C Note, http://www.
w3.org/TR/xbc-characterization. (Cited on page 42.)

[131] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Binary Characterization Measurement Methodologies, March 2005.
W3C Note, http://www.w3.org/TR/xbc-measurement. (Cited on
page 42.)

[132] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Binary Characterization Properties, March 2005. W3C Note, http:
//www.w3.org/TR/xbc-properties. (Cited on pages 11 and 42.)

97

http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/2005/NOTE-xml-media-types-20050504
http://www.w3.org/TR/2005/NOTE-xml-media-types-20050504
http://www.w3.org/TR/2004/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2004/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817/
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817/
http://www.w3.org/TR/2005/WD-wsdl20-20050803/
http://www.w3.org/TR/2005/WD-wsdl20-20050803/
http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-20050803/
http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-20050803/
http://www.w3.org/TR/xbc-characterization
http://www.w3.org/TR/xbc-characterization
http://www.w3.org/TR/xbc-measurement
http://www.w3.org/TR/xbc-properties
http://www.w3.org/TR/xbc-properties

[133] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Binary Characterization Use Cases, March 2005. W3C Note,
http://www.w3.org/TR/xbc-use-cases. (Cited on pages 19 and 42.)

[134] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML-binary Optimized Packaging, January 2005. W3C Recommen-
dation, http://www.w3.org/TR/2004/REC-xop10-20050125/. (Cited
on page 14.)

[135] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Path Language (XPath) 2.0, November 2005. W3C Candi-
date Recommendation, http://www.w3.org/TR/2005/CR-xpath20-
20051103/. (Cited on page 10.)

[136] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XQuery 1.0: An XML Query Language, November 2005. W3C Can-
didate Recommendation, http://www.w3.org/TR/2005/CR-xquery-
20051103/. (Cited on page 10.)

[137] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XQuery 1.0 and XPath 2.0 Data Model (XDM), November 2005.
W3C Candidate Recommendation, http://www.w3.org/TR/2005/
CR-xpath-datamodel-20051103/. (Cited on page 10.)

[138] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XSL Transformations (XSLT) Version 2.0, November 2005. W3C Can-
didate Recommendation, http://www.w3.org/TR/2005/CR-xslt20-
20051103/. (Cited on page 10.)

[139] Jacob Ziv and Abraham Lempel. A universal algorithm for se-
quential data compression. IEEE Transactions on Information Theory,
23(3):337–343, May 1977. (Cited on page 39.)

98

http://www.w3.org/TR/xbc-use-cases
http://www.w3.org/TR/2004/REC-xop10-20050125/
http://www.w3.org/TR/2005/CR-xpath20-20051103/
http://www.w3.org/TR/2005/CR-xpath20-20051103/
http://www.w3.org/TR/2005/CR-xquery-20051103/
http://www.w3.org/TR/2005/CR-xquery-20051103/
http://www.w3.org/TR/2005/CR-xpath-datamodel-20051103/
http://www.w3.org/TR/2005/CR-xpath-datamodel-20051103/
http://www.w3.org/TR/2005/CR-xslt20-20051103/
http://www.w3.org/TR/2005/CR-xslt20-20051103/

	1 Introduction
	2 XML and the Mobile Environment
	2.1 XML and the XML Stack
	2.1.1 Basic XML
	2.1.2 XML Schema Languages
	2.1.3 XML Data Models
	2.1.4 XML for Messaging

	2.2 Web Services
	2.2.1 XML Protocols
	2.2.2 Protocol Extensions
	2.2.3 Service Description and Discovery

	2.3 The Mobile Environment
	2.4 Review of XML Performance Measurements

	3 Message Transfer Service Overview
	3.1 Requirements Analysis
	3.2 System Architecture

	4 XML Processing Interfaces
	4.1 Existing Interfaces
	4.2 The XAS Data Model
	4.3 The XAS API
	4.4 Typed Data in the XAS API
	4.5 Example of Typed Data Handling with XAS

	5 Alternate XML Serialization
	5.1 XML Compression
	5.2 XML Binary Characterization
	5.3 Tokenization Techniques
	5.3.1 Existing General-Purpose Formats
	5.3.2 Basic Xebu Format

	5.4 Using Schemas to Improve Compactness
	5.4.1 Existing Schema-Based Formats
	5.4.2 Schema Optimization Design
	5.4.3 Codec Omission Automaton
	5.4.4 Schema Optimization Implementation
	5.4.5 Automaton Build Rules for RELAX NG Constructs

	6 Message Transfer Protocol
	6.1 Basic Protocol Semantics
	6.1.1 Protocol Requirements
	6.1.2 The Transfer Layer
	6.1.3 Transfer Layer Mappings

	6.2 Extension Modules for AMME
	6.2.1 Sequence Number Module
	6.2.2 Connection Persistence Module
	6.2.3 Message Compaction Modules
	6.2.4 Measuring Round-Trip Time

	7 Experimental Results
	7.1 Experimental Platforms and Data
	7.2 Indicative Measurements of the XAS API
	7.3 Xebu Performance
	7.4 AMME Functionality
	7.5 General Messaging Performance

	8 Conclusions
	8.1 Useful Ideas
	8.2 Proposed Enhancements
	8.3 Future Work

