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11 Introdu
tionIn a 
onventional 
omputer system, the 
orre
tness of 
al
ulations is de�ned bytheir logi
al 
orre
tness. A real-time system has been de�ned as a system wherethe 
al
ulations need not only be 
orre
t, but also be �nished within a pre-de�nedtime [RaS94℄. Real-time systems are today used in a wide variety of 
omputingdevi
es: in medi
al systems, in ABS brake system of vehi
les, in Global PositioningSystem (GPS) devi
es, multimedia devi
es like DVD and MP3 players, in mobilephones, among others. Many of these systems are 
onstrained devi
es fun
tioningon limited battery power. Here, the usability of the devi
e is greatly dependentupon the operational lifetime of the battery.A s
heduler is an operating system 
omponent responsible for sharing a resour
eamong multiple users. A s
heduler de
ides whi
h pro
ess may use the pro
essor at aparti
ular moment. Common s
heduling algorithms are for instan
e Round-Robin,where pro
esses are ordered in a 
ir
ular queue, and CPU time is given to ea
hpro
ess in turn [Sta05, page 791℄. Another approa
h is First In First Out (FIFO)s
heduling, where the pro
ess that has been in the queue for the longest time willbe given CPU time �rst.In real-time systems, these 
ommonpla
e s
heduling methods 
annot be used sin
ethey do not guarantee meeting the time boundaries of real-time pro
esses. There-fore, real-time systems need spe
ial s
hedulers that take deadlines into a

ount. Theresear
h in real-time s
heduling seriously began in the early 1970's. In 1973, Liuand Layland published their two famous real-time s
heduling algorithms, EarliestDeadline First (EDF) and Rate-Monotoni
 (RM) [LiL73℄. EDF is based upon dy-nami
 priorities, while in RM pro
esses have �xed priorities. Basi
ally all of today'sreal-time implementations are based upon one of these two algorithms.In a hard real-time system, a task must always �nish before its deadline. The mostdemanding area of hard real-time systems are systems where human lives are atstake. Examples in
lude medi
al systems like pa
emakers, military systems, and forinstan
e nu
lear power plants. Here, bulletproof eviden
e that the system will meetits deadlines are required. The missing of even a single deadline is una

eptable. In
ontrast, in a soft real-time system (Se
tion 2.3) the deadline is of a somewhat morerelative nature. In a multimedia system, for instan
e in a video de
oder, it mightbe su�
ent to guarantee that 95 per
ent of frames are timely de
oded. O

asionalout-of-syn
 frames are a

eptable in an appli
ation of this kind.



2Many pro
essors and devi
es designed for portable use provide several di�erentoperational states. Besides its high power and speed state, the pro
essor 
an be runat a lower speed, whi
h provides lower throughput, but 
onsumes less energy. Attimes when the pro
essor is not needed at all, it 
an be put into a sleep mode whi
hvirtually 
onsumes no energy at all. Te
hniques for adjusting devi
e throughputand power 
onsumption are for instan
e Dynami
 Voltage S
aling (DVS) [VeF05,PLS01, VBH03℄ and Advan
ed Con�guration & Power Interfa
e (ACPI) [HIM06℄.These te
hniques allow the operating system to 
hange the operating frequen
yand voltage of the pro
essor and other devi
es at run-time in order to save energy.The introdu
tion of run-time voltage s
aling has opened new possibilities even forreal-time systems in 
onstrained devi
es.The most straightforward energy saving solution is to set the pro
essor and/or diskinto sleep mode after a period of user ina
tivity [BBC98℄. Information from previouspro
ess invo
ations 
an be used to estimate the length of the sleep interval [HwA00℄.Even more 
omplex statisti
al methods based on use history 
an be used to estimatewhen the devi
e will be needed next time [IGS02℄. As su
h, none of these methodsare usable in real-time systems with hard deadlines [SwC05℄. The implementationof energy awareness in real-time systems is a more 
omplex task. The waking up ofthe pro
essor, disk or other devi
e from sleep mode always introdu
es a 
ertain timepenalty. The devi
e is not instantly usable but requires some time to restart. Inreal-time systems this wake-up delay risks missing deadlines and, therefore, needsspe
ial attention from the s
heduler.The solution is to implement energy-
onserving properties into EDF and RM basedreal-time s
hedulers. Reports indi
ate that su
h te
hniques have provided energysavings of up to 50% [SwC03℄ while still guaranteeing meeting of real-time pro
essdeadlines.This thesis des
ribes 13 power-aware s
heduling algorithms usable in 
onstraineddevi
es with limited battery resour
es. The theoreti
al ba
kground and terminologyof real-time s
heduling with RM and EDF is des
ribed in Se
tion 2, and power-aware properties in 
onstrained devi
es are dis
ussed in Se
tion 3. Re
ent energy
onserving pro
essor s
heduling algorithms are presented in Se
tion 4, and devi
es
heduling algorithms in Se
tion 5. The thesis is summarized in Se
tion 7.



32 Real Time S
hedulingReal-time s
heduling algorithms are responsible for sharing resour
es among userswhile guaranteeing timely exe
ution of real-time pro
esses. In order to present real-time s
heduling algorithms, we will �rst introdu
e a system model used throughoutthe rest of the thesis.2.1 System ModelA task is a pro
ess, a pie
e of independently running software 
ode. We use thenotation Ti to indi
ate a task, where i is the task's distin
tive number. One instan
eof a task is 
alled a job. In real-time systems, tasks typi
ally have a period, a timeinterval between whi
h individual jobs of the task are released for exe
ution. Wemark the period Pi. A job of task Ti in period k is marked with Ji,k. By releasetime we mean the time at whi
h Ji,k be
omes ready for exe
ution.By deadline we mean the time when a job needs to be 
ompleted. We indi
ate thistime Di. A deadline relative to the 
urrent time is marked di. For instan
e, if Jihas Di = 20 and the 
urrent time is 15, then di = 5.By the exe
ution time, indi
ated by Ei, we mean the worst 
ase exe
ution time of Ji:the amount of pro
essor time needed by the job to 
omplete. In reality, exe
utiontimes of individual jobs Ji,k vary greatly. Consider, for example, a real-time system
ontrolling a roboti
 arm that is removing faulty produ
ts from a 
omposition line.When there are no faulty produ
ts, jobs will 
omplete extremely fast as the armdoes not need moving at all. But for s
heduling reasons, we must expe
t the worst
ase exe
ution time. In the 
ase of the roboti
 arm, this would mean the (hopefullyrare) event when all produ
ts within the arm's range are faulty, and need to beremoved from the line.Let ei be one instantaneous exe
ution time of Ji, where ei ≤ Ei. By sla
k time wemean the time Ei − ei, i.e. time allo
ated for pro
ess exe
ution that is not a
tuallyneeded be
ause the job �nishes earlier than budgeted. This time 
an be utilized forenergy savings. We will return to this later.The utilization degree of a task is 
al
ulated by Ei/Pi. The utilization of the entiretask set is 
al
ulated using Equation 1:
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U =

n
∑

i=1

Ei

Pi
(1)where n is the number of tasks. In later parts of the paper we may des
ribe a task

(Pi, Ei). For instan
e (6, 3) means a task with period 6 and exe
ution time 3, and
(6, 1) indi
ates a task with period 6 and exe
ution time 1. The utilization of a taskset 
onsisting of these two tasks would be 3

6
+ 1

6
= 4

6
= 2

3
, a

ording to Equation1. If no deadline is expli
itly mentioned, then di = Pi, meaning that the deadlineof the task equals its period. Intuitively this means, that a job of the task must be
ompleted before the release of the next job.2.2 Hard Real Time S
hedulingThe fundamental real-time s
heduling algorithms are Rate Monotoni
 (RM) andEarliest Deadline First (EDF) [LiL73℄. Neither of these algorithms provide power-awareness, but all of the energy 
ons
ious s
heduling solutions presented later in thisthesis are enhan
ements of either RM or EDF. Therefore, an insight into RM andEDF is essential for understanding this thesis. Both RM and EDF will be presentedin this se
tion.2.2.1 Rate Monotoni
input: list of tasks1 repeat on task set:2 perform RM s
hedulability test;3 if fail alarm OS;4 else5 sort jobs in as
ending order a

ording to period;6 while (jobs left):7 s
hedule �rst job from list;8 remove �nished job from list;Figure 1: Pseudo 
ode of the Rate Monotoni
 algorithm.In the Rate Monotoni
 s
heduling algorithm, the task with the shortest period Pigets highest priority, and is s
heduled �rst. Be
ause periods of tasks are 
onstant,



5RM is a �xed-priority s
heduler. Liu and Layland [LiL73℄ have shown that thes
hedulability 
ondition for RM is that of Equation 2:
U ≤ n(21/n − 1) (2)where n is the amount of tasks. For instan
e, when n = 2, i.e. with two tasks, RMis able to s
hedule the tasks if their U ≤ 0, 83. A task set 
onsisting of 4 tasks iss
hedulable with RM if U ≤ 0, 76. With large numbers of n:

lim
n→∞

n(21/n − 1) = ln 2 (3)The idea in Equation 3 is, that with large task sets, the RM s
hedulability 
ondi-tion approa
hes the value ln 2, i.e. approximately 0, 69. The theoreti
al maximalutilization, whi
h also the Earliest Deadline First algorithm a

omplishes, is U = 1.In other words, RM as su
h 
annot be 
onsidered very e�
ient.Let us 
onsider a sample RM s
hedule using a task set 
onsisting of two tasks:
τ1=(5,2) and τ2=(7,4). First, RM 
onsiders the s
hedulability of this task set. A
-
ording to Equation 1, U of this task set is 2

5
+ 4

7
= 34

35
, i.e. approximately 0, 97.A

ording to Equation 2, the promised usage level that RM is guaranteed to beable to s
hedule when n = 2 is U ≤ 0, 83. Therefore it seems that this task set isnot s
hedulable with RM. The s
heduler might alert the operating system of thisa

ording to line 3 in the pseudo 
ode in Figure 1. Let us, however, more 
losely
onsider the fun
tionality of RM by simulating lines 5�8 of the RM algorithm onthe before mentioned task set. The results are shown in Figure 2.

Figure 2: Tasks τ1=(5,2) and τ2=(7,4) s
heduled using Rate Monotoni
[But05℄.The period of τ1 is 5 and the period of τ2 is 7. In RM the task with the shortestperiod gets highest priority. Therefore, τ1 is s
heduled �rst. A

ording to the pseudo
ode in Figure 1, this operation is done by sorting the pro
esses in a list a

ording



6to their periods, as seen on line 5. The while 
ondition on line 6 is true so thealgorithm advan
es to line 7. The �rst job on the list is τ1, so it is s
heduled �rst.Every 5 time units, τ1 is s
heduled 2 units of time. This 
an be seen in Figure 2.Having s
heduled the highest priority task and removed it from the list (line 8), RMnow pro
eeds to s
hedule the next task, sin
e the while 
ondition on line 6 is true.Here, τ2 requires 4 units of CPU time every 7 units. However, in period 1 there isonly 3 units of time available in the interval [0,7℄. The time interval [2,5℄ is allo
atedto τ2. At time 5 a 
ontext swit
h o

urs, and the higher priority pro
ess τ1 gets theCPU. This is indi
ated by an up-arrow in Figure 2. Be
ause τ1 has the pro
essorduring [5,7℄, τ2 doesn't get a 
han
e to �nish its one remaining exe
ution time unit,and J2,1 misses its deadline at time 7. This simulation hen
e veri�es the failed RMs
hedulability 
ondition: this task set is not s
hedulable using RM.2.2.2 Earliest Deadline Firstinput: list of tasks1 repeat:2 perform EDF s
hedulability test;3 if fail alarm OS;4 else do while (jobs left AND no new task released):5 put job with 
losest deadline �rst in list;6 s
hedule �rst job;7 remove �nished job from list;Figure 3: pseudo 
ode of the Earliest Deadline First algorithm.In the Earliest Deadline First algorithm the pro
ess with the deadline 
losest tothe 
urrent time gets s
heduled �rst. Be
ause the pro
ess with the 
losest deadline
hanges as exe
ution progresses, the EDF method leads to dynami
 priorities. InEDF, the s
hedulability 
ondition is:
U ≤ 1 (4)This means, that EDF a

omplishes full resour
e utilization while guaranteeingtimeliness. The pseudo 
ode of the EDF algorithm 
an be seen in Figure 3.Let us 
onsider the tasks τ1=(5,2) and τ2=(7,4) s
heduled using Earliest DeadlineFirst a

ording to the pseudo 
ode in Figure 3. On line 2, the EDF s
hedulability
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Figure 4: Tasks τ1=(5,2) and τ2=(7,4) s
heduled using Earliest DeadlineFirst [But05℄.test is performed. A

ording to Equation 1, U = 34

35
. Be
ause the EDF s
hedula-bility 
ondition (Equation 4) guarantees s
hedulability when U ≤ 1, this task set iss
hedulable using EDF. The while 
ondition on line 4 is true. EDF orders the tasksa

ording to their relative deadlines. At time 0, the job with the 
losest deadlineis τ1, so it gets s
heduled �rst. At its �nish time at 2, τ2 gets s
heduled. On
e

τ2 is �nished at 6, the se
ond job of τ1 has been released, and is s
heduled. Afterexe
ution of the third job of τ1, at time 14, τ2 with deadline 21 get s
heduled for oneunit of time, but is swit
hed out at time 15: here, the fourth job of τ1 is released,and sin
e its deadline is 20 ≤ 21, τ1 gets higher priority than τ2. On
e a job is�nished, it is removed from the list of jobs.2.3 Soft Real Time S
hedulingIn a soft real-time system the timing 
onstraints are somewhat more relaxed than ina hard real-time system. A soft-real time appli
ation usually provides a probabilisti
guarantee of p% of tasks meeting their deadlines. For instan
e a telephone networkmight be 
onsidered a soft real-time appli
ation. It will be 
onsidered usable if 95%of 
alls are 
onne
ted within 10 se
onds, and within 20 se
onds for 99,95% of 
alls[Liu00, page 31℄.The video viewing experien
e or enjoyability of a 
omputer game is not spoiled if oneor two frames per minute miss their deadline. Multimedia is a a very 
ommon areafor soft real-time systems. Consider for instan
e the ES
heduler [YuN06℄ algorithm,presented in Se
tion 4.2.1. It 
al
ulates the a
tual CPU time demand of n re
entjobs of task Ti. Based on this usage history, it uses as Ei (Equation 1) a value belowof whi
h p% of the 
onsidered jobs remain. Hen
e, it allo
ates enough CPU time sothat p% of jobs will 
omplete timely (assuming that the CPU demand distribution ofthe task is pretty stable). This is a very typi
al real-time guarantee that su�
es for



8a soft real-time appli
ation. The use of a soft real-time s
heduler instead of a hardone might be motivated if, for instan
e, the response time of the system improvewhen real-time 
onstraints are relaxed.



93 Power Awareness in Constrained Devi
esBy energy, measured in joule, we mean the total amount of work done during aperiod of time, and by power we mean the rate at whi
h the work is done. Power ismeasured in watts [VeF05℄.Consider a task that takes 5 se
onds to �nish with a CPU running at 100 MHz.Lowering the CPU speed to 50 MHz will de
rease the power 
onsumption of thepro
essor, as lower frequen
ies need less power. However, the total energy needed to
omplete the task will not be redu
ed, as the task will take a longer time to �nish,perhaps even twi
e the time. A
tually, lowering only the speed of the CPU oftenmight in
rease the total energy 
onsumed by the entire system, as for instan
e harddisks, network adapters and other 
omponents need to be powered-up for longerperiods of time. This aspe
t is more 
losely 
onsidered in Se
tion 6.In some 
ases, for instan
e to 
ool down a pro
essor, it is desirable to lower thepower 
onsumption without 
onsidering the total need of energy [VeF05℄. Thiskind of power redu
tion is, however, hardly what we wish to a

omplish when usingbattery powered 
onstrained devi
es: here, minimizing the total energy need is whatmatters.Cal
ulating and minimizing the system's total energy 
onsumption depends on thea
tual system 
on�guration. This question has been resear
hed by for instan
e Zhuoand Chakrabarti [ZhC05℄. In Se
tions 4 and 5 of this thesis, we fo
us on minimizingthe power 
onsumption of distin
t 
omponents. The reader should note that this
hosen view is a simpli�ed one, as in reality systems are 
omposed of multiple
omponents.3.1 Dynami
 Voltage S
alingContemporary mi
ro
hips are based on the CMOS (
omplementary metal-oxide-semi
ondu
tor) te
hnology. Chips using this te
hnology 
onsume energy both dy-nami
ally and stati
ally [VeF05℄. The stati
 power 
onsumption is 
aused by 
urrent�owing through the transistors even when they are turned o�. As this form of en-ergy 
onsumption 
annot be altered during run-time by the s
heduler, it is not ofinterest in this thesis.The dynami
 power 
onsumption 
onsists of two parts. About one tenth of a 
hip'spower 
onsumption is 
aused by instantaneous short-
ir
uiting of transistors as they



10swit
h states [VeF05℄. Currently it is unknown how to 
ombat this energy waste, andso we will disregard this form of dynami
 power 
onsumption. Most of the pro
es-sor's dynami
 power 
onsumption 
an, however, be adjusted during run-time, andthis is where we will fo
us our attention. Let P be the dynami
 power 
onsumptionof a pro
essor. The following equation indi
ates how it is formed [PLS01℄:
P = C × f × V 2 (5)here, C is the 
apa
itan
e of the transistors. This is a �xed value 
aused by thephysi
al stru
ture of the pro
essor. The value f is the operating frequen
y of thepro
essor. It is usually measured in megahertz or gigahertz. Adjusting the operatingfrequen
y of the pro
essor linearly a�e
ts power 
onsumption. The operating voltageof the 
hip is indi
ated by V . As seen in Equation 5, adjusting the voltage a�e
tspower 
onsumption quadrati
ally.From Equation 5 it follows that the pro
essor's power 
onsumption 
an be regu-lated during run-time by adjusting its operation frequen
y f , voltage V , or both.Te
hnology for a

omplishing this is 
alled Dynami
 Voltage S
aling (DVS). The ab-breviations DFS (dynami
 frequen
y s
aling) and DVFS (dynami
 voltage-frequen
ys
aling) are also used [VBH03℄.Noti
e, however, that adjusting only f but not V linearly de
reases the power 
on-sumed by the pro
essor, but not the total energy needed to 
omplete the task: aCPU operating at m MHz that takes s se
onds to �nish a task will probably take

2s se
onds to �nish the task at m/2 MHz.Lowering only V might seem tempting, but a lower V generally 
annot supporta high f , so usually lowering the supply voltage also requires the lowering of theoperational frequen
y. So in DVS both V and f are adjusted: the pro
essor is madeboth slower and less 
onsuming.For an example of a real life DVS solution 
onsider the performan
e states of the 1.6GHz Pentium M pro
essor presented in table 1. At the maximum speed, 1.6 GHz,the power 
onsumption of the pro
essor a

ording to Equation 5 is C ∗ 1.6GHz ∗

1.484V and at the lowest speed C ∗ 600MHz ∗ 0.956. At lowest frequen
y and volt-age the pro
essor 
onsumes less than one fourth of its maximum power 
onsumption( C∗600MHz∗0.956
C∗1.6GHz∗1.484V

= 0.24), while still providing 38% of the maximum 
omputing per-forman
e (600MHz
1.6GHz

= 0.375). The early Transmeta Crusoe pro
essor provided evenmore impressive power savings, as seen in table 2. The Crusoe provided 29% of the
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Table 1: DVS performan
e states of the 1.6 GHz Intel Pentium M pro-
essor [Int04℄.

Table 2: DVS states of the Transmeta TM5400 �Crusoe� pro
essor[PLS01℄.maximum throughput (200 out of 700 MHz) while 
onsuming less than 13% of themaximum power.For s
heduling needs, DVS 
an be utilized basi
ally in three di�erent ways. These are
ompared in table 3. The simplest method is the interval-based approa
h [VeF05℄, inwhi
h the CPU frequen
y and voltage are adjusted downwards if the CPU utilizationduring the past t time units has been low, and upwards if the CPU utilization hasbeen high. The value of t is 
riti
al. If t is too short, the CPU fequen
y andvoltage may be adjusted ba
k and forth 
ausing high overhead. On the other hand,large t values may 
ompromise e�
ien
y as DVS adjustments are made very seldom.The interval-based method 
an be enhan
ed by 
onsidering a window of intervals.However, the interval-based method is not suitable for use in real-time systems asit does not take into 
onsideration the deadlines of individual tasks.The inter-task approa
h [VeF05℄ 
onsiders a distin
t DVS value for ea
h task and,therefore, suits well the needs of real-time appli
ations. Voltage and frequen
ysettings are altered at 
ontext swit
hes and remain �xed during the exe
ution of the



12Method name DVS o

asions Real-timesuitable ComplexityInterval-based At threshold time in-tervals No LowInter-task Context swit
hes Yes MediumIntra-task Context swit
hes andduring task exe
ution Yes HighTable 3: Comparison of fundamental DVS te
hniques.entire task. The advantage of the inter-task approa
h over the interval-based is thatea
h task may re
eive an individually suitable DVS setting. However, the exe
utiontime allo
ated for a task generally is mu
h higher than the a
tual exe
ution time.Using the inter-task approa
h, the entire task is run with the same DVS value, whi
hin most 
ases 
an be unne
essarily high. Therefore, the power savings a
hieved bythis method often are not optimal.The most advan
ed DVS method used in real-time systems is the intra-task ap-proa
h [VeF05℄. Here DVS values may be 
hanged even during a task exe
ution.Algorithms utilizing this method are, for instan
e, Feedba
k DVS-EDF [DMZ02℄and ES
heduler [YuN06℄, presented in Se
tions 4.1.3 and 4.2.1, respe
tively. Forinstan
e the Feedba
k DVS-EDF algorithm utilizes DVS aggressively. It will dividea task's exe
ution time Ei into two parts, Ca and Cb. During Ca the pro
essor isrun at a lowered speed, and only at the start of Cb is the CPU speed in
reased.Jobs �nishing sooner than their budgeted exe
ution time will never rea
h Cb andthe system is saved from this high power exe
ution interval. In ES
heduler, thespeed s
hedule is divided into several phases, with ea
h having a slightly di�erentDVS value. The task is initially exe
uted with a low speed, and as exe
ution timeprogresses, the speed is gradually in
reased.3.2 Advan
ed Con�guration and Power Interfa
ePro
essor manufa
turers have di�erent implementations for their voltage s
alingte
hnologies. AMD's te
hnology is named PowerNow, Intel's SpeedStep, and Trans-meta's LongRun [PLS01℄, or more re
ently, LongRun2. ACPI, �rst introdu
ed byIntel, Mi
rosoft and Toshiba in 1996 [Gro03℄, is a standardized interfa
e between thehardware and the operating system. The general ar
hite
ture of ACPI is depi
ted
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Figure 5: The ACPI provides a standard interfa
e between the operatingsystem and the �rmware [Gro03℄.in Figure 5.The main advantage with ACPI is that both hardware and operating system (OS)
omponents may evolve independently of ea
h other while letting the OS fully 
on-trol the system's power management. The OS may, for instan
e, 
hoose to bundledisk writes to be exe
uted in bat
hes in order to improve system response times.This kind of fun
tionality is not possible when power management is 
ontrolled byhardware alone.ACPI provides standardized me
hanisms for swit
hing between di�erent power 
on-s
ious states of pro
essors, disk drives, s
reens, modems, and other 
omponents thatare used in todays portable 
omputers. Both Windows and Linux platforms supportACPI for CPU frequen
y s
aling. The ACPI design is based on ASL (ACPI Sour
eLanguage) and AML (ACPI Ma
hine Language) that reminds quite a lot the Javaprogramming language [Gro03℄. The human readable un
ompiled Java sour
e 
ode
orresponds to ASL in ACPI, whereas Java byte
ode 
orresponds to AML, whi
his the 
ompiled version of ASL. The idea here is that AML abstra
ts the platform-spe
i�
 details from the operating system so that the OS may use standard operationnames to a

ess platform-spe
i�
 features.The 
urrent version of the ACPI spe
i�
ation is 3.0b. This 631 page do
ument wasreleased in O
tober 2006, and is available for download at http://www.a
pi.info.



144 Power Aware Pro
essor S
hedulingReal-time s
heduling algorithms 
an be divided into pro
essor and devi
e s
hedulingalgorithms. This se
tion 
overs power-aware real-time s
heduling algorithms forCPU s
heduling, while devi
e s
heduling is 
overed in Se
tion 5. In this se
tion wefo
us on unipro
essor systems. The s
heduler is responsible for sharing this singleCPU between all tasks while guaranteeing that time boundaries are met.Energy saving is a
hieved by running the pro
essor at lower speed whenever thisspeed is su�
ent to meet the deadlines. Be
ause the pro
essor's power 
onsumption
ubi
ally depends on the 
lo
k frequen
y and voltage (Equation 5, Se
tion 3.1), sig-ni�
ant energy 
onsumption redu
tions 
an be a
hieved by lowering the pro
essor'sfrequen
y and voltage at o

asions when maximum throughput is not needed. Somes
heduling algorithms even utilize the sleep state of the pro
essor when the systemis idle, if su
h a state is available. For instan
e, if the s
heduler knows that thenext periodi
 job will not be released until time t, it will set a timer to wake up thepro
essor at time t and put the pro
essor to sleep mode.Lowering the pro
essor speed to save energy works as follows. Suppose that the
urrent job needs to �nish at time t. When ran at full speed, the pro
essor will�nish the job at time t/2. Hen
e, it su�
es to run the pro
essor at half of themaximum speed in order to guarantee timely exe
ution.Pro
essor s
heduling algorithms 
an be divided into two 
ategories, hard and softreal time s
heduling algorithms. We will �rst study algorithms that provide hardreal-time guarantees. These are the stri
test type of real-time algorithms: theyguarantee that all deadlines are met. All algorithms presented in Se
tion 4.1 areenhan
ements of either the Rate Monotoni
 or Earliest Deadline First [LiL73℄ al-gorithm. In soft real-time algorithms, o

asional deadline misses are allowed. Softreal-time pro
essor s
heduling algorithms are explored in Se
tion 4.2.4.1 Hard Real Time S
hedulingThe Rate Monotoni
 and Earliest Deadline First algorithms as su
h form an ex-
ellent starting point when engineering energy aware real-time s
hedulers. Most
ontemporary hard real-time s
hedulers with energy 
onserving properties in fa
tare relatively small enhan
ements to the RM and EDF te
hniques. As examples ofsu
h algorithms, we will in this subse
tion explore a number of pseudo 
odes. The



15LPFPS algorithm enhan
es the Rate Monotoni
 algorithm, and provides a guaran-teed U of ln2 as indi
ated by Equation 3. As examples of energy 
ons
ious EarliestDeadline First based s
hedulers, guaranteeing U ≤ 1, the LEDF and ExtendedLEDF algorithms are presented. The most ambitious algorithm that will be 
onsid-ered is Feedba
k DVS-EDF, whi
h even utilizes a basi
 form of intra-task DVS, andsla
k-time passing between jobs. In general, EDF based s
hedulers are mu
h more
ommon in resear
h papers than their RM based 
ounterparts. This is due to EDFproviding full utilization of the pro
essor. RM is, however, simpler to implement insome operating system kernels that do not provide expli
it support for the timelinessproperties that real-time tasks require [But05℄.4.1.1 The Low Power Fixed Priority S
heduling AlgorithmThe Low Power Fixed Priority S
heduling (LPFPS) [ShC99℄ algorithm, publishedin 1999, is one of the earliest energy 
ons
ious s
heduling algorithms. It enhan
esthe Rate Monotoni
 algorithm by taking into a

ount energy 
onserving properties.For energy savings, LPFPS utilizes two di�erent o

asions. Firstly, in an RM baseds
hedule, there usually are idle times in the s
hedule. Re
all the RM s
hedulability
ondition U ≤ n(21/n − 1) of Equation 2: the maximal CPU utilization U of an RMbased s
hedule with large task numbers n approa
hes the value 0.69. So with hightask numbers the maximal RM utilization degree leaves the CPU idle for 30 per
entof the time, and LPFPS utilizes this time for energy savings. Se
ondly, jobs a
tuallyoften exe
ute faster than budgeted. In other words, jobs rarely use all of the timethat has been allo
ated to them. When a job exe
utes faster than budgeted, theremaining time is used by LPFPS to save energy.Both voltage and frequen
y s
aling and the powering down of the CPU are supportedby LPFPS. When the system is idle, i.e., there are no jobs ready to run, LPFPSpla
es the CPU in a power down mode, and initiates a timer to wake up the pro
essorso that it will be ready for use when it, a

ording to the s
hedule, is needed nexttime. When there is only one job left ready to run, LPFPS will 
al
ulate an energy
onserving voltage and frequen
y setting for the job, and exe
ute it if possible at alower CPU speed.The LPFPS algorithm utilizes two data stru
tures of the type queue. Jobs that areready for exe
ution and wait for pro
essor time are pla
ed in the run queue. Thejob with the highest RM priority (the shortest period) is at the head of the queue.
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Figure 6: pseudo 
ode of LPFPS the s
heduling algorithm [ShC99℄. LinesL5�L11 
orrespond to the 
onventional Rate Monotoni
 fun
tionality.In the delay queue LPFPS holds tasks whose 
urrent jobs are 
ompleted, i.e. taskswaiting for the arrival of their next jobs in the next period. The job with the 
losestarrival time is pla
ed at the head of the delay queue. The job that is 
urrentlys
heduled for exe
ution is 
alled the a
tive task. Con
eptually, this task is presentin neither of the queues.The LPFPS pseudo 
ode We are now ready to 
onsider the LPFPS pseudo 
odeof Figure 6. Let us begin by 
onsidering lines L5�L11, where the fun
tionality of a
onventional RM s
heduler is present. On line 5 it is 
he
ked whether the 
urrenttime ex
eeds or equals the release time of job(s) at the head of the delay queue.



17If so, the jobs are moved to the run queue (line 6). If the job now at the head ofthe run queue has a greater priority, i.e., shorter period, than the a
tive task has(line 8), then a 
ontext swit
h o

urs on line 10. This implies that the informationbelonging to the 
urrent a
tive task in the CPU registers and operating system
ontrol stru
tures are stored in main memory, and repla
ed by the information ofthe new a
tive task. Prior to the 
ontext swit
h, on line 9, LPFPS also stores theamount of time the job has been exe
uted. This value is later used when 
al
ulatingvoltage and frequen
y s
aling parameters.In addition to the 
onventional RM s
heduler fun
tionality, LPFPS provides energysaving properties. Energy savings will be sought when the run queue is empty, i.e.,when there are . This 
ondition is 
he
ked on line 12. If the run queue is empty,and there is no a
tive task (line 13), i.e., the pro
essor is idle, then the CPU willbe put to power down mode. On line 14 a timer is set to a
tivate the pro
essor soit will be ready for use at the arrival of the next job. In setting the timer LPFPStakes into a

ount the pro
essor wakeup delay time. On line 15 the CPU is put topower down mode.If the run queue is empty but there is one a
tive task (line 16), LPFPS will 
al
ulatean energy saving DVS setting for it and, when possible, exe
ute the task at lowerspeed and voltage. The new speed ratio is 
al
ulated by the Compute_speed_ratio()pro
edure 
alled on line 17. The formula used by LPFPS in 
al
ulating the speedratio is [ShC99℄:
speed_ratio =

Ci − Ei

ta − tcwhere Ci is the budgeted exe
ution time, Ei the time that has already been spentexe
uting the job, ta is the arrival time of the next job, and tc is the 
urrent time.In essen
e, the remaining exe
ution time is divided by the time available before thearrival of the next job. Among the available CPU 
lo
k frequen
ies the lowest oneguaranteeing timely exe
ution is lo
ated on line 18. The pro
essor frequen
y andvoltage are adjusted on line 19. It should be noted that it is impli
itly assumed that
Di ≥ ta, where Di is the absolute deadline of the a
tive job.4.1.2 Low-Energy EDF and Extended Low-Energy EDFWhere LPFPS, des
ribed in the previous subse
tion, is based on the Rate Monotoni
algorithm, we will from here on fo
us on Earliest Deadline First s
hedulers. The



18pseudo 
ode of an energy 
onserving EDF based pro
essor s
heduling algorithm
alled Low-Energy EDF (LEDF) is given in Figure 7. This algorithm was publishedby Swaminathan and Chakrabarty in 2000 [SwC00℄. It only supports two distin
tCPU speeds, low and high speed. Due to its simpli
ity, it is an ex
ellent entry pointinto more 
omplex s
hedulers.

Figure 7: The LEDF pseudo 
ode [SwC00℄.On line 7 of Figure 7, the jobs 
urrently present are sorted a

ording to their dead-lines, and on line 8 the job with the 
losest deadline is s
heduled a

ording to theEDF prin
iple. On line 9, LEDF 
he
ks whether or not the job would make itsdeadline if s
heduled at a lower speed and voltage. If so, the job is s
heduled at thelower speed. If the job 
annot meet its deadline at the lower speed, LEDF 
he
ks online 11 if it 
an make it with the higher speed, and s
hedules the task at the higherspeed on line 12. If the deadline 
annot be met even at higher speed, the ex
eptionhandler (line 13) is 
alled. It is then up to the operating system to de
ide what todo with this task.Extended LEDF The authors of LEDF have improved their algorithm [SwC01℄.The Extended LEDF (E-LEDF) algorithm given in Figure 8 
onsiders the CPUtransition delay when making s
heduling de
isions. A swit
h between the high andlow speed states always introdu
es a 
ertain time and energy penalty. The swit
hin itself 
onsumes some energy and takes some time. Very short swit
hes from high



19speed state to the low speed state are not worthwhile as the state transition 
ostwould ex
eed the net gain.

Figure 8: Pseudo 
ode of the E-LEDF s
heduler enhan
ing LEDF[SwC01℄. Syntax: tlow and thi: exe
ution time with low / high CPUspeed, respe
tively; ts state transition delay; di deadline; Elow and Ehienergy 
onsumption with low / high speed, respe
tively.Let us now explore the E-LEDF pseudo 
ode. On line 6 in the pseudo 
ode of Figure8 tasks are sorted a

ording to their deadlines, and the task with the 
losest deadlineis 
hosen for exe
ution a

ording to the EDF prin
iple. When s
heduling the very�rst task of the session (line 7), we want to 
he
k if we 
an s
hedule the task atlow speed. This is done on line 8: if the exe
ution time with low speed tlow addedwith the pro
essor transition delay ts is lower or equal to the task's deadline di, thetask is s
heduled using low speed. Otherwise, it is 
he
ked if the task will meet itsdeadline with high speed (line 9). If the deadline 
annot be met even at high speed,



20the operating system ex
eption handler is 
alled (line 10). The operating systemmight, for instan
e, alert the appli
ation whose time 
onstraints 
annot be met.The s
heduling of the following tasks begins on line 12. If the previous task wasrun at high speed, then E-LEDF will 
ompute the task's total energy 
onsumptionusing both low and high speeds (Elow and Ehi) on line 13. In these 
al
ulations,the pro
essor state transition energy 
osts are taken into 
onsideration. If the taskis not s
hedulable even at high speed (line 14) the operating ex
eption handler is
alled (line 15). If the task is s
hedulable, E-LEDF will need to 
onsider whetherit is worthwhile to swit
h to low speed. If the task will meet its deadline at lowspeed in
luding transition delays (line 17), and the total energy 
onsumption at lowspeed Elow doesn't ex
eed energy 
onsumption at high speed Ehi, then the task iss
heduled at low CPU speed (line 19). Otherwise, the task is s
heduled at highspeed (line 21 and 23).A similar pattern to the one des
ribed in the previous paragraph is followed if theprevious task was s
heduled at low speed (line 24). The total energy 
onsumptionat both speeds is 
al
ulated (line 25), and in the sum Ehi also the transition 
ostis in
luded. The transition to the higher CPU speed is made only if the totalenergy 
onsumption at high speed would be smaller than using the low speed. This
ondition is 
he
ked on line 30.We believe the E-LEDF 
ode 
ontains redundan
ies and at least one error. Noti
e,that the if statement on line 19 is redundant: the 
ondition tlow +ts ≤ di has alreadybeen 
he
ked on line 17. In fa
t, also the if on line 21, and the entire lines 22 and 23,are redundant. The error we believe we have found is also quite obvious. Considera situation where the previous task has been run at low speed, and thi + ts ≤ di, but
Ehi ≥ Elow. This would bring us to line 33 in the pseudo 
ode. Now assume that
tlow + ts ≥ di. This 
ould very well be possible, sin
e the task is s
hedulable at highspeed (thi + ts ≤ di), and the s
hedulability test on line 26 would hen
e have beenpassed. In this situation, the if 
ondition on line 33 would be false, and the taskwould never be s
heduled. The pseudo 
ode would hen
e need some rewriting tosupport tasks that would require to be run at high speed, even though they wouldn'tspend less energy at that speed. The required modi�
ation is quite trivial. It su�
esto add to line 33 the following: else s
hedule at high speed .A more fundamental problem with E-LEDF is that the algorithm does not expli
itlyhandle situations when the CPU is idle. If the previous task has left the CPU inits high speed state when the job queue be
omes empty, E-LEDF will still keep the



21CPU running at full speed and hen
e waste energy although the pro
essor is notneeded. Currently, E-LEDF supports only two distin
t CPU speeds, and no power-o� state. Frequen
y and voltage s
aling de
isions are made only at the beginning ofea
h task, whi
h limits a
hieved energy savings.4.1.3 Feedba
k DVS-EDFOne of the more ambitious power-aware hard real-time CPU s
heduling algorithmsis also based on EDF and is 
alled Feedba
k DVS-EDF. It was published by Dudani,Mueller and Zhu in 2002 [DMZ02℄. The interesting parts of the pseudo 
ode arepresented in Figure 9. The 
ode for initializing variables, pre-emption handling andsetting of 
lo
k frequen
y are ex
luded, sin
e they are of little interest to the topi
of this thesis. The interested reader may, however, view the entire algorithm inappendix 1.The idea in Feedba
k DVS-EDF is to utilize DVS aggressively. The algorithm isbased upon the assumption that most a
tual task instan
es (jobs) will need less CPUtime than s
heduled to them. Therefore, Feedba
k DVS-EDF begins the exe
utionof a job with a very slow CPU speed. Only if the job isn't �nished after a 
ertaintime, is the CPU speed in
reased. In real-life situations, jobs rarely use all of theCPU time allo
ated to them. Therefore, for most jobs, the CPU will never need torun at its highest speed, and energy is saved.In order to be able to 
al
ulate a statisti
ally optimal initial speed, the Feedba
kDVS-EDF algorithm maintains statisti
al information on the exe
ution times of atask's previous instan
es. Tasks are also able to pass unused sla
k time on to thenext job. Say, for instan
e, that a job Ji has exe
uted 2 time units faster thanbudgeted and �nishes at t. Further assume, that the next job Ji+1 has been releasedbefore t. In this 
ase, using Feedba
k DVS-EDF, Ji will pass the two unused sla
ktime units on to Ji+1. Now, Ji+1 will have in its exe
ution time budget two moretime units more than usually. This extra time may be used to further slow down thepro
essor in order to 
onserve energy. Information on unused sla
k time is storedin the variable slack, and by reading this variable the s
heduler will know of thesetwo super�uous time units when it goes on to s
hedule Ji+1. This in
reased timebudget is, of 
ourse, usable only if it won't jeopardize �nishing Ji+1 within its timeboundaries.These are the main energy 
onserving properties of Feedba
k DVS-EDF. Let us
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Figure 9: The 
entral parts of the Feedba
k DVS-EDF algorithm[DMZ02℄.now study the pseudo 
ode of 9 in 
loser detail. In order to do this, a number ofnotations need to be explained. By Tij we mean an instan
e, i.e. a job, j of task Ti,and with di we mean its deadline. The variable slack stores information on unusedsla
k time, and leftij holds the remaining exe
ution time of job Tij . By Tab wedenote the set of idle tasks (tasks that 
urrently have no jobs waiting for pro
essortime), and by pk the previous, by nj the next and by ij the 
urrent job. The letter
α′ denotes the ratio of the pro
essor's maximal speed, and fi is the 
lo
k frequen
yof the pro
essor. By rij we denote the release time of job Tij , i.e, the time whenthe job is ready to be s
heduled, and starts waiting for pro
essor time. The job'sa
tual exe
ution time is denoted by cij , and Ci is the budgeted worst-
ase exe
utiontime. The exe
ution time Ci of a job is divided into two parts, CA and CB, where
CA is the time interval that the job is exe
uted at a slower and less 
onsuming CPU



23speed, and CB denotes the time interval when the job is exe
uted at high speed.Therefore, Ci = CA + CB. The variable Cavg_i notates the average exe
ution timeof Ti. This implies:
CA

α′
+ CB = Ci + slackBy α′ we mean the ratio of the maximal 
lo
k frequen
y, and this value in turn is
al
ulated using the formula

α′ =
CA

CA + slackwhere slack denotes the unused �sla
k� time that emerges when a job is exe
utedfaster than budgeted.This fun
tionality is presented in the algorithm of Figure 9 beginning on line 7, in thepro
edure TaskActivation. (Noti
e that Feedba
k DVS-EDF uses the term �task�in the pro
edure names when referring both to a task, and an instan
e of a task.Elsewhere in this thesis, the term �job� is used for the latter.) On line 7 the value
α′, i.e., the ratio of the lowered CPU speed from the highest speed, is 
al
ulated.In order to �nd the optimal value for α′ Feedba
k DVS-EDF utilizes statisti
s fromprevious instan
es of the task. It is from here that the word �Feedba
k� in thealgorithms name is originated. Statisti
s is maintained in the variable Cavg, whi
hindi
ates the average exe
ution time of this task's previous jobs. When a job is�nished, its Cavg is updated on line 21 in the pro
edure TaskCompletion. Here wetake into 
onsideration the exe
ution time of the 
urrent instan
e cij and 
al
ulate aweighted average between cij and the previous value of Cavg. The value Cavg is thenutilized when 
al
ulating an optimal value for α′ at job a
tivation. The variable
slack is 
al
ulated and utilized at similar o

asions. The value is 
al
ulated when ajob �nishes, in the pro
edure TaskCompletion on line 20, and is later utilized when
al
ulating α′ in TaskActivation on line 7. Information on �unused� time and CPUutilization statisti
s of previous jobs is thus passed between jobs using these twovariables.On line 9 and 11 the variable CA is 
al
ulated and set. This variable indi
ates thelength of the time period from the beginning of a job that the job is to be exe
utedwith the lower speed. This speed is indi
ated as the ratio from the maximum speedby α′. If α′ is 
al
ulated to equal 1 (line 8), then the task must be exe
uted athighest 
lo
k frequen
y, and the length of the lower speed interval CA is set to 0(line 9). If the value of α′ is not equal to 1, then CA is 
al
ulated on line 11. On



24line 12, a timer interrupt is set to a
tivate the s
heduler after CA units of time haspassed. This is done by the pro
edure SetInterrupt. On line 13, the pro
essor isadjusted to the new 
lo
k frequen
y. If the job isn't �nished within CA units of time,the s
heduler is rea
tivated by the timer. The rea
tivated s
heduler will adjust theCPU to run at full speed, and the rest of the job will be exe
uted at highest 
lo
kfrequen
y. This will guarantee timely �nishing of the job.4.1.4 Cy
le-Conserving DVS for EDF S
hedulersFeedba
k DVS-EDF presented in the previous subse
tion utilizes DVS aggressively.For the sake of 
omparison, let's 
onsider the Cy
le-Conserving DVS for EDF s
hed-ulers (

EDF) algorithm [PiS01℄ presented in Figure 10. This illustrative algorithmutilizes DVS 
onservatively: jobs are initially run at a higher CPU speed, and when-ever jobs �nish before spending their entire time budget, the pro
essor is sloweddown.

Figure 10: The Cy
le-
onserving DVS for EDF S
hedulers (

EDF) algo-rithm [PiS01℄. Ci budgeted CPU 
y
les to task Ti; cci a
tual spent 
y
les;
fi pro
essor frequen
y; fm maximal pro
essor frequen
y; Ui utilizationdegree.Now 
onsider the pseudo 
ode in Figure 10. Upon task 
ompletion, on line 8, theutilization degree Ui of Ti is set to cci

Pi
, i.e., to re�e
t the eventual time left un-used by the task. Then, on line 10, the pro
edure sele
t_frequen
y() is 
alled.Here, 

EDF 
hooses from among all dis
rete CPU speeds {fi, . . . , fm} the lowestone that will guarantee s
hedulability of the tasks with the newly 
al
ulated Ui.The s
hedulability 
riteria, ∑

U ≤ 1, is based on the EDF s
hedulability 
ondition(Equation 4) [LiL73℄, but on the right side of the inequality we now have fi

fm
instead



25of 1 to represent the lowered CPU speed. When new tasks are released, 

EDFwill in task_release(Ti) on line 5 
al
ulate the utilization for the new task, andthen on line 6 
all sele
t_frequen
y(), whi
h now may want to raise the CPUspeed to re�e
t the in
reased workload. No expli
it transition delay 
onsiderations,nor expli
it s
hedulability failure handling, is present in 

EDF. Its purpose here issolely to illustrate the fun
tionality of 
onservative DVS as opposed to the aggres-sive te
hnique implemented in Feedba
k DVS-EDF. The authors of 

EDF have alsopresented 

RM, an energy 
onserving Rate Monotoni
 based algorithm with 
on-servative DVS support, and laEDF (Look Ahead EDF), an EDF based power-awares
heduler with aggressive DVS support [PiS01℄.4.1.5 Comparing the Presented AlgorithmsWe now have 
onsidered �ve di�erent algorithms for power-aware pro
essor s
hedul-ing. The one based on the Rate Monotoni
 method is 
alled LPFPS. This algorithmis pre-emptive and seeks energy savings in two di�erent ways: if only one job remainsleft to be s
heduled, it is run on a lower 
lo
k frequen
y. If no jobs are left wait-ing for pro
essor time, then the pro
essor is put to sleep, and is later awoken witha timer. Be
ause the Rate Monotoni
 method guarantees an utilization degree ofapproximately 0.69, in an RM s
hedule there most often is plenty of idle time. TheLPFPS algorithm also 
onsiders the pro
essor wakeup delay when making powerdown de
isions.The other four algorithms are based on the Earliest Deadline First method. The �rstone presented is 
alled LEDF and supports only two di�erent CPU speeds. At thebeginning of ea
h job the s
heduler 
al
ulates whether the job will meet its deadlineif s
heduled at the lower speed. The higher speed is used only when needed. Thissimple algorithm has later been enhan
ed by the same authors with E-LEDF. Herealso CPU state transition 
osts in time delays and energy waste are 
onsidered. Astate transition is made only if it is worthwhile. Very short transitions not alwaysare. Even E-LEDF supports only two di�erent speeds.Out of the presented algorithms the most versatile is Feedba
k DVS-EDF. Thisalgorithm aggressively seeks energy savings by starting the exe
ution of ea
h job witha low speed. Only when needed to guarantee timely exe
ution does the s
hedulerrun the job at high speed. The idea here is the �nding that most real-time jobsexe
ute signi�
antly faster than their budgeted worst-
ase exe
ution times. In orderto �nd an optimal starting speed, Feedba
k DVS-EDF uses statisti
al information



26from previous instan
es of the task. Jobs may pass unused exe
ution time on to thenext job.Even though Feedba
k DVS-EDF is advan
ed even it 
ould be further improved. Forinstan
e the algorithm divides the task's exe
ution times into two pie
es, CA and CB,where the time CA is spent running at the lower speed, and CB with highest speed.By further dividing the exe
ution time into smaller fragments, where ea
h fragmentis exe
uted slightly faster than the previous one, even greater energy savings 
ouldbe found. This would, however, add to the algorithm's 
omplexity. The usefulnesswould depend on the amount of DVS states the used pro
essor platform supports.We ended our review of energy saving hard real-time s
heduling algorithms by pre-senting 

EDF, a simple algorithm that utilizes DVS 
onservatively. Where Feed-ba
k DVS-EDF begins exe
ution of tasks with low speed, 

EDF initially runs tasksat high speed, and on
e sla
k time is a

rued, forth
oming tasks are run at slowerspeeds, if possible. This algorithm makes voltage and frequen
y s
aling de
isionsonly at the end of and upon release of tasks, but is signi�
antly less 
omplex thanFeedba
k DVS-EDF.4.2 Soft Real Time S
hedulingWe will in this subse
tion explore two soft-real time CPU s
heduling algorithms.Soft real-time s
hedulers provide a statisti
al performan
e guarantee. A 
ertainper
entage, say p, of the s
heduled jobs will �nish within a 
ertain time period.O

asional misses of jobs are allowed. Therefore one might believe that the softreal-time s
hedulers would be more simple than their hard real-time 
ounterparts.That is, however, not the 
ase. As will be revealed, these algorithms are far more
omplex than their hard real-time 
ounterparts. Their system model 
on
epts andpatterns of design are original, whereas the hard real-time s
hedulers evidently wereo�spring of the original EDF and RM algorithms published by Liu and Layland in1973 [LiL73℄.Presently, the most 
ommon implementation environment for soft real-time s
hed-ulers are multimedia systems. For instan
e MPEG video or audio 
ompressionde
oders are 
onsidered fully usable even when they o

asionally do miss a frameor sound sample. Be
ause su
h a relaxation to the stri
t hard real-time s
hedulersmight provide signi�
antly better system throughput or response times to intera
tivesystems, soft real-time s
hedulers are in
reasingly popular.



274.2.1 The ES
heduler AlgorithmThe ES
heduler [YuN06℄ is based upon work done in the GRACE proje
t [YuN03℄.The algorithm gives a statisti
al probability guarantee that s
heduled tasks (ES
hed-uler uses the term �pro
ess�) meet their deadlines. This is usually su�
ient formultimedia appli
ations, where it su�
es to know that p % (where p might be forinstan
e 95) of video frames are timely de
oded. ES
heduler 
onserves energy byutilizing DVS aggressively. It is based on the EDF algorithm.ES
heduler has two main tasks to perform: �rstly, task s
heduling, i.e. to s
heduleinstan
es of tasks guaranteeing that they meet their deadline with probability p %,and se
ondly, speed s
aling, i.e. to run these s
heduled pro
esses 
onserving as mu
hbattery power as possible. These fun
tions will be des
ribed next.S
heduling tasks The fundamental assumption in the design of ES
heduler is,that while the a
tual CPU demand of a task's individual jobs varies greatly, the 
y
ledemand distribution of the task is pretty stable. ES
heduler maintains statisti
s ofthe a
tual CPU 
y
les needed by the last n jobs of a task.

Figure 11: ES
heduler 
ounts the 
y
le demand of tasks [YuN06℄.ES
heduler 
al
ulates the 
y
le demand of a job as depi
ted in Figure 11. The
ounter is implemented as an extra �eld in the Pro
ess Control Blo
k (PCB) of theoperating system. Ea
h time the task is swit
hed out the CPU 
y
le 
ounter ofthe job is updated, and when the job �nishes, its entire 
y
le 
ount is added up tothe statisti
s. Based upon this statisti
s, a

urate estimations of forth
oming CPU
y
le demand 
an be made, and the task 
an be s
heduled an appropriate amountof CPU time. S
heduling too little CPU time will result in low quality of servi
eas for instan
e video frames aren't de
oded timely, while s
heduling too mu
h timewill waste CPU resour
es and 
onsume energy super�uously.The graph in Figure 12 depi
ts the 
umulative 
y
le demand of one task's (Ti)
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Figure 12: The 
umulative 
y
le demand distribution in ES
heduler[YuN06℄.elapsed jobs (Ji). The 
umulative distribution fun
tion is based on Equation 6.
F (x) = P [X ≤ x] (6)Firstly remember, that jobs are instan
es of one task. Now let's 
onsider this equa-tion. It indi
ates the probability of the 
umulative CPU 
y
le demand of jobs of oneparti
ular task (X), of being equal or less than x. In Figure 12, Cmin is the smallest
y
le demand among the task's 
onsidered jobs, and Cmax the largest. The interval

[Cmin, Cmax] is divided into r se
tions. Ea
h se
tion forms an area in the histogram.The height of a se
tion area indi
ates the probability that the job needs at most bk
y
les, where bk is the upper boundary of the se
tion. From this histogram, it ispossible to extra
t the 
y
le boundary bk below of whi
h p per
ent of the jobs of thetask remain.In soft real-time appli
ations, it su�
es to provide a statisti
al guarantee that pper
ent of jobs meet their deadline. Before the task is a

epted into the set ofs
hedulable tasks, a s
hedulability test needs to be performed. The task is s
hedu-lable if the 
ondition in Equation 7 is ful�lled.
n

∑

i=1

Ci/SK

Pi
≤ 1 (7)In this equation, Ci is the estimated 
y
le demand below of whi
h the 
y
le demandof p per
ent of job instan
es of task i remain; SK is the maximum number of 
y
les



29the CPU 
an a
hieve at full speed, and Pi is the period of task i. The 
ondition ≤ 1originates from the EDF s
hedulability 
ondition (Equation 4) [LiL73℄.Adjusting the CPU speed for a task After jobs are s
heduled, it is up toES
heduler to exe
ute them at optimal CPU speed to minimize power 
onsump-tion. Here, its fun
tion resembles that of Feedba
k DVS-EDF (see Se
tion 4.1.3).ES
heduler utilizes DVS aggressively. It starts job exe
ution at a low CPU speedand in
reases speed as needed. ES
heduler is, however, a little more 
omplex in itsspeed s
aling te
hnique than was Feedba
k DVS-EDF.ES
heduler begins by 
al
ulating an aggregate CPU speed requirement for the 
ur-rent task set. This speed is 
al
ulated with the equation ∑n
i=1

Ci

Pi
where the unit is
y
les per se
ond (or hertz). As an example, 
onsider a task set of two tasks, wherethe �rst one is allo
ated 12 ∗ 106 
y
les every 40 ms and the other 106 
y
les every20 ms. The aggregate CPU speed would then be 12∗106

40
+ 106

20
= 350MHz [YuN06℄.The straightforward solution would be to run the tasks at this aggregate speed.This would, however, waste energy. The estimated 
y
le demand Ci is the valuebelow of whi
h the 
y
le demand of p per
ent of tasks remain. If p is for instan
e95, then 95 per
ent of the tasks require less than Ci 
y
les. The 
y
le demand ofindividual tasks vary greatly. Jobs are initially ran at a low speed, and as the job
y
le 
ount in
reases, CPU speed is gradually in
reased a

ording to a speed s
hedulethat ES
heduler 
al
ulates for every task.The speed s
hedule of a task 
onsists of 
oordinates (x, y) in an ordered list. At

x or more spent 
y
les the CPU is a

elerated to speed y. An example of a speeds
hedule might be: (0, 100MHz), (1 ∗ 106, 120MHz), (2 ∗ 106, 180MHz). Here, thetask would be started at CPU speed 100 MHz, and after 1∗106 
y
les, the pro
essorwould be a

elerated to 120 MHz. After 2 ∗ 106 
y
les, if the job would still not be
ompleted, the pro
essor speed would be in
reased to 180 MHz.With high p values most jobs 
onsume less than Ci CPU 
y
les. They will hen
e
omplete before ever rea
hing the highest CPU speed points, and therefore avoidthese most energy 
onsuming phases. Noti
e that every task in the set has its ownspeed s
hedule. Therefore, pro
essor speed 
hanges o

ur, besides at s
aling points,also at 
ontext swit
hes. The ES
heduler algorithm [YuN06℄ does not expli
itly
onsider pro
essor state transition delays when 
al
ulating a speed s
hedule.



30Cal
ulating the speed s
hedule The approa
h taken by ES
heduler in 
al
u-lating a speed s
hedule is based upon the 
y
le demand histogram (see Figure 12).Ea
h area in the histogram, starting with a 
y
le demand of bi, is issued a spe
i�
CPU speed. The speed s
hedule of any task will 
onsist of m 
oordinates, (bi, s(bi)),where the CPU speed, s(bi), is 
al
ulated using Equation 8 [YuN06℄.
s(bi) =

∑m
j=1 gj

3

√

1 − F (bj)

T 3

√

1 − F (bi)
, i = 1, . . . , m. (8)where gj is the size of the j:th 
y
le group (the width of the area in the histogram),and T represents the time budget of a task. This variable represents the availabletime distributed among tasks a

ording to their 
y
le demand. It is 
al
ulated usingthe following formula:

T =
Ci

∑n
i=1

Ci

PiThis 
al
ulation of optimal pro
essor speeds is based on the theoreti
al alternative,where CPU speed 
an be adjusted linearly. Real-world pro
essors provide onlydis
rete speed alternatives. For instan
e, the StrongArm SA-110 provide 11 di�erentCPU speed alternatives [YuN06℄. A straightforward approa
h to deal with this real-world limitation is to 
al
ulate the optimal speed using formula 8, and then round
s(bi) to the nearest upper dis
rete speed. This is, however, not energy optimal,sin
e the provided speed might exe
ute the job unne
essarily fast and waste energy.On the other hand, rounding s(bi) downwards might jeopardize timely exe
ution.Therefore, ES
heduler expli
itly 
onsiders all available pro
essor speeds, and 
hoosesfrom among them the most e�
ient 
ombination for the speed s
hedule. Here, iteven takes into 
onsideration the pro
essor's transition delay from a
tive to sleepstate.The problem of 
hoosing the optimal CPU speed s
hedule is NP hard [YuN06℄.ES
heduler uses an approximation algorithm for sele
ting the best speed 
ombina-tion. It should also be noted that these speed options are pro
essor spe
i�
. There-fore, in order to be e�
ient, ES
heduler needs to be rewritten for ea
h parti
ularhardware platform it is implemented on.Implementing ES
heduler ES
heduler has been implemented into the Linux2.6.5 kernel with 2605 lines of C 
ode. In order to implement the 
y
le demand
ounter, the Linux Pro
ess Control Blo
k is modi�ed a

ording to Figure 13. The
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Figure 13: The modi�ed Linux Pro
ess Control Blo
k [YuN06℄.long integer job_
y
les re
ords the number of 
y
les used by the job; *speed_s
heduleis a pointer to the speed s
hedule list of the task, and 
urrent_dvsPnt points tothe presently used speed setting.The Linux s
heduler has been revised to (1) update the PCB �elds at s
hedulingo

asions and (2) s
ale the pro
essor frequen
y using DVS a

ording to the pro-
ess' speed s
hedule. A higher resolution timer has been hooked to the standardLinux s
heduler [YuN06℄ to allow invoking of the ES
heduler every 500 µs, whi
henables periodi
 s
heduling de
isions to be made at a rate su�
ient for soft real-timeappli
ations.The ES
heduler provides statisti
al real-time guarantees for multimedia appli
a-tions. Tasks are s
heduled CPU time a

ording to their histori
al CPU demand.While exe
uting tasks, ES
heduler saves energy by adjusting the CPU speed a
-
ording to a speed s
hedule it has 
al
ulated. Tasks are initially run at slow CPUspeeds, and the speed is a

elerated as exe
ution progresses.4.2.2 The ReUA AlgorithmThis subse
tion presents ReUA (Resour
e-
onstrained energy-e�
ient utility a

rualalgorithm) [WRJ06℄. It is an ambitious pro
essor s
heduling algorithm that 
onsid-ers system-wide energy savings, and repla
es deadlines by a 
on
ept that provideshigher �delity.The Time Utility Fun
tion repla
es deadlines The 
lassi
al 
on
ept of dead-lines 
an be argued to be arti�
ial. Consider, for instan
e, a missile 
ontrol system.
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h, the missile must hit its target no laterthan at time D. However, in a real world situation, the hit might be 
onsideredto be useful even when missing D by a hair, although a perfe
t miss is preferred.This kind of argumentation has lead to the development of a 
on
ept of Time UtilityFun
tion (TUF), whi
h repla
es deadlines.
Figure 14: Example Time Utility Fun
tions (TUF) [WRJ06℄.Some example TUFs 
an be seen in Figure 14. The utility of �nishing a job is de-pi
ted as a fun
tion of the 
ompletion time. In Figure 14 (a) and (b) non-in
reasingTUFs 
an be seen. Here, the utility of 
ompleting the task de
reases or stays thesame as time goes by. In (
) a TUF of a missile appli
ation is depi
ted. Here, theutility in
reases as the missile approa
hes its target, and then qui
kly de
reases. Atraditional deadline as a TUF is shown in Figure (d). The utility of the 
ompletionof the task stays the same until the task's deadline, after whi
h the utility drops tozero. A s
heduling algorithm that tries to maximize the sum of TUFs in the systemis 
alled Utility A

rual.The TUF of task Ti is denoted by Ui, and the TUF of job Jk is denoted by UJk

. Theutility when Jk is 
ompleted at time t is denoted UJk
(t). When s
heduling tasks,the aim of ReUA is to maximize the utility while minimizing energy 
onsumption[WRJ06℄. In order to a
hieve this, ReUA uses a unit 
alled UER (Utility-EnergyRatio). The system's UER is de�ned as follows:

UER =

∑n
i=1 Ui

∑n
i=1 Eiwhere Ui denotes the TUF of task Ti, and Ei the energy (des
ribed hereafter) 
on-sumed by task Ti. Hen
e, UER is an indi
ator of system-wide energy e�
ien
y:utility a
hieved per energy unit.System wide energy 
onsiderations Redu
ing the CPU power requirementwill lead to longer task exe
ution times. If hardware 
omponents su
h as displays,hard drives or memory 
hips need to be powered up during this time, redu
ing CPU



33speed might in the worst 
ase even in
rease the system-wide energy requirement, asother 
omponents need to be powered up longer. When making s
heduling de
isions,ReUA 
onsiders the system-wide power 
onsumption instead of only the CPU power
onsumption. While the CPU power 
onsumption is 
al
ulated using the formula
P = C×f×V 2 (Equation 5), The equation for the system-wide energy 
onsumptionis estimated using Equation 9 [WRJ06℄:

P = S3 × f 3 + S2 × f 2 + S1 × f + S0 (9)where f is the operating frequen
y; S3 is the CPU power requirement; S2 is 
ausedby CMOS power leakage; S1 presents the power requirement 
aused by 
omponentssu
h as memory 
hips operating at a �xed voltage independent of frequen
y, and S0is a 
onstant representing 
omponents su
h as displays, whose power requirement isindependent of both operation frequen
y and voltage [WRJ06℄. From Equation 9,the following equation for the energy 
onsumed per pro
essor 
y
le 
an be derived:
E(f) = S3 × f 2 + S2 × f + S1 + S0/f (10)Cal
ulating pro
essor 
y
le demand When 
al
ulating the pro
essor 
y
le de-mand to be allo
ated to a task ReUA, like ES
heduler (Se
tion 4.2.1), uses statisti
alinformation. But unlike ES
heduler, ReUA does not expli
itly present a me
hanismfor 
olle
ting and pro
essing statisti
al information: the CPU 
y
le demand meanand varian
e are assumed to be given. To 
al
ulate a task Ti's 
y
le demand Ci,ReUA uses Equation 11 whi
h provides a statisti
al performan
e guarantee:
Ci = E(Yi) +

√

[pi × V ar(Yi)]/(1 − pi) (11)where Yi is the 
y
le demand distribution; E(Yi) is the expe
ted 
y
le demand, and
V ar(Yi) is the statisti
al varian
e of 
y
le demand distribution. The variable pi isa probability. In ReUA, a pair {vi, pi} is used to indi
ate that vi of the maximalutility (TUF) should be a
hieved with probability pi.This statisti
al performan
e guarantee 
an be presented as Pr(U(si,j) ≥ vi×Umax

i ) ≥

pi [WRJ06℄, where si,j is the sojourn time of Ji,j . To 
al
ulate the upper bound for
Ti's sojourn time, ReUA uses a variable Di and 
alls it �
riti
al time�. To ensure that
vi of the maximal utility is a
hieved with probability pi, ReUA needs to guaranteethat
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Di = U−1

i (vi × Umax
i ) (12)where U−1

i is TUF's inverse fun
tion. The values Ci and Di are 
al
ulated in ReUA'sofflineComputing() pro
edure that 
an be seen in Figure 15. Equation 12 is usedon line 3 to 
al
ulate Di. On line 4 Equation 11 is used to 
al
ulate the amount ofCPU 
y
les to be allo
ated to Ti, and this number is pla
ed in the variable Ci. Thispro
edure also 
al
ulates f o
Ti
, the optimal speed (frequen
y) at whi
h to exe
ute Ti.

Figure 15: The offlineComputing() pro
edure of the ReUA algorithm[WRJ06℄.The ReUA main pseudo 
ode The algorithm for ReUA 
an be seen in Figure16. As input ReUA re
eives the 
urrent task set T = {T1, . . . , Tn} and the 
urrentuns
heduled job set Jr. From these, ReUA will 
al
ulate its output, i.e. the job tobe exe
uted Jexe, and its exe
ution speed, fexe.On line 3 the OfflineComputing(T) pro
edure is 
alled, and Ci, Di and the optimalfrequen
y f o
Ti
of ea
h task are 
al
ulated. (On line 4, the 
urrent time tcur is pla
edin t.) The swit
h-statement on lines 5�8 manages the variable Cr

i whi
h holds theremaining CPU 
y
les allo
ated to the 
urrent job. Upon task release (line 6), theentire allo
ated 
y
le amount is pla
ed in this variable; upon task 
ompletion (line 7)the variable is set to zero, and on other s
heduling o

asions (line 8) Cr
i is updatedto re�e
t the number of remaining 
y
les.In the for loop starting on line 9, a feasibility 
he
k is performed on all uns
heduledjobs. The expe
ted 
al
ulation time of any job may not ex
eed its termination timeat highest CPU speed. If a job is not feasible, it is aborted (lines 10�11). Otherwise,on line 13, ReUA 
al
ulates the resour
e dependen
ies of the job using the pro
edurebuildDep().The for loop on lines 14�15 
al
ulates the UER (Utility-Energy Ratio) for ea
huns
heduled job. This Figure implies �how mu
h utility would be a
hieved if this job
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Figure 16: The ReUA main pseudo 
ode [WRJ06℄. Symbols: Jr de-notes the 
urrent uns
heduled job set; Ci CPU 
y
les allo
ated to Ji; Cr
iremaining 
y
les of 
urrent job.were to be exe
uted starting at this moment�. The 
al
ulateUER() pro
edure even
onsiders job dependen
ies 
al
ulated by buildDep(): if Ji is dependent of tasks

Ji.Dep = {JDep1
, . . . , JDepn

}, then the jobs in Ji.dep are in
luded when 
al
ulating theUER for Ji.On line 16, the jobs are sorted in non-in
reasing order a

ording to their UER. Inthe for loop starting on line 17, the jobs whi
h are meaningful to run, i.e. the oneswhose UER is larger than zero (line 18), are inserted into a list σ in order of their
riti
al times. This is done by the pro
edure insertByECF() (line 19). Criti
altimes are moments when, at the latest, the job needs to be �nished in order toguarantee the desired performan
e level de�ned by {vi, pi}. The ECF value of a job
Ji is not ne
essarily the 
riti
al time of Ji alone: if another job is dependent on Ji,the a
tual ECF of Ji might be earlier than its tentative ECF. The EDF prin
ipleis followed by insertByECF(). In essen
e, on lines 16�21, the jobs are �rst sorted
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ording to their UERs, and then a

ording to their ECFs. The resulting orderedlist is pla
ed in σ.On line 22, the job at the head of σ is 
hosen for exe
ution. On line 23 in pro
edurede
ideFreq(), ReUA 
al
ulates the optimal exe
ution speed for the job 
onsideringavailable DVS parameters. On line 24 the algorithm returns the job to be s
heduled
Jexe, and its exe
ution frequen
y fexe.4.2.3 Comparing the Presented AlgorithmsPresented in this se
tion were ES
heduler [YuN06℄ and ReUA [WRJ06℄, two re
entalgorithms for CPU s
heduling in a soft real-time environment. Both algorithmsprovide a statisti
al guarantee that jobs meet the desired level of performan
e withprobability p. In ES
heduler, the pro
ess of 
olle
ting and analyzing the a

umu-lated CPU 
y
le demand statisti
s is expli
it; in ReUA, the mean and varian
e ofCPU 
y
le demand is 
onsidered to be given.ES
heduler is a traditional energy 
onserving CPU s
heduling algorithm: it only
onsiders the power requirements and savings of the CPU (Equation 5) and ignoresthe power properties of the rest of the system. The approa
h 
hosen in ReUAis more realisti
, as it estimates system-wide energy savings (Equation 9). Howsuperior as the latter approa
h may seem, one should note that, in essen
e, thedi�eren
e is just whether we 
hoose to 
onsider the CMOS power 
onsumptionequation P = C×f×V 2 or the system-wide equation P = S3×f 3+S2×f 2+S1×f+S0when estimating task power requirements.Where ReUA stands out in 
omparison to ES
heduler is in its 
onsideration ofresour
e dependen
ies, and its introdu
tion of the TUF 
on
ept that has been ar-gued to provide higher �delity than deadlines. Neither of the algorithms expli
itlytakes into 
onsideration transition delays when making DVS frequen
y and voltageadjustment de
isions.



375 Power Aware Devi
e S
hedulingThe main problem with devi
e s
heduling is the same as with pro
essor s
heduling.We have one resour
e with multiple users, and wish to share the resour
e betweenthese multiple users in a purposeful way. In real-time systems espe
ially deadlinesmust be met. The major di�eren
e between pro
essor and devi
e s
heduling is thatthe devi
e s
heduler needs to 
al
ulate a distin
t s
hedule for ea
h devi
e. Systemsmay 
ontain multiple devi
es, and ea
h task may use several or none of them. Thesituation is hen
e not the same as with pro
essor s
hedulers, whi
h we 
onsideredin Se
tion 4: the pro
essor s
hedulers were all aimed at unipro
essor systems, andevery task naturally utilize this single pro
essor.Devi
es 
onsidered in this se
tion have at least two power states: a sleep state andan operating or awake state. In the sleep state, the devi
e is not able to provide itsservi
e, like disk or network I/O, but in this state the devi
e 
onsumes less energythan in its operating state. Some devi
es may have several power states, where ea
hstate psi+1 
onsumes less energy than state psi, but takes a longer time to wakeup from. The transition between states is 
ontrolled by the operating system. Atransition between states always in
ludes a 
ertain penalty in terms of time andenergy 
ost. A transition takes a 
ertain amount of time, and requires a 
ertainamount of energy. A proper power-aware real-time s
heduler needs to 
onsiderthese time and energy 
osts when making s
heduling de
isions in order to guaranteemeeting of deadlines.5.1 Hard Real Time S
hedulingThe problem of power-aware real-time devi
e s
heduling has in re
ent resear
h beenta
kled in at least two di�erent ways. The aim in for instan
e the EEDS algorithm[ChG06℄ is to enhan
e the system's EDF based task s
heduler with an energy awaredevi
e s
heduler. One 
an also entirely separate the devi
e s
heduler from the pro-
essor s
heduler, as has been done in MUSCLES and LEDES [SwC03℄. A 
ompletelydi�erent approa
h is 
hosen in the EDS [SwC05℄ algorithm, whi
h due to its CPUtime and memory requirement operates o�ine. In the next se
tion we will exploreea
h of these algorithm
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Figure 17: The pseudo 
ode of the LEDES s
heduler [SwC03℄. Notations:
kj a devi
e, τi task, Li the set of devi
es needed by τi, si start time of taski, ci exe
ution time of task i, t0,j transition time of devi
e j.5.1.1 Low Energy Devi
e S
hedulerThe basi
 assumption in Low Energy Devi
e S
heduler (LEDES) [SwC03℄, Figure17, is that the transition time, the time needed for the devi
e to swit
h from sleepstate to the powered-up state (or vi
e versa) is shorter than the exe
ution time ofany task instan
e. If we a

ept this assumption, then it su�
es to s
hedule only onetask into the future at a time. This is enough to guarantee that no deadlines will bemissed. In other words, if the 
urrent task instan
e is τi we need only 
onsider thedevi
e s
hedule up to and in
luding τi+1. This will be enough for us to wake up alldevi
es so that they will be ready for use when needed. This assumption implies thatno matter how many tasks there are in the system, LEDES need only to 
onsidertwo � the 
urrent and the next one � in its devi
e s
hedule 
al
ulations. This is why
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eptable. LEDES supports, however,devi
es with only two di�erent states � sleep and powered-up.As input parameters LEDES (�gure 17) re
eives a pointer to a devi
e kj , the s
hedul-ing information of the 
urrent and next tasks, Ti and Ti+1. LEDES is a
tivated ateither the start (line 1) or the end (line 16) of a task. If the devi
e kj is swit
hed on(line 2) while not being needed by the 
urrent or the next task (line 3) the devi
e isswit
hed o� (line 4). If kj is needed by the next task (line 6), but will make it ba
konline if we power it down for the remainder of the exe
ution of the 
urrent task,and power it up when �nishing the 
urrent task (line 7), we power kj down (line 8).On line 7, LEDES also 
onsiders devi
e state transition time t0,j . If kj is needed bythe next job, but kj wouldn't make it ba
k online on time if we would initiate itswakeup as late as at the end of the 
urrent task (line 12), then kj is immediatelywoken up (line 13). These 
onsidered 
ases in
lude all possible 
ases we need to takeinto a

ount at the beginning of a task.The other s
heduling instan
e of LEDES is at the end of tasks (line 16). If thedevi
e kj is powered up while not being needed by the next task (line 18) it 
an bepowered o� (line 19). In addition, we must on line 18 
he
k that the powering downof the devi
e will be �nished by the start time of the next task, as the devi
e 
anbe needed at that o

asion. (In LEDES, the powering up and powering down statetransition times are assumed to equal ea
h other, and both are notated by t0,j.) Inother 
ases, the devi
e is powered up (line 22).We believe that one if senten
e is missing from the LEDES pseudo 
ode. On line22, before waking up kj, we would want to 
he
k that kj a
tually is needed by Ti+1.It is, of 
ourse, unne
essary to wake up the devi
e if it isn't needed by the next task.Be
ause LEDES makes s
heduling de
isions only in the beginning and at the end oftasks, its implementation into the operating system's pro
essor s
heduler should bepretty straightforward: we just 
all the LEDES pro
edure at the end and beginningof tasks. The 
omputational 
omplexity of LEDES is O(n), where n is the size ofthe set of devi
es atta
hed to the system.With LEDES, implemented into a Rate Monotoni
 based s
heduler, devi
e energysavings of up to 40 per
ent have been reported [SwC03℄. As the algorithm shows,LEDES supports only two distin
t power states.
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Figure 18: The MUSCLES s
heduler [SwC03℄. Notations: S the tasks
hedule; PS set of power states; ki devi
e; sm start time of task m; cmexe
ution time of task m; psi,j power state j of devi
e i; psi,0 the poweredup state.5.1.2 The Multi-State Constrained Low-Energy S
hedulerSeveral 
ontemporary devi
es and peripherals, like �ash memories, hard drives andnetwork adapters, support multiple power states for energy 
onservation. For thesepurposes, the authors of LEDES have presented an algorithm 
alled MUSCLES(multi-state 
onstrained low-energy s
heduler) [SwC03℄. In MUSCLES, devi
es aremoved between states one step at a time. Let ki be a devi
e, and psi,j an arbitrarypower state of this devi
e. From this state, it is possible to swit
h to state psi,j+1or psi,j−1 in one step. In MUSCLES, the state psi,0 is the operating state of thedevi
e; the other states are power saving states, where the devi
e doesn't provideoperational fun
tionality. State psi,j+1 requires less power than state psi,j, but takeslonger to wake up from.If we a

ept these assumptions, we 
an no longer build upon the idea of LEDES,where the wakeup transition time never ex
eeds the exe
ution time of the task.MUSCLES still relies on the assumption that a transition from state psi,j to psi,j+1or psi,j−1 never ex
eeds the exe
ution time ci of any task. However, if we are instate psi,j , the wakeup � i.e., the transition to state psi,0 � may endure up to j × citime units. When j ≥ 2, the wakeup time may ex
eed the assumption we built uponin LEDES. Therefore, in order to reliably s
hedule devi
es in MUSCLES, we need



41to 
al
ulate the s
hedule further into the future. Whereas the time requirement ofLEDES is O(n), where n is the amount of devi
es in the system, the time requirementof MUSCLES is O(np), where p is the size of the task set [SwC03℄.Let us now study the pseudo 
ode of MUSCLES, presented in Figure 18. First itis worth noti
ing that MUSCLES is a
tivated at either the start time of a job �indi
ated by sm in the pseudo 
ode � or at the end of the job, indi
ated by sm + cm,where cm is the job's exe
ution time. As input parameters, MUSCLES re
eives S,the task s
hedule of the system; P , a list of devi
es ea
h task uses, and a devi
epointer ki. The job of MUSCLES is to 
al
ulate whether to swit
h ki to a lesspower-
onsuming state, to swit
h the devi
e 
loser to the wakeup state, or to leavethe devi
e in its 
urrent state.On line 1, we �nd the �rst task τL that will need devi
e ki, and on line 2 we 
al
ulatethe amount of s
heduling instan
es before τL and denote this Figure with X. Letthe 
urrent power saving state be psi,j. If X ≥ j + 1, ki may safely be swit
hedto a lower power state (line 3), and there will still remain a su�
ient number ofs
heduling o

asions to put ki ba
k online on time. If there are as many s
hedulingo

asions as there are power states between the 
urrent one and the operating state,i.e. X = j, then ki is swit
hed one state towards the wakeup state, i.e., from psi,j to
psi,j−1 (line 4). This will guarantee that the devi
e will be woken up in time whenit is needed.The other s
heduling instan
e is at the end of the job, at time sm + cm. Here, wepro
eed in the same way as at the beginning of the job. It is resolved whi
h task�rst needs devi
e ki (line 5). Then we de
ide how many s
heduling o

asions thereare before the start of this task (line 6). If there are more s
heduling o

asions thanthere are power states between the 
urrent state and the wakeup state, the devi
e isput into a lower power state (line 7). Otherwise, if the amount of states equals thenumber of s
heduling o

asions, the devi
e is swit
hed one state towards the wakeupstate (line 8 and 9). On other o

asions, the devi
e is left in its 
urrent state.5.1.3 The Energy-E�
ient Devi
e S
heduling AlgorithmA state transition, as su
h, always requires a 
ertain amount of energy and time.Therefore very short transitions into the sleep state and ba
k a
tually do not addup to net energy savings. We will now dis
uss an algorithm 
alled Energy-e�
ientDevi
e S
heduling or EEDS [ChG06℄. The pseudo 
ode for the algorithm 
an be
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Figure 19: The EEDS s
heduler [ChG06℄. Notations: λk indi
ates de-vi
e k; BE is the breakeven time; Jrun the job 
urrently being exe
uted;
Dev(Jrun) the set of devi
es Jrun needs; DS(λk, t) the devi
e sla
k time of
λk at time t; Up(λk) the wakeup time of λk; twu(λk) the transition delaytime of λk.seen in Figure 19. The algorithm supports devi
es with two power states, sleep anda
tive. EEDS 
al
ulates the breakeven time for ea
h devi
e. This is the length ofthe time period it is worthwhile to put the devi
e in sleep mode. For shorter periodsthan this, the state transition 
osts will ex
eed the net gain. On line 2 in the pseudo
ode, EEDS 
al
ulates the breakeven time BE of ea
h devi
e. The length of thedevi
e's breakeven time depends on the properties of the devi
e: how long a timethe transition from a
tive to sleep state (and vi
e-versa) takes, how mu
h energythe transition(s) require, and how mu
h energy the devi
e spends in a
tive vs. sleepstate.EEDS utilizes a data stru
ture of the type queue where the a
tive jobs are ordereda

ording to the EDF prin
iple � the one with the 
losest deadline at the head ofthe queue. This job is s
heduled (line 6). We 
all devi
e sla
k time the length of the



43time period until devi
e λk is needed next time. On line 8 we resolve whether thereis a woken up devi
e λk whose devi
e sla
k DS (the length of the time period whenthe devi
e is not needed) is greater than its breakeven time BE. Su
h devi
es maybe put to sleep, whi
h is done on line 9. In order to wakeup these devi
es so thatthey will be ready when needed next time, EEDS sets a timer on line 11.As the timer value we put the 
urrent time t added with the devi
e's sla
k time
DS(λk, t) subtra
ted with the wakeup time twu(λk). Due to the dynami
 propertiesof jobs, the devi
e sla
k time may in
rease even during the sleep time. Thereforethe timer of the devi
e may be updated on lines 14 and 15. On line 18 we 
he
kwhether the timer of a devi
e has expired, and if so, wakeup the devi
e on line 19.5.1.4 The Energy-Optimal Devi
e S
hedulerThe s
hedulers des
ribed earlier are all online s
hedulers. Swaminathan and Chak-rabarty [SwC05℄ have in 2005 published a real-time devi
e s
heduler aimed at o�ineuse. It di�ers from all previous algorithms des
ribed in this thesis also in the sensethat it 
ompletely reje
ts both EDF and RM and implements a s
heduling me
h-anism of its own. This algorithm is 
alled Energy-optimal devi
e s
heduler (EDS).In order to �nd an energy optimal devi
e s
hedule this algorithm builds a de
isiontree using an iterative algorithm. To limit memory spa
e requirements, EDS prunesbran
hes from the tree when possible.
Table 4: The EDS example job set [SwC05℄, where ai indi
ates the arrivaltime; ci the exe
ution time, and di the deadline of a job. The odd-numbered jobs belong to task τ1 and use devi
e k1, and the even-numberedjobs belong to task τ2 and use devi
e k2.Let us start our study of the EDS algorithm by 
onsidering an example. In Table4 we have a set of jobs from two tasks, τ1 (the odd-numbered jobs) and τ2 (theeven-numbered jobs). τ1 uses the devi
e k1 and τ2 the devi
e k2. The missionof EDS is to �nd su
h start times for all of these jobs, that devi
e energy use isminimized while deadlines are met. EDS solves this problem by building a s
hedule



44tree. The beginning of the s
hedule tree built using the task set of Table 4 
an beseen in Figure 20.

Figure 20: The EDS s
heduling tree after jobs j1 and j2 have been s
hed-uled [SwC05℄. Syntax: (ji, time, Ei), where ji is the job number, time thestart time of ji and Ei the devi
e energy 
onsumption up to time.The s
hedule tree 
onsists of verti
es, where ea
h vertex is represented as a 3-tuple
(ji, time, Ei). In this tuple ji indi
ates the job number (from Table 4), time is a validstart time for ji a

ording to this s
hedule, and Ei indi
ates the amount of energyspent by the devi
e i a

ording to this s
hedule up to time. Verti
es (x1, x2, x3) and
(y1, y2, y3) are 
onne
ted by an edge if y1 
an be s
heduled at y2 when x1 has beens
heduled at x2 [SwC05℄.Cal
ulating the energy 
onsumption Assume that ea
h devi
e has two states,a low power sleep state psl,i and a high power working state psh,i. Let t0,i be the tran-sition time between these states, and P0,i be the transition power requirement. Let
Ps,i and Pw,i indi
ate the power spent when in sleep and working states, respe
tively.The energy requirement is 
al
ulated using the formula

Ei = Pw,itw,i + Ps,its,i + mP0,it0,i (13)where m is the amount of state transitions; ts,i is the time spent in sleep state, and
tw,i is the time spent in working state [SwC05℄.Building the s
hedule tree The building of the s
hedule tree is started with adummy vertex (0, 0, 0). A

ording to Table 4, jobs j1 and j2 have been released attime 0, and will hen
e be added to the tree. Let's begin with j1. The 
ompletion



45(exe
ution) time of j1 is 1 and its deadline is 3 (Table 4). Therefore, j1 may bes
heduled at time 0, 1 and 2. We therefore add three verti
es, (1, 0, e1), (1, 1, e2)and (1, 2, e3) to the tree, and 
onne
t these with an edge to the root vertex. Theenergy 
onsumption value ei for ea
h vertex is 
al
ulated using Equation 13, andthe 
orre
t values for e1, e2 and e3 are 0, 8 and 10, respe
tively (we will here ex
ludethe details of energy 
onsumption 
al
ulation). We add these verti
es to the tree, as
an be seen in Figure 20. In a similar fashion, we add to the tree the verti
es of j2
onne
ting it to the root vertex, be
ause even j2 was released at time 0. A

ordingto Table 4, the 
ompletion time of j2 is 2 and its deadline is 4. Therefore, it 
anbe s
heduled at times 0, 1 and 2. The 
orresponding values for ei (
al
ulated usingEquation 13) are 0, 8 and 10, respe
tively. Hen
e, we add the verti
es (2, 0, 0),
(2, 1, 8) and (2, 2, 10) to the tree, as 
an be seen in Figure 20.Pruning the s
hedule tree EDS performs both temporal and energy pruning.This way it will redu
e the size of the s
hedule tree in order to ease memory spa
eand pro
essor time requirements. Continuing with our example, as the next step,EDS performs temporal pruning. Consider the vertex (1, 2, 10) in Figure 20. If j1 iss
heduled at time 2, it will �nish at time 3, be
ause its 
ompletion time is 1 (Table4). However, �nishing j1 at time 3 would mean that the exe
ution of j2 would startno earlier than at 3, and be
ause the 
ompletion time of j2 is 2, j2 would miss itsdeadline at 3. Therefore, this s
hedule is unfeasible, and the bran
h of the treestarting with node (1, 2, 10) 
an be pruned. This is indi
ated by the 
ross in Figure20. By similar reasoning, we will also be able to prune the bran
hes starting withverti
es (2, 1, 8) and (2, 2, 10). Let us �rst 
onsider (2, 1, 8). If the �rst s
heduledjob is j2 at 1, it will �nish at 3 but then j1 would 
ertainly miss its deadline at 3,and hen
e this s
hedule is unfeasible, and this bran
h 
an be pruned. Similarily,
onsidering vertex (2, 2, 10), if j2 at 2 is the �rst s
heduled, it will �nish at 4, butthen j1 would have missed its deadline at 3, so also this bran
h 
an be pruned.The se
ond form of pruning utilized by EDS is energy pruning. In Figure 21, whi
hdisplays the entire s
heduling tree, 
onsider the verti
es (2, 2, 14) and (2, 2, 16) lo-
ated two edges away from the root vertex. These verti
es indi
ate two s
hedules ofthe same job, 2, at exa
tly the same point in time, also 2. Also, in both bran
hes,exa
tly the same job have been previously s
heduled. However, the latter of thes
hedules 
onsume 16 units of energy in 
omparison to 14 of the �rst one. Be
auseour aim is to minimize energy 
onsumption we may here utilize energy pruning,and dis
ard the rest of the bran
h with the higher energy 
onsumption. Energy
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Figure 21: The 
omplete EDS s
heduling tree [SwC05℄. The least energy
onsuming s
hedule of the 7 jobs has been found.pruning 
an always be made when two jobs are s
heduled at the same time, and theorder of the previously s
heduled jobs among both bran
hes are identi
al [SwC05℄.On
e we have �nished the �nal s
heduling tree, i.e. in
luded all the leaf verti
es,we 
hoose from among the leaf verti
es the node 
onsuming the least energy (68)by eliminating higher-energy verti
es. The path from the dummy vertex (0, 0, 0) tothis lowest-energy leaf vertex (6, 10, 68) indi
ates an energy-optimal s
hedule of thejob set of Table 4.The EDS pseudo 
ode The pseudo 
ode of the iterative EDS algorithm 
an beseen in Figure 22. As initialization, on line 2, the dummy vertex (0, 0) is put intothe openList. In the for loop starting on line 3 all verti
es in the openList arepro
essed. On line 5, a set τ ′ is generated out of the jobs that have been released upto the time stamp of the 
urrent vertex. Out of these jobs we generate new verti
es,and prune those that would be unfeasible. On lines 15�22 we 
ompare all pairsof verti
es on the 
urrent height of the tree, and if two with identi
al s
hedulingo

asions are found, we prune the one with the higher energy requirement. TheEDS algorithm is �nished on lines 25�27 when all jobs have been s
heduled, i.e.,when the height of the tree equals the number of jobs.
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Figure 22: The EDS pseudo 
ode [SwC05℄.Despite its pruning te
hnique, its memory and 
omputation time requirement ofEDS may be ex
essive [SwC05℄. EDS is aimed at o�ine use, meaning that thes
hedule is 
omputed before run-time. Also, the s
hedule 
al
ulated by EDS isnon pre-emptive. Jobs are exe
uted from start to �nish without 
ontext swit
hes.Therefore, jobs may have to wait for long times while large jobs are being pro
essed.5.1.5 Comparing the Presented AlgorithmsWe now have presented four algorithms for power-aware devi
e s
heduling. Out ofthese s
hedulers, LEDES and MUSCLES are add-ons to the system's task s
heduler.



48They also have short
omings. For instan
e the basi
 assumption in LEDES is thatthe transition time of a devi
e may never ex
eed the exe
ution time of any job. Asa pro
ess in a real-time system may 
onsist of just a few lines of ma
hine 
ode that,for instan
e, reads a sensor measurement �gure, and for instan
e a hard-drive maytake several se
onds to wake up from sleep state, we always 
annot build upon thisassumption.The bigger brother to LEDES is MUSCLES whi
h supports several sleep states.However it does not support several operational states. Re
all from our dis
ussionof pro
essors, that many 
ontemporary CPU's provide several operational states,where lesser throughput is provided for less energy 
ost. MUSCLES does not supportany similar fun
tionality on devi
es.Neither LEDES nor MUSCLES 
al
ulate the net gain of state transitions. This is,however, done by EEDS whi
h, essentially, is an enhan
ed EDF s
heduler. Devi
esthat are 
urrently not needed and whi
h in spite of transition 
osts are bene�
ial tobe slept down, are put to sleep and awoken with a timer.Our �nal algorithm, EDS, 
al
ulates an energy-optimal s
hedule using a de
isiontree. Due to its 
omplexity, this algorithm is intended for o�ine use. The authorsof EDS also have published a heuristi
 algorithm,Maximum Devi
e Overlap (MDO),whi
h seeks an approximate solution to the same problem and operates in polynomialtime [SwC05℄.



496 System-Level Power Aware S
hedulingBy using Dynami
 Voltage S
aling, the pro
essor's operating frequen
y and voltagemay be regulated during run-time. Sin
e the pro
essor's energy 
onsumption 
ubi-
ally depends on frequen
y and voltage, impressive CPU energy redu
tions may bea
hieved using this te
hnique. There is, however, a downside 
ompli
ating the mat-ter. Besides the pro
essor, 
omputer systems 
onsists of other 
omponents, su
h asmemory and 
a
he memory 
hips, graphi
 adapters, network 
ards, bus 
ontrollers,graphi
s pro
essors, modems, wireless network adapters, and so forth. Performinga 
al
ulation takes a longer time when the pro
essor speed has been lowered. When
onsidering the CPU energy 
onsumption in isolation, a frequen
y and voltage re-du
tion using DVS indeed results in energy savings. However, as the pro
essingtime in
reases, all the other 
omponents need to be longer in the standby state.Components su
h as memory 
hips generally require a �xed power supply regardlessof the DVS setting of the CPU. Hen
e, when system-level energy redu
tions are theaim, 
onsidering the CPU power requirement in isolation is not su�
ient. Mostearly DVS based CPU s
heduling algorithms have 
hosen to overlook this fa
t intheir basi
 assumptions [FEL04℄. This is also the 
ase with the algorithms des
ribedin Se
tion 4.

Figure 23: The e�e
t of the pro
essor s
aling fa
tor s on system-levelenergy 
onsumption [ZhC05℄.Consider Figure 23. The X axis indi
ates a StrongArm SA 1100 pro
essor s
alingfa
tor s de�ned as s =
max_frequency

current_frequency
, and the Y axis indi
ates power 
onsump-



50tion of a task, in watts. In the graph, the 
rossed line Qproc(s) depi
ts the power
onsumption of the SA 1100 pro
essor alone. The possible s values are the dis
retes
aling fa
tors provided by this pro
essor. The energy optimal s value Θ = 2.8 ismarked in the graph. Next, 
onsider the dotted line Qdev(s). This monotoni
allyrising line indi
ates the power 
onsumption of the devi
e set needed by the task,ex
luding the pro
essor. As the s
aling fa
tor s in
reases, and hen
e the CPU speedde
reases and pro
essing times in
rease, the aggregate power 
onsumption of thedevi
e set in
reases. The line with 
ir
les shows the 
ombined pro
essor and de-vi
e power requirement when stati
 devi
e power requirement is 
onsidered to be
0.2W , whi
h often is the 
ase with for instan
e Syn
hronous Dynami
 Random A
-
ess Memory (SDRAM) memory 
hips [ZhC05℄. The optimal s
aling fa
tor, when
onsidering both the power 
onsumption of the pro
essor and the devi
e set, is 1.39and this value is marked in the graph with θ[k]. The line with squares shows the
ombined energy optimal voltage s
aling fa
tor when the devi
e set stati
 powerrequirement is 
onsidered to be 0.4W . This is the 
ase with many �ash drives.With this power requirement, the energy-optimal s
aling fa
tor θ[k] = 1.07. Com-paring this value to the CPU energy optimal value of 2.8 and the 0.2W optimalvalue 1.39 
learly illustrates how the net gain of aggressive DVS values de
rease aspro
essor independent energy 
onsumption in
reases. It has a
tually been shown[ZhC05℄ that when devi
e energy 
onsumption is 
onsiderably large 
ompared toCPU energy 
onsumption, DVS implementations a
tually 
an spend more energythan non-DVS approa
hes.As the pro
essor takes a longer time to perform 
al
ulations, the standby energyrequirement of the devi
e set rises. An energy-e�
ient s
heduling algorithm, there-fore, needs to 
onsider system-wide energy 
onsumption when 
al
ulating an optimals
aling fa
tor for the pro
essor. In the next subse
tions, two re
ent algorithms willbe explored.6.1 duSYS: A System-Level EDF AlgorithmZhuo and Chakrabarti [ZhC05℄ have published an EDF based system-level power-aware real-time s
heduling algorithm 
alled duSYS. Its high-level pseudo 
ode isgiven in Figure 24. What makes this algorithm di�erent from pro
essor s
hedulingalgorithms explored in Se
tion 4 is the 
al
ulation of the energy-optimal DVS s
alingfa
tor. The idea behind duSYS is that the system-level energy 
onsumption 
an bewritten as a fun
tion of the pro
essor's s
aling fa
tor s.



51Let Pproc be the pro
essor operating power 
onsumption, and Pd[i] be the standbypower 
onsumption of the devi
e set needed by task i. Now, the energy 
onsumptionof task i 
an be written as Q(s) = Qproc(s) + Qdev(s). Here, Qproc(s) = s × Pprocand Qdev(s) = s × Pd[i] [ZhC05℄. Be
ause pro
essors typi
ally only have a handfulof available speed s
aling modes (values for s), for instan
e the SA 1100 has 11, itis possible for every task to numeri
ally evaluate ea
h of them [ZhC05℄ and 
hoosethe one that will yield the lowest aggregate power 
onsumption. This optimal valueis denoted by θi in duSYS. The mission of duSYS is to �nd for the s
heduled a
tivejob Jact an optimal s
aling fa
tor sact. The duSYS algorithm 
al
ulates the s
alingfa
tor using Equation 14 [ZhC05℄:
sact = min(

Dact − t

Eact
, θact, du(t)) (14)where Dact is the a
tive job's absolute deadline, t is the 
urrent time, Eact is thejobs worst-
ase exe
ution time (the exe
ution time that has been budgeted to thetask), and θact is the optimal voltage s
aling fa
tor for the task based on the task'sstati
 exe
ution parameters. In duSYS, θact is 
omputed o�ine. Due to the dynami
nature of jobs, real exe
ution times vary greatly, and are generally shorter than thebudgeted stati
 ones. In order to utilize emerging sla
k times for energy savings,duSYS also 
al
ulates and 
onsiders the dynami
 utilization, du(t), when sele
tingthe appropriate s
aling fa
tor. The value du(t) is 
al
ulated using Equation 15[ZhC05℄.

du(t) =
H − t − U−1 × (W − Eact)

Eact
, (0 ≤ t ≤ H) (15)where H is the hyper period, i.e., the least 
ommon multiple (LCM) of the periods ofthe s
heduled tasks, W is the estimated remaining workload and U is the utilizationdegree of the system. Using the value du(t) for pro
essor frequen
y s
aling, all sla
kavailable at time t may safely be granted to the a
tive job, while timely exe
utionof the rest of the jobs is also being guaranteed. The term Dact−t

Eact
in Equation 14ensures that deadlines are not violated [ZhC05℄.To summarize, when sele
ting the optimal s
aling fa
tor sact for the a
tive job,duSYS 
hooses from among three di�erent 
andidates the smallest one a

ording toEquation 14. Out of these three 
andidates, θact is 
al
ulated o�ine and is based onstati
 information (period Pi, worst-
ase exe
ution time Ei) about the task, whereasthe purpose of du(t) is to utilize sla
k emerging when jobs exe
ute faster than theirbudgeted worst-
ase exe
ution times.



521 W = hyperperiod × U2 while time() < hyperperiod do3 determine sact and exe
ute Jact using sact;4 if Jact is not �nished then5 ExecutedPart = current_duration/sact;6 W = W − ExecutedPart;7 Eact = Eact − ExecutedPart;8 ActualExecutionT imeact = ActualExecutionT imeact − ExecutedPart;9 else10 W = W − Eact;11 end if12 end whileFigure 24: The high-level pseudo 
ode of the duSYS algorithm [ZhC05℄.
W denotes the estimated remaining workload, Eact the budgeted exe
utiontime, and U the system utilization degree.The pseudo 
ode of duSYS 
an be seen in Figure 24. Released jobs are 
onsideredto be sorted in a queue with the job with the highest EDF priority at the headof the queue. On line 1, the estimated workload of the system is 
al
ulated. Online 3 the highest priority job is s
heduled using the s
aling fa
tor sact whi
h hasbeen 
al
ulated using Equation 14. During the exe
ution of Jact, dynami
 runtimeinformation is maintained on lines 5�8. This information is used when 
al
ulating
du(t), whi
h seeks to utilize sla
k times for power savings. When 
hoosing theoptimal s
aling fa
tor, duSYS 
onsiders the 
ombined pro
essor and devi
e power
onsumption in order to minimize system-wide power requirements.6.2 The Criti
al Speed DVS AlgorithmNext we will 
onsider an earlier EDF based power-aware system-wide real-times
heduling algorithm [JeG04℄. We 
all this algorithm Criti
al Speed DVS (CS-DVS).Like duSYS, CS-DVS 
onsiders both CPU and devi
e energy 
onsumption when 
al-
ulating an energy-optimal DVS setting. In CS-DVS, the energy 
onsumption Ei ofa task τi is given by Equation 16 [JeG04℄:

Ei(η) =
Ci

η
P (CPU, η) +

n
∑

j=1

C
Rj

i

η
P (Rj) (16)



53where η ∈ [0, 1] represents the pro
essor slowdown fa
tor [JeG04℄. This value indi-
ates the fra
tion of the maximum CPU speed at whi
h the pro
essor is being run(η = 1 meaning the maximum speed), and 
orresponds to the s
aling fa
tor s usedin duSYS. In Equation 16, Ci indi
ates the number of pro
essor 
y
les budgeted tothe task τi, and C
Rj

i the number of 
y
les that devi
e Rj spends in the standby stateduring the exe
ution of the task τi. The notation P (CPU, η) represents the power
onsumption of the CPU at slowdown fa
tor η, and P (Rj) indi
ates the power 
on-sumption of the devi
e Rj. In essen
e, the �rst term in Equation 16 represents theCPU power usage at slowdown fa
tor η, and the se
ond term represent the sum ofthe standby energies 
onsumed by the set of devi
es Rj that task τi uses at slowdownfa
tor η. Naturally, even 
omponents su
h as system memory may be modeled as adevi
e.What CS-DVS needs to do is to minimize the energy 
onsumption given by Equation16. It needs to �nd the η that yields the lowest total energy 
onsumption for the task.Possible η values are the dis
rete speed settings provided by the underlying pro
essorar
hite
ture. CS-DVS �nds the η giving the lowest total energy by 
al
ulatingEquation 16 for ea
h available η value [JeG04℄, and then 
hoosing the optimal η.As visualized by Figure 23, this value need not be the one that minimizes the CPUpower usage. The η value that yields the lowest total energy 
onsumption is 
alledthe 
riti
al speed of the task. Be
ause ea
h task may have di�erent exe
ution timesand use a di�erent set of devi
es, their 
riti
al speeds need not be the same.The pseudo 
ode of the CS-DVS Algorithm is given in Figure 25. On line 1, the
riti
al speed for ea
h task is 
al
ulated, and on line 2 ea
h task τi is initializedits individual 
riti
al speed ηi. Energy-optimal s
aling fa
tors might 
ause the taskset to be
ome unfeasible, i.e. EDF timeliness guarantees would be violated. Hen
e,CS-DVS might need to in
rease the s
aling fa
tor of some task(s). This is donein the while-loop on lines 3�8. A possible 
andidate task τm for speed in
reaseful�lls two 
onditions (line 4). Firstly, the task's 
urrent s
aling fa
tor ηm is notthe maximum speed (line 5). The se
ond 
ondition (line 6) is more 
ompli
ated.We wish to 
hoose the task for whi
h a speed in
rease from the 
urrent fa
tor ηito the next one ηi+1 
auses as small an energy 
onsumption in
rease per time unitas possible. Here, ∆Em represents the energy 
onsumption in
rease between ηi and
ηi+1, and ∆tm the time gained by the speed-up [JeG04℄. From among the 
andidatesthe task with the lowest ∆Em/∆tm value is 
hosen, and this task's η is in
reased.This pro
ess is repeated (line 3) until the task set be
omes feasible a

ording to theEDF prin
iple.



541 Compute the 
riti
al speed for ea
h task;2 Initialize ηi to 
riti
al speed of τi;3 while (not feasible) do4 Let τm be task satisfying:5 (a) ηm is not the maximum speed;6 (b) ∆Em

∆tm
is minimum;7 In
rease speed of task τm;8 end while9 return slowdown fa
tors ηi;Figure 25: The Criti
al Speed DVS (CS-DVS) Algorithm in pseudo 
ode[JeG04℄.6.3 Comparing the presented algorithmsIn this se
tion we explored two power-aware real-time s
heduling algorithms that
onsider system-wide energy 
onsumption when 
hoosing the optimal DVS settingfor the pro
essor. Both algorithms model a real-time task's energy 
onsumption asthe sum of CPU and devi
e set energy 
onsumptions. The slower the pro
essor isrun, the more standby energy the devi
es require. A power-aware real-time s
hedulerneeds to 
onsider this when making DVS setting de
isions.The 
onsidered algorithms were duSYS [ZhC05℄ and CS-DVS [JeG04℄. Both al-gorithms are based on the EDF prin
iple and provide a hard real-time timelinessguarantee. The main di�eren
e between the algorithms is that duSYS is able toutilize dynami
ally emerging job sla
k, whereas CS-DVS operates on stati
 pre-runtime task information only. It is well known that real-time jobs hardly ever
onsume all the pro
essor time that has been allo
ated to them, but exe
ute fasterthan budgeted. Hen
e, duSYS is potentially more energy-optimal than CS-DVS.



557 SummaryIn a real-time system, 
al
ulations need not only be 
orre
t, but also be �nishedwithin a pre-de�ned deadline. The �rst serious real-time s
heduling algorithms,presented in Se
tion 2, were Rate Monotoni
 and Earliest Deadline First [LiL73℄.In a hard real-time system, for instan
e in a pa
emaker, the meeting of every singledeadline is 
ru
ial. In a soft real-time system, for instan
e a video player, o

asionaldeadline misses are tolerated.Many 
ontemporary real-time systems operate on 
onstrained devi
es with limitedbattery power. Power awareness in 
onstrained devi
es is dis
ussed in Se
tion 3. Ex-tensive energy savings 
an be a
hieved by utilizing Dynami
 Voltage S
aling (DVS)[Gro03, VeF05℄ to 
hange the operating frequen
y and voltage of the pro
essor duringrun-time. Using the Advan
ed Con�guration and Power Interfa
e (ACPI) [HIM06℄,the operating system may shut down devi
es, su
h as disk drives, for time periodswhen the devi
es are not needed.Using low-power te
hniques, the 
hallenge for the real-time s
heduler is to maximizeenergy savings while guaranteeing that jobs meet their real-time deadlines. Due todevi
e wakeup delay times, the s
heduler needs to initiate the wakeup pro
edure ofa slept-down devi
e before the devi
e is a
tually needed. If the devi
e isn't awokenearly enough, the job needing it might risk missing a deadline.Advan
ed s
heduling algorithms su
h as Feedba
k DVS-EDF [DMZ02℄ and duSYS[ZhC05℄ are also able to dynami
ally utilize emerging sla
k times for energy savings.On
e one job �nishes earlier than budgeted, the next job may have at its proposalextra exe
ution time. The s
heduler may use this sla
k time to 
onserve pro
essorenergy by exe
uting the job slower.Considerable resear
h has been done in the �eld of power-aware real-time s
heduling.The Rate Monotoni
 and Earliest Deadline First algorithms have been enhan
edwith power-aware properties. Power aware real-time algorithms for unipro
essor,devi
e, and system-level s
heduling are explored in Se
tions 4, 5 and 6, respe
tively.
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Appendix 1. The entire Feedba
k DVS-EDF algo-rithmThis is the entire Feedba
k DVS-EDF algorithm [DMZ02℄ presented in Se
tion 4.1.3.


