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1 Introduction

In this thesis, I study the problem of placing relay nodes in wireless sensor networks.

Sensor networks consist of a large number of sensor nodes which collect data. The

collected data is routed via the network to a sink node. There may also be relay

nodes in the network. The relay nodes only forward data; they are not equipped

with sensors. The relay placement problems ask where the relay nodes should be

located in order to make data collection efficient. Figure 1 illustrates this problem.

The starting point of this work is the problem of balanced data gathering in sensor

networks, as presented by Falck et al. [FFK+04]. In this formulation, the nodes have

a limited energy source, and transmitting and receiving data consumes energy. The

network keeps forwarding generated data to the sink node until all energy sources

are drained. The utility function is a weighted sum of the minimum and average

amounts of data gathered from the nodes. The goal is to collect a large total amount

of data, but not at the cost of completely ignoring some parts of the monitored area.

Falck et al. show that the problem of finding an optimal routing can be presented

as a linear program.

If the optimum is not satisfactory, one solution could be to add a small number

of new relay nodes to the network. The obvious question is how to determine the

Sensor node Relay node Sink node

Figure 1: An illustration of the relay placement problem. The first image shows a

sensor network and one possible way of routing data in this sensor network. Some

long-distance links are unavoidable in this problem instance, and transmitting data

over a long-distance link may require a considerable amount of energy, limiting the

amount of data collected during the network lifetime. The second image shows how

the situation may change after placing five relay nodes.
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optimal locations of the relays. This is the relay placement problem. Falck et al.

[FFK+04] consider this problem briefly in the context of balanced data gathering.

They present one relay placement method, incremental placement, and compare its

performance to that of placing relays in an evenly spaced grid. The incremental

method tries to find a local optimum by using greedy heuristics. While this method

is computationally efficient, there is no guarantee of optimality.

In this thesis, I will formalise the relay placement problem. I will focus on special

cases or simplified versions of the general relay placement problem. While simplified

versions may be directly or approximately applicable to practical problems, they also

serve a second purpose: a solution to a simplified problem may provide an upper

or lower bound for the utility of a more general problem. For example, if there

are additional bandwidth and timing constraints in the more general problem, these

simpler problems may provide an upper bound; if the more general problem allows

for a limited data aggregation, these simpler problems may provide a lower bound.

Relay placement can be optimised in the sense of maximising the utility, given a

fixed number of relays, or minimising the number of relays, given a target value of

the utility function. Both problems and their k-approximate versions are studied.

There are two major versions of the problem: the finite or discrete problem, and the

planar or continuous problem. In the finite problem there is a finite set of possible

relay locations. In the planar problem the relay locations are not restricted, and a

model for radio propagation is needed. I will focus on the free space model, where the

path loss is a simple function of the distance. In addition to the Euclidean distance,

I will consider the Manhattan distance, which may be a better approximation of

radio propagation in typical urban environments [GG93]. I will also present the

line-of-sight model, which adds geometric constraints to the free space model: the

model may contain obstacles, and routing data through obstacles is not possible.

While I will focus on balanced data gathering, much of this discussion can also be

applied to more general settings of relay placement. Furthermore, the literature sur-

vey of this thesis presents a much wider range of research related to sensor networks;

it not only illustrates the applicability of these results, but also presents possible di-

rections for future research. We will see that various aspects of sensor network have

been studied separately. However, we do not yet know how to maximise the overall

data quality, if we consider aspects such as sensor coverage, redundancy of the data,

relay placement, routing, radio communication, energy constraints, and monetary

costs at the same time.
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This work is organised as follows. Section 2 provides background information on

sensor networks and the physical laws governing radio communication. The section

explains the connection between real sensor networks and the abstract problems

presented in this thesis. Section 3 is a literature survey on energy-efficient routing

and node placement in wireless sensor networks. Section 4 presents the research

questions of this thesis. The solutions are given in the following three sections: I

will study the computational complexity of relay placement problems in Section 5,

design algorithms for solving the problems in Section 6, and present empirical results

in Section 7. Section 8 concludes the thesis. The mathematical symbols used in this

thesis are summarised in Appendix 1 for easier reference.

2 Background Information

The relay placement problems presented in this thesis are pure mathematical formu-

lations. They can be studied as such without any background knowledge. However,

the models are not arbitrary; they are based on the physics of real sensor networks.

This section provides background information which is needed in order to understand

this connection.

2.1 Sensor Networks

Sensor networks consist of a large number of tiny nodes. Each node is a very small

and cheap computer. Sensing, computation, and communication are combined into a

single device. The typical size of a node is in the range of millimetres or centimetres.

The energy consumption of a sensor node must be very low. Nodes may be scattered

on the field and they may need to operate for years without anyone changing or

recharging their batteries.

Sensor networks are typically used for monitoring some area. When interesting

events are detected, information is routed from one node to another and eventually

gathered in gateway nodes or base stations. Examples of possible uses include en-

vironmental and weather monitoring; home automation and air conditioning; moni-

toring soil in agriculture; tracking goods in commerce and industry; monitoring ma-

chines in manufacturing plants; health care and medical diagnostics; intrusion detec-

tion and other security systems; and military applications [ASSC02, AK04, CES04].

The creation of a sensor network may involve very little planning. The nodes may
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even be deployed by dropping them from an aeroplane. The number of sensor nodes

may be on the order of thousands [AK04]. Nodes can communicate with each other

by using, for instance, radio waves or light. In this thesis, we will focus on radio

communication. Typical examples of radio frequency bands proposed for or used in

sensor networks are 433 MHz, 915 MHz, and 2.4 GHz [ASSC02].

Sensor networks typically have no centralised control. Nodes need to locate their

neighbours autonomously and find the best way of routing data through the network.

Thus a sensor network can be seen as an example of an ad-hoc network. Unlike the

nodes of traditional wireless networks, sensor nodes are not usually moved after

deployment [AK04]. However, the topology of the sensor network may change due

to failing nodes.

As sensor nodes have computing capabilities, possibilities for sending information

from the sensor nodes to the sink are versatile. Some sensor nodes may act as

relays, forwarding information from one node to another. Nodes may also buffer

and summarise information.

Even in one sensor network, different sensor nodes may have very different com-

puting and communication capabilities and energy resources. Hill et al. [HHKK04]

have written a survey on sensor network platforms. They present various classes

of sensor nodes from the simplest asset tags to high-end gateway nodes, and they

show examples of real devices in each class. While capabilities may vary, energy

consumption and power management are always a central theme when designing

applications.

Special-purpose operating systems, such as TinyOS [HSW+00], are used for control-

ling sensor nodes. In these operating systems, power efficiency and close interaction

with the hardware are core issues.

For a general introduction to wireless sensor networks and their applications, see

Culler et al. [CES04] or Akyildiz et al. [ASSC02]. The communication and routing

aspects of sensor networks are also studied in the survey by Al-Karaki and Kamal

[AK04].

2.2 Energy Consumption of Sensor Nodes

Raghunathan et al. [RSPS02] have written a survey on the energy consumption of

typical modern sensor nodes. They illustrate energy consumption by two examples,

Rockwell’s WINS node and MEDUSA-II. For WINS, turning on the radio receiver
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increases the power consumption from 383 mW to 752 mW, and using the radio

transmitter increases the power consumption to the range of 771 mW to 1081 mW,

depending on transmitter power. For MEDUSA-II, turning on the receiver increases

the power consumption from 10 mW to 22 mW, and using the transmitter increases

the power consumption to the range of 19 to 27 mW, depending on transmitter

power and other factors.

This means that the radio can consume more power than the other parts of the de-

vice combined. Thus, when considering battery lifetime, the radio is a key issue. It

has been estimated that transmitting one bit of information may consume as much

energy as executing more than a thousand processor instructions [RSPS02]. Perform-

ing significant amounts of data processing and computation in order to decrease the

amount of radio communication is thus sensible. It is important to understand that

energy resources are a hard constraint [Eph02]: when a node runs out of battery,

there is nothing the node can do anymore.

The nodes used in the examples above can adjust their radio transmission power.

We will now consider how much power is needed.

2.3 Radio Wave Propagation

Radio waves are a form of electromagnetic radiation. The physics of electromag-

netic waves is well-known. See, for example, Grant and Phillips [GP90] for a basic

textbook on electromagnetism. Radio waves are governed by Maxwell’s equations

and radio wave propagation can be analytically derived for free space and for simple

object boundaries.

Rappaport [Rap99, Chapter 3] summarises how object boundaries affect radio prop-

agation. There are three basic mechanisms: Relatively large objects reflect radio

waves like a mirror reflects a light beam sharply in one direction. Relatively small

objects scatter radio waves like a rough wall scatters a light beam in all directions.

Finally, boundaries of objects diffract radio waves.

Both light and radio waves are forms of electromagnetic radiation and they obey

the same laws of physics. However, our intuition on visible light fails in radio wave

propagation for two reasons. Firstly, the wavelengths are much longer. In modern

wireless communications, one typically uses frequencies in the range of hundreds of

megahertz to a few gigahertz [ARY95]. The wavelengths are, correspondingly, in

the range of centimetres to metres. Secondly, the radiation source typically emits
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coherent electromagnetic waves. Due to coherence, reflected waves can interfere with

each other. Interference can be constructive or destructive.

Among the striking consequences of interference are the so-called small-scale fading

effects [Rap99, Chapter 4]. For example, the amplitude of the signal can change

rapidly if the receiver is moved by a fraction of a wavelength. As wavelengths are

in the range of centimetres or metres, this phenomenon is clearly visible in practical

applications. Andersen et al. [ARY95] report that the received signal power can

vary by a factor of several thousand (30 or 40 dB), and variations by a factor of one

hundred (20 dB) are typical. No matter how accurately we estimate the received

power, a small error in positioning the transmitter or the receiver can change it by

more than two orders of magnitude.

Even if we measured the received power after positioning the transmitter and the

receiver, the results could not be applied to future situations. Small scale fading is

also caused by the movement of any other object that reflects, scatters or diffracts

radio waves. No practical environment is static, and if an artificial environment

was static, there would be little point in monitoring it with a sensor network. For

example, in an urban environment, people and cars move. On a larger time scale,

nature in the winter and in the summer can look different not only from our point

of view but also in radio frequencies.

We observe that any model of radio propagation is inherently inaccurate. The results

are, at best, statistical models estimating the variation of signal strength over time.

2.4 Simple Radio Propagation Models

In this thesis, I will focus on simple, large-scale radio propagation models which are

computationally efficient and whose accuracy is relatively good in comparison to the

magnitude of typical small-scale fading effects.

Here we are primarily interested in path loss. By path loss we will refer to the

ratio of the transmitted power to the received power for a given pair of transmitter

and receiver locations. If the required reception power is known, the path loss can

be used for estimating the required transmitting power. We denote the path loss

between locations x and y by PL(x,y). In the telecommunication field, path loss

and similar magnitudes are typically measured in decibels (i.e., on a logarithmic

scale). However, in this thesis I will use a linear scale in order to make computation

more explicit.
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ideal waveguide 0

ideal free space 2

simplified earth reflection 4

examples of measured values 1.4 . . . 5.4

Table 1: A summary of both theoretical and empirical exponents for the power

law (1).

The classical path loss model is the power law

PL(x,y) ∝ d(x,y)α, (1)

where d(·, ·) denotes the Euclidean distance

d(x,y) = ‖x − y‖. (2)

In free space with no obstacles, the radio path loss accurately obeys the power law,

with the value α = 2 for the exponent [Rap99, Chapter 3]. In an ideal waveguide

with superconducting walls there would be no attenuation at all, and the power law

with α = 0 would be an accurate model [GP90, Chapter 12]. A bit more realistic

example is the case of simplified earth reflection. We assume that the surface of the

earth is perfectly reflecting, and that the transmitter and the receiver are relatively

close to the ground. By modelling the interference of directly propagating waves

and reflected waves, one can estimate the path loss by applying the power law with

α = 4 [Rap99, Chapter 3].

We have seen that the power law (1) can be used for modelling various idealistic

situations. Many researchers have studied how well real environments can be mod-

elled with it by varying the exponent. I present some representative results below.

Theoretical and empirical examples are summarised in Table 1.

Andersen et al. [ARY95] discuss the planning of cellular networks. Two important

concepts in cellular networks are the so-called macrocells and microcells. The former

concept refers to cells with a typical radius between 1 and 20 kilometres, while a

typical microcell radius is between 0.1 and 1 kilometres. Andersen et al. note that

applying the power law to macrocell coverage estimation is empirical, but that the

results are good. Typical exponents for macrocells are between 2 and 4.

The power law can even be applied indoors. Various studies have fitted the power

law to measurements. Seidel and Rappaport [SR92] report empirical exponents in

the range of 1.81 to 5.22, and Andersen et al. [ARY95] report values in the range
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of 1.6 to 3.3. Sohrabi et al. [SMP99] studied path loss empirically from the point of

view of typical sensor network nodes. They focused on near-ground antennas and

performed measurements in varying locations both indoors and outdoors. They also

fitted the power law to their measured data: the range of exponents was from 1.4

to 5.4.

As an example of the accuracy of the power law, we take a closer look at the results

by Seidel and Rappaport [SR92]. For measurements on one floor of one building,

standard deviations between 5.2 and 11.2 dB were reported. While a ten-fold error is

large, one has to remember that typical small-scale fading is an order of magnitude

larger. The power law model is a reasonably good approximation for predicting path

loss, given the inherent inaccuracy due to small-scale fading.

Path loss is typically defined as a local average [ARY95]. However, one could equally

well define it as an upper bound which holds at a given confidence level. For example,

Seidel and Rappaport [SR92] model path loss as a sum of the prediction given by

the power law and a log-normally distributed random variable. In a linear scale this

corresponds to the product of the predicted value and a random variable. Thus it

is easy to calculate the corrective factor needed for a given confidence level.

Finally, we note that the power law can be used for approximating non-polynomial

loss functions, too, if the range of distances is relatively small. However, the path

loss has to be a function of the Euclidean distance. There is at least one important

and practical situation where this does not hold: a typical urban environment with

rectilinear streets. Goldsmith and Greenstein [GG93] studied path loss on Manhat-

tan. In their measurements, antennas were located below roof level. They noticed

that constant path-loss contours became convex diamonds instead of circles. Erceg

et al. [ERR94] explain the theoretical background for this phenomenon. No function

of the Euclidean distance can describe such a path loss. However, Goldsmith and

Greenstein propose using square diamonds as approximations of constant path-loss

contours. Note that in this approximation, the path loss is in fact a function of the

Manhattan distance.

2.5 Path Loss and Power Consumption

Once we have a model for estimating radio path loss, we can estimate the received

power for a given link and a given transmission power. Naturally, a lower received

power implies a lower signal quality and a higher bit error rate [ASSC02].
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One possible approach is to use a transmitter with adjustable power. One can

choose a minimal acceptable received power level, based on signal quality require-

ments. The product of the required received power and the path loss equals the

required transmission power. If the power consumption of the transmitter depends

on transmission power, the power consumption is an increasing function of path loss.

Another approach is to use a fixed transmission power. A higher path loss and a

constant transmission power imply a larger bit error rate. Thus, re-transmissions

are needed more often in order to send data successfully, and each re-transmission

consumes power. Again, we see that the average power consumption is an increasing

function of path loss.

Ephremides [Eph02] has written an overview on energy concerns in wireless networks.

In the article, some general observations are made on the relationship between radio

propagation and energy consumption. One important consequence of the physics

of radio propagation is that multihop routing is often sensible in terms of energy

conservation. Multihop routing means sending data from one node to another via

relay nodes. There are actually two factors which need to be taken into account:

the total energy consumption and the energy consumption balance.

Firstly, if transmission costs were a true metric in the sense that the triangle inequal-

ity was satisfied, multihop routing would have a larger total cost than single-hop

routing. However, the squared Euclidean distance does not satisfy the triangle in-

equality; going from a to c via b may be cheaper than going directly from a to c. As

we have already seen, energy consumption may be proportional to the radio path

loss, which, on the other hand, may be approximately proportional to the squared

Euclidean distance. Thus, multihop routing may be cheaper in terms of total energy

consumption.

Secondly, each node has a limited battery capacity and if one battery is drained,

the node will no longer work, no matter how little other batteries have been used.

Thus, it may be better to consume a small amount of energy at a large number of

nodes than a large amount of energy at one node. Multihop routing may help in

this respect, too.
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3 Review of the State of the Art

In this section, I review the state of the art in the areas which are directly related

to the research questions of this thesis. There are two key themes: The first theme,

how to route data in sensor networks, is reviewed in Section 3.1. The second theme,

where to place network nodes, is reviewed in Section 3.2.

3.1 Routing in Sensor Networks

In this part, we will assume that a sensor network has already been deployed. We

assume that the nodes have already determined which neighbouring nodes their

radio transmitter can reach, and how costly each radio communication link is. This

information, which may be available either centrally or in a distributed manner,

describes the network topology.

The sensor nodes can generate data, some of which needs to be gathered to the sink

nodes. A key issue is determining how to route data packets through the network,

in order to maximise some data gathering objective before running out of batteries.

Various methods for various needs have been studied in the literature; the most

relevant ones will be reviewed in this section. Our emphasis is on principles used for

making routing decisions, not on signalling protocols which are used for transferring

topology information and for negotiating data flows.

3.1.1 Predetermined Routing

The first option is predetermined routing. A certain set of data flows may be formed

when the network is set up. When data packets are created in the sensor nodes,

these predetermined flows are used for sending the packets from the sensor nodes to

the sink nodes. Routing protocols based on this idea are called proactive [AK04].

One may take either a distributed or a centralised point of view: routing may be

planned separately in each node, based on some local subset of information on

the network topology; or one may select a coordinating node, collect all topology

information in this node, and plan routing based on all available information. In a

sensor network, this coordinating node could be the sink.

While making centralised routing decisions may not be practical in many real sensor

networks, studying centralised routing serves one important purpose: the globally
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optimal routing which is based on all available information provides an upper bound

for any configuration which may be achieved by any means, including distributed

algorithms [FFK+04, OK04]. Similarly, the predetermined routing decisions based

on a static, ideal network provide an upper bound for the amount of data gathered in

real networks where some nodes may fail and some transmissions may be lost. These

upper bounds achieved on centralised, static situations may be used for evaluating

the performance of distributed and dynamic routing algorithms.

If all network topology information is centrally available, one may formulate the

routing as an optimisation problem. One just has to choose the utility function

which is maximised. Various approaches have been suggested in the literature.

Among the simplest utility functions is optimising the total amount of data gath-

ered. This approach has been taken by, for example, Hong and Prasanna [HP04]

and Sadagopan and Krishnamachari [SK04]. Hong and Prasanna formulate the

routing task as a constrained flow maximisation problem, and develop a distributed

algorithm for solving this problem. Sadagopan and Krishnamachari use a linear pro-

gramming formulation and develop an efficient approximation algorithm for solving

the problem.

Simply maximising the total (or average) amount of data gathered may lead into

situations where the gathered data is dominated by a small number of sensor nodes

which are close to the sink. Clearly this is not a desired situation if one wants to

have representative data from all parts of the monitored area. One possible solution

is to limit the amount of data available at each node [HP04, SK04]. A different

approach is taken by Ordóñez and Krishnamachari [OK04], who formulate a non-

linear optimisation problem where an explicit fairness constraint is included: each

node may send at most a given fraction of the data.

Kalpakis et al. [KDN03] maximise the lifetime of the network. In their model, this

is equal to maximising the minimum amount of data gathered from the nodes.

As mentioned in Section 1, Falck et al. [FFK+04] formulate the task of balanced

data gathering : the utility function is a weighted sum of the minimum and average

amounts of data gathered from the nodes. This utility function is linear, making it

possible to formulate the routing problem as a linear program.

The ability to formulate a problem as a linear program is of both practical and

theoretical use: On the one hand, the problem can be solved exactly by using stan-

dard LP tools. On the other hand, having an LP formulation bounds computational
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complexity, as solving LP problems with integer coefficients is possible in polynomial

time [Kha79].

Floréen et al. [FKKO05a] present an approximation algorithm for optimising bal-

anced data gathering, allowing for a potential speed gain compared to exact LP

solvers.

3.1.2 Per-Packet Routing

Instead of planning beforehand, routing may be determined when a data packet has

been created or received, using the current information on available battery capaci-

ties. This approach makes it possible to adapt to changes in the network topology.

Routing protocols where routes are computed on demand are called reactive [AK04].

Akyildiz et al. [ASSC02] summarise a number of possible approaches: In maximum

available power routing, the path with the largest total battery capacity is chosen.

In minimum energy routing, the path with the lowest total energy consumption

is chosen. In minimum hop routing, the path with the lowest number of hops is

chosen. In maximum minimum available power routing, one chooses a path on

which all nodes have large battery capacities.

There are various heuristic methods which may be used for consuming energy re-

sources more evenly [AK04]. Paths or next hops may be chosen randomly from a set

of possible paths, using probabilities which may be derived from energy resources or

from network topology. Hop counts and energy constraints may be combined into

one distance metric. Routing may be based on data streams, and the number of

streams transmitted through each node may be limited.

3.1.3 Query-Based Routing

Routing may be also data driven or query-based : the sinks may request certain pieces

of data, and the sensors will only transmit when they know the piece of information

which was requested [ASSC02, AK04]. The sensors may also broadcast messages

which describe what kind of data they have.

In data-driven routing, the problem of routing data becomes bidirectional: one

needs to send not only measurements from the sensors to the sink but also requests

from the sink to the sensors. Requests may be sent using broadcasting (one-to-all

transmission) or multicasting (one-to-many transmission), and responses may be
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routed back in the reverse direction.

Čagalj et al. [ČHE02] study energy-efficient broadcasting in a wireless sensor net-

work. They formulate the problem of finding a minimum-energy broadcast tree,

prove the problem NP-complete, and present heuristic algorithms for solving the

problem.

However, minimising the total energy consumption does not necessarily maximise

the lifetime of the network. This was observed by, for example, Singh et al. [SWR98]

in their comparison of metrics for energy-aware routing in general ad-hoc networks.

Floréen et al. [FKKO05b] discuss the problem of maximising network lifetime in

wireless multicasting.

There are two major differences between routing queries and routing gathered data:

Firstly, a query targeted to n sensor nodes only needs to contain 1 unit of data

which will be replicated to all nodes, while gathered data from n sensor nodes

contains n units of data, each of which needs to be transmitted to the sink node.

Secondly, in wireless networks a single transmission may be simultaneously received

by multiple nodes at no additional cost. This is the so-called wireless multicast

advantage. Both issues are illustrated in Figure 2. In the next section, we will see

how data aggregation may make it possible to forward not only queries but also

some additional data for no additional cost.

3.1.4 Data Aggregation

Instead of forwarding all data packets unaltered from sensors to sinks, intermediate

nodes may also aggregate and summarise data [ASSC02]. Sensor nodes may moni-

tor neighbouring and even partially overlapping areas, and generated data may be

highly redundant. Furthermore, instead of individual measurements, one might be

interested in collecting statistical information: averages, medians, minimums, and

maximums of measured values, or the total number of detected events. Even if all

of the gathered data needs to be transmitted to the sink, buffering may be used for

fitting more data in the smallest logical transmission unit if delays are not an issue.

In order to facilitate data aggregation, the logical network topology of sensor net-

works may be hierarchical. Nodes may be clustered and each cluster can do data

reduction [PHC+03, AK04]. Sensor networks may even contain higher-energy nodes

which are responsible for aggregating and forwarding data generated in a local clus-

ter. Information on physical node locations may be used to form hierarchies [AK04].
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(a)

(c) (d)

(b)

Sensor node Relay node Sink node

Figure 2: An illustration of different approaches to routing data and queries in a

wireless sensor network. On the top row, data gathering is illustrated. Figure (a)

illustrates the kind of data gathering setting which is the primary topic of this the-

sis. All data entering a relay node needs to be forwarded and no data aggregation is

possible. Figure (b) illustrates how data aggregation may change the situation. If

a node needs to transmit some data, forwarding some additional data may be pos-

sible for no additional cost. On the bottom row, query broadcasting is illustrated.

Figure (c) show how a single query from the sink may be broadcast to all sensor

nodes. Here no wireless multicast advantage is used; multicasting is performed by a

number of point-to-point transmissions. The similarity with Figure (b) is evident.

However, the lifetime-optimal solution is not necessarily the same. Transmissions in

different directions use batteries on different devices. In Figure (d) wireless multi-

cast advantage is taken into account: a single transmission may be simultaneously

received by a number of nodes.
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Krishnamachari et al. [KEW02] study the problem of routing with data aggregation

in wireless sensor networks. They note that the problem of finding the minimum-

energy routing with data aggregation is essentially the same problem as finding

minimum-energy multicast trees; only the roles of transmitting and receiving nodes

are reversed. Both problems may be seen as instances of the minimum Steiner tree

problem. This observation is also illustrated in Figure 2. The similarity applies to

multicasting with point-to-point connections only; there is no analogue of wireless

multicast advantage in data aggregation.

As mentioned above, minimising the total energy consumption does not guarantee

maximising the network lifetime. The lifetime maximisation problem by Kalpakis

et al. [KDN03] (see Section 3.1.1 above) is designed specifically for sensor networks

in which data aggregation is possible.

3.2 Node Placement in Sensor Networks

We have seen how one may try to improve the performance of a sensor network

after the network has been deployed. Now I will review some studies which aim at

improving the deployment process.

One of the main reasons for using a sensor network instead of one sensor is to be able

to monitor a large area. Thus the coverage of a sensor network is a key factor when

considering node placement in sensor networks. I will first show how coverage may

be defined, after which I will review approaches to optimising node placement in

order to maximise coverage. Finally, we will take radio communication and energy

constraints into account.

3.2.1 Defining Coverage

There are various ways of measuring coverage. First we need a sensor model which

describes which areas are covered by a given sensor at a given position. The sensor

model may be deterministic, specifying an area which is completely covered by the

sensor, or more realistically probabilistic, specifying the probability of detecting a

target or phenomenon at a given location. In order to give a more realistic estimate

of sensing capabilities, the sensor model may take obstacles into account.

Once a sensor model is given, we may define the coverage of the entire sensor network.

If the sensor model is deterministic, an obvious measure for coverage is the area which



16

is covered by at least one sensor. For probabilistic models we may use, for example,

the global minimum of detection probabilities.

However, these approaches do not take into account the nature of the monitored

phenomenon. For example, in a surveillance network we may be interested in max-

imising the probability of detecting an object which is passing through the monitored

field. Thus, the coverage metric may be the strength of the maximal breach path

[MKPS01], where the closest distance to any sensor at any point on the path is

minimised, or the strength of the minimum exposure path [MKQP01], where the

integral of the sensor intensity along the path is minimised. The former follows the

line segments of a Voronoi diagram, but this does not hold for the latter definition.

3.2.2 Optimising Coverage

One of the simplest possible sensor models is a unit disk : the sensor has a fixed range,

and the area within this range is completely covered. When coverage is measured

as the area which is covered by at least one sensor, the best possible coverage is

obtained when every point of the monitored area is covered by at least one sensor.

Finding such a sensor deployment is equivalent to finding a way of covering an area

with circles. For example, Melissen and Schuur [MS96] and Nurmela and Österg̊ard

[NÖ00] have studied the problem of covering a square with equal circles, and Nurmela

[Nur00] has studied covering an equilateral triangle with equal circles.

Covering a square with equal circles is illustrated in Figure 3 (a). The solution given

is simple but not optimal: it is actually possible to cover the square by using circles

with a 0.6 % smaller radius [MS96].

Another simple approach assumes infinite sensor ranges but takes obstacles into

account. This is directly related to so-called illumination or art gallery problems.

In illumination problems, one studies questions such as how many light sources are

needed in order to illuminate the interior of a given polygon. Art gallery problems

rephrase the same question by asking how many guards are needed in order to guard

the interior of an art gallery with a given floor plan. We may interpret light sources

or guards as sensor nodes, and use the results from the field of illumination and art

gallery problems in order to find sensor node placements. See, for example, Urrutia

[Urr00] for a comprehensive survey on illumination and art gallery problems. In ad-

dition to traditional art gallery problems, Urrutia also surveys floodlight problems,

where light sources have a limited angle of illumination. These results may be di-
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(a) (b)

Figure 3: Examples of covering problems. Figure (a) illustrates a solution to the

problem of covering a square with six equal circles. Figure (b) illustrates a solution

to an art gallery problem. The small circles correspond to the positions of three

vertex guards, and the grey colour illustrates the areas seen by two of these guards.

rectly applicable to, for example, various motion-detection sensors, as they typically

have a limited angle of detection.

Figure 3 (b) illustrates an art gallery problem of finding vertex guards, i.e., guards

positioned on polygon vertices, that can monitor the interior of an orthogonal poly-

gon. In this example, there are 12 vertices in the polygon, and guarding it requires

three vertex guards. Kahn et al. [KKK83] proved that guarding the interior of an or-

thogonal polygon is always possible with bn/4c vertex guards, where n is the number

of vertices, and that this bound is tight.

Research related to optimising radio transmitter coverage is also relevant, as similar

problems arise there. In that area, various node placement methods have been stud-

ied in cases where simple geometrical models are no longer applicable. In addition

to traditional optimisation algorithms, approaches like neural networks [SE96] and

genetic algorithms [ABN+02] have also been proposed.

Coverage may also be optimised by using a distributed method. Howard et al.

[HMS02] present a mechanism which is based on potential fields: virtual forces repel

nodes from each other and from obstacles. This method is designed for mobile sensor

networks, where each sensor is an autonomous robot. While this kind of distributed

method cannot guarantee an optimal coverage, it may offer a way of finding a rea-

sonable coverage by using only a limited amount of computation, communication,

and coordination.

Finding optimal locations for sensor nodes may not be enough in practical appli-

cations. When nodes are deployed by, for example, dropping from aeroplanes, the

exact locations of sensor nodes are at worst completely random, and even in the best
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case only approximately what was planned. Zou and Chakrabarty [ZC03] have taken

this fact into account when designing their algorithms for sensor network deploy-

ment. They have developed heuristic methods which try to maximise the probability

of detecting targets at any location, given the fact that both detection and sensor

deployment are probabilistic. In their work they have studied a detection model in

which the detection probability decreases exponentially with distance, and sensor

locations are random variables with Gaussian probability distributions.

3.2.3 Optimising Coverage by Sensor Scheduling

In addition to finding node locations which cover the monitored area, one may also

take a deployed sensor network as a starting point and try to find subsets of sensor

nodes which would still cover the entire field. If it is possible to find multiple,

mutually exclusive subsets of sensor nodes, where each subset is able to monitor the

entire area, one may use this information to conserve energy. Only the sensors of

one such subset need to be active at any point of time. This leads into a schedule

which specifies when a certain node needs to be active.

Slijepcevic and Potkonjak [SP01] have developed algorithms for finding this kind of

subsets in sensor networks. They first find fields which are parts of the monitored

area covered by the same set of sensor nodes. Then they present a heuristic algorithm

for finding mutually exclusive subsets which cover all of these fields.

3.2.4 Optimising Radio Communication and Energy

Covering an area with sensors is not enough; we also need to transmit data from the

sensors to the sink. Thus, we are faced with the problem of optimising coverage while

keeping in mind the limitations and costs of radio communication. As mentioned

in the previous section, similar approaches may be used for optimising both sensor

coverage and radio coverage. However, our primary goal here is not to cover the

monitored area by wireless connectivity, but to form paths for forwarding data.

Pan et al. [PHC+03] study the problem of placing the base station (sink node) in

an optimal location. Pan et al. study so-called two-tiered networks, where sensor

nodes are deployed in clusters, the sensor nodes of each cluster transmit data to a

local application node, and the application node transmits data to the base station.

They focus on optimising data transmission between application nodes and the base

station, and we may use their results in one-tiered networks by interpreting applica-
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tion nodes as sensors. They assume that the locations of the sensor nodes and the

application nodes are fixed, but the base station can be moved. When each appli-

cation node transmits data directly to the base station, finding a lifetime-optimal

location of the base station is a relatively simple problem of computational geome-

try. Pan et al. consider variations of the concept of lifetime and study how relaying

data between application nodes changes the situation.

Falck et al. [FFK+04] study the problem of adding relay nodes in the balanced data

gathering setting described above. The locations of the sensor nodes are assumed

to be fixed, and the goal is to find good locations for a small number of relay nodes

in order to optimise balanced data gathering. They develop a greedy heuristic

algorithm for relay placement and compare its performance to that of placing relays

in a fixed grid.

Dasgupta et al. [DKK03] take more freedom: they assume that all nodes may be

moved. They study how to place sensor nodes so that energy consumption is minimal

but the sensors still cover the monitored area. They present a heuristic algorithm

which minimises energy consumption by moving nodes and by changing the role

assignments of nodes: some nodes are assigned the role of a relay node, while others

are assigned the role of a sensor.

4 Problem Formulations

In this section, I will define the relay placement problems and present the research

questions which will be studied in this thesis. First, I will define the problems

formally. Section 4.1 contains the definitions and Section 4.2 presents the research

questions which will be studied. Then, I will justify these choices. Section 4.3

compares these questions to the literature, and Section 4.4 compares the formal

problems to real sensor networks.

4.1 Definitions of the Problems

I will begin by introducing the balanced data gathering problem, following the for-

mulation by Falck et al. [FFK+04]. Then I will use the balanced data gathering

problem to define various relay placement problem classes. The symbols used in the

definitions are summarised in Appendix 1, and the problem classes are summarised

in Table 2. In this section, the definitions are presented as formal models with little
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Type: Decision Definition 3

Relay-constrained optimal Definition 4

Relay-constrained k-optimal Definition 4

Utility-constrained optimal Definition 5

Utility-constrained k-optimal Definition 5

Utility: Balanced data gathering Definition 1

Possible relays: Unrestricted Definition 2

— Planar PP Definition 6

— Finite set PD Definition 7

— Sensor upgrade PU Definition 8

Transmission costs: Unrestricted Definition 2

— Location-dependent PL Definition 9

— Line-of-sight PS Definition 10

— Free space PF Definition 11

Batteries: Unrestricted Definition 2

— Identical PI Definition 12

Table 2: A summary of relay placement problems. Indentation refers to models

which are special cases of less restrictive models.

justification. Section 4.4 explains the practical use of these models.

In this thesis, the set of non-negative real numbers is denoted by [0,∞). The set of

non-negative extended real numbers, [0,∞) ∪ {+∞}, is denoted by [0,∞]. The set

of positive real numbers is (0,∞) and the set of positive extended real numbers is

(0,∞]. If g is a function X → Y , and A is a subset of X, we will use g|A to denote

the restricted function h : A → Y which maps a ∈ A to g(a).

4.1.1 Balanced Data Gathering Problem

An instance of the balanced data gathering problem is a tuple B = (λ, S, R, σ, E,

s, τ, ρ). Here λ ∈ [0, 1] is the balance parameter, S is a finite set of sensor nodes,

R is a finite set of relay nodes, and σ is the sink node. The sets S, R and {σ} are

disjoint. Let S+ denote the set of the sensor and sink nodes, i.e., S+ = S ∪ {σ} and

let V denote the set of all nodes, i.e., V = S+ ∪ R. The function E : V → [0,∞]

specifies the battery capacity of each node. The function s : S → [0,∞] specifies

how much data is available at each sensor node. The parameter ρ ∈ [0,∞) is the

cost of receiving one unit of data for all nodes, and the function τ : V × V → [0,∞]
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Sensor node, η ∈ S

Relay node, η ∈ R

Sink node, σ

Figure 4: An instance of the balanced data gathering problem. Arrows show one

possible solution, the widths of the arrows illustrating the amount of data flowing

from one node to another. This figure also illustrates that nodes may divide the

gathered data and send parts of it to different nodes.

maps a pair of nodes to the cost of sending one unit of data from the first node to

the second one. We will use the notation Eη = E(η), sη = s(η), and τηκ = τ(η, κ)

to emphasise that these functions can be represented as vectors and a matrix. An

instance of the balanced data gathering problem is illustrated in Figure 4.

The solutions to the problem are flows. A feasible flow f is a matrix which satisfies

the following equations:

fηκ ≥ 0, ∀η, κ ∈ V, (3)

fηη = 0, ∀η ∈ V, (4)
∑

κ∈V

fσκ = 0, (5)

∑

κ∈V

(fηκ − fκη) ∈ [0, sη], ∀η ∈ S, (6)

∑

κ∈V

(fηκ − fκη) = 0, ∀η ∈ R, (7)

∑

κ∈V

(τηκfηκ + ρfκη) ≤ Eη, ∀η ∈ V. (8)

Here fηκ is the amount of data transmitted from the node η ∈ V to the node κ ∈ V .

Negative flows are physically meaningless and they are forbidden by equation (3).

Equation (4) expresses that there is never need for a flow from a node to itself.

Equation (5) requires that the sink node transmits nothing. Equations (6) and (7)

require that the sensor and relay nodes forward all incoming data to other nodes.

The sensor nodes may also generate a limited amount of new data, while the relay
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nodes never generate anything. Equation (8) formulates the energy constraint: the

batteries must contain enough energy to transmit all outgoing data and receive all

incoming data. We will use the symbol F(B) to denote the set of all feasible flows

for the problem instance B.

The value qη(B, f) denotes the amount of data gathered from a node η ∈ S, given

a flow f :

qη(B, f) =
∑

κ∈V

(fηκ − fκη) . (9)

If a flow is feasible, all of this data is transmitted to the sink node before the batteries

of the nodes are drained. The utility of the flow, F (B, f), is a weighted sum of the

minimum and average amounts of data gathered:

F (B, f) = λ min
η∈S

qη(B, f) + (1 − λ) avg
η∈S

qη(B, f). (10)

Now we are ready to define the problem of optimising balanced data gathering.

Definition 1 (The balanced data gathering problem). An instance of the

balanced data gathering problem is a tuple B = (λ, S, R, σ, E, s, τ, ρ) satisfying

the conditions above. The set of all such tuples is B. The solution is any feasible

flow f ∈ F(B) and the utility of the solution is F (B, f). An optimal solution is

any flow f ∗ ∈ F(B) which maximises F (B, f ∗). A k-optimal solution is any flow

f̃ ∈ F(B) which satisfies F (B, f̃) ≥ 1
k
F (B, f ∗).

4.1.2 Relay Placement Problem

An instance of the relay placement problem is a tuple P = (λ, S, R, σ, E, s, τ,

ρ). Here λ, S, σ, E, s, and ρ correspond to the parameters of the balanced data

gathering problem. Instead of the set of relays, the set of possible relays, R, is given.

Again, we will require that the sets S, R, and {σ} are disjoint, and we will define

the set of possible nodes V = S+ ∪ R. The battery capacity function E(η) must

be defined for all possible nodes η ∈ V , and the transmission cost function τ(η, κ)

must be defined for all pairs of possible nodes η, κ ∈ V . An instance of the relay

placement problem is illustrated in Figure 5.

The solution is a finite subset R of possible relays R. Given a relay placement in-

stance P and its solution R, we can define the corresponding balanced data gathering
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Sensor node, η ∈ S

Possible relay, η ∈ R

Sink node, σ

Relay node, η ∈ R

Figure 5: An instance of the relay placement problem. In this problem instance

the set of possible relays was finite; there were 4 possible relays. Grey relays (2

in this example) illustrate one possible solution to the relay placement problem.

Arrows illustrate corresponding data flows in the underlying balanced data gathering

problem.

instance B = B(P,R) where

B(P,R) = (λ, S,R, σ, E|V , s, τ|V ×V , ρ), (11)

V = S+ ∪ R. (12)

We define the utility of this solution, U(P,R), as the highest possible balanced data

gathering which can be achieved:

U(P,R) = max
f∈F(B)

F (B, f), B = B(P,R). (13)

Now we can summarise the key definitions.

Definition 2 (The relay placement problem). An instance of the relay place-

ment problem is a tuple P = (λ, S, R, σ, E, s, τ, ρ) satisfying the conditions above.

The set of all such tuples is P . The solution is any finite set of relays, R ⊆ R. The

utility of the solution is U(P,R).

Note that while the goal is to choose a subset of possible relays, the problem is

referred to as the relay placement problem. This choice becomes more clear later

when we introduce the concept of a location and discuss practical problems.

We can now formulate the decision version of the relay placement problem.

Definition 3 (The decision problem). An instance of the decision problem is a

tuple (P,N, u) where P ∈ P is a relay placement problem instance, N is the number
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of relays, and u is the utility requirement. The answer to the decision problem is

yes if and only if there is a solution R to the relay placement problem P such that

|R| = N and U(P,R) ≥ u.

We will now define two optimisation problems. In the relay-constrained problem we

will optimise the utility by using a fixed number of relays. On the other hand, in

the utility-constrained problem we will try to find the minimum number of relays

with which a utility constraint can be satisfied.

Definition 4 (The relay-constrained problem). An instance of the relay-con-

strained problem is a pair (P,N) where P ∈ P is a relay placement problem instance

and N is the number of relays. The solution is any R ∈ R with |R| = N . A solution

R∗ is optimal if it maximises U(P,R∗). A solution R̃ is k-optimal if it satisfies

U(P, R̃) ≥ 1
k
U(P,R∗).

Definition 5 (The utility-constrained problem). An instance of the utility-con-

strained problem is a pair (P, u) where P ∈ P is a relay placement problem instance

and u is the utility requirement. The solution is any R ∈ R with U(P,R) ≥ u. A

solution R∗ is optimal if it minimises |R∗|. A solution R̃ is k-optimal if it satisfies

|R̃| ≤ k|R∗|.

Now the relay placement problem is formally defined. As mentioned in the intro-

duction, the main focus of this thesis is on simplifications of the problem.

4.1.3 Simplified Problems

Without loss of generality, we can always assume that V is a subset of R
2 × W for

some set W . (If this was not the case for some set V ′, we could choose W = V ′, and

injectively map each η ∈ V ′ to ((0, 0), η) ∈ R
2 × W .)

We will now define two functions:

l : R
2 × W → R

2 : (l, w) 7→ l, (14)

w : R
2 × W → W : (l, w) 7→ w. (15)

Note that our assumption guarantees that l(η) and w(η) are defined, when η is a

sensor node, a relay node, a sink node, or just a possible relay node. Things get more

interesting, when we interpret that l(η) describes the location of the node on the

real plane, and w(η) describes the identity of the node. By using different identities,
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we can have more than one possible relay at each location; thus we can also have

a solution with multiple relays at the same location. We can also use identities to

model different kinds of relays in cases where it is not clear which kind of relay is

ideal at each location.

Let us now see how we can simplify the model. First we will show three models

for restricting the set of possible relays, R. In the first model, we assume that the

relays can be placed anywhere and that all possible relays have the same identity.

Definition 6 (Planar model). A problem instance P ∈ P is planar, denoted by

P ∈ PP , if the set of possible relays R is R
2 × {y} for some identity y.

The second model only allows for finite sets of relays. The definition is obvious.

Definition 7 (Finite relay set). A problem instance P ∈ P has a finite relay set,

denoted by P ∈ PD, if R is finite.

The third model is the sensor upgrade model. Here we require that for each sensor

location, there is exactly one possible relay in the same location. Note that here the

set of possible relays is also finite, i.e., PU ⊂ PD.

Definition 8 (Sensor upgrade model). A problem instance P ∈ P uses the

sensor upgrade model, denoted by P ∈ PU , if the set of possible relays R is l(S)×{y}

for some identity y.

Next we will focus on restricting the transmission costs, τ . First, we will require

that radio transmission costs depend only on locations.

Definition 9 (Location-dependent model). A problem instance P ∈ P has

location-dependent transmission costs, denoted by P ∈ PL, if τ(η, κ) = τ ′(l(η), l(κ))

for some function τ ′.

Now we will present two concrete location-dependent models where the transmission

costs are explicitly parametrised. First, we introduce the parameter O, which is a

finite set of disjoint obstacles. Each obstacle o ∈ O is a simple (not self-intersecting)

polygon in the real plane. Each obstacle o is described by enumerating its vertices.

The number of vertices in the obstacle is #o, and the total number of vertices in all

obstacles is #O =
∑

i #oi.

In the line-of-sight model we require that the transmission cost τ ′(l1, l2) is infinite

if the line segment l1l2 intersects some obstacle o ∈ O. Furthermore, we require
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that there are two parameters, the path loss exponent α ∈ [0,∞) and the norm

parameter p ∈ (0,∞]. If the line segment does not intersect any obstacle, we require

that

τ ′(l1, l2) = dp(l1, l2)
α, (16)

where dp(·, ·) denotes the distance measured using the p-norm:

dp(x,y) = ‖x − y‖p, (17)

‖z‖p =
(

∑

i
|zi|

p
)

1
p

for finite p, (18)

‖z‖∞ = maxi|zi|. (19)

Definition 10 (Line-of-sight model). A problem instance P ∈ PL uses the line-

of-sight model, denoted by P ∈ PS, if the transmission cost model can be defined

by some parameters α, p, and O as described above.

Furthermore, we can remove the obstacles from the model:

Definition 11 (Free space model). A problem instance P ∈ PS uses the free

space model, denoted by P ∈ PF , if O = ∅.

Now we have described how the set of possible relays R and the transmission cost

τ can be restricted. Finally, we will see how battery capacities E can be restricted.

In the identical battery model, all relays have the same battery capacity. It should

be noted that this does not restrict the batteries of the sensor and sink nodes.

Definition 12 (Identical batteries). A problem instance P ∈ P has identical

batteries, denoted by P ∈ PI , if there is an E such that E(η) = E for all possible

relays η ∈ R.

Now the simplified relay placement problems have been defined. We can construct a

problem description by choosing one definition from each class presented in Table 2.

One could, for example, focus on the relay placement problems with the sensor

upgrade model, free space transmission costs, and identical batteries. In other words,

one could focus on problems in the subset PU ∩ PF ∩ PI . Furthermore, one could

concentrate on finding k-optimal solutions to the utility-constrained problem for

some k.

In order to further simplify our notation, we will denote Px ∩ Py by Pxy, etc. For

instance, PU ∩ PF ∩ PI can be denoted by PUFI . One can construct a total of 32
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Type: Decision N, u O(1)

Relay-constrained N O(1)

Utility-constrained u O(1)

Utility: Balanced data gathering λ, S, σ, E(S+), s(S), ρ O(|S|)

Relays: Unrestricted R O(|R|)

Planar w O(1)

Finite set R O(|R|)

Sensor upgrade w O(1)

Costs: Unrestricted τ(V ,V) O(|V|2)

Location-dependent τ ′(V ,V) O(|l(V)|2)

Line-of-sight α, p,O O(#O)

Free space α, p O(1)

Batteries: Unrestricted E(R) O(|R|)

Identical E O(1)

Table 3: The parameters for the relay placement problem with their asymptotic

worst-case sizes. The sizes are calculated in terms of how many real numbers are

needed to define a problem instance.

relay placement problem classes from Table 2. We will denote the set of these classes

by P∗, i.e.,

P∗ = {P ,PP ,PD,PU , . . . ,PDFI ,PUFI}, (20)

and we will use Px to refer an arbitrary member of P∗.

4.1.4 Parametrisation of Problems

As we are interested in solving the problems computationally, we will have a look at

how to describe the instances of the problems. The required parameters are collected

in Table 3. The asymptotic worst-case size of each parameter is described in terms

of the number of values. Continuing with our example, the full description of a PUFI

problem instance would consist of a tuple P = (λ, S, σ, E(S+), s(S), ρ, α, p, E).

The total description length would be O(|S|), dominated by the need to enumerate

all sensor nodes with their battery capacities and amounts of available data. We will

denote the full description length of a problem instance by |P |. Again, this quantity

is the number of values required to represent the instance.

All combinations do not necessarily have finite or even countably infinite descrip-
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tions. However, there are two large and interesting subsets of problems which do

have a finite description. The first case is a relay placement problem with a finite

relay set, i.e., the set PD. No other restrictions are needed. Now R and V are finite

and the worst case description length is O(|V|2). The length is dominated by the

need to enumerate transmission costs between all pairs of possible nodes.

The second case is the planar line-of-sight model with identical batteries, i.e., the

set PPSI . With these three restrictions, the description length is O(|S|+ #O). The

length is dominated by the need to enumerate all sensor nodes with their parameters,

and the need to describe all obstacles.

So far, we have assumed that we can represent arbitrary real numbers. In this the-

sis, we will make the following simplification: we restrict our discussion to problem

instances whose parameters are rational numbers. For example, in planar problems

node locations will have rational coordinates; in unrestricted problems the transmis-

sion cost matrix will consist of rational numbers. By definition, rational numbers

can be expressed as a pair of integers, (a, b). By following these conventions, one

needs O(|P |) integers to represent a problem instance. The number of bits is thus

O(|P | log x), where x is the largest integer value needed in the problem description.

In the line-of-sight and free space models, even if node locations are rational, the

transmission cost matrix is not necessarily rational. However, in two common special

cases, α = 2, p = 2 and α = 2, p = 1, it turns out that the transmission costs are

sums of squares of two rational numbers and squares of sums of two rational numbers,

respectively:

d2(x,y)2 =
((

∑

i

|xi − yi|
2
)

1
2
)2

=
∑

i

|xi − yi|
2, (21)

d1(x,y)2 =
((

∑

i

|xi − yi|
1
)

1
1
)2

=
(

∑

i

|xi − yi|
)2

. (22)

Thus, in those special cases the implicitly defined transmission cost matrix is ratio-

nal. If the cost matrix is rational, the LP formulation of the underlying balanced

data gathering problem is also rational.

4.2 Research Questions

Now we are ready to present the research problems which will be studied in this

thesis:
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1. Analyse the computational complexity of each relay placement problem class

Px ∈ P∗.

2. Design algorithms which solve a subset of the relay placement problems k-

optimally.

4.3 Relation to the State of the Art

The balanced data gathering task is a recent formulation and, as seen in the review of

the state of the art above, it has not yet been thoroughly studied. There are efficient

algorithms for solving the data gathering problem accurately and approximately.

However, the problem of relay placement in the balanced data gathering setting

has only been studied by Falck et al. [FFK+04]. Only one class of relay placement

problems has been formulated, the computational complexity of the problem has

not been analysed rigorously, and no approximation algorithms have been presented.

Thus, to my knowledge, the problem classes defined in this section are new, and the

research questions have not yet been answered.

We can see from the literature survey in Section 3 that approaches to optimising node

placement are, in general, of a heuristic nature [SE96, ABN+02, HMS02, DKK03,

ZC03, FFK+04]. There is seldom any guarantee of the quality of the solution.

Developing k-approximation algorithms for relay placement in the balanced data

gathering setting may also give us new ideas for solving more general node placement

problems.

It should be noted that while our formulation of balanced relay gathering is compat-

ible with Falck et al. [FFK+04], it differs slightly from the formulation in the more

recent article by Floréen et al. [FKKO05a]. In the latter presentation, the possibility

to limit the amount of available data, i.e., the s parameter, is missing. Floréen et al.

do not need to handle this restriction separately because their discussion is not tied

to a particular radio geometry. Thus, the amount of available data can be restricted

by replacing the sensor with a pair of nodes, one sensor node and one relay node,

and adding a communication link of unit cost from the sensor to the relay node.

This way, the battery capacity of the relay node acts as a limitation to the available

data. However, as our problem formulations include, among others, the free-space

model, this kind of conversion is no longer possible, and the amount of available

data needs to be expressed explicitly.
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4.4 Relation to Sensor Networks

Our problem formulation is applicable to practical situations where the performance

of a battery-powered sensor network needs to be improved. We assume that the

sensor locations have already been determined: a human expert may have chosen

the best sensor locations, an optimal deployment plan may have been calculated by

optimising sensor coverage, or a sensor network may have already been deployed

and sensor locations have been determined after deployment. The relay-constrained

optimisation problem answers the following practical question: now that we have

N relays, where do we place them? On the other hand, the utility-constrained

optimisation problem takes a different point of view: now that we know how much

data is required, how many relays do we need and where do we place them? If we

do not want to install new relay nodes but just want to install larger batteries in

some sensor nodes, we may use the sensor upgrade model.

We assume that data reporting is time-driven: there is no need to transmit queries

from the sink to the sensor. We also assume that topology information is available

in a central location and that routing can be predetermined. Thus, the topology of

the sensor network should be stable. While some of these assumptions may not hold

in practise, the presented results can still be used for obtaining upper bounds for the

network utility, which is useful in benchmarking dynamic, distributed algorithms.

Our method focuses on cases where data aggregation is infeasible. This method

can be used in situations where each sensor may generate unique information. The

presented model is suitable for heterogeneous networks where some nodes have larger

battery capacities than others.

Maximising the total amount of data gathered is a special case of the balanced data

gathering problem, and the results of this thesis are also applicable to this special

case. However, the balanced data gathering setting helps with making sure that

each network node is actually used in monitoring while still allowing more data to

be gathered from areas where it is cheaper in terms of energy consumption.

In the balanced data gathering formulation, one node may send parts of its data to

multiple different nodes. In practical sensor networks, this corresponds to scheduling

transmissions so that the total amount of data transmitted over each link approxi-

mately matches the desired solution.

As was seen in Section 2, the free space model is compatible with approximate mod-

els for radio propagation in real environments, both indoors and outdoors. Being
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able to use an arbitrary norm makes it possible to also approximate diamond-shaped

constant path-loss contours which are typical in urban environments with rectilinear

streets. When contours are not symmetric, one may scale the entire plane in one di-

rection by a constant factor. The line-of-sight model may be applied to, for example,

optical communication methods where an unobstructed visibility is required.

We assume that not only the path loss but also the transmitter energy consumption

can be modelled by a power of the distance between two nodes. While this ap-

proximation does not necessarily hold strictly, it should be noted that the methods

presented in this thesis may also be adapted to more complicated transmission cost

functions. Multipath delay spread and similar factors are assumed to be included in

the transmission cost model. Interference from other links is ignored as we are focus-

ing on the case of long lifetime and limited batteries. In those cases, transmissions

are infrequent and collisions should be rare.

5 Computational Complexity

In the following sections, the research questions presented in Section 4.2 are an-

swered. We will begin by analysing the computational complexity of the relay

placement problem. We will present two different reductions from well-known NP-

complete problems to a number of relay placement problem classes. The first reduc-

tion shows that all classes of relay placement problems are NP-hard. The second

reduction shows that even approximate versions of some problem classes are NP-

hard.

These two reductions are based on very different ideas, and studying them may give

us additional insight into the computational complexity of the relay placement prob-

lems: In the first reduction we optimise the average amount of data collected, while

in the second one we optimise the minimum amount of data collected from each

node. The first one depends on large, carefully chosen distances, while the second

one uses a specific geometry of obstacles. In the first one we use the Manhattan

distance, and the second one demonstrates using the Euclidean distance. Further-

more, while both reductions are presented by using a radio path loss exponent of

α = 2, the proofs may be easily adapted to different radio transmission cost models.

Thus, computational difficulties may arise from different aspects of relay placement

problems.
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5.1 Reducing Partition to Relay Placement

In this section, we will prove that the relay placement problem classes PUFI (the

sensor-upgrade problem with the free space model and identical batteries) and PPFI

(the planar problem with the free space model and identical batteries) are NP-hard.

We will show this by developing a polynomial reduction from Partition, which is

a well-known NP-complete problem [Kar72, GJ03].

In the Partition problem, one is asked to divide a set of integers into two sets with

equal sums. We may assume that the integers are positive [GJ03]. Formally:

Definition 13 (Partition). An instance of the problem Partition consists of a

list of positive integers, (a1, . . . , an). A set X ⊆ {1, 2, . . . , n} is a feasible solution if
∑

i∈X ai =
∑

i/∈X ai.

We will now develop a polynomial reduction from Partition to PUFI and PPFI .

The same construction applies to both cases. Let a list of positive integers, (a1, . . . , an),

be given. We will assume that the sum of the integers is even; otherwise the answer

to the problem would be trivially no. Construct a relay placement problem instance

P as follows. First, define:

a∗ = max ai, (23)

b =
1

2

∑

ai. (24)

Note that b is a positive integer. Choose λ = 0 so that we are interested in optimising

the average amount of data. Then, choose the following radio propagation model:

p = 1, (25)

α = 2, (26)

ρ = 0. (27)

Choose any values satisfying the following inequalities:

z ≥ (na∗)
1
α , (28)

y ≥ z + 1, (29)

x ≥ ny. (30)

Construct the problem geometry as shown in Figure 6. Firstly, there are 2 sensors
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of type 1, η and η′, with the following characteristics:

E(η) = E(η′) = bxα, (31)

s(η) = s(η′) = b, (32)

l(η) = +(z/2 + 1/2 + x/2,−z/2 − 1/2 − x/2), (33)

l(η′) = −(z/2 + 1/2 + x/2,−z/2 − 1/2 − x/2). (34)

Then, there are n diagonal rows of nodes, each row corresponding to one integer in

the Partition problem. We will first define the centre points of these rows:

li = ((2i − n − 1)y/2, (2i − n − 1)y/2). (35)

On each row, there are two sensors of type 2, κi and κ′
i, with the following charac-

teristics:

E(κi) = E(κ′
i) = ai, (36)

s(κi) = s(κ′
i) = 0, (37)

l(κi) = li + (z/2 + 1/2,−z/2 − 1/2), (38)

l(κ′
i) = li − (z/2 + 1/2,−z/2 − 1/2). (39)

Furthermore, on each row there are two sensors of type 3, µi and µ′
i, with the

following characteristics. The only purpose of these nodes is to act as possible relay

locations in the sensor upgrade model:

E(µi) = E(µ′
i) = 0, (40)

s(µi) = s(µ′
i) = 0, (41)

l(µi) = li + (z/2,−z/2), (42)

l(µ′
i) = li − (z/2,−z/2). (43)

Finally, on each row there is one sensor of type 4, νi, with the following character-

istics:

E(νi) = zα, (44)

s(νi) = 1, (45)

l(νi) = li. (46)

The location of the sink is l(σ) = (x/2 + y, x/2 + y) and the battery capacity of the

sink is irrelevant as the reception cost is zero. All relays have a battery capacity
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Sensor node of type 1

Sensor node of type 2

Sensor node of type 3

Sensor node of type 4

Symbols:

2y

Sink

η

σ

η′

≤2y

1

1

z

κ′

1

µ′

1

ν1

µ1

κ1

Distance (1-norm)

2y

2x

2

3

4

x

x

Origin

Figure 6: Reduction from Partition to PUFI and PPFI . In this example, the

corresponding Partition problem instance consisted of four integers. In the relay

placement problem instance, diagonal rows labelled with numbers 1–4 correspond

to the four integers in the Partition problem instance. One of the rows is shown

in a larger scale.
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satisfying E ≥ (a∗ + 1) (2x + 2y)α. One can use any rational constant satisfying

this inequality.

The total number of sensor nodes is m = 5n + 2, and the total amount of available

data is 2b + n units. The utility of any solution is thus at most U ∗ = (2b + n) /m.

We can now formulate the following decision problem instance (see Definition 3 on

page 23): P is the relay placement problem instance constructed above, the number

of relays N is n, and the utility requirement u equals U ∗. We will show that this

formulation is indeed a polynomial reduction from Partition to PUFI .

Lemma 1. Constructing the problem instance is possible in polynomial time.

Proof. We may choose z = na∗, y = z + 1, x = ny, and E = (a∗ + 1) (2x + 2y)α.

The total number of nodes in the constructed problem is O(n). The parameters

of each node can be calculated in polynomial time: keeping in mind that α = 2,

all expressions above only involve integer or rational numbers, and the size of each

integer is polynomial in the size of the input.

Lemma 2. If the answer to the Partition problem instance is yes, the answer to

the relay placement problem instance constructed above is yes, both in the PUFI and

in the PPFI formulation.

Proof. Let X be a feasible solution to the Partition problem. Denote the set

{1, . . . , n} \ X by X ′.

For each i ∈ X, place a relay on the type 3 node µi. For each i ∈ X ′, place a relay

on the type 3 node µ′
i. This is possible both in the sensor upgrade model and in the

planar model. This way we have placed a total of n relays. Figure 7 illustrates this

relay placement and the corresponding flow.

For each i ∈ X, transmit ai units of data from η to κi. The distance is x, and each

transmission uses aix
α units of energy. This way we can transmit a total of b units

of data from η by using bxα units of energy. Thus, all available data was transmitted

from η, and the battery had enough capacity. Next, for each i ∈ X, forward ai units

of data from κi to the relay at µi. The distance is 1, and the transmission cost is

thus ai, again we have enough battery capacity for this transmission. Furthermore,

transmit 1 unit of data from νi to the relay at µi, using zα units of energy. Now, we

have accumulated ai + 1 units of data on the relay at µi, which can be transmitted

directly to the sink. The distance is at most 2x + 2y, and the transmission cost is

thus at most (a∗ + 1) (2x + 2y)α, which does not exceed the battery capacity.
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Sensor node of type 1

Sensor node of type 2

Symbols:

4

η

σ

η′ Sensor node of type 4

Sink

Relay

3

2

1

Figure 7: This figure illustrates a solution to the relay placement problem shown

in Figure 6. Here we assume that X = {1, 2, 3} is a solution to the corresponding

Partition problem. This figure shows how to place 4 relays, relays 1–3 on the right

side and relay 4 on the left side. For clarity, type 3 nodes are not shown as they do

not have any energy resources and thus cannot contribute to routing data. Flows

are shown with rectangular arrows in order to make it more clear that transmission

costs use the Manhattan distance.

Similarly, for each i ∈ X ′, transmit ai units of data from η′ to κ′
i and forward it to

the relay at µ′
i. Then, transmit 1 unit of data from νi to the relay at µ′

i. Finally,

send all data from the relay to the sink.

Thus, the flow is feasible. All available data is forwarded to the sink, and the value

of the utility is U ∗. Thus, the answer to the relay placement problem instance is

yes.

Lemma 3. If the answer to the Partition problem instance is no, the answer to

the relay placement problem instance constructed above is no, both in the PUFI and

in the PPFI formulation.

Proof. Let us first assume that the answer to the relay placement problem instance

is yes. This is possible only if all available data from all sensor nodes of type 1 and

type 4 is forwarded to the sink node.

Let us first study a sensor of type 4, say νi. If it sends all its data to nodes whose
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distance is more than z units from the sensor node, it would require more than zα

units of energy, which is not available. Thus, the sensor has to send at least some

of its data to a node whose distance is at most z units. Furthermore, it cannot send

data to nodes of type 3 as those nodes have no energy capacity for forwarding the

data. No other nodes are available within this area: the distance to the type 2 node

on the same diagonal is z + 1 units, distances to nodes on other diagonals are at

least 2y ≥ 2z + 2 units, the distance to the closest type 1 node is z + 1 + x units,

and the distance to the sink is at least 2y ≥ 2z + 2. The only possible solution is

to have at least one relay node on the area of distance z from νi. There are n such

areas, one for each sensor of type 4. The areas are non-overlapping, and the number

of relays is also n; thus, there must be exactly one relay node in each area.

Let us denote by X the indexes of the areas where the relay node is closer to η than

η′. Denote {1, . . . , n} \ X by X ′. As the answer to the Partition problem was

no,
∑

i∈X ai 6=
∑

i∈X′ ai. Without loss of generality, we may assume that
∑

i∈X ai <
∑

i∈X′ ai. Clearly
∑

i∈X ai < b. As b and ai are integral,
∑

i∈X ai ≤ b − 1.

The sensor η has to send b units of data to other nodes. The node has enough energy

resources for transmitting b units of data to the distance of exactly x units. If some

part of the data was sent over a larger distance, another part would have to be sent

to a node whose distance is less than x units; however, no sensor or sink node is

available closer than this, and all relays are already tied to the proximity of type 4

nodes. Thus, the only possibility is to send all data to type 2 nodes, each exactly x

units from the source node. Let the amount of data transmitted from η to κi be ci.

Clearly
∑

i∈X∪X′ ci = b and each ci ≥ 0.

Now,
∑

i∈X ai ≤ b − 1 =
∑

i∈X∪X′ (ci − 1/n). At least one of the following holds:

there is an i such that i ∈ X and ai ≤ ci − 1/n, or there is an i such that i ∈ X ′ and

ci ≥ 1/n. If neither holds, then
∑

i∈X ai >
∑

i∈X (ci − 1/n) ≥
∑

i∈X∪X′ (ci − 1/n),

a contradiction.

Let us first assume that there is an i such that i ∈ X and ai ≤ ci − 1/n. In this case

the node κi would have to transmit at least ai + 1/n units of data to some other

node. The distance to the closest node is at least 1 unit. Thus, the transmission

cost is at least ai +1/n, exceeding the available battery capacity ai, a contradiction.

On the other hand, if there is an i such that i ∈ X ′ and ci ≥ 1/n, the node κi would

have to transmit at least 1/n units of data to some other node. As i ∈ X ′, the

distance to the closest relay node is at least z + 1 units. The only node less than

z + 1 units from κi is νi, and it does not have any battery capacity for forwarding
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data. Thus, we need to transmit at least 1/n units of data to a distance of at least

z + 1 units, requiring at least (1/n) (z + 1)α units of energy. Here:

(1/n)(z + 1)α ≥ (1/n)((na∗)
1
α + 1)

α

> (1/n)((na∗)
1
α )

α

= (1/n)(na∗)

= a∗ ≥ ai = E(κi).

(47)

Again, a contradiction. Thus the assumption must be false.

Theorem 4. The relay placement problem classes PUFI and PPFI are NP-hard.

Proof. Follows directly from Lemmas 1, 2, and 3.

5.2 Reducing Set Covering to k-optimal Relay Placement

In this section, we will prove that it is NP-hard to solve the relay-constrained op-

timisation problems of classes PDSI (finite problems with a line-of-sight model and

identical batteries) and PPSI (planar problems with a line-of-sight model and iden-

tical batteries) k-optimally. We will show this by constructing a polynomial re-

duction from Set Covering, which is another well-known NP-complete problem

[Kar72, GJ03]. We will see that even an approximate solution to these relay place-

ment problems gives us an exact solution to the Set Covering problem.

In the Set Covering problem, one is given a collection of sets. One is asked to

find m sets which cover all points. Formally:

Definition 14 (Set Covering). An instance of the problem Set Covering con-

sists of a finite collection of finite sets, A = {A1, . . . , An}, and a positive integer m.

A subcollection X ⊆ A is a feasible solution if |X | ≤ m and
⋃

X =
⋃

A.

We will now develop a polynomial reduction from Set Covering to PDSI and

PPSI . As was the case in the previous section, the same construction applies to

both relay placement problem classes. Let A = {A1, . . . , An} and m be given. Let

a denote the total number of distinct elements in the sets, a = |
⋃

A|. Without

loss of generality we will assume that the elements are consecutive positive integers,
⋃

A = {1, . . . , a}.

Construct a relay placement problem instance P as follows. Choose λ = 1 so that

we are interested in optimising the minimum amount of data gathered from each
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node. Choose the following radio propagation model:

p = 2, (48)

α = 2, (49)

ρ = 0. (50)

Then, define:

x = 4m, (51)

y = 2x(a + n). (52)

Construct the problem geometry as shown in Figure 8. This figure illustrates the

case of m = 2, n = 3, and a = 5. Furthermore, in this example we assume that

A1 = {1, 2, 3}, (53)

A2 = {2, 4, 5}, (54)

A3 = {1, 2, 4}. (55)

In the construction, all obstacles consist of polygons with only 45◦ and 90◦ angles.

All coordinates are integral. Let us first focus on part (a) of the figure. On the

left-hand side, we have a + 2n− 1 triangular nests. The first n− 1 nests are empty.

Then, there are a nests, Λ1 to Λa, each corresponding to one element of
⋃

A. The

nest Λi contains the sensor node ηi with the following characteristics:

E(ηi) = 1, (56)

s(ηi) = 1. (57)

The next nest, Λσ, contains the sink node σ. The battery capacity of the sink is

irrelevant as the reception cost is zero. The last n− 1 nests are empty. The spacing

between the nests is y units.

On the right-hand side, we have n triangular slots, Υ1 to Υn, again with a spacing

of y units. Each slot corresponds to one element of A. Let us now have a closer look

at one of these slots, let it be slot Υj. See Figure 8 (b) for an illustration. On the

leftmost side of the slot, we have a + n− 1 diamond-shaped obstacles, each of them

x units wide and x units high.

Between the diamond-shaped obstacles, we have a + n holes. The first n − j holes

are unused. The next a holes, Ξ1j to Ξaj, correspond to the sensors η1 to ηa, and

the next hole, Ξσj corresponds to the sink σ. Finally, there are j − 1 unused holes.
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Figure 8: Reduction from Set Covering to PDSI and PPSI . Some details are

shown in a larger scale.
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(a) (b)

Ψj Ψ′

j

Figure 9: An illustration of areas Ψj and Ψ′
j.

Let us now construct two areas, Ψj and Ψ′
j. The first area contains points l which

satisfy the following conditions:

1. For all i, there is a line of sight from l to ηi through Ξij.

2. There is a line of sight from l to σ through Ξσj.

This condition is illustrated in Figure 9 (a). We do not need to calculate the exact

shape of this area, it is enough to note that these conditions hold for all points

within an x-unit-wide and x-unit-high diamond-shaped area at the rightmost corner

of the slot. We will refer to this area as Ψj. The second area contains points l which

satisfy the following conditions:

1. For all i, if there is a line of sight from l to ηi, it necessarily passes through

Ξij.

2. If there is a line of sight from l to σ, it necessarily passes through Ξσj.

This condition is illustrated in Figure 9 (b). Again, it is enough for the purposes of

this construction to note that these conditions are clearly satisfied for all points on

a diamond-shaped area which is 3x units high and wide. We will refer to this area

as Ψ′
j.
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Now, we will block some of the holes. The hole Ξij is blocked if and only if i /∈ Aj.

The holes Ξσj are never blocked. Unused holes can be blocked; they do not matter.

We will also need m narrow, vertical tunnels, T1 to Tm, in the rightmost part of the

construction; see Figure 8 (c) and (d) for an illustration. Each tunnel consists of

a 1-unit-wide wall, a 2-unit-wide tunnel, and a 1-unit-wide wall, and we will refer

to the interior of this 4-unit-wide area as T ′
i . We have a total of 4m = x units of

tunnels and walls. At the bottom of each tunnel, one sensor node is placed. These

sensor nodes, µ1 to µm, have the following characteristics:

E(µi) = 1, (58)

s(µi) = 1. (59)

At locations where tunnels and triangular slots intersect, there are possible relay

locations. The relay location at the intersection of the tunnel Ti and the slot Υj is

denoted by κij. Note that this relay location is inside the area Ψj.

Finally, the construction is surrounded by four walls, shown in the figure in grey

colour. All relays have a battery capacity of 1 unit. Now we are ready to state a

few lemmas.

Lemma 5. Let us denote by Xl the set of indexes j such that ηj is visible from the

location l. If l ∈ Ψj, then Xl = Aj. If l ∈ Ψ′
j, then Xl ⊆ Aj.

Proof. Follows directly from the construction.

Lemma 6. All points in Ti are visible from the sensor node µi. No point outside T ′
i

is visible from the sensor node µi.

Proof. The first part follows directly from the construction. As for the second part,

we need to inspect more closely the geometry of the slots. Consider the rectangular

area which is illustrated with dashed lines in Figure 8 (c). The area is 4 units wide

and 2x units high. The vertical distance from the sensor node to the corresponding

tunnel entrance at the bottom of the rectangle is more than y/2 ≥ 2x(a+n)/2 ≥ 2x

units. The horizontal distance from the sensor node to the corner of the tunnel

entrance is 1 unit, and the horizontal distance to the left edge of the rectangle is 2

units. Thus, any line segment drawn from the sensor node to the left edge of this

rectangle necessarily passes through an obstacle. The same applies to the right edge

of the rectangle. There is no line-of-sight from the sensor node to any point outside

T ′
i .
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Lemma 7. Constructing this relay placement problem instance is possible in poly-

nomial time.

Proof. The construction involves generating a problem instance with O(a + n) sen-

sors, O(nm) possible relays, and O((a + n)n) quadrilateral or triangular obstacles.

Calculating the parameters of each node and each obstacle can be performed in a

polynomial time. The calculations only involve integers.

We can now formulate the following relay-constrained optimisation problem instance

(see Definition 4 on page 24): P is the relay placement problem instance constructed

above, and the number of relays N is m.

Lemma 8. If the answer to the Set Covering problem instance is yes, the optimal

solution to the relay placement problem instance constructed above has a positive

utility, both in the PDSI and in the PPSI formulation.

Proof. Let X = {Ac1 , . . . , Ac′m} be a solution to the Set Covering problem, with

m′ ≤ m. Place relays 1 to m′ as follows: the relay i is placed on the location of κici
.

Next, place relays m′ + 1 to m as follows: the relay i is placed on the location of κij

where j is arbitrary (choose, for example, j = 1).

Now, for any sensor ηj, it holds that j ∈
⋃

X . Thus, there is an i such that j ∈ Aci
.

It follows that there is a relay at κici
. This location is on the area Ψci

, and we have

a line of sight to both the sensor node ηj and the sink node σ. We can transmit a

positive amount of data from the sensor to the sink.

Similarly, for any sensor µi, there is a j such that there is a relay at κij. This location

is on the intersection of the tunnel Ti and the area Ψj, and we have a line of sight

to both the sensor node µi and the sink node σ. Again, we can transmit a positive

amount of data from the sensor to the sink.

By sharing battery capacities of the relays equally among all these flows, we can

transmit a positive amount of data from all sensor nodes to the sink. Thus, there

is a solution with a positive utility, and the utility of the optimal solution is also

positive.

Lemma 9. If the answer to the Set Covering problem instance is no, there is

no solution with a positive utility, either in the PDSI or in the PPSI formulation.
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Proof. Let us first assume that there is a solution with a positive utility. As the

utility is positive, we are able to transmit a positive amount of data from all sensor

nodes to the sink.

Each node µi is able to send some data to some other node. By Lemma 6, the target

node needs to be located on T ′
i . As there are no other nodes in this area, we need

to have at least one relay in this area. As we have m non-overlapping areas and m

relays, we need to have exactly one relay on T ′
i for each i. Let us call this relay νi.

Denote by Yi the set of indexes j such that ηj is visible from the relay νi. Let

Y = {Y1, . . . , Ym}. As each node ηj needs to transmit a positive amount of data to

the sink, and there is no line of sight to any other node except possibly relays, we

must have
⋃

Y =
⋃

A. Now there are two possibilities for each i:

1. There is a j such that the relay νi is located on Ψ′
j. By Lemma 5, Yi ⊆ Aj.

2. Otherwise the relay is in the tunnel in a place where there is no line of sight

to any nest. Now Yi = ∅ ⊆ A1.

For each i there is now ci such that Yi ⊆ Aci
. Define Y ′ = {Ac1 , . . . , Acm

}. Now

we have
⋃

A =
⋃

Y ⊆
⋃

Y ′ ⊆
⋃

A. Thus, Y ′ is a feasible solution to the Set

Covering problem instance, a contradiction.

Theorem 10. Solving the relay-constrained optimisation problems of classes PDSI

and PPSI k-optimally is NP-hard.

Proof. Let us assume that for some k, we have an oracle for solving the relay-

constrained optimisation problems of class PDSI or PPSI k-optimally in constant

time. We may then use the construction presented above to solve Set Covering

in polynomial time.

By Lemma 7, we may construct the relay placement problem instance in polynomial

time. By Lemmas 8 and 9, the oracle will return a solution with a positive utility if

and only if the answer to the Set Covering problem is yes.

We also briefly note the following result:

Theorem 11. Solving the utility-constrained optimisation problem of class PDSI k-

optimally is at least as hard as solving the optimisation version of Set Covering

k-optimally.
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Proof. We may use a small positive value as the utility requirement. If we find a

solution to the utility-constrained optimisation problem of class PDSI with at most

km relays, we have also found a set cover of at most km subsets.

5.3 Bounding Computational Complexity

We will also prove the following upper bound for the computational complexity of

some relay placement problems:

Theorem 12. The decision version of the relay placement problem class PD is in

NP.

Proof. Let (P,N, u) be an instance of the decision problem, P ∈ PD, parametrised

like a generic PD instance. By Definitions 1, 2, and 3, if and only if the answer to

the decision problem is yes, there exists a set of relays R ∈ R and a flow f such

that f ∈ F(B), F (B, f) ≥ u, and |R| = N where B = B(P,R). Thus, (R, f) can

be used as a certificate for a yes instance of the decision problem.

In order to prove that PD is in NP, we need to show that the certificate can be

checked in polynomial time. Let us first make sure that the size of the certificate

is polynomial in the size of the input. The flow can be represented as a matrix

with one element for each pair of nodes. On the other hand, the transmission cost

matrix, which is a part of the problem description, contains one element for each

pair of possible nodes. Thus, the size of the flow description is O(|P |) values. The

size of the cost matrix is |V|2 > |R|2 ≥ |R|. Thus, the set of relays, R, can also be

described in O(|P |) values.

Now we know that the number of values in the certificate is polynomial in the number

of values of the input. We also need to bound the size of each value. It is trivial

to represent R compactly, so we will focus on the flow f . The flow is a solution of

an LP, and the size of the LP is polynomial in the input. All coefficients of the LP

are rational, and we can multiply them by the product of all denominators. The

coefficients of the new LP are integral and their total size is only polynomially larger

than the size of the original LP. Finally, the size of the solution is only polynomially

larger than the size of the new LP [PS98, Sections 2.2 and 8.7]. Thus, not only the

number of values but also the size of each value in the certificate is polynomial in

the size of the input.

Constructing B(P,R) is polynomial for finite problems: one simply filters out pos-
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sible relays which are not members of R, along with corresponding energy vector

elements and transmission cost matrix rows and columns. Next, one can check equa-

tions (3)–(8) on page 21 and see if each of them holds. As there is only a constant

number of arithmetic operations for each flow element, the number of arithmetic

operations is O(|P |). Finally, we may use equations (9) and (10) to see if the utility

is at least u, again in O(|P |) operations. Thus, checking the certificate is possible

in polynomial time.

The same proof clearly applies to simplified problem classes Px ⊂ PD if the prob-

lem instance is described by giving a communication cost matrix. However, there

are also problem classes where a much more compact parametrisation is possible.

Further research is needed to determine if, for example, PDF is in NP. This is not

trivially true: a straightforward conversion to a cost matrix form may lead into both

exponentially long integers and irrational numbers.

5.4 Summary of Computational Complexity

We will first make the following observation:

Lemma 13. For any relay problem class Px in P∗, either PUFI ⊆ Px or PPFI ⊆ Px.

Proof. Follows directly from the hierarchy of problems, see Table 2 on page 20.

We can now summarise the main results on computational complexity:

Theorem 14. The decision versions of all relay placement problem classes in P ∗

are NP-hard.

Proof. From Theorem 4 and Lemma 13.

Theorem 15. The decision version of the relay placement problem class PD is NP-

complete.

Proof. From Theorems 12 and 14.

Theorem 16. Finding k-optimal solutions to the relay-constrained optimisation

versions of problem classes Px satisfying PDSI ⊆ Px or PPSI ⊆ Px is NP-hard.

Proof. From Theorem 10.
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Note that Theorem 16 applies to all problem formulations with obstacles, except the

sensor upgrade problems.

6 Algorithms

In this section, I will present algorithms for solving many classes of relay placement

problems. As was proved in Section 5, relay placement problems are typically NP-

hard. We will not see here algorithms which solve all instances in polynomial time.

As some simple heuristic solutions with no guarantee of optimality have already

been studied by Falck et al. [FFK+04], we will focus on algorithms which offer some

guarantee, at the expense of computational complexity.

Most algorithms presented here share the following key property: The algorithms

maintain bounds for the quality of the current solution. During computation, we

have access to an upper bound of the utility. We may wait until the approximation

ratio is low enough, or we may interrupt computation after a certain amount of time

and have access to an estimate of the quality of the solution. This way we may find

a practical balance between quality and computational resources for solving relay

placement.

The main theme of this section is developing an algorithm for solving the planar

relay placement problem. We will divide the task into subproblems as sketched in

Figure 10. We remind the reader that Falck et al. [FFK+04] have already devel-

oped an LP formulation for solving the balanced data gathering problem, and also

an approximation algorithm is known [FKKO05a]. We will begin this section by

showing various approaches to solving the finite relay placement problem, and we

will then show how these algorithms can be used as a component when one is solv-

ing the planar problem. We focus primarily on approximation algorithms for the

relay-constrained problem; see Sections 6.1.4 and 6.2.3 for some extensions.

6.1 Solving the Finite Relay Placement Problem

In this section, we will present three different approaches to solving the relay-

constrained finite relay placement problem. We will see from the empirical results

presented in Section 7 that each of these three methods is better than the others

in certain problem instances. The methods presented here may be used for solving

an arbitrary finite relay placement problem. The transmission cost model is not
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Solver for

the planar problem

Solver for

the finite problem

Solver for

the data gathering

problem

B ∈ B

P ∈ PDI P ∈ PPFI , R ∈ R

P ∈ PPFI

Local

search

Figure 10: Overview of algorithms. Each square represents a solver for a subproblem,

and the arrows show the most relevant data flows.

restricted; an arbitrary cost matrix may be specified.

When using the finite solver as a component of the planar solver, we will encounter

problems where there are multiple possible relays at the same location. In order to

handle these cases efficiently, we will extend the finite relay placement problem by

introducing a new input parameter, vector a. The value aη specifies the number of

relays one may assign at the location of the possible relay η. As the solution would

be a multiset, it is presented as a vector x where xη ≤ aη is the number of relays

assigned at this location.

6.1.1 Mixed Integer Linear Programming Formulation

One possibility is to formulate the finite relay placement problem as a mixed integer

linear program (MIP or MILP). This way, one can use any existing MIP solver to

solve the problem. A mixed-integer linear program is an LP where some variables

are constrained to integral values. See, for example, Papadimitriou and Steiglitz

[PS98] for an overview on integer linear programming. Unlike pure linear programs,

solving an integer linear program is NP-complete [Kar72]. Algorithms for solving

MIP problems are typically based on either so-called cutting-plane techniques, or
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intelligent enumeration of all possible combinations.

We will first make one assumption: there is no feasible flow f and relay η such that

the relay consumes no energy at all,
∑

κ∈V (τηκfηκ + ρfκη) = 0, but that it is for-

warding some data,
∑

κ∈V (fηκ + fκη) > 0. This assumption is relatively reasonable:

it is satisfied if the reception cost is non-zero, or if all transmission costs are non-

zero. However, one must also maintain this condition when using the finite solver

as a component in the planar solver.

Given this assumption, the MIP formulation is a straightforward extension of equa-

tions (3) to (8):

Maximise λq̌ + (1 − λ)/|S|
∑

κ∈V

fκσ, subject to:

fηκ ≥ 0, ∀η, κ ∈ V , (60)

fηη = 0, ∀η ∈ V , (61)

q̌ ≥ 0, (62)

xη ∈ [0, aη], ∀η ∈ R, (63)
∑

κ∈V
fσκ = 0, (64)

∑

κ∈V
(fηκ − fκη) ∈ [0, sη], ∀η ∈ S, (65)

∑

κ∈V
(fηκ − fκη) ≥ q̌, ∀η ∈ S, (66)

∑

κ∈V
(fηκ − fκη) = 0, ∀η ∈ R, (67)

∑

κ∈V
(τηκfηκ + ρfκη) ≤ Eη, ∀η ∈ S+, (68)

∑

κ∈V
(τηκfηκ + ρfκη) ≤ Eηxη, ∀η ∈ R, (69)

∑

η∈R
xη ≤ N, (70)

fηκ ∈ R, ∀η, κ ∈ V , (71)

q̌ ∈ R, (72)

xη ∈ Z, ∀η ∈ R. (73)

Here q̌ is an auxiliary variable which is used for calculating the minimum of the

amounts of the data gathered from each sensor node. The integral variables xη

will contain the solution to the relay placement problem. The key point of this

formulation is equation (69), where we use the above assumption: if xη = 0, the

energy constraint is zero, and by the assumption, there is no data flow either.
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6.1.2 Heuristic Search with Local Search

Now we will develop an algorithm which solves the finite relay placement problem

without relying on an MIP solver. The algorithm consists of two mostly independent

parts: the first part keeps tightening the upper bound for the solution, while the

second part keeps looking for a good solution.

The first part uses heuristic search; see Russell and Norvig [RN03] for an introduc-

tion to the topic. A search tree is formed as follows. Each tree node is presented

as a tuple (a,b, N). The value bη specifies the number of relays we have already

assigned at the location of the possible relay η. At the root of the tree, a and N

are as given in the original problem, and b = 0. Let κ be any possible relay with

aκ > 0. If no such possible relay exists, we have reached a leaf node. Otherwise,

there are two possible branches at each node:

1. Form a new node (a′,b′, N ′) by assigning a′
κ = a′

κ − 1, b′κ = bκ + 1, and

N ′ = N − 1. In other words, add one more relay at the location κ.

2. Form a new node (a′,b, N) by assigning a′
κ = 0. In other words, fix the number

of relays at the location κ to the value it has now. This branch may be pruned

if
∑

a′
η < N .

Now we need a heuristic function to guide our search in this tree. We will use an

admissible heuristic in order to guarantee that we will find an optimal solution. To

develop the heuristic function, we will use the well-known method of using a relaxed

version of the original problem as the heuristic [RN03]. Here we may consider the

above MIP formulation as the original problem, and we will relax it by removing the

integrality constraint for x. Furthermore, we need to take into account the current

value of b. The changes to the MIP formulation are thus:

∑

κ∈V
(τηκfηκ + ρfκη) ≤ Eηxη + Eηbη, ∀η ∈ R, (69’)

xη ∈ R, ∀η ∈ R. (73’)

We are left with an LP, which may be solved by any LP solver.

This heuristic function is evaluated for each created node. The utility of the node

is an upper bound for the utility of the entire branch. The nodes are stored in a

priority queue, using the bounds as keys. At each iteration, the node with the highest

bound is removed from the priority queue. Its child nodes are created, evaluated,

and stored back to the queue. When the first leaf node is removed from the queue,
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we will know that there cannot be other leaf nodes with a higher utility. Thus, we

may terminate our heuristic search and return the configuration which corresponds

to the leaf node.

Now we have finished the first part of our algorithm. While this method was de-

rived from the viewpoint of informed search as studied by the artificial intelligence

community, it may also be seen as a way of implementing a MIP solver for this

particular problem by using branch-and-bound techniques.

The second part tries to find a good solution by local search. This part could use

an arbitrary local search method. Here we have chosen a method based on running

a number of parallel hill-climbing algorithms, with random restarts after reaching a

local maximum. Other possible approaches include methods like simulated annealing

and genetic algorithms; experimenting with these is left for future research.

Our local search will proceed as follows. We will have a number of searchers. The

internal state of each searcher is maintained as a relay assignment vector x which

satisfies the constraints (63) and (70) above, along with the corresponding utility.

Each searcher is initialised to a random configuration. While local search is running,

each searcher executes one step, and passes the turn to the next one. At each step,

the searcher attempts to modify the relay assignment by moving one relay to a

new possible location such that the above constraints are still satisfied. If such

a move is found, the utility of the new configuration is evaluated by solving the

corresponding LP. If the utility improves, the new configuration is kept; otherwise,

the next possible one-relay movement is attempted at the next step. When a local

optimum is reached (i.e., no one-relay movement improves the solution), a new

random configuration is generated. All searchers maintain a shared variable which

stores the best configuration so far.

We will now combine these two parts into one search algorithm. We will run both

search processes in an interleaved fashion, giving roughly equal amounts of comput-

ing resources to both parts. After each step, we will check if a termination criterion

is met. We have two termination criteria:

1. The heuristic search terminates. It has found an optimal solution.

2. The current upper bound maintained by the heuristic search is at most k times

the utility of the best configuration found by the local search so far. The local

search has found a k-optimal solution.
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We see that this process always terminates, as the heuristic search will eventually

find an optimal solution; there are, after all, a finite number of possible configurations

to check. However, the local search may help by letting us terminate much sooner,

in case we are satisfied with an approximate solution.

6.1.3 Exhaustive Search

As a third alternative, we will consider uninformed exhaustive search. Here we will

simply enumerate all possible relay assignment vectors x and choose the best one.

We will eventually find an optimal solution. Again, one may interpret this approach

as yet another method for solving the original MIP problem.

The reason why this approach is also considered will become evident in Section 7.

We will see that, in the case of only a few sensors and a large number of possible

relay nodes, evaluating the heuristic function may require solving a relatively large

LP problem, while exhaustive search only needs to solve very simple LP problems

at each node. If the number of relays to place is low enough, exhaustive search may

enumerate all possible combinations much faster than what it takes for the heuristic

search to converge.

In empirical experiments, exhaustive search and heuristic search will be combined

into one interleaved process. However, other solutions are also possible: one could,

for example, choose only one of these search methods based on the problem size.

6.1.4 Generalisation

The MIP formulation can be easily generalised to the problem of solving the utility-

constrained problem. One just needs to interchange the roles of the objective func-

tion and the relay number constraint (70).

6.2 Solving the Planar Relay Placement Problem

Now we will turn our attention to solving planar relay placement problems. We will

first assume that we are using the free-space transmission cost model and identical

batteries. Some generalisations will be discussed in the end of this section.

In the free-space model, it is easy to see that we may confine ourselves to the problem

of placing relays in a bounding rectangle which contains all sensors and the sink:
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For any solution with relays outside this rectangle, we can find another solution with

all relays inside the rectangle without making any of the transmission costs higher.

Thus, the utility of the latter solution is no lower than the utility of the former

solution.

6.2.1 Basic Algorithm

The algorithm will need two components. Firstly, it needs an approximate solver

for the finite relay placement problem. This component may be seen as a black

box. The only requirement is that the component returns not only a solution and

its utility, but also an upper bound for the utility. Secondly, it needs a solver for

the balanced data gathering problem; here we may simply use the LP formulation

and any LP solver as this part is not performance-critical.

The basic approach is as follows. We will maintain an upper bound and a solution.

We will keep making the upper bound tighter and the utility of the solution better

until the ratio of these two values is at most k. Then we may return the solution,

and it is guaranteed that the solution is k-optimal.

The upper bound is derived by dividing the bounding rectangle into a number of

rectangular cells. The cells form a partition of the bounding rectangle, i.e., they are

non-overlapping and they cover all points of the rectangle. Next, we will construct

an instance of the finite relay placement problem. The sink and the sensors are the

same as in the original planar problem. For each cell, we will add one possible relay

node η with aη = N . The battery capacities of the nodes, the amount of available

data on each sensor, the balance parameter, and the reception costs are exactly as

specified in the original problem.

Now we will specify the transmission costs between the nodes of the finite problem

constructed above. We will assign a geometrical area to each node. For each sensor

node and the sink, this area is the single point of the location of the node. For

each relay, the area is the corresponding rectangular cell. The transmission cost

between two nodes is specified as the lowest possible transmission cost between their

respective areas. For the free-space model, we may easily calculate the shortest

distance between two areas, and evaluate the corresponding lowest transmission

cost. This may be zero, if the areas are adjacent; however, the assumption made in

Section 6.1.1 is not violated as long as we have a non-zero reception cost.

Next, we will solve this finite relay placement problem by using any approximate
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solver. The solver will return a relay assignment, x, and an upper bound for the

utility. The utility of the assignment is called the cell-view utility, and the upper

bound is called the cell-view upper bound. The key observation here is this: the

cell-view upper bound is also an upper bound for the utility of the original planar

problem.

The solution x also gives us a solution to the planar relay placement problem. We

may place each relay at the centre point of the corresponding cell, assign the trans-

mission costs using the free-space model, and evaluate the utility of this configuration

by solving the corresponding balanced data gathering problem. This utility, U , is

called the point-view utility.

If the tightest cell-view upper bound is at most k times the best point-view utility,

we are done. Otherwise, we will divide the bounding rectangle into a larger number

of cells, and repeat the process. We still need to specify how we divide the bounding

rectangle into cells. To avoid combinatorial explosion, we must make sure we do not

make the number of possible relays in the finite problems too high. The following

scheme is used here:

1. The first partition consists of one cell, covering the entire bounding rectangle.

2. After each iteration, split each cell which contains some relay nodes into four

new rectangles of equal size. (In some rare cases, we may find an approximate

solution where no relay nodes were assigned. In those cases, choose one cell

randomly and split it.)

This approach gives us a guarantee of convergence while still generating only a

moderate number of new cells. Even if the relays are assigned to the same areas, the

smaller cells will mean that the point-view utility is closer to the cell-view utility

than in the previous iteration. As the finite problem was solved by an approximation

algorithm, this will also bound the ratio of the cell-view upper bound and the point

view utility. The whole process is illustrated in Figure 11.

6.2.2 Post-processing

The solution returned by the above algorithm is k-optimal. However, it is not

necessarily even a local optimum. Thus, it may be possible to improve the utility of

the solution by local search. Here one may use, e.g., line search in a similar way as

proposed by Falck et al. [FFK+04] for their incremental relay placement algorithm.
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(a) Step 1: utility 0.10,

bound 1.04

(b) Step 2: utility 0.11,

bound 0.48

(c) Step 3: utility 0.08,

bound 0.39

(d) Step 4: utility 0.14,

bound 0.27

. . .

(e) Step 15: utility 0.07,

bound 0.17

Figure 11: Illustration of the algorithm. Here we are placing two relays in a very

simple sensor network which consists of only two sensor nodes; the balance parameter

λ is 0.5. The figures show how the plane is divided into smaller cells. Centre points

of cells are illustrated by small diamonds. Here the fourth step already produced a

1.25-optimal solution. However, it took 15 steps to prove that the upper bound for

the utility is as low as 0.17. The configuration shown in step 4 was the best, and it

is returned as the solution.
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Figure 12: If there are obstacles, the bounding rectangle of the sensors and the sink

does not necessarily contain the relay locations of any optimal solution.

Any heuristic method is safe here. As long as we check the utility of the final solution,

and make sure we do not make the solution worse, we still have the guarantee of k-

optimality. Again, various local search methods offer possibilities for future research.

6.2.3 Generalisation and Extensions

Generalising this algorithm to utility-constrained planar problems is possible by

using a solver for the utility-constrained finite problem as a component.

We may also take into account the fact that relay placement may be imprecise. In-

stead of evaluating the utility of a configuration as presented above, we may replace

each relay node by an area. The area could be, for instance, a disk, which represents

the possible final locations of the relay node. Then, we may assign worst case trans-

mission costs by measuring the longest distance between these disks. This way we

can analyse how sensitive the configuration is to small variations in relay locations,

and we may even include this test in the termination criteria of the algorithm.

In addition to the free-space model, other simple radio propagation models may

be applied, too, as long as it is possible to analytically derive a lower bound for

the transmission cost between two areas. Taking obstacles into account is more

challenging. Figure 12 shows that the bounding box of the sensors and the sink does

not necessarily contain the relay locations of any optimal solution. This example

also shows that the area which needs to be checked may be made arbitrarily large.

Thus, one needs to, for instance, further constraint the set of possible relay locations

to some predefined area given by a human expert. This does not need to be a

serious restriction as solutions where relays are placed at arbitrarily long distances

are physically unrealistic.

Obstacles need to be considered also when evaluating the minimum communication

cost between two areas. Here one may derive a lower bound as follows: If there

is a line of sight between the areas, evaluate the communication cost as presented

above for the free space model. Otherwise, the communication cost is infinite. For
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checking if there is a line of sight between two areas, one may use algorithms derived

for solving similar problems in the field of computer graphics. See, for example, Teller

and Séquin [TS91] for a method based on cells, portals, and so-called stabbing lines.

Obstacles may also make local search in the post-processing phase more difficult as

costs are no longer continuous functions of relay locations.

7 Implementation and Empirical Results

I have implemented the algorithms presented in the previous section and performed

a number of experiments with them. The implementation, results, and some obser-

vations are presented in this section.

7.1 Implementation Details

The algorithms were implemented in the C programming language [ISO99]. The

source code of the implementation is available1 under a free software license. The

implementation may be run in one of two major modes:

1. In the MIP mode, it uses the mixed integer linear programming formulation

as described in Section 6.1.1.

2. In the heuristic mode, it uses the heuristic search and local search as described

in Section 6.1.2, and exhaustive search as described in Section 6.1.3.

The implementation of the heuristic mode runs three algorithms in an interleaved

fashion: heuristic search for finding an upper bound, local search for finding a solu-

tion, and exhaustive search. Both local search and exhaustive search use the same

variables to maintain the best configuration seen so far; this way, heuristic search

may benefit not only from local search but also from exhaustive search.

The search may be terminated for one of the following reasons: the heuristic search

finds a solution; the upper bound maintained by the heuristic search becomes low

enough compared to the best configuration seen this far; or the exhaustive search

terminates.

A key issue here is deciding how to share computing resources between the three

interleaved processes. One step of computation may be many orders of magnitudes

1The source code is available at http://www.cs.helsinki.fi/u/josuomel/relays/ .
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more expensive for heuristic search than for local and exhaustive search; furthermore,

there is no known method of predicting accurately which of the termination criteria

will be met first.

Memory usage is not an issue with the problem instances used in these experiments.

The solver may spend several hours or even several days finding an optimal solution

for a hard problem, while memory usage is typically around ten megabytes. We will

thus focus on sharing processor time optimally.

In this implementation, we use three timers, each counting the amount of computer

time used by one of the three processes. At each step, the turn is given to a process

which has so far used less than one third of the total computer time. This way, each

process will be given a roughly equal share of computer time.

The running time of this simple approach is, in a sense, worst-case optimal, assuming

that there is no prior knowledge on the best way of sharing computing resources: if

and only if we are using the equal assignment, we know that we are wasting computer

time by at most a constant factor of 3 compared to the optimal assignment.

This time sharing scheme may also be seen as a way of simulating how the algo-

rithm would behave if these three processes were assigned to separate processors.

Even more parallelism could be achieved by dividing the local search algorithm:

each searcher could be run on a dedicated processor. Experimenting with parallel

implementations is left for future research.

7.2 MIP and LP Solvers

In the MIP mode, the implementation uses the GLPK library [Mak05] to solve

MIP problems. The solver in the GLPK library is based on the branch-and-bound

method.

The same library is also used in the heuristic mode for solving LP problems. There

are two LP solvers in the GLPK library, one based on the simplex method and

one which uses an interior-point method. The implementation allows experimenting

with both methods.

The LP solver is used in the inner loop of our algorithms. Thus, being able to solve

LP problems of moderate size rapidly is critical to the performance of the algorithms.

During development and experiments, some observations were made.

Firstly, the interior-point method in the GLPK library spends a significant amount
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of time even on simple LP problems, while the simplex method solves small problems

quickly. Thus, we will use the simplex method in all these experiments.

Secondly, the LP problem changes only slightly between iteration steps, and it may

seem tempting to reuse the same problem instance and the solution, modify con-

straints, and restart the simplex solver. However, the total amount of time wasted

on recovering a feasible solution was in some cases large compared to the gained

speedup of finding the optimal solution. Even more importantly, this required the

use of a suboptimal LP problem where some variables were, for example, constrained

to a fixed value. The performance was significantly improved by rewriting the code

so that the LP (as well as MIP) problem instances are constructed from scratch for

each iteration step, and no trivially true constraint or fixed variable is included.

7.3 Results

The test environment was a PC with a 3.0 GHz Pentium 4 processor. On this

platform, solving the problem in Figure 11 on page 55 took 15 seconds in the heuristic

mode. Typically, exhaustive search terminated before heuristic search. Solving the

same problem took 290 seconds in the MIP mode.

Figure 13 illustrates placing two relays in a sensor network. Solving these three

problems took 470 seconds, 2 122 seconds, and 217 seconds, respectively, in the

heuristic mode. In all cases, during the first steps, the heuristic solver found solu-

tions to the finite subproblems, while during the last steps, the exhaustive search

terminated before the heuristic search. In the MIP mode, the respective times were

495 seconds, 2 753 seconds, and 212 seconds.

The internal progress for case (b) in the heuristic mode is illustrated in Figure 14.

This figure shows both the planar solver and the underlying finite solver. Each

marker labelled as a “point view utility” corresponds to the termination of the finite

solver. Between a pair of such markers, the finite solver is running: we can see how

it is tightening the “cell-view upper bound” by heuristic search, and improving the

“cell-view utility” by local and exhaustive search.

In this example, we can see that the “cell-view upper bound” may suddenly drop

down to the level of the “cell-view utility”. This phenomenon is caused by the ex-

haustive search: when the exhaustive search terminates, we know that no better

solution exists and we can immediately tighten our bounds. Later we will see ex-

amples where the heuristic search does converge to an approximate solution before
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(a)

|S| = 30

N = 2

λ = 0.0

α = 2

p = 2

ρ = 1

(b)

|S| = 30

N = 2

λ = 0.5

α = 2

p = 2

ρ = 1

(c)

|S| = 30

N = 2

λ = 1.0

α = 2

p = 2

ρ = 1

Figure 13: Placing two relays in a sensor network. The network consists of 30

sensors which are placed randomly in three clusters. The solutions are 1.25-optimal

or better.
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Figure 14: Timings for solving the problem in Figure 13 (b) in the heuristic mode.
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Figure 15: Timings for solving the problem in Figure 13 (b) in the MIP mode.
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the exhaustive search terminates.

The lowest cell-view upper bound is used as the upper bound for the planar problem,

and the solution with the highest point-view utility is used as the solution to the

planar problem. The search terminates when the ratio of these two values is less

than k, which was 1.25 in this example. Figure 15 illustrates the timings for the

same problem instance in the MIP mode; this information is based on the logging

facility of the GLPK MIP solver.

Figure 16 presents a collection of various relay placement problems. Solving the

problems took 276 seconds, 10 seconds, and 18 710 seconds (approx. 5 hours), re-

spectively, in the heuristic mode. In part (b), the exhaustive search always termi-

nated first, while in parts (a) and (c), the heuristic search found solutions to the

finite subproblems. The timings for case (c) are shown in Figure 17. The respective

times were 6 seconds, 88 seconds, and 8 119 seconds (approx. 2 hours) in the MIP

mode, and the timings for this mode are shown in Figure 18.

In summary, we see that the performance of the heuristic mode may be more than

an order of magnitude better or worse than the performance of the MIP mode.

Which is faster depends on the problem instance. Furthermore, we see that both

the heuristic and exhaustive approaches are useful.

Figure 16 (c) also serves as an illustration of combinatorial explosion. One of the

problem instances is similar to Figure 16 (c), but the balance parameter λ is 0.5

instead of 0.0. For this instance, finding a 2.0-optimal solution took 113 seconds

(there were 58 cells in the last partition), finding a 1.5-optimal solution took 24 380

seconds (approx. 7 hours, 166 cells), and finding a 1.35-optimal solution took as

much as 255 363 seconds (approx. 3 days, 226 cells). Clearly, it is not reasonable

to expect to achieve, say, 1.25-optimal solutions for all problem instances of even

moderate size. However, by maintaining upper bounds and by storing intermediate

results, one may terminate the computation at any point and have a solution of

known quality available.

In these experiments, the termination criterion for the heuristic mode was 1.1-

optimality: the heuristic search is terminated when the cell-view upper bound is

at most 1.1 times the cell-view utility. One example of changing this parameter

is shown in Figure 19. In the MIP mode, the corresponding constant was 1.0 as

the GLPK MIP solver never returns suboptimal solutions. Studying the choice of

this parameter and experimenting with approximate MIP solvers is left for future

research.
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(a)

|S| = 50

N = 3

λ = 0.5

α = 2

p = 2

ρ = 1

(b)

|S| = 3

N = 2

λ = 1.0

α = 2

p = 2

ρ = 1

(c)

|S| = 3

N = 4

λ = 0.0

α = 2

p = 2

ρ = 1

Figure 16: Various examples of relay placement. The solutions are 1.25-optimal or

better.
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Figure 17: Timings for solving the problem in Figure 16 (c) in the heuristic mode.
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Figure 18: Timings for solving the problem in Figure 16 (c) in the MIP mode.
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Figure 19: Timings for solving the problem in Figure 16 (c) in the heuristic mode.

In this experiment, the finite subproblems were solved 1.2-optimally; compare with

Figure 17, where the subproblems were solved 1.1-optimally. Here the heuristic

solver typically evaluated only one branch for each finite subproblem. As cell-view

upper bounds were looser, the number of steps was higher. However, the total time

consumption turned out to be lower.
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8 Conclusions and Further Research

In this thesis, I have defined a number of classes of relay placement problems. The

computational complexity of these classes has been studied, and all classes have

been proved NP-hard. Even approximation of some important problem classes is

NP-hard.

I have developed algorithms which may be used for solving finite and planar re-

lay placement problems approximately. While the problems are computationally

difficult, the algorithms have been successfully used for solving some problem in-

stances of moderate size. These algorithms provide us with a starting point for

future development and a baseline for evaluating alternative approaches. One can

also interpret these algorithms as methods for finding guaranteed upper bounds with

a given tightness. These upper bounds can be used as a benchmark for new relay

placement methods.

The following questions may serve as starting points for future research:

1. Are there efficient approximation algorithms for the free space model or is

approximation NP-hard for these cases, too?

2. Is it possible to formulate a relay placement problem which is computationally

tractable but still meaningful in practise? Do we need to consider other utility

functions instead of the balanced data gathering formulation?

3. In practice, we may be interested in maximising the overall data quality by

all possible means, not only by relay placement but also by sensor placement.

How can we formulate the problem of optimising data quality, if we consider all

relevant aspects such as sensor coverage, redundancy of the data, relay nodes,

routing, radio communication, energy constraints, and monetary costs?

While the basic algorithms are now developed, further research needs to be done.

We need to study different radio propagation models, imprecise relay placement,

different algorithms for local search in the finite solver, different algorithms for local

search in the post-processing phase of the planar solver, different implementations

and algorithms for solving the LP and MIP problems, approximation algorithms for

the LP and MIP problems, parallel implementations of the finite solver, and different

approximation ratios for the underlying finite solver.

In general, there are various approaches to each subtask, and the algorithms have
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tunable parameters. We need empirical or theoretical studies in order to ideally

configure the solver for each problem instance, or we need adaptive algorithms which

automatically tune their behaviour based on the problem instance at hand.
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Appendix 1. Table of Symbols

The mathematical symbols used in this text are summarised in the following table.

B instance of the balanced data gathering problem

B set of all balanced data gathering problems

P instance of the relay placement problem

P ,Px,PP ,PD, . . . classes of relay placement problem instances

P∗ set of all relay placement problem classes

B(P,R) converted instance

k approximation ratio

λ balance parameter

V set of nodes

V set of possible nodes

S set of sensor nodes

S+ set of sensor and sink nodes

R,R∗, R̃ sets of relay nodes: any, optimal, approximated

R set of possible relay nodes

N number of relay nodes

σ sink node

η, ηi, κ, µ, ν nodes

ρ reception cost

τ(η, κ), τηκ, τ
′(lη, lκ) transmission cost

E(η), Eη, E energy supply of a node

sη available data at a sensor node

l(η), lη, l locations

l1l2 line segment

w(η), wη, w identities

W set of identities

oi, o obstacles

O set of obstacles

#o, #O number of vertices in obstacles

Λ, Υ, Ξ, Ψ, T parts of geometry

f, f ∗, f̃ flows: any, optimal, approximated



2

F(B) set of feasible flows

qη(B, f) amount of data collected from a sensor node

F (B, f) utility of a balanced data gathering solution

U(P,R) utility of a relay placement problem solution

u utility requirement

PL(l1, l2) radio communication path loss

α exponent for the power law

d(x,y) Euclidean distance

dp(x,y) distance with p-norm

p exponent for the distance function

a, b, c, i, j,m, n, t, x, y, z, ε scalars

a,b,x,y, z vectors

zi vector elements

g, h functions

A,X, Y, Z sets

A,X ,Y collections of sets


