

On the System of Systems Approach to
the Development of Everyday Life Applications
Mika Myller

Helsinki 15th September 2005

Master of Science Thesis

UNIVERSITY OF HELSINKI

Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINGIN YLIOPISTO − HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta/Osasto − Fakultet/Sektion – Faculty/Section
 Faculty of Science

 Laitos − Institution − Department
 Department of Computer Science

Tekijä − Författare − Author
 Mika Myller
Työn nimi − Arbetets titel − Title
 On the System of Systems Approach to the Development of Everyday Life Applications
Oppiaine − Läroämne − Subject
 Computer Science
Työn laji − Arbetets art − Level
 Master of Science Thesis

 Aika − Datum − Month and year
 September 15, 2005

 Sivumäärä − Sidoantal − Number of pages
 91

Tiivistelmä − Referat − Abstract

This research project studies compatibility of system of systems
engineering methodologies with the ARKI research group’s
proposal for co-design philosophy and approach and their
applicability to the engineering of the application development
environment of the ARKI research group.

Based on the literature and observations this thesis shows that the
application development environment of the ARKI research group
can be considered as a system of systems having the characteristics
of complex systems. Thereby system of systems engineering
methodology, complex systems engineering, is suggested
preferable to other approaches to engineer the application
development environment of the ARKI research group. In addition
compatibility of complex systems engineering with the ARKI
research group’s proposal for co-design is justified. Further, this
research suggests that the complex systems engineering approach
used in combination with the practice-centered co-design approach
might benefit in general the development of everyday life
applications.

The thesis has been produced under the umbrella of the ARKI
research group, at the Media Lab of the University of Art and
Design Helsinki.

ACM Computing Classification System (1998): C.5.0 [Computer
System Implementation]: General; D.2.9 [Management]:
Programming teams, Software development models; D.2.11
[Software Architectures]: Domain-specific architectures; H.1.1
[Systems and Information Theory]: General systems theory; H.1.2
[User/Machine Systems]: Human factors; H.4.3 [Communication
Applications]: Bulletin boards; J.7 [Computers in Other Systems]:
Consumer products; General terms: Design, Experimentation

Avainsanat – Nyckelord

 co-design, complex systems, everyday life, systems engineering, system of systems, usability

Säilytyspaikka − Förvaringställe − Where deposited
 Library of the Department of Computer Science C-2005-
Muita tietoja − Övriga uppgifter − Additional information

 i

Acknowledgements
I especially would like to thank Kari-Hans Kommonen, research group leader and my

supervisor, for taking me under the umbrella of the ARKI research group and giving

me the grand opportunity to study this interesting subject and trusting that I will

manage to pull this through. Without his inspiring visions and encouragement I

would never have come up with this subject or managed to write a thesis about it.

I thank my supervisors at the University of Helsinki, Inkeri Verkamo and Juha

Gustafsson, for their patience with my ”forever chancing research subject”, and

efforts in pulling me from “philosophical spheres” toward the more solid ground of

computer science. They are not to blame if my feet are flying in the air and head is

still in clouds…

I thank all the members of the ARKI research group, especially Iina Oilinki, Taina

Rajanti and Kirsti Lehtimäki for commenting and helping me with English, and

Elizabeth Bly for proofreading my thesis. Everything that is correct came from them;

all the mistakes are mine.

I thank Miguel Lara Alday for good laughs and support through some difficult times,

which took place at the same time with this project.

I thank for understanding and backing me while I was finishing this

thesis.

Finally, the greatest thanks go to my daughter Iida for reminding me what is truly

important in life and keeping me sane through this frantic episode.

At the end (and for the beginning), I want to cite two authors to express my gratitude

for the words that lead my efforts:

"To define is to kill. To suggest is to create." – Stéphane Mallarmé

"Everything is simpler than you think and at the same time more complex than
you imagine." – Johann Wolfgang von Goethe

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Sticky Note
Accepted set by piippone

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Typewritten Text
Ann

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Typewritten Text

piippone
Typewritten Text
a Kur

piippone
Typewritten Text
vinen

piippone
Typewritten Text

piippone
Typewritten Text

 ii

Contents
1 INTRODUCTION .. 1
2 OVERVIEW OF CO-DESIGN .. 4

2.1 CO-DESIGN – A DESIGN STRATEGY FOR A DIGITAL SOCIETY ... 4
2.1.1 Design.. 4
2.1.2 Rationale for Co-design ... 5
2.1.3 Co-design Approach... 7
2.1.4 Building Blocks and Applications ... 8

2.2 CO-DESIGN AND META-DESIGN .. 11
3 ENGINEERING SYSTEMS OF SYSTEMS.. 15

3.1 SYSTEMS, SYSTEMS OF SYSTEMS AND COMPLEX SYSTEMS ... 15
3.1.1 Complexity, Emergence and Complex Systems .. 19

3.2 TRADITIONAL SYSTEMS ENGINEERING .. 24
3.2.1 The Practice of the Traditional Systems Engineering.. 24
3.2.2 Boundary Conditions for Traditional Systems Engineering.. 25

3.3 AGILE METHODOLOGIES... 29
3.4 SYSTEM OF SYSTEMS ENGINEERING... 32

3.4.1 Implications for System of Systems Engineering .. 33
3.4.2 Proposal for a Methodology .. 34

3.5 COMPLEX SYSTEMS ENGINEERING... 36
3.5.1 Complex Systems Engineering Methodology.. 38
3.5.2 Tactics for Complex Systems Engineering.. 47

3.6 COMPARISON OF SYSTEMS ENGINEERING APPROACHES... 54
4 APPLICATION DEVELOPMENT ENVIRONMENT OF ARKI... 56

4.1 PRACTICAL APPLICATION DEVELOPMENT CASE: VOICE NOTES .. 56
4.1.1 The Architecture of Voice Notes .. 57
4.1.2 Voice Notes Application as a System of Systems.. 58

4.2 CHARACTERISTICS OF APPLICATION DEVELOPMENT IN ARKI... 62
4.3 APPLICABILITY OF SYSTEMS ENGINEERING METHODOLOGIES... 67

4.3.1 Applicability of Traditional Systems Engineering.. 68
4.3.2 Preference of System of Systems Engineering .. 69

4.4 PREFERENCE OF SYSTEM OF SYSTEMS METHODOLOGIES ... 70
4.4.1 Applying Complex Systems Engineering Tactics.. 71
4.4.2 Implications for Application Developers .. 75

4.5 SUMMARY.. 77
5 DISCUSSION .. 79
6 CONCLUSIONS ... 84
REFERENCES... 86
APPENDICES

APPENDIX 1 ZOPE – WEB APPLICATION SERVER

 1

1 Introduction
In everyday life people face diverse digital products and applications: online booking

systems, online banks, online stores, emails, word processors, instant messengers, file

managers, mobile phones, digital calendars, digital cameras... The usability of these

products and applications is traditionally approached through an HCI (human

computer interaction) stance, where an example situation is “a person using an

interactive graphics program” [ACM92]. When the best of breeds of the products

mentioned above are examined in the example HCI situation, they can be considered

usable. However, integration and interoperability difficulties that people encounter

when trying to use a set of these products to achieve their various goals, suggest that

there is need for a more comprehensive approach in order to improve the usability of

these products.

We in the ARKI research group at the Media Lab of the University of Art and Design

Helsinki have approached this challenge through a co-design philosophy. We aim at

elaborating a dynamic design methodology, where the multitude of surrounding

products and systems are taken into account and designed to be an open system that is

continuously adapted to the practices of everyday life uses. During our research we

have implemented and intend to implement several applications in order to

experiment with our concepts. Gradually we have begun to consider that we should

more consciously engineer our own application development environment toward an

open and adaptable system that better meets our co-design goals. The problem that

has emerged is how one should approach engineering such a system.

The challenge is that the Application Development Environment of the ARKI research

group (ADEA) is composed of our and third parties’ systems (products and

applications) that are built more or less independent development tracks. Furthermore,

the ADEA includes potentially all possible systems that are found interesting at some

phase of the research. Thus, it is reasonable to argue that rather than a single system

the ADEA is a system of systems: a system that is composed of independent systems

that are managed separately [GDM05]. Or, even a complex system: a system of

 2

system having characteristics of an ecosystem1 [NoK04]. The literature presents

approaches to the engineering and management of large complex systems of systems

such as air and space operation centers and port security systems (see Bar03, CoK03,

Kea03, NoK04) but applicability of these approaches to engineering small systems of

systems, such as the ADEA, has not been studied.

This research set out to study the applicability of the system of systems engineering

approaches to engineering the ADEA and the compatibility of these approaches with

our proposal for co-design. However, it is important to notice that this research is not

co-design and does not include applying co-design. The intent of this research is to

support our co-design research by approaching the application development from its

philosophical perspective and building an insight to guide the engineering of the

ADEA. Based on literature and personal observations this thesis shows that the

ADEA can be considered a complex system and complex system engineering can be

applied to engineering it. Further, this research suggests that the complex systems

engineering approach used in combination with the practice-centered co-design

approach might benefit in general the development of systems of everyday life.

Computer science has traditionally approached systems engineering and advancing

information technology knowledge from technical perspective. But although every

systems engineering problem has technical aspects, in the case of systems of systems

just as important, and some might argue more important, are the contextual, human,

organizational, policy, and political system dimensions that shape the decision space

and feasible solutions for the technical system problems [Kea03]. Therefore, instead

of addressing system of systems engineering primarily from the technical perspective,

this thesis approaches its research subject from a wider contextual perspective. This

necessarily entails philosophical and methodological problems with the consequence

that the technical perspective is less predominant. Nevertheless this thesis aims to

contribute to advancing information technology knowledge.

1 Here the term ecosystem stands for the complex of a community of independent
agents and its environment functioning as an ecological unit (a unit of living
organisms and their environment).

 3

This thesis is organized into six chapters. In the following chapter, I present briefly

the ARKI research group’s proposal for co-design approach and philosophy, its main

concepts and its relation to other usability approaches in order to build understanding

of the relevance of system of systems engineering perspective to this research. In the

third chapter, I view systems engineering from the system of systems perspective and

review systems engineering methodologies. In the fourth chapter, given the materials

presented, I view application development and the engineering of the ARKI research

group’s application development environment from system of systems engineering

perspective. In the fifth chapter, I discuss the relevance of this research for everyday

application development. Finally, in the sixth chapter I present the conclusions and

results of the research and suggest directions for future research.

 4

2 Overview of Co-design
In this chapter I briefly present the ARKI research group’s proposal for co-design1

and view its relation to other usability concerned design approaches. The aim of this

presentation is only to be illustrative, not exhaustive. The purpose is to give enough

information to understand the background and design philosophical constraints set for

this study. The intent is neither to assess the ARKI research group’s proposal for co-

design, its methodology or terminology, nor justify them. They are given as the

“boundary conditions” and to contradict them is out of the scope of this thesis. In the

following I refer to the ARKI research group’s proposal for co-design as our proposal

for co-design.

2.1 Co-design – a Design Strategy for a Digital Society

The starting point of this thesis is co-design, a proposal for a design strategy for a

digital society. At the moment our proposal for co-design is rather a philosophy than a

formal methodology – even its name is still arguable. It is inevitably work in progress,

and therefore giving finite description is impossible. However, there are design

approaches that relate to co-design and having a look at those helps to get a picture of

our proposal for co-design. But before going to relations of co-design with other

design approaches, I approach co-design by presenting some of the understanding it is

based on.

2.1.1 Design

To understand co-design it is good to revisit the concept of design to free it from its

exclusive use in relation to designer identity. However, proving the fundamental

nature of design goes far beyond the purpose of this research, and my aim is only to

1 The information of the ARKI group’s proposal for co-design presented in here is
based on presentations and documents by group leader Kari-Hans Kommonen
[Kom01, Kom03a, Kom03b, Kom03c] and notes by researcher Andrea Botero
Cabrera and other group members [Bot04a] as well as on discussions with Kari-Hans
Kommonen. A more comprehensive discussion of the background of the ARKI
research group’s proposal for co-design is presented in Botero Cabrera et al.,
Codesigning Visions, Uses, and Applications [Bot03].

 5

present some ideas that support rethinking the concept of design and understanding

our approach to design.

Herbert Simon offers a good starting point to reconsider design. He argues in Sciences

of the Artificial [Sim69, p. 111] that:

“Everyone designs who devises courses of action aimed at changing existing
situations into preferred ones. The intellectual activity that produces material
artifacts is no different fundamentally from the one that prescribes remedies
for a sick patient or the one that devises a new sales plan for a company or a
social welfare policy for a state. Design, so construed, is the core of all
professional training; it is the principal mark that distinguishes the professions
from the sciences. Schools of engineering, as well as schools of architecture,
business, education, law, and medicine, are all centrally concerned with the
process of design.”

However, design is not limited only to practice of design in profession. Design can be

considered as a basic, fundamental human characteristic. People design in their

everyday life all the time; aims to shape one’s life are an example of this. One can

even argue as Nelson and Stolterman do in their book The Design Way: “Humans did

not discover fire – they designed it” [NeS03, p. 9]. Hence, it is somewhat justified to

consider design, an intentional act to change or improve an existing situation into

preferred one, as Rachel Strickland, an architect and videographer, has noted: “a

fundamental element of our species adaptation” (as quoted by Tom Moran1).

2.1.2 Rationale for Co-design

The understanding of design as a fundamental human characteristic forms a postulate

for our proposal for co-design. But where it fundamentally emerges is the

understanding that new technology and products can only become successful after

people integrate them into their own lives (e.g. mobile phones and SMS, email, web

blogs). In this way, people always perform the last steps of the design process and

only through the new practices they introduce into the social system (families,

communities, networks of friends), the products will become interesting to other

people. On the other hand, having a role in social systems the products of digital

technology influence people’s ability to design their practices. That, on the other

1 http://www.cityofsound.com/blog/2002/08/tom_moran_on_ev.html [18.4.2005]

 6

hand, depends on the products’ capabilities to be incorporated into the complex of

products and people and its environment functioning as an ecological unit – into the

ecosystem of the digital environment of everyday life.

We believe that some of the most severe barriers for usability and usefulness of new

products rise from the lack of attention to ecosystemic issues. The system of digital

products of everyday life is more complicated than the system of traditional products

in the industrial society: each product is a component of an ecosystem of activities

and relationships with other products and actors (see Figure 1). The traditional

development model, in which systems are designed exclusively by experts in isolated

developments and design is considered being finished at the factory, provides

products that are usually designed to be fairly “closed” (as opposite of open) with

little opportunity for creating new functionality. This leads to interoperability and

system integration problems that people must face and solve alone with little help

from the producers. However, the diversity of individual needs in the consumer

market makes it difficult or impossible to survey a sufficiently comprehensive user

feedback, let alone to take it into full account and do customizations and integrations

that people need. Therefore, people need to be able to do final adaptation or design by

themselves.

7

Figure 1. In order to have my master's thesis written I had to copy and paste text
and images from various sources to a word processor. In order to get my
master’s thesis commented and finished I had to copy and paste several

fragments of text to emails and instant messages and send several versions of the
thesis to my colleagues (and my colleagues back to me) by email. To make the
suggested changes to my thesis I had to copy and paste again text and images

from various sources to have them modified. Thus, my colleagues and I
“integrated” these various products into “Master's thesis writing and

commenting system”.

2.1.3 Co-design Approach

Co-design aims at tackling the above-mentioned ecosystemic problems by

empowering the members of the social systems to design better and more functional

and interesting systems. Our proposal is to enable social innovation by moving from a

product oriented design process to a user practice centered dynamic design process.

Instead of producing final static solutions to abstracted users, we aim to design the

technology together with people toward an open system that is continuously adapted

to the practices of everyday life uses. In order to achieve this we seek to involve more

stakeholders (real people) than just users in a shared project, which is started by

reflecting everyday practices instead of focusing only on products. During the project

we aim to facilitate collaborative design by showing to stakeholders in a dialogical

way the emerging possibilities and limitations of the technology. We hope to achieve

 8

this through identifying appropriate design interfaces, the set of tools, methods and

practices that facilitate design activity (e.g. a shared language), for the different

design layers, stages and stakeholders of the project, during the co-design process.

The ecosystemic view is embedded into our approach: the social system and its design

(e.g. the practices of community) are considered as an integral part of the process and

its outcomes as the final digital artifacts, applications and building blocks, which I

explain in the next chapter.

2.1.4 Building Blocks and Applications

Instead of the term product we rather use the terms application or building block

depending on the context. A very simple view of the relation of applications and

building blocks is that applications are composed of building blocks. However,

thinking of an application as a traditional product does not give an accurate

description of the concept of an application in our terminology but while the concept

of a building block is explained in more detail the simplified definition of application

serves the purpose.

Building blocks can be considered to range from the lower design layers’

technological components (hardware and software) that are close to developers to the

upper design layers’ elements (application concepts) that are close to the end-users

and designers. The purpose of defining and describing building blocks is to enable

stakeholders in other design layers to understand what various components and

elements are, what services they provide and under what conditions, and how they can

be interacted with. For the software designers, to consider systems as layers is

common practice. The challenge however is in extending communication to people

who do not understand each other’s components and language for describing the

functionality that the components offer. Thus, describing building blocks is about

defining appropriate design interfaces in order to (co-)design applications.

Applications on the other hand, we understand first as things that people do,

practices, and only second as products. Therefore our concept of application differs in

some extent from the concept of application (text processors, browsers, calendars etc.)

used in information technology industry. On the other hand it is used more in its

 9

original meaning: a digital product can be used or applied to one or more things.

Hence, it can have (or be part of) one or more applications. To understand the

difference one might think of an application as an application of applications, a meta-

application. As the concept suggests, a meta-application is an application that consist

of other applications or products (compare to a meta-system that is a system of

systems). But rather than composition of products, applications are for us essentially

practices, in which they differ from traditional applications and products that are

physical objects.

For example, my favorite application is “sharing photos of my daughter with my

parents”. The practice is more essential than the composition of this application.

There are several possible compositions, designs, which consist of several traditional

applications and products or rather building blocks. One of them consists of a digital

camera, a personal computer, an image viewer, and email (see Figure 2). However,

perhaps I could have a family album on my home server where I could put the photos.

Whenever I add these photos, my parents will be informed automatically about the

new photos in the album. This composition would enable realizing other similar

applications with little effort (see Figure 3). Therefore the concept of application in

our terminology is better understood as a practice rather than a product, and practices

are essentially design opportunities: they reveal need for new designs.

Figure 2. The application of “sharing photos of my daughter with my parents”.

 10

Figure 3. The application of “sharing photos of my daughter with my parents”
realized using a home server and the application of “sharing photos of my

daughter with my sister” which is realized using same building blocks with little
more effort.

In summary, when our everyday life digital products and applications are examined

separately, their usability can be considered high in general. They support well our

simple tasks, e.g. as writing a party invitation. However, when one considers

practices, e.g. organizing a party, there seems to be possibility to improve their

usability. The problem, however, is not that people have to integrate products as

meta-applications, systems of systems of everyday life, although occasionally this

may suggest need for a product that better supports the needs. The problem is rather

that there are not enough possibilities for people easily to compose independent

products to systems of systems (see Figure 4). People are forced to act as system

integrators and adaptors in their daily life in order to achieve their goals. For example

if you want to go to aerobics you may be able to book the time online but the

reservation does not go to your digital calendar unless you copy it from the display

and neither does the reminder of the last day to return books that you borrowed from a

public library nor your flight reservation. Or if you have to travel with public

transport from your home in Tampere to your office in Helsinki, Tampere’s local

route guide system does not interoperate with the train guide system and neither does

train guide system with Helsinki’s local route guide system. You are forced to act as a

system integrator and connect systems to each other by copying data from one system

to another system. These examples suggest that there is need for a more

11

comprehensive view on development of applications, products, and systems, which

we encounter in our everyday life.

Figure 4. An improved version of my “Master's Thesis Commenting System”
from my perspective. Instead that I operate as a “systems integrator” the

products offers capabilities to be integrated with each other.

2.2 Co-design and Meta-design

Our proposal for co-design has many interesting points of convergence with the

framework of meta-design by Fischer et al. [FiG04]. It might help to understand

co-design by comparing it and meta-design and other “human-centered design”

approaches such as user-centered design [NoD86] and participatory design [ScN93]

because unlike co-design, these approaches are comprehensively documented in

literature. Prior to comparing these approaches there are two concepts that need to be

defined. They can be considered as “two basic stages of all design processes”: design

time and use time [FiG04]. At the design time, systems developers create

environments and tools, as well as in conventional design approaches they create

complete systems for the world-as-imagined [FiG04]. At the use time, users use the

 12

system to fill their needs but only to the extent that those needs are anticipated at the

design time unless some modifications are made to the system [FiG04].

The similarities and differences between the above-mentioned “human-centered

design” approaches are exposed by two aspects: 1) their understanding of people and

2) their focus on activities during “the two basic stages of all design process”, design

time and use time. User-centered approaches can be considered limiting their

understanding to people mainly as users (instead of e.g. as the members of the

society). Therefore, they naturally place users in the central role and have a lot of

focus on usability activities and processes taking place at design time in the systems’

original development processes. The other approaches consider people more in their

everyday context and not just as task-centric users. These people-centered design

approaches seek to involve people (“users”) more deeply in the collaborative design

process as co-designers or co-developers by empowering them to propose and

generate design alternatives. By making work, technologies, and social institutions

more responsive to people’s needs, people-centered approaches also support more

than user-centered design approaches diverse ways of thinking, planning and acting.

However, both co-design and meta-design differ from user-centered design and

participatory design approaches (whether done for users, by users, or with users) in

their emphasis and aim to support people to evolve systems themselves.

Unlike user-centered design and participatory design approaches which place users

mainly in reactive role, co-design and meta-design aim to provide people with means

to be proactive. User-centered design and participatory design approaches focus on

system development at design time and in both approaches developers and people

(users) are brought together to envision the context of use only in design time. From

the perspective of co-design and meta-design this is inadequate. Despite the best user-

centered and participatory design efforts at the design time, systems and people are

having difficulties when they need to adapt systems to new needs, account for

changing tasks and practices, deal with subjects and contexts that increasingly blur

professional and private life, couple with socio-technical environment in which they

live, and incorporate new technologies [HeK91].

 13

As a response to the above-mentioned challenges co-design and meta-design aim to

create open systems that can be modified by their users and evolve at use time, hence

supporting more complex interactions rather than linear or iterative processes.

Because open systems should allow significant modifications when the need arises,

both approaches set supporting the evolution that takes place through modifications as

a “first class design activity”. Bonnie Nardi advocates eloquently this call for open,

evolvable systems in her book A Small Matter of Programming [Nar93, p. 3]:

“We have only scratched the surface of what would be possible if end users
could freely program their own applications. [...] As has been shown time and
again, no matter how much designers and programmers try to anticipate and
provide for what users will need, the effort always falls short because it is
impossible to know in advance what may be needed. [...] End users should have
the ability to create customizations, extensions, and applications...”

In summary, both co-design and meta-design aim at defining and creating a social and

technical environment in which collaborative design can take place. Further, both

approaches extend the traditional notion of system design beyond the original

development of system to include a co-adaptive process between users and system, in

which users become co-designers. However, there are also some differences between

co-design and meta-design, aspects that are missing or are not clearly articulated in

the framework of meta-design approach [FiG04].

One of the differences between co-design and meta-design is that we believe that

people may have more to give if they were involved prior to deciding what systems or

products will be developed. Therefore, we do not try to enable people to take

advantage of new technology only in collaborative design but rather a “collaborative

innovation” process by involving people to innovate before any decisions about a

system or a product to be designed are made. This aspect is missing or is not well

presented in the current framework of meta-design although meta-design also

emphasizes the importance of social-innovation.

Another difference between co-design and meta-design is domain. Meta-design has

concentrated to design expert systems (or rather systems for experts) of organizations

[Fis01, Fis05] that can be considered very centralized and specialized, and having

clear boundaries. But the “system” of our interest, the digital environment of

everyday life, is very heterogeneous and has unclear boundaries. For the research

 14

problem of this study, engineering the ARKI research group’s application

development environment, this is the most interesting difference, which I show below

by viewing the process model presented by Fischer et al. [FiO02].

In order to manage the development of large evolving expert systems and information

repositories, Fischer et al. have presented a process model called Seeding,

Evolutionary growth, and Reseeding (SER) [FiO02]. They justify the model by

arguing that systems that evolve over a sustained time span must continually alternate

between periods of activity and unplanned evolutions and period of deliberate

(re)structuring and enhancement. In short, instead of building complete and closed

systems, the SER model advocates building seeds that can be evolved over time

through the contributions of people. During the evolutionary growth phase, people

focus on solving a specific problem and creating problem-specific information rather

than on creating re-usable information. In the reseeding phase the information

gathered during evolutionary growth is organized, formalized, and generalized

deliberately and in a centralized manner.

The SER process model is evidently feasible and useful in the development of

complex socio-technical systems such as expert systems. But although the ARKI

research group’s application development environment is a sort of expert system, the

SER model is only partly applicable to our purposes (e.g. developing one of our

online collaboration environments), and therefore it is not quite adequate for us. The

reason for this is that the characteristics of systems and the domain that the SER

model is designed for differ from our domain and system. Rather than being a single

system, the ARKI research group’s application development environment as well as

the domain of our interest (the digital environment of everyday life) is a system of

systems and as such its development would probably benefit from applying the system

of systems engineering methodologies suggested in the literature [Bar03, CoK03,

Kea03, KSM03, NoK04]. In the next chapter, I review systems engineering from the

perspective of these methodologies.

 15

3 Engineering Systems of Systems
In this chapter I review engineering systems of systems. First, to facilitate discussion I

define the concepts of system, system of systems and a specific kind of system of

systems, complex system. After that, I briefly present the traditional systems

engineering approach and the boundary conditions that have been recognized for

applying it. These boundary conditions together with the characteristics of the

systems of systems suggest the need for an alternative approach to engineer systems

of systems. In the remainder of this chapter I review emerging system of systems

engineering methodologies that attempt to address the shortcomings of traditional

systems engineering in addressing system of systems problems.

3.1 Systems, Systems of Systems and Complex Systems

So far I have laid the concept of system on common understanding of what systems

are. In order to facilitate discussion on single systems and systems of systems I now

give a more accurate definition of the system and the system of systems. A single

system is [GDM05]:

“a combination of dependent elements operating together to accomplish a single
common goal. The system cannot be expected to operate in the designed
manner without its components and the components serve no useful purpose
when separated from the system.” See Figure 5.

 16

Figure 5. A single system, its components, and the environment. [GDM05]

A system of systems is [GDM05]:

1: “a system built from independent systems that are managed separately from
the larger system”;

2: “a subset of systems”.

When composed to a system of systems, the component systems produce some utility

that is greater than the sum of the individual component systems, e.g. produces some

functionality that did not exist before or improves the usability of existing

functionality. But when separated – unlike system components – the components of

system of systems that are systems by the definition still serve some useful purpose.

As single entities the component systems interact with both the environment and each

other (see Figure 6). [GDM05]

 17

Figure 6. A system of systems and the environment. [GDM05]

Where it is obvious based on the context, I will use the term system for a single

system but when there is possibility for confusion, I will use the terms single system

or stand-alone system. However, it should be clear that single systems and systems of

systems are both systems although their characteristics differ. In order to distinguish

very large and complex but monolithic systems from true systems of systems Maier

has defined five characteristics of systems of systems, which I view in the case of the

Internet [Mai96]:

The first characteristic of system of systems is the operational independence of the

elements. If the system is decomposed, each element (component system) can still

perform independently of the others. The elements of the system of systems are

independent and useful in their own right. For example, the Internet is composed of

computers and computer networks, which may continue their operation if the Internet

were decomposed.

 18

The second characteristic is the managerial independence of the elements. Each

component system has its own purpose independent of the other component systems

and they are managed separately for that purpose. The component systems are

acquired separately and integrated. After integration, they maintain a constant

operational existence independent of the system of systems. Again, the elements of

the Internet fulfill this characteristic. They are acquired separately and after

integration, connecting them to the Internet, they maintain their operational

independence.

The third characteristic is evolutionary development. The system of systems is not

fully formed or finished. Its development and existence is evolutionary with functions

and purposes added, removed, and modified as experiences are gathered. It

continually evolves as needs change and newer technologies become available. For

example, computers and computer networks offering new services are constantly

added into the Internet, modified and in some cases removed.

The fourth characteristic is emergent behavior. The system of systems performs

functions and carries out purposes that are not possible by any of the individual

systems operating alone. The reason for developing the system of systems is to obtain

this unique behavior. In the case of the Internet, the World Wide Web is one of the

examples of emergent behavior.

The fifth characteristic is geographic distribution. In many cases individual

component systems are distributed over large geographic areas. They can readily

exchange only information and not substantial quantities of mass or energy. In the

case of the Internet, this is self-evident. The Internet is spread around the World and

the computers can only exchange information and neither mass nor energy.

In order to be considered a true system of systems, a system should have all or a

majority of these characteristics [Mai96]. However, to understand system of systems

problems these characteristics are not sufficient. To have understanding of the special

characteristics of system of systems problems the concepts of complexity, emergence

and complex systems are essential. In the following, I study these concepts in detail.

 19

3.1.1 Complexity, Emergence and Complex Systems

In this chapter, I define the concepts of complexity, emergence, and complex systems.

They are needed to understand system of systems problems and systems engineering

approaches proposed to address the problems. I start from a simple definition of

complexity and give a preparatory definition for a complex system. Then I review the

concept of emergence and return to complexity in order to render it to a useful

engineering concept. Finally, I define the characteristics of complex systems more

precisely from the perspective of developing an engineering approach.

First, the term “complexity” does not mean “difficult to understand”, although

something that is complex may be understood only with considerable effort

[NoK04, p. 11]. Merriam-Webster Online1 offers the following definition for the term

“complex”:

1: a whole made up of complicated or interrelated parts

To explain the difference between simple and complex systems, the term

“interrelated” is essential. To understand the behavior of a complex system we must

understand not only the behavior of the parts but how they act together to form the

behavior of the whole [Bar97, p. 1].

Also the term “complicated” is important. The parts of a complex system are often

complex systems themselves [Bar97, p. 5]. However, this is not the only possibility.

We can describe a system composed of simple parts where the collective behavior is

complex. This is called emergent complexity [Bar97, p. 5]. Any system formed out of

atoms is an example. The idea of emergent complexity is that many simple parts

interact in such a way that the behavior of the whole is complex2. [Bar97, p. 5]

Emergence, considering a collection of elements and the properties of the collective

behavior of these elements, is one of the two approaches to organizing the properties

1 http://www.webster.com [1.3.2005]
2 We can describe also a system composed of complex parts where the collective
behavior is simple. This is called emergent simplicity. An illustrating example is a
planet orbiting around a star. The behavior of the planet is quite simple, even if the
planet is the Earth that has many complex systems upon it. [Bar97, p. 5]

 20

of complex systems [Bar97, pp. 5, 10]. The second approach begins from

understanding the relationship of systems to their descriptions. For this approach, the

central issue is to define qualitatively what we mean by complexity. It aims at

answering what we mean when we say that a system is complex and how to identify

complexity of one system and to compare it with the complexity of another system.

[Bar97, p. 6]

Bar-Yam [Bar97, p. 12] suggests that

“Loosely speaking, the complexity of a system is the amount of information
needed in order to describe it. The complexity depends on the level of detail
required in the description.”

Norman and Kuras [NoK04, pp. 11–12] argue that although this definition takes the

concept close to a useful understanding for engineering, and borrows in an attractive

way from Shannon’s information theory [Sha48], it also seems arbitrary in some

ways, as it suggests that a collection becomes more complex when measured with

more precision. For example, if one calculates all the possible arrangements of books

in the office, the number of discernible possibilities is different depending on the

precision of the ruler used. However, it is still the same room and the same set of

books. Arguably, the complexity should be the same. It should not depend on the

measuring method. The counter argument is that the use of a different ruler is

equivalent to using a different scale; hence, finding that the complexity at different

scales is different should not be surprising [NoK04, p. 12].

There are also other interesting views of complexity. One aspect to contemplate is the

difference between the actual number of possibilities and the number of useful

possibilities [NoK04, p. 12]. Another view of complexity is Turchin’s theory known

as Metasystem Transition Theory [Tur77, Tur95], which describes an evolutionary

process that generates higher levels of complexity and hierarchical control in system

structure and function. However, whatever model is used to understand complexity,

rendering “complexity” into a useful engineering concept requires metrics

[NoK04, p. 12].

Norman and Kuras [NoK04, p. 13] suggest that measures of complexity and intricacy

may serve as good metrics to understand the relative merits of a system, and may be

 21

useful for relative comparisons. The term “intricacy” is often considered synonymous

with the term “complexity”. However, there is a reason to argue that they are not

synonyms. There is a difference, which an example may help to understand. Norman

and Kuras [NoK04, pp. 12–13] use a board game called Mousetrap played by

children. In the game, players move colored mice that act as playing pieces around a

board. In doing so they build a Rube-Goldberg mousetrap which one player ends up

using to capture the other player’s mouse, thus winning the game. The advertising

copy reads as follows1:

“Construct a crazy mice-catchin’ contraption piece by piece as you race your
mice around the track! Once it’s built, turn the crank...that kicks the
marble...that rolls down the chute...and sets off a zany chain reaction that just
might trap a pesky mouse!”

The bizarre mouse-catching device is intricate, “difficult to understand”. However, it

is not complex. First, it has only one possible configuration, and it results in only one

behavior. Second, it does not interact at all with its environment. Each piece is

carefully fitted onto the previous structure, which sets up the conditions for the

subsequent structure, and it assembles the same way each time. [NoK04, p. 13]

Norman and Kuras [NoK04, p. 13] ground their argument of the usefulness of

measures of complexity and intricacy on the mathematical properties of complexity

and intricacy. They argue that the mathematical properties of complexity and

intricacy can be shown to relate to specific mathematical characteristics. It appears

that intricacy relates to the number of axes of characterization, “the absolute volume

of a hyperspace defined by axes”, whereas complexity relates to “the volume

reachable within this hyperspace” [NoK04, p. 13]. For example, the hyperspace of the

mousetrap device has many axes; yet the mousetrap device has a narrow extent along

each axis, forming a narrow volume of reachability within this hyperspace

[NoK04, p. 13]. However, Norman and Kuras leave the detailed mathematical

treatment of the subject in a subsequent publication and approach the rendering of the

“complexity” to a useful engineering concept by reviewing formulations of

complexity in the discipline of architecture.

1 http://www.areyougame.com [2.3.2005]

 22

Christopher Alexander’s architectural patterns offer models for considering

complexity and emergence in the architecture [Ale79]. Emerging from the repeated

application of the principles, Alexander writes about spaces, homes, town and cities,

which are “alive”. Norman and Kuras write about Alexander’s concept of “alive”, his

patterns, and their meaning for the complex systems [NoK04, p. 13]:

“His concept of ‘alive’ is a reflection of the interactions among the
components in the environment and the people, and the support the
environment affords to the repeated patterns and events, which make up the
peoples’ experiences minute-to-minute and day-to-day. He recognizes that
there are both patterns formed at higher levels from bottoms-up application of
patterns, and there are explicit patterns applied at higher levels – and in this he
hints at multiscale analysis.”1

Fundamentally, Alexander is talking about the relations among interacting entities,

and the results of those relations [NoK04, p. 13]. His notion of complexity seems to

align the notion of “order”. In the informal sense order is often associated with

organization as well as with the actions or other forms of direction that lead to the

organization [NoK04, p. 13–14]. In that sense, order is not simply a passive thing, a

state property, but it is dynamic. It combines both form and function. Thus, by

focusing on the relationships of things, not just the state of the things as a result of the

relationships, we can understand the reasons for the organization and perhaps

understand the implications to change, and even infer or deduce state elsewhere,

which may be out of view [NoK04, p. 14].

Formally, the order of a system is a measure [NoK04, p. 14]. The measure is the set of

all specific and instant relationships among the parts of a system. The “relationships”

as defined by Norman and Kuras are: “patterns in attributes, where attributes define

the parts of a system (and sets of ‘values’ define attributes)” [NoK04, p. 14]. Now, it

is possible to infer or deduce the specific values of an attribute, a part of a system,

based on other attribute values because those attribute values collectively form

relationships, i.e. patterns. [NoK04, p. 14]

Compared with other given characterizations of complexity, Norman and Kuras’

characterization of complexity seems to provide the most useful characterization of

1 About applying multiscale analysis see Duality in Chapter 3.5.1.

 23

complexity for engineering purposes. It manages to characterize things in active way,

which is more than appropriate for entities that are active, systems.

Finally, having an understanding of complexity and how it might be measured, we

can review what makes a system a complex system. In the following are the

characteristics of complex systems presented in the literature [Bar97, Hey95, Hol95,

Kau93], which must be considered when developing an engineering approach

[NoK04, p. 15, Nor04, p. 5]:

- The structure and behavior of a complex system is not deducible from the

structure and behavior of its component parts.

- The elements of a complex system can change in response to imposed

“pressures” from neighboring elements (consequently leading to reciprocal

and transitive implications).

- A complex system has a large number of useful potential compositions of

its elements.

- Given a steady influx of energy (raw resources), a complex system

increases its own complexity.

- A complex system is characterized by the presence of independent change

agents.

Engineered systems of systems can be seen having these characteristics [NoK04].

Furthermore, systems of systems can be viewed as having the characteristics of

ecosystems [NoK04 pp. 1, 17]. Rather than being top-down designs, complex systems

are bottom-up constructions. They evolve through co-evolution [Nor04]. The concept

of co-evolution, on the other hand, comes originally from biology. In the nature

species and organisms live in an environment and form an ecosystem of

interdependent organisms and species. Co-evolution occurs when these organisms and

species, agents, living in close relationship adapt to changes caused by each other.

The relationships can be predator-prey relationships or more like a symbiosis, the

 24

main thing is that the agents affect each other causing “development pressure”. The

change in a complex system is introduced very much like in an ecosystem. Change

causes local “pressures” among juxtaposed elements against which the system

responds [Nor04].

Thus, with the complex system we mean a system that fulfills the characteristics listed

above, a system that is active and “alive”, and cannot be isolated or studied separately

from its environment. For characterization and comparison of a complex system, the

balance of complexity and intricacy might serve as a measure, whereas other

corollaries of these measurements might be a measurement of the rate at which the

system adapts to required or desired change [NoK04, p. 15].

Given the definitions of a single system, a system of systems and a complex system, I

proceed to reviewing traditional systems engineering and reasons for its shortcomings

in dealing with systems of systems.

3.2 Traditional Systems Engineering

Systems engineering, as any engineering discipline, is the subject of ongoing

discussion, research, and debate. There are several standards and models produced by

various organizations, e.g. INCOSE Systems Engineering Handbook [INC04], IEEE

Standard 1220-1998 [IEE98], CMMI®1, but there is no single commonly agreed

standard or model on how systems should be engineered. However, it is possible to

identify the main features of most commonly applied approaches, and to give an

abstract presentation of traditional systems engineering (TSE).

3.2.1 The Practice of the Traditional Systems Engineering

TSE decomposes distinct functions of the engineering process into individual phases

that can be performed sequentially, each phase building on the previous one. The

most familiar process models of this approach are waterfall model [Roy70] and spiral

model [Boe88]. Most systems engineering approaches are variations of these two

1 http://www.sei.cmu.edu/cmmi/cmmi.html [3.9.2005]

 25

basic process models. Both processes proceed through a well-defined series of stages,

specifying requirements, developing designs, and implementing and testing those

designs to comply with or to satisfy exactly the specified requirements. The waterfall

approach tends to go through this process only one time. It aims at getting everything

right the first time by building systematically from coarse to fine granularity in design

and implementation. The spiral approach proceeds through the process many times.

These are called iterative cycles. In each cycle a more complete design or

implementation is created, problems from the past cycles are corrected, and new

previously ignored details are added.

Whether the process model is the waterfall model or the spiral model, the practice of

TSE can be considered as the application of a series of linear transformations moving

from the statements of the requirements to a preliminary design, a final design, actual

development, then testing and delivering [NoK04, p. 7]. In the waterfall model this

happens only once, whereas in the spiral model this happens in each cycle. The other

fundamental characteristic that unifies different TSE approaches is the aim to

understand the position of a system within the environment, isolate the system under

study from the environment, and then treat the environment as a constant

[NoK04, p. 8].

3.2.2 Boundary Conditions for Traditional Systems Engineering

TSE has been and is an effective and proven discipline for addressing the problems of

single and even very technically complex systems. The Manhattan project (the atomic

bomb) and the Space program (the conquest of the Moon) stand as the hallmarks of

TSE approach to engineering large projects [Bar03], and several smaller and less

known but equally successful projects stand as the proof of its solid practices.

However, to have a successful, or at least a low risk outcome, there are some

absolutely required characteristics, boundary conditions, for applying TSE

[NoK04, p. 9]. Failing to have any of these boundary conditions raises the risks of

TSE projects dramatically, and it is unlikely that other mitigation strategies can be

found to reduce the risks introduced [NoK04, p. 9]:

 26

1) The specific desired outcome must be known a priori, and it must be clear

and unambiguous (implied in this is that the boundaries of the system, and

thus responsibility, are clear and known);

2) There must be a single, common manager who is able to make decisions

about allocating available resources to ensure completion;

3) Change is introduced and managed centrally;

4) There must be interchangeable resources (that is money, people, time,

etc.), which can be applied and reallocated as needed.

Keating et al. [KSM03] have also presented a very similar list of conditions but not as

strict as the boundary conditions presented above. Their six primary conditions

suggest only that a system of system engineering methodology may be preferable to

TSE approaches if any or all of the following conditions are present:

1) Turbulent environmental conditions – the environment for systems

engineering effort is highly dynamic, uncertain, and rapidly changing.

2) Ill-defined problem conditions – the circumstances and conditions

surrounding the problem are in dispute, not readily accessible, or lack

sufficient consensus for initial problem definition.

3) Contextual dominance – the technical aspects are overshadowed by the

context within which the problem system is embedded. Success will be as

much determined by adequately addressing the contextual problem drivers

as the technical problem drivers.

4) Uncertain approach – the path of progression on how “best” to proceed

with systems engineering effort is indeterminate. Standard processes for

systems engineering are either failing or highly suspect for adequately

addressing the situation.

 27

5) Ambiguous expectations and objectives – the ability to establish measures

of success or system objectives for the systems engineering effort are

vague. This may be a result of inadequate understanding, hidden motives,

or lack of technical competence to proceed with a systems engineering

effort.

6) Excessive complexity – the boundaries of the system are such that its

complexity is beyond capabilities of TSE. To proceed requires significant

simplification of objectives.

In general, the emerging systems of systems problems are recognized to stretch the

boundaries of TSE [Kea03, Bar03, NoK04]. Despite the success of the Manhattan

project and the Space program, the reality is that most large engineering projects,

which generally continue to follow the TSE paradigm, are much less satisfactory

[Bar03]. The reason is that inherent to the paradigm there are several assumptions that

are questionable in the present systems of systems environments [Bar03]:

1) Substantially new technology will be used.

2) The new technology to be used is based upon a clear understanding of the

basic principles or equations that govern the system.

3) The goal of the project and its specific objectives and specifications are

clearly understood.

4) Based upon the specifications, a design will be implemented and

consequently the project or mission will be accomplished.

First, in the case of system of systems it is unlikely that only new technology will be

used and the system of systems can be changed from the old to a new one over a very

short time [Bar03]. The engineers have to deal most likely with legacy systems.

Second, it is unlikely that there is a clear understanding of the basic principles and

equations that govern the system of systems. The non-linear dynamics of engineered

systems of systems, which are also considered having the characteristics of complex

systems [Bar03, CoK03, NoK04], are difficult to understand (see Chapter 3.1.1).

Furthermore, although technical aspects are important, in the case of system of

systems just as important, or one might argue more important, are the contextual

 28

issues: human, organizational, policy, and political system dimensions that will

ultimately change the decision space and feasible solutions for technical system

problems [Kea03]. This has been recognized repeatedly in the socio-technical

literature (e.g. TaF93, Kea01). Third, although the overall goal of the system of

systems project might be clear in succinct form, the specific objectives are most likely

ill-defined, unclear and unambiguous [Bar03, Kea03, NoK04]. Fourth, because of the

long-term maintenance of systems of systems and pressures addressed to their

evolution, one cannot consider their development to be completed [NoK04]. Thus, the

assumption that based upon the specifications, a design will be implemented and

consequently the project or mission will be accomplished is incorrect.

In summary, systems of systems stretch the boundaries of traditional systems

engineering in three important areas:

First, TSE has not been developed to address the high levels of ambiguity and

uncertainty encountered in system of systems engineering. TSE has difficulties to

adequately respond to ill-structured problems with constantly shifting requirements.

This is a problem because in system of system environments it is naïve to think that

problem definitions and requirements will be isolated from shifts and pressures

stemming from highly dynamic and turbulent development and operational

environments. [Kea03]

Second, although TSE does not ignore contextual influences (human, organizational,

policy, and political system dimensions) on system problem formulation, analysis,

and resolution, it certainly places the context in the background. In contrast, the

problems of system of systems are evolving in ways that suggest contextual aspects

must be moved to the foreground. Practitioners have recognized that system of

systems problems cannot be artificially separated from their context, the

circumstances and conditions within which they are embedded because the context

can both constrain and overshadow technical analysis in determining system solution

success. [Kea03]

Third, TSE has been successful at deploying “complete” system solutions especially

through iterative development processes. However, pressures on system of systems

 29

design and deployment dictate that partial systems solutions must be deployed and

iterated after deployment. This is contrary to the linear nature of TSE approach that

aims to complete design followed by complete implementation. [Kea03]

Given the presentation of the traditional systems engineering and its limitation related

to engineering systems of systems I review below first less traditional systems

engineering approaches, agile methodologies, from the perspective of engineering

system of systems and later the emerging system of systems engineering

methodologies.

3.3 Agile Methodologies

There are a growing number of agile methodologies and a number of agile practices

attempting to offer methods to utilize leading edge technologies, respond to erratic

requirement changes, and deliver products quickly. This they achieve through

adaptability, which is gained by incremental (small release, rapid cycles) and iterative

processes that embody evolutionary features. The most known set of agile

methodologies includes Lean Development (LD), ASD (Adaptive Software

Development), Scrum, XP (eXtreme Programming), Crystal methodologies (Crystal

Clear, Crystal Orange, Crystal Orange Web)1, FDD (Feature Driven Development)

and DSDM (Dynamic Systems Development Method) [Hig02]. Occasionally also

Free/Open Source Software Development (F/OSS) is included into the agile

methodologies because of its similarities with the other agile methodologies (see, e.g

Abr02 and Fow03). Thus, the F/OSS approach can be considered as a variant of the

multifaceted agile methodologies. Table 1 shows how F/OSS places itself between the

agile methodologies and TSE.

1 Only Crystal Clear, Crystal Orange and Crystal Orange Web are constructed
[Coc02] and the first two of these have been experimented in practice [Abr02].

 30

Home-ground
area

Agile
Methodologies

F/OSS
Development

TSE

Developers Agile,
knowledgeable,
collocated, and
collaborative

Geographically
distributed,
collaborative,
knowledgeable and
agile teams

Plan-oriented;
adequate skills;
access to external
knowledge

Customers Dedicated,
knowledgeable,
collocated,
collaborative,
representative, and
empowered

Dedicated,
knowledgeable,
collaborative, and
empowered

Access to
knowledgeable,
collaborative,
representative, and
empowered
customers

Requirements Largely emergent;
rapid change

Largely emergent;
rapid change,
commonly owned,
continually
evolving – “never”
finalized

Knowable early;
largely stable

Architecture Designed for
current
requirements

Open, designed for
current
requirements

Designed for
current and
foreseeable
requirements

Refactoring Inexpensive Inexpensive Expensive
Size Smaller teams and

products
Larger dispersed
teams and smaller
products

Larger teams and
products

Primary
objective

Rapid value Challenging
problem

High assurance

Table 1. Home ground for agile and TSE [Boe02], augmented with Free/Open
Source Software column (F/OSS) [Abr02]. (In the original table instead of TSE

was used the term plan-driven methods)

From the system of systems perspective, the most of the above listed agile

methodologies are not applicable. Although Crystal Orange, FDD, F/OSS, ASD and

DSDM are claimed to be capable of scaling up to projects having 100 developers

[Abr02] and Scrum even up to 300 [Lar04, p. 130], XP, Scrum and Crystal Clear and

Crystal Orange are suitable only for small or medium sized collocated teams. XP,

Scrum and Crystal methodologies do not scale well to projects having distributed

geographically [Abr02]. XP scales for two teams working on related projects with

limited interaction [Bec99] and it lacks management practices in general [Abr02].

Scrum is not for large, complex team structures, however, small isolated team on a

large project could make use of some elements but then the interfaces between the

 31

smaller sub-teams must be clearly defined [RiJ00]. The Crystal methodologies are

restricted to address only collocated teams, thus they do not support distributed

development at all [Coc02]. DSDM is applied to large projects lasting 23 years and it

scales if the system can be split into the components that can be developed in small

teams having 2–6 members but in order to apply the DSDM approach the time used to

the development should be constrained [Sta97]. Thus, DSDM does not appear suitable

for system of systems engineering that “never” ends. FDD is claimed to be “worthy of

serious consideration by any software development organization that needs to deliver

quality, business-critical software systems on time” [PaF02, p. xxiii] but it covers

only design and implementation and not the whole life-cycle of the system [Abr02].

From the above listed variants of the agile methodologies, LD, ASD, and the F/OSS

are the most promising methodologies from the system of systems perspective. LD

has been used successfully on a number of large telecommunications projects in

Europe [Hig02]. LD is especially interesting as the most strategic-oriented agile

methodology. It advocates wide adoption of agile methodologies by strategic selling

at senior levels within the organization. ASD, on the other hand, is interesting because

of no built-in limitations for its application and the adoption of complex systems

theory to engineer large systems [Hig02] whereas F/OSS is interesting because the

F/OSS projects can be considered complex systems [Kuw00]. However, ASD and

F/OSS are more development philosophies than methods per se [Abr02]. On the other

hand, as the following review of the system of system engineering exposes, the

methodologies proposed for engineering especially system of systems are themselves

rather philosophies or embryonic methodologies than well-defined set of methods and

practices. Nevertheless, agile methodologies are rather addressed engineering single

systems than systems of systems. In general only small organizations may select a

single agile methodology and customize it to their needs. For larger organizations,

one or more agile methodologies in combination with TSE methodologies have to be

retailed [Hig02, p. 365]. TSE, on the other hand, has its boundary conditions, which

suggests that there is a need for a methodology that especially addresses system of

system engineering problems.

 32

3.4 System of Systems Engineering

The concept of system of systems engineering (SoSE) has received considerable

attention in the literature but unfortunately the state of the literature is “a rather

fragmented collection of seemingly disparate perspectives on the associated

phenomena” [Kea03]. The shortcomings of the SoSE literature are lack of universally

accepted definition of system of systems and addressing SoSE primarily as an

information technology issue that has a broad objective of “getting everything to work

together” [Kea03]. For the latter is given proof terms such as “interoperability”,

“platform integration”, “systems architecture”, and “information intensive”, that have

emerged to capture the information dimension of these new systems of systems

[Kea03]. The narrow focus of SoSE dialogue on information technology and technical

problem solving is a problem because in the case of a system of systems just as

important are the contextual dimensions that ultimately shape the decision space and

feasible solutions for the technical system problems [Kea03]. Furthermore,

dominance of information technology in definition of system of systems concepts

relates directly to the absence of “any in-depth advancement of fundamental

principles, underlying theory, accepted methodologies, or body of empirical work that

would constitute foundations for a discipline” [Kea03]. Evidently, SoSE is in the

embryonic stages of development, which is further affirmed by the following list of

issues that SoSE research should produce [Kea03]:

1) SoSE philosophy to capture different level of thinking inherent in the

system of systems approach.

2) Methodologies that provide guidance and direction for the structuring and
achievement of SoSE initiatives.

3) Processes that provide methods for specific aspects of SoSE.

4) Techniques that enhance knowledge and advance practice through specific
tools to support SoSE efforts.

Since SoSE is in early stages of development there are naturally only few

comprehensive approaches to develop its concept, foundations, research directions,

and practice implications. In the following, I review first implications of SoSE for

systems engineering practitioners as suggested by Keating et al. [Kea03] and their

proposal for a SoSE methodology [KSM03]. Later, I review complex systems

 33

engineering [Bar03, NoK04], which is an approach that is based on the complex

systems theory and takes rather different perspective on SoSE than the methodology

by Keating et al.

3.4.1 Implications for System of Systems Engineering

Keating et al. [Kea03] have provided the following initial guidance and implications

for SoSE practitioners.

First, proceed with the assumption that the initial problem definition is always

incorrect and suspect. A system of systems is created to solve a problem or fulfill a

mission. The development is burdened with a considerable amount of uncertainty and

ambiguity in the system environment, boundaries, and stakeholders’ interests.

Therefore, instead of considering that one has perfect knowledge at the start, one

should design the used processes to permit continual questioning and reframing of

problems and missions.

Second, building system transformation capability is more important than initial

deployment because the initial deployment of a system of systems is always going to

be incorrect. Therefore, system of systems must be engineered to have inherent

capabilities for flexibility, rapid identification of systematic failure issues, and system

reconfiguration deployment. System of systems engineers must recognize when the

speed of deployment outweighs solution completeness. Implied in this is that

transformation capability and iteration are the highest priority.

Third, bringing context in the foreground and technical solution to the background

determines success in the system of systems environment. Context involves issues

that are likely to impact the approach, design decisions, and deployment of systems of

systems. These may involve organizational, structural, resource allocation,

procedural, policy, or political issues. System of systems engineers should consider

these influences in the foreground and not to relegate them to background “noise”,

because inability to solve these can doom even the “best technical solution”.

 34

Fourth, effectiveness in system of system engineering environments is determined first

as a function of systems worldview, or philosophy, which is critical in determining

success in system of systems environments [Kea03]. Although arguing primary of

worldview or philosophy might be met with skepticism, one only needs to look at the

systems engineering tools and techniques that have not generated the level of success

promised in the system of systems environments [Bar03, Kea03, NoK04]. This

suggests that there must be something beyond tools and techniques that will generate

success in addressing complex systems problems: systemic perspective, worldview or

philosophy [Kea03]. The systemic perspective, worldview, has to be embedded as the

fundamental approach to solving system of systems problems. It guides thinking,

decision-making, acting and interpretation of what is done and how it is done

[Kea03]. Thus, one should take care that the team members have a sufficient

worldview to achieve high performance, that appropriate training, education and

development is planned to bring individuals and the team to a sufficient level of

maturity for success, and that there is compatibility between the supporting

philosophy and the system of systems engineering approach [Kea03].

3.4.2 Proposal for a Methodology

Evidently, the above-presented implications for systems engineering can operate only

as guidance not as a methodology. In addition Keating et al. [KSM03] have provided

an example of an initiative SoSE methodology. However, this methodology addresses

only existing system transformation while leaving out the other contexts, new system

design, system operation and maintenance, and evaluation and evolution, that SoSE

should address [Kea03]. Thus, the methodology suggested by Keating et al. cannot be

considered generic as such. Further, the following presentation is generalized by

replacing the terms “port” and “port security system” with the term “system”.

The SoSE methodology proposed by Keating et al. [KSM03] (SoSEM) for existing

system transformation contains following iterative phases:

 35

Phase I – System Problem Definition and Environment

- Conduct an exploration of the system environment to articulate the context

and system problem.

- Produce a framing of the problem as well as the operating environment

and context.

Phase II – Model Current System

- Conduct a SoSE analysis to model the existing system to and identify

systemic issues.

- Produce a description of the current system as it is operating.

Phase III – Integrate System Requirements Definition and Conceptual Design

- Define high-level requirements and develop a conceptual design for a

system that would be operationally compatible and integrated with other

system related initiatives and activities being pursued on local or other

relevant levels (e.g. federal, state).

Phase IV – Analysis for System Deployment

- Identify and assess systemic issues, barriers, and opportunities for

deployment of the integrated system including a prioritized listing for

enhanced system operation.

- Provide an assessment of the gaps between current and conceptually ideal

systems in order to lay the foundation for a transformation strategy based

on gaps and priorities.

There are three aspects that differentiate this approach as a SoSE approach rather than

TSE approach [KSM03]. The first aspect is acceptance of the lack of problem

understanding. It is not assumed that the precise specification, approach, and problem

are sufficiently understood to detail specifics: “The first phase of the effort was an

attempt to bring sufficient structure and order to the problem system such that further

work would be fruitful ” [KSM03]. The second aspect is that the approach is tailored

to the initial situation and flexible enough that emergent conditions can modify the

approach. Because the SoSE methodology must be top-down and provide increasing

levels of resolution and detail as new understanding of the problem emerges, the

 36

approach provides an increasing clarity and definition as the system investigation

proceeds and is adjustable [KSM03]. The third aspect is that the approach places

systems engineers in a position of being methodological experts and not necessarily

technical experts:

“Although sufficient knowledge of the subject area must be developed, the
role of the systems engineer is to initially bring structure and order to the
problem system. Thus, the effort can proceed with expert technical knowledge
infused as appropriate for the effort. Thus the systems engineering role
encompasses methodology specification and execution in pursuit of the SoSE
solution.” [KSM03, p. 6]

A rather different perspective to SoSE is provided by Bar-Yam [Bar03, Bar05] and

Norman and Kuras [NoK04, Nor04]. In following, I present their methodology.

3.5 Complex Systems Engineering

The complex systems engineering (CSE) approach rises from the understanding that

the traditional system engineering (TSE) does not scale up or manages poorly with

systems having characteristics of an ecosystem, i.e. complex systems [Bar03, Bar05,

NoK04]. Enterprises, collections of independent organizations that are loosely

associated to achieve something in common, seem to be such systems [NoK04]. In

general, systems that fulfill the definition of complex systems seem to violate the

boundary conditions for applying TSE approach [NoK04]. TSE seems to apply to

fairly simple1 applications and products, which are under the complete control and

management of a single party [NoK04]. Based on these differences, it seems

reasonable to conclude that there is a need to apply a system engineering approach,

which acknowledges the difference between complex systems and more traditional

developments to which TSE can be applied [NoK04]. This approach is suggested to

be CSE [Bar03, NoK04].

The most fundamental concept for CSE is (co-)evolution, which is the primary

mechanism of change within complex systems (see Chapter 3.1.1). The evolution

provides a conceptual framework in which to understand how repetitive incremental

1 Despite the superficial complexity of the Manhattan project and the Space Program,
the tasks that they were striving to achieve were relatively simple compared to, e.g.
the problems of air and traffic control [Bar03].

 37

change can safely produce both rapid innovation and increase overall complexity

[Bar02]. Repetitive incremental change – embodying features of evolutionary

processes – is not new in systems engineering (see e.g. spiral development [Boe88],

Adaptive Software Development, eXtreme Programming and Free/Open Source

Software development, and agile methodologies in general [Fow03, Hig02]).

However, CSE aims at taking even better advantage of the promise of evolutionary

methods by “a deliberate and accelerated mimicry of the processes that drive

emergence and natural evolution” [Bar03]. The key differences between the

evolutionary approach of CSE and the strategies of other evolutionary methodologies

are: 1) an emphasis on parallel competitive development teams and 2) the importance

of creating an ongoing fielded implementation strategy where coexistence of multiple

types of components is possible [Bar05].

In other words, CSE is not a new or renewed attention to detail like the traditional

evolutionary-oriented system engineering approaches; it is an attention to overall

coherence that permits diversity in the systems environment [Bar03, Bar05, NoK04].

This is exposed by the most essential difference between TSE and CSE, the

acknowledgement of autonomous agents, in the case of software intensive systems:

independent development tracks. [NoK04]. CSE acknowledges the presence of active,

independent agents as important elements of systems of systems, whereas from TSE

perspective they (or rather their autonomy) is considered precisely the effectors,

which must be eliminated to apply TSE and have everything under complete and

centralized control. CSE’s approach is different. It augments a set of tools for

addressing the presence of the autonomous agents. It applies “selective pressures” to

the aggregate of interacting agents allowing them to manage their response and their

own changes. Through this approach, it aims at addressing the overall coherence

without a direct and immediate attention to detail.

In summary, Table 2 contrasts differences between artifacts that TSE and CSE

produce. The term product is used to identify the outcome of TSE and the term

enterprise is used to identify the outcome of complex systems engineering. (For a

more comprehensive analysis of simple and complex products, see Hob98). Given the

motivation and objectives of CSE, I review in following the key concepts and the

emerging methodology of CSE.

 38

TSE CSE
Products are reproducible. No two enterprises are alike.
Products are realized to meet pre-
conceived specifications.

Enterprises continually evolve so as to
increase their own complexity.

Products have well-defined boundaries. Enterprises have ambiguous boundaries.
Unwanted possibilities are removed
during the realizations of products.

New possibilities are constantly
assessed for utility and feasibility in the
evolution of an enterprise.

External agents integrate products. Enterprises are self-integrating and re-
integrating.

Development always ends for each
instance of product realization.

Enterprise development never ends –
enterprises evolve.

Product development ends when
unwanted possibilities are removed and
sources of internal friction (competition
for resources, differing interpretations
of the same inputs, etc.) are removed.

Enterprises depend on both internal
cooperation and internal competition to
stimulate their evolution.

Table 2 Comparing TSE and CSE [NoK04, p. 18].

3.5.1 Complex Systems Engineering Methodology

The first answer for succeeding with complex engineering projects, which the field of

complexity provides, is limiting the complexity of objectives as much as possible

[Bar03]. However, simplifying is not always possible because the necessary or

desired core function is itself highly complex. Recognizing what gives rise to

complexity helps to understand this. The complexity of engineered system is related

to its task [Bar03]. The complexity of a task, on the other hand, can be quantified as

the number of possible wrong ways per every right way. The more likely the system

performs a wrong action, the more complex the task. In order for a system to perform

a task it must be able to perform the right action. As a rule, this also means that the

number of possible actions that the system can perform and select between must be at

least this number. This is known as the “Law of Requisite Variety” [Ash56] that

relates the complexity of a task to the complexity of a system that can perform the

task. When the complexity of the system rises too high and simplification will no

longer work, using an evolutionary engineering approach becomes essential [Bar03,

Bar05].

 39

In general, the goal of systems engineering can be considered being to increase the

order of system and the available complexity that is needed to perform the tasks

addressed to the system. However, there is a practical upper limit to the degree to

which this can be done successfully through pre-specification followed by

implementation, i.e. TSE. To engineer a system beyond this limit one needs to

combine several related activities into a single continuous regimen of engineering and

development. Here a regimen is distinguished from a recipe that can be understood as

shorthand for the cumulative processes of TSE. Recipes are tightly and precisely

scripted sequences of steps to yield reproducible outcomes such as specific kind of

dishes (or software system) whereas regimens are looser formulations of more

generalized steps that can be used and combined in various ways to yield many

different instances of generalized outcomes such as better health and life quality (or

an air operations center). The argued advantage of CSE over TSE in engineering

complex systems is based on this difference: whereas TSE is a practice of direct

impact and effects, CSE tends to be indirect. CSE drives change in the focus from

implementing the solution designed according to requirements to resolving or

reducing “selective pressures” acting on the present system elements1. CSE does this

seeking to bring together independent, disparate organizations and entities and

providing them with a sense of “pressure” that they feel, and a set of processes that

can be used to resolve this pressure. It targets to provide incentives for the

partnerships needed and to compel the engagement of their respective resources to

accomplish the integration without resorting to arguments over whose money is being

spent, or whether “interoperability” or “integration” is a “requirement” they have.

[NoK04]

To understand the CSE approach and how it differs from TSE, the following key

concepts that CSE employs may be contrasted to the practices of TSE [Bar03, Bar05]:

1 In the context provided by CSE, the elements of system (single systems) can be built
using the traditional engineering approaches [Bar03, NoK04].

 40

- Focus on creating an environment and process rather than a product

- Continually build on what already exists

- Individual components must be modifiable in situ

- Operational systems include multiple versions of functional components

- Utilize multiple parallel development processes

- Evaluate experimentally in situ

- Gradually increase utilization of more effective components

- Effective solutions to specific problems cannot be anticipated in advance

- Complex systems are “integrated” continuously

These key concepts capture the “paradigm shift” from a “complete system

specification” to the creation of an environment where evolutionary change can take

place. This requires understanding complex systems as populations rather than as

rigid assemblies of unique components, and encouraging, safeguarding and

monitoring multiple parallel efforts exploring experimentally improvements to the

system. [Bar05]

Norman and Kuras [NoK04] have elaborated in some aspects the ideas presented in

the above listed key concepts. Their work have not been published and reviewed, so

in the following I acquiesce in giving a summary of “the elements of CSE regimen”

that they have proposed to capture the methodology of CSE [NoK04]. The elements

include developmental environment, outcome spaces, rewards, developmental

precepts, judging, continuous characterization, safety regulations, and duality. After

introducing the elements I present them in a combination.

 41

Developmental Environment
The overall regimen of CSE aims at creating and managing an environment in which

multiple autonomous agents can interact to explore the utility and practicality of

creating, modifying or disregarding existing relationships [NoK04, p. 19] and in

which a process of innovation and creative change can take place [Bar03]. This

developmental environment can be understood as either a separate and distinct

environment in which complex systems develop and operate or an overall ecosystem

that includes the system and the environment [NoK04, p. 20]. Thereby, human beings

(designers, engineers, users) and technology (computers, communication devices,

networks) as interactive agents, and even the process of creating systems components

(design, implementation, training) should all be understood to be parts of the system

itself [Bar03].

As such, the focus of this activity is the completeness of the environment relative to

supporting the more focused activities that occur in it [NoK04, p. 20]. Within this

environment it is possible for traditional systems engineering of software and

hardware components to occur [Bar03]. However, the focus of TSE efforts is to

change the parts of the systems rather than change the system as whole.

Because the developmental environment must be available to all the independent

agents, attention to the environment must be explicit and continuous. Thus, nurturing

and managing the developmental environment so that it can evolve itself, rises as the

single most important activity underpinning the deliberate development of complex

systems. [NoK04, p. 20]

Outcome Spaces
CSE tends to identify outcome spaces instead of specific outcomes. An outcome space

is distinguished from the many specific outcomes that comprise it. When specific

outcomes are sought or meant to be exactly reproducible, one should use TSE to

achieve them. Depending on whether the outcome can be realized by individual

autonomous agents by themselves or achieved by autonomous agents collectively but

not individually, competition or cooperation should be encouraged. For sustained

 42

development complex systems need both (more about competition and cooperation in

Chapter 3.5.2.) [Bar03, NoK04, pp. 20–21]

In order to explore possibilities, the diversity of entities and components, all specific

outcomes in the outcome space should be viewed as acceptable as any other without

there being strong preferences for any of them. However, this does not mean that

outcomes cannot be identified as unwanted. One possibility to do this is to partition

outcome spaces into wanted and unwanted sub-spaces. [Bar03, NoK04, pp. 20–21]

Rewards
The decisions of autonomous agents (independent development tracks) determine the

utility and the practicality of existing and new relationships within the complex

system. Rewards are directed to shape their decision-making processes and to

motivate the autonomous agents to make decisions that cause the complex system to

enter the desired outcome spaces. Rewards, however, should not be dependent on

specific processes of the autonomous agents, unless the specific outcome space is the

adopting of a common process. First, because the autonomous agents could view

insisting on a common process as too invasive. Second, because insisting a common

process might stifle innovation and variety needed for evolution. [NoK04, p. 21]

In general, rewards can be considered as the energy flowing through a complex

system. In the case of software intensive system, rewards are almost always

associated to the money flowing through the entire system development environment.

However, there are also other forms of rewards. The essential characteristic of a

reward is that it motivates, and as long as people are involved, the list of possible

rewards is as long as the list of factors that motivate people. [NoK04, p. 22]

One should also consider the possibility to distribute rewards extra-contractually. It

offers motivation to autonomous agents to “keep their eye on” the whole complex

system, even if they are not engaged directly. This helps in avoiding stagnation,

because innovations, which the autonomous agents bring to the whole system, set up

potential of new approaches and influences. [NoK04, p. 22]

 43

Developmental Precepts
Developmental precepts are easy to confuse with rewards, however they are quite

different. Rewards promise gain for achieving outcome spaces whereas

developmental precepts constitutes “the rules of the game”. They stimulate contextual

discovery and interaction among agents e.g. by establishing constraints on how

autonomous agents achieve outcome spaces, or how they interact. They do not specify

outcomes or even outcome spaces. They shape autonomous decision-making leading

to specific outcomes. For example, in some specific cases a developmental precept

might claim that two or more component systems must be delivered at the same time

in order to ensure that the integration of those systems is not left to the end-users to

accomplish. The specifics of which systems to be delivered and how they need to be

interconnected would be left to the system providers to resolve in their own best

interests. However, the “global” outcome of more integrated systems would also be

accomplished, even though the specifics of how and when were never explicitly

formulated in advance at any “global” level. [NoK04, p. 22–24]

Judging
Judging associates specific outcomes achieved with autonomous agents, and assigns

rewards to them accordingly. It requires human judgment. The most important

characteristic of judging is that because rewards are established prior to realization of

desired outcomes and judging is based on actual outcomes achieved, judging is based

solely on what actually happens, not on what will happen. [NoK04, p. 24]

Judging for rewards that are associated with outcomes that can be directly attained by

autonomous agents is quite straightforward. Judging for rewards that are associated

with specific outcomes that are in outcome spaces that can only be associated

collectively with autonomous agents is more demanding. For example, if a complex

system achieves to reduce the use of resources, its footprint, although some of the

components have increased their footprints, judging requires identification of the

responsible agents and the apportionment of the reward. [NoK04, p. 24]

 44

Continuous Characterization
The characterizations of outcome spaces and rewards are initially represented only

with succinct labels. This maximizes opportunities for autonomous agents to interpret

the characterizations inconsistently as well as to shape the evolution of the complex

system. To the extent that consistency matters, outcome spaces, rewards and

especially the current condition of the complex system will benefit from continuous

and progressively more detailed and complete characterizations. However, because

the autonomous agents are acting independently, consistency can never be guaranteed

in complex system development. Therefore, the characterizations cannot be made too

detailed. Nevertheless, characterization refinement can become less than cost

effective or even counter-productive, if the details obscure rather than illuminate

essential coherence that is desired and achieved. Furthermore, although consistency

tends to accelerate complex system evolution, it accelerates the system evolution in

narrower directions, i.e. directions explicitly identified and characterized. Therefore,

it is necessary to add new apparent or attractive outcome spaces to the

characterizations even with initially limited detail, because it is unlikely that the new

possibilities will be explored even though available unless they are registered. In the

extreme, this might result in stagnation in overall complex system behavior.

[NoK04, p. 25]

Safety Regulations
Safety regulations are aimed at preserving the developmental environment

[NoK04, p. 26]. They preserve the stability of a complex system. For example safety

regulations define how new components are introduced to the system. The overall

purpose of such safety regulations would be to protect other developments and

components when a new component is introduced to the system. Safety regulations

might also be applied to the retirement of no-longer-used runtime components, which

on the other hand can operate as tools (backup systems with override capability of the

new component systems) in the safety regulation of a system

[Bar03, NoK04, pp. 26-27].

Safety regulations should also be directed at the detection of the continued presence

of cooperation and competition since they are both necessary for the operation of any

 45

complex system. In general, safety regulations are about avoiding “collapse” and

“stagnation” in overall complex system behavior. [NoK04, p. 27]

Duality
Duality is the explicit recognition that complex systems “development time” cannot

be fully separated from its “run time”. Multiscale analysis (see Figure 7) might be

applied to both distinguish between and to understand the relationships among

separate scales in a complex system during its “development time” and “run time”.

These scales include the system components (software, hardware), their developers

(groups of people as independent development tracks), and the human operators of the

system. [NoK04, pp. 27–28]

Figure 7. Multiscale analysis applied to the relationships among separate scales
in a complex system. [NoK04, p. 28]

In Figure 7, the independent development tracks (autonomous agents) that create the

IT artifacts (the components of a software intensive system) interact with one another

as well as with their creations. These interactions are frequently identified as

occurring during “development time”. The IT artifacts interact also with one another.

Such interactions can occur during development time, but most of the time they are

thought of as an essential element of the “run time” of the system. However, in almost

every case during “run time” there are also interactions between the system

components and their human operators. Moreover, these human operators often

interact with one other directly without intermediate technology. [NoK04, p. 28]

 46

Complex systems engineering aims at taking into account not only run time but also

development time interactions. In order to do this, it has to define outcome spaces at

least at three distinct scales, two corresponding to “run time” and one corresponding

to “development time”. [NoK04, p. 28]. Growing attention to user-developer

interaction during development time can be considered as an implicit recognition of

this multi-scale reality [NoK04, p. 28]. Furthermore, growing attention to system

development by users during run time (see Chapter 2.2) can also be seen as the

recognition of need to take into account these multiple interactions.

Running the Regimen of Complex Systems Engineering
The approach of complex systems engineering unfolds in various ways. That is

because it is a regimen not a recipe. In the following, is a summary of the view of

Norman and Kuras [NoK04, pp. 29–30]:

Early on, one should clearly formulate desired outcome spaces as well as publish

rewards available to autonomous agents. Whereas the actual phases and trajectory of

complex system are determined collectively by autonomous agents using traditional

systems engineering approaches, recognizing specific outcomes when they occur is a

primary task of the complex system engineer.

Once recognized, desirable outcomes are rewarded. This does not happen

automatically but human judgment is required. This judgment must remain the

prerogative of those responsible of the emergent complex system. Once judgments are

made the rewards must be restated along with the restatements of desired outcomes

spaces. This formulation of desirable outcome spaces should never stop. The desirable

outcome spaces should be restated along with rewards, as new outcomes occur.

The complex system engineer is responsible for managing the overall developmental

environment that mixes operational and developmental contexts. Attention on the

developmental aspects of this mixed environment includes specifying, operating,

maintaining and modifying an infrastructure that supports interactions among

autonomous agents and their creations, specifying and enforcing developmental

precepts intended to stimulate discovery and interaction among the autonomous

agents, and the specification and application of safety regulations.

 47

Complex systems operate continuously. They change constantly and become more

complex. Therefore, a complex system engineer characterizes continuously the

complex system and its outcome spaces, emphasizing aspects that are associated with

the order of the system. Such system and outcome space characterizations become the

assignment of responsibility for changes in the complex system’s order. In turn, the

assignments become the basis for judging, which assigns rewards to the appropriate

autonomous agents.

Given the presentation of the methodology of CSE, I briefly present some tactics that

Norman and Kuras [NoK04] have suggested as an initiative proposal for the practice

of CSE.

3.5.2 Tactics for Complex Systems Engineering

A free market system, the economy, is an example of an evolutionary complex system

[Bar05] (about the economy as an evolving complex system, see e.g. AAP88,

ADL97). Thus, market economies may be mined for some suggestions for tactics and

strategies for CSE [NoK04]. The most relevant of tactics are those which make

technical change easier, permit organizations to collaborate, and trim the environment

selecting “success” and punishing “failure” [NoK04]. Table 3 shows a set of tactics

that Norman and Kuras have harvested from commercial practices and maps them to

the aspects of CSE regimen as they propose [NoK04, p. 31]. In the following, I

explain the tactics briefly.

 48

D
ev

el
op

m
en

ta
l e

nv
iro

nm
en

t

O
ut

co
m

e
sp

ac
es

R
ew

ar
ds

D
ev

el
op

m
en

t p
re

ce
pt

s

Ju
dg

in
g

C
on

tin
uo

us
 c

ha
ra

ct
er

iz
at

io
n

Sa
fe

ty
 re

gu
la

tio
ns

D
ua

lit
y

In
de

pe
nd

en
t a

ge
nt

s

Half-life Separation ● ● ● ● ●

Playgrounds ● ● ● ● ● ● ● ● ●

Collaborative Environments ● ● ● ● ●

Partnerships ●

Developers Networks ● ● ● ● ● ●

Branding ● ● ● ● ●

Co-opetition ● ●

Leveraging others’ Investments ● ● ● ● ●

Respect Ricebowls ● ● ● ●

Opportunistic Approach ● ● ● ● ● ●

Advertising and Discovery ● ● ● ● ● ● ●

Value-add business models ● ● ● ●

Experience for test ● ● ● ● ●

Table 3. Commercial Practices mapped to the Elements of CSE Regimen.
[NoK04]

Half-life separation
Layering systems based on functionality is familiar for system architects. However,

despite of this principle, systems might still be tightly-bound into monolithic entities,

which limit the “pulse” of the evolution to move at the pace of the slowest changing

element. In order to increase the rate of evolution, one must shorten the generation

time (pulse time, spiral time, etc.). Therefore, in addition to separating based on

 49

functionality, one should separate based on “half-life”, likely rate of change.

[NoK04, p. 32]

Playgrounds
Play and games serve an important function for humans in preparing for life. They are

not merely for killing time. Humans, as natural pattern recognizers and problem

solvers, learn and innovate through experimentation. This can be seen everyday

among children playing in playgrounds where they constantly innovate and learn

through interaction. [NoK04, p. 32]

The concept of playground tries to answer to the problem of introducing and

recognizing “goodness” in the complex system environment. The concept suggests

that instead of large, carefully-scripted demonstrations with centrally chosen

participants and known answers, one should create a place where technology could be

experimented safely and connected to the process that delivers new elements into the

field, and where it could provide its potential qualitative edge. The reason for the

“potential” rather than for the “actual” edge is that experiments should be possible

result also in negative findings. [NoK04, p. 33]

It is also important to remember that the essence of complex systems is that change is

constant, unplanned, and unpredictable in its complete effect. In the complex systems

environments no element stands alone. Each element supplies partial context back to

elements around it. Thus, any change in any element causes a change in context to all

elements, which juxtapose the changed element. As a result, change flows to

neighboring elements, which respond causing further change in their neighboring

elements. Generally, the effects and pressures brought by any change are difficult or

even impossible to predict. Playground aims at answering to this problem as well.

Instead of developing new things assuming that all other elements it may impact or

influence have themselves remained static, it is possible to developed them in a

playground where they are connected to each other. [NoK04 p. 33]

Finally, the concept of playground aims at solving contradiction in welcoming

change. The organizational process is for the keepers of the “Systems of Record” to

invite an innovator or new-capability provider into the fold. However, this puts the

 50

identification and valuing of innovation into the hands that are least likely to welcome

it, because by definition innovation’s appearance is disruptive. Playground aims at

providing a place where innovation can be elaborated without disturbing real-world

working processes until it is ready to be introduced. [NoK04, pp. 33–34]

In summary, if an environment provides a place to play and innovate, it will support

the evolution of system at a rate faster that would occur otherwise. If there is also a

process for guiding and managing evolution, then the system can be developed based

on demonstrated value rather than future promises of value. However, the most

important advantage of playground is that developing capabilities through discovery

does not require the level of detail and a priori planning that a pure engineering

approach requires. [NoK04, p. 35]

Collaborative Environments
Collaboration allows people to concentrate on what they do best and how they add

value rather than expending resources on incidental aspects, which do not

discriminate their offerings from others. Additionally, the better that what one has

produced fits into a bigger whole, one is able to collaborate with others more easily

and the risk of integration is reduced. Therefore, it is important to create environments

where collaboration can take place. [NoK04, p. 35]

Partnerships
Partnerships help to increase the utility of what the partners produce and offer, to

spread development risk and to improve understanding of true need. Successful

partnerships seek to reduce overlap, and come to rely on what others provide.

Therefore, the ability to form and sustain partnerships is important in complex system

environments. [NoK04, p. 35]

Developers Networks
To speed up the evolution of system, one must shorten the generation time. This

suggests shortening the feedback cycle and lowering the amount of code that must be

written by increasing reuse of useful code. This is best achieved by getting developers

to use a specific platform and thereby interact with each other. An illustrating

 51

example is Microsoft Windows™ platform. Microsoft’s strategy was to create

opportunities for others. They were not building all the functionality themselves, nor

were they trying to make a killing on a developer tool per se. They did not even try to

get a piece of action for all the functionality developed using their tools. Instead, they

sowed the seeds with their tools, and took advantage of the multitude of applications

built on top of their platform. An important factor in this success story was

recognition that it was necessary to lower the knowledge barriers to developing

sophisticated applications and that integration and interoperability required many

developers loyal to the platform. In order to win developers loyalty Microsoft

introduced Microsoft Developer’s Network (MSDN) that provided attractive and

compelling developer tools and environments. [NoK04 p. 35–36]

Branding
Brand suggests that the product satisfy specific qualities. Without it, the capability of

the product must be subjected to a process of evaluation. Further, if there is not a

certification that the product fulfills specific qualities, there is risk that the product has

to be reworked before it qualifies, e.g. it can be integrated to the existing system.

[NoK04, p. 36–37]

Co-opetition
The term co-opetition was coined by Adam Brandenburger and Barry Nalebuff

[BrN05]. It offers a theory of creating and capturing value which contains

fundamental duality. Whereas creating value is an inherently cooperative process,

capturing value is inherently competitive. In order to create value, people cannot act

in isolation. They have to recognize their interdependence. But along with creating

value, there is the sharing of the value which happens through competition.

Co-opetition makes these both possible by allowing independent parties to cooperate

on those elements and aspects which transcend their individual ability to control,

while preserving their ability to compete on demonstrated value in their space.

[BrN05]

 52

Leveraging Others’ Investments
Partnerships, collaborations, and other instances of cooperation all attempt to use the

investments that others have made for their own benefit. Leveraging others’

investments directly benefits oneself and indirectly others. For example, a project α

leverages with a small amount of money the development budget of joint project β for

good behavior on project β’s part. Project β manages to build and deploy desired

functionality. Both benefit, and the others (who may not have invested anything) are

also able to use the services built by the project β. [NoK04, p. 38]

Respect Ricebowls
People place great value in that which they are personally involved in and responsible

for. These interests are often described as “ricebowls”. The thought or impression that

the others will impose themselves on the independent agents in ways and manners,

which they view are inappropriate, causes resistance to cooperation. Because

cooperation has great value, aspects that interfere with it cause “innovation drag”.

Therefore technical approaches which tend to respect “ricebowls” are worth

considering in order to remove some of the hesitations for forming cooperative

partnerships. Examples of technical approaches that respect “ricebowls” include

current development in web services. Web technologies expose functionality with the

minimum requirements for homogeneity. They offer a “virtual homogeneity” within a

heterogeneous world. In this way, they offer potentiality for other independent agents

to offer their services to others. This permits new associations and relations to be

exploited and thereby supports innovation and the rise of technical structures and

approaches which permit the agility needed: assembly moves out toward the end-

users further blurring the difference between development and run time.

[NoK04, p. 38]

Opportunistic Approach
Restricting oneself to deliver complete solutions before fielding limits the “pulse” of

the evolution to apparent “complete” sets, and hence slows the evolution of the

system. However, if one would treat logical sets of users as a unit, and involve them

in managing the identification and introduction of functionality and change, then one

might be able to be more responsive. [NoK04, pp. 38–39]

 53

Advertising and Discovery
Finding useful capabilities and functionality offered by third parties is not trivial.

However, for the development environment and the operational environments,

achieving transparency for effective advertising and discovery is critical. Advertising

and discovery technologies can operate as a key enabler to create opportunities for

small world phenomenon to emerge. The small world phenomenon is the hypothesis

that everyone in the world can be reached through a short chain of social

acquaintances. This creates possibilities to discover new relations in areas not

previously explored. [NoK04, p. 39]

Value-add Business Models
The users complain continuously that they do not get “a vote” in what is built for

them.1 This is primarily due to the business models employed today. The dominant

business model used is an employer-contractor. The employer presents requirements,

and then various potential contractors propose how they will produce the functionality

desired. The market place is selling and buying the engineering hours and a certain

process which can be argued to reduce risks. It is not a demonstration of specific

achievement but a promise well told. Success is not directly related to the usefulness

of produced outcomes. [NoK04, p. 39]

An alternative for the employer-contractor model could be a by-use payment model

complemented with an assumption that there is no a priori assumption of the

undesirability of redundant functionality. Under such model money would flow to

those who produce demonstrated utility to the user. This would cause the market to

shift to understanding and satisfying real needs rather than the sale of engineering

hours. [NoK04, p. 39]

1 This may apply in the business-to-business market where often managers instead of
end-users make purchasing decisions but in the business-to-consumer market this
does not hold. Consumers can “vote” by not buying something. On the other hand the
customers, people, are often brought into the design process after it has already
decided what is build for them, and the products are loaded with functionality that the
users do not need but are forced to pay for.

 54

Experience for Test
Full-coverage testing of complex systems is very difficult if not impossible. Rather

than on relying traditional approaches, one might collect and catalog things when they

go wrong in the field and analyze them. Obviously there is need to develop testing

approaches to have some sense of belief about the systems before fielding. In

addition, one should test the infrastructure to failure in order to know the performance

boundaries of the system. Then the system should be monitored in the field to see if

the limits are approached. This makes possible to intervene before, not only after,

problems emerge. [NoK04, p. 40]

3.6 Comparison of Systems Engineering Approaches

In summary, I compare some aspects of the above-presented systems engineering

approaches.

Focus
The primary focus of TSE as well as agile methodologies is a single system, whereas

the focus of SoSEM and CSE is a system of systems. Furthermore, the focus of CSE is

on creating an environment and process rather than a product. In this CSE differs

from SoSEM, which focuses on the product just as TSE. On the other hand, SoSE

methodologies are not adaptable to the development of single systems, whose

development should be approached using more or less traditional systems engineering

methodologies.

Expectation
TSE is expected to provide a solution, whereas SoSEM and CSE as well as agile

methodologies are expected to provide initial response. SoSEM, CSE and agile

methodologies provide the “solution” as the system evolves. This is due to the fact

that TSE provides a solution to a defined problem, whereas agile methodologies,

SoSEM and CSE consider problems as emergent.

 55

Approach and Its Characteristics
The approach of TSE is process whereas the approach of SoSEM and CSE is

methodology. The approaches of agile methodologies range from process to

methodology. However, the approach of TSE and agile methodologies as well as the

approach of SoSEM is direct and linear. They build on subsequent phases. In addition

TSE and SoSEM are top-down approaches. In these aspects SoSEM is close to TSE.

CSE, on the other hand, can be considered indirect and non-linear, and its approach,

as well as the approach of agile methodologies to actual problem solution, is bottom-

up although system evolution is guided top-down. In the top-down guidance CSE and

SoSEM resemble each other. Other points of convergence between the system of

systems methodologies can be found in modeling: whereas SoSEM models an

existing system, CSE characterizes it, and whereas SoSEM defines the “ideal” model

of system, CSE defines “outcome spaces”. On the other hand analysis and

requirement specification are common to all systems engineering approaches.

However, SoSEM and CSE differ from TSE and agile approaches that instead of

technical dominance contextual influences are central to the analysis.

Autonomous agents
The most essential difference between the methodologies culminates in relation to

autonomous agents (development tracks). TSE does not accept autonomy of agents. In

order to succeed TSE requires everything to be under complete and central control.

The perspective of SoSEM to the autonomous agents is somewhat unclear. Correa and

Keating [CoK03] have viewed systems of systems as artificial complex (adaptive)

systems but the top-down approach [KSM03] that they propose does not count that

development tracks building the component systems would autonomously provide

right solutions. CSE, on the other hand, as well as agile methodologies counts on that

self-organizing development tracks will autonomously deliver desired outcomes.

Given the presentation of systems of systems and systems engineering methodologies

I will proceed to application development and the application development

environment of the ARKI research group.

 56

4 Application Development Environment of ARKI
In this chapter, I analyze application development in the ARKI research group from

system of systems engineering perspective and show that system of systems

engineering provides valuable insight to our application development. As an example,

I use an actual development case, Voice Notes. After that, I analyze the characteristics

of the application development environment of the ARKI research group and

applicability of system of systems engineering methodologies to its overall

development. Based on this analysis I argue that in our case complex systems

engineering is preferable to other approaches. In addition, I propose some applications

of complex systems engineering tactics. Finally, I present implications of system of

systems perspective to single systems developers.

Before proceeding I define two concepts in order to facilitate discussion. With the

concept of Application Development Environment of ARKI (ADEA) I mean people,

software, and hardware involved into the design, development and operation of

applications, whereas with the concept of application I mean a single system or

system of systems that is composed of the components of ADEA. At the moment the

overall development of ADEA is not in any project’s explicit interest or set of

requirements but the projects of the ARKI research group are concerned about

developing separate applications. The development of the ADEA toward an open,

adaptable and interoperable (co-design compatible) system that better supports

separate application developments is the ARKI research group’s private endeavor and

so far there has not been any formal engineering approach to manage its overall

development.

4.1 Practical Application Development Case: Voice Notes

The case of voice message sharing application1, Voice Notes, offers an example of co-

design process but also an example of an emerging system of systems thinking in

everyday application development. The origin of Voice Notes application lies in the

1 Voice Notes is rather a platform or a part of platform that enables Voice Notes
applications but in order to facilitate discussion I refer here to the Voice Notes as a
single application.

 57

long-term co-design relationship with one of our collaboration communities. From

previous probes on diaries and sharing, we formulated a development theme of

“remembering and reminding” (see ARKI Thematic Publication 1, 2004 [Bot04b])

that we explored in a workshop with some of the members of the community. We

brought to the workshop also an interest in developing an audio blog. However, our

scenario about it did not produce any enthusiasm, as it combined audio notes with

radio and television, which were felt to be too public as interfaces for private notes.

Only after some twists and turns, the idea of sharable audio notes got its final shape:

the community members came up with a need to offer means to leave a voice message

with a phone and being able to listen, rename, comment and share it with others in the

web. The actual implementation of Voice Notes, on the other hand, was not such a

success story. However, during the implementation, considerations that finally lead to

this research got their shape.

The Voice Notes was originally developed or rather hacked up through a couple of

iterations from a demo to a prototype without applying consciously any methodology

or approach. Therefore, the purpose is not to prove applicability of any systems

engineering approach empirically. However, during the development and afterwards I

came to think that there might be lessons learned. From my perspective the system of

systems engineering approach seemed to offer a valuable view on what we are aiming

at and to help us better to understand and manage the development of applications in

the ARKI research group’s co-design projects.

4.1.1 The Architecture of Voice Notes

The development of the Voice Notes was rather systems integration than creation of

something totally new from scratch. However, from independent elements emerged

something new. In that the development of Voice Notes resembled more system of

systems engineering than traditional systems engineering.

In Figure 8 the architecture of the second version of Voice Notes is presented at a

general level. The first version was composed of an Answering Service, an email

server (Mail Boxer), and a Web User Interface with an embedded QuickTime Player

to view and listen to messages, voicenotes. The second version also included a

 58

Document Generator component that generated documents from emails that contained

audio file, and some functionality to edit and comment these documents. The main

functionality was built on top of the Zope (Z object publishing environment), which is

an open-source web application server (see Appendix 1), and Zope CMF (Content

Management Framework), which is an open-source extension for Zope (Zope

product). In addition the functionality of the online environment of community

(customizations made to Zope CMF) was utilized. Together these form a part of

ArkiWorks application platform.

Figure 8 The Architecture of Voice Notes Application. The user leaves a voice
message to the Answering Service. The Answering Service sends the message as

an email attachment. The Mail Boxer receives the email and calls Document
Generator, which generates a document from the email. The same or another

user listens the voice message embedded in the document, re-titles the document,
writes a description of the content or comments the message.

4.1.2 Voice Notes Application as a System of Systems

What is noticeable in the Voice Notes is its character as a system. Evidently Voice

Notes is not a large complex system of systems. However, it is more a system of

systems than a single system and for an everyday application its technical complexity

is rather high although manageable using traditional systems engineering approaches.

Furthermore, one may argue that the Voice Notes is not a system composed of

systems but a system that is composed of components. However, this view does not

 59

give an accurate description of the Voice Notes, which an analysis based on Maier’s

[Mai96] five principal characteristics of systems of systems exposes.

If we take look at the elements of Voice Notes (see Figure 8), the Phone, the

Answering Service, the ArkiWorks, the Personal Computer with the QuickTime

Player and the Browser are clearly systems in their own right. They are operationally

and managerially independent and the Phone, the Answering Service, the ArkiWorks

and the personal Computer are even geographically separated. They can be and are

operated independently. They are developed for their own purposes and not for the

purposes of the Voice Notes. The only component-like parts are the Web Interface,

the Document Generator, and the document editing and commenting components

(Customizations) that are essentially extensions of Zope and Zope CMF.

The status of Zope, Zope CMF and Mail Boxer is somewhat controversial. They are

open-source software and in a way they are also operationally and managerially

independent although instances of them are operated and managed locally. However,

their independence arises from the fact that they may or may not satisfy the needs of

the Voice Notes as such and there is neither financial nor other means to force them to

be developed for certain purposes. They support the Voice Notes perfectly or not at

all or something between. (And actually they did not: a few long known bugs were

encountered, and some workarounds were needed.)

It seems reasonable to argue that at least the first, the second and the fifth

characteristic of systems of systems [Mai96] are present to some extent in Voice

Notes: operational and managerial independence of elements and geographic

distribution (the Phone, the Answering Service, the ArkiWorks, and the Personal

Computer). Furthermore, the fourth characteristic, emergent behavior is fulfilled since

the Voice Notes performs functions and carries out purposes that do not reside in any

single element of the Voice Notes. The third characteristic, evolutionary development,

is also fulfilled since functions and purposes were added, removed, and modified, and

development will still continue as experiences are gathered and new needs are

recognized.

 60

Furthermore, not only the composition of Voice Notes but also its development

suggests that the system of systems provides a valuable perspective for us. Initial

guidance and implications for system of system engineering provided by Keating et

al. [Kea03] (see Chapter 3.4.1) gives support for this argument:

First, proceed with the assumption that the initial problem definition is always

incorrect and suspect [Kea03]. As systems of systems are created to solve a problem

or fulfill a mission, the Voice Notes was created to carry out an experiment, which

was burdened with a considerable amount of uncertainty and ambiguity in the system

environment, boundaries, and stakeholders’ interests. In the case of Voice Notes

requirements where changing all the time during development and even after the trial

it was not sure, which were the stakeholders’ (in this case the users’) actual interests

although they were sure that they will come up with them (see ARKI Thematic

Publication 2, 2005 [Leh05a]). Furthermore, there was uncertainty related to the

application platform (Zope and Zope CMF). It was not certain that the application

was realizable as planned. Finally, we found out that there existed a “well

documented” bug that we had to overcome with a workaround. Therefore, in order to

succeed with experiments such as the Voice Notes, instead of considering that one has

perfect knowledge at the start, one should design the used processes to permit

continual questioning and reframing of problems and missions [Kea03].

Second, building system transformation capability is more important than initial

deployment because initial deployment of a system of systems is always going to be

wrong [Kea03]. In the case of the Voice Notes, it was crucial to have the minimal

level of “partial solution” deployed to satisfy stakeholders’ primary needs and to get

the trial ongoing. To succeed we have to consider possible strategies for migration

from one version to another. Therefore, speed of deployment and engineering

capabilities for flexibility and system reconfiguration deployment were considered far

more important than the solution’s completeness. This resembles implications of

system of system engineering [Kea03]. Also rapid identification of systems failures

[Kea03] rose as an important aspect. For one of the participants a wrong version of

the QuickTime Player was installed because of her relatively old computer system.

Rapid identification of failure and reconfiguration of her computer system enabled her

to participate in the trial.

 61

Third, bringing context in the foreground and technical solution to the background

determine success in the system of systems environment [Kea03]. We faced some

contextual issues in a small scale for example when we had to solve the participants’

concerns about cost of using the Voice Notes. In order to solve this we had to find out

the organization’s politics and policies about paying participants’ phone calls.

Inability to solve these would have doomed even the “best technical solution”: the

participants were not willing to pay for the use of Voice Notes yet; only later they

wanted to have the Voice Notes for their own use and they were ready to pay for its

use. Another issue that demonstrates the importance of contextual issues is that

although the community members were excited about the Voice Notes and the

co-design process was a success the first trial did not go as expected. The members of

the community hardly used the web interface. They were excited about phones that

they were carrying to all places and about possibility to make a note without pair of

glasses, pen and paper, and in almost any light, and especially that they did not have

to remember to send the note by email to others. The problem culminated to the usage

of computer. The members of the community had mainly slow Internet connections

and they were not willing to pay more for faster connections because they used the

Internet only for reading their emails once or twice a week. They did not have a

practice were checking voice notes could have been embedded. Again, the best

technical solution can be doomed by contextual influences. One cannot expect to

change people’s practices over night. It is possible if contextual issues support the

change but people cannot be expected to redesign their lives all over only because of

some technical gadget. Therefore, the context should be brought to the foreground.

Fourth, effectiveness in system of system engineering environments is determined first

as a function of worldview, or philosophy, which is critical in determining success in

system of systems environments [Kea03]. This not only holds in the case of Voice

Notes but it is also the most important point of convergence with systems of systems

and our case. It opens a view from application development to the development of our

development environment and vice versa. When the development of Voice Notes was

considered, it was necessary to see the Voice Notes role in the “big picture”, in the

relation to our co-design efforts. The Voice Notes was not only seen as a separate

application or an experiment, but something that would become an integrated tool of

 62

the community’s collaboration environment and its practices and our ArkiWorks

application platform. Therefore it was considered important that it would be possible

to handle voicenotes as any other contents (documents) of the collaboration

environment without need to switch between applications. The Voice Notes was not

just a one-time application but it became a part of the application platform and the

application development environment of the ARKI group (ADEA). For example,

Voice Notes was used as a platform for other applications (e.g. Vaakku [Leh05b], a

soft toy that can be used to send audio messages to parents’ e-mail) and one of the

solutions that were implemented in it will be developed further as a building block for

other applications.

In summary, in the ADEA application development tracks do not create only

applications but also the developmental and operational environment for themselves

and other applications. In this, the ADEA resembles a system of systems having the

characteristics of complex systems. In following, I analyze in more detail the

characteristics of ADEA.

4.2 Characteristics of Application Development in ARKI

The ARKI research group, having 10–15 people, is the size of a small or medium

firm. Apparently, even if the research partners, companies and communities, were

included, as an organization it would still not be an enterprise, not even a small one.

But the application development environment of the ARKI research group (ADEA)

can be considered an enterprise in small. The key issue is not the size, but the

characteristics.

Application development tracks in the ARKI are usually independent having one or

two designers working on them. The development tracks of the research projects

share a common development environment with each other but they are responsible

only for the research project, seldom for the whole group. The reason for this is that

software development is financed by the research projects, not directly by the research

group. Thus, the ARKI can be considered to have several internal independent

development tracks. See Table 4.

 63

Development Track Project

Online collaboration environment: ARKI ADIK, Encompas, Mediaspaces...

Dissemination environment: Encompas Encompas

Online community environment:

Aktiiviset seniorit ry
ADIK

Voice message sharing application:

Voice Notes
ADIK

Media sharing basket: Kori (MediaFolder) Encompas

Video editor: Cutter Mediaspaces

Community calendar ADIK

Home server (planned) ADIK, Encompas

Family blog (planned) Encompas

Audiovisual web blog, e.g. mlab.tv Mediaspaces

ArkiWorks application platform

A joint effort of several projects:

ADIK, Encompas,

Mediaspaces…

Table 4. The development tracks of the ARKI Research Group. (The table
is not comprehensive but only illustrative.)

If external digital products and applications that are utilized in the ADEA are also

included, the number of developmental tracks multiplies. See Table 5.

 64

Product Vendor
Mac OS X Server
 operating system http://www.apple.com

Subversion
 Version control system http://subversion.tigris.org

Python
 programming language http://www.python.org

Zope
 web application server http://www.zope.org

CMF
 content management
 extension for Zope

http://www.zope.org/Products/
CMF/index.html

Plone
 content management
 extension for Zope

http://plone.org

exUserFolder
 authentication extension
 for Zope

http://sourceforge.net/projects/exuserfolder/

MySQL
 relational database http://www.mysql.com

Mail Boxer
 emailing extension for Zope

http://www.zope.org/Members/mjablonski/
MailBoxer

ZWiki
 Wiki for Zope http://zwiki.org

Answering Service Telecom Operator τ
QuickTime Player
 media player http://www.apple.com

Browsers (Firefox, Mozilla,
Safari, Internet Explorer...) Different vendors

Phones (Nokia 7710, Nokia 6630,
Nokia 3330...) Different vendors

Multimedia Messaging Server Research partner α
Authentication Server Research partner β

Table 5. Third parties’ products in the ADEA. (The table is not
comprehensive but only illustrative.)

Some of the above-listed development tracks build on each other (e.g. Zope on

Python, Zope extensions on Zope, and we build on the top of all them). However, in

most cases the products are not built for the same purpose and they do not share the

same conceptual basis (this is especially true between our and third parties’ products)

or funding which could be directed to solve problems. They can be considered

analogous to independent organizations inside an enterprise. For further affirmation

for the enterprise and complex system characteristics of the ADEA one can compare

 65

the characteristics of the ADEA to the characteristics of complex systems presented in

Chapter 3.1.1:

The structure and behavior of a complex system is not deducible from the

structure and behavior of its component parts.

The behavior of ADEA is not well known and its desired change is even less known.

There have been many past projects that have left their traces to the ADEA and many

ongoing projects that change the behavior of the ADEA according to their needs. Not

until through this research the overall development of the ADEA has been considered.

Previously there have been only independent application developments without a

clear connection, and unfortunately because of inadequate understanding of objectives

and lack of technical competence, even development of similar applications (e.g.

online environments) have forked into separate versions that have unique and intricate

implementations. Understanding the behavior of ADEA is hindered more by the fact

that the ADEA is in constant change due to new projects, which stretch its boundaries

and force to take advantage of its capabilities to limit and explore new ones in order

to fulfill missions and experiments that projects should conduct. Even if one had the

complete architecture of the ADEA, the presence of autonomous agents (independent

development tracks) would make it impossible to infer its behavior: necessary

changes are made to applications as required because fulfilling missions is the first

priority. Therefore, the ADEA emerges rather than is consciously developed. For

these reasons, I believe that at the moment no one has full understanding of the

ADEA. On the other hand, by re-architecting, re-designing and re-factoring, and

through innovation the complexity of the components of the ADEA could be reduced

and the structure and behavior of ADEA could be made more understandable.

However, because of the objectives set for the ADEA (open system that is constantly

adapted) and the organizational structure of ARKI (development driven by the

independent research projects), it is unlikely that the complexity of the ADEA as

whole could be reduced so that its structure and behavior could be deduced from its

component parts, although reducing the complexity (or rather intricacy) of its parts

would be possible.

 66

The elements of a complex system can change in response to imposed

“pressures” from neighboring elements (consequently leading to reciprocal and

transitive implications)

Independently introduced applications cause direct “pressure” on those applications

which perform similar tasks, or which could potentially act in concert with these

introduced applications. For example, changes in Media editor application or in Voice

Notes cause “pressures” to online environments acting in cooperation with them.

Another example is introducing a new collaboration environment or web site version

for some of the collaboration communities. This causes social and political

“pressures” to develop the older collaboration environments and web sites of other

collaboration communities in order to keep these research partners content. On the

other hand, this would not be a problem if all the online environments were based on

the same source code. But as it was stated above for historical reasons all the online

environments have unique implementation to an extent that they can be considered

having their “own life”. Naturally, the most obvious answer to this problem would be

re-architecting, re-design and re-factoring of the online environments. However, this

suggestion does not take into account contextual issues and therefore it is based on

fallacy that the change could happen in a very short time. Eventually unifying the

source base of these online environments has to be addressed through the disciplined

inquiry and rigor of more or less traditional systems engineering because the intricate

characteristics of current implementations halt the evolution, but until then they are

“legacy systems” that we just have to deal with. However, when we have brought

together these forked online environment versions, we still must face the fundamental

“pressures”, which are imposed on us as our collaboration communities develop and

change their everyday life practices and demand the systems to be adapted to their

needs. This concerns all of our applications.

A complex system has a large number of useful potential arrangements of its

elements.

As the development tracks of ARKI (Table 4) shows the elements of ADEA provided

by third parties (Table 5) have already many useful arrangements. However, there are

not as many useful arrangements of products provided by us as we wish for. The

reason to the situation is that we have not yet produced many applications (current

projects have lasted approximately for one and half year). However, in the future

 67

there should be more systems of systems such as Voice Notes. Furthermore, these

applications will be integrated with each other, e.g. Voice Notes with Community

calendar and Family blog. This gives us reason to believe that the number of useful

arrangements of ADEA will increase, which leads us to the next characteristic.

Given a steady influx of energy (raw resources), a complex system increases its

own complexity.

The tasks of ADEA are numerous and in flux due to new and previous projects. The

projects are enabled by raw resources (money) flowing into the system. The projects

introduce new applications and thereby increase the number of possible connections

and relations of the elements (complexity) of ADEA.

A complex system is characterized by the presence of independent agents.

In the case of ADEA the independent agents are best understood first as people and

second as independent development tracks formed by people. The ARKI research

group cannot be viewed as a monolithic entity moving in a pre-specified direction.

Rather the ARKI research group is a loosely coupled collection of individuals, which

aim to achieve something common. These people, designers and researchers, work

more or less independently on different applications and in collaboration with

research partners forming development tracks with them (see Table 4). Further, the

ADEA includes third parties’ digital products and applications (see Table 5).

Producers of them can also be considered as independent agents of ADEA. Their

decisions (that are independent of us) affect through artifacts that they produce and

we import to the ADEA.

Given the presentation of the characteristics of our development environment, I

proceed to analyze the suitability of traditional systems engineering and system of

systems engineering to develop it.

4.3 Applicability of Systems Engineering Methodologies

In Chapter 3.2.2 I presented four boundary conditions for applying traditional systems

engineering (TSE) methodology and six primary conditions that suggest a system of

systems engineering (SoSE) methodology preferable to TSE. In the following I

 68

analyze first if the application development environment of the ARKI research group

(ADEA) fulfills the boundary conditions for applying TSE successfully and then if

the ADEA fulfills some of the primary conditions to consider using a SoSE

methodology.

4.3.1 Applicability of Traditional Systems Engineering

The four boundary conditions for applying TSE successfully are according to Norman

and Kuras:

1) The specific desired outcome must be known a priori, and it must be clear

and unambiguous.

2) There must be a single, common manager who is able to make decisions

about allocating available resources to ensure completion.

3) Change is introduced and managed centrally.

4) There must be interchangeable resources, which can be applied and

reallocated as needed.

First, in the case of the ADEA neither the desired outcome nor the boundaries of the

system are very clear. The ADEA is a research “project” and its boundaries as well as

its outcomes are constantly in change. The outcomes and boundaries are clarified

gradually but not known a priori.

Second, in the case of ADEA there is not a single, common manager who could make

decisions about allocating available resources. Inside the ARKI research group this is

possible to the extent that projects allow it but “parts” of the ADEA are also scattered

outside the ARKI. There is not a way, for example, to force financially or by other

means the developers of Zope products to develop their products into directions that

ensure completion of our projects.

Third, inside the ARKI it is possible to introduce and manage change centrally to

some extent but also inside the ARKI the projects must move forward and

independent development tracks should be able to introduce changes and bring new

products into the ADEA according to their needs, e.g. new Zope products. (“Should”

 69

because of the interdependencies of products this is not currently always possible.)

This way change is introduced in many places and even outside the ARKI.

Fourth, in the case of the ADEA there are not resources that could be applied directly

or reallocated as needed to develop the ADEA. The development of the ADEA can

happen only gradually by independent development tracks driven by the needs of the

research projects.

Based on this analysis, it is reasonable to believe that applying TSE approaches to the

ADEA involves risks and the outcome might not be as successful as desired. Further,

this encourages analysis of advantages of system of systems engineering to approach

the development of ADEA.

4.3.2 Preference of System of Systems Engineering

The six primary conditions that suggest a system of system engineering (SoSE)

methodology preferable to TSE are according to Keating et al.:

1) Turbulent environmental conditions

2) Ill-defined problem conditions

3) Contextual dominance

4) Uncertain approach

5) Ambiguous expectations and objectives

6) Excessive complexity

First, the ADEA as an environment for systems engineering effort is considerably

dynamic, uncertain and rapidly changing, because of independent development tracks.

Second, the turbulence in environmental conditions is further increased by ill-defined

problem conditions. There is no sufficient consensus for initial problem definition,

functional or qualitative requirements of the ADEA. Third, in the development of

ADEA contextual issues overshadow the technical aspects. Technologies enable

almost everything but the success of engineering the ADEA is primarily determined

by adequately addressing the contextual problem drivers (human, organizational,

policy and political constraints). Fourth, the path of progression on how to “best”

 70

proceed with the development of ADEA is indeterminate. Standard systems

engineering processes are at least highly suspect for adequately addressing the

development of ADEA (see Chapter 4.3.1). Fifth, because of our inadequate

understanding of objectives and lack of technical competence to proceed with the

development of ADEA, we are not able to establish measures of success or objectives

for the systems engineering or at least our objectives, e.g. “an open system that is

continuously adapted to everyday life uses”, are vague from the traditional systems

engineering perspective. Sixth, the boundaries of ADEA are such that its complexity

is beyond pre-specification and centrally managed development, and thus beyond

capabilities of TSE. We cannot either proceed by simplifying our objectives: from the

TSE perspective they are too vague and changing them would baffle our endeavor.

Fulfilling all the six primary conditions in some extent it seems reasonable to

conclude that we should seriously consider using a system of systems engineering

methodology to the development of ADEA. In the next chapter I view the preference

of proposed system of systems engineering methodologies.

4.4 Preference of System of Systems Methodologies

The ADEA is a developmental environment in a real sense. Therefore, complex

systems engineering, which emphasizes creating and nurturing developmental

environment, seems more than appropriate for our purposes. However, the most

important issue that makes CSE preferable to the SoSE methodology by Keating et al.

is the presence of autonomous agents. The ADEA emerges from the efforts of

independent development tracks. As system of systems engineers we can only

indirectly bring order to the ADEA. We should do this by continuous

characterizations of outcome spaces, stating rewards that can be in our case only

indirect (desirability of that what is produced for users and us), defining

developmental precepts and safety regulations from the co-design perspective, and

judging outcomes. As an initial response to engineering the ADEA, in following I

propose how CSE tactics proposed by Norman and Kuras might be applied in the case

of ADEA.

 71

4.4.1 Applying Complex Systems Engineering Tactics

In this chapter, I review briefly applying CSE tactics to the development of ADEA.

The tactics have not been applied yet, and thus the purpose is only to illuminate how

these tactics may unfold in the case of the ADEA.

Half-life Separation
Half-life separation is the closest of the CSE tactics to software design principles. It is

applicable as such and we should apply it whether the CSE approach is used or not. In

practice this means following solid software design principles (e.g. Bus96) in order to

support modifiability and re-usability. New components should be backward

compatible in order to support components changing in lower pace. For example, the

ArkiWorks application platform should be designed so that it is composed of

replaceable components.

Another architectural issue that should be concerned is data independence. It could be

considered to constitute a sub-practice of half-life separation. The data should be

considered as a “component” that never changes. Therefore, the data architecture

should be designed so that the “raw” data (including metadata) is independent of the

applications used to access it. No application should claim ownership of the data but it

should be considered as the property of users, not applications. This is feasible using

layered object-oriented (component) architectures that hide the data layer and at the

same time enable application specific data types (objects). On the other hand,

achieving data independence in general might require co-opetition (see below).

Technical Approaches which Respect “Ricebowls”

The Voice Notes application is an example of using a technical approach that respects

“ricebowls”. The Voice Notes uses a web service (answering service) to explore new

associations and relations without interfering to the operation of the telecom

organization. Technical approaches which respect “ricebowls” are something that we

should discuss with our research partners in order to facilitate systems development

but they are something that we could also consider in the case of, e.g. peer-to-peer

networks of home servers providing services for other households.

 72

Advertising and Discovery
Advertising and discovery are quite well applied in the Zope community1. There are

lists of available Zope products2 and means to introduce new ones. However, there is

a problem in comparing the products and choosing the most appropriate one. Better

social recommendation systems could ease finding potential products but finding the

most suitable product is not the only problem. After finding the most useful

capabilities and functionalities one is encountered with integration problems. These

problems could be reduced and discovery facilitated by having a test bed in our

environment where the study of these products is easily and safely done.

Collaborative Environments

In the ARKI, collaboration takes many forms already at the moment. There is

collaboration between the ARKI group and practice-partners (communities) and

research partners (companies) and collaboration between developers. The ARKI is a

collaboration environment. However, there is need to communicate more clearly how

independent developments fit into the “big picture” in order to reduce integration risk.

In addition, collaboration with developers outside the ARKI (Zope community)

should be considered because it might reduce overlap and improve understanding of

our true need. However, this would require understanding the practices of the

Free/Open Source Software community and involvement in the Zope community’s

everyday work (see e.g. Tuo02). We could also consider establishing a Finnish Zope

group, a collaborative environment, for sharing information and solving problems.

Partnerships
The collaborations with developers outside the ARKI (Zope community) could also

take a form of partnership. In this way it could be possible to improve understanding

of the goals of the ADEA (i.e. the objectives of co-design), spread development risk

and reduce overlap.

1 http://zope.org [17.5.2005]
2 http://www.zope.org/Products/ [17.5.2005]

 73

Developers Networks
We are already connected to a developer network because of our earlier decisions. We

have chosen a specific programming language, Python, because of its “programmer

centered design”, and a specific application platform, Zope, because it is mainly

implemented in Python. The Zope company, on the other hand, has been successful in

creating developers networks (community) and getting developers to use a specific

platform. We have benefited from all that. Thus far we have only been receiving but

perhaps we should consider also contributing in order to create partnerships. This

would require productizing our applications.

Co-opetition
In the ARKI research group applying co-opetition is not applicable because of our

limited resources but in the Zope community this already is “applied”. Zope unites

independent parties (developers) to cooperate on those elements and aspects, which

transcend their individual ability to control (Zope platform) while preserving their

ability to compete on demonstrated value in their space (diverse Zope extensions).

Leveraging Others’ Investments
The ADEA is built mainly on others’ investments. However, we could probably

manage to leverage others’ investments and to build even less ourselves. In order to

succeed we should define precisely what kind of functionality and behavior we are

ready to reward.

Branding
The development of co-design philosophy could lead to branding products as

“Co-design Compatible”. “Co-design Compatible” or “Ready for Co-design” stickers

would ensure that the product is open, adaptable, interoperable, and easy to integrate

with other “Co-design Compatible” products. At the moment this is more an idealistic

goal than applicable practice because applying this tactic would require specifying

exactly the requirements that qualify a product as “Co-design Compatible”.

 74

Opportunistic Approach
Our approach is already opportunistic. One of the basic ideas of the co-design

philosophy is to involve users in managing the identification and introduction of

functionality and change. Therefore, we work in close relationship with our

collaboration communities and develop applications based on almost daily feedback.

Permitting “value-add” business models
The idea of co-design is to give users “a vote” in what is built for them. The research

projects and software developments are given directions based on the user feedback.

Researchers and designers “get paid” for composing something that the users are

ready to use. Hence, success is directly related to the usefulness of that which is

produced. However, co-design differs from the suggestion by Norman and Kuras

[NoK04]: co-design is a design approach that aims at solving desirability of

functionality a priori although it leaves room for discovery.

Experience for Testing
We prefer experience for testing for practical reasons. Naturally applications are

black-box tested offline as well as some usability tests are carried out. But we are not

able to perform full-coverage testing because the users’ environments (computers and

software) are heterogeneous and our resources are limited. On the other hand we are

interested in experiences that people have when using the products in real life

situations. Therefore, in general applications are tested in the field. Instead of

attempting to come as close to full-coverage testing as possible, we prepare to solve

problems when they occur.

One unique characteristic of the ADEA is that it is mainly built “on the field”. It is a

combination of production and development environment. Therefore, some changes

cannot be tested before delivering them. In order to have safer and less stressful (more

efficient, effective, satisfactory, i.e. usable) development environment for developers,

the production and the development environments should be separated in the extent it

is possible. At least changes should be possible to experiment safely before

introducing them. Taking into use an issue (a.k.a. bug) collector and error logs for

 75

reporting, cataloging and monitoring failures (instead of just mailing lists) would

further improve our capabilities to recover when things go wrong.

Playgrounds
The concept of playground captures the goal of our efforts: the main purpose of the

ADEA is to be a playground, where our experiments can take place. But it is also

supposed to evolve to a prototype of “playground” where people can innovate and

discover new ways to take advantage of technology and adapt it to the practices of

everyday life uses. The applications of CSE tactics above are initial steps on a path

transforming the current ADEA to a playground. However, they are not enough.

Because the ADEA emerges as a result of application developments, which form a

system of systems, in following I review in addition to above-presented tactics system

of systems engineering implications for application developers.

4.4.2 Implications for Application Developers

To chart system of systems thinking implications for application development one

could take a look at the system of systems engineering implications for single system

developers presented in Defense Acquisition Guidebook (DAG) by the United States

Department of Defense [Uni05]. Rephrased it says that systems or applications should

not be developed as stand-alone systems, but as parts of larger meta-systems

delivering unique and encompassing capabilities. Developers should be aware of the

distinguishing system of systems engineering attributes that might apply to their

system and the possible impact on their system architecture. DAG also presents a list

of questions (rephrased below) that developers should ask themselves to address

system of systems concerns, capitalize on system of systems capability pay-offs, and

effectively meet the design and development requirements of current and future

system of systems:

1) Will the experimental capabilities of the ADEA improve if the ARKI

research group incorporates my system into the portfolio of existing and

planned systems of systems?

 76

2) What additional capabilities and behavior could my system deliver within

the context of existing and planned systems of systems?

3) Which are the most valuable capabilities that other systems can provide to

my system if it becomes a part of existing and planned systems of

systems?

4) To which systems of systems can my system contribute the most value?

5) Are there system of systems capabilities, behavior, and requirements that

my system must address to become part of the existing and planned system

of systems?

6) Am I designing my system so that it can be easily integrated with other

systems?

7) Does my system have an adaptable and open architecture to enable future

reconfiguration and integration into a system of systems?

8) Have the system of systems interface requirements been adequately

defined and documented in the specification of my system?

9) Has my project developed and documented interface control requirements

for external functional and physical interfaces?

10) Has my project identified and established conformance testing or

certification mechanisms to assure that standards used by external

interfaces conform to the prescribed interface specifications?

11) Has my project verified the external functional interface specifications to

ensure that the functional and performance requirements for such

interfaces are satisfied?

 77

12) Does my system fully comply with external interface requirements

identified through the ADEA Integration and Development process and its

accompanying documents and architectures?

13) Have I established rigorous interface design and management based on

conformance and verification of standards at upper layers as well as at the

application, transport, network, physical, media and data link

communication layers?

Evidently this list of questions can be used only as a guide. We do not have defined

interface specifications, integration and development processes, or system

architecture. We are only at the beginning of our endeavor. Eventually interfaces,

processes and architectures are to be defined but they (the order of the system) will

emerge only gradually through research-in-action, establishing knowledge concurrent

with application and problem resolution.

4.5 Summary

In the case of ADEA, we do not have the luxury of doing research and then moving to

action. Therefore system of systems engineering, especially CSE offers us valuable

perspective. We must establish knowledge concurrent with application and problem

resolution. Literature and observations that I have presented suggest that to succeed in

developing the ADEA toward an open, adaptable and interoperable system of systems

requires something beyond tools and techniques. To succeed, it is important to

inculcate the “systems perspective”. Fundamentally, it is a question of compatibility

between the supporting philosophy and the system of systems engineering approach.

In our case the supporting philosophy is co-design and the most promising candidate

for a system of systems engineering approach is the complex systems engineering.

However, obviously this is not enough for engineering purposes. The “model” of the

ADEA that I have presented is rather a qualitative than quantitative model and as

such, it has little use for engineering. In order to measure our success we need metrics

and for metrics we need something quantifiable. This requires a reductionistic

approach, the decomposition of system into its parts in order to isolate variables that

uniquely determine the state of the system. However, the reductionistic approach,

 78

especially in the case of modeling of complex systems, is not without potential for

distortion, errors, and oversimplification [Dea04]. The system model is always

dependent on knowledge and viewpoint of the person who models the system, and

therefore there is no “perfect” true model of any system [Dea04]. However, as more

knowledge of the diverse actions and interactions of the parts that comprise the

system are gained, it is possible to develop a more accurate approximation of the true

nature of the system [Dea04]. However, because the system model must also address

the needs of the individuals who express interest or concern for the performance of

the system under model it is probably necessary to develop several models to capture

the complexity of the system [Dea04]. This concerns also ADEA. Thus, the “model”

that I have presented should be considered as a first iteration model, whose primarily

purpose was only to argue that it is reasonable to view the ADEA as a complex

system on the way toward more quantifiable models that captures evolutionary and

multiscale reality of the ADEA as a complex system.

79

5 Discussion
At the first sight complex systems engineering (CSE) seems to concern totally

different kind of systems than what we are interested in our co-design research: our

concern is digital products that people use in their everyday life whereas CSE is

concerned how to engineer and manage the enterprise. But if one takes a look at the

ADEA or the digital environment where people live today, the similarity becomes

apparent. We are surrounded by a large collection of independent and loosely

associated products, representatives of organizations, which we try to integrate to our

“systems of systems” in order to manage our everyday life and social relationships.

Understanding the digital products, software, as representatives or representations of

organizations that produce them is especially feasible because of the almost infinitely

flexible nature of software and the existence of computer networks, which makes it

possible to update software continuously, thus enabling the products to represent the

state of the organizations instantly (see Figure 9).

Figure 9. “A” presents a common view of product development where an
organization (people and systems) produces a product (e.g. a word processor).
“B” presents a view where the product represents the organization that produces

it to the user.

Based on the view that the products represent the organizations that produce them, the

system of products exposes not only as a system of systems but as a system of loosely

coupled organizations (see Figure 10).

80

Figure 10. Based on the view that the product represents the organization that
produces it, the “system of systems” of everyday life (A) exposes itself as a system

of loosely coupled organizations (B).

After adopting the view of the inherent complexity of the “systems of systems” of

everyday life the other points of convergence between CSE and co-design are more

than obvious:

Co-design and CSE both are based on a view of systems of digital products as having

the characteristics of an ecosystem.

Co-design and CSE are both emerged from the notion that traditional approaches to

system engineering are having trouble dealing with the systems having the

characteristics of an ecosystem.

Co-design and CSE both seriously take the environment surrounding the systems.

CSE sees complex systems as being alive and constantly changing; responding to and

interacting with their environments – each causing impact on and inspiring change in

the other [NoK04]. Co-design concerns the social system (and its design) as integral

part of the development process and its outcomes.

Given these points of convergence it seems reasonable to argue that co-design and

CSE are compatible. Further, there seems to be synergy in combining these two

approaches: whereas complex systems engineering provides a conceptual framework

 81

to manage the evolutionary development of system of systems, through co-design the

outcome spaces are possible to characterize and need to explore paths that lead to

dead-end is reduced.

In addition, applying complex systems engineering in combination with co-design

could benefit the development of the digital environment of everyday life toward

interoperable systems of systems. Together these could form a comprehensive view to

the development of digital environment of everyday life as it is argued in following.

As it was pointed out, based on our understanding the challenging usability problem

of digital environment of everyday life is that people are forced to act as “systems

integrators”. However, from our point of view the problem is not that people have to

integrate products but that they cannot or they have to “integrate” the products most

of the time they are using them because there are not enough possibilities (e.g. open

interfaces) for people or third parties easily to compose independent products to

systems of systems. Fortunately, there are already some developments, which support

systems of systems of everyday life and suggest that system of systems thinking is

rising, although some of them advocates systems of systems only from technical

perspective.

The first of the systems of systems supporting developments is AppleScript by Apple.

AppleScript was long treated by Apple itself as unwanted and it has even (according

to a legend) at times come being abandoned but has been embraced and

acknowledged lately [Neu03]. AppleScript enables integration of applications by

letting the applications use each other’s functionality but unfortunately AppleScript is

available only for the Mac platform and taking advance of it requires programming

skills, so anyone cannot use it. Second of these developments is the semantic web1. It

also facilitates development of applications of applications (see e.g. HBM03, Con04)

by facilitating integration. However, these developments are more technological

facilitators than “worldviews” for guiding development of products. The third

development is the Free/Open Source Software movement2. By advocating free

access and redistribution of software it makes possible to adapt systems to everyday

life practices and integrate them to a system of systems. Unfortunately this is possible

1 http://www.w3.org/2001/sw/ [25.4.2005]
2 http://www.opensource.org [28.4.2005]

 82

only for technically skilled people. On the other hand a community of people is able

to overcome this obstacle: skilled people may share their achievements with others.

Together people produce something greater than the sum of the individuals. Finally,

there is research activity on approaches to the whole system design (e.g. NeS03). One

of them is our proposal for co-design philosophy.

By viewing the everyday life as whole – or using the terms of complex systems

engineering as a system of systems which include technological systems and social

systems, as well as political systems, and their relations, co-design aims to counter the

interoperability and integration problems of everyday life digital environment. In a

way the co-design can be considered to be about “ecosystem usability” as the

complex system engineering can be considered to be about “ecosystem engineering”.

Together these approaches may form a comprehensive approach that could address

the problem of “usability engineering of digital ecosystem”. It would view usability as

a function of the digital environment of the everyday life, the complex of systems and

their relations as having the characteristics of an ecosystem, and would improve

usability of everyday digital products by facilitating (co-)design and removing

obstacles that hinder collaboration (and competition) of organizations to provide

answers to the usability challenges of present digital environment. In order to get into

the situation where separate applications could be composed to systems of system, we

should consider products as the representations of the organizations that produce them

(see Figure 11). The interactions needed to provide capabilities for integrating

applications should take place mainly during design time not in use time by the users

but the same time the users should be enabled to do the finalization of the design, the

integration of preferred applications to desired system of systems.

83

Figure 11. Interactions that provide capabilities for an integrated “product”
should take place on organization level during the development time and should
not be provided by the user e.g. copying and pasting and sending files back and

forth.

 84

6 Conclusions
At the beginning of this research I set my objective to study applicability of system of

systems engineering approaches to engineering the ARKI research group’s

application development environment (ADEA) and their compatibility with our

proposal for co-design. In this thesis I have shown that the system of systems

engineering approach, complex systems engineering (CSE), can be considered

compatible with our proposal for co-design and applicable to the engineering of

ADEA. The applicability of CSE to engineering the ADEA I have justified by

showing that it is reasonable to view the ADEA as a system of systems having the

characteristics of complex systems. Based on those characteristics I have argued that

the CSE approach is preferable to other systems engineering approaches to the

development of the ADEA. In addition, I have suggested concrete applications of the

CSE tactics presented in the literature to engineering the ADEA as well as presented

implications of system of systems view to single systems developers.

Further, in this research I have argued that the development of everyday life

applications might benefit from the system of systems perspective and the

combination of CSE and co-design approaches in general. In order to improve further

usability of the applications of everyday life it seems that there is need for a more

comprehensive approach to the application development than the approach of

traditional application development. In this respect the concept of system of systems

seems to provide valuable perspective. However, I have pointed out that obtaining the

system of systems perspective does not require that single system developers should

provide systems of systems but rather that they should provide capabilities, open

interfaces for developing systems of systems of everyday life. In addition I have

argued that complex systems engineering offers only a methodology to develop these

system of systems. Obviously complex systems engineering cannot reveal the

practices, patterns, of everyday life and emerging needs, pressures, for developing

specific systems of systems. For directing the complex systems engineering efforts of

everyday life application development a practice-centered approach is needed in order

to find new applications. The ARKI research group proposal for co-design is one

proposal for such an approach.

 85

The first topic for future research is studying the modeling methodologies to develop

a quantifiable model of the ADEA. This will take place as a natural part of the future

research-in-action development and continuous characterization of the ADEA.

The second topic for future research is the methodology and practices of complex

systems engineering and their utility in practice to engineering the ADEA and the

everyday life systems of systems. In some extent CSE is already practiced in

consumer markets (as suggested CSE tactics indicate) but more conscious efforts to

take advantage of system of systems thinking and collaboration of companies might

benefit all parties. This research could take place e.g. in European Union’s joint

research projects.

The third topic for future research relates to the observable phenomenon of

digitalization that is, transforming electronic (analogical) devices into digital devices,

computers (and information used in and used by them into digital bits, and

communication channels into digital networks). The computer is special as the first

“meta-medium” [KaG77] that can be programmed to function like any other

electronic device, but the essence of digitalization is not the computer or the network;

it is software. Software, on the other hand, is almost infinitely flexible. It can be

programmed and adapted over and over again to do almost anything to the extent that

resources permit. The complex systems engineering approach presented in this thesis

has left practical software design decisions for independent development tracks.

However development could be facilitated if some common principles could be

defined. In order to design open systems that are adapted to people’s everyday life

practices we need more qualified software than ever to guarantee interoperability and

ease of integration and continuous adaptation. Hence, one topic for the future research

is the characteristic of building blocks, their conceptual basis and architectural and

software design principles which would guarantee them to be “co-design compatible”.

 86

References
AAP88 Anderson, P. W., Arrow, K. J., Pines, D. (eds.), The Economy as an

Evolving Complex System. A Proceedings Volume (V) in the Santa Fe
Institute Studies in the Science of Complexity, Perseus Books, Reading
Massachusetts, 1988.

Abr02 Abrahamsson, P., et al., Agile Software Development Methods. Review and
Analysis. VTT Publications 478, Espoo, 2002.

ACM92 ACM SIGCHI, Curricula for Human-Computer Interaction, 1992.
http://www.acm.org/sgchi/cdg. [15.08.2004]

ADL97 Arthur, W. B, Durlauf, S. N, Lane, D. A. (eds.), The Economy as an
Evolving Complex System II. A Proceedings Volume (XXVII) in the Santa
Fe Institute Studies in the Science of Complexity, Addison-Wesley, Reading
Massachusetts, 1997.

Ale79 Alexander, C., The Timeless Way of Building. Oxford University Press, New
York, 1979.

Ash56 Ashby, W. R., An Introduction to Cybernetics. Chapman and Hall, London,
1956.

Bar97 Bar-Yam, Y. Dynamics of Complex Systems. Perseus Books, Boulder,
Colorado, 1997.

Bar02 Bar-Yam, Y., Large Scale Engineering and Evolutionary Change: Useful
Concepts for Implementation of FORCEnet. Report to Chief of Naval
Operations Strategic Studies Group, 2002,
http://necsi.org:16080/projects/yaneer/SSG_NECSI_2_E3_2.pdf.
[26.4.2005]

Bar03 Bar-Yam, Y., When Systems Engineering Fails – Toward Complex Systems
Engineering. International Conference on Systems, Man & Cybernetics, 2,
2003, IEEE Press, Piscataway, NJ, pp. 2021–2028.

Bar05 Bar-Yam, Y., About Engineering Complex Systems: Multiscale Analysis
and Evolutionary Engineering. In Brueckner, S., et al. (Eds.): ESOA 2004,
LNCS 3464, pp. 16–31, Springer-Verlag Berlin Heidelberg, 2005.

Bec99 Beck, K., Extreme Programming Explained: Embrace Change. Reading,
Massachusetts, Addison-Wesley, 1999.

Boe88 Boehm, B. W., A Spiral Model of Software Development and Enhancement.
IEEE Computer 21, 5, (1988), pp. 61–72.

Boe02 Boehm, B., Get Ready for Agile Methods, with Care. Computer 35, 1, 2002,
pp. 64–69.

 87

Bot03 Botero Cabrera, A., et al., Codesigning Visions, Uses, and Applications.
Paper presented at “TechnE Design Wisdom” 5th European Academy of
Design Conference 5-EAD University of Barcelona, Barcelona, Spain, April
28–30, 2003,
http://arki.uiah.fi/arkipapers/codesigning_ead.pdf [19.5.2005]

Bot04a Botero, A., et al., Notes on Co-design Approach. Internal document, July
2004. (Not available)

Bot04b Botero Cabrera, A., et al., ARKI Thematic Publication 1, ADIK/
Remembering and Reminding, 2004, (in press).

BrN05 Brandenburger, A., Nalebuff, B., Co-opetition Interactive, 1996/2005,
http://mayet.som.yale.edu/coopetition/index2.html. [18.2.2005]

Bus96 Buschmann, F., et al., Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons, West Sussex, England, 1996.

Coc02 Cockburn, A., Agile Software Development. Addison-Wesley, Reading,
Massachusetts, 2002.

CoK03 Correa, Y. Keating, C., An Approach to Model Formulation for Systems of
Systems. IEEE International Conference on Systems, Man and Cybernetics,
4, 2003, pp. 3553–3558.

Con04 Connolly, D., et al., Semantic Web Application Integration: Travel Tools,
2000/2004,
http://www.w3.org/2000/10/swap/pim/travel.html. [24.3.2005]

Dea04 Dean, A., Modeling Complexity: Holism vs. Reductionism and the Potential
for Distortion and Errors That May Occur Due to Either Diminution or
Abstraction of a Complex System. Proceedings of the 25th Annual
Conference of American Society for Engineering Management, October
20-23, 2004, Hilton Alexandria Center Alexandria, Virginia, pp.
(not known).
http://www.asem.org/conferences/2004conferenceproceedings/Dean017.pdf
[20.5.2005])

FiG04 Fischer, G., Giaccardi, E., Meta-Design: A Framework for the Future of End
User Development. In End User Development – Empowering people to
flexibly employ advanced information and communication technology,
Lieberman, H., Paternò, F., Wulf, V., (Eds.), Kluwer Academic Publishers,
Dordrecht, Netherlands, 2004, (in press).

FiO02 Fischer, G., Ostwald, J., Seeding, Evolutionary Growth, and Reseeding:
Enriching Participatory Design with Informed Participation. Proceedings of
the Participatory Design Conference (PDC’02), Malmö University, Sweden,
June 2002, pp. 135–143.

 88

Fis01 Fischer, G., Communities of Interest: Learning through the Interaction of
Multiple Knowledge Systems. Proceedings of the 24th IRIS Conference,
August 2001, Ulvik, Department of Information Science, Bergen, Norway,
pp. 1–14.

Fis05 Fischer, G., From Reflective Practitioners to Reflective Communities.
Proceedings of the HCI International Conference (HCII), Las Vegas, July
2005, pp. (in press).
http://l3d.cs.colorado.edu/~gerhard/papers/reflective-communities-hcii-
2005.pdf. [19.4.2005]

Fow03 Fowler, M., The New Methodology,
http://www.martinfowler.com/articles/newMethodology.html. [12.08.2004]

GDM05 Gideon, J. M., Dagli, C. H., Miller, A., Taxonomy of Systems-of-Systems.
Proceedings CSER (Conference on Systems Engineering Research) 2005,
March 23–25, Hoboken, NJ, USA, Stevens Institute of Technology, (not
published),
http://www.stevens-tech.edu/cser/authors/36.pdf [20.4.2005]

HBM02 Hendler, J., Berners-Lee, T., Miller, E., Integrating Applications on the
Semantic Web. Journal of the Institute of Electrical Engineers of Japan,
122, 10 (2002), pp. 676–680.

HeK91 Henderson, A., Kyng, M., There’s No Place Like Home: Continuing Design
in Use. In Design at Work: Cooperative Design of Computer Systems,
Greenbaum, J., Kyng, M., (Eds.), Lawrence Erlbaum Associates, Inc.,
Hillsdale, NJ, 1991, pp. 219–240.

Hey95 Heylighen, F., Joslyn C., Turchin V. (eds.), The Quantum of Evolution.
Toward a Theory of Metasystem Transitions. Gordon and Breach Science
Publishers, New York, 1995.

Hig02 Highsmith, J., Agile Software Development Ecosystems. Addison-Wesley,
2002.

Hob98 Hobday, M., Product Complexity, Innovation and Industrial Organization.
Research policy 26 (1998), pp. 689–710.

Hol95 Holland, J. H., Hidden Order: How Adaptation Builds Complexity. Reading;
Addison-Wesley, 1995.

IEE99 IEEE Standard for Application and Management of the Systems Engineering
Process, Institute of Electrical and Electronics Engineers, Inc., New York,
USA, 1999.

INC04 INCOSE Systems Engineering Handbook, Version 2a, International Council
on Systems Engineering, 2004.

 89

ISO98 ISO 9241-11, Ergonomic requirements for office work with visual display
terminals (VDTs), Part 11: Guidance on usability, 1998,
http://www.iso.ch/iso/en/ISOOnline.frontpage. [13.12.2004]

KaG77 Alan Kay, A. Goldberg, A., Personal Dynamic Media. In Wardrip-Fruin, N.,
Montfort, N. (Eds.) The New Media Reader, the MIT Press, 2003, pp. 391–
397; originally published in Computer 10 (3), 1977, pp. 31–41.

Kau93 Kauffman, S.A., The Origins of Order: Self-Organization and Selection in
Evolution. Oxford University Press, New York, 1993.

Kea01 Keating, C. B., et al. A Methodology for Analysis of Complex Sociotechnical
Processes, Business Process Management Journal, 7, 1, (2001), pp. 33–50.

Kea03 Keating, C., et al., System of Systems Engineering. Engineering
Management Journal, 15, 3 (2003), pp. 36–45.

Kom01 Kommonen, K.-H., Digital Dimension. Concept paper, 16.4.2001.
http://arkinen.uiah.fi/concepts/digitaldimension [2.9.2005]

Kom03a Kommonen, K.-H., Arjen yhteisöjen digitalisoituvat käytännöt (Emerging
Digital Practices of Communities). Project plan, 8.5.2003. (Not available)

Kom03b Kommonen, K.-H., Codesign – the Emerging Design Strategy for a Digital
Society. Presentation in the 6th Asian Design International Conference,
October 10–17, 2003, Tsukuba, Japan. (Available on request)

Kom03c Kommonen, K.-H., Notes About Building People and Life Oriented Visions
of Future Technology. Paper presented at the Wireless World Research
Forum 10th Meeting, October 27–28, 2003, New York, USA.
http://arki.uiah.fi/mdr/mdr-files/ddis/Kommonen-NotesAbVisB.pdf
[2.9.2005]

KSM03 Keating, C., Sousa-Poza, A., Mun, N., Toward a Methodology for Systems
of Systems Engineering. Proceedings of the 24th Annual Conference of
American Society for Engineering Management, October 15–18, 2003,
St. Louis Missouri - Sheraton Westport, pp. 1–7.

Kuw00 Kuwabara, K., Linux: A Bazaar at the Edge of Chaos. First Monday, 5, 3,
(2000),
http://www.firstmonday.org/issues/issue5_3/kuwabara/index.html
[3.9.2005]

Lar04 Larman, G., Agile & Iterative Development: A Manager's Guide.
Addison-Wesley, 2004.

Leh05a Lehtimäki, K., et al., ARKI Thematic Publication 2, ADIK/Voice Notes,
2005. (To be published).

 90

Leh05b Lehtimäki, K., Applying Tacit Craft Knowledge Onto the Design of Modern
Everyday Products: Enabling Craft Students and Artisans to Experiment
with the Design and Construction of Digital or Electronic Interfaces.
Accepted for Cumulus Conference, Lisbon, Portugal, May 26–29, 2005.
(Available on request)

Mai96 Maier, M. Architecting Principles for Systems of Systems, Proceedings of
the Sixth Annual International Symposium, International Council on Systems
Engineering, Boston, MA, 1996, pp. 567–574.

Nar93 Nardi, B. A., A Small Matter of Programming. The MIT Press, Cambridge,
MA, 1993.

NeS03 Nelson, H. G., Stolterman, E., The Design Way: Intentional Change in an
Unpredictable World: Foundations and Fundamentals of design
Competence. Educational Technology Publications, Inc., Englewood Cliffs,
New Jersey 07632, 2003.

Neu03 Neuberg, M., AppleScript: The Definitive Guide. O’Reilly & Associates,
Inc., 2003.

NoD86 Norman, D. A., Draper, S. W. (Eds.) User-Centered System Design, New
Perspectives on Human-Computer Interaction. Lawrence Erlbaum
Associates, Inc., Hillsdale, NJ, 1986.

NoK04 Norman, D. O., Kuras, M. L., Engineering Complex Systems, Mitre
Technical Papers, January 2004,
http://www.mitre.org/work/tech_papers/tech_papers_04/
norman_engineering/norman_engineering.pdf [23.6.2004]

Nor04 Norman, D. O., Engineering a Complex System: A Study of AOC, Mitre
Technical Papers, July 2004,
http://www.mitre.org/work/tech_papers/tech_papers_04/norman_aoc/norma
n_aoc.pdf [25.4.2005]

PaF02 Palmer, S. R., Felsing, J. M., A Practical Guide to Feature-Driven
Development. Upper Saddle River, NJ, Prentice-Hall, 2002.

RiJ00 Rising, L., Janoff, N. S., The Scrum Software Development Process for
Small Teams, IEEE Software 17, 4, (2000), pp. 26–32.

Roy70 Royce, W. W., Managing the Development of Large Software Systems.
Proceedings IEEE WESCON, 1970, 328–338.

ScN93 Schuler, D., Namioka, A. (Eds.) Participatory Design: Principles and
Practices. Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.

Sha48 Shannon, C. E., A Mathematical Theory of Communication. Bell System
Technical Journal, 27 (July, October 1948), pp. 379–423, 623–656.

 91

Sim69 Simon, H., The Sciences of the Artificial. The MIT Press, 1969.

TaF93 Taylor, J.C., Felten, D. F., Performance by Design: Sociotechnical Systems
in North America. Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

Tuo02 Tuomi, I., Networks of Innovation, Change and Meaning in the Age of the
Internet. Oxford University Press, 2002.

Tur77 Turchin, V., The Phenomenon of Science. Columbia University Press, New
York, 1977.

Tur95 Turchin, V., A Dialogue on Metasystem Transition. In Heylighen, F., Joslyn
C., Turchin V. (Eds.), The Quantum of Evolution. Toward a Theory of
Metasystem Transitions, Gordon and Breach Science Publishers, New York,
1995.

Uni05 United States Department of Defense, Defense Acquisition Guidebook,
http://akss.dau.mil/dag/welcome.asp [5.4.2005]

APPENDIX 1
ZOPE – WEB APPLICATION SERVER
Zope (Z object publishing environment)1 is an open source web application server

primarily written in the Python programming language2 for building content

management systems, intranets, portals, and custom applications. It was originally

authored by Zope Corporation3 but parts of it have been open-source as far back as

1996 and the whole application server since 1998. Zope Corporation still drives the

primary vision and development of Zope, with each release being maintained and

developed by more and more community members, either by submitting patches to

the bug collector or by developers with access to check in new features and fixes.

Zope is interesting because of its open source development model, extensionability

and through-the-web development possibilities. There are numerous products (plug-in

Zope components)4 available for download to extend the basic set of application

building tools: new content objects, relational database and other external data source

connectors, advanced content management tools, and even full applications for

content and document management or bug and issue tracking. Zope itself includes its

own HTTP, FTP, WebDAV, and XML-RPC serving capabilities, but it can also be

used with the Apache or other web servers. It also features a transactional object

database (which can store not only content and custom data, but also dynamic HTML

templates and scripts), a search engine, and relational database (RDBMS) connections

and code. In addition Zope’s through-the-web development model allows users and

developers to update web sites from anywhere in the world.

In order to have a more comprehensive understanding of Zope and its features as well

as the Zope community, which consists of hundreds of companies and thousands of

developers all over the world, it is worthwhile to have a look at the Zope

Development Site (http://dev.zope.org/), which contains ongoing projects and

proposals for Zope’s past and future.

1 http://www.zope.com/Products/Zope.html [19.1.2005], http://zope.org [17.05.2005],
http://zope.org/WhatIsZope [17.05.2005]
2 http://www.python.org [17.5.2005]
3 http://www.zope.com [19.01.2005]
4 http://www.zope.org/Products/ [19.01.2005]

