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Real-time sheduling algorithms, suh as Rate Monotoni and Earliest Deadline First,guarantee that alulations are performed within a pre-de�ned time. As many real-time systems operate on limited battery power, these algorithms have been enhanedwith power-aware properties. In this thesis, 13 power-aware real-time shedulingalgorithms for proessor, devie and system-level use are explored.ACM Computing Classi�ation System (CCS):D.4.1 [Operating systems℄,J.7 [Computers in other systems℄
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11 IntrodutionIn a onventional omputer system, the orretness of alulations is de�ned bytheir logial orretness. A real-time system has been de�ned as a system wherethe alulations need not only be orret, but also be �nished within a pre-de�nedtime [RaS94℄. Real-time systems are today used in a wide variety of omputingdevies: in medial systems, in ABS brake system of vehiles, in Global PositioningSystem (GPS) devies, multimedia devies like DVD and MP3 players, in mobilephones, among others. Many of these systems are onstrained devies funtioningon limited battery power. Here, the usability of the devie is greatly dependentupon the operational lifetime of the battery.A sheduler is an operating system omponent responsible for sharing a resoureamong multiple users. A sheduler deides whih proess may use the proessor at apartiular moment. Common sheduling algorithms are for instane Round-Robin,where proesses are ordered in a irular queue, and CPU time is given to eahproess in turn [Sta05, page 791℄. Another approah is First In First Out (FIFO)sheduling, where the proess that has been in the queue for the longest time willbe given CPU time �rst.In real-time systems, these ommonplae sheduling methods annot be used sinethey do not guarantee meeting the time boundaries of real-time proesses. There-fore, real-time systems need speial shedulers that take deadlines into aount. Theresearh in real-time sheduling seriously began in the early 1970's. In 1973, Liuand Layland published their two famous real-time sheduling algorithms, EarliestDeadline First (EDF) and Rate-Monotoni (RM) [LiL73℄. EDF is based upon dy-nami priorities, while in RM proesses have �xed priorities. Basially all of today'sreal-time implementations are based upon one of these two algorithms.In a hard real-time system, a task must always �nish before its deadline. The mostdemanding area of hard real-time systems are systems where human lives are atstake. Examples inlude medial systems like paemakers, military systems, and forinstane nulear power plants. Here, bulletproof evidene that the system will meetits deadlines are required. The missing of even a single deadline is unaeptable. Inontrast, in a soft real-time system (Setion 2.3) the deadline is of a somewhat morerelative nature. In a multimedia system, for instane in a video deoder, it mightbe su�ent to guarantee that 95 perent of frames are timely deoded. Oasionalout-of-syn frames are aeptable in an appliation of this kind.



2Many proessors and devies designed for portable use provide several di�erentoperational states. Besides its high power and speed state, the proessor an be runat a lower speed, whih provides lower throughput, but onsumes less energy. Attimes when the proessor is not needed at all, it an be put into a sleep mode whihvirtually onsumes no energy at all. Tehniques for adjusting devie throughputand power onsumption are for instane Dynami Voltage Saling (DVS) [VeF05,PLS01, VBH03℄ and Advaned Con�guration & Power Interfae (ACPI) [HIM06℄.These tehniques allow the operating system to hange the operating frequenyand voltage of the proessor and other devies at run-time in order to save energy.The introdution of run-time voltage saling has opened new possibilities even forreal-time systems in onstrained devies.The most straightforward energy saving solution is to set the proessor and/or diskinto sleep mode after a period of user inativity [BBC98℄. Information from previousproess invoations an be used to estimate the length of the sleep interval [HwA00℄.Even more omplex statistial methods based on use history an be used to estimatewhen the devie will be needed next time [IGS02℄. As suh, none of these methodsare usable in real-time systems with hard deadlines [SwC05℄. The implementationof energy awareness in real-time systems is a more omplex task. The waking up ofthe proessor, disk or other devie from sleep mode always introdues a ertain timepenalty. The devie is not instantly usable but requires some time to restart. Inreal-time systems this wake-up delay risks missing deadlines and, therefore, needsspeial attention from the sheduler.The solution is to implement energy-onserving properties into EDF and RM basedreal-time shedulers. Reports indiate that suh tehniques have provided energysavings of up to 50% [SwC03℄ while still guaranteeing meeting of real-time proessdeadlines.This thesis desribes 13 power-aware sheduling algorithms usable in onstraineddevies with limited battery resoures. The theoretial bakground and terminologyof real-time sheduling with RM and EDF is desribed in Setion 2, and power-aware properties in onstrained devies are disussed in Setion 3. Reent energyonserving proessor sheduling algorithms are presented in Setion 4, and deviesheduling algorithms in Setion 5. The thesis is summarized in Setion 7.



32 Real Time ShedulingReal-time sheduling algorithms are responsible for sharing resoures among userswhile guaranteeing timely exeution of real-time proesses. In order to present real-time sheduling algorithms, we will �rst introdue a system model used throughoutthe rest of the thesis.2.1 System ModelA task is a proess, a piee of independently running software ode. We use thenotation Ti to indiate a task, where i is the task's distintive number. One instaneof a task is alled a job. In real-time systems, tasks typially have a period, a timeinterval between whih individual jobs of the task are released for exeution. Wemark the period Pi. A job of task Ti in period k is marked with Ji,k. By releasetime we mean the time at whih Ji,k beomes ready for exeution.By deadline we mean the time when a job needs to be ompleted. We indiate thistime Di. A deadline relative to the urrent time is marked di. For instane, if Jihas Di = 20 and the urrent time is 15, then di = 5.By the exeution time, indiated by Ei, we mean the worst ase exeution time of Ji:the amount of proessor time needed by the job to omplete. In reality, exeutiontimes of individual jobs Ji,k vary greatly. Consider, for example, a real-time systemontrolling a roboti arm that is removing faulty produts from a omposition line.When there are no faulty produts, jobs will omplete extremely fast as the armdoes not need moving at all. But for sheduling reasons, we must expet the worstase exeution time. In the ase of the roboti arm, this would mean the (hopefullyrare) event when all produts within the arm's range are faulty, and need to beremoved from the line.Let ei be one instantaneous exeution time of Ji, where ei ≤ Ei. By slak time wemean the time Ei − ei, i.e. time alloated for proess exeution that is not atuallyneeded beause the job �nishes earlier than budgeted. This time an be utilized forenergy savings. We will return to this later.The utilization degree of a task is alulated by Ei/Pi. The utilization of the entiretask set is alulated using Equation 1:
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(1)where n is the number of tasks. In later parts of the paper we may desribe a task

(Pi, Ei). For instane (6, 3) means a task with period 6 and exeution time 3, and
(6, 1) indiates a task with period 6 and exeution time 1. The utilization of a taskset onsisting of these two tasks would be 3
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6
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3
, aording to Equation1. If no deadline is expliitly mentioned, then di = Pi, meaning that the deadlineof the task equals its period. Intuitively this means, that a job of the task must beompleted before the release of the next job.2.2 Hard Real Time ShedulingThe fundamental real-time sheduling algorithms are Rate Monotoni (RM) andEarliest Deadline First (EDF) [LiL73℄. Neither of these algorithms provide power-awareness, but all of the energy onsious sheduling solutions presented later in thisthesis are enhanements of either RM or EDF. Therefore, an insight into RM andEDF is essential for understanding this thesis. Both RM and EDF will be presentedin this setion.2.2.1 Rate Monotoniinput: list of tasks1 repeat on task set:2 perform RM shedulability test;3 if fail alarm OS;4 else5 sort jobs in asending order aording to period;6 while (jobs left):7 shedule �rst job from list;8 remove �nished job from list;Figure 1: Pseudo ode of the Rate Monotoni algorithm.In the Rate Monotoni sheduling algorithm, the task with the shortest period Pigets highest priority, and is sheduled �rst. Beause periods of tasks are onstant,



5RM is a �xed-priority sheduler. Liu and Layland [LiL73℄ have shown that theshedulability ondition for RM is that of Equation 2:
U ≤ n(21/n − 1) (2)where n is the amount of tasks. For instane, when n = 2, i.e. with two tasks, RMis able to shedule the tasks if their U ≤ 0, 83. A task set onsisting of 4 tasks isshedulable with RM if U ≤ 0, 76. With large numbers of n:

lim
n→∞

n(21/n − 1) = ln 2 (3)The idea in Equation 3 is, that with large task sets, the RM shedulability ondi-tion approahes the value ln 2, i.e. approximately 0, 69. The theoretial maximalutilization, whih also the Earliest Deadline First algorithm aomplishes, is U = 1.In other words, RM as suh annot be onsidered very e�ient.Let us onsider a sample RM shedule using a task set onsisting of two tasks:
τ1=(5,2) and τ2=(7,4). First, RM onsiders the shedulability of this task set. A-ording to Equation 1, U of this task set is 2

5
+ 4

7
= 34

35
, i.e. approximately 0, 97.Aording to Equation 2, the promised usage level that RM is guaranteed to beable to shedule when n = 2 is U ≤ 0, 83. Therefore it seems that this task set isnot shedulable with RM. The sheduler might alert the operating system of thisaording to line 3 in the pseudo ode in Figure 1. Let us, however, more loselyonsider the funtionality of RM by simulating lines 5�8 of the RM algorithm onthe before mentioned task set. The results are shown in Figure 2.

Figure 2: Tasks τ1=(5,2) and τ2=(7,4) sheduled using Rate Monotoni[But05℄.The period of τ1 is 5 and the period of τ2 is 7. In RM the task with the shortestperiod gets highest priority. Therefore, τ1 is sheduled �rst. Aording to the pseudoode in Figure 1, this operation is done by sorting the proesses in a list aording



6to their periods, as seen on line 5. The while ondition on line 6 is true so thealgorithm advanes to line 7. The �rst job on the list is τ1, so it is sheduled �rst.Every 5 time units, τ1 is sheduled 2 units of time. This an be seen in Figure 2.Having sheduled the highest priority task and removed it from the list (line 8), RMnow proeeds to shedule the next task, sine the while ondition on line 6 is true.Here, τ2 requires 4 units of CPU time every 7 units. However, in period 1 there isonly 3 units of time available in the interval [0,7℄. The time interval [2,5℄ is alloatedto τ2. At time 5 a ontext swith ours, and the higher priority proess τ1 gets theCPU. This is indiated by an up-arrow in Figure 2. Beause τ1 has the proessorduring [5,7℄, τ2 doesn't get a hane to �nish its one remaining exeution time unit,and J2,1 misses its deadline at time 7. This simulation hene veri�es the failed RMshedulability ondition: this task set is not shedulable using RM.2.2.2 Earliest Deadline Firstinput: list of tasks1 repeat:2 perform EDF shedulability test;3 if fail alarm OS;4 else do while (jobs left AND no new task released):5 put job with losest deadline �rst in list;6 shedule �rst job;7 remove �nished job from list;Figure 3: pseudo ode of the Earliest Deadline First algorithm.In the Earliest Deadline First algorithm the proess with the deadline losest tothe urrent time gets sheduled �rst. Beause the proess with the losest deadlinehanges as exeution progresses, the EDF method leads to dynami priorities. InEDF, the shedulability ondition is:
U ≤ 1 (4)This means, that EDF aomplishes full resoure utilization while guaranteeingtimeliness. The pseudo ode of the EDF algorithm an be seen in Figure 3.Let us onsider the tasks τ1=(5,2) and τ2=(7,4) sheduled using Earliest DeadlineFirst aording to the pseudo ode in Figure 3. On line 2, the EDF shedulability



7
Figure 4: Tasks τ1=(5,2) and τ2=(7,4) sheduled using Earliest DeadlineFirst [But05℄.test is performed. Aording to Equation 1, U = 34

35
. Beause the EDF shedula-bility ondition (Equation 4) guarantees shedulability when U ≤ 1, this task set isshedulable using EDF. The while ondition on line 4 is true. EDF orders the tasksaording to their relative deadlines. At time 0, the job with the losest deadlineis τ1, so it gets sheduled �rst. At its �nish time at 2, τ2 gets sheduled. One

τ2 is �nished at 6, the seond job of τ1 has been released, and is sheduled. Afterexeution of the third job of τ1, at time 14, τ2 with deadline 21 get sheduled for oneunit of time, but is swithed out at time 15: here, the fourth job of τ1 is released,and sine its deadline is 20 ≤ 21, τ1 gets higher priority than τ2. One a job is�nished, it is removed from the list of jobs.2.3 Soft Real Time ShedulingIn a soft real-time system the timing onstraints are somewhat more relaxed than ina hard real-time system. A soft-real time appliation usually provides a probabilistiguarantee of p% of tasks meeting their deadlines. For instane a telephone networkmight be onsidered a soft real-time appliation. It will be onsidered usable if 95%of alls are onneted within 10 seonds, and within 20 seonds for 99,95% of alls[Liu00, page 31℄.The video viewing experiene or enjoyability of a omputer game is not spoiled if oneor two frames per minute miss their deadline. Multimedia is a a very ommon areafor soft real-time systems. Consider for instane the ESheduler [YuN06℄ algorithm,presented in Setion 4.2.1. It alulates the atual CPU time demand of n reentjobs of task Ti. Based on this usage history, it uses as Ei (Equation 1) a value belowof whih p% of the onsidered jobs remain. Hene, it alloates enough CPU time sothat p% of jobs will omplete timely (assuming that the CPU demand distribution ofthe task is pretty stable). This is a very typial real-time guarantee that su�es for



8a soft real-time appliation. The use of a soft real-time sheduler instead of a hardone might be motivated if, for instane, the response time of the system improvewhen real-time onstraints are relaxed.



93 Power Awareness in Constrained DeviesBy energy, measured in joule, we mean the total amount of work done during aperiod of time, and by power we mean the rate at whih the work is done. Power ismeasured in watts [VeF05℄.Consider a task that takes 5 seonds to �nish with a CPU running at 100 MHz.Lowering the CPU speed to 50 MHz will derease the power onsumption of theproessor, as lower frequenies need less power. However, the total energy needed toomplete the task will not be redued, as the task will take a longer time to �nish,perhaps even twie the time. Atually, lowering only the speed of the CPU oftenmight inrease the total energy onsumed by the entire system, as for instane harddisks, network adapters and other omponents need to be powered-up for longerperiods of time. This aspet is more losely onsidered in Setion 6.In some ases, for instane to ool down a proessor, it is desirable to lower thepower onsumption without onsidering the total need of energy [VeF05℄. Thiskind of power redution is, however, hardly what we wish to aomplish when usingbattery powered onstrained devies: here, minimizing the total energy need is whatmatters.Calulating and minimizing the system's total energy onsumption depends on theatual system on�guration. This question has been researhed by for instane Zhuoand Chakrabarti [ZhC05℄. In Setions 4 and 5 of this thesis, we fous on minimizingthe power onsumption of distint omponents. The reader should note that thishosen view is a simpli�ed one, as in reality systems are omposed of multipleomponents.3.1 Dynami Voltage SalingContemporary mirohips are based on the CMOS (omplementary metal-oxide-semiondutor) tehnology. Chips using this tehnology onsume energy both dy-namially and statially [VeF05℄. The stati power onsumption is aused by urrent�owing through the transistors even when they are turned o�. As this form of en-ergy onsumption annot be altered during run-time by the sheduler, it is not ofinterest in this thesis.The dynami power onsumption onsists of two parts. About one tenth of a hip'spower onsumption is aused by instantaneous short-iruiting of transistors as they



10swith states [VeF05℄. Currently it is unknown how to ombat this energy waste, andso we will disregard this form of dynami power onsumption. Most of the proes-sor's dynami power onsumption an, however, be adjusted during run-time, andthis is where we will fous our attention. Let P be the dynami power onsumptionof a proessor. The following equation indiates how it is formed [PLS01℄:
P = C × f × V 2 (5)here, C is the apaitane of the transistors. This is a �xed value aused by thephysial struture of the proessor. The value f is the operating frequeny of theproessor. It is usually measured in megahertz or gigahertz. Adjusting the operatingfrequeny of the proessor linearly a�ets power onsumption. The operating voltageof the hip is indiated by V . As seen in Equation 5, adjusting the voltage a�etspower onsumption quadratially.From Equation 5 it follows that the proessor's power onsumption an be regu-lated during run-time by adjusting its operation frequeny f , voltage V , or both.Tehnology for aomplishing this is alled Dynami Voltage Saling (DVS). The ab-breviations DFS (dynami frequeny saling) and DVFS (dynami voltage-frequenysaling) are also used [VBH03℄.Notie, however, that adjusting only f but not V linearly dereases the power on-sumed by the proessor, but not the total energy needed to omplete the task: aCPU operating at m MHz that takes s seonds to �nish a task will probably take

2s seonds to �nish the task at m/2 MHz.Lowering only V might seem tempting, but a lower V generally annot supporta high f , so usually lowering the supply voltage also requires the lowering of theoperational frequeny. So in DVS both V and f are adjusted: the proessor is madeboth slower and less onsuming.For an example of a real life DVS solution onsider the performane states of the 1.6GHz Pentium M proessor presented in table 1. At the maximum speed, 1.6 GHz,the power onsumption of the proessor aording to Equation 5 is C ∗ 1.6GHz ∗

1.484V and at the lowest speed C ∗ 600MHz ∗ 0.956. At lowest frequeny and volt-age the proessor onsumes less than one fourth of its maximum power onsumption( C∗600MHz∗0.956
C∗1.6GHz∗1.484V

= 0.24), while still providing 38% of the maximum omputing per-formane (600MHz
1.6GHz

= 0.375). The early Transmeta Crusoe proessor provided evenmore impressive power savings, as seen in table 2. The Crusoe provided 29% of the
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Table 1: DVS performane states of the 1.6 GHz Intel Pentium M pro-essor [Int04℄.

Table 2: DVS states of the Transmeta TM5400 �Crusoe� proessor[PLS01℄.maximum throughput (200 out of 700 MHz) while onsuming less than 13% of themaximum power.For sheduling needs, DVS an be utilized basially in three di�erent ways. These areompared in table 3. The simplest method is the interval-based approah [VeF05℄, inwhih the CPU frequeny and voltage are adjusted downwards if the CPU utilizationduring the past t time units has been low, and upwards if the CPU utilization hasbeen high. The value of t is ritial. If t is too short, the CPU fequeny andvoltage may be adjusted bak and forth ausing high overhead. On the other hand,large t values may ompromise e�ieny as DVS adjustments are made very seldom.The interval-based method an be enhaned by onsidering a window of intervals.However, the interval-based method is not suitable for use in real-time systems asit does not take into onsideration the deadlines of individual tasks.The inter-task approah [VeF05℄ onsiders a distint DVS value for eah task and,therefore, suits well the needs of real-time appliations. Voltage and frequenysettings are altered at ontext swithes and remain �xed during the exeution of the



12Method name DVS oasions Real-timesuitable ComplexityInterval-based At threshold time in-tervals No LowInter-task Context swithes Yes MediumIntra-task Context swithes andduring task exeution Yes HighTable 3: Comparison of fundamental DVS tehniques.entire task. The advantage of the inter-task approah over the interval-based is thateah task may reeive an individually suitable DVS setting. However, the exeutiontime alloated for a task generally is muh higher than the atual exeution time.Using the inter-task approah, the entire task is run with the same DVS value, whihin most ases an be unneessarily high. Therefore, the power savings ahieved bythis method often are not optimal.The most advaned DVS method used in real-time systems is the intra-task ap-proah [VeF05℄. Here DVS values may be hanged even during a task exeution.Algorithms utilizing this method are, for instane, Feedbak DVS-EDF [DMZ02℄and ESheduler [YuN06℄, presented in Setions 4.1.3 and 4.2.1, respetively. Forinstane the Feedbak DVS-EDF algorithm utilizes DVS aggressively. It will dividea task's exeution time Ei into two parts, Ca and Cb. During Ca the proessor isrun at a lowered speed, and only at the start of Cb is the CPU speed inreased.Jobs �nishing sooner than their budgeted exeution time will never reah Cb andthe system is saved from this high power exeution interval. In ESheduler, thespeed shedule is divided into several phases, with eah having a slightly di�erentDVS value. The task is initially exeuted with a low speed, and as exeution timeprogresses, the speed is gradually inreased.3.2 Advaned Con�guration and Power InterfaeProessor manufaturers have di�erent implementations for their voltage salingtehnologies. AMD's tehnology is named PowerNow, Intel's SpeedStep, and Trans-meta's LongRun [PLS01℄, or more reently, LongRun2. ACPI, �rst introdued byIntel, Mirosoft and Toshiba in 1996 [Gro03℄, is a standardized interfae between thehardware and the operating system. The general arhiteture of ACPI is depited
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Figure 5: The ACPI provides a standard interfae between the operatingsystem and the �rmware [Gro03℄.in Figure 5.The main advantage with ACPI is that both hardware and operating system (OS)omponents may evolve independently of eah other while letting the OS fully on-trol the system's power management. The OS may, for instane, hoose to bundledisk writes to be exeuted in bathes in order to improve system response times.This kind of funtionality is not possible when power management is ontrolled byhardware alone.ACPI provides standardized mehanisms for swithing between di�erent power on-sious states of proessors, disk drives, sreens, modems, and other omponents thatare used in todays portable omputers. Both Windows and Linux platforms supportACPI for CPU frequeny saling. The ACPI design is based on ASL (ACPI SoureLanguage) and AML (ACPI Mahine Language) that reminds quite a lot the Javaprogramming language [Gro03℄. The human readable unompiled Java soure odeorresponds to ASL in ACPI, whereas Java byteode orresponds to AML, whihis the ompiled version of ASL. The idea here is that AML abstrats the platform-spei� details from the operating system so that the OS may use standard operationnames to aess platform-spei� features.The urrent version of the ACPI spei�ation is 3.0b. This 631 page doument wasreleased in Otober 2006, and is available for download at http://www.api.info.



144 Power Aware Proessor ShedulingReal-time sheduling algorithms an be divided into proessor and devie shedulingalgorithms. This setion overs power-aware real-time sheduling algorithms forCPU sheduling, while devie sheduling is overed in Setion 5. In this setion wefous on uniproessor systems. The sheduler is responsible for sharing this singleCPU between all tasks while guaranteeing that time boundaries are met.Energy saving is ahieved by running the proessor at lower speed whenever thisspeed is su�ent to meet the deadlines. Beause the proessor's power onsumptionubially depends on the lok frequeny and voltage (Equation 5, Setion 3.1), sig-ni�ant energy onsumption redutions an be ahieved by lowering the proessor'sfrequeny and voltage at oasions when maximum throughput is not needed. Somesheduling algorithms even utilize the sleep state of the proessor when the systemis idle, if suh a state is available. For instane, if the sheduler knows that thenext periodi job will not be released until time t, it will set a timer to wake up theproessor at time t and put the proessor to sleep mode.Lowering the proessor speed to save energy works as follows. Suppose that theurrent job needs to �nish at time t. When ran at full speed, the proessor will�nish the job at time t/2. Hene, it su�es to run the proessor at half of themaximum speed in order to guarantee timely exeution.Proessor sheduling algorithms an be divided into two ategories, hard and softreal time sheduling algorithms. We will �rst study algorithms that provide hardreal-time guarantees. These are the stritest type of real-time algorithms: theyguarantee that all deadlines are met. All algorithms presented in Setion 4.1 areenhanements of either the Rate Monotoni or Earliest Deadline First [LiL73℄ al-gorithm. In soft real-time algorithms, oasional deadline misses are allowed. Softreal-time proessor sheduling algorithms are explored in Setion 4.2.4.1 Hard Real Time ShedulingThe Rate Monotoni and Earliest Deadline First algorithms as suh form an ex-ellent starting point when engineering energy aware real-time shedulers. Mostontemporary hard real-time shedulers with energy onserving properties in fatare relatively small enhanements to the RM and EDF tehniques. As examples ofsuh algorithms, we will in this subsetion explore a number of pseudo odes. The



15LPFPS algorithm enhanes the Rate Monotoni algorithm, and provides a guaran-teed U of ln2 as indiated by Equation 3. As examples of energy onsious EarliestDeadline First based shedulers, guaranteeing U ≤ 1, the LEDF and ExtendedLEDF algorithms are presented. The most ambitious algorithm that will be onsid-ered is Feedbak DVS-EDF, whih even utilizes a basi form of intra-task DVS, andslak-time passing between jobs. In general, EDF based shedulers are muh moreommon in researh papers than their RM based ounterparts. This is due to EDFproviding full utilization of the proessor. RM is, however, simpler to implement insome operating system kernels that do not provide expliit support for the timelinessproperties that real-time tasks require [But05℄.4.1.1 The Low Power Fixed Priority Sheduling AlgorithmThe Low Power Fixed Priority Sheduling (LPFPS) [ShC99℄ algorithm, publishedin 1999, is one of the earliest energy onsious sheduling algorithms. It enhanesthe Rate Monotoni algorithm by taking into aount energy onserving properties.For energy savings, LPFPS utilizes two di�erent oasions. Firstly, in an RM basedshedule, there usually are idle times in the shedule. Reall the RM shedulabilityondition U ≤ n(21/n − 1) of Equation 2: the maximal CPU utilization U of an RMbased shedule with large task numbers n approahes the value 0.69. So with hightask numbers the maximal RM utilization degree leaves the CPU idle for 30 perentof the time, and LPFPS utilizes this time for energy savings. Seondly, jobs atuallyoften exeute faster than budgeted. In other words, jobs rarely use all of the timethat has been alloated to them. When a job exeutes faster than budgeted, theremaining time is used by LPFPS to save energy.Both voltage and frequeny saling and the powering down of the CPU are supportedby LPFPS. When the system is idle, i.e., there are no jobs ready to run, LPFPSplaes the CPU in a power down mode, and initiates a timer to wake up the proessorso that it will be ready for use when it, aording to the shedule, is needed nexttime. When there is only one job left ready to run, LPFPS will alulate an energyonserving voltage and frequeny setting for the job, and exeute it if possible at alower CPU speed.The LPFPS algorithm utilizes two data strutures of the type queue. Jobs that areready for exeution and wait for proessor time are plaed in the run queue. Thejob with the highest RM priority (the shortest period) is at the head of the queue.
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Figure 6: pseudo ode of LPFPS the sheduling algorithm [ShC99℄. LinesL5�L11 orrespond to the onventional Rate Monotoni funtionality.In the delay queue LPFPS holds tasks whose urrent jobs are ompleted, i.e. taskswaiting for the arrival of their next jobs in the next period. The job with the losestarrival time is plaed at the head of the delay queue. The job that is urrentlysheduled for exeution is alled the ative task. Coneptually, this task is presentin neither of the queues.The LPFPS pseudo ode We are now ready to onsider the LPFPS pseudo odeof Figure 6. Let us begin by onsidering lines L5�L11, where the funtionality of aonventional RM sheduler is present. On line 5 it is heked whether the urrenttime exeeds or equals the release time of job(s) at the head of the delay queue.



17If so, the jobs are moved to the run queue (line 6). If the job now at the head ofthe run queue has a greater priority, i.e., shorter period, than the ative task has(line 8), then a ontext swith ours on line 10. This implies that the informationbelonging to the urrent ative task in the CPU registers and operating systemontrol strutures are stored in main memory, and replaed by the information ofthe new ative task. Prior to the ontext swith, on line 9, LPFPS also stores theamount of time the job has been exeuted. This value is later used when alulatingvoltage and frequeny saling parameters.In addition to the onventional RM sheduler funtionality, LPFPS provides energysaving properties. Energy savings will be sought when the run queue is empty, i.e.,when there are . This ondition is heked on line 12. If the run queue is empty,and there is no ative task (line 13), i.e., the proessor is idle, then the CPU willbe put to power down mode. On line 14 a timer is set to ativate the proessor soit will be ready for use at the arrival of the next job. In setting the timer LPFPStakes into aount the proessor wakeup delay time. On line 15 the CPU is put topower down mode.If the run queue is empty but there is one ative task (line 16), LPFPS will alulatean energy saving DVS setting for it and, when possible, exeute the task at lowerspeed and voltage. The new speed ratio is alulated by the Compute_speed_ratio()proedure alled on line 17. The formula used by LPFPS in alulating the speedratio is [ShC99℄:
speed_ratio =

Ci − Ei

ta − tcwhere Ci is the budgeted exeution time, Ei the time that has already been spentexeuting the job, ta is the arrival time of the next job, and tc is the urrent time.In essene, the remaining exeution time is divided by the time available before thearrival of the next job. Among the available CPU lok frequenies the lowest oneguaranteeing timely exeution is loated on line 18. The proessor frequeny andvoltage are adjusted on line 19. It should be noted that it is impliitly assumed that
Di ≥ ta, where Di is the absolute deadline of the ative job.4.1.2 Low-Energy EDF and Extended Low-Energy EDFWhere LPFPS, desribed in the previous subsetion, is based on the Rate Monotonialgorithm, we will from here on fous on Earliest Deadline First shedulers. The



18pseudo ode of an energy onserving EDF based proessor sheduling algorithmalled Low-Energy EDF (LEDF) is given in Figure 7. This algorithm was publishedby Swaminathan and Chakrabarty in 2000 [SwC00℄. It only supports two distintCPU speeds, low and high speed. Due to its simpliity, it is an exellent entry pointinto more omplex shedulers.

Figure 7: The LEDF pseudo ode [SwC00℄.On line 7 of Figure 7, the jobs urrently present are sorted aording to their dead-lines, and on line 8 the job with the losest deadline is sheduled aording to theEDF priniple. On line 9, LEDF heks whether or not the job would make itsdeadline if sheduled at a lower speed and voltage. If so, the job is sheduled at thelower speed. If the job annot meet its deadline at the lower speed, LEDF heks online 11 if it an make it with the higher speed, and shedules the task at the higherspeed on line 12. If the deadline annot be met even at higher speed, the exeptionhandler (line 13) is alled. It is then up to the operating system to deide what todo with this task.Extended LEDF The authors of LEDF have improved their algorithm [SwC01℄.The Extended LEDF (E-LEDF) algorithm given in Figure 8 onsiders the CPUtransition delay when making sheduling deisions. A swith between the high andlow speed states always introdues a ertain time and energy penalty. The swithin itself onsumes some energy and takes some time. Very short swithes from high



19speed state to the low speed state are not worthwhile as the state transition ostwould exeed the net gain.

Figure 8: Pseudo ode of the E-LEDF sheduler enhaning LEDF[SwC01℄. Syntax: tlow and thi: exeution time with low / high CPUspeed, respetively; ts state transition delay; di deadline; Elow and Ehienergy onsumption with low / high speed, respetively.Let us now explore the E-LEDF pseudo ode. On line 6 in the pseudo ode of Figure8 tasks are sorted aording to their deadlines, and the task with the losest deadlineis hosen for exeution aording to the EDF priniple. When sheduling the very�rst task of the session (line 7), we want to hek if we an shedule the task atlow speed. This is done on line 8: if the exeution time with low speed tlow addedwith the proessor transition delay ts is lower or equal to the task's deadline di, thetask is sheduled using low speed. Otherwise, it is heked if the task will meet itsdeadline with high speed (line 9). If the deadline annot be met even at high speed,



20the operating system exeption handler is alled (line 10). The operating systemmight, for instane, alert the appliation whose time onstraints annot be met.The sheduling of the following tasks begins on line 12. If the previous task wasrun at high speed, then E-LEDF will ompute the task's total energy onsumptionusing both low and high speeds (Elow and Ehi) on line 13. In these alulations,the proessor state transition energy osts are taken into onsideration. If the taskis not shedulable even at high speed (line 14) the operating exeption handler isalled (line 15). If the task is shedulable, E-LEDF will need to onsider whetherit is worthwhile to swith to low speed. If the task will meet its deadline at lowspeed inluding transition delays (line 17), and the total energy onsumption at lowspeed Elow doesn't exeed energy onsumption at high speed Ehi, then the task issheduled at low CPU speed (line 19). Otherwise, the task is sheduled at highspeed (line 21 and 23).A similar pattern to the one desribed in the previous paragraph is followed if theprevious task was sheduled at low speed (line 24). The total energy onsumptionat both speeds is alulated (line 25), and in the sum Ehi also the transition ostis inluded. The transition to the higher CPU speed is made only if the totalenergy onsumption at high speed would be smaller than using the low speed. Thisondition is heked on line 30.We believe the E-LEDF ode ontains redundanies and at least one error. Notie,that the if statement on line 19 is redundant: the ondition tlow +ts ≤ di has alreadybeen heked on line 17. In fat, also the if on line 21, and the entire lines 22 and 23,are redundant. The error we believe we have found is also quite obvious. Considera situation where the previous task has been run at low speed, and thi + ts ≤ di, but
Ehi ≥ Elow. This would bring us to line 33 in the pseudo ode. Now assume that
tlow + ts ≥ di. This ould very well be possible, sine the task is shedulable at highspeed (thi + ts ≤ di), and the shedulability test on line 26 would hene have beenpassed. In this situation, the if ondition on line 33 would be false, and the taskwould never be sheduled. The pseudo ode would hene need some rewriting tosupport tasks that would require to be run at high speed, even though they wouldn'tspend less energy at that speed. The required modi�ation is quite trivial. It su�esto add to line 33 the following: else shedule at high speed .A more fundamental problem with E-LEDF is that the algorithm does not expliitlyhandle situations when the CPU is idle. If the previous task has left the CPU inits high speed state when the job queue beomes empty, E-LEDF will still keep the



21CPU running at full speed and hene waste energy although the proessor is notneeded. Currently, E-LEDF supports only two distint CPU speeds, and no power-o� state. Frequeny and voltage saling deisions are made only at the beginning ofeah task, whih limits ahieved energy savings.4.1.3 Feedbak DVS-EDFOne of the more ambitious power-aware hard real-time CPU sheduling algorithmsis also based on EDF and is alled Feedbak DVS-EDF. It was published by Dudani,Mueller and Zhu in 2002 [DMZ02℄. The interesting parts of the pseudo ode arepresented in Figure 9. The ode for initializing variables, pre-emption handling andsetting of lok frequeny are exluded, sine they are of little interest to the topiof this thesis. The interested reader may, however, view the entire algorithm inappendix 1.The idea in Feedbak DVS-EDF is to utilize DVS aggressively. The algorithm isbased upon the assumption that most atual task instanes (jobs) will need less CPUtime than sheduled to them. Therefore, Feedbak DVS-EDF begins the exeutionof a job with a very slow CPU speed. Only if the job isn't �nished after a ertaintime, is the CPU speed inreased. In real-life situations, jobs rarely use all of theCPU time alloated to them. Therefore, for most jobs, the CPU will never need torun at its highest speed, and energy is saved.In order to be able to alulate a statistially optimal initial speed, the FeedbakDVS-EDF algorithm maintains statistial information on the exeution times of atask's previous instanes. Tasks are also able to pass unused slak time on to thenext job. Say, for instane, that a job Ji has exeuted 2 time units faster thanbudgeted and �nishes at t. Further assume, that the next job Ji+1 has been releasedbefore t. In this ase, using Feedbak DVS-EDF, Ji will pass the two unused slaktime units on to Ji+1. Now, Ji+1 will have in its exeution time budget two moretime units more than usually. This extra time may be used to further slow down theproessor in order to onserve energy. Information on unused slak time is storedin the variable slack, and by reading this variable the sheduler will know of thesetwo super�uous time units when it goes on to shedule Ji+1. This inreased timebudget is, of ourse, usable only if it won't jeopardize �nishing Ji+1 within its timeboundaries.These are the main energy onserving properties of Feedbak DVS-EDF. Let us
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Figure 9: The entral parts of the Feedbak DVS-EDF algorithm[DMZ02℄.now study the pseudo ode of 9 in loser detail. In order to do this, a number ofnotations need to be explained. By Tij we mean an instane, i.e. a job, j of task Ti,and with di we mean its deadline. The variable slack stores information on unusedslak time, and leftij holds the remaining exeution time of job Tij . By Tab wedenote the set of idle tasks (tasks that urrently have no jobs waiting for proessortime), and by pk the previous, by nj the next and by ij the urrent job. The letter
α′ denotes the ratio of the proessor's maximal speed, and fi is the lok frequenyof the proessor. By rij we denote the release time of job Tij , i.e, the time whenthe job is ready to be sheduled, and starts waiting for proessor time. The job'satual exeution time is denoted by cij , and Ci is the budgeted worst-ase exeutiontime. The exeution time Ci of a job is divided into two parts, CA and CB, where
CA is the time interval that the job is exeuted at a slower and less onsuming CPU



23speed, and CB denotes the time interval when the job is exeuted at high speed.Therefore, Ci = CA + CB. The variable Cavg_i notates the average exeution timeof Ti. This implies:
CA

α′
+ CB = Ci + slackBy α′ we mean the ratio of the maximal lok frequeny, and this value in turn isalulated using the formula

α′ =
CA

CA + slackwhere slack denotes the unused �slak� time that emerges when a job is exeutedfaster than budgeted.This funtionality is presented in the algorithm of Figure 9 beginning on line 7, in theproedure TaskActivation. (Notie that Feedbak DVS-EDF uses the term �task�in the proedure names when referring both to a task, and an instane of a task.Elsewhere in this thesis, the term �job� is used for the latter.) On line 7 the value
α′, i.e., the ratio of the lowered CPU speed from the highest speed, is alulated.In order to �nd the optimal value for α′ Feedbak DVS-EDF utilizes statistis fromprevious instanes of the task. It is from here that the word �Feedbak� in thealgorithms name is originated. Statistis is maintained in the variable Cavg, whihindiates the average exeution time of this task's previous jobs. When a job is�nished, its Cavg is updated on line 21 in the proedure TaskCompletion. Here wetake into onsideration the exeution time of the urrent instane cij and alulate aweighted average between cij and the previous value of Cavg. The value Cavg is thenutilized when alulating an optimal value for α′ at job ativation. The variable
slack is alulated and utilized at similar oasions. The value is alulated when ajob �nishes, in the proedure TaskCompletion on line 20, and is later utilized whenalulating α′ in TaskActivation on line 7. Information on �unused� time and CPUutilization statistis of previous jobs is thus passed between jobs using these twovariables.On line 9 and 11 the variable CA is alulated and set. This variable indiates thelength of the time period from the beginning of a job that the job is to be exeutedwith the lower speed. This speed is indiated as the ratio from the maximum speedby α′. If α′ is alulated to equal 1 (line 8), then the task must be exeuted athighest lok frequeny, and the length of the lower speed interval CA is set to 0(line 9). If the value of α′ is not equal to 1, then CA is alulated on line 11. On



24line 12, a timer interrupt is set to ativate the sheduler after CA units of time haspassed. This is done by the proedure SetInterrupt. On line 13, the proessor isadjusted to the new lok frequeny. If the job isn't �nished within CA units of time,the sheduler is reativated by the timer. The reativated sheduler will adjust theCPU to run at full speed, and the rest of the job will be exeuted at highest lokfrequeny. This will guarantee timely �nishing of the job.4.1.4 Cyle-Conserving DVS for EDF ShedulersFeedbak DVS-EDF presented in the previous subsetion utilizes DVS aggressively.For the sake of omparison, let's onsider the Cyle-Conserving DVS for EDF shed-ulers (EDF) algorithm [PiS01℄ presented in Figure 10. This illustrative algorithmutilizes DVS onservatively: jobs are initially run at a higher CPU speed, and when-ever jobs �nish before spending their entire time budget, the proessor is sloweddown.

Figure 10: The Cyle-onserving DVS for EDF Shedulers (EDF) algo-rithm [PiS01℄. Ci budgeted CPU yles to task Ti; cci atual spent yles;
fi proessor frequeny; fm maximal proessor frequeny; Ui utilizationdegree.Now onsider the pseudo ode in Figure 10. Upon task ompletion, on line 8, theutilization degree Ui of Ti is set to cci

Pi
, i.e., to re�et the eventual time left un-used by the task. Then, on line 10, the proedure selet_frequeny() is alled.Here, EDF hooses from among all disrete CPU speeds {fi, . . . , fm} the lowestone that will guarantee shedulability of the tasks with the newly alulated Ui.The shedulability riteria, ∑

U ≤ 1, is based on the EDF shedulability ondition(Equation 4) [LiL73℄, but on the right side of the inequality we now have fi

fm
instead



25of 1 to represent the lowered CPU speed. When new tasks are released, EDFwill in task_release(Ti) on line 5 alulate the utilization for the new task, andthen on line 6 all selet_frequeny(), whih now may want to raise the CPUspeed to re�et the inreased workload. No expliit transition delay onsiderations,nor expliit shedulability failure handling, is present in EDF. Its purpose here issolely to illustrate the funtionality of onservative DVS as opposed to the aggres-sive tehnique implemented in Feedbak DVS-EDF. The authors of EDF have alsopresented RM, an energy onserving Rate Monotoni based algorithm with on-servative DVS support, and laEDF (Look Ahead EDF), an EDF based power-awaresheduler with aggressive DVS support [PiS01℄.4.1.5 Comparing the Presented AlgorithmsWe now have onsidered �ve di�erent algorithms for power-aware proessor shedul-ing. The one based on the Rate Monotoni method is alled LPFPS. This algorithmis pre-emptive and seeks energy savings in two di�erent ways: if only one job remainsleft to be sheduled, it is run on a lower lok frequeny. If no jobs are left wait-ing for proessor time, then the proessor is put to sleep, and is later awoken witha timer. Beause the Rate Monotoni method guarantees an utilization degree ofapproximately 0.69, in an RM shedule there most often is plenty of idle time. TheLPFPS algorithm also onsiders the proessor wakeup delay when making powerdown deisions.The other four algorithms are based on the Earliest Deadline First method. The �rstone presented is alled LEDF and supports only two di�erent CPU speeds. At thebeginning of eah job the sheduler alulates whether the job will meet its deadlineif sheduled at the lower speed. The higher speed is used only when needed. Thissimple algorithm has later been enhaned by the same authors with E-LEDF. Herealso CPU state transition osts in time delays and energy waste are onsidered. Astate transition is made only if it is worthwhile. Very short transitions not alwaysare. Even E-LEDF supports only two di�erent speeds.Out of the presented algorithms the most versatile is Feedbak DVS-EDF. Thisalgorithm aggressively seeks energy savings by starting the exeution of eah job witha low speed. Only when needed to guarantee timely exeution does the shedulerrun the job at high speed. The idea here is the �nding that most real-time jobsexeute signi�antly faster than their budgeted worst-ase exeution times. In orderto �nd an optimal starting speed, Feedbak DVS-EDF uses statistial information



26from previous instanes of the task. Jobs may pass unused exeution time on to thenext job.Even though Feedbak DVS-EDF is advaned even it ould be further improved. Forinstane the algorithm divides the task's exeution times into two piees, CA and CB,where the time CA is spent running at the lower speed, and CB with highest speed.By further dividing the exeution time into smaller fragments, where eah fragmentis exeuted slightly faster than the previous one, even greater energy savings ouldbe found. This would, however, add to the algorithm's omplexity. The usefulnesswould depend on the amount of DVS states the used proessor platform supports.We ended our review of energy saving hard real-time sheduling algorithms by pre-senting EDF, a simple algorithm that utilizes DVS onservatively. Where Feed-bak DVS-EDF begins exeution of tasks with low speed, EDF initially runs tasksat high speed, and one slak time is arued, forthoming tasks are run at slowerspeeds, if possible. This algorithm makes voltage and frequeny saling deisionsonly at the end of and upon release of tasks, but is signi�antly less omplex thanFeedbak DVS-EDF.4.2 Soft Real Time ShedulingWe will in this subsetion explore two soft-real time CPU sheduling algorithms.Soft real-time shedulers provide a statistial performane guarantee. A ertainperentage, say p, of the sheduled jobs will �nish within a ertain time period.Oasional misses of jobs are allowed. Therefore one might believe that the softreal-time shedulers would be more simple than their hard real-time ounterparts.That is, however, not the ase. As will be revealed, these algorithms are far moreomplex than their hard real-time ounterparts. Their system model onepts andpatterns of design are original, whereas the hard real-time shedulers evidently wereo�spring of the original EDF and RM algorithms published by Liu and Layland in1973 [LiL73℄.Presently, the most ommon implementation environment for soft real-time shed-ulers are multimedia systems. For instane MPEG video or audio ompressiondeoders are onsidered fully usable even when they oasionally do miss a frameor sound sample. Beause suh a relaxation to the strit hard real-time shedulersmight provide signi�antly better system throughput or response times to interativesystems, soft real-time shedulers are inreasingly popular.



274.2.1 The ESheduler AlgorithmThe ESheduler [YuN06℄ is based upon work done in the GRACE projet [YuN03℄.The algorithm gives a statistial probability guarantee that sheduled tasks (EShed-uler uses the term �proess�) meet their deadlines. This is usually su�ient formultimedia appliations, where it su�es to know that p % (where p might be forinstane 95) of video frames are timely deoded. ESheduler onserves energy byutilizing DVS aggressively. It is based on the EDF algorithm.ESheduler has two main tasks to perform: �rstly, task sheduling, i.e. to sheduleinstanes of tasks guaranteeing that they meet their deadline with probability p %,and seondly, speed saling, i.e. to run these sheduled proesses onserving as muhbattery power as possible. These funtions will be desribed next.Sheduling tasks The fundamental assumption in the design of ESheduler is,that while the atual CPU demand of a task's individual jobs varies greatly, the yledemand distribution of the task is pretty stable. ESheduler maintains statistis ofthe atual CPU yles needed by the last n jobs of a task.

Figure 11: ESheduler ounts the yle demand of tasks [YuN06℄.ESheduler alulates the yle demand of a job as depited in Figure 11. Theounter is implemented as an extra �eld in the Proess Control Blok (PCB) of theoperating system. Eah time the task is swithed out the CPU yle ounter ofthe job is updated, and when the job �nishes, its entire yle ount is added up tothe statistis. Based upon this statistis, aurate estimations of forthoming CPUyle demand an be made, and the task an be sheduled an appropriate amountof CPU time. Sheduling too little CPU time will result in low quality of servieas for instane video frames aren't deoded timely, while sheduling too muh timewill waste CPU resoures and onsume energy super�uously.The graph in Figure 12 depits the umulative yle demand of one task's (Ti)
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Figure 12: The umulative yle demand distribution in ESheduler[YuN06℄.elapsed jobs (Ji). The umulative distribution funtion is based on Equation 6.
F (x) = P [X ≤ x] (6)Firstly remember, that jobs are instanes of one task. Now let's onsider this equa-tion. It indiates the probability of the umulative CPU yle demand of jobs of onepartiular task (X), of being equal or less than x. In Figure 12, Cmin is the smallestyle demand among the task's onsidered jobs, and Cmax the largest. The interval

[Cmin, Cmax] is divided into r setions. Eah setion forms an area in the histogram.The height of a setion area indiates the probability that the job needs at most bkyles, where bk is the upper boundary of the setion. From this histogram, it ispossible to extrat the yle boundary bk below of whih p perent of the jobs of thetask remain.In soft real-time appliations, it su�es to provide a statistial guarantee that pperent of jobs meet their deadline. Before the task is aepted into the set ofshedulable tasks, a shedulability test needs to be performed. The task is shedu-lable if the ondition in Equation 7 is ful�lled.
n

∑

i=1

Ci/SK

Pi
≤ 1 (7)In this equation, Ci is the estimated yle demand below of whih the yle demandof p perent of job instanes of task i remain; SK is the maximum number of yles



29the CPU an ahieve at full speed, and Pi is the period of task i. The ondition ≤ 1originates from the EDF shedulability ondition (Equation 4) [LiL73℄.Adjusting the CPU speed for a task After jobs are sheduled, it is up toESheduler to exeute them at optimal CPU speed to minimize power onsump-tion. Here, its funtion resembles that of Feedbak DVS-EDF (see Setion 4.1.3).ESheduler utilizes DVS aggressively. It starts job exeution at a low CPU speedand inreases speed as needed. ESheduler is, however, a little more omplex in itsspeed saling tehnique than was Feedbak DVS-EDF.ESheduler begins by alulating an aggregate CPU speed requirement for the ur-rent task set. This speed is alulated with the equation ∑n
i=1

Ci

Pi
where the unit isyles per seond (or hertz). As an example, onsider a task set of two tasks, wherethe �rst one is alloated 12 ∗ 106 yles every 40 ms and the other 106 yles every20 ms. The aggregate CPU speed would then be 12∗106

40
+ 106

20
= 350MHz [YuN06℄.The straightforward solution would be to run the tasks at this aggregate speed.This would, however, waste energy. The estimated yle demand Ci is the valuebelow of whih the yle demand of p perent of tasks remain. If p is for instane95, then 95 perent of the tasks require less than Ci yles. The yle demand ofindividual tasks vary greatly. Jobs are initially ran at a low speed, and as the jobyle ount inreases, CPU speed is gradually inreased aording to a speed shedulethat ESheduler alulates for every task.The speed shedule of a task onsists of oordinates (x, y) in an ordered list. At

x or more spent yles the CPU is aelerated to speed y. An example of a speedshedule might be: (0, 100MHz), (1 ∗ 106, 120MHz), (2 ∗ 106, 180MHz). Here, thetask would be started at CPU speed 100 MHz, and after 1∗106 yles, the proessorwould be aelerated to 120 MHz. After 2 ∗ 106 yles, if the job would still not beompleted, the proessor speed would be inreased to 180 MHz.With high p values most jobs onsume less than Ci CPU yles. They will heneomplete before ever reahing the highest CPU speed points, and therefore avoidthese most energy onsuming phases. Notie that every task in the set has its ownspeed shedule. Therefore, proessor speed hanges our, besides at saling points,also at ontext swithes. The ESheduler algorithm [YuN06℄ does not expliitlyonsider proessor state transition delays when alulating a speed shedule.



30Calulating the speed shedule The approah taken by ESheduler in alu-lating a speed shedule is based upon the yle demand histogram (see Figure 12).Eah area in the histogram, starting with a yle demand of bi, is issued a spei�CPU speed. The speed shedule of any task will onsist of m oordinates, (bi, s(bi)),where the CPU speed, s(bi), is alulated using Equation 8 [YuN06℄.
s(bi) =

∑m
j=1 gj

3

√

1 − F (bj)

T 3

√

1 − F (bi)
, i = 1, . . . , m. (8)where gj is the size of the j:th yle group (the width of the area in the histogram),and T represents the time budget of a task. This variable represents the availabletime distributed among tasks aording to their yle demand. It is alulated usingthe following formula:

T =
Ci

∑n
i=1

Ci

PiThis alulation of optimal proessor speeds is based on the theoretial alternative,where CPU speed an be adjusted linearly. Real-world proessors provide onlydisrete speed alternatives. For instane, the StrongArm SA-110 provide 11 di�erentCPU speed alternatives [YuN06℄. A straightforward approah to deal with this real-world limitation is to alulate the optimal speed using formula 8, and then round
s(bi) to the nearest upper disrete speed. This is, however, not energy optimal,sine the provided speed might exeute the job unneessarily fast and waste energy.On the other hand, rounding s(bi) downwards might jeopardize timely exeution.Therefore, ESheduler expliitly onsiders all available proessor speeds, and hoosesfrom among them the most e�ient ombination for the speed shedule. Here, iteven takes into onsideration the proessor's transition delay from ative to sleepstate.The problem of hoosing the optimal CPU speed shedule is NP hard [YuN06℄.ESheduler uses an approximation algorithm for seleting the best speed ombina-tion. It should also be noted that these speed options are proessor spei�. There-fore, in order to be e�ient, ESheduler needs to be rewritten for eah partiularhardware platform it is implemented on.Implementing ESheduler ESheduler has been implemented into the Linux2.6.5 kernel with 2605 lines of C ode. In order to implement the yle demandounter, the Linux Proess Control Blok is modi�ed aording to Figure 13. The
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Figure 13: The modi�ed Linux Proess Control Blok [YuN06℄.long integer job_yles reords the number of yles used by the job; *speed_sheduleis a pointer to the speed shedule list of the task, and urrent_dvsPnt points tothe presently used speed setting.The Linux sheduler has been revised to (1) update the PCB �elds at shedulingoasions and (2) sale the proessor frequeny using DVS aording to the pro-ess' speed shedule. A higher resolution timer has been hooked to the standardLinux sheduler [YuN06℄ to allow invoking of the ESheduler every 500 µs, whihenables periodi sheduling deisions to be made at a rate su�ient for soft real-timeappliations.The ESheduler provides statistial real-time guarantees for multimedia applia-tions. Tasks are sheduled CPU time aording to their historial CPU demand.While exeuting tasks, ESheduler saves energy by adjusting the CPU speed a-ording to a speed shedule it has alulated. Tasks are initially run at slow CPUspeeds, and the speed is aelerated as exeution progresses.4.2.2 The ReUA AlgorithmThis subsetion presents ReUA (Resoure-onstrained energy-e�ient utility arualalgorithm) [WRJ06℄. It is an ambitious proessor sheduling algorithm that onsid-ers system-wide energy savings, and replaes deadlines by a onept that provideshigher �delity.The Time Utility Funtion replaes deadlines The lassial onept of dead-lines an be argued to be arti�ial. Consider, for instane, a missile ontrol system.



32In the traditional deadline-based approah, the missile must hit its target no laterthan at time D. However, in a real world situation, the hit might be onsideredto be useful even when missing D by a hair, although a perfet miss is preferred.This kind of argumentation has lead to the development of a onept of Time UtilityFuntion (TUF), whih replaes deadlines.
Figure 14: Example Time Utility Funtions (TUF) [WRJ06℄.Some example TUFs an be seen in Figure 14. The utility of �nishing a job is de-pited as a funtion of the ompletion time. In Figure 14 (a) and (b) non-inreasingTUFs an be seen. Here, the utility of ompleting the task dereases or stays thesame as time goes by. In () a TUF of a missile appliation is depited. Here, theutility inreases as the missile approahes its target, and then quikly dereases. Atraditional deadline as a TUF is shown in Figure (d). The utility of the ompletionof the task stays the same until the task's deadline, after whih the utility drops tozero. A sheduling algorithm that tries to maximize the sum of TUFs in the systemis alled Utility Arual.The TUF of task Ti is denoted by Ui, and the TUF of job Jk is denoted by UJk

. Theutility when Jk is ompleted at time t is denoted UJk
(t). When sheduling tasks,the aim of ReUA is to maximize the utility while minimizing energy onsumption[WRJ06℄. In order to ahieve this, ReUA uses a unit alled UER (Utility-EnergyRatio). The system's UER is de�ned as follows:

UER =

∑n
i=1 Ui

∑n
i=1 Eiwhere Ui denotes the TUF of task Ti, and Ei the energy (desribed hereafter) on-sumed by task Ti. Hene, UER is an indiator of system-wide energy e�ieny:utility ahieved per energy unit.System wide energy onsiderations Reduing the CPU power requirementwill lead to longer task exeution times. If hardware omponents suh as displays,hard drives or memory hips need to be powered up during this time, reduing CPU



33speed might in the worst ase even inrease the system-wide energy requirement, asother omponents need to be powered up longer. When making sheduling deisions,ReUA onsiders the system-wide power onsumption instead of only the CPU poweronsumption. While the CPU power onsumption is alulated using the formula
P = C×f×V 2 (Equation 5), The equation for the system-wide energy onsumptionis estimated using Equation 9 [WRJ06℄:

P = S3 × f 3 + S2 × f 2 + S1 × f + S0 (9)where f is the operating frequeny; S3 is the CPU power requirement; S2 is ausedby CMOS power leakage; S1 presents the power requirement aused by omponentssuh as memory hips operating at a �xed voltage independent of frequeny, and S0is a onstant representing omponents suh as displays, whose power requirement isindependent of both operation frequeny and voltage [WRJ06℄. From Equation 9,the following equation for the energy onsumed per proessor yle an be derived:
E(f) = S3 × f 2 + S2 × f + S1 + S0/f (10)Calulating proessor yle demand When alulating the proessor yle de-mand to be alloated to a task ReUA, like ESheduler (Setion 4.2.1), uses statistialinformation. But unlike ESheduler, ReUA does not expliitly present a mehanismfor olleting and proessing statistial information: the CPU yle demand meanand variane are assumed to be given. To alulate a task Ti's yle demand Ci,ReUA uses Equation 11 whih provides a statistial performane guarantee:
Ci = E(Yi) +

√

[pi × V ar(Yi)]/(1 − pi) (11)where Yi is the yle demand distribution; E(Yi) is the expeted yle demand, and
V ar(Yi) is the statistial variane of yle demand distribution. The variable pi isa probability. In ReUA, a pair {vi, pi} is used to indiate that vi of the maximalutility (TUF) should be ahieved with probability pi.This statistial performane guarantee an be presented as Pr(U(si,j) ≥ vi×Umax

i ) ≥

pi [WRJ06℄, where si,j is the sojourn time of Ji,j . To alulate the upper bound for
Ti's sojourn time, ReUA uses a variable Di and alls it �ritial time�. To ensure that
vi of the maximal utility is ahieved with probability pi, ReUA needs to guaranteethat
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Di = U−1

i (vi × Umax
i ) (12)where U−1

i is TUF's inverse funtion. The values Ci and Di are alulated in ReUA'sofflineComputing() proedure that an be seen in Figure 15. Equation 12 is usedon line 3 to alulate Di. On line 4 Equation 11 is used to alulate the amount ofCPU yles to be alloated to Ti, and this number is plaed in the variable Ci. Thisproedure also alulates f o
Ti
, the optimal speed (frequeny) at whih to exeute Ti.

Figure 15: The offlineComputing() proedure of the ReUA algorithm[WRJ06℄.The ReUA main pseudo ode The algorithm for ReUA an be seen in Figure16. As input ReUA reeives the urrent task set T = {T1, . . . , Tn} and the urrentunsheduled job set Jr. From these, ReUA will alulate its output, i.e. the job tobe exeuted Jexe, and its exeution speed, fexe.On line 3 the OfflineComputing(T) proedure is alled, and Ci, Di and the optimalfrequeny f o
Ti
of eah task are alulated. (On line 4, the urrent time tcur is plaedin t.) The swith-statement on lines 5�8 manages the variable Cr

i whih holds theremaining CPU yles alloated to the urrent job. Upon task release (line 6), theentire alloated yle amount is plaed in this variable; upon task ompletion (line 7)the variable is set to zero, and on other sheduling oasions (line 8) Cr
i is updatedto re�et the number of remaining yles.In the for loop starting on line 9, a feasibility hek is performed on all unsheduledjobs. The expeted alulation time of any job may not exeed its termination timeat highest CPU speed. If a job is not feasible, it is aborted (lines 10�11). Otherwise,on line 13, ReUA alulates the resoure dependenies of the job using the proedurebuildDep().The for loop on lines 14�15 alulates the UER (Utility-Energy Ratio) for eahunsheduled job. This Figure implies �how muh utility would be ahieved if this job
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Figure 16: The ReUA main pseudo ode [WRJ06℄. Symbols: Jr de-notes the urrent unsheduled job set; Ci CPU yles alloated to Ji; Cr
iremaining yles of urrent job.were to be exeuted starting at this moment�. The alulateUER() proedure evenonsiders job dependenies alulated by buildDep(): if Ji is dependent of tasks

Ji.Dep = {JDep1
, . . . , JDepn

}, then the jobs in Ji.dep are inluded when alulating theUER for Ji.On line 16, the jobs are sorted in non-inreasing order aording to their UER. Inthe for loop starting on line 17, the jobs whih are meaningful to run, i.e. the oneswhose UER is larger than zero (line 18), are inserted into a list σ in order of theirritial times. This is done by the proedure insertByECF() (line 19). Critialtimes are moments when, at the latest, the job needs to be �nished in order toguarantee the desired performane level de�ned by {vi, pi}. The ECF value of a job
Ji is not neessarily the ritial time of Ji alone: if another job is dependent on Ji,the atual ECF of Ji might be earlier than its tentative ECF. The EDF prinipleis followed by insertByECF(). In essene, on lines 16�21, the jobs are �rst sorted



36aording to their UERs, and then aording to their ECFs. The resulting orderedlist is plaed in σ.On line 22, the job at the head of σ is hosen for exeution. On line 23 in proeduredeideFreq(), ReUA alulates the optimal exeution speed for the job onsideringavailable DVS parameters. On line 24 the algorithm returns the job to be sheduled
Jexe, and its exeution frequeny fexe.4.2.3 Comparing the Presented AlgorithmsPresented in this setion were ESheduler [YuN06℄ and ReUA [WRJ06℄, two reentalgorithms for CPU sheduling in a soft real-time environment. Both algorithmsprovide a statistial guarantee that jobs meet the desired level of performane withprobability p. In ESheduler, the proess of olleting and analyzing the aumu-lated CPU yle demand statistis is expliit; in ReUA, the mean and variane ofCPU yle demand is onsidered to be given.ESheduler is a traditional energy onserving CPU sheduling algorithm: it onlyonsiders the power requirements and savings of the CPU (Equation 5) and ignoresthe power properties of the rest of the system. The approah hosen in ReUAis more realisti, as it estimates system-wide energy savings (Equation 9). Howsuperior as the latter approah may seem, one should note that, in essene, thedi�erene is just whether we hoose to onsider the CMOS power onsumptionequation P = C×f×V 2 or the system-wide equation P = S3×f 3+S2×f 2+S1×f+S0when estimating task power requirements.Where ReUA stands out in omparison to ESheduler is in its onsideration ofresoure dependenies, and its introdution of the TUF onept that has been ar-gued to provide higher �delity than deadlines. Neither of the algorithms expliitlytakes into onsideration transition delays when making DVS frequeny and voltageadjustment deisions.



375 Power Aware Devie ShedulingThe main problem with devie sheduling is the same as with proessor sheduling.We have one resoure with multiple users, and wish to share the resoure betweenthese multiple users in a purposeful way. In real-time systems espeially deadlinesmust be met. The major di�erene between proessor and devie sheduling is thatthe devie sheduler needs to alulate a distint shedule for eah devie. Systemsmay ontain multiple devies, and eah task may use several or none of them. Thesituation is hene not the same as with proessor shedulers, whih we onsideredin Setion 4: the proessor shedulers were all aimed at uniproessor systems, andevery task naturally utilize this single proessor.Devies onsidered in this setion have at least two power states: a sleep state andan operating or awake state. In the sleep state, the devie is not able to provide itsservie, like disk or network I/O, but in this state the devie onsumes less energythan in its operating state. Some devies may have several power states, where eahstate psi+1 onsumes less energy than state psi, but takes a longer time to wakeup from. The transition between states is ontrolled by the operating system. Atransition between states always inludes a ertain penalty in terms of time andenergy ost. A transition takes a ertain amount of time, and requires a ertainamount of energy. A proper power-aware real-time sheduler needs to onsiderthese time and energy osts when making sheduling deisions in order to guaranteemeeting of deadlines.5.1 Hard Real Time ShedulingThe problem of power-aware real-time devie sheduling has in reent researh beentakled in at least two di�erent ways. The aim in for instane the EEDS algorithm[ChG06℄ is to enhane the system's EDF based task sheduler with an energy awaredevie sheduler. One an also entirely separate the devie sheduler from the pro-essor sheduler, as has been done in MUSCLES and LEDES [SwC03℄. A ompletelydi�erent approah is hosen in the EDS [SwC05℄ algorithm, whih due to its CPUtime and memory requirement operates o�ine. In the next setion we will exploreeah of these algorithm
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Figure 17: The pseudo ode of the LEDES sheduler [SwC03℄. Notations:
kj a devie, τi task, Li the set of devies needed by τi, si start time of taski, ci exeution time of task i, t0,j transition time of devie j.5.1.1 Low Energy Devie ShedulerThe basi assumption in Low Energy Devie Sheduler (LEDES) [SwC03℄, Figure17, is that the transition time, the time needed for the devie to swith from sleepstate to the powered-up state (or vie versa) is shorter than the exeution time ofany task instane. If we aept this assumption, then it su�es to shedule only onetask into the future at a time. This is enough to guarantee that no deadlines will bemissed. In other words, if the urrent task instane is τi we need only onsider thedevie shedule up to and inluding τi+1. This will be enough for us to wake up alldevies so that they will be ready for use when needed. This assumption implies thatno matter how many tasks there are in the system, LEDES need only to onsidertwo � the urrent and the next one � in its devie shedule alulations. This is why



39the workload LEDES adds to the system is aeptable. LEDES supports, however,devies with only two di�erent states � sleep and powered-up.As input parameters LEDES (�gure 17) reeives a pointer to a devie kj , the shedul-ing information of the urrent and next tasks, Ti and Ti+1. LEDES is ativated ateither the start (line 1) or the end (line 16) of a task. If the devie kj is swithed on(line 2) while not being needed by the urrent or the next task (line 3) the devie isswithed o� (line 4). If kj is needed by the next task (line 6), but will make it bakonline if we power it down for the remainder of the exeution of the urrent task,and power it up when �nishing the urrent task (line 7), we power kj down (line 8).On line 7, LEDES also onsiders devie state transition time t0,j . If kj is needed bythe next job, but kj wouldn't make it bak online on time if we would initiate itswakeup as late as at the end of the urrent task (line 12), then kj is immediatelywoken up (line 13). These onsidered ases inlude all possible ases we need to takeinto aount at the beginning of a task.The other sheduling instane of LEDES is at the end of tasks (line 16). If thedevie kj is powered up while not being needed by the next task (line 18) it an bepowered o� (line 19). In addition, we must on line 18 hek that the powering downof the devie will be �nished by the start time of the next task, as the devie anbe needed at that oasion. (In LEDES, the powering up and powering down statetransition times are assumed to equal eah other, and both are notated by t0,j.) Inother ases, the devie is powered up (line 22).We believe that one if sentene is missing from the LEDES pseudo ode. On line22, before waking up kj, we would want to hek that kj atually is needed by Ti+1.It is, of ourse, unneessary to wake up the devie if it isn't needed by the next task.Beause LEDES makes sheduling deisions only in the beginning and at the end oftasks, its implementation into the operating system's proessor sheduler should bepretty straightforward: we just all the LEDES proedure at the end and beginningof tasks. The omputational omplexity of LEDES is O(n), where n is the size ofthe set of devies attahed to the system.With LEDES, implemented into a Rate Monotoni based sheduler, devie energysavings of up to 40 perent have been reported [SwC03℄. As the algorithm shows,LEDES supports only two distint power states.



40

Figure 18: The MUSCLES sheduler [SwC03℄. Notations: S the taskshedule; PS set of power states; ki devie; sm start time of task m; cmexeution time of task m; psi,j power state j of devie i; psi,0 the poweredup state.5.1.2 The Multi-State Constrained Low-Energy ShedulerSeveral ontemporary devies and peripherals, like �ash memories, hard drives andnetwork adapters, support multiple power states for energy onservation. For thesepurposes, the authors of LEDES have presented an algorithm alled MUSCLES(multi-state onstrained low-energy sheduler) [SwC03℄. In MUSCLES, devies aremoved between states one step at a time. Let ki be a devie, and psi,j an arbitrarypower state of this devie. From this state, it is possible to swith to state psi,j+1or psi,j−1 in one step. In MUSCLES, the state psi,0 is the operating state of thedevie; the other states are power saving states, where the devie doesn't provideoperational funtionality. State psi,j+1 requires less power than state psi,j, but takeslonger to wake up from.If we aept these assumptions, we an no longer build upon the idea of LEDES,where the wakeup transition time never exeeds the exeution time of the task.MUSCLES still relies on the assumption that a transition from state psi,j to psi,j+1or psi,j−1 never exeeds the exeution time ci of any task. However, if we are instate psi,j , the wakeup � i.e., the transition to state psi,0 � may endure up to j × citime units. When j ≥ 2, the wakeup time may exeed the assumption we built uponin LEDES. Therefore, in order to reliably shedule devies in MUSCLES, we need



41to alulate the shedule further into the future. Whereas the time requirement ofLEDES is O(n), where n is the amount of devies in the system, the time requirementof MUSCLES is O(np), where p is the size of the task set [SwC03℄.Let us now study the pseudo ode of MUSCLES, presented in Figure 18. First itis worth notiing that MUSCLES is ativated at either the start time of a job �indiated by sm in the pseudo ode � or at the end of the job, indiated by sm + cm,where cm is the job's exeution time. As input parameters, MUSCLES reeives S,the task shedule of the system; P , a list of devies eah task uses, and a deviepointer ki. The job of MUSCLES is to alulate whether to swith ki to a lesspower-onsuming state, to swith the devie loser to the wakeup state, or to leavethe devie in its urrent state.On line 1, we �nd the �rst task τL that will need devie ki, and on line 2 we alulatethe amount of sheduling instanes before τL and denote this Figure with X. Letthe urrent power saving state be psi,j. If X ≥ j + 1, ki may safely be swithedto a lower power state (line 3), and there will still remain a su�ient number ofsheduling oasions to put ki bak online on time. If there are as many shedulingoasions as there are power states between the urrent one and the operating state,i.e. X = j, then ki is swithed one state towards the wakeup state, i.e., from psi,j to
psi,j−1 (line 4). This will guarantee that the devie will be woken up in time whenit is needed.The other sheduling instane is at the end of the job, at time sm + cm. Here, weproeed in the same way as at the beginning of the job. It is resolved whih task�rst needs devie ki (line 5). Then we deide how many sheduling oasions thereare before the start of this task (line 6). If there are more sheduling oasions thanthere are power states between the urrent state and the wakeup state, the devie isput into a lower power state (line 7). Otherwise, if the amount of states equals thenumber of sheduling oasions, the devie is swithed one state towards the wakeupstate (line 8 and 9). On other oasions, the devie is left in its urrent state.5.1.3 The Energy-E�ient Devie Sheduling AlgorithmA state transition, as suh, always requires a ertain amount of energy and time.Therefore very short transitions into the sleep state and bak atually do not addup to net energy savings. We will now disuss an algorithm alled Energy-e�ientDevie Sheduling or EEDS [ChG06℄. The pseudo ode for the algorithm an be
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Figure 19: The EEDS sheduler [ChG06℄. Notations: λk indiates de-vie k; BE is the breakeven time; Jrun the job urrently being exeuted;
Dev(Jrun) the set of devies Jrun needs; DS(λk, t) the devie slak time of
λk at time t; Up(λk) the wakeup time of λk; twu(λk) the transition delaytime of λk.seen in Figure 19. The algorithm supports devies with two power states, sleep andative. EEDS alulates the breakeven time for eah devie. This is the length ofthe time period it is worthwhile to put the devie in sleep mode. For shorter periodsthan this, the state transition osts will exeed the net gain. On line 2 in the pseudoode, EEDS alulates the breakeven time BE of eah devie. The length of thedevie's breakeven time depends on the properties of the devie: how long a timethe transition from ative to sleep state (and vie-versa) takes, how muh energythe transition(s) require, and how muh energy the devie spends in ative vs. sleepstate.EEDS utilizes a data struture of the type queue where the ative jobs are orderedaording to the EDF priniple � the one with the losest deadline at the head ofthe queue. This job is sheduled (line 6). We all devie slak time the length of the



43time period until devie λk is needed next time. On line 8 we resolve whether thereis a woken up devie λk whose devie slak DS (the length of the time period whenthe devie is not needed) is greater than its breakeven time BE. Suh devies maybe put to sleep, whih is done on line 9. In order to wakeup these devies so thatthey will be ready when needed next time, EEDS sets a timer on line 11.As the timer value we put the urrent time t added with the devie's slak time
DS(λk, t) subtrated with the wakeup time twu(λk). Due to the dynami propertiesof jobs, the devie slak time may inrease even during the sleep time. Thereforethe timer of the devie may be updated on lines 14 and 15. On line 18 we hekwhether the timer of a devie has expired, and if so, wakeup the devie on line 19.5.1.4 The Energy-Optimal Devie ShedulerThe shedulers desribed earlier are all online shedulers. Swaminathan and Chak-rabarty [SwC05℄ have in 2005 published a real-time devie sheduler aimed at o�ineuse. It di�ers from all previous algorithms desribed in this thesis also in the sensethat it ompletely rejets both EDF and RM and implements a sheduling meh-anism of its own. This algorithm is alled Energy-optimal devie sheduler (EDS).In order to �nd an energy optimal devie shedule this algorithm builds a deisiontree using an iterative algorithm. To limit memory spae requirements, EDS prunesbranhes from the tree when possible.
Table 4: The EDS example job set [SwC05℄, where ai indiates the arrivaltime; ci the exeution time, and di the deadline of a job. The odd-numbered jobs belong to task τ1 and use devie k1, and the even-numberedjobs belong to task τ2 and use devie k2.Let us start our study of the EDS algorithm by onsidering an example. In Table4 we have a set of jobs from two tasks, τ1 (the odd-numbered jobs) and τ2 (theeven-numbered jobs). τ1 uses the devie k1 and τ2 the devie k2. The missionof EDS is to �nd suh start times for all of these jobs, that devie energy use isminimized while deadlines are met. EDS solves this problem by building a shedule



44tree. The beginning of the shedule tree built using the task set of Table 4 an beseen in Figure 20.

Figure 20: The EDS sheduling tree after jobs j1 and j2 have been shed-uled [SwC05℄. Syntax: (ji, time, Ei), where ji is the job number, time thestart time of ji and Ei the devie energy onsumption up to time.The shedule tree onsists of verties, where eah vertex is represented as a 3-tuple
(ji, time, Ei). In this tuple ji indiates the job number (from Table 4), time is a validstart time for ji aording to this shedule, and Ei indiates the amount of energyspent by the devie i aording to this shedule up to time. Verties (x1, x2, x3) and
(y1, y2, y3) are onneted by an edge if y1 an be sheduled at y2 when x1 has beensheduled at x2 [SwC05℄.Calulating the energy onsumption Assume that eah devie has two states,a low power sleep state psl,i and a high power working state psh,i. Let t0,i be the tran-sition time between these states, and P0,i be the transition power requirement. Let
Ps,i and Pw,i indiate the power spent when in sleep and working states, respetively.The energy requirement is alulated using the formula

Ei = Pw,itw,i + Ps,its,i + mP0,it0,i (13)where m is the amount of state transitions; ts,i is the time spent in sleep state, and
tw,i is the time spent in working state [SwC05℄.Building the shedule tree The building of the shedule tree is started with adummy vertex (0, 0, 0). Aording to Table 4, jobs j1 and j2 have been released attime 0, and will hene be added to the tree. Let's begin with j1. The ompletion



45(exeution) time of j1 is 1 and its deadline is 3 (Table 4). Therefore, j1 may besheduled at time 0, 1 and 2. We therefore add three verties, (1, 0, e1), (1, 1, e2)and (1, 2, e3) to the tree, and onnet these with an edge to the root vertex. Theenergy onsumption value ei for eah vertex is alulated using Equation 13, andthe orret values for e1, e2 and e3 are 0, 8 and 10, respetively (we will here exludethe details of energy onsumption alulation). We add these verties to the tree, asan be seen in Figure 20. In a similar fashion, we add to the tree the verties of j2onneting it to the root vertex, beause even j2 was released at time 0. Aordingto Table 4, the ompletion time of j2 is 2 and its deadline is 4. Therefore, it anbe sheduled at times 0, 1 and 2. The orresponding values for ei (alulated usingEquation 13) are 0, 8 and 10, respetively. Hene, we add the verties (2, 0, 0),
(2, 1, 8) and (2, 2, 10) to the tree, as an be seen in Figure 20.Pruning the shedule tree EDS performs both temporal and energy pruning.This way it will redue the size of the shedule tree in order to ease memory spaeand proessor time requirements. Continuing with our example, as the next step,EDS performs temporal pruning. Consider the vertex (1, 2, 10) in Figure 20. If j1 issheduled at time 2, it will �nish at time 3, beause its ompletion time is 1 (Table4). However, �nishing j1 at time 3 would mean that the exeution of j2 would startno earlier than at 3, and beause the ompletion time of j2 is 2, j2 would miss itsdeadline at 3. Therefore, this shedule is unfeasible, and the branh of the treestarting with node (1, 2, 10) an be pruned. This is indiated by the ross in Figure20. By similar reasoning, we will also be able to prune the branhes starting withverties (2, 1, 8) and (2, 2, 10). Let us �rst onsider (2, 1, 8). If the �rst sheduledjob is j2 at 1, it will �nish at 3 but then j1 would ertainly miss its deadline at 3,and hene this shedule is unfeasible, and this branh an be pruned. Similarily,onsidering vertex (2, 2, 10), if j2 at 2 is the �rst sheduled, it will �nish at 4, butthen j1 would have missed its deadline at 3, so also this branh an be pruned.The seond form of pruning utilized by EDS is energy pruning. In Figure 21, whihdisplays the entire sheduling tree, onsider the verties (2, 2, 14) and (2, 2, 16) lo-ated two edges away from the root vertex. These verties indiate two shedules ofthe same job, 2, at exatly the same point in time, also 2. Also, in both branhes,exatly the same job have been previously sheduled. However, the latter of theshedules onsume 16 units of energy in omparison to 14 of the �rst one. Beauseour aim is to minimize energy onsumption we may here utilize energy pruning,and disard the rest of the branh with the higher energy onsumption. Energy
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Figure 21: The omplete EDS sheduling tree [SwC05℄. The least energyonsuming shedule of the 7 jobs has been found.pruning an always be made when two jobs are sheduled at the same time, and theorder of the previously sheduled jobs among both branhes are idential [SwC05℄.One we have �nished the �nal sheduling tree, i.e. inluded all the leaf verties,we hoose from among the leaf verties the node onsuming the least energy (68)by eliminating higher-energy verties. The path from the dummy vertex (0, 0, 0) tothis lowest-energy leaf vertex (6, 10, 68) indiates an energy-optimal shedule of thejob set of Table 4.The EDS pseudo ode The pseudo ode of the iterative EDS algorithm an beseen in Figure 22. As initialization, on line 2, the dummy vertex (0, 0) is put intothe openList. In the for loop starting on line 3 all verties in the openList areproessed. On line 5, a set τ ′ is generated out of the jobs that have been released upto the time stamp of the urrent vertex. Out of these jobs we generate new verties,and prune those that would be unfeasible. On lines 15�22 we ompare all pairsof verties on the urrent height of the tree, and if two with idential shedulingoasions are found, we prune the one with the higher energy requirement. TheEDS algorithm is �nished on lines 25�27 when all jobs have been sheduled, i.e.,when the height of the tree equals the number of jobs.
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Figure 22: The EDS pseudo ode [SwC05℄.Despite its pruning tehnique, its memory and omputation time requirement ofEDS may be exessive [SwC05℄. EDS is aimed at o�ine use, meaning that theshedule is omputed before run-time. Also, the shedule alulated by EDS isnon pre-emptive. Jobs are exeuted from start to �nish without ontext swithes.Therefore, jobs may have to wait for long times while large jobs are being proessed.5.1.5 Comparing the Presented AlgorithmsWe now have presented four algorithms for power-aware devie sheduling. Out ofthese shedulers, LEDES and MUSCLES are add-ons to the system's task sheduler.



48They also have shortomings. For instane the basi assumption in LEDES is thatthe transition time of a devie may never exeed the exeution time of any job. Asa proess in a real-time system may onsist of just a few lines of mahine ode that,for instane, reads a sensor measurement �gure, and for instane a hard-drive maytake several seonds to wake up from sleep state, we always annot build upon thisassumption.The bigger brother to LEDES is MUSCLES whih supports several sleep states.However it does not support several operational states. Reall from our disussionof proessors, that many ontemporary CPU's provide several operational states,where lesser throughput is provided for less energy ost. MUSCLES does not supportany similar funtionality on devies.Neither LEDES nor MUSCLES alulate the net gain of state transitions. This is,however, done by EEDS whih, essentially, is an enhaned EDF sheduler. Deviesthat are urrently not needed and whih in spite of transition osts are bene�ial tobe slept down, are put to sleep and awoken with a timer.Our �nal algorithm, EDS, alulates an energy-optimal shedule using a deisiontree. Due to its omplexity, this algorithm is intended for o�ine use. The authorsof EDS also have published a heuristi algorithm,Maximum Devie Overlap (MDO),whih seeks an approximate solution to the same problem and operates in polynomialtime [SwC05℄.



496 System-Level Power Aware ShedulingBy using Dynami Voltage Saling, the proessor's operating frequeny and voltagemay be regulated during run-time. Sine the proessor's energy onsumption ubi-ally depends on frequeny and voltage, impressive CPU energy redutions may beahieved using this tehnique. There is, however, a downside ompliating the mat-ter. Besides the proessor, omputer systems onsists of other omponents, suh asmemory and ahe memory hips, graphi adapters, network ards, bus ontrollers,graphis proessors, modems, wireless network adapters, and so forth. Performinga alulation takes a longer time when the proessor speed has been lowered. Whenonsidering the CPU energy onsumption in isolation, a frequeny and voltage re-dution using DVS indeed results in energy savings. However, as the proessingtime inreases, all the other omponents need to be longer in the standby state.Components suh as memory hips generally require a �xed power supply regardlessof the DVS setting of the CPU. Hene, when system-level energy redutions are theaim, onsidering the CPU power requirement in isolation is not su�ient. Mostearly DVS based CPU sheduling algorithms have hosen to overlook this fat intheir basi assumptions [FEL04℄. This is also the ase with the algorithms desribedin Setion 4.

Figure 23: The e�et of the proessor saling fator s on system-levelenergy onsumption [ZhC05℄.Consider Figure 23. The X axis indiates a StrongArm SA 1100 proessor salingfator s de�ned as s =
max_frequency

current_frequency
, and the Y axis indiates power onsump-



50tion of a task, in watts. In the graph, the rossed line Qproc(s) depits the poweronsumption of the SA 1100 proessor alone. The possible s values are the disretesaling fators provided by this proessor. The energy optimal s value Θ = 2.8 ismarked in the graph. Next, onsider the dotted line Qdev(s). This monotoniallyrising line indiates the power onsumption of the devie set needed by the task,exluding the proessor. As the saling fator s inreases, and hene the CPU speeddereases and proessing times inrease, the aggregate power onsumption of thedevie set inreases. The line with irles shows the ombined proessor and de-vie power requirement when stati devie power requirement is onsidered to be
0.2W , whih often is the ase with for instane Synhronous Dynami Random A-ess Memory (SDRAM) memory hips [ZhC05℄. The optimal saling fator, whenonsidering both the power onsumption of the proessor and the devie set, is 1.39and this value is marked in the graph with θ[k]. The line with squares shows theombined energy optimal voltage saling fator when the devie set stati powerrequirement is onsidered to be 0.4W . This is the ase with many �ash drives.With this power requirement, the energy-optimal saling fator θ[k] = 1.07. Com-paring this value to the CPU energy optimal value of 2.8 and the 0.2W optimalvalue 1.39 learly illustrates how the net gain of aggressive DVS values derease asproessor independent energy onsumption inreases. It has atually been shown[ZhC05℄ that when devie energy onsumption is onsiderably large ompared toCPU energy onsumption, DVS implementations atually an spend more energythan non-DVS approahes.As the proessor takes a longer time to perform alulations, the standby energyrequirement of the devie set rises. An energy-e�ient sheduling algorithm, there-fore, needs to onsider system-wide energy onsumption when alulating an optimalsaling fator for the proessor. In the next subsetions, two reent algorithms willbe explored.6.1 duSYS: A System-Level EDF AlgorithmZhuo and Chakrabarti [ZhC05℄ have published an EDF based system-level power-aware real-time sheduling algorithm alled duSYS. Its high-level pseudo ode isgiven in Figure 24. What makes this algorithm di�erent from proessor shedulingalgorithms explored in Setion 4 is the alulation of the energy-optimal DVS salingfator. The idea behind duSYS is that the system-level energy onsumption an bewritten as a funtion of the proessor's saling fator s.



51Let Pproc be the proessor operating power onsumption, and Pd[i] be the standbypower onsumption of the devie set needed by task i. Now, the energy onsumptionof task i an be written as Q(s) = Qproc(s) + Qdev(s). Here, Qproc(s) = s × Pprocand Qdev(s) = s × Pd[i] [ZhC05℄. Beause proessors typially only have a handfulof available speed saling modes (values for s), for instane the SA 1100 has 11, itis possible for every task to numerially evaluate eah of them [ZhC05℄ and hoosethe one that will yield the lowest aggregate power onsumption. This optimal valueis denoted by θi in duSYS. The mission of duSYS is to �nd for the sheduled ativejob Jact an optimal saling fator sact. The duSYS algorithm alulates the salingfator using Equation 14 [ZhC05℄:
sact = min(

Dact − t

Eact
, θact, du(t)) (14)where Dact is the ative job's absolute deadline, t is the urrent time, Eact is thejobs worst-ase exeution time (the exeution time that has been budgeted to thetask), and θact is the optimal voltage saling fator for the task based on the task'sstati exeution parameters. In duSYS, θact is omputed o�ine. Due to the dynaminature of jobs, real exeution times vary greatly, and are generally shorter than thebudgeted stati ones. In order to utilize emerging slak times for energy savings,duSYS also alulates and onsiders the dynami utilization, du(t), when seletingthe appropriate saling fator. The value du(t) is alulated using Equation 15[ZhC05℄.

du(t) =
H − t − U−1 × (W − Eact)

Eact
, (0 ≤ t ≤ H) (15)where H is the hyper period, i.e., the least ommon multiple (LCM) of the periods ofthe sheduled tasks, W is the estimated remaining workload and U is the utilizationdegree of the system. Using the value du(t) for proessor frequeny saling, all slakavailable at time t may safely be granted to the ative job, while timely exeutionof the rest of the jobs is also being guaranteed. The term Dact−t

Eact
in Equation 14ensures that deadlines are not violated [ZhC05℄.To summarize, when seleting the optimal saling fator sact for the ative job,duSYS hooses from among three di�erent andidates the smallest one aording toEquation 14. Out of these three andidates, θact is alulated o�ine and is based onstati information (period Pi, worst-ase exeution time Ei) about the task, whereasthe purpose of du(t) is to utilize slak emerging when jobs exeute faster than theirbudgeted worst-ase exeution times.



521 W = hyperperiod × U2 while time() < hyperperiod do3 determine sact and exeute Jact using sact;4 if Jact is not �nished then5 ExecutedPart = current_duration/sact;6 W = W − ExecutedPart;7 Eact = Eact − ExecutedPart;8 ActualExecutionT imeact = ActualExecutionT imeact − ExecutedPart;9 else10 W = W − Eact;11 end if12 end whileFigure 24: The high-level pseudo ode of the duSYS algorithm [ZhC05℄.
W denotes the estimated remaining workload, Eact the budgeted exeutiontime, and U the system utilization degree.The pseudo ode of duSYS an be seen in Figure 24. Released jobs are onsideredto be sorted in a queue with the job with the highest EDF priority at the headof the queue. On line 1, the estimated workload of the system is alulated. Online 3 the highest priority job is sheduled using the saling fator sact whih hasbeen alulated using Equation 14. During the exeution of Jact, dynami runtimeinformation is maintained on lines 5�8. This information is used when alulating
du(t), whih seeks to utilize slak times for power savings. When hoosing theoptimal saling fator, duSYS onsiders the ombined proessor and devie poweronsumption in order to minimize system-wide power requirements.6.2 The Critial Speed DVS AlgorithmNext we will onsider an earlier EDF based power-aware system-wide real-timesheduling algorithm [JeG04℄. We all this algorithm Critial Speed DVS (CS-DVS).Like duSYS, CS-DVS onsiders both CPU and devie energy onsumption when al-ulating an energy-optimal DVS setting. In CS-DVS, the energy onsumption Ei ofa task τi is given by Equation 16 [JeG04℄:

Ei(η) =
Ci

η
P (CPU, η) +

n
∑

j=1

C
Rj

i

η
P (Rj) (16)



53where η ∈ [0, 1] represents the proessor slowdown fator [JeG04℄. This value indi-ates the fration of the maximum CPU speed at whih the proessor is being run(η = 1 meaning the maximum speed), and orresponds to the saling fator s usedin duSYS. In Equation 16, Ci indiates the number of proessor yles budgeted tothe task τi, and C
Rj

i the number of yles that devie Rj spends in the standby stateduring the exeution of the task τi. The notation P (CPU, η) represents the poweronsumption of the CPU at slowdown fator η, and P (Rj) indiates the power on-sumption of the devie Rj. In essene, the �rst term in Equation 16 represents theCPU power usage at slowdown fator η, and the seond term represent the sum ofthe standby energies onsumed by the set of devies Rj that task τi uses at slowdownfator η. Naturally, even omponents suh as system memory may be modeled as adevie.What CS-DVS needs to do is to minimize the energy onsumption given by Equation16. It needs to �nd the η that yields the lowest total energy onsumption for the task.Possible η values are the disrete speed settings provided by the underlying proessorarhiteture. CS-DVS �nds the η giving the lowest total energy by alulatingEquation 16 for eah available η value [JeG04℄, and then hoosing the optimal η.As visualized by Figure 23, this value need not be the one that minimizes the CPUpower usage. The η value that yields the lowest total energy onsumption is alledthe ritial speed of the task. Beause eah task may have di�erent exeution timesand use a di�erent set of devies, their ritial speeds need not be the same.The pseudo ode of the CS-DVS Algorithm is given in Figure 25. On line 1, theritial speed for eah task is alulated, and on line 2 eah task τi is initializedits individual ritial speed ηi. Energy-optimal saling fators might ause the taskset to beome unfeasible, i.e. EDF timeliness guarantees would be violated. Hene,CS-DVS might need to inrease the saling fator of some task(s). This is donein the while-loop on lines 3�8. A possible andidate task τm for speed inreaseful�lls two onditions (line 4). Firstly, the task's urrent saling fator ηm is notthe maximum speed (line 5). The seond ondition (line 6) is more ompliated.We wish to hoose the task for whih a speed inrease from the urrent fator ηito the next one ηi+1 auses as small an energy onsumption inrease per time unitas possible. Here, ∆Em represents the energy onsumption inrease between ηi and
ηi+1, and ∆tm the time gained by the speed-up [JeG04℄. From among the andidatesthe task with the lowest ∆Em/∆tm value is hosen, and this task's η is inreased.This proess is repeated (line 3) until the task set beomes feasible aording to theEDF priniple.



541 Compute the ritial speed for eah task;2 Initialize ηi to ritial speed of τi;3 while (not feasible) do4 Let τm be task satisfying:5 (a) ηm is not the maximum speed;6 (b) ∆Em

∆tm
is minimum;7 Inrease speed of task τm;8 end while9 return slowdown fators ηi;Figure 25: The Critial Speed DVS (CS-DVS) Algorithm in pseudo ode[JeG04℄.6.3 Comparing the presented algorithmsIn this setion we explored two power-aware real-time sheduling algorithms thatonsider system-wide energy onsumption when hoosing the optimal DVS settingfor the proessor. Both algorithms model a real-time task's energy onsumption asthe sum of CPU and devie set energy onsumptions. The slower the proessor isrun, the more standby energy the devies require. A power-aware real-time shedulerneeds to onsider this when making DVS setting deisions.The onsidered algorithms were duSYS [ZhC05℄ and CS-DVS [JeG04℄. Both al-gorithms are based on the EDF priniple and provide a hard real-time timelinessguarantee. The main di�erene between the algorithms is that duSYS is able toutilize dynamially emerging job slak, whereas CS-DVS operates on stati pre-runtime task information only. It is well known that real-time jobs hardly everonsume all the proessor time that has been alloated to them, but exeute fasterthan budgeted. Hene, duSYS is potentially more energy-optimal than CS-DVS.



557 SummaryIn a real-time system, alulations need not only be orret, but also be �nishedwithin a pre-de�ned deadline. The �rst serious real-time sheduling algorithms,presented in Setion 2, were Rate Monotoni and Earliest Deadline First [LiL73℄.In a hard real-time system, for instane in a paemaker, the meeting of every singledeadline is ruial. In a soft real-time system, for instane a video player, oasionaldeadline misses are tolerated.Many ontemporary real-time systems operate on onstrained devies with limitedbattery power. Power awareness in onstrained devies is disussed in Setion 3. Ex-tensive energy savings an be ahieved by utilizing Dynami Voltage Saling (DVS)[Gro03, VeF05℄ to hange the operating frequeny and voltage of the proessor duringrun-time. Using the Advaned Con�guration and Power Interfae (ACPI) [HIM06℄,the operating system may shut down devies, suh as disk drives, for time periodswhen the devies are not needed.Using low-power tehniques, the hallenge for the real-time sheduler is to maximizeenergy savings while guaranteeing that jobs meet their real-time deadlines. Due todevie wakeup delay times, the sheduler needs to initiate the wakeup proedure ofa slept-down devie before the devie is atually needed. If the devie isn't awokenearly enough, the job needing it might risk missing a deadline.Advaned sheduling algorithms suh as Feedbak DVS-EDF [DMZ02℄ and duSYS[ZhC05℄ are also able to dynamially utilize emerging slak times for energy savings.One one job �nishes earlier than budgeted, the next job may have at its proposalextra exeution time. The sheduler may use this slak time to onserve proessorenergy by exeuting the job slower.Considerable researh has been done in the �eld of power-aware real-time sheduling.The Rate Monotoni and Earliest Deadline First algorithms have been enhanedwith power-aware properties. Power aware real-time algorithms for uniproessor,devie, and system-level sheduling are explored in Setions 4, 5 and 6, respetively.
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Appendix 1. The entire Feedbak DVS-EDF algo-rithmThis is the entire Feedbak DVS-EDF algorithm [DMZ02℄ presented in Setion 4.1.3.


