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1 Introduction

In a conventional computer system, the correctness of calculations is defined by
their logical correctness. A real-time system has been defined as a system where
the calculations need not only be correct, but also be finished within a pre-defined
time |[RaS94|. Real-time systems are today used in a wide variety of computing
devices: in medical systems, in ABS brake system of vehicles, in Global Positioning
System (GPS) devices, multimedia devices like DVD and MP3 players, in mobile
phones, among others. Many of these systems are constrained devices functioning
on limited battery power. Here, the usability of the device is greatly dependent

upon the operational lifetime of the battery.

A scheduler is an operating system component responsible for sharing a resource
among multiple users. A scheduler decides which process may use the processor at a
particular moment. Common scheduling algorithms are for instance Round-Robin,
where processes are ordered in a circular queue, and CPU time is given to each
process in turn [Sta05, page 791]. Another approach is First In First Out (FIFO)
scheduling, where the process that has been in the queue for the longest time will
be given CPU time first.

In real-time systems, these commonplace scheduling methods cannot be used since
they do not guarantee meeting the time boundaries of real-time processes. There-
fore, real-time systems need special schedulers that take deadlines into account. The
research in real-time scheduling seriously began in the early 1970’s. In 1973, Liu
and Layland published their two famous real-time scheduling algorithms, Earliest
Deadline First (EDF) and Rate-Monotonic (RM) [LiL73]. EDF is based upon dy-
namic priorities, while in RM processes have fixed priorities. Basically all of today’s

real-time implementations are based upon one of these two algorithms.

In a hard real-time system, a task must always finish before its deadline. The most
demanding area of hard real-time systems are systems where human lives are at
stake. Examples include medical systems like pacemakers, military systems, and for
instance nuclear power plants. Here, bulletproof evidence that the system will meet
its deadlines are required. The missing of even a single deadline is unacceptable. In
contrast, in a soft real-time system (Section 2.3) the deadline is of a somewhat more
relative nature. In a multimedia system, for instance in a video decoder, it might
be sufficent to guarantee that 95 percent of frames are timely decoded. Occasional

out-of-sync frames are acceptable in an application of this kind.
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Many processors and devices designed for portable use provide several different
operational states. Besides its high power and speed state, the processor can be run
at a lower speed, which provides lower throughput, but consumes less energy. At
times when the processor is not needed at all, it can be put into a sleep mode which
virtually consumes no energy at all. Techniques for adjusting device throughput
and power consumption are for instance Dynamic Voltage Scaling (DVS) |[VeF05,
PLS01, VBHO03| and Advanced Configuration & Power Interface (ACPI) [HIMOG6].
These techniques allow the operating system to change the operating frequency
and voltage of the processor and other devices at run-time in order to save energy.
The introduction of run-time voltage scaling has opened new possibilities even for

real-time systems in constrained devices.

The most straightforward energy saving solution is to set the processor and/or disk
into sleep mode after a period of user inactivity |[BBC98|. Information from previous
process invocations can be used to estimate the length of the sleep interval [HwAO00].
Even more complex statistical methods based on use history can be used to estimate
when the device will be needed next time [IGS02|. As such, none of these methods
are usable in real-time systems with hard deadlines [SwCO05|. The implementation
of energy awareness in real-time systems is a more complex task. The waking up of
the processor, disk or other device from sleep mode always introduces a certain time
penalty. The device is not instantly usable but requires some time to restart. In
real-time systems this wake-up delay risks missing deadlines and, therefore, needs

special attention from the scheduler.

The solution is to implement energy-conserving properties into EDF and RM based
real-time schedulers. Reports indicate that such techniques have provided energy
savings of up to 50% |SwC03| while still guaranteeing meeting of real-time process

deadlines.

This thesis describes 13 power-aware scheduling algorithms usable in constrained
devices with limited battery resources. The theoretical background and terminology
of real-time scheduling with RM and EDF is described in Section 2, and power-
aware properties in constrained devices are discussed in Section 3. Recent energy
conserving processor scheduling algorithms are presented in Section 4, and device

scheduling algorithms in Section 5. The thesis is summarized in Section 7.



2 Real Time Scheduling

Real-time scheduling algorithms are responsible for sharing resources among users
while guaranteeing timely execution of real-time processes. In order to present real-
time scheduling algorithms, we will first introduce a system model used throughout
the rest of the thesis.

2.1 System Model

A task is a process, a piece of independently running software code. We use the
notation 7; to indicate a task, where 7 is the task’s distinctive number. One instance
of a task is called a job. In real-time systems, tasks typically have a period, a time
interval between which individual jobs of the task are released for execution. We
mark the period P;. A job of task 7; in period £ is marked with J; ;. By release

ttme we mean the time at which J; ; becomes ready for execution.

By deadline we mean the time when a job needs to be completed. We indicate this
time D;. A deadline relative to the current time is marked d;. For instance, if J;
has D; = 20 and the current time is 15, then d; = 5.

By the execution time, indicated by E;, we mean the worst case execution time of J;:
the amount of processor time needed by the job to complete. In reality, execution
times of individual jobs J;  vary greatly. Consider, for example, a real-time system
controlling a robotic arm that is removing faulty products from a composition line.
When there are no faulty products, jobs will complete extremely fast as the arm
does not need moving at all. But for scheduling reasons, we must expect the worst
case execution time. In the case of the robotic arm, this would mean the (hopefully
rare) event when all products within the arm’s range are faulty, and need to be

removed from the line.

Let e; be one instantaneous execution time of J;, where ¢; < E;. By slack time we
mean the time E; — e;, i.e. time allocated for process execution that is not actually
needed because the job finishes earlier than budgeted. This time can be utilized for

energy savings. We will return to this later.

The wutilization degree of a task is calculated by FE;/P;. The utilization of the entire

task set is calculated using Equation 1:



v-y = 1)

where n is the number of tasks. In later parts of the paper we may describe a task
(P;, E;). For instance (6,3) means a task with period 6 and execution time 3, and

(6,1) indicates a task with period 6 and execution time 1. The utilization of a task

set consisting of these two tasks would be % + % = % = %,

1. If no deadline is explicitly mentioned, then d; = P;, meaning that the deadline

according to Equation

of the task equals its period. Intuitively this means, that a job of the task must be

completed before the release of the next job.

2.2 Hard Real Time Scheduling

The fundamental real-time scheduling algorithms are Rate Monotonic (RM) and
Earliest Deadline First (EDF) [LiL73|. Neither of these algorithms provide power-
awareness, but all of the energy conscious scheduling solutions presented later in this
thesis are enhancements of either RM or EDF. Therefore, an insight into RM and
EDF is essential for understanding this thesis. Both RM and EDF will be presented

in this section.

2.2.1 Rate Monotonic

input:  list of tasks
repeat on task set:
perform RM schedulability test;
if fail alarm OS;

else

while (jobs left):

1
2
3
4
5) sort jobs in ascending order according to period;
6
7 schedule first job from list;

8

remove finished job from list;

Figure 1: Pseudo code of the Rate Monotonic algorithm.

In the Rate Monotonic scheduling algorithm, the task with the shortest period P;

gets highest priority, and is scheduled first. Because periods of tasks are constant,
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RM is a fixed-priority scheduler. Liu and Layland [LiL73| have shown that the
schedulability condition for RM is that of Equation 2:

U <n(2'" —1) (2)

where n is the amount of tasks. For instance, when n = 2, i.e. with two tasks, RM
is able to schedule the tasks if their U < 0,83. A task set consisting of 4 tasks is
schedulable with RM if U < 0,76. With large numbers of n:

lim n(2Y" — 1) = In2 (3)

n—~o0

The idea in Equation 3 is, that with large task sets, the RM schedulability condi-
tion approaches the value In2, i.e. approximately 0,69. The theoretical maximal
utilization, which also the Earliest Deadline First algorithm accomplishes, is U = 1.

In other words, RM as such cannot be considered very efficient.

Let us consider a sample RM schedule using a task set consisting of two tasks:
71—(5,2) and 75— (7,4). First, RM considers the schedulability of this task set. Ac-
cording to Equation 1, U of this task set is % + % = %,
According to Equation 2, the promised usage level that RM is guaranteed to be
able to schedule when n = 2 is U < 0,83. Therefore it seems that this task set is

not schedulable with RM. The scheduler might alert the operating system of this

i.e. approximately 0,97.

according to line 3 in the pseudo code in Figure 1. Let us, however, more closely
consider the functionality of RM by simulating lines 5 8 of the RM algorithm on

the before mentioned task set. The results are shown in Figure 2.
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Figure 2: Tasks 1,=(5,2) and 7»=(7,4) scheduled using Rate Monotonic
[But05].

The period of 7 is 5 and the period of 75 is 7. In RM the task with the shortest
period gets highest priority. Therefore, 7 is scheduled first. According to the pseudo

code in Figure 1, this operation is done by sorting the processes in a list according
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to their periods, as seen on line 5. The while condition on line 6 is true so the
algorithm advances to line 7. The first job on the list is 7y, so it is scheduled first.
Every 5 time units, 71 is scheduled 2 units of time. This can be seen in Figure 2.
Having scheduled the highest priority task and removed it from the list (line 8), RM
now proceeds to schedule the next task, since the while condition on line 6 is true.
Here, 7 requires 4 units of CPU time every 7 units. However, in period 1 there is
only 3 units of time available in the interval [0,7]. The time interval [2,5] is allocated
to 7. At time 5 a context switch occurs, and the higher priority process 71 gets the
CPU. This is indicated by an up-arrow in Figure 2. Because 7 has the processor
during [5,7], 7o doesn’t get a chance to finish its one remaining execution time unit,
and Jy; misses its deadline at time 7. This simulation hence verifies the failed RM

schedulability condition: this task set is not schedulable using RM.

2.2.2 Earliest Deadline First

input: list of tasks

1 repeat:

2 perform EDF schedulability test;

3 if fail alarm OS;

4 else do while (jobs left AND no new task released):
5) put job with closest deadline first in list;

6 schedule first job;

7

remove finished job from list;

Figure 3: pseudo code of the Earliest Deadline First algorithm.

In the Earliest Deadline First algorithm the process with the deadline closest to
the current time gets scheduled first. Because the process with the closest deadline
changes as execution progresses, the EDF method leads to dynamic priorities. In
EDF, the schedulability condition is:

U<1 (4)

This means, that EDF accomplishes full resource utilization while guaranteeing

timeliness. The pseudo code of the EDF algorithm can be seen in Figure 3.

Let us consider the tasks 71—(5,2) and 75—(7,4) scheduled using Earliest Deadline
First according to the pseudo code in Figure 3. On line 2, the EDF schedulability
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Figure 4: Tasks 7,=(5,2) and 7=(7,4) scheduled using Earliest Deadline
First [But05].

test is performed. According to Equation 1, U = %. Because the EDF schedula-
bility condition (Equation 4) guarantees schedulability when U < 1, this task set is
schedulable using EDF. The while condition on line 4 is true. EDF orders the tasks
according to their relative deadlines. At time 0, the job with the closest deadline
is 71, so it gets scheduled first. At its finish time at 2, 7, gets scheduled. Once
Ty is finished at 6, the second job of 71 has been released, and is scheduled. After
execution of the third job of 71, at time 14, 75 with deadline 21 get scheduled for one
unit of time, but is switched out at time 15: here, the fourth job of 7 is released,
and since its deadline is 20 < 21, 7y gets higher priority than 7. Once a job is

finished, it is removed from the list of jobs.

2.3 Soft Real Time Scheduling

In a soft real-time system the timing constraints are somewhat more relaxed than in
a hard real-time system. A soft-real time application usually provides a probabilistic
guarantee of p% of tasks meeting their deadlines. For instance a telephone network
might be considered a soft real-time application. It will be considered usable if 95%
of calls are connected within 10 seconds, and within 20 seconds for 99,95% of calls
|Liu00, page 31]|.

The video viewing experience or enjoyability of a computer game is not spoiled if one
or two frames per minute miss their deadline. Multimedia is a a very common area
for soft real-time systems. Consider for instance the EScheduler [YuNO06] algorithm,
presented in Section 4.2.1. It calculates the actual CPU time demand of n recent
jobs of task T;. Based on this usage history, it uses as F; (Equation 1) a value below
of which p% of the considered jobs remain. Hence, it allocates enough CPU time so
that p% of jobs will complete timely (assuming that the CPU demand distribution of
the task is pretty stable). This is a very typical real-time guarantee that suffices for
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a soft real-time application. The use of a soft real-time scheduler instead of a hard
one might be motivated if, for instance, the response time of the system improve

when real-time constraints are relaxed.



3 Power Awareness in Constrained Devices

By energy, measured in joule, we mean the total amount of work done during a
period of time, and by power we mean the rate at which the work is done. Power is

measured in watts |[VeF05|.

Consider a task that takes 5 seconds to finish with a CPU running at 100 MHz.
Lowering the CPU speed to 50 MHz will decrease the power consumption of the
processor, as lower frequencies need less power. However, the total energy needed to
complete the task will not be reduced, as the task will take a longer time to finish,
perhaps even twice the time. Actually, lowering only the speed of the CPU often
might increase the total energy consumed by the entire system, as for instance hard
disks, network adapters and other components need to be powered-up for longer

periods of time. This aspect is more closely considered in Section 6.

In some cases, for instance to cool down a processor, it is desirable to lower the
power consumption without considering the total need of energy |VeF05|. This
kind of power reduction is, however, hardly what we wish to accomplish when using
battery powered constrained devices: here, minimizing the total energy need is what

matters.

Calculating and minimizing the system’s total energy consumption depends on the
actual system configuration. This question has been researched by for instance Zhuo
and Chakrabarti [ZhC05|. In Sections 4 and 5 of this thesis, we focus on minimizing
the power consumption of distinct components. The reader should note that this
chosen view is a simplified one, as in reality systems are composed of multiple

components.

3.1 Dynamic Voltage Scaling

Contemporary microchips are based on the CMOS (complementary metal-oxide-
semiconductor) technology. Chips using this technology consume energy both dy-
namically and statically [VeF05|. The static power consumption is caused by current
flowing through the transistors even when they are turned off. As this form of en-
ergy consumption cannot be altered during run-time by the scheduler, it is not of

interest in this thesis.

The dynamic power consumption consists of two parts. About one tenth of a chip’s

power consumption is caused by instantaneous short-circuiting of transistors as they
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switch states [VeF05]. Currently it is unknown how to combat this energy waste, and
so we will disregard this form of dynamic power consumption. Most of the proces-
sor’s dynamic power consumption can, however, be adjusted during run-time, and
this is where we will focus our attention. Let P be the dynamic power consumption

of a processor. The following equation indicates how it is formed |[PLSO01]:

P=CxfxV? (5)

here, C' is the capacitance of the transistors. This is a fixed value caused by the
physical structure of the processor. The value f is the operating frequency of the
processor. It is usually measured in megahertz or gigahertz. Adjusting the operating
frequency of the processor linearly affects power consumption. The operating voltage
of the chip is indicated by V. As seen in Equation 5, adjusting the voltage affects

power consumption quadratically.

From Equation 5 it follows that the processor’s power consumption can be regu-
lated during run-time by adjusting its operation frequency f, voltage V', or both.
Technology for accomplishing this is called Dynamic Voltage Scaling (DVS). The ab-
breviations DFS (dynamic frequency scaling) and DVFS (dynamic voltage-frequency
scaling) are also used [VBHO03|.

Notice, however, that adjusting only f but not V linearly decreases the power con-
sumed by the processor, but not the total energy needed to complete the task: a
CPU operating at m MHz that takes s seconds to finish a task will probably take
2s seconds to finish the task at m/2 MHz.

Lowering only V' might seem tempting, but a lower V' generally cannot support
a high f, so usually lowering the supply voltage also requires the lowering of the
operational frequency. So in DVS both V and f are adjusted: the processor is made

both slower and less consuming.

For an example of a real life DVS solution consider the performance states of the 1.6
GHz Pentium M processor presented in table 1. At the maximum speed, 1.6 GHz,
the power consumption of the processor according to Equation 5 is C' * 1.6GH z *
1.484V and at the lowest speed C'« 600M H z * 0.956. At lowest frequency and volt-

age the processor consumes less than one fourth of its maximum power consumption

(% = 0.24), while still providing 38% of the maximum computing per-

600M Hz
1.6GHz

more impressive power savings, as seen in table 2. The Crusoe provided 29% of the

formance ( = 0.375). The early Transmeta Crusoe processor provided even
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Frequency Voltage
1.6 GHz (HFM) | 1.484V
1.4 GHz 1.420V
1.2z 1.276 V
1.0 GHz 1.164 V
800 MHz 1.036 V
600 MHz (LFM) [ 0.956 V

Table 1: DVS performance states of the 1.6 GHz Intel Pentium M pro-
cessor [Int04].

Frequency f | Voltage V Relative power
(MHz) (V) (%)
700 1.65 100
600 1.60 80.59
500 1.50 59.03
400 1.40 41.14
300 1.25 24.60
200 1.10 12.70

Table 2: DVS states of the Transmeta TM5400 ”Crusoe” processor
[PLSO1].

maximum throughput (200 out of 700 MHz) while consuming less than 13% of the

maximum power.

For scheduling needs, DVS can be utilized basically in three different ways. These are
compared in table 3. The simplest method is the interval-based approach [VeF05], in
which the CPU frequency and voltage are adjusted downwards if the CPU utilization
during the past ¢ time units has been low, and upwards if the CPU utilization has
been high. The value of ¢ is critical. If ¢ is too short, the CPU fequency and
voltage may be adjusted back and forth causing high overhead. On the other hand,
large t values may compromise efficiency as DVS adjustments are made very seldom.
The interval-based method can be enhanced by considering a window of intervals.
However, the interval-based method is not suitable for use in real-time systems as

it does not take into consideration the deadlines of individual tasks.

The inter-task approach |VeF05| considers a distinct DVS value for each task and,
therefore, suits well the needs of real-time applications. Voltage and frequency

settings are altered at context switches and remain fixed during the execution of the



12

Method name DVS occasions Real-time Complexity
suitable
Interval-based At threshold time in- | No Low
tervals
Inter-task Context switches Yes Medium
Intra-task Context switches and | Yes High
during task execution

Table 3: Comparison of fundamental DVS techniques.

entire task. The advantage of the inter-task approach over the interval-based is that
each task may receive an individually suitable DVS setting. However, the execution
time allocated for a task generally is much higher than the actual execution time.
Using the inter-task approach, the entire task is run with the same DVS value, which
in most cases can be unnecessarily high. Therefore, the power savings achieved by

this method often are not optimal.

The most advanced DVS method used in real-time systems is the intra-task ap-
proach [VeF05|. Here DVS values may be changed even during a task execution.
Algorithms utilizing this method are, for instance, Feedback DVS-EDF [DMZ02]
and EScheduler [YuN06|, presented in Sections 4.1.3 and 4.2.1, respectively. For
instance the Feedback DVS-EDF algorithm utilizes DVS aggressively. It will divide
a task’s execution time Ej; into two parts, C, and (. During C, the processor is
run at a lowered speed, and only at the start of C} is the CPU speed increased.
Jobs finishing sooner than their budgeted execution time will never reach C, and
the system is saved from this high power execution interval. In EScheduler, the
speed schedule is divided into several phases, with each having a slightly different
DVS value. The task is initially executed with a low speed, and as execution time

progresses, the speed is gradually increased.

3.2 Advanced Configuration and Power Interface

Processor manufacturers have different implementations for their voltage scaling
technologies. AMD’s technology is named PowerNow, Intel’s SpeedStep, and Trans-
meta’s LongRun |PLS01|, or more recently, LongRun2. ACPI, first introduced by
Intel, Microsoft and Toshiba in 1996 |Gro03], is a standardized interface between the
hardware and the operating system. The general architecture of ACPI is depicted
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0S power management (OSPM)

ACPI AML interpreter

AML
(platform-specific
bytecode)

hardware
w ’!'

Figure 5: The ACPI provides a standard interface between the operating

system and the firmware [Gro03]|.

in Figure 5.

The main advantage with ACPI is that both hardware and operating system (OS)
components may evolve independently of each other while letting the OS fully con-
trol the system’s power management. The OS may, for instance, choose to bundle
disk writes to be executed in batches in order to improve system response times.
This kind of functionality is not possible when power management is controlled by

hardware alone.

ACPI provides standardized mechanisms for switching between different power con-
scious states of processors, disk drives, screens, modems, and other components that
are used in todays portable computers. Both Windows and Linux platforms support
ACPI for CPU frequency scaling. The ACPI design is based on ASL (ACPI Source
Language) and AML (ACPI Machine Language) that reminds quite a lot the Java
programming language [Gro03]. The human readable uncompiled Java source code
corresponds to ASL in ACPI, whereas Java bytecode corresponds to AML, which
is the compiled version of ASL. The idea here is that AML abstracts the platform-
specific details from the operating system so that the OS may use standard operation

names to access platform-specific features.

The current version of the ACPI specification is 3.0b. This 631 page document was

released in October 2006, and is available for download at http://www.acpi.info.
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4 Power Aware Processor Scheduling

Real-time scheduling algorithms can be divided into processor and device scheduling
algorithms. This section covers power-aware real-time scheduling algorithms for
CPU scheduling, while device scheduling is covered in Section 5. In this section we
focus on uniprocessor systems. The scheduler is responsible for sharing this single

CPU between all tasks while guaranteeing that time boundaries are met.

Energy saving is achieved by running the processor at lower speed whenever this
speed is sufficent to meet the deadlines. Because the processor’s power consumption
cubically depends on the clock frequency and voltage (Equation 5, Section 3.1), sig-
nificant energy consumption reductions can be achieved by lowering the processor’s
frequency and voltage at occasions when maximum throughput is not needed. Some
scheduling algorithms even utilize the sleep state of the processor when the system
is idle, if such a state is available. For instance, if the scheduler knows that the
next periodic job will not be released until time ¢, it will set a timer to wake up the

processor at time ¢ and put the processor to sleep mode.

Lowering the processor speed to save energy works as follows. Suppose that the
current job needs to finish at time ¢t. When ran at full speed, the processor will
finish the job at time t/2. Hence, it suffices to run the processor at half of the

maximum speed in order to guarantee timely execution.

Processor scheduling algorithms can be divided into two categories, hard and soft
real time scheduling algorithms. We will first study algorithms that provide hard
real-time guarantees. These are the strictest type of real-time algorithms: they
guarantee that all deadlines are met. All algorithms presented in Section 4.1 are
enhancements of either the Rate Monotonic or Earliest Deadline First [LiL73] al-
gorithm. In soft real-time algorithms, occasional deadline misses are allowed. Soft

real-time processor scheduling algorithms are explored in Section 4.2.

4.1 Hard Real Time Scheduling

The Rate Monotonic and Earliest Deadline First algorithms as such form an ex-
cellent starting point when engineering energy aware real-time schedulers. Most
contemporary hard real-time schedulers with energy conserving properties in fact
are relatively small enhancements to the RM and EDF techniques. As examples of

such algorithms, we will in this subsection explore a number of pseudo codes. The
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LPFPS algorithm enhances the Rate Monotonic algorithm, and provides a guaran-
teed U of In2 as indicated by Equation 3. As examples of energy conscious Earliest
Deadline First based schedulers, guaranteeing U < 1, the LEDF and Extended
LEDF algorithms are presented. The most ambitious algorithm that will be consid-
ered is Feedback DVS-EDF, which even utilizes a basic form of intra-task DVS, and
slack-time passing between jobs. In general, EDF based schedulers are much more
common in research papers than their RM based counterparts. This is due to EDF
providing full utilization of the processor. RM is, however, simpler to implement in
some operating system kernels that do not provide explicit support for the timeliness

properties that real-time tasks require [But05].

4.1.1 The Low Power Fixed Priority Scheduling Algorithm

The Low Power Fixed Priority Scheduling (LPFPS) [ShC99] algorithm, published
in 1999, is one of the earliest energy conscious scheduling algorithms. It enhances

the Rate Monotonic algorithm by taking into account energy conserving properties.

For energy savings, LPFPS utilizes two different occasions. Firstly, in an RM based
schedule, there usually are idle times in the schedule. Recall the RM schedulability
condition U < n(2'/™ — 1) of Equation 2: the maximal CPU utilization U of an RM
based schedule with large task numbers n approaches the value 0.69. So with high
task numbers the maximal RM utilization degree leaves the CPU idle for 30 percent
of the time, and LPFPS utilizes this time for energy savings. Secondly, jobs actually
often execute faster than budgeted. In other words, jobs rarely use all of the time
that has been allocated to them. When a job executes faster than budgeted, the

remaining time is used by LPFPS to save energy.

Both voltage and frequency scaling and the powering down of the CPU are supported
by LPFPS. When the system is idle, i.e., there are no jobs ready to run, LPFPS
places the CPU in a power down mode, and initiates a timer to wake up the processor
so that it will be ready for use when it, according to the schedule, is needed next
time. When there is only one job left ready to run, LPFPS will calculate an energy
conserving voltage and frequency setting for the job, and execute it if possible at a
lower CPU speed.

The LPFPS algorithm utilizes two data structures of the type queue. Jobs that are
ready for execution and wait for processor time are placed in the run queue. The
job with the highest RM priority (the shortest period) is at the head of the queue.
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L:1; if current_frequency < maximum_frequency then

L2: increase the clock frequency and the supply voltage
to the maximum value;

L3: exit;

L4: end if

L% while delay_queue.head.release_time < current_time do

L6: move delay_queue.head to the run_queue;

L7 end do

L8: if run_queue.head.priority > active_task.priority then

L9: set the active _task.executed_time:

L10: context switch;

L11: end if

L.12: if run_queue is empty then

L.13; if active_task is null then

L14: set timer to (delay_queue.head.release time — wakeup_delay);

L15: enter power down mode;

L16: else

L17: speed_ratio = Compute_speed_ratiof );

L18: find a minimum allowable

clock frequency > speed_ratio - max_frequency;

L19: adjust the clock frequency along with the supply voltage:
L20: end if
Jixl: end if

Figure 6: pseudo code of LPFPS the scheduling algorithm [ShC99]|. Lines

L5-L11 correspond to the conventional Rate Monotonic functionality.

In the delay queue LPFPS holds tasks whose current jobs are completed, i.e. tasks
waiting for the arrival of their next jobs in the next period. The job with the closest
arrival time is placed at the head of the delay queue. The job that is currently
scheduled for execution is called the active task. Conceptually, this task is present

in neither of the queues.

The LPFPS pseudo code We are now ready to consider the LPFPS pseudo code
of Figure 6. Let us begin by considering lines L5 L11, where the functionality of a
conventional RM scheduler is present. On line 5 it is checked whether the current

time exceeds or equals the release time of job(s) at the head of the delay queue.
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If so, the jobs are moved to the run queue (line 6). If the job now at the head of
the run queue has a greater priority, i.e., shorter period, than the active task has
(line 8), then a context switch occurs on line 10. This implies that the information
belonging to the current active task in the CPU registers and operating system
control structures are stored in main memory, and replaced by the information of
the new active task. Prior to the context switch, on line 9, LPFPS also stores the
amount of time the job has been executed. This value is later used when calculating

voltage and frequency scaling parameters.

In addition to the conventional RM scheduler functionality, LPFPS provides energy
saving properties. Energy savings will be sought when the run queue is empty, i.e.,
when there are . This condition is checked on line 12. If the run queue is empty,
and there is no active task (line 13), i.e., the processor is idle, then the CPU will
be put to power down mode. On line 14 a timer is set to activate the processor so
it will be ready for use at the arrival of the next job. In setting the timer LPFPS
takes into account the processor wakeup delay time. On line 15 the CPU is put to

power down mode.

If the run queue is empty but there is one active task (line 16), LPFPS will calculate
an energy saving DVS setting for it and, when possible, execute the task at lower
speed and voltage. The new speed ratio is calculated by the Compute speed ratio()
procedure called on line 17. The formula used by LPFPS in calculating the speed
ratio is [ShC99]:

speed ratio = =

a c

where C; is the budgeted execution time, F; the time that has already been spent
executing the job, t, is the arrival time of the next job, and ¢. is the current time.
In essence, the remaining execution time is divided by the time available before the
arrival of the next job. Among the available CPU clock frequencies the lowest one
guaranteeing timely execution is located on line 18. The processor frequency and
voltage are adjusted on line 19. It should be noted that it is implicitly assumed that
D; > t,, where D; is the absolute deadline of the active job.

4.1.2 Low-Energy EDF and Extended Low-Energy EDF

Where LPFPS, described in the previous subsection, is based on the Rate Monotonic

algorithm, we will from here on focus on Earliest Deadline First schedulers. The
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pseudo code of an energy conserving EDF based processor scheduling algorithm
called Low-Energy EDF (LEDF) is given in Figure 7. This algorithm was published
by Swaminathan and Chakrabarty in 2000 [SwC00]|. It only supports two distinct
CPU speeds, low and high speed. Due to its simplicity, it is an excellent entry point

into more complex schedulers.

Procedure LEDF()
begin
Repeat forever
jire tasks waiting to be scheduled in ready list?
yes
Sort deadlines in ascending order
Schedule task with earliest deadline
Check if deadline can be met at lower speed (voltage)
10 If deadline can be mef, schedule task to execute at lower voltage (speed)
11 If deadline cannot be met, check if deadline can be met at higher speed (voltage)
12 If deadline can be mef, schedule task to execute at higher voltage (speed)
13 If deadline cannot be met, task cannot be scheduled. Call exception handler!
14 no
15 do-nothing

O o NOWVTLE WN M

Figure 7: The LEDF pseudo code [SwCO00|.

On line 7 of Figure 7, the jobs currently present are sorted according to their dead-
lines, and on line 8 the job with the closest deadline is scheduled according to the
EDF principle. On line 9, LEDF checks whether or not the job would make its
deadline if scheduled at a lower speed and voltage. If so, the job is scheduled at the
lower speed. If the job cannot meet its deadline at the lower speed, LEDF checks on
line 11 if it can make it with the higher speed, and schedules the task at the higher
speed on line 12. If the deadline cannot be met even at higher speed, the exception
handler (line 13) is called. It is then up to the operating system to decide what to
do with this task.

Extended LEDF The authors of LEDF have improved their algorithm [SwCO01].
The Extended LEDF (E-LEDF) algorithm given in Figure 8 considers the CPU
transition delay when making scheduling decisions. A switch between the high and
low speed states always introduces a certain time and energy penalty. The switch

in itself consumes some energy and takes some time. Very short switches from high
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speed state to the low speed state are not worthwhile as the state transition cost

would exceed the net gain.

1 Procedure E-LEDF()

2 begin

3 Repeat forever

4 Remember speed at which previous task was scheduled

5 if tasks are waiting to be scheduled in ready list then

6 Sort deadlines in ascending order; Select task v, with earliest deadline
7 if this is the first task to be scheduled then

8 Ity + ts < d;, schedule task at lower voltage (speed); continue
9 If ity + ts < di, schedule task at higher voltage (speed); continue
10 Call exception handier!!

11 else

12 if previous speed = high speed then

13 Compute Ey; and Ejpgyq,

14 if task is not schedulable then

15 Call exception handler!!

16 else

17 if tjo +ts < d;

18 if B < Ep; then

19 Iow + ts < di, schedule task at low speed

20 else

21 I thign +ts < di, schedule at high speed

22 else

23 Schedule task at high speed

24 if previous speed = low speed then

25 Compute Ep; and Eyg,,

26 if task is not schedulable then

27 Call exception handler!!

28 else

29 it tp; +1s < d; then

30 if Ea‘z.'i = -Elow then

31 Schedule task at high speed

32 else

33 Ift1ow + ts < dy, schedule task at low speed
end

Figure 8: Pseudo code of the E-LEDF scheduler enhancing LEDF
[SwCO01]. Syntax: ¢, and t;;: execution time with low / high CPU
speed, respectively; t, state transition delay; d; deadline; E;,, and E};

energy consumption with low / high speed, respectively.

Let us now explore the E-LEDF pseudo code. On line 6 in the pseudo code of Figure
8 tasks are sorted according to their deadlines, and the task with the closest deadline
is chosen for execution according to the EDF principle. When scheduling the very
first task of the session (line 7), we want to check if we can schedule the task at
low speed. This is done on line 8: if the execution time with low speed t;,, added
with the processor transition delay ¢, is lower or equal to the task’s deadline d;, the
task is scheduled using low speed. Otherwise, it is checked if the task will meet its

deadline with high speed (line 9). If the deadline cannot be met even at high speed,
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the operating system exception handler is called (line 10). The operating system

might, for instance, alert the application whose time constraints cannot be met.

The scheduling of the following tasks begins on line 12. If the previous task was
run at high speed, then E-LEDF will compute the task’s total energy consumption
using both low and high speeds (Ej,, and Ej;) on line 13. In these calculations,
the processor state transition energy costs are taken into consideration. If the task
is not schedulable even at high speed (line 14) the operating exception handler is
called (line 15). If the task is schedulable, E-LEDF will need to consider whether
it is worthwhile to switch to low speed. If the task will meet its deadline at low
speed including transition delays (line 17), and the total energy consumption at low
speed Ej,, doesn’t exceed energy consumption at high speed Ej;, then the task is
scheduled at low CPU speed (line 19). Otherwise, the task is scheduled at high
speed (line 21 and 23).

A similar pattern to the one described in the previous paragraph is followed if the
previous task was scheduled at low speed (line 24). The total energy consumption
at both speeds is calculated (line 25), and in the sum Ej; also the transition cost
is included. The transition to the higher CPU speed is made only if the total
energy consumption at high speed would be smaller than using the low speed. This

condition is checked on line 30.

We believe the E-LEDF code contains redundancies and at least one error. Notice,
that the if statement on line 19 is redundant: the condition ¢, +t; < d; has already
been checked on line 17. In fact, also the if on line 21, and the entire lines 22 and 23,
are redundant. The error we believe we have found is also quite obvious. Consider
a situation where the previous task has been run at low speed, and t,; +t, < d;, but
Eyi > Ejpy. This would bring us to line 33 in the pseudo code. Now assume that
tiow +ts > d;. This could very well be possible, since the task is schedulable at high
speed (tp; +ts < d;), and the schedulability test on line 26 would hence have been
passed. In this situation, the if condition on line 33 would be false, and the task
would never be scheduled. The pseudo code would hence need some rewriting to
support tasks that would require to be run at high speed, even though they wouldn’t
spend less energy at that speed. The required modification is quite trivial. It suffices

to add to line 33 the following: else schedule at high speed.

A more fundamental problem with E-LEDF is that the algorithm does not explicitly
handle situations when the CPU is idle. If the previous task has left the CPU in
its high speed state when the job queue becomes empty, E-LEDF will still keep the
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CPU running at full speed and hence waste energy although the processor is not
needed. Currently, E-LEDF supports only two distinct CPU speeds, and no power-
off state. Frequency and voltage scaling decisions are made only at the beginning of

each task, which limits achieved energy savings.

4.1.3 Feedback DVS-EDF

One of the more ambitious power-aware hard real-time CPU scheduling algorithms
is also based on EDF and is called Feedback DVS-EDF. It was published by Dudani,
Mueller and Zhu in 2002 [DMZ02|. The interesting parts of the pseudo code are
presented in Figure 9. The code for initializing variables, pre-emption handling and
setting of clock frequency are excluded, since they are of little interest to the topic
of this thesis. The interested reader may, however, view the entire algorithm in

appendix 1.
The idea in Feedback DVS-EDF is to utilize DVS aggressively. The algorithm is

based upon the assumption that most actual task instances (jobs) will need less CPU
time than scheduled to them. Therefore, Feedback DVS-EDF begins the execution
of a job with a very slow CPU speed. Only if the job isn’t finished after a certain
time, is the CPU speed increased. In real-life situations, jobs rarely use all of the
CPU time allocated to them. Therefore, for most jobs, the CPU will never need to

run at its highest speed, and energy is saved.

In order to be able to calculate a statistically optimal initial speed, the Feedback
DVS-EDF algorithm maintains statistical information on the execution times of a
task’s previous instances. Tasks are also able to pass unused slack time on to the
next job. Say, for instance, that a job J; has executed 2 time units faster than
budgeted and finishes at ¢. Further assume, that the next job J;.; has been released
before ¢t. In this case, using Feedback DVS-EDF, J; will pass the two unused slack
time units on to J; ;. Now, J;;1; will have in its execution time budget two more
time units more than usually. This extra time may be used to further slow down the
processor in order to conserve energy. Information on unused slack time is stored
in the variable slack, and by reading this variable the scheduler will know of these
two superfluous time units when it goes on to schedule J;1;. This increased time
budget is, of course, usable only if it won’t jeopardize finishing J;;; within its time

boundaries.

These are the main energy conserving properties of Feedback DVS-EDF. Let us
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Procedure TaskActivation(T;;)
1 if processor was idle for d then

2 slack — slack — d
3 if 1}, was preempted /interrupted then
4 slack «— slack + slack;; — lefti;
5 forall 1, idle task jobs in dy,..d;; do
6 slack — slack 4+ C,,
7 ol — 111111{ i f%| s m}
8 if (ar=1) then

9 Chr+—0

10 else

11 Cy « slack x at/(1 — at)

12 SetInterrupt(71;, Ca /o)

13 SetFrequency(av)

Procedure TaskCompletion(T;;)
14 if 7;; was preempted then

15 if ¢;; > C; then (late finish)

16 slack «— slack — ci; + Cj

17 else (carly finish)

18 slack «— slack + C; — cyy

19 forall 7 idle task jobs in r;..dy, do
20 slack « slack — C,

21 C‘n-i-g,-i L ((jrr-wg,-i X (] = l) -+ Cij X (IC/)/_]
22 L'eft,-(j_*_l) = 0y

Figure 9: The central parts of the Feedback DVS-EDF algorithm
[DMZ02].

now study the pseudo code of 9 in closer detail. In order to do this, a number of
notations need to be explained. By T;; we mean an instance, i.e. a job, j of task T;,
and with d; we mean its deadline. The variable slack stores information on unused
slack time, and left;; holds the remaining execution time of job T;;. By Tg;, we
denote the set of idle tasks (tasks that currently have no jobs waiting for processor
time), and by pk the previous, by nj the next and by ij the current job. The letter
o’ denotes the ratio of the processor’s maximal speed, and f; is the clock frequency
of the processor. By r;; we denote the release time of job T;;, i.e, the time when
the job is ready to be scheduled, and starts waiting for processor time. The job’s
actual execution time is denoted by ¢;;, and C; is the budgeted worst-case execution
time. The execution time C; of a job is divided into two parts, C'y and Cpg, where

(4 is the time interval that the job is executed at a slower and less consuming CPU
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speed, and Cp denotes the time interval when the job is executed at high speed.
Therefore, C; = C'4 + Cp. The variable Cy,, ; notates the average execution time
of T;. This implies:

C—I:‘ +CB = Ci—i-SlCLC]{J
(67

By o' we mean the ratio of the maximal clock frequency, and this value in turn is

calculated using the formula

o = 7014
C 4 + slack

where slack denotes the unused “slack” time that emerges when a job is executed
faster than budgeted.

This functionality is presented in the algorithm of Figure 9 beginning on line 7, in the
procedure TaskActivation. (Notice that Feedback DVS-EDF uses the term "task”
in the procedure names when referring both to a task, and an instance of a task.
Elsewhere in this thesis, the term "job” is used for the latter.) On line 7 the value
o, i.e., the ratio of the lowered CPU speed from the highest speed, is calculated.
In order to find the optimal value for o/ Feedback DVS-EDF utilizes statistics from
previous instances of the task. It is from here that the word "Feedback” in the
algorithms name is originated. Statistics is maintained in the variable Cg,,, which
indicates the average execution time of this task’s previous jobs. When a job is
finished, its Cg,, is updated on line 21 in the procedure T'askCompletion. Here we
take into consideration the execution time of the current instance ¢;; and calculate a
weighted average between ¢;; and the previous value of Cy,,. The value Cj,, is then
utilized when calculating an optimal value for o/ at job activation. The variable
slack is calculated and utilized at similar occasions. The value is calculated when a
job finishes, in the procedure T'askCompletion on line 20, and is later utilized when
calculating o’ in T'askActivation on line 7. Information on "unused” time and CPU
utilization statistics of previous jobs is thus passed between jobs using these two

variables.

On line 9 and 11 the variable C'4 is calculated and set. This variable indicates the
length of the time period from the beginning of a job that the job is to be executed
with the lower speed. This speed is indicated as the ratio from the maximum speed
by o/. If o is calculated to equal 1 (line 8), then the task must be executed at
highest clock frequency, and the length of the lower speed interval Cy is set to 0

(line 9). If the value of o’ is not equal to 1, then C}y is calculated on line 11. On



24

line 12, a timer interrupt is set to activate the scheduler after C'4 units of time has
passed. This is done by the procedure SetInterrupt. On line 13, the processor is
adjusted to the new clock frequency. If the job isn’t finished within C'4 units of time,
the scheduler is reactivated by the timer. The reactivated scheduler will adjust the
CPU to run at full speed, and the rest of the job will be executed at highest clock
frequency. This will guarantee timely finishing of the job.

4.1.4 Cycle-Conserving DVS for EDF Schedulers

Feedback DVS-EDF presented in the previous subsection utilizes DVS aggressively.
For the sake of comparison, let’s consider the Cycle-Conserving DVS for EDF sched-
ulers (ccEDF) algorithm [PiS01| presented in Figure 10. This illustrative algorithm
utilizes DVS conservatively: jobs are initially run at a higher CPU speed, and when-
ever jobs finish before spending their entire time budget, the processor is slowed
down.

1 select_frequency():

2 use lowest freq. fi € {f1,....fmlfi < -+ < fm}
3 suchthat Uy + -+« +Un < fif/fm

4 upon task.release(T;):
5 set U; to C /Py
6 select_frequency();

7 upon task_completion(T;):

8 set U to cei [P
9 /* ce; is the actual cycles used this invocation */
10 select_frequency();

Figure 10: The Cycle-conserving DVS for EDF Schedulers (ccEDF) algo-
rithm [PiS01]. C; budgeted CPU cycles to task T;; cc; actual spent cycles;
fi processor frequency; f,, maximal processor frequency; U; utilization

degree.

Now consider the pseudo code in Figure 10. Upon task completion, on line 8, the
utilization degree U; of T; is set to %Z, i.e., to reflect the eventual time left un-
used by the task. Then, on line 10, the procedure select_frequency() is called.
Here, ccEDF chooses from among all discrete CPU speeds {f;,..., fi} the lowest
one that will guarantee schedulability of the tasks with the newly calculated U;.
The schedulability criteria, Y, U < 1, is based on the EDF schedulability condition

(Equation 4) [LiL73], but on the right side of the inequality we now have % instead
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of 1 to represent the lowered CPU speed. When new tasks are released, ccEDF
will in task_release(7;) on line 5 calculate the utilization for the new task, and
then on line 6 call select_frequency(), which now may want to raise the CPU
speed to reflect the increased workload. No explicit transition delay considerations,
nor explicit schedulability failure handling, is present in ccEDF. Its purpose here is
solely to illustrate the functionality of conservative DVS as opposed to the aggres-
sive technique implemented in Feedback DVS-EDF. The authors of ccEDF have also
presented ccRM, an energy conserving Rate Monotonic based algorithm with con-
servative DVS support, and laEDF (Look Ahead EDF), an EDF based power-aware
scheduler with aggressive DVS support [PiSO1].

4.1.5 Comparing the Presented Algorithms

We now have considered five different algorithms for power-aware processor schedul-
ing. The one based on the Rate Monotonic method is called LPFPS. This algorithm
is pre-emptive and seeks energy savings in two different ways: if only one job remains
left to be scheduled, it is run on a lower clock frequency. If no jobs are left wait-
ing for processor time, then the processor is put to sleep, and is later awoken with
a timer. Because the Rate Monotonic method guarantees an utilization degree of
approximately 0.69, in an RM schedule there most often is plenty of idle time. The
LPFPS algorithm also considers the processor wakeup delay when making power

down decisions.

The other four algorithms are based on the Earliest Deadline First method. The first
one presented is called LEDF and supports only two different CPU speeds. At the
beginning of each job the scheduler calculates whether the job will meet its deadline
if scheduled at the lower speed. The higher speed is used only when needed. This
simple algorithm has later been enhanced by the same authors with E-LEDF. Here
also CPU state transition costs in time delays and energy waste are considered. A
state transition is made only if it is worthwhile. Very short transitions not always

are. Even E-LEDF supports only two different speeds.

Out of the presented algorithms the most versatile is Feedback DVS-EDF. This
algorithm aggressively seeks energy savings by starting the execution of each job with
a low speed. Only when needed to guarantee timely execution does the scheduler
run the job at high speed. The idea here is the finding that most real-time jobs
execute significantly faster than their budgeted worst-case execution times. In order

to find an optimal starting speed, Feedback DVS-EDF uses statistical information
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from previous instances of the task. Jobs may pass unused execution time on to the

next job.

Even though Feedback DVS-EDF is advanced even it could be further improved. For
instance the algorithm divides the task’s execution times into two pieces, C4 and C'g,
where the time Cy is spent running at the lower speed, and Cz with highest speed.
By further dividing the execution time into smaller fragments, where each fragment
is executed slightly faster than the previous one, even greater energy savings could
be found. This would, however, add to the algorithm’s complexity. The usefulness

would depend on the amount of DVS states the used processor platform supports.

We ended our review of energy saving hard real-time scheduling algorithms by pre-
senting ccEDF, a simple algorithm that utilizes DVS conservatively. Where Feed-
back DVS-EDF begins execution of tasks with low speed, ccEDF initially runs tasks
at high speed, and once slack time is accrued, forthcoming tasks are run at slower
speeds, if possible. This algorithm makes voltage and frequency scaling decisions
only at the end of and upon release of tasks, but is significantly less complex than
Feedback DVS-EDF.

4.2 Soft Real Time Scheduling

We will in this subsection explore two soft-real time CPU scheduling algorithms.
Soft real-time schedulers provide a statistical performance guarantee. A certain
percentage, say p, of the scheduled jobs will finish within a certain time period.
Occasional misses of jobs are allowed. Therefore one might believe that the soft
real-time schedulers would be more simple than their hard real-time counterparts.
That is, however, not the case. As will be revealed, these algorithms are far more
complex than their hard real-time counterparts. Their system model concepts and
patterns of design are original, whereas the hard real-time schedulers evidently were
offspring of the original EDF and RM algorithms published by Liu and Layland in
1973 |LiL73|.

Presently, the most common implementation environment for soft real-time sched-
ulers are multimedia systems. For instance MPEG video or audio compression
decoders are considered fully usable even when they occasionally do miss a frame
or sound sample. Because such a relaxation to the strict hard real-time schedulers
might provide significantly better system throughput or response times to interactive

systems, soft real-time schedulers are increasingly popular.
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4.2.1 The EScheduler Algorithm

The EScheduler [YuNO06] is based upon work done in the GRACE project [YuNO3].
The algorithm gives a statistical probability guarantee that scheduled tasks (ESched-
uler uses the term “process”) meet their deadlines. This is usually sufficient for
multimedia applications, where it suffices to know that p % (where p might be for
instance 95) of video frames are timely decoded. EScheduler conserves energy by

utilizing DVS aggressively. It is based on the EDF algorithm.

EScheduler has two main tasks to perform: firstly, task scheduling, i.e. to schedule
instances of tasks guaranteeing that they meet their deadline with probability p %,
and secondly, speed scaling, i.e. to run these scheduled processes conserving as much

battery power as possible. These functions will be described next.

Scheduling tasks The fundamental assumption in the design of EScheduler is,
that while the actual CPU demand of a task’s individual jobs varies greatly, the cycle
demand distribution of the task is pretty stable. EScheduler maintains statistics of
the actual CPU cycles needed by the last n jobs of a task.

] - . . . 1
< Jj™job =< G+1)" job —=
in out in finish/out in out in out in finish/out

A A A A A
Y y A I
c, cy Cy c, €s Cg €7 €5 €5 Cio cycles

cycles for j* job = (c,—c))+ (¢, —cy)
cycles for (j+ 1) job = (¢, — ¢35) + (cg— ¢5) + (€15 — Cg)

Figure 11: EScheduler counts the cycle demand of tasks [YulNO06].

EScheduler calculates the cycle demand of a job as depicted in Figure 11. The
counter is implemented as an extra field in the Process Control Block (PCB) of the
operating system. FEach time the task is switched out the CPU cycle counter of
the job is updated, and when the job finishes, its entire cycle count is added up to
the statistics. Based upon this statistics, accurate estimations of forthcoming CPU
cycle demand can be made, and the task can be scheduled an appropriate amount
of CPU time. Scheduling too little CPU time will result in low quality of service
as for instance video frames aren’t decoded timely, while scheduling too much time

will waste CPU resources and consume energy superfluously.

The graph in Figure 12 depicts the cumulative cycle demand of one task’s (7;)
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Figure 12: The cumulative cycle demand distribution in EScheduler
[YuNo06].

elapsed jobs (J;). The cumulative distribution function is based on Equation 6.
F(z) = PIX < 7] (6)

Firstly remember, that jobs are instances of one task. Now let’s consider this equa-
tion. It indicates the probability of the cumulative CPU cycle demand of jobs of one
particular task (X), of being equal or less than z. In Figure 12, C,,;, is the smallest
cycle demand among the task’s considered jobs, and C,,,, the largest. The interval
[Cininy Crmaz) is divided into r sections. Each section forms an area in the histogram.
The height of a section area indicates the probability that the job needs at most by
cycles, where by is the upper boundary of the section. From this histogram, it is
possible to extract the cycle boundary by below of which p percent of the jobs of the

task remain.

In soft real-time applications, it suffices to provide a statistical guarantee that p
percent of jobs meet their deadline. Before the task is accepted into the set of
schedulable tasks, a schedulability test needs to be performed. The task is schedu-
lable if the condition in Equation 7 is fulfilled.

R

In this equation, C; is the estimated cycle demand below of which the cycle demand

of p percent of job instances of task ¢ remain; Sk is the maximum number of cycles
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the CPU can achieve at full speed, and P; is the period of task i. The condition <1
originates from the EDF schedulability condition (Equation 4) |LiL73].

Adjusting the CPU speed for a task After jobs are scheduled, it is up to
EScheduler to execute them at optimal CPU speed to minimize power consump-
tion. Here, its function resembles that of Feedback DVS-EDF (see Section 4.1.3).
EScheduler utilizes DVS aggressively. It starts job execution at a low CPU speed
and increases speed as needed. EScheduler is, however, a little more complex in its
speed scaling technique than was Feedback DVS-EDF.

EScheduler begins by calculating an aggregate CPU speed requirement for the cur-

rent task set. This speed is calculated with the equation 7 , % where the unit is

cycles per second (or hertz). As an example, consider a task set of two tasks, where
the first one is allocated 12 * 105 cycles every 40 ms and the other 10° cycles every

%106 6
20 ms. The aggregate CPU speed would then be 12430 + % = 350M H z [YuNO6].

The straightforward solution would be to run the tasks at this aggregate speed.
This would, however, waste energy. The estimated cycle demand C; is the value
below of which the cycle demand of p percent of tasks remain. If p is for instance
95, then 95 percent of the tasks require less than C; cycles. The cycle demand of
individual tasks vary greatly. Jobs are initially ran at a low speed, and as the job
cycle count increases, CPU speed is gradually increased according to a speed schedule

that EScheduler calculates for every task.

The speed schedule of a task consists of coordinates (z,y) in an ordered list. At
x or more spent cycles the CPU is accelerated to speed y. An example of a speed
schedule might be: (0,100M Hz), (1 % 10%, 120M H z), (2 x 10°,180M H z). Here, the
task would be started at CPU speed 100 MHz, and after 1% 10° cycles, the processor
would be accelerated to 120 MHz. After 2 * 108 cycles, if the job would still not be
completed, the processor speed would be increased to 180 MHz.

With high p values most jobs consume less than C; CPU cycles. They will hence
complete before ever reaching the highest CPU speed points, and therefore avoid
these most energy consuming phases. Notice that every task in the set has its own
speed schedule. Therefore, processor speed changes occur, besides at scaling points,
also at context switches. The EScheduler algorithm [YuNO06| does not explicitly

consider processor state transition delays when calculating a speed schedule.
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Calculating the speed schedule The approach taken by EScheduler in calcu-
lating a speed schedule is based upon the cycle demand histogram (see Figure 12).
Each area in the histogram, starting with a cycle demand of b;, is issued a specific
CPU speed. The speed schedule of any task will consist of m coordinates, (b;, s(b;)),
where the CPU speed, s(b;), is calculated using Equation 8 [YuNO6|.

s(by) = 2t g/l — F(b) i—1 m (8)
i Tm , ye, M

where g; is the size of the j:th cycle group (the width of the area in the histogram),

and T represents the time budget of a task. This variable represents the available
time distributed among tasks according to their cycle demand. It is calculated using

the following formula:
G
n G
i=1 P,

T =

This calculation of optimal processor speeds is based on the theoretical alternative,
where CPU speed can be adjusted linearly. Real-world processors provide only
discrete speed alternatives. For instance, the StrongArm SA-110 provide 11 different
CPU speed alternatives [YuN06|. A straightforward approach to deal with this real-
world limitation is to calculate the optimal speed using formula 8, and then round
s(b;) to the nearest upper discrete speed. This is, however, not energy optimal,
since the provided speed might execute the job unnecessarily fast and waste energy.
On the other hand, rounding s(b;) downwards might jeopardize timely execution.
Therefore, EScheduler explicitly considers all available processor speeds, and chooses
from among them the most efficient combination for the speed schedule. Here, it
even takes into consideration the processor’s transition delay from active to sleep

state.

The problem of choosing the optimal CPU speed schedule is NP hard [YuNO6].
EScheduler uses an approximation algorithm for selecting the best speed combina-
tion. It should also be noted that these speed options are processor specific. There-
fore, in order to be efficient, EScheduler needs to be rewritten for each particular

hardware platform it is implemented on.

Implementing EScheduler EScheduler has been implemented into the Linux
2.6.5 kernel with 2605 lines of C code. In order to implement the cycle demand

counter, the Linux Process Control Block is modified according to Figure 13. The
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struct process_struct {

#ifdef CONFIG_UIUC_GRACE
/* for profiling */
unsigned long long last_sample_cycles;
unsigned long job_cycles;
/* for intra-job DVS */
struct dvsPnt_struct *speed_schedule;
unsigned short dvsPnt_count, current_dvsPnt;
#endif /*CONFIG_UIUC_GRACE*/
T

Figure 13: The modified Linux Process Control Block [YulNO0G].

long integer job_cycles records the number of cycles used by the job; *speed_schedule
is a pointer to the speed schedule list of the task, and current_dvsPnt points to

the presently used speed setting.

The Linux scheduler has been revised to (1) update the PCB fields at scheduling
occasions and (2) scale the processor frequency using DVS according to the pro-
cess’ speed schedule. A higher resolution timer has been hooked to the standard
Linux scheduler [YuNO6| to allow invoking of the EScheduler every 500 ps, which
enables periodic scheduling decisions to be made at a rate sufficient for soft real-time

applications.

The EScheduler provides statistical real-time guarantees for multimedia applica-
tions. Tasks are scheduled CPU time according to their historical CPU demand.
While executing tasks, EScheduler saves energy by adjusting the CPU speed ac-
cording to a speed schedule it has calculated. Tasks are initially run at slow CPU

speeds, and the speed is accelerated as execution progresses.

4.2.2 The ReUA Algorithm

This subsection presents ReUA (Resource-constrained energy-efficient utility accrual
algorithm) [WRJ06|. Tt is an ambitious processor scheduling algorithm that consid-
ers system-wide energy savings, and replaces deadlines by a concept that provides
higher fidelity.

The Time Utility Function replaces deadlines The classical concept of dead-

lines can be argued to be artificial. Consider, for instance, a missile control system.
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In the traditional deadline-based approach, the missile must hit its target no later
than at time D. However, in a real world situation, the hit might be considered
to be useful even when missing D by a hair, although a perfect miss is preferred.
This kind of argumentation has lead to the development of a concept of Time Utility
Function (TUF), which replaces deadlines.

Utility Utility 4 Utility Utility
I e Plot Correlation Intercept
mad Mid-course I
Ug----- um. Mai: tehdance
U : . E . Time . ,
te Time 0 tf 2ty Time Time
(a) Track Asso. (b) Corrln. & Maint. (c) Missile Control (d) A Step TUF

Figure 14: Example Time Utility Functions (TUF) [WRJO06|.

Some example TUFs can be seen in Figure 14. The wtility of finishing a job is de-
picted as a function of the completion time. In Figure 14 (a) and (b) non-increasing
TUFSs can be seen. Here, the utility of completing the task decreases or stays the
same as time goes by. In (¢) a TUF of a missile application is depicted. Here, the
utility increases as the missile approaches its target, and then quickly decreases. A
traditional deadline as a TUF is shown in Figure (d). The utility of the completion
of the task stays the same until the task’s deadline, after which the utility drops to
zero. A scheduling algorithm that tries to maximize the sum of TUFs in the system
is called Utility Accrual.

The TUF of task T; is denoted by U;, and the TUF of job J is denoted by U, . The
utility when Ji, is completed at time ¢ is denoted Uy, (t). When scheduling tasks,
the aim of ReUA is to maximize the utility while minimizing energy consumption
[WRJ06]. In order to achieve this, ReUA uses a unit called UER (Utility-Energy
Ratio). The system’s UER is defined as follows:

X Ui

B E?:l Ez'

where U; denotes the TUF of task T}, and E; the energy (described hereafter) con-

sumed by task 7;. Hence, UER is an indicator of system-wide energy efficiency:

UER

utility achieved per energy unit.

System wide energy considerations Reducing the CPU power requirement
will lead to longer task execution times. If hardware components such as displays,

hard drives or memory chips need to be powered up during this time, reducing CPU
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speed might in the worst case even increase the system-wide energy requirement, as
other components need to be powered up longer. When making scheduling decisions,
ReUA considers the system-wide power consumption instead of only the CPU power
consumption. While the CPU power consumption is calculated using the formula
P = C x f xV? (Equation 5), The equation for the system-wide energy consumption
is estimated using Equation 9 [WRJO06|:

P:S3Xf3+52><f2+51><f+50 (9)

where f is the operating frequency; Ss is the CPU power requirement; Sy is caused
by CMOS power leakage; S7 presents the power requirement caused by components
such as memory chips operating at a fixed voltage independent of frequency, and Sy
is a constant representing components such as displays, whose power requirement is
independent of both operation frequency and voltage [WRJ06|. From Equation 9,

the following equation for the energy consumed per processor cycle can be derived:

E(f)253><f2—|—52><f—|—51—|—50/f (10)

Calculating processor cycle demand When calculating the processor cycle de-
mand to be allocated to a task ReUA, like EScheduler (Section 4.2.1), uses statistical
information. But unlike EScheduler, ReUA does not explicitly present a mechanism
for collecting and processing statistical information: the CPU cycle demand mean
and variance are assumed to be given. To calculate a task T;’s cycle demand Cj,

ReUA uses Equation 11 which provides a statistical performance guarantee:

Ci = B(Y;) +/Ipi x Var(Y)]/(1 - pi) (11)

where Y] is the cycle demand distribution; E(Y;) is the expected cycle demand, and
Var(Y;) is the statistical variance of cycle demand distribution. The variable p; is
a probability. In ReUA, a pair {v;,p;} is used to indicate that v; of the maximal
utility (TUF) should be achieved with probability p;.

This statistical performance guarantee can be presented as Pr(U(s; ;) > v;xU["*) >
pi IWRJ06], where s, ; is the sojourn time of J; ;. To calculate the upper bound for
T;’s sojourn time, ReUA uses a variable D; and calls it "critical time”. To ensure that
v; of the maximal utility is achieved with probability p;, ReUA needs to guarantee
that
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D; = U (v x UM (12)

where UZ-_1 is TUF’s inverse function. The values C; and D; are calculated in ReUA’s
offlineComputing() procedure that can be seen in Figure 15. Equation 12 is used
on line 3 to calculate D;. On line 4 Equation 11 is used to calculate the amount of
CPU cycles to be allocated to T;, and this number is placed in the variable C;. This

procedure also calculates ff., the optimal speed (frequency) at which to execute T;.

input : Task set T;
output : D;, C;, fi?;_;
Di — Ui_l(vi X Uimax);

C;=E(Y)+ /e,
Decide /3, such that Ui(£) / (€ x B(f2) = max (Ui (G x E(f)),
VjE{LQ,...,In};

gl o

Figure 15: The offlineComputing() procedure of the ReUA algorithm
[WRJO06].

The ReUA main pseudo code The algorithm for ReUA can be seen in Figure
16. As input ReUA receives the current task set 7' = {T3,...,T,} and the current
unscheduled job set 7,.. From these, ReUA will calculate its output, i.e. the job to

be executed J..., and its execution speed, feze.

On line 3 the 0fflineComputing(T) procedure is called, and C;, D; and the optimal
frequency ff. of each task are calculated. (On line 4, the current time ¢, is placed
in ¢.) The switch-statement on lines 5 8 manages the variable C! which holds the
remaining CPU cycles allocated to the current job. Upon task release (line 6), the
entire allocated cycle amount is placed in this variable; upon task completion (line 7)
the variable is set to zero, and on other scheduling occasions (line 8) C is updated

to reflect the number of remaining cycles.

In the for loop starting on line 9, a feasibility check is performed on all unscheduled
jobs. The expected calculation time of any job may not exceed its termination time
at highest CPU speed. If a job is not feasible, it is aborted (lines 10-11). Otherwise,
on line 13, ReUA calculates the resource dependencies of the job using the procedure
buildDep().

The for loop on lines 14 15 calculates the UER (Utility-Energy Ratio) for each
unscheduled job. This Figure implies ’how much utility would be achieved if this job
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L. input:T={T",....,T.}, 7 =({J1,...,Ju};
2: output : selected job <o, and frequency fexe;
3: offlineComputing(T);
4: Initialization: t :=1.,,., o :=0;
5: switch triggering event do
6: case task_release(T;) Cr=Cj;
7: case task_completion(T;) Cr=0;
8: otherwise Update C7;
9. forVvd,eJ. do

10: if feasible(J;,) do =false then

11: | abort (J);

12: else

13: I_ Jp.Dep = buildDep(Jy);

14: for VvJ, € 7. do
15: LJk.UER :=calculateUER(J},, £);

16: o4y :=sortByUER(/,);
17: for Ve € oy from head to tail do

18: ifJ, . UER > 0 then

19: | o :=insertByECF(o, J3);
20: else

21: | break;

22:  Joye :=head0f (o) ;
23:  fexe:= decideFreq(T, Jere, £);
24: return J.p and fexe:

Figure 16: The ReUA main pseudo code [WRJ06]. Symbols: 7, de-
notes the current unscheduled job set; C; CPU cycles allocated to J;; C7

7

remaining cycles of current job.

were to be executed starting at this moment”. The calculateUER() procedure even
considers job dependencies calculated by buildDep(): if J; is dependent of tasks
Jipep = {IDepys - - - IDepy }» then the jobs in J; 4, are included when calculating the
UER for J;.

On line 16, the jobs are sorted in non-increasing order according to their UER. In
the for loop starting on line 17, the jobs which are meaningful to run, i.e. the ones
whose UER is larger than zero (line 18), are inserted into a list ¢ in order of their
critical times. This is done by the procedure insertByECF() (line 19). Critical
times are moments when, at the latest, the job needs to be finished in order to
guarantee the desired performance level defined by {v;, p;}. The ECF value of a job
J; is not necessarily the critical time of J; alone: if another job is dependent on J;,
the actual ECF of J; might be earlier than its tentative ECF. The EDF principle
is followed by insertByECF(). In essence, on lines 16-21, the jobs are first sorted
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according to their UERs, and then according to their ECFs. The resulting ordered

list is placed in o.

On line 22, the job at the head of ¢ is chosen for execution. On line 23 in procedure
decideFreq(), ReUA calculates the optimal execution speed for the job considering
available DVS parameters. On line 24 the algorithm returns the job to be scheduled

Jeze, and its execution frequency f,.e.

4.2.3 Comparing the Presented Algorithms

Presented in this section were EScheduler [YuN06] and ReUA [WRJ06|, two recent
algorithms for CPU scheduling in a soft real-time environment. Both algorithms
provide a statistical guarantee that jobs meet the desired level of performance with
probability p. In EScheduler, the process of collecting and analyzing the accumu-
lated CPU cycle demand statistics is explicit; in ReUA, the mean and variance of

CPU cycle demand is considered to be given.

EScheduler is a traditional energy conserving CPU scheduling algorithm: it only
considers the power requirements and savings of the CPU (Equation 5) and ignores
the power properties of the rest of the system. The approach chosen in ReUA
is more realistic, as it estimates system-wide energy savings (Equation 9). How
superior as the latter approach may seem, one should note that, in essence, the
difference is just whether we choose to consider the CMOS power consumption
equation P = C'x f xV? or the system-wide equation P = S5 f3+S5x f24+S; x f+S

when estimating task power requirements.

Where ReUA stands out in comparison to EScheduler is in its consideration of
resource dependencies, and its introduction of the TUF concept that has been ar-
gued to provide higher fidelity than deadlines. Neither of the algorithms explicitly
takes into consideration transition delays when making DVS frequency and voltage

adjustment decisions.



37

5 Power Aware Device Scheduling

The main problem with device scheduling is the same as with processor scheduling.
We have one resource with multiple users, and wish to share the resource between
these multiple users in a purposeful way. In real-time systems especially deadlines
must be met. The major difference between processor and device scheduling is that
the device scheduler needs to calculate a distinct schedule for each device. Systems
may contain multiple devices, and each task may use several or none of them. The
situation is hence not the same as with processor schedulers, which we considered
in Section 4: the processor schedulers were all aimed at uniprocessor systems, and

every task naturally utilize this single processor.

Devices considered in this section have at least two power states: a sleep state and
an operating or awake state. In the sleep state, the device is not able to provide its
service, like disk or network I/O, but in this state the device consumes less energy
than in its operating state. Some devices may have several power states, where each
state ps; ;1 consumes less energy than state ps;, but takes a longer time to wake
up from. The transition between states is controlled by the operating system. A
transition between states always includes a certain penalty in terms of time and
energy cost. A transition takes a certain amount of time, and requires a certain
amount of energy. A proper power-aware real-time scheduler needs to consider
these time and energy costs when making scheduling decisions in order to guarantee

meeting of deadlines.

5.1 Hard Real Time Scheduling

The problem of power-aware real-time device scheduling has in recent research been
tackled in at least two different ways. The aim in for instance the EEDS algorithm
|ChGO06] is to enhance the system’s EDF based task scheduler with an energy aware
device scheduler. One can also entirely separate the device scheduler from the pro-
cessor scheduler, as has been done in MUSCLES and LEDES [SwC03]. A completely
different approach is chosen in the EDS [SwC05| algorithm, which due to its CPU
time and memory requirement operates offline. In the next section we will explore

each of these algorithm
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Procedure LEDES(k;, 7, Ti+1)

curr: current scheduling instant;

1. if scheduling instant is the start of 7; then
2. if k; is powered-up then

3. if k; € L; and Ly, then

4. shutdown k;

5. end if

6. if kj € Li+1 then

7. if 5,01 —(si +¢i) > to,; then
8. shutdown k;

9. end if

10. endif

11. else

12. if kj € Li+1 and Si+1 — (31‘ + C:,-j) < to,j then
13. wakeup k;

14.  endif

15. elseend

16. if scheduling instant is completion of task 7; then
17. if k; is powered-up then

18. if k; € Li+1 and s — curr > {p; then

19. shutdown £;

20. endif

21. else

22. wakeup k;
23. elseend.

Figure 17: The pseudo code of the LEDES scheduler [SwC03]. Notations:
k; a device, 7; task, L; the set of devices needed by 7;, s; start time of task

i, ¢; execution time of task i, t;; transition time of device j.

5.1.1 Low Energy Device Scheduler

The basic assumption in Low Energy Device Scheduler (LEDES) [SwC03|, Figure
17, is that the transition time, the time needed for the device to switch from sleep
state to the powered-up state (or vice versa) is shorter than the execution time of
any task instance. If we accept this assumption, then it suffices to schedule only one
task into the future at a time. This is enough to guarantee that no deadlines will be
missed. In other words, if the current task instance is 7; we need only consider the
device schedule up to and including 7; ;. This will be enough for us to wake up all
devices so that they will be ready for use when needed. This assumption implies that
no matter how many tasks there are in the system, LEDES need only to consider

two the current and the next one in its device schedule calculations. This is why



39

the workload LEDES adds to the system is acceptable. LEDES supports, however,

devices with only two different states — sleep and powered-up.

As input parameters LEDES (figure 17) receives a pointer to a device k;, the schedul-
ing information of the current and next tasks, T; and T;,,. LEDES is activated at
either the start (line 1) or the end (line 16) of a task. If the device k; is switched on
(line 2) while not being needed by the current or the next task (line 3) the device is
switched off (line 4). If k; is needed by the next task (line 6), but will make it back
online if we power it down for the remainder of the execution of the current task,
and power it up when finishing the current task (line 7), we power k; down (line 8).
On line 7, LEDES also considers device state transition time ¢y ;. If k; is needed by
the next job, but k; wouldn’t make it back online on time if we would initiate its
wakeup as late as at the end of the current task (line 12), then k; is immediately
woken up (line 13). These considered cases include all possible cases we need to take

into account at the beginning of a task.

The other scheduling instance of LEDES is at the end of tasks (line 16). If the
device k; is powered up while not being needed by the next task (line 18) it can be
powered off (line 19). In addition, we must on line 18 check that the powering down
of the device will be finished by the start time of the next task, as the device can
be needed at that occasion. (In LEDES, the powering up and powering down state
transition times are assumed to equal each other, and both are notated by ¢y ;.) In

other cases, the device is powered up (line 22).

We believe that one if sentence is missing from the LEDES pseudo code. On line
22, before waking up k;, we would want to check that k; actually is needed by T;4;.
It is, of course, unnecessary to wake up the device if it isn’t needed by the next task.
Because LEDES makes scheduling decisions only in the beginning and at the end of
tasks, its implementation into the operating system’s processor scheduler should be
pretty straightforward: we just call the LEDES procedure at the end and beginning
of tasks. The computational complexity of LEDES is O(n), where n is the size of

the set of devices attached to the system.

With LEDES, implemented into a Rate Monotonic based scheduler, device energy
savings of up to 40 percent have been reported |SwC03|. As the algorithm shows,
LEDES supports only two distinct power states.
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Procedure MUSCLES(S,PS, k;)
curr: current scheduling instant;

At 8

1. Find first task 77, that uses device k;;

2. Compute number of valid scheduling instants X between s,
and 71;

3. if X > j + 1 switch down k; from ps; ; to ps; j+1;

4, else if X = j wake k; up from ps; ; to ps; j—1;

At 80 + Cin:

5. Find first task 7, that uses device k;;

6. Compute number of valid scheduling instants X between s,
and 77;

7. if X > j+ 1 switch down k; from ps; ; to ps; ji1;

8. else if X = j and curr is a valid scheduling instant

9. Wake k; up from ps; ; to ps;;—1;

10. else leave k; in ps; ;.

Figure 18: The MUSCLES scheduler [SwCO03]. Notations: S the task
schedule; PS set of power states; k; device; s,, start time of task m; ¢,
execution time of task m; ps; ; power state j of device i; ps;o the powered

up state.

5.1.2 The Multi-State Constrained Low-Energy Scheduler

Several contemporary devices and peripherals, like flash memories, hard drives and
network adapters, support multiple power states for energy conservation. For these
purposes, the authors of LEDES have presented an algorithm called MUSCLES
(multi-state constrained low-energy scheduler) |[SwC03]. In MUSCLES, devices are
moved between states one step at a time. Let £; be a device, and ps; ; an arbitrary
power state of this device. From this state, it is possible to switch to state ps; ;i1
or ps;j—1 in one step. In MUSCLES, the state ps;( is the operating state of the
device; the other states are power saving states, where the device doesn’t provide
operational functionality. State ps; ;1 requires less power than state ps; ;, but takes

longer to wake up from.

If we accept these assumptions, we can no longer build upon the idea of LEDES,
where the wakeup transition time never exceeds the execution time of the task.
MUSCLES still relies on the assumption that a transition from state ps; ; to ps; j11
or ps;j—1 never exceeds the execution time ¢; of any task. However, if we are in
state ps; ;, the wakeup — i.e., the transition to state ps; o — may endure up to j X ¢;
time units. When 5 > 2, the wakeup time may exceed the assumption we built upon
in LEDES. Therefore, in order to reliably schedule devices in MUSCLES, we need
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to calculate the schedule further into the future. Whereas the time requirement of
LEDES is O(n), where n is the amount of devices in the system, the time requirement
of MUSCLES is O(np), where p is the size of the task set [SwCO03].

Let us now study the pseudo code of MUSCLES, presented in Figure 18. First it
is worth noticing that MUSCLES is activated at either the start time of a job

indicated by s,, in the pseudo code or at the end of the job, indicated by s,, + ¢,
where ¢, is the job’s execution time. As input parameters, MUSCLES receives S,
the task schedule of the system; P, a list of devices each task uses, and a device
pointer k;. The job of MUSCLES is to calculate whether to switch k; to a less
power-consuming state, to switch the device closer to the wakeup state, or to leave

the device in its current state.

On line 1, we find the first task 77, that will need device k;, and on line 2 we calculate
the amount of scheduling instances before 7, and denote this Figure with X. Let
the current power saving state be ps; ;. If X > j + 1, k; may safely be switched
to a lower power state (line 3), and there will still remain a sufficient number of
scheduling occasions to put k; back online on time. If there are as many scheduling
occasions as there are power states between the current one and the operating state,
i.,e. X = j, then k; is switched one state towards the wakeup state, i.e., from ps; ; to
pSij—1 (line 4). This will guarantee that the device will be woken up in time when

it is needed.

The other scheduling instance is at the end of the job, at time s,, + ¢,,,. Here, we
proceed in the same way as at the beginning of the job. It is resolved which task
first needs device k; (line 5). Then we decide how many scheduling occasions there
are before the start of this task (line 6). If there are more scheduling occasions than
there are power states between the current state and the wakeup state, the device is
put into a lower power state (line 7). Otherwise, if the amount of states equals the
number of scheduling occasions, the device is switched one state towards the wakeup

state (line 8 and 9). On other occasions, the device is left in its current state.

5.1.3 The Energy-Efficient Device Scheduling Algorithm

A state transition, as such, always requires a certain amount of energy and time.
Therefore very short transitions into the sleep state and back actually do not add

up to net energy savings. We will now discuss an algorithm called Energy-efficient
Device Scheduling or EEDS [ChG06]. The pseudo code for the algorithm can be
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Preprocessing:

Compute break-even time BFE(A) (1 < k < m) for each device.
Schedule jobs at time 7 when a joh is put in the ready queue or is
completed
4 /I A job can join the ready queue when all needed devices are active.
S5 Jpun — the job with the highest EDF priority in the ready queue.
6 Dispatch Jyyn:

7 Perform dcvice state transitions at time ¢ when a job is rcleased,
completed or the timer to reactivate a device is reached.
8 If(¢: Ak, Ap & Dev(Jyun) && A\ = active
&& DS(Ap,t) > BE(A))
9 Ap — sleep;

) D =

10 I Tp(Ag) is the timer set to reactivate Ay.
11 Up(Ag) — L4+ DS(Ap, U) — by (Ag);
2  EndIf

13 // Device slack may increase; update Up( Ay ) for sleeping devices
// in this case.

14 If(t FAg, Ap = sleep && L+ DS(Ap, 1) — Lywu(Ar) = Up(Ar)

15 Up(Ak) < t+ DS(Ap,t) — twu(Ar):

16 EndlIf

17 // Reactivate A, when the timer 1s reached.

18 It 2Ak. A = sleep && Up(A) = 1)

19 A — active;
20 EndIf
21 FEnd

Figure 19: The EEDS scheduler [ChG06]. Notations: ), indicates de-
vice k; BE is the breakeven time; J,.,, the job currently being executed;
Dev(Jyn) the set of devices J,.,, needs; DS(\,t) the device slack time of
A, at time t; Up()\;) the wakeup time of \; t,,(\;) the transition delay

time of ;.

seen in Figure 19. The algorithm supports devices with two power states, sleep and
active. EEDS calculates the breakeven time for each device. This is the length of
the time period it is worthwhile to put the device in sleep mode. For shorter periods
than this, the state transition costs will exceed the net gain. On line 2 in the pseudo
code, EEDS calculates the breakeven time BE of each device. The length of the
device’s breakeven time depends on the properties of the device: how long a time
the transition from active to sleep state (and vice-versa) takes, how much energy
the transition(s) require, and how much energy the device spends in active vs. sleep

state.

EEDS utilizes a data structure of the type queue where the active jobs are ordered
according to the EDF principle — the one with the closest deadline at the head of
the queue. This job is scheduled (line 6). We call device slack time the length of the
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time period until device A\ is needed next time. On line 8 we resolve whether there
is a woken up device A, whose device slack DS (the length of the time period when
the device is not needed) is greater than its breakeven time BE. Such devices may
be put to sleep, which is done on line 9. In order to wakeup these devices so that

they will be ready when needed next time, EEDS sets a timer on line 11.

As the timer value we put the current time ¢ added with the device’s slack time
DS (A, t) subtracted with the wakeup time t,,,(\z). Due to the dynamic properties
of jobs, the device slack time may increase even during the sleep time. Therefore
the timer of the device may be updated on lines 14 and 15. On line 18 we check

whether the timer of a device has expired, and if so, wakeup the device on line 19.

5.1.4 The Energy-Optimal Device Scheduler

The schedulers described earlier are all online schedulers. Swaminathan and Chak-
rabarty [SwCO05| have in 2005 published a real-time device scheduler aimed at offline
use. It differs from all previous algorithms described in this thesis also in the sense
that it completely rejects both EDF and RM and implements a scheduling mech-
anism of its own. This algorithm is called Energy-optimal device scheduler (EDS).
In order to find an energy optimal device schedule this algorithm builds a decision
tree using an iterative algorithm. To limit memory space requirements, EDS prunes

branches from the tree when possible.

J1 J2 J3 J4 J5 J6 J7
a; 0 0 3 4 6 8 9
Ci 1 2 1 2 1 2 1
d; 3 4 6 8 9 12 12

Table 4: The EDS example job set [SwC05|, where q; indicates the arrival
time; c¢; the execution time, and d; the deadline of a job. The odd-
numbered jobs belong to task 7, and use device k;, and the even-numbered

jobs belong to task 7, and use device k.

Let us start our study of the EDS algorithm by considering an example. In Table
4 we have a set of jobs from two tasks, 71 (the odd-numbered jobs) and 72 (the
even-numbered jobs). 71 uses the device k; and 72 the device ky. The mission
of EDS is to find such start times for all of these jobs, that device energy use is

minimized while deadlines are met. EDS solves this problem by building a schedule
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tree. The beginning of the schedule tree built using the task set of Table 4 can be

seen in Figure 20.

Partial Partial ‘
schedule A schedule B >< Temporal pruning

Figure 20: The EDS scheduling tree after jobs j; and j, have been sched-
uled [SwCO05]. Syntax: (j;,time, E;), where j; is the job number, time the

start time of j; and F; the device energy consumption up to time.

The schedule tree consists of vertices, where each vertex is represented as a 3-tuple
(ji, time, E;). In this tuple j; indicates the job number (from Table 4), time is a valid
start time for j; according to this schedule, and E; indicates the amount of energy
spent by the device ¢ according to this schedule up to time. Vertices (z1, xq, z3) and
(y1,y2,ys3) are connected by an edge if y; can be scheduled at y» when z; has been
scheduled at xo [SwCO05].

Calculating the energy consumption Assume that each device has two states,
a low power sleep state ps;; and a high power working state psj, ;. Let ¢y; be the tran-
sition time between these states, and Fy; be the transition power requirement. Let
P, ; and P, ; indicate the power spent when in sleep and working states, respectively.

The energy requirement is calculated using the formula
E; = P, ity + Psitsi +mPy it (13)

where m is the amount of state transitions; ¢, is the time spent in sleep state, and

tw; is the time spent in working state [SwC05].

Building the schedule tree The building of the schedule tree is started with a
dummy vertex (0,0,0). According to Table 4, jobs j; and js have been released at
time 0, and will hence be added to the tree. Let’s begin with j;. The completion
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(execution) time of j; is 1 and its deadline is 3 (Table 4). Therefore, j; may be
scheduled at time 0, 1 and 2. We therefore add three vertices, (1,0,¢e1), (1,1, ¢€2)
and (1,2, e3) to the tree, and connect these with an edge to the root vertex. The
energy consumption value e; for each vertex is calculated using Equation 13, and
the correct values for eq, e; and eg are 0, 8 and 10, respectively (we will here exclude
the details of energy consumption calculation). We add these vertices to the tree, as
can be seen in Figure 20. In a similar fashion, we add to the tree the vertices of 7,
connecting it to the root vertex, because even j, was released at time 0. According
to Table 4, the completion time of j, is 2 and its deadline is 4. Therefore, it can
be scheduled at times 0, 1 and 2. The corresponding values for e; (calculated using
Equation 13) are 0, 8 and 10, respectively. Hence, we add the vertices (2,0,0),
(2,1,8) and (2,2,10) to the tree, as can be seen in Figure 20.

Pruning the schedule tree EDS performs both temporal and energy pruning.
This way it will reduce the size of the schedule tree in order to ease memory space
and processor time requirements. Continuing with our example, as the next step,
EDS performs temporal pruning. Consider the vertex (1,2,10) in Figure 20. If j; is
scheduled at time 2, it will finish at time 3, because its completion time is 1 (Table
4). However, finishing j; at time 3 would mean that the execution of j, would start
no earlier than at 3, and because the completion time of j, is 2, jo would miss its
deadline at 3. Therefore, this schedule is unfeasible, and the branch of the tree
starting with node (1,2, 10) can be pruned. This is indicated by the cross in Figure
20. By similar reasoning, we will also be able to prune the branches starting with
vertices (2,1,8) and (2,2,10). Let us first consider (2,1,8). If the first scheduled
job is jo at 1, it will finish at 3 but then j; would certainly miss its deadline at 3,
and hence this schedule is unfeasible, and this branch can be pruned. Similarily,
considering vertex (2,2,10), if jo at 2 is the first scheduled, it will finish at 4, but

then j; would have missed its deadline at 3, so also this branch can be pruned.

The second form of pruning utilized by EDS is energy pruning. In Figure 21, which
displays the entire scheduling tree, consider the vertices (2,2,14) and (2,2, 16) lo-
cated two edges away from the root vertex. These vertices indicate two schedules of
the same job, 2, at exactly the same point in time, also 2. Also, in both branches,
exactly the same job have been previously scheduled. However, the latter of the
schedules consume 16 units of energy in comparison to 14 of the first one. Because
our aim is to minimize energy consumption we may here utilize energy pruning,

and discard the rest of the branch with the higher energy consumption. Energy
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> Temporal pruning

~  Energy pruning

21,10

4.4.36 4,642 4,640 JA4538 4,642 4,6.40

SESGF  S5654F 57520 5 8 4N 5 7 50% 58 5 5,852

6.8.666 ¢ g gl 69,66 68,64 6,966 6862F 0 6 6.8.60 27 g g 6.9.62 70,64

7.9.64 0 P,
1’ 6.9,68 7,064 1‘

5 X 6107 J:11.84 . .

701,82 510,78 711,80 71178 Leaf node with
‘ least energy

7.10,80 7,11.82

61072 710,76

6,10.68

Figure 21: The complete EDS scheduling tree [SwCO05]. The least energy

consuming schedule of the 7 jobs has been found.

pruning can always be made when two jobs are scheduled at the same time, and the
order of the previously scheduled jobs among both branches are identical [SwCO05].
Once we have finished the final scheduling tree, i.e. included all the leaf vertices,
we choose from among the leaf vertices the node consuming the least energy (68)
by eliminating higher-energy vertices. The path from the dummy vertex (0,0,0) to
this lowest-energy leaf vertex (6,10, 68) indicates an energy-optimal schedule of the
job set of Table 4.

The EDS pseudo code The pseudo code of the iterative EDS algorithm can be
seen in Figure 22. As initialization, on line 2, the dummy vertex (0,0) is put into
the openList. In the for loop starting on line 3 all vertices in the openList are
processed. On line 5, a set 7’ is generated out of the jobs that have been released up
to the time stamp of the current vertex. Out of these jobs we generate new vertices,
and prune those that would be unfeasible. On lines 15 22 we compare all pairs
of vertices on the current height of the tree, and if two with identical scheduling
occasions are found, we prune the one with the higher energy requirement. The
EDS algorithm is finished on lines 25 27 when all jobs have been scheduled, i.e.,
when the height of the tree equals the number of jobs.
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Procedure EDS(7, 1)

J: Job set.

[: Number of jobs.

openList: List of unexpanded vertices.
currentList: List of vertices at the current depth.
{: time counter.

1. 8ett = 0; Setd = 0;
2. Add vertex (0,0) to openList;
3. for each vertex v = (j;, time) in openList {

17.
18.
19.
20,
21.
22,
23
24,
25,
26.
27.
28. }

Sett = time + ¢y
Find set of all jobs 7' released up to time ¢;
foreachjobj e 7' {
if j has been previously scheduled
continue;
else {
Find all possible scheduling instants for j; /* Temporal pruning*/
Compute energy for cach generated vertex;
Add generated vertices to currentList;

}
}
for each pair of vertices v1, v2 in currentList {
if j1 = jo and
partial schedule(v) = partial schedule(v2) {
if E'b‘]. = E‘uZ
Prune v;;
else
Prune va;
}
}

Add unpruned vertices in currentList to openList;
Clear currentList;
Increment d;
Ifd =1
Terminate.

Figure 22: The EDS pseudo code [SwCO05].

Despite its pruning technique, its memory and computation time requirement of

EDS may be excessive [SwC05]. EDS is aimed at offline use, meaning that the

schedule is computed before run-time. Also, the schedule calculated by EDS is

non pre-emptive. Jobs are executed from start to finish without context switches.

Therefore, jobs may have to wait for long times while large jobs are being processed.

5.1.5 Comparing the Presented Algorithms

We now have presented four algorithms for power-aware device scheduling. Out of
these schedulers, LEDES and MUSCLES are add-ons to the system’s task scheduler.
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They also have shortcomings. For instance the basic assumption in LEDES is that
the transition time of a device may never exceed the execution time of any job. As
a process in a real-time system may consist of just a few lines of machine code that,
for instance, reads a sensor measurement figure, and for instance a hard-drive may
take several seconds to wake up from sleep state, we always cannot build upon this

assumption.

The bigger brother to LEDES is MUSCLES which supports several sleep states.
However it does not support several operational states. Recall from our discussion
of processors, that many contemporary CPU’s provide several operational states,
where lesser throughput is provided for less energy cost. MUSCLES does not support

any similar functionality on devices.

Neither LEDES nor MUSCLES calculate the net gain of state transitions. This is,
however, done by EEDS which, essentially, is an enhanced EDF scheduler. Devices
that are currently not needed and which in spite of transition costs are beneficial to

be slept down, are put to sleep and awoken with a timer.

Our final algorithm, EDS, calculates an energy-optimal schedule using a decision
tree. Due to its complexity, this algorithm is intended for offline use. The authors
of EDS also have published a heuristic algorithm, Mazimum Device Overlap (MDO),
which seeks an approximate solution to the same problem and operates in polynomial
time |SwCO05|.
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6 System-Level Power Aware Scheduling

By using Dynamic Voltage Scaling, the processor’s operating frequency and voltage
may be regulated during run-time. Since the processor’s energy consumption cubi-
cally depends on frequency and voltage, impressive CPU energy reductions may be
achieved using this technique. There is, however, a downside complicating the mat-
ter. Besides the processor, computer systems consists of other components, such as
memory and cache memory chips, graphic adapters, network cards, bus controllers,
graphics processors, modems, wireless network adapters, and so forth. Performing
a calculation takes a longer time when the processor speed has been lowered. When
considering the CPU energy consumption in isolation, a frequency and voltage re-
duction using DVS indeed results in energy savings. However, as the processing
time increases, all the other components need to be longer in the standby state.
Components such as memory chips generally require a fixed power supply regardless
of the DVS setting of the CPU. Hence, when system-level energy reductions are the
aim, considering the CPU power requirement in isolation is not sufficient. Most
early DVS based CPU scheduling algorithms have chosen to overlook this fact in
their basic assumptions |FELO4|. This is also the case with the algorithms described

in Section 4.

1.8 |
-« Q_ (5) of SAT100

16 | = Q(5) with P=0.2
-©- Q(s) with P*9=0.2w

14 B Q(s) with P9°=0.4W ]

15 2 25 3 35
s (scaling factor) ---->

Figure 23: The effect of the processor scaling factor s on system-level

energy consumption [ZhCO05].

Consider Figure 23. The X axis indicates a StrongArm SA 1100 processor scaling

max __ frequency

carrent. Frequency’ and the Y axis indicates power consump-

factor s defined as s =
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tion of a task, in watts. In the graph, the crossed line Q,..(s) depicts the power
consumption of the SA 1100 processor alone. The possible s values are the discrete
scaling factors provided by this processor. The energy optimal s value © = 2.8 is
marked in the graph. Next, consider the dotted line Qg (s). This monotonically
rising line indicates the power consumption of the device set needed by the task,
excluding the processor. As the scaling factor s increases, and hence the CPU speed
decreases and processing times increase, the aggregate power consumption of the
device set increases. The line with circles shows the combined processor and de-
vice power requirement when static device power requirement is considered to be
0.2W, which often is the case with for instance Synchronous Dynamic Random Ac-
cess Memory (SDRAM) memory chips [ZhC05|. The optimal scaling factor, when
considering both the power consumption of the processor and the device set, is 1.39
and this value is marked in the graph with #*/. The line with squares shows the
combined energy optimal voltage scaling factor when the device set static power
requirement is considered to be 0.4W. This is the case with many flash drives.
With this power requirement, the energy-optimal scaling factor 8% = 1.07. Com-
paring this value to the CPU energy optimal value of 2.8 and the 0.2WW optimal
value 1.39 clearly illustrates how the net gain of aggressive DVS values decrease as
processor independent energy consumption increases. It has actually been shown
[ZhCO05| that when device energy consumption is considerably large compared to
CPU energy consumption, DVS implementations actually can spend more energy

than non-DVS approaches.

As the processor takes a longer time to perform calculations, the standby energy
requirement of the device set rises. An energy-efficient scheduling algorithm, there-
fore, needs to consider system-wide energy consumption when calculating an optimal
scaling factor for the processor. In the next subsections, two recent algorithms will

be explored.

6.1 duSYS: A System-Level EDF Algorithm

Zhuo and Chakrabarti [ZhCO05| have published an EDF based system-level power-
aware real-time scheduling algorithm called duSYS. Its high-level pseudo code is
given in Figure 24. What makes this algorithm different from processor scheduling
algorithms explored in Section 4 is the calculation of the energy-optimal DVS scaling
factor. The idea behind duSYS is that the system-level energy consumption can be

written as a function of the processor’s scaling factor s.
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Let P,,... be the processor operating power consumption, and Pdl! be the standby
power consumption of the device set needed by task 7. Now, the energy consumption
of task ¢ can be written as Q(s) = Qproc($) + Quev(s). Here, Qproc(s) = s X Pyroc
and Qe (s) = s x Pd [ZhC05]. Because processors typically only have a handful
of available speed scaling modes (values for s), for instance the SA 1100 has 11, it
is possible for every task to numerically evaluate each of them |ZhC05| and choose
the one that will yield the lowest aggregate power consumption. This optimal value
is denoted by 6#; in duSYS. The mission of duSYS is to find for the scheduled active
job Ju an optimal scaling factor s,;. The duSYS algorithm calculates the scaling
factor using Equation 14 [ZhC05]:

Dact —1

act

y ety du(t)) (14)

Sact = mvin(

where D, is the active job’s absolute deadline, ¢ is the current time, F,. is the
jobs worst-case execution time (the execution time that has been budgeted to the
task), and 0, is the optimal voltage scaling factor for the task based on the task’s
static execution parameters. In duSYS, 0, is computed offline. Due to the dynamic
nature of jobs, real execution times vary greatly, and are generally shorter than the
budgeted static ones. In order to utilize emerging slack times for energy savings,
duSYS also calculates and considers the dynamic utilization, du(t), when selecting

the appropriate scaling factor. The value du(t) is calculated using Equation 15

[ZhC05].
_ 4771 _
duft) = 2= UEX(W Fact) (0 < < 1) (15)
act

where H is the hyper period, i.e., the least common multiple (LCM) of the periods of

the scheduled tasks, W is the estimated remaining workload and U is the utilization
degree of the system. Using the value du(t) for processor frequency scaling, all slack
available at time ¢ may safely be granted to the active job, while timely execution
of the rest of the jobs is also being guaranteed. The term % in Equation 14
ensures that deadlines are not violated |ZhCO05].

To summarize, when selecting the optimal scaling factor s, for the active job,
duSYS chooses from among three different candidates the smallest one according to
Equation 14. Out of these three candidates, 0, is calculated offline and is based on
static information (period P;, worst-case execution time FE;) about the task, whereas
the purpose of du(t) is to utilize slack emerging when jobs execute faster than their

budgeted worst-case execution times.
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W = hyperperiod x U
while time() < hyperperiod do
determine s, and execute J,; using S,.;
if J,.; is not finished then
ExecutedPart = current _duration/sue;
W =W — EzecutedPart;
Eut = Euot — FxecutedPart,

Actual ExecutionTimey; = Actual ExecutionTime, — FxecutedPart,

© 00 1 O Ot = W N =

else
W=W — Eact;
end if

end while

—_ = =
N = O

Figure 24: The high-level pseudo code of the duSYS algorithm [ZhCO05].
W denotes the estimated remaining workload, F,.; the budgeted execution

time, and U the system utilization degree.

The pseudo code of duSYS can be seen in Figure 24. Released jobs are considered
to be sorted in a queue with the job with the highest EDF priority at the head
of the queue. On line 1, the estimated workload of the system is calculated. On
line 3 the highest priority job is scheduled using the scaling factor s, which has
been calculated using Equation 14. During the execution of J,., dynamic runtime
information is maintained on lines 5 8. This information is used when calculating
du(t), which seeks to utilize slack times for power savings. When choosing the
optimal scaling factor, duSYS considers the combined processor and device power

consumption in order to minimize system-wide power requirements.

6.2 The Critical Speed DVS Algorithm

Next we will consider an earlier EDF based power-aware system-wide real-time
scheduling algorithm [JeG04]. We call this algorithm C'ritical Speed DVS (CS-DVS).
Like duSYS, CS-DVS considers both CPU and device energy consumption when cal-
culating an energy-optimal DVS setting. In CS-DVS, the energy consumption E; of
a task 7; is given by Equation 16 [JeGO04]:

Ei(n) = %P CPU,n) +

(16)
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where 7 € [0, 1] represents the processor slowdown factor [JeG04|. This value indi-
cates the fraction of the maximum CPU speed at which the processor is being run
(n = 1 meaning the maximum speed), and corresponds to the scaling factor s used
in duSYS. In Equation 16, C; indicates the number of processor cycles budgeted to
the task 7;, and CiRj the number of cycles that device R; spends in the standby state
during the execution of the task 7;. The notation P(C'PU,n) represents the power
consumption of the CPU at slowdown factor 7, and P(R;) indicates the power con-
sumption of the device R;. In essence, the first term in Equation 16 represents the
CPU power usage at slowdown factor 7, and the second term represent the sum of
the standby energies consumed by the set of devices R; that task 7; uses at slowdown
factor n. Naturally, even components such as system memory may be modeled as a

device.

What CS-DVS needs to do is to minimize the energy consumption given by Equation
16. It needs to find the 7 that yields the lowest total energy consumption for the task.
Possible 1 values are the discrete speed settings provided by the underlying processor
architecture. CS-DVS finds the 7 giving the lowest total energy by calculating
Equation 16 for each available n value [JeGO04|, and then choosing the optimal 7.
As visualized by Figure 23, this value need not be the one that minimizes the CPU
power usage. The n value that yields the lowest total energy consumption is called
the critical speed of the task. Because each task may have different execution times

and use a different set of devices, their critical speeds need not be the same.

The pseudo code of the CS-DVS Algorithm is given in Figure 25. On line 1, the
critical speed for each task is calculated, and on line 2 each task 7; is initialized
its individual critical speed n;. Energy-optimal scaling factors might cause the task
set to become unfeasible, i.e. EDF timeliness guarantees would be violated. Hence,
CS-DVS might need to increase the scaling factor of some task(s). This is done
in the while-loop on lines 3 8. A possible candidate task 7,, for speed increase
fulfills two conditions (line 4). Firstly, the task’s current scaling factor 7, is not
the maximum speed (line 5). The second condition (line 6) is more complicated.
We wish to choose the task for which a speed increase from the current factor »;
to the next one 7,,; causes as small an energy consumption increase per time unit
as possible. Here, AFE,, represents the energy consumption increase between 7; and
Nir1, and At,, the time gained by the speed-up [JeG04]. From among the candidates
the task with the lowest AE,,/At,, value is chosen, and this task’s 7 is increased.
This process is repeated (line 3) until the task set becomes feasible according to the

EDF principle.
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Compute the critical speed for each task;
Initialize n; to critical speed of 7;;
while (not feasible) do

Let 7, be task satisfying:

(a) M, is not the maximum speed;

(b) AA% is minimum;

Increase speed of task 7,,;

end while

© 00 ~J O Ot = W N =

return slowdown factors 7;;

Figure 25: The Critical Speed DVS (CS-DVS) Algorithm in pseudo code
[JeGO4].

6.3 Comparing the presented algorithms

In this section we explored two power-aware real-time scheduling algorithms that
consider system-wide energy consumption when choosing the optimal DVS setting
for the processor. Both algorithms model a real-time task’s energy consumption as
the sum of CPU and device set energy consumptions. The slower the processor is
run, the more standby energy the devices require. A power-aware real-time scheduler

needs to consider this when making DVS setting decisions.

The considered algorithms were duSYS |ZhC05| and CS-DVS [JeGO04|. Both al-
gorithms are based on the EDF principle and provide a hard real-time timeliness
guarantee. The main difference between the algorithms is that duSYS is able to
utilize dynamically emerging job slack, whereas CS-DVS operates on static pre-
runtime task information only. It is well known that real-time jobs hardly ever
consume all the processor time that has been allocated to them, but execute faster

than budgeted. Hence, duSYS is potentially more energy-optimal than CS-DVS.
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7 Summary

In a real-time system, calculations need not only be correct, but also be finished
within a pre-defined deadline. The first serious real-time scheduling algorithms,
presented in Section 2, were Rate Monotonic and Earliest Deadline First |LiL73].
In a hard real-time system, for instance in a pacemaker, the meeting of every single
deadline is crucial. In a soft real-time system, for instance a video player, occasional

deadline misses are tolerated.

Many contemporary real-time systems operate on constrained devices with limited
battery power. Power awareness in constrained devices is discussed in Section 3. Ex-
tensive energy savings can be achieved by utilizing Dynamic Voltage Scaling (DVS)
[Gro03, VeF05] to change the operating frequency and voltage of the processor during
run-time. Using the Advanced Configuration and Power Interface (ACPI) [HIMOG6|,
the operating system may shut down devices, such as disk drives, for time periods

when the devices are not needed.

Using low-power techniques, the challenge for the real-time scheduler is to maximize
energy savings while guaranteeing that jobs meet their real-time deadlines. Due to
device wakeup delay times, the scheduler needs to initiate the wakeup procedure of
a slept-down device before the device is actually needed. If the device isn’t awoken

early enough, the job needing it might risk missing a deadline.

Advanced scheduling algorithms such as Feedback DVS-EDF [DMZ02| and duSYS
[ZhC05| are also able to dynamically utilize emerging slack times for energy savings.
Once one job finishes earlier than budgeted, the next job may have at its proposal
extra execution time. The scheduler may use this slack time to conserve processor

energy by executing the job slower.

Considerable research has been done in the field of power-aware real-time scheduling.
The Rate Monotonic and Earliest Deadline First algorithms have been enhanced
with power-aware properties. Power aware real-time algorithms for uniprocessor,

device, and system-level scheduling are explored in Sections 4, 5 and 6, respectively.
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Appendix 1. The entire Feedback DVS-EDF algo-

rithm

This is the entire Feedback DVS-EDF algorithm [DMZ02| presented in Section 4.1.3.

Procedure Initialization
for cach Ty, € {11.75,.. ., T.} do
('Irwg.k — Ch "2
U — 3‘1'- + 3_5- +o
Poir— Pr,Copr— Prx(1=Ulenpr— 0} (0)
let slack — 0

Procedure TaskActivation(Ti;)
if processor was idle for d then
slack — slack —d
if Ti; was preempted /interrupted then
slack — slack + slack;; — lefty;
forall Ty idle task jobs in dpg..d;; do

slack — slack + Ca (1)
— ind AL Lo fi -~ Coves
af —min{gt L PR T o e
if (ar=1) then
4 — 0

else

('a — slack x al/(1—ar)
Setlnterrupt(T;, C'q far)
SetFrequency (o)

Procedure TaskPreemption(T;;)
.m'ln‘!('.lr\"j — Oy + le flf@j - (.‘,‘
slack — slack — slack;;
let & — slack;;
forall T, idle task jobs

in d;..dp and in ry;.¢ while s > 0 do (2)
slack — slack — Oy
s — slack — 'y

reserve C, for Tj;

Procedure TaskCompletion(T;;)
if T;; was preempted then
if ¢;; = C; then (late finish)
slack — slack — ci5 + Ch
else (early finish)
slack — slack + Oy — 45
forall Ty idle task jobs in ri;..dy do
slack — slack — Oy (3)
f.IGUQ.i - ':f. Iaug_é *(J—1)+ Cyg X "l’J_-"'I.j

E'l-.ffg(}_H) =4

Procedure SetInterrupt(T;;. Ca)
Set timer interrupt for Ty,
triggered €4 time units later

Procedure InterruptHandler(T};)
if Ti; not completed then
slack — slaek — (ci5 + lefti; — Ci)
SetFrequency(1)

Procedure SetFrequency(n/)
J—alx fn



