
AndroMedia –
Towards a Context-aware Mobile Music Recommender

Fredrik Boström

Helsinki May 9, 2008

Master of Science Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Fredrik Boström

AndroMedia – Towards a Context-aware Mobile Music Recommender

Computer Science

Master of Science Thesis May 9, 2008 64 pages

Mobile media, context-awareness, recommendation, collaborative filtering

Kumpula Science Library, serial number C-

Portable music players have made it possible to listen to a personal collection of music
in almost every situation, and they are often used during some activity to provide a
stimulating audio environment. Studies have demonstrated the effects of music on
the human body and mind, indicating that selecting music according to situation
can, besides making the situation more enjoyable, also make humans perform better.
For example, music can boost performance during physical exercises, alleviate stress
and positively affect learning.

We believe that people intuitively select different types of music for different situa-
tions. Based on this hypothesis, we propose a portable music player, AndroMedia,
designed to provide personalised music recommendations using the user’s current
context and listening habits together with other user’s situational listening patterns.
We have developed a prototype that consists of a central server and a PDA client.
The client uses Bluetooth sensors to acquire context information and logs user in-
teraction to infer implicit user feedback. The user interface also allows the user to
give explicit feedback. Large user interface elements facilitate touch-based usage
in busy environments. The prototype provides the necessary framework for using
the collected information together with other user’s listening history in a context-
enhanced collaborative filtering algorithm to generate context-sensitive recommen-
dations. The current implementation is limited to using traditional collaborative
filtering algorithms.

We outline the techniques required to create context-aware recommendations and
present a survey on mobile context-aware music recommenders found in literature.
As opposed to the explored systems, AndroMedia utilises other users’ listening habits
when suggesting tunes, and does not require any laborious set up processes.

ACM Computing Classification System (CCS):
H.3.1 [Content Analysis and Indexing], H.3.3 [Information Search and Retrieval],
H.5.2 [User Interfaces], I.2.6 [Learning], I.5.3 [Clustering]

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Context-awareness 4

2.1 Data acquisition . 4

2.2 Feature extraction . 7

2.3 Context comparison . 8

3 Recommending Music 9

3.1 The Problem . 10

3.2 User Modelling . 12

3.3 Content-based Filtering . 14

3.3.1 Content Analysis . 15

3.3.2 Calculating Similarity and Generating Recommendations . . . 17

3.3.3 Strengths and Weaknesses . 18

3.4 Collaborative Filtering . 19

3.4.1 Collaborative Filtering Algorithms 20

3.4.2 Strengths and Weaknesses . 22

3.5 Hybrid Recommenders . 22

3.6 Context-based Filtering . 23

3.6.1 Dimension Reduction . 24

3.6.2 Context Weighting . 26

4 Survey of Context-aware Mobile Music Recommenders 27

4.1 Proximity Recommenders . 28

4.1.1 BluetunA . 28

4.1.2 SoundPryer . 30

4.1.3 Bubbles . 31

4.1.4 Push!Music . 33

iii

4.1.5 Summary of Proximity Recommenders 34

4.2 Advanced Context Recommenders . 34

4.2.1 IM4Sports . 34

4.2.2 LifeTrak . 38

5 AndroMedia 40

5.1 The AndroMedia Client . 40

5.1.1 Overview . 40

5.1.2 BeTelGeuse Integration . 43

5.1.3 Architecture . 44

5.1.4 Operation . 45

5.2 AndroMedia Server . 48

5.2.1 Architecture . 48

5.2.2 Database Architecture . 50

5.2.3 Functionality . 53

5.3 Implementation Status and Future Work 54

6 Discussion and Conclusions 55

7 Acknowledgements 58

References 58

1 Introduction

Music has played a major role throughout the history of human cultures [WMB01],
and is still an integral part of our daily lives. We consume music either actively by
listening to the radio or playing records, or passively by being exposed to music in
public areas. Music is played in the background of almost any conceivable situation;
specifically, a study on the musical experience in everyday life among nearly 350
people indicated that most people were exposed to music on a daily basis and that
music was mostly experienced during some activity rather than during deliberate
listening [HHN04]. The study also shows that the significance of different qualities
in music varies according to location or company, and that the appreciation of
music also depends on the company, location and whether the exposure to music
was deliberate or not. This strengthens the common conception that music plays a
major part in many human activities.

The ubiquitousness of music implies its potential psychological and physiological
effects on humans. This assumption has been confirmed by several studies, indicat-
ing that music can indeed have many effects on human body and mind. McKinney
et al. [MAK+97] found music to have a positive effect on depression, fatigue and
stress through a significant decrease in the stress-hormone cortisol. Savan [Sav99]
investigated the effect of Mozartean background music on learning among students
with special educational needs, and observed an activation in the limbic system of
the brain, positively affecting the students’ temper through lowered blood pressure,
body temperature and pulse rate. Brown et al. [BMP04] conducted an experiment
with non-musicians being passively exposed to unfamiliar yet appreciated instru-
mental music and also observed activation in the limbic system, positively affecting
emotion, behaviour and long-term memory.

These effects of music on the human body are bound to have consequences in our
daily activities where we are exposed to music either deliberately or by chance.
An experiment by Brownley et al. [BMH95] showed that fast, upbeat music has
positive effects on training results, especially among untrained runners. Sloboda
[Slo91] found that the majority in a group of 83 people had experienced some kind
of thrill while listening to music during the last five years. More specifically, 90%
had experienced shivers down the spine, 80% lump in the throat, 85% tears and
67% a racing heart. This shows that music not only expresses emotions but also
produces emotions [SZ01]. Finally, Brodsky [Bro01] observed the effects of music
with different tempo during simulated driving, and noted that the simulated driving

2

speed was proportional to the tempo of the music. Additionally, traffic violations,
like driving against red light, and accidents were more common while the driver was
listening to high-tempo music.

These findings indicate that the type of music listened to in different situations
may influence the way we perceive the situation, and that the performance of a
physical activity can be boosted by being exposed to the right background music.
This correlates well with people’s tendency to deliberately listen to upbeat music
while exercising, peaceful music during romantic occasions and classical music while
reading, for example.

The ability to listen to background music in any situation has increased as portable
music players like Apple’s iPod, Microsoft’s Zune, and Nokia’s and SonyEricsson’s
MP3 playing mobile phones become more popular [IFP08]. Still, the choice and
organisation of music based on situations can be a time-consuming process. Tra-
ditionally, a stream of appreciated music can be obtained by creating playlists and
manually adding suitable tunes, or by just playing all tunes at random, skipping
tunes when one comes along that is not suitable for the situation. Regardless of the
method, getting the right music to play at the right time requires time and effort.

Automatic playlist generation is one solution to the problem. By analysing metadata
of music files and grouping tunes, for example by genre, a somewhat homogenous
collection can be produced. Metadata-based categorisation assumes, however, that
all media files are properly tagged with the right information. This might pose a
problem for diverse albums or compilations where the characteristics of each tune
may differ, but all tunes are tagged according to the album’s general genre. An
alternative method is content-analysis, which attempts to automatically render a
description of an item based on its content. In practice, this approach is only really
feasible for textual items since content-analysis methods for audio files still do not
calculate tune similarity accurately enough for real world applications [Pam06].

Instead of relying on any properties of the media file itself, an automatic playlist for a
certain situation could be generated by keeping track of what the user has listened to
previously. Registering listening habits, together with context data, yields a system
that after an initial learning phase is able to generate automatic playlists for familiar
environments. While a context-aware system would relieve users from managing
their music collection, it would still be restricted to the music that is already known.
Finding new appealing music is a problem that relates to the increasing supply of
digitally available media. To aid customers in the decision process, many online

3

music suppliers offer recommendation services, the most popular example being
Amazon.com [LSY03]. Recommendation systems group users by their taste and
calculate which items interest one user based on the preferences of other users. This
method of collaboratively sifting out interesting items from the whole collection has
become one of the most popular means of finding unknown, yet appealing items.
The method is particularly suitable for media items like music, since it does not
take into consideration the actual contents of the items.

Recalling the problem of generating playlists for certain situations, we can combine
the above methods into a context-aware recommendation system that is able to
analyse what music other people have listened to in a particular situation. This is
potentially useful in a mobile setting where portable media players are used in vary-
ing contexts and where users typically have limited attention resources for managing
their music. For example, Patten et al. [PKON04] have shown that the reaction
time of car drivers significantly decreases as the cognitive workload caused by using
a mobile phone increases. Playlist management or even playback control is thus
unfeasible if the user is occupied with other important matters. In this scenario, a
context-aware media player could automatically select suitable music even in chang-
ing environments.

The challenges in developing context-aware music recommenders are related to col-
lecting and interpreting the user’s context and finding listening patterns based on
this context. No commercial systems are yet available, and the research prototypes
found in literature either do not incorporate enough context data to make them
really situation-aware [BBFB+03, JRH06, BJBW07], or deal with recommending
music already found on the user’s device [WPVS05, RM06, DEO+07, BC08]. To
our knowledge, there is no documented attempt to create a mobile context-aware
music player with collaborative filtering recommendation techniques.

In this thesis, we present the work done on AndroMedia, a mobile context-aware mu-
sic player prototype with a built-in recommendation service. The context-awareness
is based on data from a handful of sensors, both internal and external, providing a
good base for situation recognition. The recommendation service is based on col-
laborative filtering, giving the user a possibility to explore unknown music. We
present the architecture and functionality of AndroMedia, as well as discuss design
decisions and setbacks in the implementation procedure. The working hypothesis
for this work is that people listen to different types of music in different situations.
Based on this hypothesis, a user wants, for example, to listen to classical music

4

while reading a book at home in the sofa, while the playlist would be composed of
R&B and hip-hop while jogging in the city. We explore the techniques that realises
the scenario mentioned above, namely gathering and interpreting listening habits
with accompanying context information and generating recommendations based on
context information and other users’ listening habits. We also present a survey of
mobile context-aware music recommenders found in research literature, listing their
strengths and weaknesses, and compare them with AndroMedia. User evaluations
of AndroMedia is beyond the scope of this Master’s Thesis.

2 Context-awareness

The fundamental idea of context-aware computing is to provide information and/or
services to the user based on the user’s situation [Dey01]. In order to do that, the
application needs to obtain situational data, process it and make use of it in a way
that benefits the user. In this section, we discuss what type of context data can be
acquired, how it is processed and how applications can benefit from it.

2.1 Data acquisition

An environment, in which a human activity takes place, can be described by a set of
features. Each feature describes a dimension in the environment, such as location,
temperature, humidity or a list of nearby Bluetooth devices [ASST05]. Each feature
has a value that depends on the environment. In a mobile setting, where the user
moves about in a changing environment, the values of the features that describe the
environment also change over time. Capturing the context of an event in time can
thus be seen as taking a snapshot of the current values of the environment’s features
at the time when the event occurred.

This context snapshot can be acquired in two ways: explicitly by having the user
input the current context or implicitly by using some sensing technology [SBG99].
Explicitly entered context data is common in everyday devices such as mobile phones
and PCs. The current time zone, country and other regional settings found in
operating systems are all explicitly input context data. The different profiles in a
mobile phone are also indicators of context, since users change the profile on their
phone according to their environment. Management software of wireless network
cards also often have the concept of different locations, such as "home" or "work",

5

which alter the configuration of the card depending on location. Although humans
can accurately describe their context, explicit context data can generally not be
considered reliable since the user can be forgetful or simply ignore to supply the
application with the right information when the context changes. Also, it is not
feasible to require the user to supply the amount and variety of context data needed
to produce an accurate understanding of the user’s situation.

Capturing the context implicitly using modern technology can provide a rich view
of the user’s environment. Implicit context acquisition is a matter of reading values
from a set of sensors, each of which interprets a certain context dimension. The set
of dimensions included in the context view is determined by the available sensors,
the diversity of which has lately increased. Some sensors are very common and
can be found in almost any handheld device, for example a clock or a battery level
monitor. Other, more sophisticated sensors, such as accelerometers, GPS receivers
and light sensors, have to be connected or manually integrated into the device in
some fashion. In fact, the integration of sophisticated sensors in mobile phones has
become more common lately; for instance, Nokia has developed mobile phones with
built-in GPS receivers, accelerometers, compasses, thermometers and Near Field
Communication (NFC) capabilities. Many modern mobile phones also include an
ambient light sensor for controlling the brightness of the display. Furthermore, the
built-in microphone can be used as a sensor to pick up ambient noise as context
information [KKP+03].

Small, cheap external sensors can be further connected to a device to acquire a more
complete view of the user’s context. A multitude of sensing devices is available, but
only a subset of them provide meaningful data from a context-aware computing
perspective, and these can be lumped together into the following families of sensors
[May04, Sch02]:

• Optical data – properties of light, shapes

• Audible data – properties of audio, background noise, voices

• Motion data – inclination, direction, movements, actions

• Location data – co-ordinates, city, country

• Orientation data – magnetic field strength, absolute or relative direction

• Proximity data – distance, nearby objects

6

• Meteorological data – temperature, air pressure, humidity

• Bio data – heart rate, blood pressure, emotions

• Identity data – fingerprints, facial recognition, DNA

• Other data – radiation, force, touch

The above families of sensor technologies provide a view of the external conditions
and to some extent the state of the user. Another important source of context data is
the device itself, excluding any built-in sensors, as it can provide information about
the interaction frequency, battery level, GSM signal strength and the application
currently executing [May04]. In fact, the device can be seen as a sensor in its own
right.

A typical sensor provides data as a discrete time-series of measurements, where the
sample rate is specific to the sensor. A snapshot of the context, interpreted by
possibly multiple sensors, at any point in time thus results in a sensor data vector

[s1, s2, ..., sl]t ∈ S1 × S2 × ...× Sl (1)

where si is a sensor value in the dimension Si at the time t (for example, the
value 25 for the dimension temperature at time t5). Although the sensors provide
a stream of readings, the application can choose when to store and interpret the
data vector. The sample can be stored automatically on certain intervals to acquire
an even distribution of measurements. Alternatively, the snapshot can be taken in
connection to an event triggered, for example, by the user.

Context data is by nature hierarchical, and can be described with varying granular-
ity, from low level sensor data to aggregated higher level concepts [FW07]. Schmidt
et al. [SBG99] propose a hierarchical model for context data with two top nodes and
six high level categories, as shown in Table 1. Categories are further divided into
features and they into values, which all together constitute four levels of abstraction.
Time is also considered to be an own dimension in this model.

The hierarchical property is an important characteristic, since raw sensor data typ-
ically needs to be processed and abstracted to some extent before the application
can make use of it. The level of abstraction also affects the reliability of implicitly
acquired context data, assuming that the probability of erroneous sensor readings
is low. Since the combination of raw sensor data into a high level concept, such as

7

Human factors

User information Habits, bio-physiological con-
dition, ...

Social environment Proximity, social interaction,
group dynamics, ...

Task information Spontaneity, deliberate tasks,
goals, ...

Physical environment

Physical location Absolute and relative position,
proximity, ...

Infrastructure Available communication re-
sources, task performance, ...

Physical conditions Noise, light, pressure, ...

Table 1: Hierarchical model of context data.

"morning jog", is a result of a series of complex computations, it is only as reliable
as the algorithms that infer the context. The high level context can even depend
on the user’s personal traits, which requires the sensor and/or application to be
calibrated to a certain user to provide accurate context information [Sch02].

2.2 Feature extraction

Feature extraction is the task of identifying meaningful information from raw sensor
data for further inference. When context is gathered continuously, or at a certain
interval, the amount of collected data is typically large and may contain redundan-
cies. For example, a sensor for a contextual dimensions whose value does not change
rapidly, such as air pressure, will give the same reading over many samples. A sensor
can also provide data that can be expanded into several features. For example, a
wireless network card can provide data for features such as a list of access points in
range, the number of access points in range, signal strength and transmission rate
[MRF03].

The input to the feature extraction phase is a sensor data vector St, for some time t,
from the acquisition phase. Each dimension of the captured sensor data is processed
individually, and the method depends on the type of sensor data being processed.
One- or two-dimensional numerical data can be analysed with simple statistical
methods like minimum, maximum, mean and median values or standard deviation,
while other more complex sensor data needs its own specific method of analysis

8

[May04]. For example, an accelerometer normally has a higher sampling rate than
transmission rate, meaning that a packet transmitted at time t (the snapshot of the
dimension) will contain a large amount of actual sensor data. A condensed value for
the acceleration feature is acquired using a feature extraction method, such as the
mean value, on the data. In contrast, the information gathered from a Bluetooth
transceiver consists, for example, of a set of MAC addresses and has to be analysed
in a domain-specific way in order to acquire relevant features. This could be done
by counting distinct MAC addresses.

After extracting meaningful features, the process generates a feature vector

[f1, f2, ..., fm]t ∈ F1, F2, ..., Fm (2)

where fi is a feature sample (e.g., "5") in the feature dimension Fi (e.g., "number
of nearby Bluetooth devices") for the time t defined by the sensor vector St. The
number of dimensions in the resulting feature space is not necessarily equal to the
number of raw data dimensions, since sensor data can be split into more or combined
into fewer feature dimensions than sensor dimensions.

2.3 Context comparison

Since context-awareness is based on identifying situations familiar to the user, context-
aware applications need to be able to compare different context snapshots and de-
termine their similarity. There are at least two approaches to comparing contexts,
and the ones presented here are both based on the feature vectors produced by the
feature extraction process.

If the application requires the context data to consist of numerical data, the feature
values need to be converted into integers or floating point numbers. This is trivial for
features based on numerical sensor data, but if the feature space contains list-based
features or non-numeric features, such as nearby Bluetooth MAC addresses or the
ESSID of wireless networks, the data needs to be converted into numerical values.
This can be done using, for example, some transformation into binary values where
one bit corresponds to a possible value [May04]. However, such a transformation is
unfeasible when the set of possible values grows.

An alternative to the above strategy is to define a distance metric on each feature
dimension [May04]. Formally, the distance between two samples of a feature F is

9

calculated using the similarity between the samples:

d : F × F → [0 : 1] (3)

The distance measure yields a normalised value between 0 and 1.

By defining this operation on each type of feature, the feature space gets the required
interface for acting as input to different comparison algorithms, such as classification
or clustering. For numerical values, the distance operation is trivial, but for complex
features, it has to be defined separately for each feature. For example, the similarity
between two samples of the feature dimension "nearby Bluetooth devices", where a
sample consists of a set of MAC addresses, could be calculated using the Hamming
distance

d(f1, f2) := (f1 \ f2) ∪ (f2 \ f1) (4)

where f1 and f2 are sets of MAC addresses. The Hamming distance essentially
counts the number of differing elements in two sets.

By combining this method of calculating context similarity with the personalisation
techniques described in the next section, we can produce recommendations based
on the user’s situation, as described in Section 3.6.2.

3 Recommending Music

Since the mid 90’s, traditional recommendation systems have been used in com-
mercial applications to recommend books [LSY03], news articles [RIS+94] and web
sites1 to potential customers and users. Although most of the techniques used in
traditional recommendation systems can also be used for recommending music, there
are some specific aspects involved in recommending digital media. In the following
subsections, we will give an introduction to the problems and solutions surrounding
recommendation systems, especially when recommending music to listeners. We will
also explore how context information can be used in co-operation with traditional
recommendation systems to create context-sensitive recommenders.

1http://www.stumbleupon.com

10

3.1 The Problem

With the steady increase in the availability of digital content, an increasing difficulty
in finding the things that actually meet our needs emerges. Modern information
retrieval (IR) systems provide very good means of searching for practically anything
on the web using a few keywords. IR applications, however, are not aware of the
personal preferences and interests of the user, and thus treat all users in the same
manner. A search for "Mozart" would yield the same results, regardless if the user
were a teenager looking for piano notes or a Ph.D. student writing a thesis on
classical 18th century music. The search result for such a broad topic on the Google
search engine returns over 35 million documents2, the ten most highly rated of which
include information about the composer W. A. Mozart, a coffee roaster in Texas,
USA and a piece of music notation software.

A search for a very specific subject could similarly yield a result with mostly ir-
relevant documents due to subject rarity, leading to a similar problem of search-
ing among the search results. Dealing with this information overload is usually a
very time consuming process, which could be alleviated using some additional aids.
For example, the retrieval application could possess some kind of knowledge about
the users’ identities and the kind of information they seek without them having
to instruct the system each time they are looking for additional information on a
previously researched subject. Along the line, the application could even become
proactive and tell users what they are looking for before they know it themselves.

The traditional way of coping with information overload is using our social contacts
[SM95]. People have a tendency to ask their family, friends and colleagues for hints
when having to make a decision between a set of items without sufficient knowledge.
Furthermore, over time we learn to trust certain people for certain subject areas,
as we gain knowledge about their personal expertise and get experiences from their
previous suggestions. Consider the following example:

During a coffee break, Stacy discusses the new Robbie Williams al-
bum with her colleagues. She already owns a few of Robbie’s CDs and
enjoys his music, but isn’t sure about this one. James, formerly unfamil-
iar with Robbie’s music, had already bought the album and liked it very
much. Both Sarah and John, however, had heard a few tunes and were
not too fond of the new CD, although they had liked Robbie’s previous

2http://www.google.fi/search?q=mozart, retrieved 2008-03-31

11

material. Since Sarah knows that James does not share her music taste,
while Sarah and John are Robbie Williams fans just as herself, she trusts
her like-minded friends’ judgement and does not buy the new CD.

This process has a number of shortcomings. First, the diversity of opinions a per-
son gets depends on the number of friends she knows and interacts with. If only
consulting our closest work colleagues or family members, one would not get a rec-
ommendation as exact and personalised as when consulting a larger group of people.
Second, recommendations have in general to be asked for. We have to initiate a di-
alogue or otherwise come in contact with our social network in order to receive
suggestions and learn from their opinions. This can take time and requires active
searching for recommendations.

These shortcomings can be overcome by means of information technology. A num-
ber of different recommendation techniques have been developed to automate the
process of satisfying the user’s information needs. The fundamental idea is to de-
velop an understanding of the user’s needs and look up available items matching
this information. In other words, recommendation systems can be seen as filters
that allow interesting items to pass while sifting out unwanted items.

The first implementations of such filtering systems date back to the early 1990s
[GNOT92, HSRF95, SM95]. At that time, the amount of electronic mail sent and
received had already reached a fairly high level, causing e-mail flooding. With the
rapid growth of the World Wide Web, information overload became an increasing
problem in the 90’s. After nearly two decades of research in the area, two main
approaches make up the status quo of recommendation systems: content-based fil-
tering and collaborative filtering. Additionally, combinations and modifications of
these two have been developed for greater accuracy, efficiency and customisation
[AT05].

Content-based filtering can be seen as an extension of traditional information re-
trieval systems in the sense that it uses a description (automatically derived or
manually annotated) of available items as basis for its recommendations. Together
with the user’s usage history, the system tries to find common features among the
items the user has found interesting in the past and tries to predict how well an
unseen item would match the user’s information need [BHC98, AT05].

Collaborative filtering, on the other hand, is not concerned with the contents of the
items, but is based on the idea that people who have agreed in the past, tend to also

12

agree in the future [RIS+94]. The information about how different users have rated
the same items is used to find people with similar preferences. Recommendable
items are those unseen items that other similar users have given a high rating. A
rating in this context is either an explicit user rating or an implicit rating inferred
from the user’s actions.

When dealing with digital media, such as music and video, some additional difficul-
ties have to be taken into consideration in the recommendation process. Humans can
sense many different aspects of music, for example, tempo, beat, melody, lyrics and
instruments, but it is computationally difficult to compare two tunes in the same
way a human does. Additionally, when recommending music for listening, as op-
posed to buying, the user probably wants a popular item to be recommended more
than once. These challenges can be tackled, although not with human accuracy,
with contemporary recommendation systems.

Although the available recommendation methods might be based on quite different
ideas, they all serve a single purpose: to get the right information to the user with
minimal effort. This implies a series of independent sub-actions. First, we have to
identify which information the user is interested in and find a way to obtain this
information. Next, we need to generate recommendations using this information
with one of the aforementioned techniques. Last, we should continuously update
our knowledge about the user to be constantly able to recommend relevant items,
even when the user’s interests changes over time.

In subsequent sections, we will examine these tasks involved in recommending items
to users, especially focusing on the challenge in recommending music, and explain
how we can benefit from these technologies.

3.2 User Modelling

As noted earlier, recommendation systems aim at getting the right information users
with minimal effort. Minimal effort in this context means that users should not have
to rephrase their interests and information needs to the system each time they use it.
Instead, the application should autonomically learn about the users, what they are
interested in, what they already know, and what information each user would want
to receive. This is achieved by developing a user profile, or user model, internal to the
system and specific for each user. The user model formalises the user’s preferences
and constitutes the basis for recommendations made to the user. In both content-

13

Robbie Katie Corinne Norah
Stacy 5 2 3

Table 2: Example of part of a user model in collaborative filtering

based and collaborative filtering, the user model consists of parameters used by
the recommendation algorithms, for example user-item ratings, demographic data
or similarity measures. In content-based filtering, the user’s model is used to find
items similar in content to those the user has liked before. In collaborative filtering,
the model would be used to find like-minded users and retrieve unseen items that
these users have rated highly. Simply put, content-based filtering does item analysis
and comparison, while collaborative filtering compares users to each other, and both
methods use the model of the user’s preferences as a basis for recommendations.

In its simplest form, the model is either a collection of weighted keywords describing
the user’s topic of interest, or numerical ratings for seen items. In content-based
filtering, the model generally contains a subset of all keywords that describe the
items interesting to the user. The keywords are weighted according to occurrence to
indicate how well the keyword describes the user’s overall interest. Techniques for
calculating user specific keyword vectors include the Rocchio algorithm, Bayesian
classifiers and the Winnow algorithm [AT05]. In collaborative filtering, on the other
hand, the user model consists of a vector of ratings for all items in the collection. If
the user has not rated an item, or if the item is unknown to the user, no rating is
stored for that item.

For example, suppose that Stacy likes Robbie Williams, Norah Jones and Katie
Melua. Her user profile in a content-based filtering system for music might include
keywords like "jazz", "pop", "vocal" and "rock". In a collaborative filtering system
recommending artists, she might have rated Robbie higher than Katie and Norah,
while still being unfamiliar with Corinne Bailey Rae. A subset of her user profile
could then be described by Table 2.

The information used to build the user profile can be obtained explicitly by asking
users to supply information about their preferences to the system, or it can be
collected implicitly by analysing each user’s interactions with the system over time.
The former method could be implemented as a questionnaire that users have to
answer before starting to use the system, or by requiring users to rate a set of
items in order to obtain an initial set of items the user is interested in. While this
approach is more straightforward and instantly yields a model that is ready for

14

use, it requires all users to manually input information into the system and thus is
more obtrusive. Unless there is a clear benefit for the user from supplying personal
preferences and giving continuous explicit feedback, such information would likely
not be provided, making it impossible to build a reliable user model [Nic98]. A
model based exclusively on explicit feedback also has to be revised regularly. The
user model will be outdated if users’ interests change over time, but they fail to
inform the system about the change [GSCM07].

Implicitly collected data, on the other hand, is obtained by observing how the sys-
tem is being used and inferring the user’s interests. This method is completely
unobtrusive and allows the user to immediately start using the application. The
user model is not, however, accurate until the user has interacted with the system
for a certain amount of time. Building an accurate user model from implicit feed-
back is also more difficult since it is not always clear when the feedback is positive
or negative. For example, if a user skips a tune in the current playlist, the tune is
probably disliked, but if the user listens to the tune in its full length there is no way
of knowing if it is a favourite or if it is found only mediocre. Thus, we can only make
qualified guesses whether the implicit feedback is positive, neutral or negative.

Although the feedback from an implicit approach can be considered less valuable
and reliable, it is superior in amount since implicit feedback is collected whether
users explicitly indicate their opinion or not. This suggests a trade-off between the
cost of collecting feedback and the value it produces [Nic98]. To receive the highest
benefit, the two approaches can be combined into a hybrid feedback scheme. For
example, the user could manually supply one keyword upon which the system builds
a crude user model, refining it over time using either explicit or implicit feedback
from the user. Another approach would be to use implicit feedback to reinforce
explicit feedback.

3.3 Content-based Filtering

Content-based filtering originates from the area of information retrieval, where the
focus originally was on matching records to information requests, and to retrieve
the matching records for the user [Sal89]. Although the characteristics of informa-
tion retrieval and content-based filtering seem somewhat similar, there are a few
fundamental differences [BC92], the most important of which is the way they accept
user input. An information retrieval system accepts a textual query written by the
user, while content-filtering system accepts a model of the user’s interest. Since the

15

model is built and reinforced over time, filtering systems also generally yield results
matching a long term interest, while retrieval systems typically do not use search
history to improve their search results.

These key differences characterise typical content-based filtering systems, as they
are designed to help the user find more relevant items by learning the user’s interest
over time. The learnt profile of interests is used as a more accurate substitute for
keywords in the retrieval process, and makes up half of the comparison procedure.
The other half is the collection of recommendable items, whose contents have to
be analysed and formalised to fit the comparison algorithm. The comparison itself
produces a score for each item denoting how well it corresponds to the user’s in-
terest. The items can be displayed to the user in a ranked list, where items at the
top of the list are more likely to be of interest to the user. The user can typically
give feedback to the system on how well it predicted the interesting items by ei-
ther giving positive or negative feedback to single recommended items. Using this
information, the system learns about the user and can refine the profile for more
accurate recommendations in the future.

3.3.1 Content Analysis

The process of formalising an item into a set of keywords is traditionally called
indexing, and originates from the information retrieval area. Next, we outline the
traditional indexing method, which was originally designed for text documents. We
also discuss how this method can be applied on music and investigate some dedicated
content analysis methods for media files.

Intuitively, an arbitrary document in a collection of text documents could be found
by scanning each document for certain keywords and returning the documents that
contain most of these keywords. This method quickly becomes too expensive and
time consuming as the documents and document collection grow in size [SM86].
Instead, filtering and retrieval systems use a document profile to represent the con-
tents of the document. The profile consists of words that accurately discriminate
the document from the rest of the collection. These index terms are generally words
that occur often in the indexed document, but seldom in other documents in the
collection, calculated, for example, with the widely used tf · idf algorithm [Sal89].

Using the tf · idf algorithm to find good index terms for a document, we first have
to remove all stop words, i.e., words that occur frequently in all documents in the

16

collection. Examples of stop words in English include the words "and", "the", "of"
and "to". Next, we calculate the term frequency tfij for the rest of the terms Tj in
every document Di in the collection. The term frequency describes how many times
the term Tj occurs in the document Di and is a candidate for selecting index terms for
a document. However, the fact that a term occurs frequently in a document does not
guarantee that the term discriminates the document from the rest of the collection,
since a term with a high frequency in one document also can occur frequently in
other documents in the collection. Consider, for example, a document in a collection
of medical journals. After analysing the document, words like "fever", "patient"
and "syndrome" got the highest term frequency values. However, since most other
documents in the collection also contain high amounts of these words, a keyword
search using these terms would not rank the analysed document higher compared
to the rest of the collection.

In addition to terms that occur often in a document, we should thus be looking for
terms that accurately identify the document in the whole collection. These are terms
that occur frequently in one document, but are rare in other documents. For this
measure, a common approach is to use the inverse of the document term frequency
dfj, which denotes the number of documents in the collection where term Tj occurs.
The resulting inverted document frequency idfj, calculated as log (N/dfj), where N

is the collection size, is considered a trustworthy measure of the ability of the term
Tj to discriminate the document Di from the rest of the collection of N documents
[Sal89].

Combining these two measures, the term frequency tfij and the inverted document
frequency idfj, we obtain a weight for each term in the document that describes the
word’s suitability as an identifying term for the document. The weight is called the
tf · idf score of a document and is calculated using

wij = tfij · log
N

dfj

. (5)

Finally, we select all terms with a sufficiently high tf · idf weight as the index terms
for the document.

This approach works well for textual documents, but cannot be directly applied on
digital media, such as music. Obtaining a reliable formalised representation of music
files is not an easy task. The tf · idf measure can be used on metadata such as free
text comments, but these are normally rather small if even provided. Song metadata
like author, title, genre, album etc. can be directly used as keywords, if all tunes are

17

properly tagged [PB07]. Some systems also employ a group of experts who listen to
and annotate tunes manually [Pam06]. While this approach results in a reliable tune
description since it is made by humans, it is an expensive and slow process since
it is done manually. Another source for descriptions of music files is the Internet.
Various data about a tune, album or artist can be obtained from online databases,
such as Gracenote3 or MusicBrainz4, using some kind of digital fingerprint of the
audio medium. Textual descriptions of albums or artists can be analysed using the
text analysis method described above. Since on-line databases can be maintained by
an active community of ordinary users, the amount of tunes covered is potentially
much greater than in the case of experts doing the job [Pam06]. On the other hand,
the data obtained from user maintained sources is often not as reliable and diverse
as if a dedicated group of people was doing the annotation.

A fair amount of research has also been done in the computational analysis of the
actual audio signal of the music file [Dow06]. This method is both cheap and fast but
does not produce as flavoured descriptions as when humans annotate music. While
high level features, such as the genre or general mood of a tune, would perhaps
be beneficial in a recommendation context, the best performing analysis algorithms
have an accuracy of only around 65% [Mir07]. Furthermore, the algorithms available
today cannot determine the audio quality, making a garage band tape no different
from a concert hall recording. They can, however, analyse low level characteristics
that can be used to describe certain aspects of the audio file and compare it to
others [Pam06].

3.3.2 Calculating Similarity and Generating Recommendations

In the following section, we are only considering the case where both items in the
collection and the user profile have been formalised into weighted keyword vectors
using the methods described in earlier sections. The core task of a recommendation
system is to help users find those items of the collection that most closely matches
their individual interest. This is accomplished by comparing the similarity between
the user model and all available items, sorting the items according to their similarity
score and returning the sorted collection to the user. An alternative to avoid too big
results is to only return to the user a set of highest ranked items. There is a range of
different comparison algorithms for different purposes, but the perhaps most widely

3http://www.gracenote.com
4http://www.musicbrainz.org

18

used matching technique is the vector space model [AT05].

In the vector space model, each item is seen as a vector in a multi-dimensional vector
space [SM86]. The elements of the vector are the weighted index terms describing
that item. A user model is also considered a vector in the same space, and the
similarity between an item and the model is calculated as the "closeness" of the
vectors in the vector space. Usually, the closeness is calculated using the cosine
similarity measure [AT05, Sal89]:

cos (wd, wu) =
wd · wu

||wd|| · ||wu||
=

∑K
i=1 wi,dwi,u√∑K

i=1 w2
i,d

√∑K
i=1 w2

i,u

, (6)

where K is the total number of index terms in the collection, wd is the item keyword
vector, wu is the user model vector, wi,d is the ith term in the item keyword vector
and wi,u is the ith term in the user model vector.

The cosine similarity is considered a reliable measurement of how well an item
corresponds to an interest of the user. In the text case of text documents, for
example, a user interested in baroque music has probably viewed documents that
assign high weights to keywords related to that topic. The user modelling techniques
then assign to the user’s profile keywords from these documents that have high
weights. Similarly, unseen documents about baroque music will have high weights
for the same keywords, which yields a high similarity value [AT05].

3.3.3 Strengths and Weaknesses

Content-based filtering techniques have some well-known drawbacks [BS97]. Since
both user models and document vectors are based on keywords derived from the
items in the collection, they are restricted to the performance of the extraction
method used to analyse the items. The resulting recommendations are thus only
as accurate as the keywords describing the documents. This is particularly serious
with items whose content cannot be reliably analysed automatically, like music or
video. In the case of documents, contemporary content-analysis algorithms also do
not take visual aspects of the item into consideration, such as layout or occurrence
of images, although these may affect how a human perceives the item. This problem
is often referred to as the limited content analysis problem [AT05].

The second shortcoming is over-specialisation, i.e., that content-based systems can
recommend only items that are similar to the user’s profile. When the user views

19

these items, the corresponding keywords in the user profile are strengthened, re-
sulting in more similar items being recommended to the user. Over time, the user
model will be specialised on a narrow area, not allowing differing documents to be
recommended. This problem is traditionally overcome by infusing some randomness
into the recommending algorithm [BS97].

A third problem is that the system needs some initial understanding of new users
in order to give any kind of recommendations to them. The system can develop a
reliable user profile only after a user has interacted with the system for some period
of time. This new user problem is usually solved by letting the user select some
initial set of appreciated items before starting to use the system. If the initial user
profile contains demographic data like age or location, this could also be used to
select some initial items that would likely interest the user. Another alternative is
to initially recommend some items that are considered popular among the rest of
the users [SFHS07].

On the other hand, since content-based filtering uses item contents as basis for
recommendations, even newly added and less popular items can be recommended.
This can result in good recommendations for a user who is interested in a very
specialised niche. As we discuss next, this is not the case with collaborative filtering,
where recommendations are dependent on other users’ ratings.

3.4 Collaborative Filtering

As opposed to content-based methods, which only take into consideration one user
and interests of the user, collaborative filtering is based on the item ratings by users
in a collaborative community. The idea is that users whose ratings correlate have
similar tastes and are likely to share opinions about unseen items. One benefit of
collaborative filtering is that the contents of the items are not taken into consid-
eration, which means that the recommendation system will perform equally well
regardless of item type.

The basis for collaborative filtering systems is a user model that consists of the
user’s ratings for items in the collection. As noted in Section 3.2, these ratings
can be obtained either explicitly or implicitly or by a combination of these. A set
of different user models can be visualised in a user-item matrix, see Table 3. The
matrix consists of the users in the system and their individual ratings for the items
in the collection. A missing value means that the user has not seen or rated the

20

Elton John Shakira Aretha Franklin Franz Schubert
Sarah 5 4 1
John 4 2 5
Stacy 1 3 2 5
James 2 1 4 5

Table 3: A user-item matrix. In our example, the items correspond to artists.

item.

3.4.1 Collaborative Filtering Algorithms

The available collaborative filtering algorithms can be categorised into memory-
based and model-based algorithms [BHK98]. Memory-based algorithms require that
the whole collection of users’ ratings is brought into memory and scanned every time
a score for a new item is calculated. This class of algorithms is user-centric in that
they try to find other similar users, neighbours, to the active user. The prediction
for an unseen item is calculated using the neighbours’ ratings for that item. For
example, given an active user u and a set of neighbours v ∈ N to that user, we can
predict the rating the user u would give the unseen item i as

pred(u, i) = r̄u +

∑
v∈N

sim(u, v) · (rvi − r̄v)∑
v∈N

sim(u, v)
, (7)

where rvi denotes the rating by neighbour v on item i, and r̄u and r̄v are the mean
values of all ratings given by the user u and the neighbour v, respectively . Equation
7 is an extension of a naive average-rating algorithm that only calculates the mean
rating for item i by all neighbours v ∈ N . This extended algorithm takes into
account that some neighbours are more similar to the user than others by including
a normalised similarity weight sim(u, v), measuring how similar the user u is to
the neighbour v and weighing the impact of that neighbour’s ratings accordingly.
Furthermore, it takes into consideration that some neighbours only use the low or
high end of the scale in their ratings. This is corrected by adjusting each neighbour’s
ratings according to that neighbour’s mean rating (rvi− r̄v in Equation 7) [SFHS07].

The similarity calculation sim(u, v) between the user and a neighbour is generally
based on co-rated items, which both the user and a neighbour have rated [AT05,
SFHS07]. A popular approach for calculating similarity between users is the Pearson

21

correlation coefficient:

sim(u, v) =

∑
i∈CRu,v

(rui − r̄u)(rvi − r̄v)

√ ∑
i∈CRu,v

(rui − r̄u)2
√ ∑

i∈CRu,v

(rvi − r̄v)2
, (8)

where CRu,v denotes the set of co-rated items between user u and neighbour v

[SM95]. The Pearson correlation coefficient yields a value between -1.0 and 1.0.
Other similarity measures include the cosine similarity [BHK98] used, for example,
in content-based filtering to calculate similarity between users’ interests and items
(see Equation 6 in Section 3.3.2).

While quite intuitive and straightforward, the space and time requirements of the
memory-based algorithms are linearly proportional to the number of ratings. This
makes the approach unusable when the size of the collection grows.

Model-based algorithms, on the other hand, use the data set to create an underlying
model that is used to predict ratings. They have a more probabilistic approach as
they try to calculate the probability that the user would rate an item a certain way
given their previous ratings. Assuming that ratings have an integer value from 0 to
m, the expected rating r for item i by user u is

E(rui) =
m∑

q=0

q · Pr (rui = q|ruj, j ∈ Iu) (9)

where the probability expression is the probability that user u gives a rating with
value q to item i given the user’s previous voting for items j in the set Iu of items
that the user u has rated [BHK98].

The probability can be calculated in many ways, of which a Bayesian network ap-
proach is among the most popular [SFHS07]. In this model, the idea is to develop
a probability model denoting how item ratings depend on each other, and use this
model as a basis for calculating the probability for a certain rating of a non-rated
item. This is done using the collection of items and the user’s previous ratings of
those items, including non-rated items, to create a Bayesian network where each
node corresponds to an item in the collection. The state of a node corresponds to
the different rating values the item can receive, and an additional state for a missing
rating. The parents of a node are then the best items to use for predicting the item’s
rating [CHM97].

22

3.4.2 Strengths and Weaknesses

Collaborative filtering overcomes some of the problems with content-based filtering.
As noted, recommendations are made solely on other users’ opinions, which means
that collaborative recommenders can recommend any type of item regardless of
content type. This is perhaps the most important benefit of collaborative filtering
systems when recommending music.

However, also the collaborative filtering approach to recommending items has its
shortcomings. The new user problem occurring in content-based systems is also
present in this approach, see Section 3.3.3. Sparsity is another problem related to
the relative amount of users, items and ratings. If the number of items is much
greater than the number of users providing ratings, many items will have quite few
ratings. This results in low visibility for those items, although the ratings were high.
In general, this also means that only popular items are recommended, which can
lead to users with a narrow field of interest not getting accurate recommendations
for that area [AT05].

There is also a problem with the visibility of new items, called the cold-start problem,
something that content-based filtering does not have. Since recommendations are
based on what other people have thought of an item, that item has to have some
ratings in order to be recommended. Items recently introduced to the system will
naturally not have any ratings, and can thus not be recommended. This problem can
also be overcome by introducing an element of randomness to the recommendations,
or by combining content-based and collaborative methods [SPUP02].

3.5 Hybrid Recommenders

Although content-based filtering and collaborative filtering are regarded the most
used approaches for recommending items, there are a handful of other techniques.
Demographic filtering is based on users’ personal attributes, such as age and gender,
and generates recommendations based on demographical classes. Knowledge-based
recommenders have knowledge about how a particular item meets a particular user
need and uses that knowledge to reason about needs and possible recommendations.
Last, utility-based recommenders suggest items based on calculations on how useful
an item would be for a particular user [Bur02].

Potentially, all recommendation techniques can be combined in different ways since
many of the issues with either approach are overcome by characteristics in the other.

23

The combination of different recommendation approaches into hybrid systems uses
qualities from the combined methods to boost performance and minimise the draw-
backs of each system alone [BS97]. The different recommendation methods can be
combined on different levels: from using the output of one technique as input to an-
other to combining properties from respective sources to form a combined algorithm.
Other methods of combining include mixing different techniques or using one or the
other depending on the situation. The most common recommendation systems to
be combined are collaborative filtering and content-based filtering, and the reason
for combining the two methods is to overcome the new user and cold-start problems
[Bur02].

Although many of the possible combinations have not been explored, evaluations of
existing hybrid systems combining collaborative filtering and content-based filtering
indicate that hybrid systems outperform the two approaches in recommendation
accuracy compared to when they are used alone [YGK+06].

3.6 Context-based Filtering

When considering mobile applications, an interesting aspect of the recommendation
problem is in what environment the items are used and recommendations are made.
Users may behave differently and have different information needs in different situ-
ations, but traditional recommendation systems do not take this into consideration.
Taking into account contextual information like time, location or company, the user
may receive recommendations with greater accuracy than she otherwise would.

For example, consider a mobile music player that realises that it is Thursday morning
and the device is being used in a car driving towards a location tagged as "work".
By logging previous usage events, it also knows that the user normally listens to
classical music while driving to work. If the system furthermore had access to other
users’ preferences, the recommendation mechanism could suggest tunes that other
people with the same musical taste had liked in the same situation. If the device
could connect to a music repository and download tunes or previews of tunes, it
could even generate a playlist of formerly unknown music that would fit the user’s
taste in this particular situation. This scenario could be achieved by incorporating
contextual data into conventional recommendation systems.

Recalling the hierarchy of context data by Schmidt presented in Section 2.1, which
consisted of two top nodes, human factors and physical environment, we note that

24

the former category, consisting of the user’s habits, social contacts etc., is precisely
the information that a traditional collaborative filtering system bases its recommen-
dations on. By adding the other branch of the hierarchy, consisting of location,
temperature, time etc., we obtain a context-aware collaborative filtering system
[Che05]. This observation reinforces the motivation to exploring context-aware rec-
ommendation systems with collaborative filtering as a foundation.

Incorporating context data into a collaborative filtering system is a matter of ex-
tending the traditional user-item ratings with information about the environment
in which the rating was given. In other words, the system needs to take a snapshot
of the current context when a rating is made [Che05]. This might pose a problem
for systems where items can be rated after the user has experienced it, for example
when rating a movie after coming home from the cinema. To avoid this, the recom-
mendation system can rely on implicit user feedback, registering and interpreting
the user’s interactions together with the current context while the user is enjoying
the experience. For example, a mobile music recommender could give a positive
rating to a tune when the user has listened to it for more than half of its duration,
registering the current context at the same time.

Next we will explore two different approaches to generating recommendations, given
that the system contains user-item ratings and associated context data.

3.6.1 Dimension Reduction

A traditional recommendation system can be seen as using a two-dimensional space
of values as base for its recommendations. In the case of collaborative filtering,
this space would consist of user-item ratings. By adding contextual information to
recommendation systems, the two-dimensional space is extended with further di-
mensions, such as time or location, into a multi-dimensional recommendation space.
The same multi-dimensional model is used for example in data warehousing and
Online Analytical Processing (OLAP) applications [ASST05].

Using this model, the multidimensional recommendation problem can be trans-
formed into a two-dimensional user-item recommendation problem by reducing the
dimensions. Consider a traditional recommendations system that, for example, rec-
ommends tunes to users using one of the existing two-dimensional approaches dis-
cussed earlier, in this example collaborative filtering. Suppose that we add a dimen-
sion time to create a time-sensitive recommendation space with three dimensions:

25

users, items and time. Depending on the distributions of user-item ratings in the
time dimension, the third dimension can potentially be used to generate context-
based recommendations. We now have two possibilities:

1. If there is no visible trend in rating values in different segments of the time
dimension, we cannot infer that some tunes are more popular during certain
periods of time and thus cannot recommend any tunes based on the time
dimension.

2. If there is a clear correlation between popularity of certain tunes during certain
periods of time, we can use the time dimension to calculate recommendations
using the time dimension.

To exemplify the above observations, consider the following scenario. Sarah is us-
ing a music recommendation application and has rated tunes at different times of
the day and in the locations "home" and "work". If, when analysing the data,
it becomes clear that Sarah’s ratings are similar in both "home" and "work" con-
texts, the location dimension cannot be used as a discriminator to distinguish what
type of music he likes better in either location. On the other hand, she has clearly
rated different types of music during mornings compared to evenings, regardless of
the weekday. Using this information, the time dimension can be used to generate
recommendations based on time.

As we can see, it is not always clear whether a contextual dimension can be used
as basis for recommendations until analysing the ratings in the underlying base
dimensions, in this case users and tunes. The useful dimensions can be determined
by using feature selection methods, as noted in Section 2.2.

Suppose that our third dimension is usable for recommendations. We can then
reduce the three dimensions into the two base dimensions by only considering the
user-item ratings where the value of the third dimension is fixed. For example, we
want to recommend tunes to Sarah to listen to on Saturday. In that case, we only
consider the user-item ratings from the three-dimensional rating space where the
time dimension has the value "weekend". Using those ratings with a traditional
two-dimensional recommendation algorithm, the result will be predicted ratings for
tunes suitable for Sarah on Saturday.

Another property inherited from the OLAP model is the support for aggregation
hierarchies for different dimensions. As noted in section 2.1, context data is typically

26

hierarchical, depending on the level of aggregation of context data. For example,
a location context could consist of aggregation levels co-ordinate, street, city and
country. Using this hierarchical structure of the context data together with OLAP
techniques for selecting suitable aggregation levels, we can choose the granularity
of available context data that produces the most accurate recommendations. This
results in an enhanced multi-dimensional recommendation model consisting of each
dimension’s attribute profile, the multi-dimensional cube of ratings and an aggrega-
tion hierarchy associated with each dimension.

Although the multi-dimensional model successfully generates context-dependent rec-
ommendations by reducing the total amount of ratings to only those given in the
relevant context, the fact that it potentially discards most of the given ratings will
require a larger collection of ratings than in a traditional recommendation system.
Furthermore, the ratings will have to be evenly distributed over all context dimen-
sions in order to generate context-dependent recommendations. Evaluations of the
multi-dimensional approach [ASST05] show that it can give more accurate predic-
tions in cases where context matters. However, since in any situation some context
dimensions can be more significant than others, the selection of relevant dimensions
to include in the dimension reduction is crucial for this method’s accuracy.

3.6.2 Context Weighting

Instead of reducing the ratings to only the set given in the relevant context, the
context information can be used as a hint for which ratings the recommendation
algorithm should give more attention to. Chen [Che05] explores a possibility to use
context similarity measures as weights for ratings in the two-dimensional recommen-
dation model. In this model, the phases of the traditional recommendation process,
from building a user profile to calculating similarity and generating recommenda-
tions, are extended to incorporate context information.

Let a context snapshot be a tuple F = (f1, f2, ..., fm) where ft represents some
value, e.g., "Paris" for the context feature "Location", denoted Ft. In order to
determine which contexts are similar to each other we need some kind of quantifiable
similarity measure for each context feature. This can be achieved by creating a
customised comparison method for each context feature, which takes two context
values, possibly from different aggregation levels, and returns a numerical similarity
value. Denote this similarity measure simt(f, g), where Ft is the feature, and f and
g are the comparable values (f, g ∈ Ft).

27

If calculating the similarity is not feasible, a measure for context relevance can be
obtained by taking the fundamental idea from collaborative filtering, namely that
users whose ratings correlate over different items are related, and applying it to
the concept of context similarity. Specifically, we can use the Pearson similarity
measure, see Equation 8 in Section 3.4, to calculate the correlation between two
contexts with respect to their user-item ratings by considering the item ratings from
all users in the specific contexts.

Having obtained a measure for context similarity or relevance, we can weight the
user-item ratings with either one or both of these values. This weight can then
be used in the recommendation prediction process for determining how relevant a
rating in one context is to a rating in the current context.

Now, let

Ruif = k
m∑

t=1

∑
g∈Ft

ruig · simt(f, g) (10)

be the weighted ratings by the active user u for item i in the current context f ,
where context similarity have been used for weights. Here k is a normalising factor,
such that the absolute values of the weights sum to unity, and ruig denotes the rating
by the user u for the item i in the context g. Note that the sums are nested, the
outer iterating over context features, like time or location, and the inner over values
in each feature, for example, Paris and Helsinki, for the contexts in which the user
has rated item i.

We can now use the ratings Ruif in place of the weighted user-item ratings sim(u, v)

in the traditional collaborative filtering algorithm presented in Equation 7 to gener-
ate context-dependent recommendations. This is the method of choice for creating
context-aware recommendations in the roadmap for AndroMedia.

4 Survey of Context-aware Mobile Music Recom-

menders

In the previous sections, we got familiar with the concepts of context-awareness in
mobile systems and derived a context-sensitive recommendation method. In this
section, we will explore some of the context-aware mobile music recommender sys-
tems found in the literature. Note that although there are many commercial music
recommendation systems available, we only consider music recommenders for a mo-

28

bile setting that make use of some form of context information. The systems are
divided into two groups: those that only sense nearby devices to communicate with,
and systems that incorporate more sophisticated context data. A summary with
technical details of these systems as well as AndroMedia is presented in Table 4 at
the end of Section 5.

4.1 Proximity Recommenders

This class of mobile recommendation systems are based on sensing other nearby
devices running the same system and communicating with them. Recommendations
are based on exchanging tunes or playlists between devices and can comprise two or
more devices simultaneously.

4.1.1 BluetunA

BluetunA is a collaborative media application for mobile phones [BJBW07]. As the
successor of tunA [BMA06], which is based on Wi-Fi connectivity and operates on
a PDA, BluetunA shares most of the features with its predecessor. However, unlike
tunA, BluetunA runs on mobile phones for a couple of reasons. First, mobile phones
are more common and have become powerful enough to run more advanced software.
Second, since many mobile phones now support playback of MP3 files, BluetunA
developers believe that users are more inclined to listen to music on their mobile
phones than carrying around a separate media device. This change, together with
the fact that Bluetooth is a more common feature than Wi-Fi in mainstream mobile
phones, has led to a change in means of communication between nearby devices
from Wi-Fi to Bluetooth. Additionally, TunA was designed to share music between
users, whereas BluetunA only send metadata from one device to another.

BluetunA allows users to share a list of their favourite tunes with other nearby users.
BluetunA either generates the list of favourites using the tunes that are currently on
the device, or connects to the Last.fm5 service on the Internet and uses the user’s
personal profile to generate the list. The former method yields a list of favourites
that describes the user’s musical preferences at a shorter time span since the music
on the device normally changes over time as the user seeks musical variety. The
list derived from the user’s Last.fm profile describes more closely the user’s general
music taste, as the information is gathered over a much longer period of time. By

5Last.fm tracks user’s listening habits and calculates recommendations based on user similarity.

29

publishing either one of these lists, the user can choose whether to inform other
users about the current listening habit or a general music taste. The connection
to the Last.fm service also allows the users to receive recommendations. These
recommendations are not, however, based on physically nearby users, but on the
user’s listening habits compared to other Last.fm users.

By utilising the Bluetooth connectivity of mobile phones, BluetunA lets its users
interact with each other by exchanging playlist information or instant messages
when in close proximity. BluetunA includes a search function that can be used to
search for other BluetunA users nearby. The user can also let BluetunA search
for nearby users with similar taste in music using a set of keywords describing the
type of music sought for. The search can either be performed automatically on
regular intervals or manually at any particular time. Upon displaying the found
nearby users, BluetunA distinguishes between friends, total strangers and familiar
strangers. Familiar strangers are people whom the user does not know but whose
paths the user has crossed some times before. The algorithm used to find matching
users calculates a weighted sum of the normalised matching between the locally
input search terms and the metadata tags of the other user’s MP3 files as well as
between both users’ favourite artists.

The developers recognise the difficulty to develop mobile applications for different
mobile phones, and as such, the prototype has only been tested on two different
mobile phone models.

The motivation behind the development of BluetunA as a music taste sharing ap-
plication is that people are genuinely interested in strangers’ musical preferences.
The developers recognises an increase in Internet sites that support sharing infor-
mation about personal interests, such as Del.icio.us, MySpace, Last.fm and Flickr,
and believes that this interest in sharing personal information and viewing other
peoples’ preferences also transfers to the mobile short-range setting. However, the
fundamental difference between these systems is the number of users a user is able to
interact with. On an Internet site with potentially millions of users, the diversity of
interests and the possibility to find similar users is much greater than when viewing
the musical preferences of a handful of users that happen to be in proximity. Hence,
viewing nearby peoples’ tastes in music seems to merely satisfy curiosity. BluetunA’s
utilisation of the Last.fm recommendation service seems a more lucrative approach
towards receiving new appealing music.

30

4.1.2 SoundPryer

The developers of SoundPryer [Öst04] aim at enhancing the music listening experi-
ence while driving a car. The idea of SoundPryer is to add value to the numerous
traffic encounters by letting the user listen in on what music the encountering drivers
are listening to.

Essentially, SoundPryer is a shared car stereo that operates in one of three modes:
local play, remote play or automatic. In local play, the device has the same func-
tionality as a normal music player, except that it also broadcasts everything that is
being played. Devices in remote play mode can tune in to the stream being broad-
casted by a device in local play mode. In automatic mode the device plays locally
until a broadcasting device is discovered and then switches to remote play.

SoundPryer runs on Wi-Fi enabled PDAs and uses mobile ad-hoc networking tech-
nology to form a self-organized decentralised network of devices. Nodes can freely
form small networks and enter or exit the networks as devices enter their proximity.
As traffic encounters are generally short-lived, they set high requirements on the
network protocol used for communication between devices. The time to discover
new nodes in the network is generally very limited and SoundPryer must further
ensure that all peers in the network are aware of each other.

Since the device is used in situations where the user is busy, the interface must be
easy to use in order not to endanger the driver. The PDA is mounted to the dash-
board to give the driver easy access to the interface. The actual interface is simplistic
with large buttons allowing the driver to use fingers instead of a stylus to operate
the device. The interface design also allows the user to get all information from the
screen with just a quick glance. The interface has two different looks depending on
the mode of operation. The local play interface consists of large buttons to control
playback and an area for displaying information about the currently playing tune.
In remote play mode the interface only consists of a simplified visual representation
of the vehicle broadcasting the stream including vehicle type and colour. This helps
the user identify the broadcasting vehicle in a situation where the user has several
other vehicles around him. No information about what music is being played is
conveyed.

The SoundPryer concepts seems somewhat similar to using Apple’s iPod in co-
operation with the third party accessory iTrip6. With iTrip, an iPod can broadcast

6http://www.griffintechnology.com/products/itrip/

31

music over the FM band instead of transmitting it to the user’s headphones. The
broadcasted music can be tuned in using any FM radio, for example, the car radio. If
other drivers comes in range of the transmitted FM radio signal, they can also tune
in on the broadcasting frequency. However, with iTrip, there is no way of knowing
if there is a broadcasting device nearby, unless scanning the whole FM frequency
range, in which case the iTrip broadcast would appear as any normal radio station.
SoundPryer, on the other hand, tunes in to broadcasted music automatically. The
SoundPryer concept appears to be most useful in city driving where the distance
between cars are small and two cars can stay close to each other for a fair amount
of time.

Even though SoundPryer is designed for use while driving a car, the interface design,
with large buttons that can be interacted with using fingers, is suitable for any
mobile setting where the user can only pay limited attention to the device, and the
device lacks tactile feedback. In AndroMedia, we have taken the same approach,
making user interface elements, with which the user interact often, large enough to
use without a PDA stylus.

4.1.3 Bubbles

Bubbles is a wireless peer-to-peer music sharing application for mobile devices
[BBFB+03]. The development of Bubbles has been guided by an ethnographic study
suggesting that people’s goals are continuously redefined and re-evaluated to accom-
modate unforeseen events and surprising actions. In other words, people are willing
to change their daily routines based on events in their surroundings, adapting to the
current context and seize profitable opportunities. This type of opportunism and
spontaneity are key elements in the design of Bubbles

Each Bubbles device is thought of as being surrounded by a sphere whose radius
depends on the range of the wireless network card of the device. As devices closely
pass each other, ad hoc wireless networks are continuously formed and dissolved in
an unpredictable manner. When two or more peers form an ad hoc network in the
Bubbles concept, their corresponding bubbles are seen as overlapping, and the peers
can communicate with each other. This spontaneity, which is created as devices
suddenly are in communication range, is one of the key concepts in the design of
the Bubbles prototype.

The other key concept, opportunism, is implemented by letting the user act upon

32

the information conveyed by the other peers. Since Bubbles is a media sharing
application, the information transferred between devices is mainly related to music
and pictures, but some information about the user, such as an avatar, can be made
available for other users. When two bubbles overlap, the users can act upon the
shared media information according to their own interest or current situation.

A prototype of Bubbles has been implemented on a Wi-Fi enabled PDA. The pro-
totype illustrates the concept of information bubbles as nearby circles containing an
icon representing the user of the device. The prototype also includes a context-aware
toolbar and a ticker displaying sample items from the union of all remote playlists in
the user’s proximity. This ticker serves as a springboard for opportunistic behaviour
as the user is presented a random sample independent of remote user information.
By clicking on an item in the ticker, the user can choose to either stream the tune
directly from the remote device or download it.

By clicking on one of the bubbles denoting another nearby user, a view containing
additional information about the user, such as an avatar with accompanying greet-
ing, is revealed. From this screen the user can initiate a chat with the other user
and enable a third view displaying the whole list of available tunes on the remote
device. Through the playlist view the user can stream or download single MP3 files
or download the entire playlist to the local device.

The developers identify some potential problems with the prototype. There is a
risk of exposing the users to an information overload, especially when they move
about in crowds. When a large number of devices are nearby, they all form a
common ad hoc network which potentially has huge number of media items. These
kind of problems can be solved by creating user profiles, to which a filter can be
applied to sort out less interesting items. However, filtering works against the idea
of spontaneous and opportunistic media sharing. Instead of performing user profile
based filtering, the developers of the Bubbles concept suggest an extension to the
concept that would, according to appropriate heuristics, randomly and continuously
select media items available on remote devices. This approach would present a
stream of media items only visible for a short time and would thus also support the
idea of user spontaneity and opportunism by requiring the user to act quickly upon
the currently visible items.

This requirement, however, reveals a contradiction in the Bubbles concept. Sponta-
neous and opportunistic behaviour requires a certain degree of attention, something
that the mobile user not necessarily is able to give the system as she is occupied with

33

other things. This limitation has currently no solution in the developed prototype
application. Another problem with the Bubbles prototype are the legal implications
of sharing music between devices. If users have copyrighted material on their de-
vices, Bubbles would support piracy and thus would not be viable as a commercial
application.

4.1.4 Push!Music

Push!Music [JRH06] builds on the idea that music could independently move from
device to device instead of requiring users to actively send or download music. The
developers introduce the concepts of media agents and media ecologies [HJH05]. For
each media item on the device there exists a corresponding metadata file. The item
and the metadata file associated with it form a media agent. Since playlists often
contain media items that correlate in terms of, e.g., genre and are appreciated by
the user as a collection, the media agents can learn the type of surrounding they are
appreciated in. The developers of Push!Music calls this media environment a media
ecology.

The media agents collaboratively form a model of the users musical preferences. By
using the model as a basis for collaborative filtering, the agents can intelligently
insert themselves into local playlists if they discover a playlist as a suitable media
ecology. Network connectivity also enables the media agents to copy or move them-
selves to nearby devices. This makes the media items into intelligent agents that
observe and act upon their environment, moving or copying themselves between
playlists and devices. They can even delete themselves from the device if disk space
is needed for more suitable agents. Although media agents move autonomously
between devices, Push!Music still allows the user to deliberately push, i.e., send a
media item to another user nearby.

The media ecology concept is interesting since it is based on both the media agent’s
context and the user’s proximity information. Another interesting aspect is that
media files move themselves between devices. This could potentially create a distri-
bution chaos, where files disappear from a user’s device and new files appear, and if
not restricted by some user preferences, this kind of unpredictable behaviour is not
especially user friendly. The manual push feature also raises questions like whether
a media agent deletes itself immediately if pushed into an unsuitable media ecology.
Furthermore, can a device be conquered if a large enough media ecology is pushed
onto it, wiping out the original inhabitants? These questions do not seem to have

34

any answers in the Push!Music prototype.

4.1.5 Summary of Proximity Recommenders

BluetunA, SoundPryer, Bubbles and Push!Music all share the same philosophy: to
use proximity information to interact with other nearby users. All systems run on
handheld devices like PDAs and mobile phones and use either Wi-Fi or Bluetooth
to communicate with devices in close proximity. Although most of the applications
also provide services like instant messaging, image transfers and public user profiles,
their main focus is to provide means for the users to communicate their musical
preferences to other users nearby. This is done by either sending a list of tunes,
streaming music or sending the actual media file to another device. If the media
file is transferred to a nearby device, the application should include some means for
copyright management. The developers of Push!Music suggest a superdistribution
approach [MK90], where media items can be freely distributed but only used for a
limited period of time unless paid for.

In AndroMedia, nearby devices are not communicated with, but only used as a di-
mension in the user’s context. The information about nearby Bluetooth devices can
be used to infer the user’s company, which can have significance when recommend-
ing music based on the user’s context. The information about other user’s musical
preferences is instead stored centrally and is indirectly available to all users through
the recommendation mechanism.

4.2 Advanced Context Recommenders

Recently, new types of systems that take into consideration other kinds of context
than proximity have emerged. When enhancing the above type of systems with
sensor information, we get applications that are able to act upon changes in the
physical environment of the user.

4.2.1 IM4Sports

IM4Sports [WPVS05] is a portable adaptive music player for use during sport ex-
ercises, mainly running. It attempts to motivate the runners as they often prefer
to stay in pace with music while exercising. IM4Sports aids users in their exercise
goals by either letting the music tempo follow the user’s stride tempo or by inspiring

35

the user to keep in pace with the music. IM4Sports provides a playlist suitable for
the exercise at hand, depending on the musical preferences of the user and other
constraints.

The whole system comprises a PC, a portable music player, a heart rate waistband
sensor and a pedometer. The PC contains a music library, a subset of which is
used on the portable player during exercise. IM4Sports requires an initial set up
process during which the user has to tag the whole music library with metadata in
order for the system to function optimally. The metadata that is needed includes
id, artist, genre, duration, file size and beats per minute (BMP). Also the user has
to set up a personal profile which consists of the user’s physical attributes such as
name, gender, age, weight, resting heart rate, and peak heart rate.

The usage cycle is a three step process including preparation, exercise and feedback.
The PC is used before and after the actual exercise, and the wirelessly connected
pedometer and heart rate sensors are used with the portable player during the exer-
cise. During the preparation, the user selects a training programme and downloads
a suitable set of music to the portable music player. Since different training pro-
grammes have different characteristics in terms of tempo, duration and variation,
also the music used during the exercise has to be customised. A training programme
consists of different sub-programmes, such as warm-up, stretch, run, recovery and
cool-down. The user can define the sub-programmes and their properties, for exam-
ple, duration and target heart rate. When the user selects a training programme,
IM4Sports uses the properties of the programme to select a suitable set of songs for
the portable player.

IM4Sports generates a suitable playlist for the chosen exercise using a set of con-
straints. Besides the user’s musical preferences, the constraints consist of range,
exclude, counting, summation, and all-different. The range constraint ensures that
the tempo of the tunes chosen for a certain exercise is in the correct range according
to the exercise. If the user dislikes a tune that is being played during the exercise,
she can apply an exclude constraint which will prevent the tune from being played
again during the particular exercise. There is also a possibility to express the op-
posite opinion about a tune by applying a counting constraint which will restrict
and force the number of different genres and/or artists in the generated playlist.
The summation constraint guarantees that the duration of the generated playlist is
long enough to cover the whole exercise. It also ensures that the total file size of
the music items in the playlist does not exceed the amount of available space on

36

the portable device. Lastly, the all-different constraint ensures that all tunes in the
playlist are different and that one tune will not be played twice during an exercise.

The process of generating a suitable playlist is merely a task of selecting tunes
that satisfy all constraints. To solve this combinatorial problem, IM4Sports uses
approximative local search, which translates the constraints into penalty functions.
A penalty is set when a constraint is not met, and the total penalty for a media
item is the weighted combination of all penalties. Weights indicate the severity of
violating the constraint. To find a suitable playlist that minimises the total penalty,
the local search considers the whole set and iteratively adds and/or removes an item
from the set until an acceptable set has been found.

During the actual exercise, the user’s heart rate and stride frequency are conveyed
to the player using a waist strap and a pedometer. The system uses a five point
average value for both heart rate and stride frequency and either guides or supports
the user in the exercise in accordance with the training programme.

Besides this linear play, IM4Sports also comes with some advanced playback modes.
In pace-fixing mode, the player keeps a constant tempo which encourages the user
to stay in pace with the music. Since the tempo generally differs between tunes, a
time stretching method can be used to adjust the tempo of a tune by shortening
and lengthening the tune without a change in pitch. This can be done to a degree
of -15% to +25% without remarkable distortion. Music items whose tempo most
closely matches the required pace are preferred when the player chooses the next
tune.

In pace-matching mode, the user dictates the tempo while the player adapts the
music to follow it. When the user speeds up, the tempo follows and when the user
slows down, so does the music. This mode also uses the time stretching method
to adapt the tempo of the music to the stride frequency of the user. If the music
item cannot be stretched to the required tempo within the acceptable margins, the
system chooses a new tune whose tempo more closely matches the needed tempo.
The transition between the tunes are made seamless by adjusting the tempo of the
original tune to its limit, then switching tune and playing the new tune starting at
the same tempo. The new tune will then speed up or slow down to the required
tempo.

In pace-influencing mode the tempo of the music changes to keep the users heart
rate within a certain range. This is done in a four-step procedure where first the
tempo of the music is matched to the user’s stride frequency to ensure that the user

37

follows the tempo. By comparing the user’s heart rate to the current tempo, the
system can calculate the required tempo and stride frequency for the target heart
rate, as defined by the training programme, and successively adjusts the tempo to
match these values. This process continues throughout the training programme.

When the exercise is over, the user can download the collected data about the
exercise session from the portable device to a PC for visual inspection and system
learning. The user can inspect the logged heart rate to evaluate the success of the
training session. The system uses the stride frequency data from several exercise
sessions to determine the selection of optimal tunes for the exercise.

IM4Sports is based on the idea that music can have a positive effect on training
results, as presented in the Introduction. By adjusting the tempo of the music,
IM4Sports can either spur the user to keep a certain pace, or follow the pace de-
termined by the user. As opposed to AndroMedia, the recommendation mechanism
of IM4Sports is based on predefined activity. The user needs to select a training
program prior to the actual exercise and download a suitable set of music to the
portable player. The context data used in the music recommendation process is thus
explicitly input by the user. The context data implicitly collected during the exer-
cise is used partly for manipulating the played music according to the chosen playing
mode during exercise and partly for system learning after the exercise. In contrast,
AndroMedia uses context data in real time as part of the actual recommendation
process.

One of the crucial pieces of metadata in IM4Sports is the beats per minute value,
since it is needed to make the transition between tunes seamless. If this piece of
information is not included in the file, which is usually the case, the user needs to
input the value manually for each tune. Unless a third party application can be used
to automate the tagging, this can be quite a laborious process that might scare off
the user. In AndroMedia, we have minimised the effort required by the user to start
using the system. Except from the often initially occurring metadata artist and title,
no tagging is needed. The user also does not need to use a desktop computer for
anything else than transferring the tunes to the device, a task that every portable
player requires.

38

4.2.2 LifeTrak

Lifetrak is a context sensitive music engine [RM06] that uses sensor data combined
with user preferences to produce a customised playlist for a certain situation. The
hypothesis behind the development of Lifetrak is that the user’s environment affects
what kind of music she wants to listen to.

The context data is gathered on even and configurable intervals. It is represented by
a set of tags, each denoting a pre-defined value of a certain dimension of the context
which initially are assigned a weight of 0. The raw sensor data for each dimension
in the current context is mapped to one of these tags, which gets the weight 1. The
resulting context vector thus consists of all possible tags, each having a weight of 1
or 0 depending on the applicability of the tag to the current context.

For example, suppose that the system is able to sense two context dimensions,
location and time. Location can have the values "home" or "work" and time can
have the values "morning", "afternoon" or "evening". At fist, all five values have
the weight 0. If the current context is sensed to be "home" and "morning", these
values would be given a weight of 1.

In Lifetrak, the sensed environment consists of the following dimensions: space, time,
kinetic, meteorological and entropic. Space, i.e., location information is obtained
using an external GPS sensor. The co-ordinates are mapped to US zip codes using
a geocode data set from the US Census Bureau7. According to the developers
of Lifetrak, an approximate mapping from co-ordinates to zip codes is sufficient,
even though the resulting regions can be quite large and inaccurate. Since GPS
information is restricted to outdoor environments, the location context can also
have a value of "indoor" or "outdoor" based on GPS data availability. In the case
the GPS data cannot be obtained, the last known GPS co-ordinates are used for
zip code mapping. The local time is provided by the device itself and is mapped
into four periods: morning, afternoon, evening, and night. The time dimension also
includes the day of the week. The kinetic dimension consists of the velocity of the
user and is calculated by the GPS sensor, thus also limited to outdoor usage. The
velocity is mapped to four pre-defined values: static, walking, running, and driving.
The entropic dimension, i.e. the state of the environment, is calculated in one of
two ways. If the user is driving a car, the entropy is collected through RSS feeds
describing the traffic conditions in the area. If the user is not driving, a five seconds

7http://www.census.gov/geo/www/tiger/

39

audio sample is recorded using the device’s microphone. The overall decibel level
of the sample is used as a measurement of the busyness around the user. Lastly,
the weather information is gathered from a Yahoo.com weather RSS feed. The
temperature data is mapped into one of five values: frigid, cold, temperate, warm,
or hot.

Lifetrak does not attempt to analyse tunes in order to match them to a certain
context. Instead, the system requires an initial set up prior to usage which includes
tagging the whole music library. The tags include id, file name, artist name, tune
name, album name, ranking, and context. The user can select any combination of
available context tags to denote the context in which the tune is preferred. The
complete set of available context tags form a vector with values of either 0 or 1,
depending on the tags being selected or not. The values can later be modified
through usage to become any real number between 0 and 1.

During usage, Lifetrak generates a playlist "on the fly" by matching the current con-
text vector to the context vector of each tune. The matching is done by calculating
the dot product of these two vectors, resulting in a value between 0 and the total
number of available tags, i.e., the length of the vector. This integer is saved as the
ranking of a tune in the current context. All media items are ordered by ranking
and played from highest to lowest ranking value.

The user interface of Lifetrak allows the user to give feedback to the matching
algorithm. The user can modify the values of both the current context vector and
the tunes context vector by different means. The suitability of the currently playing
tune in the current context can be modified using Love it or Hate it buttons. These
buttons increase or decrease, respectively, the value of the tune’s context tags that
describe the current context. The influence of the current context can be modified
using a context equalizer [RM06]. The equaliser consists of sliders for each dimension
of the context, each increasing or decreasing the effect of that dimension in the
ranking algorithm. The modifications of the context vectors can be seen as additional
factors in the dot product, which after user adjustments consists of the original
context vectors and two adjustment vectors acting as weights for the context values.

Lifetrak is similar to AndroMedia in many senses. First, Lifetrak is based on the
same hypothesis as AndroMedia, i.e., that users’ context affects what they want
to listen to. Second, Lifetrak’s context-awareness is purely based on sensor data,
which is similar to the approach in AndroMedia, where sensor data comprises the
majority of the context input. Last, both Lifetrak and AndroMedia use binary ex-

40

plicit user feedback. However, Lifetrak bases its music recommendations on context
tags associated with each media file. For optimal operation, the tags need to be
manually entered for each media file prior to usage. A side effect of allowing the
user to explicitly mark a tune as suitable or not for a specific context is that the
system can let the user bypass the potentially laborious tagging process by instead
using the explicit user feedback to gradually populate each tune’s initially empty
context tags.

Lifetrak generates a playlist according to the tunes’ relevancy ratings in the current
context, and plays the tunes in ranking order. Lifetrak does not, by design, allow the
user to view the generated playlist or skip to a certain song. Instead the user is forced
to follow the pre-determined playing order. In contrast, AndroMedia is designed to
function as any conventional portable media player, allowing the users to compose
their playlists according to their own preferences and skip songs in whatever way
they see fit. The context-aware recommendations are merely an optional feature that
the user can employ to get suggestions on suitable songs in the current situation.

5 AndroMedia

We now present AndroMedia, a mobile context-aware music recommender prototype.
The system consists of a client and a server, both of which will be presented in
subsequent sections.

5.1 The AndroMedia Client

First, we present the AndroMedia client, the end user’s interface to the AndroMedia
system.

5.1.1 Overview

The AndroMedia client is a handheld media player, which aims at functioning as
any other modern mobile media player in terms of usability and basic functionality.
However, the context data gathering tool BeTelGeuse [NKL+07] has been integrated
into AndroMedia to provide it with context data. By combining the context data
with users’ interaction data, AndroMedia is designed to recommend suitable tunes
for the user in the current context using context-filtering techniques, as described

41

B
lu

et
u
n
A

S
ou

n
d
P

ry
er

B
u
b
b
le

s
P

u
sh

!M
u
si

c
IM

4S
p
or

ts
L
if
eT

ra
k

A
n
d
ro

M
ed

ia

D
ev

ic
e

M
ob

ile
ph

on
e

iP
A
Q

P
D
A

P
D
A

P
D
A

?
N
ok

ia
77

0
iP
A
Q

P
D
A

O
p
er

at
in

g
sy

st
em

?
P
oc
ke
tP

C
20

02
P
oc
ke
tP

C
20

02
P
oc
ke
tP

C
20

02
?

Li
nu

x
W

in
do

w
s
M
o-

bi
le

20
03

SE

P
ro

gr
am

m
in

g
la

n
gu

ag
e

Ja
va

C
/
C
+
+

C
+
+

?
?

C
,P

yt
ho

n
C
#
,J

av
a

L
ib

ra
ri

es
JS

R
-7
5,

JS
R
-

82
lib

m
ad

M
P
E
G
,

ga
m
e
G
U
I

Fm
od

,
G
ap

iD
ra
w
,

O
pe

nT
re
k

Fm
od

,
G
ap

iD
ra
w

?
G
T
K
+
,

H
ild

on
U
I,

G
St
re
am

er
,

lib
id
3t
ag

W
in
do

w
s

M
ed

ia
P
la
ye
r

M
ob

ile

D
ev

ic
e

co
m

m
u
n
i-

ca
ti

on

B
lu
et
oo

th
W

LA
N

W
LA

N
W

LA
N

N
on

e
?

N
on

e

A
va

il
ab

il
it
ya

W
W

W
P
R
O
T
O

P
R
O
T
O

P
R
O
T
O

P
R
O
T
O

P
R
O
T
O

P
R
O
T
O

C
on

te
xt

in
-

fo
rm

at
io

n
P
ro
xi
m
it
y

P
ro
xi
m
it
y

P
ro
xi
m
it
y

P
ro
xi
m
it
y

H
ea
rt

ra
te
,

st
ri
de

fr
e-

qu
en

cy

Lo
ca
ti
on

,
ti
m
e,

ve
lo
c-

it
y,

m
et
e-

or
ol
og

ic
al

da
ta
,

tr
affi

c
co
nd

it
io
ns
,

am
bi
en
t
no

is
e

O
ve
r
12

pr
op

-
er
ti
es
,

se
e

Se
ct
io
n
5.
1.
2

Ta
bl
e
4:

C
om

pa
ri
so
n

an
d

te
ch
ni
ca
l
de
ta
ils

of
ex
pl
or
ed

m
ob

ile
m
us
ic

re
co
m
m
en
de
rs
.

V
al
ue
s
th
at

ar
e
no

t
ev
id
en
t
fr
om

th
e

lit
er
at
ur
e
ar
e
de
no

te
d
w
it
h
a
’?
’
th
ro
ug

ho
ut

th
e
ta
bl
e.

a
W

W
W

=
av
ai
la
bl
e
as

do
w
nl
oa
d
on

th
e
In
te
rn
et
,P

R
O
T
O

=
re
se
ar
ch

pr
ot
ot
yp

e,
no

t
av
ai
la
bl
e
as

a
pr
od

uc
t.

42

in Section 3.6.

The target platform of AndroMedia is an HP iPAQ HX 4700 personal digital as-
sistant running Windows Mobile 2003 Second Edition. The iPAQ comes with a 4"
VGA touch-sensitive display, built-in WLAN 802.11b and Bluetooth connectivity
hardware and expansion slots for Secure Digital and Compact Flash memory cards.
Additionally, Windows Mobile 2003 SE comes bundled with Windows Media Player
10 Mobile for PocketPC, which includes an ActiveX controller that can be used in
other applications.

The hardware and software features of the iPAQ were important factors in the choice
of target device. The development of the client started in January 2006, and since
affordable mobile phones at that time did not provide the required environment in
terms of programming interfaces such as Python or Java, we believed that a PDA
would serve better as development platform. Although the iPAQ lacked GPRS
hardware, it still provided suitable means of wireless communication, such as Wi-Fi
and Bluetooth. According to specifications, the bundled media player was also able
to host third party plug-ins and could be used as a component in third party .NET
applications by generating a wrapper around it, dealing with interoperability issues
between the older COM objects and the new .NET platform. These features made
the iPAQ a suitable device for the AndroMedia client, since we were looking for a
way to extend an existing media player application.

During the development of the client, however, we noticed that Windows Media
Player Mobile 10 in fact did not provide part of the functionality we relied on,
although the documentation claimed the opposite [Mic08]. Specifically, we were not
able to use the component’s built in media library, nor could we get the component to
trigger events when interacting with its playback controls. There were also problems
with the different user interface modes of the component, such as hiding the playback
controls to make only the visualisation screen visible. In addition, the component
was not able to read all of the embedded ID3 metadata of MP3 files, leaving us with
only a small set of metadata to use for tune profiling. AndroMedia was originally
supposed to support both audio and video, but due to the problems with the ActiveX
component, we had to limit the media type to music.

It is not known to us whether these problems origin from flaws in the ActiveX
controller itself or in the wrapper needed to host it in a third party application, but
they forced us to reduce the use of the media player component to merely provide
music playback and limited metadata extraction. Hence, the AndroMedia client

43

itself implements most of the application logic normally provided by the media
player component. Specifically, components such as playback controls, playback
logic, the playlist and media library and their functions have been written from
scratch. Although this required more work, it ultimately allowed us to customise
the application to our particular needs.

5.1.2 BeTelGeuse Integration

In AndroMedia, we use the context gatherer BeTelGeuse (BTG) [NKL+07] to obtain
context information used by the application. BeTelGeuse is a tool for data gathering
that uses bluetooth equipped sensors as data sources. We chose BeTelGeuse since
it has been developed in the same research group as AndroMedia and since it is
publicly available under the Gnu Lesser General Public License [LGP07]. This
gives us the possibility to customise BeTelGeuse for AndroMedia’s needs in terms
of communication protocols and integration.

BTG consists of a client and a server, both written in Java. The client operates
on mobile phones, PCs and other Java-compatible handheld devices with Bluetooth
capabilities. It is responsible for managing the connection to available sensors and
for collecting raw sensor data from the sensors. The data is either stored locally
in a file for later submission or sent over GPRS or WLAN directly to the main
server, which stores the data. BeTelGeuse does not provide any means for context
reasoning; the interpretation of the gathered context data is left to the application
designer.

In our laboratory setting, BTG can currently gather data from three sensors and
the device itself. Using these sensors we can obtain the following data.

• GPS — latitude, longitude, altitude, time

• Alive Heart Monitor — heart rate, 3-axis acceleration

• I-CubeX sensor system— 1-dimensional distance, 3-axis acceleration, tem-
perature, humidity, orientation, ambient light

• Local device — nearby Bluetooth devices; GSM information such as cell ID,
area ID, network and country codes, network name, signal strength

BeTelGeuse communicates with AndroMedia over a local TCP socket, sending in-
formation messages about connected sensors. It also listens to incoming command

44

ServerCommunicator
Transmits data to the main server.

M a i n
Main application.

Bete lgeuseStatusListener
Listens for status messages from

BeTelGeuse.

Bete lgeuseTransmit ter
Transmits data to the local BeTelGeuse.

Logger
Global logging facil ity.

Preferences
Holding user preferences.

BeTelGeuse
Context Data
Gatherer

Sensor statusInteraction data

Context (+interact ion) data

Library
Accesses the media library.

Uti l
Global uti l i ty functions.

Windows
Media Player Mobile
ActiveX controller

AndroMedia
server

Interaction data Recommendations
Configuration

ProcessWrapper
Starts BTG from within AndroMedia.

Figure 1: Component overview of the AndroMedia client.

messages, which allows AndroMedia to control the behaviour of BTG. Additionally,
it provides means for AndroMedia to use BeTelGeuse as a proxy for sending user
interaction data if needed.

5.1.3 Architecture

The AndroMedia client consists of a set of classes representing the various screens of
the user interface, as well as a few communication and utility classes, see Figure 1.
The application is built on top of the Windows Media Player Mobile ActiveX con-
troller, which provides the media playback functionality. The Main, Preferences,
Library and Logger classes all represent the corresponding screens in the user in-
terface. The Main class incorporates the media player and provides most of the
application functionality. The Preference class stores user preferences while the
Library class provides means to browse and select music files available on the de-
vice. Both the Preference and Library classes use object serialisation to save their
internal information to XML files on disk for persistence. The Logger class is used
as a central logging facility by other components, and is responsible for storing the

45

logged messages to disk and show them to the user on demand.

The ProcessWrapper class is used to start the execution of BeTelGeuse, which
handles all context data gathering. Since BeTelGeuse is a Java application, it has
to be run inside a Java virtual machine, in our case the IBM J9 VM8. When BTG
is executing, the BetelgeuseStatusListener class listens to a local TCP socket
for incoming messages from BTG. The messages contain status information about
the sensors connected to BTG to display to the user in the main interface. Each
received message is answered with a response with which the user can control BTG’s
Bluetooth device discovery procedure.

The communication classes handle the communication between the client and the
server. The client generates two sets of data: context data from BTG and user in-
teraction data from AndroMedia, both of which are eventually stored on the server.
The means of transferring the data to the server, however, depend on the availabil-
ity of an Internet connection. AndroMedia operates in one of two modes, offline or
online, depending on Internet connectivity. If no Internet connection is available, all
data is stored on the device for later insertion into the database. In this case, the in-
teraction data is sent from AndroMedia to BTG using the BetelgeuseTransmitter
class. BTG stores both interaction and context information on the device in a file
that can later be parsed into a database. When in online mode, the application is in
direct connection with the main server and is then also able to receive recommen-
dations. In this case, the interaction data is sent directly from AndroMedia to the
server using the ServerCommunicator class, while BTG sends context data to the
server by its own means. The two sets of data are connected in the database by a
shared session id.

5.1.4 Operation

The interface is designed to be easy to use even without a stylus. This is achieved
by making all elements with which the user interacts on a regular basis sufficiently
large so that the users can push buttons, scroll lists and navigate menus with their
fingers. Some user interface elements are, however, fixed in size by the operating
system and cannot be changed. The main screen consists of a playlist window, a
set of buttons for controlling playback, "Rocks" and "Sucks" buttons for explicit
feedback, a set of icons representing context sensor status, and a main menu, see
Figure 2(a). From the main menu, the user can navigate to the Preferences page,

8http://www-306.ibm.com/software/wireless/weme/

46

the Library and the Log, control the behaviour of the context sensor BeTelGeuse,
request recommendations, and exit the system.

The playlist window contains a set of tunes that the user has selected for playback
from the library. The playlist provides a context menu that pops up when the user
taps-and-holds an item in the list. The context menu allows the user to remove
the selected tune from the playlist or clearing the whole playlist, as well as to start
playback of the selected tune. Playback can also be started by either double-tapping
a tune in the playlist or by pressing the play button.

The "Rocks" and "Sucks" buttons provide users with means to give explicit feedback
to the system regarding their musical preferences. A click on the "Rocks" button
indicates that the user likes the tune in the current context, while the "Sucks" button
provides corresponding negative feedback. Both "Rocks" and "Sucks" buttons can
only be clicked once during the playback of any one tune, as they are both dimmed
and disabled after a click on either one. The buttons are reactivated when the tune
changes or is restarted.

The current status of the sensors connected to BeTelGeuse is conveyed to the user
by using one status icon per connected sensor, under the "Rocks" and "Sucks"
buttons, see Figure 2(a). The icon’s visual representation depends on the type of
sensor, such as GPS or Heart Rate Monitor. A change in sensor status is represented
by changing the background colour of the icon to either green, yellow or red. A
green icon represents a healthy sensor from which data is continuously received.
If BTG has lost connection to a sensor, its corresponding icon turns yellow and if
BTG considers the sensor to be dead, the icon turns red. A tap on an icon renders a
textual explanation of the current state of the icon. The number and type of sensors
connected and their status is received through the status messages sent continuously
to AndroMedia by BTG. After each status message is received, the icons on the main
screen are updated by adding new sensors and updating the status colour.

The Preferences page contains paths to the Bluetooth stack implementation library,
the Java virtual machine executable and BeTelGeuse on the device, the URL and
the user’s username and password for the AndroMedia server, an option for storing
the data locally or sending it over the Internet, and an option regarding the playback
logic, see Figure 2(b). The settings regarding the operation of BeTelGeuse are only
editable when the context gatherer is not running, as the same parameters must
be kept unchanged throughout a context gathering session. When BeTelGeuse is
running, these options are greyed out and disabled, and only enabled again when

47

(a) The main screen (b) The preference page (c) The library page

Figure 2: The AndroMedia client user interface

BTG is stopped.

The Library is an interface for searching and selecting media files available on the
device, see Figure 2(c). The Library can scan a certain directory on the device for
media files and will display all matches in a tree structured list. Each node represents
either a directory (non-leaf node) or a file (leaf node). In order to add either a whole
directory or a single file to the playlist in the main screen, the user selects "Add to
playlist" in the context-menu appearing when the user taps-and-holds a node in the
Library view. The user can add any number of items to the playlist, and even the
whole library by adding the root node. AndroMedia does not automatically scan
the device for new tunes, since the addition of new material is regarded a rather
uncommon event. Thus, the library needs to be updated manually by tapping the
Refresh button each time new media files are added to or removed from the device.

In order to provide context-aware recommendations to the user, the application
needs to gather information about the user’s interactions with the user interface.
Each time the user performs a significant action, the specific action along with
information about the application status, see Table 5, are sent asynchronously either
directly to the server or via BTG, to use as basis for recommendations. An action is
significant if it can be used to infer the user’s preferences about the current tune or
the user’s current context, see Table 5 for examples. Among the application status
information in Table 5, the current tune information is provided by the underlying
Windows Media Player ActiveX controller and the session and playback information
is provided by AndroMedia’s classes.

48

When AndroMedia is connected to the Internet, the user can at any moment request
recommendations from the AndroMedia server by selecting "Get recommendation"
from the menu in the main screen. This sends a message to the server to calculate
a suitable recommendation for the user given the current context. The resulting
recommendation is displayed to the user in a pop-up window. If the recommended
tune is available on the device, the user has the option of starting playback of that
tune directly from the recommendation pop-up.

5.2 AndroMedia Server

The AndroMedia server is the back-end of the system. It stores all user activity
data and context information in a database and uses this information to calculate
recommendations for users. The back-end server also has a web interface through
which users can inspect the data that has been collected about them by the An-
droMedia client. In the following sections we will describe the functionality of the
AndroMedia server and how it is implemented.

5.2.1 Architecture

The AndroMedia back-end server is written in Java Standard Edition and executed
in the Apache Tomcat9 servlet container on a Linux server. It uses a MySQL10

database as persistent storage and XHTML11 with CSS12 for displaying the web-
based user interface. It also features a command line tool that can be used for
testing and debugging.

The back-end follows the Java Servlet specification, implementing two separate
servlets, each of which extends the abstract class javax.servlet.http.HttpServlet
of the Java Servlet package. The MusicServlet servlet is used for the web interface
where users can inspect the information gathered about them by the system, while
the ScrobblerServlet servlet is used for communicating with the AndroMedia
client, accepting interaction messages and serving recommendations.

Both servlets provide their own specific operations, but use the same underly-
ing stack of class layers to implement them, see Figure 3. Each HTTP request

9http://tomcat.apache.org
10http://www.mysql.com
11http://www.w3.org/TR/xhtml1/
12http://www.w3.org/TR/CSS21/

49

Significant actions

Playback controls

Play
Next (shuffle disabled)
Next (shuffle enabled)
Previous
Pause
Stop
Volume change

Feedback buttons
Rocks
Sucks

Playlist context menu
Play
Jump (play by double-clicking a tune)

Automatic playback
Next (shuffle disabled)
Next (shuffle enabled)

Application status information

Session information

Application
Session ID
Username
Challenge response

Current tune information

Media type
Artist
Song name
Song length

Playback information
Playback position
Current volume

Table 5: Interaction information sent by the client to the server. Italicised font
indicates mandatory information.

50

starts off in the servlet classes, which forward the request to the MusicRequest or
ServletRequest classes, respectively. These use a hierarchy of classes that each ag-
gregates information on their own level. Immediately underneath the request layer
lies the task layer, which consists of a set of classes representing a high level task,
such as "add media item". These classes, in turn, use the item layer consisting of
classes representing an abstract item, such as a "media item". Last, the item layer
uses the database layer to communicate with the database. The database layer con-
sists of one class for each table in the underlying database and is responsible for
performing the lowest level database operations, such as reading and writing to the
database.

Reversely, the data from the database is fetched by the database layer, which is trans-
formed into high level items in the item layer. The task layer then uses the items in
the item layer to perform its user level tasks and returns the request layer, which cre-
ates a response message suitable for returning to the client. The ScrobblerServlet
class returns to the client a response string consisting of only a keyword and possibly
a set of adjoining data. The MusicServlet, on the other hand, uses a set of Java
classes representing XHML elements to build a web page to display to the user.

5.2.2 Database Architecture

The database layout has been designed to be as flexible as possible to allow many
media types and different types of context data to be stored. Another reason for
the generic layout is that several applications are using the same database for data
storage. The database contains about 20 tables, which are logically clustered into
three separate units, see Figure 4. The context data unit consists of tables specific
to context data, such as sensors, sensor data, nearby bluetooth devices etc. These
tables are governed by the context gatherer BeTelGeuse. The media unit, on the
other hand, consists of tables containing data about media items, media types,
metadata, user actions etc. These tables are not only used by AndroMedia, but
also by Capricorn, an intelligent interface for mobile widgets [BFL+08]. The two
main units are connected by a small set of shared tables storing session and user
information.

When a user logs in, a new session for that user is created. As the user interacts with
the application during a session, the media unit is filled with interaction data from
AndroMedia, while the context unit is filled with context data from BeGelGeuse.
The interaction data and context data are associated to each other and the user

51

Item layer

Contex tDa taM e d i a I t e m User

Servlet layer

<<javax.servlet.http.HttpServlet>>

MusicServlet
<<javax.servlet.http.HttpServlet>>

ScrobblerServlet

ScrobblerRequestMusicRequest

Database layer

ContentDAO

ContextE lementPlayerAct ion

Task layer

Task

ActionDAOUserDAO

AndroMedia
database

AddMediaTask GetRecommendat ionTask GetAl lMediaTask

Figure 3: Component overview of the AndroMedia server.

through the session id, which is handed to both BeTelGeuse and AndroMedia when
the session is created.

52

Media un i t Context uni t

Shared tab les

AndroMedia
data

BeTelGeuse
data

Figure 4: Overview of the AndroMedia database architecture.

Each interaction data unit consists of a user action and a media item acting as
target for that action. An interaction data unit is represented in the database by
a set of 9 tables, some of which describe the user action and others describe the
media item upon which the action was executed. Each media item is seen as being
of some media type, for example "music" or "video". Each media type is further
associated with a set of metadata types that describe the item. In the case of a
"music" item, the type metadata could include "artist", "album" and "title". Some
of the media type specific metadata is used to identify a single media item, and is
thus mandatory for that item. Continuing the above example, the "music" media
type might have a mandatory metadata field "artist" and "title". A media item
without the mandatory metadata information cannot be added to the database.
When a media item is added to the database, the type of media is stored along with
all available metadata for that item.

Similarly, an action is also assigned metadata, since some user actions are logged
with parameters. A change in volume, for example, is logged as targeted at the
currently playing tune with an action parameter describing the resulting volume
level. The action and its metadata are logged in separate tables and linked together
with the media item acting as target.

53

Figure 5: Session view in the AndroMedia Admin web interface.

5.2.3 Functionality

As mentioned above, the AndroMedia back-end serves two purposes: to provide a
web site for inspecting data gathered about the user, and providing storage and
calculate recommendations for the AndroMedia client.

The AndroMedia Admin web interface servlet lets users inspect the data gathered
about them by the application. The admin system consists of a front page, a sessions
page, a media item page, a my music page and pages for registering to the system and
for logging in. The front page displays the username of the user and some statistical
information such as how many users and media items the system comprises. Using
the "all sessions" page, the user can browse through all usage sessions. Each session
is displayed with its id, the application that created the session, when it was created
and how many entries the session contains. Selecting a session displays the entries
for that session, see Figure 5. An entry consists of an action, the time the action
was invoked, the id of the item upon which the action was invoked and the context
data of that moment. The context data consists of the nearby bluetooth devices and
other data depending on the attached sensors at that time. The user can further
view information about the target item by clicking on its id in the entries table.
This displays all available metadata, such as "artist", "title" and "album" in the
case of an audio track.

54

The ScrobblerServlet provides an API for the client to save user interaction data
and request recommendations. When a client connects for the first time during a
session, it has to perform a handshake with the servlet. The client initiates the
handshake by requesting a challenge string from the server. The server answers
with challenge string which the client uses to calculate a challenge response using
the MD5 Message-Digest algorithm. The response is generated by calculating the
MD5 checksum of the concatenation of the challenge string and the MD5 checksum
of the current user’s password. The challenge response is then supplied with every
action request as an identification token together with the user’s username. If the
client’s challenge response is correct, the server authorises the action request.

When the user interacts with the client, it sends interaction data to the Scrob-
blerServlet as explained in Section 5.1.4. Some parameters among the information
sent to the server are mandatory, as indicated by the italicised font in Table 5.
The server runs a parameter check to ensure that there are no missing mandatory
parameters before storing the information in the database.

The other service provided by the ScrobblerServlet is the recommendation service.
Currently three different collaborative filtering algorithms are implemented: Pear-
son, naive Pearson and naive Bayesian, see Section 3.4.1. These do not take context
information into consideration, but are used for testing purposes.

5.3 Implementation Status and Future Work

The functionality of the AndroMedia client and server presented in previous sections
have been implemented successfully, and provides the framework needed for context-
aware music recommendations. The client provides a fully functional mobile media
player that can be used independently, and gathering context data is a matter of
starting the context gatherer BeTelGeuse and connecting a set of sensors to it.
Traditional recommendations can already be requested from the server, which also
provides users with information about collected data.

Although the current implementation is mature and could be subjected to extensive
user studies, the restricted amount of client devices at our disposal suggests that
user studies should be postponed until a client application for a more pervasive
device type, such as a Python client for mobile phones [ST07], has been developed.

The context-aware recommendation feature of the AndroMedia server will be im-
plemented using the context weighting strategy presented in Section 3.6.2. Since

55

context data is already being gathered by the client, the remaining key phases in
the development are:

• Designing feature extraction methods. The raw data collected need to be
processed into homogenous feature vectors to be suitable for comparison. This
process includes doing statistical calculations on numerical values, extracting
multiple features from a single sensor and merging similar sensor data into
more reliable features.

• Develop similarity measures for advanced sensor types. As discussed
in Section 2.2, feature vectors need to be comparable in order to measure
their similarities. This is achieved by defining a similarity operator on each
feature type, and is trivial for simple numerical types. For complex types
like composite or non-numerical data, for example, nearby Bluetooth MAC
addresses and GPS co-ordinates, a custom similarity measure has to be defined.

• Generating context-dependent recommendations. Using the distance
measure, the context weighting algorithm presented in Section 3.6.2 can be
used to generate context-aware recommendations, which can be presented to
the user.

6 Discussion and Conclusions

Since humans react to different types of music in certain ways, it seems feasible to
consciously choose the type of music according to the situation. Many likely do so
unconsciously by selecting their favourite music for certain situations, for example,
up-beat music for training, classical music for studying and smooth jazz for driving.
In an environment where an increasing number of everyday mobile devices have
built-in music playback capabilities, music is likely to be continuously enjoyed over
long periods of time, during which the user’s environment is likely to change. A user
may, for example, want to wake up to soft pop music, listen to jazz on the way to
work, have rock music in the background while working, listen to jazz again on the
way home and enjoy classical music in the evening. Even during shorter periods of
time, like while shopping in the city, the environment changes from indoors with a
low ambient noise to outdoors with a high level of noise and hectic tempo. During
such changes in context, the playback management becomes a cognitive overhead
that may distract or endanger the user. Mobile context-aware music players facilitate

56

the process of selecting and managing music for different occasions, decreasing the
overhead and increasing the user’s attention towards the matter at hand.

Context is a very wide concept that comprises every aspect of the situation of a
user or a device, making it subject to very different interpretations. As noted in
Section 4, many mobile context-aware applications interpret context as the collection
of nearby devices and their properties. By being aware of devices in close proximity,
the application can automatically initiate communication with other devices, sharing
information and providing the user increased value. In the case of context-aware
music recommenders, the focus is often on sharing music between similar users. This
naturally has legal implications as copyrighted material is distributed to unknown
peers, either with or without the user’s knowledge and consent. As an alternative to
copying the actual media file to the other device, like in the case of Push!Music, the
music can be streamed to another device, letting the other user listen to a tune while
the devices are in range. This approach does not illegally distribute reproductions
of copyrighted material and can hardly be interpreted as illegal broadcasting since
the range is limited and the time devices are connected is typically short. For
devices with Internet connection capabilities, a legally feasible solution is to offer
the user to buy the recommended tune from an on-line music store, if it is not
already found on the device. As the online music industry has expanded from
around 1 million tracks available in 30 legal stores in 2003, to over 6 million tracks
available in over 500 online music stores in 2007 [IFP08], the probability to find any
recommended tune purchasable online is steadily increasing. In AndroMedia, where
an Internet connection is required to receive recommendations, this approach seems
suitable, and is already partially implemented since the user has the option to play
the recommended tune if it is found on the device.

Emerging artists that are trying to promote their music can also benefit from rec-
ommendation services. Even with a relatively small group of listeners, a recom-
mendation system can deliver new music to listeners who find it appealing. With
a total of nearly 3 million unsigned rock and R&B artists craving for attention on
MySpace13, one of the leading social network sites for music enthusiasts, the music
industry recognises the need for recommendation and filtering services [IFP08].

More advanced context-aware applications that gather an extensive amount of sit-
uational data need to take into account possible privacy issues regarding collected
data. Many context-aware applications have fallen due to privacy issues [May04],

13http://www.myspace.com

57

which indicates that this matter must be addressed when designing applications for
usage outside the research lab. A plausible approach is to persistently save as little
information as possible about the user, while still performing well in the context-
aware features. In practice, excess sensor data could be deleted when no longer
needed. The current policy of AndroMedia is to store as much information about to
user as possible, and never delete it, to boost context-aware performance and to be
able to recognise usage trends. In future work, privacy should be taken into account
before doing extensive user studies.

During the development of the AndroMedia client, we have come to reconsider
the choice of target device. Although it seemed appropriate in the beginning of
the development, the HP iPAQ hx4700 PDA has a number of shortcomings as a
context-aware mobile media player. First, the size and weight of the device (187
grams and 7.7 x 13.1 cm) exceeds the size and weight of modern MP3-players and
mobile phones, making it somewhat clumsy to carry around and difficult to operate
with one hand. Second, due to its touch-sensitive screen being the main interface for
user input, the user can not operate the device without viewing the screen, since the
screen lacks tactile feedback. Controlling playback and volume becomes cumbersome
since the device has to be brought up and the screen cover has to be flipped over
before the user can interact with it. A set of hardware buttons is available, and
the use of these as input interface should be investigated. Third, the lack of GPRS
connectivity makes the recommendation feature useable only near Wi-Fi hotspots.

In retrospect, a modern mobile phone would perhaps have been a more suitable
target device for the AndroMedia client, as they address all of the shortcomings
mentioned above. Especially, a client developed with mobile Python [ST07] that
can be run on a mobile phone appears to be a feasible alternative to the current
client. This technology was not available in 2006, when the development was started.

Besides the additional functionality discussed in the previous section, there seems
to be room for improvement also on the server side. While the layered class archi-
tecture works well for small sets of data, initial results with growing data presages a
performance issue. This can, however, be solved by deviating from the strict layered
architecture and doing more complex database operations directly from higher levels
of abstraction. This has been tried with some critical database operations, and the
initial results look promising.

The AndroMedia Admin web interface could also be further developed to allow bet-
ter management of user data. Especially, allowing users to delete their own collected

58

data could provide users with a higher sense of trust and would also have a positive
effect on privacy issues. The recommendation feature could also be integrated into
the Admin interface to allow users to explore what kind of recommendations they
would receive in certain contexts. This would further facilitate downloading of rec-
ommended tunes from on-line music stores, as these are normally designed for use
on desktop computers.

Although the AndroMedia prototype lacks an implementation of the context weight-
ing algorithm needed for music suggestions based on the user’s situation, the current
implementation provides the framework needed for situation-sensitive recommenda-
tions and we believe it to be a firm step towards a context-aware mobile music
recommender.

7 Acknowledgements

The author wishes to thank Jouni Sirén and Marja Hassinen for the development
support on the AndroMedia server.

References

ASST05 Adomavicius, G., Sankaranarayanan, R., Sen, S. and Tuzhilin, A., In-
corporating contextual information in recommender systems using a
multidimensional approach. ACM Transactions on Information Sys-
tems, 23,1(2005), pages 103–145.

AT05 Adomavicius, G. and Tuzhilin, A., Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible ex-
tensions. IEEE Transactions on Knowledge and Data Engineering,
17,6(2005), pages 734–749.

BBFB+03 Bach, E., Bygdås, S. S., Flydal-Blichfeldt, M., Mlonyeni, A., Myhre,
O., Nyhus, S. I., Urnes, T., Åsmund Weltzien and Zanussi, A., Bubbles:
Navigating multimedia content in mobile ad-hoc networks. MUM ’03:
Proceedings of the 2nd International Conference on Mobile and Ubiqui-
tous Multimedia, 2003.

BC92 Belkin, N. J. and Croft, W. B., Information filtering and information

59

retrieval: two sides of the same coin? Communications of the ACM,
35,12(1992), pages 29–38.

BC08 Buttussi, F. and Chittaro, L., Mopet: A context-aware and user-
adaptive wearable system for fitness training. Artificial Intelligence
in Medicine, 42,2(2008), pages 153–163.

BFL+08 Boström, F., Floréen, P., Liu, T., Nurmi, P., Oikarinen, T.-K., Vetek,
A. and Boda, P., Capricorn – an intelligent interface for mobile widgets.
IUI ’08: Demonstration at the 12th International ACM Conference on
Intelligent User Interfaces. ACM Press, 2008.

BHC98 Basu, C., Hirsh, H. and Cohen, W., Recommendation as classification:
using social and content-based information in recommendation. AAAI
’98/IAAI ’98: Proceedings of the 15th national / 10th conference on
Artificial intelligence / Innovative applications of artificial intelligence,
Menlo Park, CA, USA, 1998, American Association for Artificial Intel-
ligence, pages 714–720.

BHK98 Breese, J. S., Heckerman, D. and Kadie, C., Empirical analysis of pre-
dictive algorithms for collaborative filtering. UAI ’98: Proceedings
of the 14th Conference on Uncertainty in Artificial Intelligence, 1998,
pages 43–52.

BJBW07 Baumann, S., Jung, B., Bassoli, A. and Wisniowski, M., Bluetuna: let
your neighbour know what music you like. CHI ’07: Extended abstracts
on Human factors in computing systems, New York, NY, USA, 2007,
ACM Press, pages 1941–1946.

BMA06 Bassoli, A., Moore, J. and Agamanolis, S., tunA: Socialising music
sharing on the move. In Consuming Music Together: Social and Col-
laborative Aspects of Music Consumption Technologies, O’Hara, K. and
Brown, B., editors, Springer, 2006.

BMH95 Brownley, K. A., McMurray, R. G. and Hackney, A. C., Effects of music
on physiological and affective responses to graded treadmill exercise in
trained and untrained runners. International Journal of Psychophysi-
ology, 19,3(1995), pages 193–201.

60

BMP04 Brown, S., Martinez, M. J. and Parsons, L. M., Passive music listening
spontaneously engages limbic and paralimbic systems. NeuroReport,
15,13(2004), pages 2033–2037.

Bro01 Brodsky, W., The effects of music tempo on simulated driving perfor-
mance and vehicular control. Transportation Research Part F: Traffic
Psychology and Behaviour, 4,4(2001), pages 219–241.

BS97 Balabanović, M. and Shoham, Y., Fab: content-based, collaborative
recommendation. Communications of the ACM, 40,3(1997), pages 66–
72.

Bur02 Burke, R., Hybrid recommender systems: Survey and experiments.
User Modeling and User-Adapted Interaction, 12,4(2002), pages 331–
370.

Che05 Chen, A., Context-aware collaborative filtering system: Predicting the
user’s preference in the ubiquitous computing environment. In Location
and Context-Awareness, Strang, T. and Linnhoff-Popien, C., editors,
volume 3479, Springer, 2005, pages 244–253.

CHM97 Chickering, D. M., Heckerman, D. and Meek, C., A bayesian approach
to learning bayesian networks with local structure. Technical Report,
Redmond, WA, USA, 1997.

DEO+07 Dornbush, S., English, J., Oates, T., Segall, Z. and Joshi, A., Xpod: A
human activity aware learning mobile music player. IJCAI ’07: Pro-
ceedings of the Workshop on Ambient Intelligence, 20th International
Joint Conference on Artificial Intelligence, 2007.

Dey01 Dey, A. K., Understanding and using context. Personal Ubiquitous
Computing, 5,1(2001), pages 4–7.

Dow06 Downie, J. S., The music information retrieval evaluation exchange
(mirex). D-Lib Magazine, 12,12(2006).

FW07 Floréen, P. and Wagner, M., editors. Enabling technologies for mobile
services: The MobiLife Book, chapter 4, pages 99–151. Wiley, 2007.

GNOT92 Goldberg, D., Nichols, D., Oki, B. M. and Terry, D., Using collabora-
tive filtering to weave an information tapestry. Communications of the
ACM, 35,12(1992), pages 61–70.

61

GSCM07 Gauch, S., Speretta, M., Chandramouli, A. and Micarelli, A., User
profiles for personalized information access. In The Adaptive Web,
Brusilovsky, P., Kobsa, A. and Nejdl, W., editors, volume 4321,
Springer, 2007, pages 54–89.

HHN04 Hargreaves, D. J., Hargreaves, J. J. and North, A. C., Uses of music in
everyday life. Music Perception, 22,1(2004), pages 41–77.

HJH05 Håkansson, M., Jacobsson, M. and Holmquist, L. E., Designing a mobile
music sharing system based on emergent properties. AMT ’05: Proceed-
ings of the 2005 International Conference on Active Media Technology,
2005.

HSRF95 Hill, W., Stead, L., Rosenstein, M. and Furnas, G., Recommending and
evaluating choices in a virtual community of use. CHI ’95: Proceedings
of the SIGCHI conference on Human factors in computing systems,
New York, NY, USA, 1995, ACM Press/Addison-Wesley Publishing
Co., pages 194–201.

IFP08 The International Federation of the Phonographic Industry (IFPI) Dig-
ital music report 2008 - summary, http://www.ifpi.org/content/

library/DMR2008-summary.pdf, January 2008. Retrieved 2008-04-06.

JRH06 Jacobsson, M., Rost, M. and Holmquist, L. E., When media gets wise:
Collaborative filtering with mobile media agents. IUI ’06: Proceed-
ings of the 10th International Conference on Intelligent User Interfaces,
2006.

KKP+03 Korpipää, P., Koskinen, M., Peltola, J., Mäkelä, S.-M. and Seppänen,
T., Bayesian approach to sensor-based context awareness. Personal
Ubiquitous Comput., 7,2(2003), pages 113–124.

LGP07 Gnu lesser general public license, http://www.gnu.org/copyleft/

lesser.html, 2007. Retrieved 2008-03-27.

LSY03 Linden, G., Smith, B. and York, J., Amazon.com recommenda-
tions: Item-to-item collaborative filtering. IEEE Internet Computing,
7,1(2003), pages 76–80.

62

MAK+97 McKinney, C. H., Antoni, M. H., Kumar, M., Tims, F. C. and McCabe,
P. M., Effects of guided imagery and music (gim) therapy on mood and
cortisol in healthy adults. Health Psychology, 6,4(1997), pages 390–400.

May04 Mayrhofer, R., An Architecture for Context Prediction. Ph.D. thesis,
Johannes Kepler University of Linz, Austria, October 2004.

Mic08 Microsoft Corporation, Windows media player 11 SDK documentation,
http://msdn2.microsoft.com/en-us/library/bb262657%28VS.85%

29.aspx, 2008. Retrieved 2008-04-13.

Mir07 The 2007 music information retrieval evaluation exchange (MIREX
2007) results overview, http://music-ir.org/mirex/2007/abs/

MIREX2007_overall_results.pdf, 2007.

MK90 Mori, R. and Kawahara, M., Superdistribution: The concept and the
architecture. Transactions of the IEICE, E73,7(1990), pages 1133–1146.

MRF03 Mayrhofer, R., Radi, H. and Ferscha, A., Feature extraction in wire-
less personal and local area networks. MWCN ’03: Proceedings of the
5th International Conference on Mobile and Wireless Communications
Networks. World Scientific, October 2003, pages 195–198.

Nic98 Nichols, D., Implicit ratings and filtering. Proceedings of 5th DELOS
Workshop on Filtering and Collaborative Filtering. ERCIM, 1998, pages
31–36.

NKL+07 Nurmi, P., Kukkonen, J., Lagerspetz, E., Suomela, J. and Floréen, P.,
Betelgeuse - a tool for bluetooth data gathering. BodyNets ’07: Pro-
ceedings of the 2nd International Conference on Body Area Networks,
2007.

Öst04 Östergren, M., Sound pryer: Adding value to traffic encounters with
streaming audio. ICEC ’04: Proceedings of the 3rd International Con-
ference on Entertainment Computing, 2004.

Pam06 Pampalk, E., Computational Models of Music Similarity and their Ap-
plication to Music Information Retrieval. Ph.D. thesis, Vienna Univer-
sity of Technology, Faculty of Informatics, 2006.

63

PB07 Pazzani, M. J. and Billsus, D., Content-based recommendation systems.
In The Adaptive Web, Brusilovsky, P., Kobsa, A. and Nejdl, W., editors,
volume 4321, Springer, 2007, pages 325–341.

PKON04 Patten, C. J. D., Kircher, A., Östlund, J. and Nilsson, L., Using mo-
bile telephones: cognitive workload and attention resource allocation.
Accident Analysis & Prevention, 36,3(2004), pages 341–350.

RIS+94 Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J.,
Grouplens: an open architecture for collaborative filtering of netnews.
CSCW ’94: Proceedings of the ACM conference on Computer supported
cooperative work, New York, NY, USA, 1994, ACM, pages 175–186.

RM06 Reddy, S. and Mascia, J., Lifetrak: music in tune with your life.
HCM ’06: Proceedings of the 1st ACM international workshop on
Human-centered multimedia, New York, NY, USA, 2006, ACM Press,
pages 25–34.

Sal89 Salton, G., Automatic text processing: the transformation, analysis,
and retrieval of information by computer. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1989.

Sav99 Savan, A., The effect of background music on learning. Psychology of
Music, 27,2(1999), pages 138–146.

SBG99 Schmidt, A., Beigl, M. and Gellersen, H.-W., There is more to context
than location. Computers and Graphics, 23,6(1999), pages 893–901.
URL citeseer.ist.psu.edu/schmidt98there.html.

Sch02 Schmidt, A., Ubiquitous computing – Computing in context. Ph.D. the-
sis, Lancaster University, Computing Department, November 2002.

SFHS07 Schafer, J., Frankowski, D., Herlocker, J. and Sen, S., Collaborative
filtering recommender systems. In The Adaptive Web, Brusilovsky, P.,
Kobsa, A. and Nejdl, W., editors, volume 4321, Springer, 2007, pages
291–324.

Slo91 Sloboda, J. A., Music structure and emotional response: Some empirical
findings. Psychology of Music, 19,2(1991), pages 110–120.

64

SM86 Salton, G. and McGill, M. J., Introduction to Modern Information Re-
trieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

SM95 Shardanand, U. and Maes, P., Social information filtering: algorithms
for automating "word of mouth". CHI ’95: Proceedings of the SIGCHI
conference on Human factors in computing systems, New York, NY,
USA, 1995, ACM Press/Addison-Wesley Publishing Co., pages 210–
217.

SPUP02 Schein, A. I., Popescul, A., Ungar, L. H. and Pennock, D. M., Methods
and metrics for cold-start recommendations. SIGIR ’02: Proceedings
of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY, USA, 2002,
ACM, pages 253–260.

ST07 Scheible, J. and Tuulos, V., Mobile Python: Rapid Prototyping of Ap-
plications on the Mobile Platform. Wiley, 2007.

SZ01 Scherer, K. R. and Zentner, M. R., Emotional effects of music: produc-
tion rules. Music and emotion: Theory and research. Oxford University
Press, Oxford, 2001.

WMB01 Wallin, N. L., Merker, B. and Brown, S., editors, The Origins of Music.
MIT Press, 2001.

WPVS05 Wijnalda, G., Pauws, S., Vignoli, F. and Stuckenschmidt, H., A per-
sonalized music system for motivation in sport performance. IEEE
Pervasive Computing, 4,3(2005), pages 26–32.

YGK+06 Yoshii, K., Goto, M., Komatani, K., Ogata, T. and Okuno, H. G.,
Hybrid collaborative and content-based music recommendation using
probabilistic model with latent user preferences. ISMIR ’06: Pro-
ceedings of the 7th International Conference on Music Information Re-
trieval, 2006, pages 296–301.

