
Date of aeptane GradeInstrutor

Servie Composition on a Mobile PhoneVille Mäntysaari

Helsinki November 26, 2007M. S. ThesisUNIVERSITY OF HELSINKIDepartment of Computer Siene

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faulty of Siene Department of Computer SieneVille MäntysaariServie Composition on a Mobile PhoneComputer SieneM. S. Thesis November 26, 2007 61 pages

web servies, omposition, orhestration, mobile phoneKumpula Siene Library, serial number C-

With the reent inrease in interest in servie-oriented arhitetures (SOA) and Webservies, developing appliations with the Web servies paradigm has beome feasible.Web servies are self-desribing, platform-independent omputational elements. Newappliations an be assembled from a set of previously reated Web servies, whihare omposed together to make a servie that uses its omponents to perform aertain task. This is the idea of servie omposition.To bring servie omposition to a mobile phone, I have reated Interative ServieComposer for mobile phones. With Interative Servie Composer, the user is able tobuild servie ompositions on his mobile phone, onsisting of Web servies or serviesthat are available from the mobile phone itself. The servie ompositions are reusableand an be saved in the phone's memory. Previously saved ompositions an also beused in new ompositions.While developing appliations for mobile phones has been possible for some time, theusability of the solutions is not the same as when developing for desktop omputers.When developing for mobile phones, the developer has to more arefully onsider thedeisions he is going to make with the program he is developing. With the lak ofproessing power and memory, the appliations annot funtion as well as on desktopPCs. On the other hand, this does not remove the appeal of developing appliationsfor mobile devies.ACM Computing Classi�ation System (CCS):C.2.4 [Distributed Systems℄D.2.12 [Interoperability℄

Tiedekunta/Osasto � Fakultet/Sektion � Faulty Laitos � Institution � DepartmentTekijä � Författare � AuthorTyön nimi � Arbetets titel � TitleOppiaine � Läroämne � SubjetTyön laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pagesTiivistelmä � Referat � Abstrat

Avainsanat � Nykelord � KeywordsSäilytyspaikka � Förvaringsställe � Where depositedMuita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

iiAknowledgementsWhen starting to write this thesis in January 2007 it didn't feel like I would ever beable to write the aknowledgements, it felt like a thing in the far future. But nowafter nine months it's starting to feel that soon I'm able to say this is done.I wish to thank HIIT and espeially Ken Rimey and Kimmo Raatikainen for thejob opportunity, this thesis was made during the S4ALL projet at HIIT. Big thankyou for Ken for the omments and suggestions. I also want to give big redit toPekka Kanerva for all the work he did with me for Composer and for the proxy.Also I want to thank Tero Hasu for the work he did for Composer. Also a thankyou for Capriode for the ooperation is in plae, namely Kimmo Kuusipalo, HarriSalokorpi and Maija Metso.I also want to give a big thank you to Esa Pitkänen on the valuable omments hegave on this thesis.Last but not ertainly least. Thank you Kaisa, for everything.I tried my best to follow Ken's advie on 'removing anything that seems to saynothing', but I'm not sure if I really was able to do it. This following quote is oneof my favourite quotes, it has the same idea Ken tried to tell me. It's not about thelength but the ontents.La perfetion est atteinte non quand il ne reste rien à ajouter, maisquand il ne reste rien à enlever.-Antoine de Saint-ExupéryIn Helsinki, November 26, 2007Ville Mäntysaari

iiiContents1 Introdution 12 Bakground 42.1 Web Servie Tehnologies . 52.1.1 SOAP . 52.1.2 REST . 62.1.3 WSDL . 72.1.4 UDDI . 92.2 Servie Oriented Arhiteture . 102.3 Servie Composition . 122.3.1 BPEL . 132.3.2 WS-CDL . 152.3.3 Related Work . 173 Interative Servie Composer for Mobile Phones 203.1 Arhiteture . 203.2 User Interfae . 223.3 Ation Store . 243.3.1 Ation Handling . 243.3.2 Storage and Retrieval . 253.3.3 UDDI searh . 263.4 Work�ow Struture . 273.4.1 Populating the Work�ow . 273.4.2 Running the Work�ow . 283.4.3 Saving the Work�ow . 303.5 Ations and Web Servies . 313.5.1 Ations . 323.5.2 Web Servies . 33

iv4 Appliation to Devie Management 354.1 Status . 374.2 Devie Management . 374.2.1 Protool and Mehanism Spei�ation 384.2.2 Data Model . 404.3 Use Cases . 414.3.1 Loking a Devie . 424.3.2 Initialising a Devie . 434.3.3 Sending Settings to a Devie 444.4 Experiene . 455 Experiene Developing for Mobile Phones 485.1 Resoure Limitations on Mobile Phones 495.2 Libraries and Python for Series 60 . 515.2.1 Problems with Libraries . 525.3 Problems and Solutions . 525.4 Conlusion . 546 Conlusion 55Referenes 57

11 IntrodutionWith the reent inrease in interest in servie-oriented arhitetures (SOA) and Webservies, developing appliations with the Web servies paradigm has beome moreand more aepted. With the basi Web servies paradigm developers are able toinvoke Web servies made by other developers or ompanies. Although this mightbe enough for simple development, more omplex tehnologies are needed to buildeven more omplex appliations in the Internet.To pursue this further tehnologies for Web servie omposition have been developed.In Web servie omposition appliations an be assembled from a set of previouslyreated Web servies available in di�erent servie registries. These servies togetherompose an appliation, whih reahes its goal by invoking eah individual servie.Web servie omposition is a simple way to master omplexity, by using elementaryservies as building bloks the developer does not need to worry how the the bloksare made or what programming languages are used to make them. This helps thedeveloper to onentrate on di�erent matters, if the building bloks are well de�nedand doumented.While appliation development for desktop PCs has been ommonplae for a longtime, mobile phones have been gaining more and more proessing power lately,making them an interesting platform for new business senarios and appliationdevelopment. In the researh projet S4ALL it has been envisioned to being ableto ompose Web servies using mobile devies. Web servie omposition paradigmbrings a lot of new possibilities for the devies. For this vision, I have reated theInterative Servie Composer for Mobile phones whih will I will desribe in thisthesis.With tehnologies like BPEL [ES06℄ (Business Proess Exeution Language) andWS-CDL [RTF06℄ (Web Servie Choreography De�nition Language) developers areable to build Web servie ompositions. But these tehnologies are not viable for amobile environment, where the proessing power and the amount of memory avail-able are low. These tehnologies are made to be used in environments, where theproessing power is not a problem. On the other hand with Interative ServieComposer I am showing how we are able to do simple servie omposition with-out requiring for example the mobile devie to transfer the omposition to anothermahine for running. Admittedly Interative Servie Composer is not able to usethe most sophistiated methods, but this doesn't redue its abilities to perform

2omposition.Interative Servie Composer is one of the many systems able to ondut servieomposition. Other interesting systems are eFlow [C+00℄ and SELF-SERV [BSD03℄.What makes them interesting are the fat that both omposition types, namelyorhestration and horeography, are represented in these two. In orhestration thereis a entral entity that ontrols the exeution of the servie omposition. Thisis di�erent in horeography, where entities that take part in the omposition areommuniating together to exeute the task. SELF-SERV is a system that useshoreography as a way to ompose servies, where servies are ollaborating togetherto implement a spei� operation without a entral entity. In eFlow servies areomposed as an orhestration, where a entral entity ontrols the exeution of theomposition.Interative Servie Composer (Composer in short) is a simple orhestrating servieomposer made with Python for mobile phones. The main subjet of this thesisis to desribe the work made for Composer. Before going too deep on the detailsof Composer I will present some bakground regarding Web servies and servieomposition. Web servies paradigm allows developers to �nd new servies andaess them. With servie omposition it is possible to build new servies thatinlude elementary servies as building bloks. This omposition then an be usedas a normal Web servie.Composer has three distint parts, the ation store that is responsible for the ations(the building bloks) that are saved in the phone's memory, the work�ow struturethat is the base for building new servie ompositions and the user interfae thatkeeps the user informed of the urrent state of the program. With Composer usersare able to build new work�ows and use them over and over again by saving thework�ow. What allows more reuse is the possibility of using previously saved work-�ows as building bloks in a new work�ow.Simpliity, re-usability and generality (of the ations) were the main points on-sidered when Composer was planned. Users should be able to make new servieseasily without requiring any knowledge of the implementation details. More ad-vaned users were planned to be able to make ations of their own by oding asimple Python program whih onforms with the format that the ations need tohave. Generality in terms of ations was a tempting harateristi to have. The ini-tial ations were planned to be usable in many di�erent plaes so that users wouldhave some general tools available to them before building their own work�ows. Re-

3usability was also a very muh onsidered point. Existing work�ows should be usableas part of new work�ows and the saving and loading of work�ows were onsideredto be important.During the researh projet Composer was made in, it was used in a demo. Inthe demo Composer is used to exeute devie management tasks. These tasks areonduted by using a SOAP API that allows Composer to reate devie managementtasks. This brought good experienes on how Composer ould be made better byontinuing the development. On the other hand good experiene was not the onlything reeived from the demo. In addition it was notied that some of the deisionsmade earlier in the development were not su�ient to takle the problems we raninto in the demo.What software development is for desktop PCs, is not the same as developing formobile phones. Although with the reent inrease in the proessing power of themobile devies and the inrease of mobile platforms, there is a need for a mobileplatform that is easy to develop for. Besides that the lak of proessing power makesdeveloping harder when additionally the developer needs to onsider the problem ofhaving small amount of memory and a slower proessor than the desktop PCs have.Python for Series 60 is a promising environment to develop software. What makesit espeially interesting is the simpliity and rapidity of developing for it.The rest of this thesis is organised as follows: In hapter 2 I will over some bak-ground of Web servies and the di�erent Web servie tehnologies that are used inInterative Servie Composer. Web servie omposition and servie-oriented arhi-teture will have their own subsetions. Chapter 3 is devoted to introduing theInterative Servie Composer and how it is made, what kind of deisions we had tomake when developing it.In hapter 4 I will over some insights reeived from using the Interative ServieComposer in a demo. Interative Servie Composer was used to invoke devie man-agement tasks. Chapter 5 is about the experiene gained from developing for mobilephones. Mobile phones having limited resoures and proessing power gives an ex-tra onsideration when developing for mobile phones. The libraries needed in theproess are usually made for desktop PCs whih makes the libraries unusable in themobile devie environment.

42 BakgroundThe Web started as a tehnology for sharing information on the Internet. However, itquikly beame the medium for onneting remote lients with appliations arossthe Internet and more reently (with the arrival of Web servies) a medium forintegrating appliations over the Internet, built on top of existing web protools andbased on open XML standards.The growing trend in the industry is to build platform-independent software ompo-nents, alledWeb servies, whih are available in the Internet. New appliations anbe assembled from a set of appropriate Web servies and no longer must be writ-ten from srath. Seamless omposition of Web servies has enormous potential instreamlining business-to-business or enterprise appliation integration [SK03℄. Theterm Web servies is very widely used nowadays, although not always with the samemeaning. World Wide Web onsortium (W3C) de�nes Web servies asa software system identi�ed by a URI, whose publi interfaes and bind-ings are de�ned and desribed using XML. Its de�nition an be disov-ered by other software systems. These systems may then interat withthe Web servie in a manner presribed by its de�nition, using XMLbased messages onveyed by Internet protools. [A+03℄The W3C de�nition is quite aurate and also hints at how Web servies shouldwork. The de�nition stresses that Web servies should be apable of being de�ned,desribed, and disovered thereby larifying the meaning of aessible and makingmore onrete the notion of Internet-oriented, standards-based interfaes. It alsostates that Web servies should be servies similar to those in onventional middle-ware. Not only they should be up and running, but they should be desribed andadvertised so that it is possible to write lients that bind and interat with them. Inother words Web servies are omponents that an be integrated into more omplexdistributed appliations.The W3C also states that XML (eXtensible Markup Language) [B+06℄ is part ofthe solution. In fat XML is so popular and widely used today that, just like HTTPand Web servers, it an be onsidered as being part of the web tehnology. It islikely that XML will be used as a data format for many web-based appliations inthe future.There are two types of servies: simple and omposite servies. The unit of reuse is

5funtionality that is in plae and readily available and deployable as servies that areapable of being managed to ahieve the required level of servie quality. Compositeservies involve assembling existing servies that aess and ombine information andfuntions from possibly multiple servie providers. More about the issue of servieomposition an be found in hapter 2.3.2.1 Web Servie TehnologiesLeading standards when talking about Web servies are SOAP [G+06℄ (Simple Ob-jet Aess Protool), WSDL [BL06b℄ (Web Servie Desription Language) andUDDI [OAS05℄ (Universal Desription Disovery & Integration). Many applia-tions today are made aessible to other appliations using these three standards.These standards are so ommon that usually when talking about Web servies theseare presumed to be used [TBB03℄. There are also other standards that an be usedwith Web servies, namely REST [Fie00℄ (Representational State Transfer), whihis in fat an arhitetural style and, JSON [Rub07℄ (Javasript Simple Objet Nota-tion), to name a few. However, these standards do not onstitute the essene of Webservies tehnology: the problems underlying Web servies are the same regardlessof the standards used.2.1.1 SOAPSOAP (Simple Objet Aess Protool) is an XML-based ommuniation proto-ol [G+06, A+04, C+02℄. SOAP de�nes how information is organised using XML ina strutured and typed manner so that the data an be exhanged between peers.As a ommuniation protool, SOAP is stateless and one-way. This means thatSOAP is reated by design to support loosely-oupled appliations that interatby exhanging one-way asynhronous messages with eah other. Any further om-plexity in the ommuniation pattern suh as two-way synhronous messaging orRPC-style interation requires SOAP to be ombined with an underlying protoolor middleware. Rather than de�ning a new transport protool, SOAP works on ex-isting transport protools, suh as HTTP (Hypertext Transfer Protool) and SMTP(Simple Mail Transport Protool). SOAP uses XML Shema [FW04℄ to de�ne thedoument types.Information exhange in SOAP is done using messages. The messages are used as anenvelope where the appliation enloses whatever information needs to be sent. The

6Listing 1: An example SOAP Message (taken from [C+02℄)<SOAP:Envelope xmlns:SOAP=" ht tp : // shemas . xmlsoap . org / soap/ enve lope/"><SOAP:Body><et : eT i k e t xmlns : e t=" h t tp : //www. ame−t r a v e l . om/ e t i k e t /shema"><et:passengerName f i r s t="Joe" l a s t="Smith"/><e t : f l i g h t I n f o air l ineName="AA"f l ightNumber=" I I I I "departureDate="2002−01−01"departureTime="1905"/></ e t : eT i k e t></SOAP:Body></SOAP:Envelope>message format desribes how information is pakaged into an XML doument. Theenvelope ontains two parts: a header and a body. The header ontains informationwhih an be proessed by intermediate nodes (they might be able to supply someadded value servies for the sender and reeiver) between the sender and the reeiver.If there are no intermediate nodes in a SOAP transmission, the header might notbe neessary at all. That is why it is de�ned to be optional. The message body isthe ontent the sender wants to send to the reeiver. This follows the idea of thestandard ommuniation protool approah. An example SOAP message is shown inlisting 1, taken from [C+02℄. In the example the optional SOAP header is not presentand the message only inludes the required SOAP body. This message inludes dataabout a �ight booking, details being the name of the booker and the date and timeof the booked �ight. A real example would also inlude the sender's redentials andother required information.2.1.2 RESTAlthough it is often mistaken for a transport protool, HTTP is really an applia-tion protool. SOAP an be transported over HTTP for example, an at known astunneling. In reality HTTP is muh more than just transporter of bytes. In his do-toral dissertation, Roy Fielding [Fie00℄ introdued the term representational statetransfer, i.e. REST, to desribe the Web's arhitetural style. REST uses standard-

7ised interfaes to promote stateless interations by transferring representations ofresoures, rather than operating diretly on those resoures [Vin02a℄.HTTP provides appliation-level semantis via its �verbs�: GET, POST, PUT andDELETE. These verbs form a generi appliation interfae that an be applied inpratise to a broad range of distributed appliations despite the fat that it wasoriginally designed for hypermedia systems. This interation model that RESTde�nes is suitable for Web servies as well. Web servies are identi�able via URIs,and regardless of the wide variety of abstrations they might olletively represent,they an all be implemented using the same generi interfae that HTTP's verbsprovide [Vin02a℄.REST style Web servies are more lightweight to use, additional libraries are notneeded as basi HTTP ommuniation is usually available in every programminglanguage by default. When developing appliations with a mobile phone it is alwayseasier to use servies that do not require big libraries, beause of the low omputingpower and low memory availability. SOAP might be the de-fato standard whentalking about Web servies, but when one is developing a lightweight software on amobile phone it is not very usable. I will desribe more experienes with developingon a mobile phone in hapter 5.2.1.3 WSDLFor Web servies, SOAP is usually used in ommuniation between the servies, butSOAP is not able to supply the information what messages need to be exhangedto interat with a ertain servie. WSDL (Web Servies Desription Language) isan XML format language developed by IBM, Mirosoft and Ariba [BL06b, A+04,C+02℄. It was made to desribe Web servies as end points that an exhangeertain messages. WSDL desribes what messages need to be exhanged to use theservie, also it desribes where the servie is loated and what voabulary is usedin the messages. Voabulary here is referring to the datatypes and message formatsused in the Web servie. WSDL uses external type systems to provide datatypede�nitions for the information exhange. Most servies use XML Shema, but ingeneral any type system an be used. XML Shema has built-in basi data typesand it allows users to de�ne more omplex data types suh as strutures.A ompleteWSDL servie desription provides two piees of information: an applia-tion-level servie desription, in other words an abstrat interfae, and the spei�

8protool-dependent details that users must follow to aess the servie at onreteservie end points. The abstrat part is made of port type de�nitions, where eahport type is a logial olletion of related operations. Eah operation de�nes a simpleexhange of messages. These are then used in the onrete part of the desription.Message enoding and protool bindings for all operations are spei�ed within In-terfaeBindings-element. These InterfaeBindings are then used in Port-de�nition,where ports ombine the InterfaeBinding information to a network address, spei-�ed by a URI. And again Port is then used in Servie-de�nition. This de�nition isthe logial grouping of ports. An example WSDL desription is shown in listing 2,taken from [C+02℄. The example has all the neessary elements inluded. The ab-strat part is the message and port type de�nitions at the start. The onrete partis the binding and servie de�nitions in the end of the example.Listing 2: An example WSDL desription (taken from [C+02℄)<?xml v e r s i on="1.0"?><d e f i n i t i o n s name="Prourement "targetNamespae="http : // example . om/prourement / d e f i n i t i o n s "xmlns : tns="http : // example . om/prourement / d e f i n i t i o n s " . . . ><message name="OrderMsg"><part name="produtName" type="xs : s t r i n g "/><part name="quant i ty " type="xs : i n t e g e r "/></message><portType name="prourementPortType"><opera t i on name="orderGoods"><input message = "OrderMsg"/></operat ion></portType><binding name="ProurementSoapBinding "type="tns : prourementPortType"><soap : binding s t y l e="doument "t ranspor t="http : // shemas . xmlsoap . org / soap/http"/><opera t i on name="orderGoods"><soap : ope ra t i onsoapAtion="http : // example . om/orderGoods"/><input><soap : body use=" l i t e r a l "/></input><output>

9<soap : body use=" l i t e r a l "/></output></operat ion></binding><s e r v i e name="ProurementServie"><port name="ProurementPort "binding="tns : ProurementSoapBinding"><soap : addressl o a t i o n="http : // example . om/prourement /"/></port></s e rv i e ></d e f i n i t i o n s >The di�erene relative to normal middleware platforms is the need to de�ne theloation at whih the servie is available [A+04℄. In onventional middleware, theservie provider an simply implement an interfae and register the implementedservie with the middleware. The absene of entralised platform in Web serviesmeans that the lient should be able to identify the loation at whih the servieis made available. This problem an be addressed for example using entralisedregistries, like UDDI registries.2.1.4 UDDIThe UDDI (Universal Desription Disovery & Integration) spei�ations [OAS05,C+02, A+04℄ o�er users a uni�ed and systemati way to �nd servie providersthrough a entralised registry of servies that is roughly equivalent to an auto-mated online phone diretory of Web servies. Aessing the registry is done usinga standard SOAP API for both query and update operations. UDDI provides twobasi spei�ations that de�ne a servie registry's struture and operation. Firstone is the de�nition of the information to provide about eah servie and how it isenoded. The seond one is the API for querying and updating the registry, whihdesribes how this information an be aessed and updated. Being about Webservies, UDDI APIs are also spei�ed in WSDL with SOAP binding, so that theregistry an itself be aessed as a Web servie and also its harateristis an bedesribed in the registry itself, just like any other Web servie.The information in UDDI registries an be simply ategorised by the way what eahtype of information is used for. This ategorisation is analogous to a telephone

10diretory. The white pages of the registry provide a listing of organisations, theirontat information and the listing of the servies these organisations have. In theyellow pages there are lassi�ations of both ompanies and Web servies aordingto systematis that an be either standardised or user-de�ned. It is possible tosearh through the yellow pages for a servie that belongs to a ertain ategory.The green pages of the registry provide information on how a given Web servie anbe invoked. It is provided by means of pointers to servie desription douments,typially stored outside the registry, for example at the servie provider's site.There is a free UDDI registry available on the Internet provided by XMethods[XMe07℄. The site provides both programmable interfae to the servies the registryhas listed (using UDDI version 2 spei�ation) or one an searh for servies usingtheir web based interfae. XMethods' registry is the registry that is used in ourservie omposer when a user wants to searh for new Web servies. XMethodsalso has an interfae for testing the Web servies with a web browser, using Min-dReef's SOAPSope servie [Min06℄. There are a multitude of servies available atXMethods' registry, both free and ommerial servies.2.2 Servie Oriented ArhitetureAlthough the Web was intended from the start to be used by humans, most peo-ple have agreed that it will have to evolve - for example through the design anddeployment of modular servies - to have a better support for automated usage.When talking about Servie-Oriented Computing (SOC) [HS05, BL06a, PG03℄, ser-vies are used as the fundamental element while developing new appliations. Theseservies are platform- and network-independent operations that lients or other ser-vies invoke, as they were desribed in the previous hapter. Sine servies an beo�ered by di�erent organisations and sine they ommuniate over the Internet, theyprovide a distributed omputing infrastruture for both intra- and ross-enterpriseappliation integration and ollaboration. SOC onept has evolved from earlieromponent-based software frameworks suh as J2EE, CORBA, and DCOM. Webservies standards - inluding SOAP, WSDL, UDDI and BPEL - are based on thereadily and openly available Internet protools XML and HTTP, and thus are easierand heaper to adopt [BL06a℄.In order to build the servie model, SOC relies on the Servie-Oriented Arhiteture(SOA) [A+04, Pap03℄. In SOA a set of previously reated software appliations andsupport infrastruture are organised into an interonneted set of servies, eah a-

11essible through standard interfaes and messaging protools. When all the pieesof an enterprise arhiteture are in plae, existing and future appliations an aessthese servies as neessary without the need of ompliated point-to-point solutionsbased on proprietary protools. This arhitetural approah is partiularly applia-ble when multiple appliations running on varied tehnologies and platforms needto ommuniate with eah other. SOA represents the big piture of what you ando with Web servies.A good explanation of the SOA onept an be found in [Pap03℄, see also �gure 1.SOA is de�ned there as being[...℄ a logial way of designing a software system to provide serviesto either end-user appliations or other servies distributed in a net-work. SOA de�nes an interation between software agents as an exhangeof messages between servie requesters (lients) and servie providers.Clients are software agents that request the exeution of a servie. Providersare software agents that provide the servie. Agents an be simultane-ously both servie lients and providers. Providers are responsible forpublishing a desription of the servies they provide. Clients must beable to �nd the desriptions of the servies they require and must be ableto bind (in other words to be able to use the servie) to them. [Pap03℄SOA is not only a servie arhiteture, it is in general a relationship between threekinds of partiipants: the servie provider, the servie disovery ageny, and theservie requester (lient). The interations involve the publish, �nd and bind op-erations, as desribed in �gure 1. These partiipants and operations at upon theservie artifats (the representations of a servie): the servie desription and theservie implementation.As a onsequene of the dynami binding apability there is a loose oupling modelbetween the appliations. Loose oupling means that the requester has no knowledge(or does not require any knowledge) of any internal strutures or onventions theservie might have, for example programming language or deployment platform. Inloosely oupled systems, interations between parties take plae via messages in anasynhronous environment with messages exhanged over separated ommuniationsessions. This idea reminds of the late binding [JM76℄ in programming theory.Loose oupling allows software on eah side of the onversation to hange withoutimpating the other, provided that the message shema stays the same. Loose

12

Figure 1: Servie-Oriented Arhitetureoupling is often ited [MJS06℄ as a de�ning and desirable harateristi of servie-oriented omputing as it keeps the interating parties independent.2.3 Servie CompositionTo move further from the basi Web servie arhiteture (desribe, publish, inter-at) mehanisms for servie omposition are required to be applied. The ompositionof Web servies to handle more omplex problems is gaining a lot of attention inenabling business-to-business ollaborations [BSD03℄. New appliations an be as-sembled from a set of appropriate Web servies and no longer written from thesrath. Servie omposition an be seen as a way to master omplexity, whereomplex servies are inrementally built out of servies at a lower abstration level.Web servie omposition has a lot of potential to streamline the development of newappliations and to make enterprise appliation integration easier. Servie ompo-sition is not a new idea at all. It has been proposed before and is in fat what EAI(Enterprise Appliation Integration) [Lin00℄ and work�ows are about. The main bigdi�erene between work�ows and servie omposition is the fat that the ations areWeb servie invoations, not normal appliation operations.In servie omposition new servies are made from existing servies omposing them

13into a single servie, whih takes are of the required invoations for the servieswhih it is omposed of. Several standards and spei�ations have been proposed inthis area, inluding Business Proess Exeution Language for Web Servies [AC+03℄(BPEL for short), proposed by IBM, Mirosoft and BEA, and Web Servies Chore-ography Desription Language [RTF06℄ (WS-CDL) proposed by W3C.BPEL is a language whih is used to build ompositions in the form of businessproesses, whih are omposed of Web servies. BPEL is essentially a layer on topof WSDL, with WSDL de�ning the operations allowed and BPEL de�ning how theoperations an be sequened. In BPEL there is a single entity oordinating all Webservie invoations. This type of omposition is alled orhestration. WS-CDL isa language for speifying peer-to-peer protools where eah party wishes to remainautonomous and in whih no party is a master over another, suh that there isno entral entity. Eah involved party an desribe its part in the interation byitself. This type of omposition is alled horeography. In horeography messagessequenes are traked between the entities in order to follow the exeution of theomposition.2.3.1 BPELBPEL (Business Proess Exeution Language for Web Servies) [ES06, AC+03,Pel03℄ supports a proess-oriented form of servie omposition. Eah BPEL ompo-sition is a business proess or work�ow that interats with a set of Web servies toahieve a ertain task. BPEL is simply a �ow language that ombines together basiand strutured ativities to reate the logi of a business proess. BPEL omposi-tions are alled proesses, the servies the proess interats with are alled partnersand the message exhange or intermediate result transformation is alled an ativ-ity. With these terms a proess ontains a set of ativities. A proess, like anyother Web servie, supports a set of WSDL interfaes that enable it to exhangemessages with its partners. BPEL brings the notion of two-level programming toWeb servies: programming in the small for implementing the basi servies used bya omposite servie itself and programming in the large for speifying the ompositeservie. Programming in the small is done using the usual programming languages,for example Java and C#. Programming in the large is done based on a businessproess language, e.g. BPEL. BPEL's development ame out of the notion thatprogramming in the large [DK75℄ and programming in the small required di�erenttype of languages.

14The proess interats with partners by invoking the operations they support and re-eiving messages through the proess servie interfae. BPEL also inludes ativitiesthat allows it to perform ations suh as signalling faults, terminating the proessexeution and manipulating data. These ativities an be ombined into omplexalgorithms. These are for example the ability to de�ne an ordered sequene of stepsand to de�ne a loop. These strutured ativities are derived from a ombination ofseveral ativities, either basi or other strutured ativities.BPEL supports both exeutable and abstrat business proesses. An exeutable pro-ess desribes the partiipants behaviour in a partiular business interation, in fatdesribing a private work�ow. An abstrat proess, also alled a business protool,spei�es the publi messages exhanged between the partiipants. Business proto-ols are not exeutable and do not arry a proess �ow's internal details [Pel03℄.In fat these proess types desribe the two di�erent servie omposition meth-ods: exeutable proesses desribe orhestration and abstrat proesses desribe thehoreography of servies.An example BPEL proess is shown in listing 3, taken from [Kha02℄. The exampleis about a loan approving proess. The proess has two parties involved, a ustomerand a �nanial institution, both de�ned under the <partners> -tag.Listing 3: An example BPEL proess (taken from [Kha02℄)<proe s s name="loanApprovalProess "targetNamespae="http : // ame . om/ s imp l e l o anp r o e s s i n g"xmlns="http : // shemas . xmlsoap . org /ws/2002/07/ bus iness−proe s s /"xmlns : l n s="http : // l oans . org /wsdl / loan−approval "xmlns : l oande f="http : // tempuri . org / s e r v i e s / l o a n d e f i n i t i o n s "xmlns : apns="http : // tempuri . org / s e r v i e s / loanapprover "><partners><partner name="ustomer"servieLinkType="ln s : loanApproveLinkType "myRole="approver "/><partner name="approver "servieLinkType="ln s : loanApprovalLinkType "partnerRole="approver "/></partners><onta ine r s><onta ine r name="reque s t "messageType="loande f : CreditInformationMessage "/>

15<onta ine r name="approva l In fo"messageType="apns : approvalMessage"/></onta ine r s><sequene><r e e i v e name="r e e i v e 1 " partner="ustomer"portType="apns : loanApprovalPT"ope ra t i on="approve " onta ine r="reque s t " r e a t e I n s t an e="yes"></ree ive ><invoke name="invokeapprover "partner="approver "portType="apns : loanApprovalPT"ope ra t i on="approve "inputContainer="reque s t "outputContainer="approva l In fo"></invoke><rep ly name="rep ly "partner="ustomer"portType="apns : loanApprovalPT"ope ra t i on="approve " onta ine r="approva l In fo"></reply></sequene></proess>2.3.2 WS-CDLWS-CDL (Web Servies Choreography Desription Language) [RTF06, MH05℄ isan XML-based language that an be used to desribe the behaviour of multipleservies that need to interat in order to ahieve some goal, the interation betweenthe servies and the aepted rules that need to be satis�ed in the interation. WS-CDL desribes this behaviour from a global or neutral perspetive rather than fromone perspetive of any one party. The omplete WS-CDL desription is alled aglobal model. The term ommon ollaborative observable behaviour is used in WS-CDL to desribe the behaviour of system of servies, from a global perspetive. Eahservie has a behaviour of its own whih an be desribed with WSDL for example.Individual servie behaviours an be used in a omposition in whih a set of servieswith their own behaviours ould be e�etively used. In order to do so a global model

16that desribes the peer to peer interations of suh a set of servies is required toensure that the servies will in fat ooperate to a ommonly understood sript.That sript is the global model and that sript is what WS-CDL is used to desribe.An example of a WS-CDL desription is shown in listing 4, taken from [MH05℄. Theexample is thoroughly explained in the artile, interested readers an refer to it forexplanations. Although the example is fairly long already, I have left out some partsof the desription whih denoted by [...℄'s. Details available in the referened artile.The WS-CDL horeography desription is ontained in a pakage (as shown in theexample) and it is a ontainer for a olletion of ativities that may be performedby one or more partiipants. The three main types of ativities that are de�nedin WS-CDL are alled ontrol �ow ativity, work unit ativity and basi ativity.The ativities in ontrol �ow are sequene, parallel and hoie. A work unit ativitydesribes the onditional and repeated exeution of an ativity. Sequene, parallel,hoie and work unit ativity of WS-CDL represent the basi ontrol �ow struturesuh as sequene, while and swith in a typial programming language. The thirdtype of WS-CDL ativity is the basi ativity. Basi ativities in WS-CDL are forexample interation, no ation or assign.The information sent or reeived during an interation is desribed by a namedvariable. Variables in WS-CDL are used to represent three di�erent types of in-formation: appliation-dependent information (for example produt ode), stateinformation (for example order sent) and hannel information. Variables ontainvalues and have an information type. These variables are aessed using WS-CDLXPath 1.0 extension funtions.Listing 4: An example WS-CDL desription (taken from [MH05℄)<pakage name ="AnnualStatementServie " . . . ><informationType name=" o r r e l a t i o n I d " type="s t r i n g "/><informationType name="annualStatement"type="annualStatement . xsd"/><roleType name="Serv i eProv ide rRo l e"><behavior name="ReeiveAnnualStatement"i n t e r f a e="TaxAdvisor . wsdl"/></roleType><roleType name="Serv i eReques t e rRo le"><behavior name="ReeiveTaxAssessment"i n t e r f a e="TaxAdvisor . wsdl"/></roleType><re la t i onsh ipType name ="ClientTaxAdvisor "><r o l e type="Cl i entRo l e" /><r o l e type="Serv i eProv ide rRo l e"/></re l a t i onsh ipType >[. . . ℄<part i ipantType name ="TaxAdvisor"><ro l e type="Serv i eProv ide rRo l e"/><ro l e type="Serv i eReques t e rRo le"/></part i ipantType >[. . . ℄<hannelTypename="SubmitAnnualStatementChannel"

17a t i on="reques t"><pas s ing a t i on= " respond "hannel = "ReturnProessedTaxAssessmentChannel"/><re f e r e n e ><token name ="taxAdvisorRef"/></re f e r e ne ><ident i ty ><token name ="proe s s Id "/></ident i ty ></hannelType>[. . . ℄<horeography name ="AnnualStatementSubmission"root="true"><r e l a t i o n s h i p type ="tns : ClientTaxAdvisor "/><r e l a t i o n s h i p type ="tns : TaxAdvisorMuni ipali ty"/>[. . . ℄<v a r i a b l eDe f i n i t i o n s ><va r ia b l e name = "AS"mutable = " true "f r e e= " f a l s e "informationType = " annualStatement"s i l e n t= " f a l s e "/>roleTypes ="Cl ient , TaxAdvisor"[. . . ℄</va r i a b l eDe f i n i t i o n s ><sequene><in t e r a t i o n name ="AnnualStatementSubmission"hannelVar iable ="tns : SubmitAnnualStatementChannel"ope ra t i on ="ReeiveAnnualStatement" i n i t i a t e="true"><pa r t i i p a t e r e l a t i onsh ipType ="ClientTaxAdvisor "fromRole="tns : C l i en tRo l e"toRole="Serv i eProv ide rRo l e"/><exhange name = "AnnualStatementSubmissionExhange "a t i on= " reques t "informationType = "annualStatement"><send va r i ab l e = "AS"/><re e iv e v a r i ab l e = "AS"/></exhange></in t e r a t i o n >[. . . ℄</sequene ></horeography ></pakage>2.3.3 Related WorkThere is a lot of related work in the �eld of servie omposition. Here I will presenttwo di�erent servie omposition systems, that represent a horeography approahand a orhestration approah. The Self-Serv environment is building ompositionswith horeography approah. It is developed by a researh projet in University ofNew South Wales and Queensland University of Tehnology. eFlow is a platformthat is building ompositions using orhestration approah. It is developed by HP.Self-ServSelf-Serv [BSD03, SBDM02℄ aims to enable the delarative omposition of new ser-vies from existing ones, the multi-attribute dynami seletion of servies within

18a omposition and peer-to-peer orhestration of omposite servie exeutions. TheSelf-Serv arhiteture features a servie manager and a pool of servies. In Self-Serva omposite servie is an umbrella struture that brings together other ompositeand elementary servies that ollaborate to implement a set of operations. Elemen-tary servies provide aess to Internet-based appliations. In ontrast ompositeservies are made of multiple omponent servies. The system expresses the businesslogi of a omposite servie operation as a state hart that enodes a �ow of invo-ations to omponent servie operations. A state hart is made up of states, whihan be either basi or ompound, and transitions, whih are labelled aording to aset of rules.In order to support salable exeution of omposite servies over the Internet, ser-vies should be self-orhestrating: they should be apable of exeuting ompositeservies without relying on a entral sheduler. Aordingly, Self-Serv adopts an or-hestration model based on peer-to-peer interations between software omponentshosted by the providers partiipating in the omposition. The exeution of a om-posite servie in Self-Serv is oordinated by several peer software omponents alledoordinators.Coordinators are attahed to eah state of a omposite servie. They are in hargeof initiating, ontrolling, monitoring the assoiated state, and ollaborating withtheir peers to manage the servie exeution. The knowledge required at runtime byeah of the oordinators involved in a omposite servie is statially extrated fromthe servie's state hart and represented in a simple tabular form alled routingtables. Routing tables ontain preonditions and post onditions. They are used todetermine when the servie should be exeuted and what should be done after theexeution. This way oordinators do not need to implement any omplex shedulingalgorithms.eFlowIn eFlow [C+00, CS01℄ a omposite servie is modelled as business proess, enatedby a servie proess engine. A omposite servie is modelled by a graph, whih de-�nes the order of exeution among the nodes in the proess. The graph may inludeservie, deision and event nodes. Servie nodes represent the invoation of basior omposite servie. Deision nodes speify the alternatives and rules ontrollingthe exeution �ow, while event nodes enable servie proesses to send and reeiveseveral types of events. Ars in the graph may be labelled with transition prediates

19de�ned over proess data, meaning that as a node is ompleted, nodes onneted tooutgoing ars are exeuted only if the orresponding transition prediate evaluatesto true. A servie proess instane is the proess shema instane. The same servieproess may be instantiated several times, and several instanes may be running atthe same time.In order to manage and even take advantage of the frequent hanges in the Webservie environment, servie proesses need to be adaptive, i.e., apable of adjustingthemselves to hanges in the environmental onditions with minimal or no manualintervention. eFlow provides dynami servie disovery, multi servie nodes andgeneri nodes in order to ahieve this goal. With dynami servie disovery ser-vie seletion an be made at run-time, i.e. seleting the servie that best �ts theustomers' need. Multi servie nodes allow eFlow to invoke multiple instanes ofthe same type of servies, in order to request information from multiple servies. Ageneri servie node is a servie node, that is not statially bound or limited to aspei� set of servies. Instead, it inludes a on�guration parameter that an be setwith a list of atual servie nodes either at proess instantiation time or at runtime.Generi nodes are resolved eah time they are ativated, in order to allow maximum�exibility and to ope with proesses exeuted in highly dynami environments.Proess instanes are run by the eFlow engine. The main funtion of the engine is toproess messages notifying ompletions of method nodes, by updating the value ofase paket variables aessed by the nodes and by subsequently sheduling the nextmethod node to be ativated in the instane, aording to the method �ow de�nition.When a method �ow (i.e., an interation with a given servie) is ompleted, thenthe servie node is also onsidered ompleted. The engine then determines thenext servie node to be ativated (aording to the servie node de�nition), seletsthe servie to be exeuted, and eventually starts invoking the methods on the newservie. The engine also proesses events, either internal events or external events,by delivering them to the requesting event nodes.

203 Interative Servie Composer for Mobile PhonesIn the ITEA (E!2023) projet S4ALL (Servies for All) the goal is to have a worldof user-entri servies that are easy to reate, share and use. In the projet it isvisioned that mobile terminals are used to aess these servies and ompose serviesthe way the end user wants to use them. Adhering to these goals of the projet Ihave reated Interative Servie Composer for Mobile Phones (later on referred asComposer), whih is essentially a simple servie omposer for mobile phones.Interative Servie Composer is a simple appliation that is able to do servie om-position. Composer is an orhestrating servie omposer, being only able to dosimple servie omposition. It was designed to be a very simple appliation fromthe start. First ideas were borrowed from Apple's Automator [App07℄, whih allowsusers to make simple linear work�ows, where eah work�ow is omposed of multiplesimple tasks. These work�ows an be saved and reused multiple times. These samefeatures are available in Composer, there are a library of simple ations available, thework�ow is omposed of these ations and the work�ows an be saved for later use.In Automator user is able to drag and drop ations from the de�ned list of ationsinto the work�ow. Composer was never planned to be able to support dragging anddropping, but it is generally made to be simple and easily understood and used.The building bloks of the work�ows in Composer are alled ations. The ationsan be normal Web servies, whih are desribed with WSDL, or they an be smallPython programs whih use the phone's own resoures to run a simple task. Thereare a lot of features in the Python runtime, whih allows to make simple ations thatfor example send an SMS message to another person. The ations have a spei�edform whih they have to be in to work with Composer, see hapter 3.5. This allowsthe automated handling of the ations, like inspeting the data �eld and runningthe ation. The Python ations need to have only one funtion, named run, whihis alled when the ation is exeuted in the work�ow. Other funtions are optionaland an be made to make the reading of the ation easier for other developers.3.1 ArhitetureInterative Servie Composer is a program made fully with Python running onPython for Series 60 (later on referred as PyS60) software on a series 60 softwareplatform on a mobile phone. Python was hosen beause it is a fast language todevelop with. Together with PyS60 it was easy to make a hoie what to use beause

21building simple user interfaes and developing prototypes is fast.PyS60 is a Python runtime made for series 60 software platform. It is a full portof the Python programming language and it also provides aess to many of thephone's smartphone funtions, like amera, ontats and bluetooth ommuniations.Beause of the simple usage of the phone's own funtions it is very easy to make sim-ple yet powerful software with Python on the series 60 software platform. AlthoughPyS60 does not inlude all the libraries that are available in the basi Python distri-bution, it is fairly easy to port the neessary libraries for the phone. Composer usesexternal libraries for SOAP handling and UDDI requests. The libraries are madefor desktop omputers, whih brings some problems beause of the small memoryand low proessing power of the mobile phones. I will desribe more of this librarysize problem in hapter 5.2.Composer has been from the start divided into three main elements. First of allthere is the repository of ations whih takes are of all the ations that has beensaved into the phone's memory, be it ations oded with Python or Web serviesdesribed with WSDL. Seond part is the work�ow-struture that takes are of therunning the work�ow, adding and removing ations from the work�ow. The thirdmain part of the program is the user interfae, whih is responsible for displayingthe neessary elements on the sreen in di�erent parts of the program. The generalarhiteture is shown in �gure 2.

Figure 2: The general arhiteture of ISC

22In order to handle the SOAP requests and responses Composer is using a SOAPlibrary alled SOAPpy. SOAPpy is one of the few SOAP libraries available forPython. At the time SOAP libraries were looked into there were no other goodimplementations available, at least not so simple as SOAPpy. SOAPpy does nothandle omplex types in WSDL spei�ations very well, whih makes using moreomplex Web servies di�ult. The omplex types in this ase refer to for exampleolletions of items, where the items are a simple type elements (string, numberet). SOAPpy is not able to onstrut a orret request message when these kindsof elements are in the servie spei�ation.UDDI queries are handled with UDDI4py library. It is a fairly simple UDDI library,whih implements the UDDI 2.0 funtionality. The library is also using SOAPpyfor sending the SOAP requests, whih made the hoie easier when seleting whatlibrary to use. The UDDI library also inludes an API for adding new entries tothe UDDI registry. This feature is not very feasible for a mobile phone, where theamount of required information is big. This information inludes for example theURI where the WSDL �le is found. I will desribe more about the library problemswith Composer on hapter 5.2.3.2 User InterfaeThe user interfae was kept simple throughout the development of the program.The simple user interfae is both a nuisane and a bene�t. The main thing theUI is working with are simple lists, whih is also restrited by PyS60 whih hasa limited number of options on what to show on the sreen. Composer does notneed more omplex elements than lists to show the work�ow, but in some ases thelists were not able to show enough information. The work�ows are shown as lists ofations, whih also tells how they are run. Work�ows are always run linearly oneation at a time. It is possible to do simple loops in the work�ow, though duringthe development they were not needed exept for testing.Building user interfaes on a mobile phone usually involves using a lot of menus. InComposer too most of the funtionality is in the di�erent menus that are relatedto di�erent views. For example in the main sreen the menu has funtionality forreating a new work�ow or loading a previously saved work�ow, as shown in �gure 3.The work�ow view has one work�ow showing at a time. The view onsists of a list ofations that have been added into the work�ow, or alternatively a note saying that

23

Figure 3: Main view - Main view menuthere are no ations in the urrent work�ow. The heading shown in the top of thesreen shows the name of the urrently open work�ow. The list shows the names ofthe ations that have been added into the work�ow. In ase of WSDL-�les the ationnaming is two-fold. The name an be a generi name or it an be a name takenfrom the WSDL-�le, beause all WSDL �les do not neessary inlude the name in aplae where the SOAP library ould �nd it. The longer doumentation of the ationis shown as a text-�eld on its own, also the on�guration is done outside the basilist struture. There are a lot of items in the work�ow menu, as the �gure 4 shows.The work�ow view supports many di�erent operations, like adding new ations,removing old ations, running the urrently open work�ow or saving it.

Figure 4: Work�ow view - Work�ow view menu

243.3 Ation StoreThe repository of ations, or just ation store, is responsible for the ations that aresaved in the phone's memory. The module is a simple storage/retrieval lass for theations used in Composer. Ation store takes are of the ations for the work�owmodule and delivers the required information to the user interfae about ations.The �rst thing it is responsible for is when Composer is started to inspet all theations (ations made with Python) that are present on the phone and make a listof them. Also at the same time the WSDL �les (whih desribe Web servies) areread and inspeted. The ations are not loaded fully when the program starts, butonly partially read, so that startup would be faster.The ations made with Python have a speial data-�eld in the �le. This data-�eld isread when Composer is started. The data-�eld inludes administrative informationfor Composer on how to deal with the ation. This information is one of the entralparts of the ation. As the data-�eld has been read and the ontent stored in theation store model, the information an be used when adding new ations into thework�ow. More information about the struture of the ations an be found inhapter 3.5.1.Ation store is aessed by the work�ow module frequently when it is dealing withations. As new ations are added to the work�ow the input and output parametertypes are heked. The types of the previous ation and the ation that the useris adding must math. These parameter types are available in the data-�eld of theation. Composer is also able to use previously saved work�ows as ations in otherwork�ows. The saved work�ows are stored in the same plae as the Python ationsand are loaded to the ation list when starting the program. More information aboutthe work�ow struture an be found in setion 3.4.3.3.1 Ation HandlingComposer was planned from the start to be simple and generi tool. This sameideology an be seen in the ation store. Although there are three types of ations,the handling of those three types is made to be as muh similar as possible. The userinterfae requires a lot of information from the ation store regarding the ations,what is the full name of the ation, what are its parameters and so on. Ationstore an supply the required information for the user interfae. The three typesof ations are the �rstly planned and made Python ations, the WSDL ations

25(i.e. Web servies desribed with WSDL) and the last are �ow ontrol ations.Previously saved work�ows an also, as stated earlier, be used as ations, thoughthey are omposed of multiple ations.To support the handling of all ations in the same way, the WSDL �les are handledusing a speial wrapper that is able to supply the required information to the othermodules. The module referenes (that are required to run the ations) in ationstore in the ase of WSDL ations point to the wrapper lass. The wrapper takesare of alling the instantiated WSDL proxy, made by the SOAPpy library, whihin turn sends the request to the Web servie. Both the wrapper and the proxy aregenerated only when the work�ow is run. This saves time when some Web servieis added into the work�ow but the work�ow is not run.The Python programming language requires all �les imported into the environmentbefore they are usable. This is due to Python being an interpreted language. Thatis why all ations must be imported to the environment before running a work-�ow. Importing the Python ations dynamially to the PyS60 environment is fairlystraightforward, as the �le name is already known it is easy to use the dynami im-porting method that is built in to the Python environment, whih imports a spei�ed�le to the environment as a module. WSDL-ations are not used that way, they haveto be given to the SOAP-library, whih makes a WSDL proxy out of the �le, whihthen an be aessed via its API. Generating a proxy of the WSDL-�le makes a-essing the Web servie easier, although the SOAP library used in Composer is notable to understand all of the more sophistiated sides of SOAP.3.3.2 Storage and RetrievalThe ations are stored in a hashtable, where they are indexed with the �le name ofthe ation without its �le type extension. Besides the data-�eld the table stores areferene for the loaded module of the ation. Only when the work�ow is run theations are imported to the Python environment and module referenes are updatedto point to the loaded modules. If the ation is a Web servie desribed with aWSDL-�le, the referene to the module is a referene to the WSDL wrapper lass,reated by the ation store. The hashtable is kept urrent by refreshing the datain it after ertain events. These events inlude saving a work�ow to the phone'smemory and searhing and downloading a new Web servie de�nition �le from aUDDI server. By refreshing the list at these events it is possible for the ation storeto know at all times what ations are present.

26When WSDL �les are seen for the �rst time, Composer will generate a speial ahe-�le out of them to make the loading faster. In the ahe �le Composer stores samekind of information that the Python ations have in their data-�eld. For WSDL�les the input and output types are not known when the �les are being added intoa work�ow, beause it would require either initialising the WSDL proxy or parsingthe XML. In the ase of ertain more omplex Web servies it might be that inputand output types are not available even when the proxy is made. This is due to thelibrary not being able to return more spei� parameter list than just the omplextype name required as the input. This will ause problems with servies of whihparameters the user does not know beforehand.When user wants to add a new ation into the work�ow it is ation store's responsi-bility to ondut the searh on the ations. User an searh for ations with a nameof the ation or a ertain tag that has been given to the ation by the developerof the ation. Tags an be for example related to what the ation does or is it anation made with Python or a Web servie. Problems with searhing are the limitedpossibilities to show the mathing ations on the sreen. In its simplest ase theresults are only shown as names of ations that math the riteria. This might makethe seletion of ations hard, beause the user annot see any longer doumentationat that point. User an also searh for new ations from an UDDI registry. Moreabout this an be found in the hapter 3.3.3.3.3.3 UDDI searhAtion store is responsible in onduting a searh for new ations from a UDDI(Universal Desription Disovery & Integration) registry. When a user makes aUDDI searh, the ation store retrieves the mathing ations (mathing by nameor mathing by a ertain tag) from the registry, whih are then presented to theuser. The list possibly is big so it might be hard for user to selet the serviethat suits him/her the best. Also beause the user interfae has so few options inshowing the results the list only has the names of the servies that are available inthe UDDI registry (mathing the searh riteria). A more sophistiated result listwould inlude a some kind of desription of the servies that were found, this wouldmake the hoie for the user muh easier.After the user has seleted the servie that suits his/her needs, the WSDL of theservie is downloaded into the phone's memory. At this point Composer does notknow anything about the servie, exept that the WSDL �le is available and it

27an be added into a work�ow. Like said previously, from all WSDL-�les Composerwill generate a speial ahe-�le, whih helps in handling the Web servies. Theahe �le in this ase is done after the downloading �nishes and the list of ationsis refreshed. After the WSDL �le has been downloaded and saved into the phone'smemory they an be added into work�ows like usual.3.4 Work�ow StrutureWork�ows are the base for building new servie ompositions in Composer. Work-�ows are simple lists of ations, be it Python oded ations, Web servies or otherwork�ows funtioning as ations. Work�ows are run linearly starting from top,urrently work�ows are not supporting onditional exeution (if-then). There is apossibility to also do simple loops, but they are not used in many oasions. Thereis always only one work�ow open at any time. The work�ow model represents asingle work�ow that has any number of ations whih an be run, saved and usedin other work�ows. The work�ow module is responsible for loading, saving, runningand populating the work�ows.The ations, that are available from the ation store, are stored in a simple list. Theations are in the list in the same order that they are shown on the sreen. Whena user wants to add a new ation to the bottom of the list or insert one betweentwo ations the list is modi�ed aording to the users ommands. Work�ow liststores the whole ation modules, so that when referring to an ation it an be donestraight, not by referring to the ation store �rst.Ations made with Python usually have some on�gurable parameters. Work�owmodule takes are of allowing the user to see and hange the parameters. Parametersan be either freely enterable text or a list of pre-de�ned values from whih user anhoose the �tting one. The parameters are shown to the user in a form-type listwhere the parameter names and values are �rst shown in their default values. Whenthe work�ow is run, the parameters are passed to the ation, be them hanged bythe user or not. More information about the parameters an be found in setion3.5, where the ations are desribed.3.4.1 Populating the Work�owWhen new ations are added into a work�ow, the ation is added to the list of a-tions in this work�ow. At this point the ation has not been loaded fully (imported

28into the environment), the information available about the ation is its name, de-sription, input and output types and some administrative information. The inputand output types are neessary to have, as they are heked to �t with the pre-vious and next ations in the work�ow. Input and output types in Composer arebasi programming language types, numbers and strings. The input type hekingis done by just heking that the ations that are going to pass parameters to eahother have mathing types de�ned. The parameter type heking is espeially hardwhen onsidering Web servies. As Web servies have the types de�ned only intheir WSDL �les, it's hard to make the hek work with the urrent SOAP library,espeially if the output type is omposed of multiple simple types. If the input andoutput types do not math, then the ation is not added into the work�ow.Removing an ation from the work�ow does not require any speial operation. Theation that user wants to remove is removed from the work�ow list so there is noreferene to the ation anymore. After that the list is reorganised due to one ationpossibly being removed from the middle of the list. When the ation is removedfrom the middle of the list Composer does not hek the input and output types ofthe remaining ations that were neighbouring the removed one. This might auseproblems later when running the work�ow, beause the input and output types mightnot be ompatible anymore. This modi�ed work�ow is onsidered to be di�erentthan the previous work�ow with one more ation, so the work�ow an be saved asa new work�ow, di�erent than the previous one with one ation less.Like mentioned before, work�ows an be reused after saving them. A saved work�owlists all the ations that was added to the work�ow when it was made. This meansthat when loading a work�ow Composer heks that all the ations are still availablein the phone's memory. If one or multiple ations are not available the work�owannot be loaded. Saved work�ow also stores the parameter values that the ationshave. These are loaded and inserted into the work�ow model, whih holds the ationsand their parameters. When the neessary ations are loaded and the parametersare set, the work�ow is runnable.3.4.2 Running the Work�owBefore work�ows an be run the work�ow module has to ondut some administra-tive tasks. Beause work�ows an inlude work�ows that an inlude work�ows andso on, the module has to make sure there are no endless loops in the work�ow. Thisis done by heking all the ations in the work�ows and sub-work�ows and mak-

29ing sure there are no loops. As the ations are not imported to the system at thestarting phase of Composer, before starting to run the work�ow all of the Pythonmade ations are imported, so that the modules are runnable. If there are any Webservies in the work�ow the required libraries are also loaded and the proxies areinstantiated before being able to run the Web servies.

Figure 5: Running a Work�owThe running of the work�ow (see �gure 5) starts with alling the �rst ation with anempty input. There is no way of giving an input to the �rst ation in the work�owin the urrent version of Composer. It might turn out to be neessary to give inputto the �rst ation, so this might hange in the future. Input is spei�ed to be a list,whih helps in handling the di�erent types of outputs that di�erent ations return.Also during the demo preparations, we disovered that we needed a better way tostore outputs than just a basi list. Beause of this the demo ations save theirmore omplex outputs into a hashtable whih is given to them as an input. Moreabout the demo and the experiene reeived from it an be found in hapter 4. Thisinformation an then be aessed by ations later in the work�ow. The pre-spei�edfuntion in the �rst ation is alled and the ation runs and returns something atthe end. The output that the ation returns is given to the next ation and thesame thing happens again. The whole work�ow is run through the same way and inthe end the result (or the returned item from the last ation) is shown to the user.This is no di�erent to ations being work�ows, the inner work�ow gives the inputto its �rst ation as it would have ome from a previous ation.There are also a few types of speial ations that require di�erent to normal handling.These are the ations that are used in the devie management demo and �ow ontrol

30ations that are related to loops. Di�erene to normal ations with the demo ationsare that they are given a bit di�erent input list. This is beause the ations in thedemo need to store more information that we are able to pass in the normal input-lists. This inludes, but does not restrit to, login information to the server wherethe Web servies are hosted. The �ow ontrol ations require di�erent to normalhandling beause the looping requires work�ow to observe when the loop is ending.Work�ow does not itself ondut the looping, but it passes the responsibility to theation. Work�ow is then required to ontinue the running after the looping is done.3.4.3 Saving the Work�owWork�ows an be saved for later use after user has omposed the ations he/shewants it to have. The main point from the start of the development was to ease thereuse of existing work�ows. This follows the ideas from Apple's Automator, whihwas made to help users to do tasks that repeat multiple times. Users are able touse their work�ows over and over again, also as part of more omplex work�ows.Work�ows are saved in the same plae as ations so that they are easily found.Every work�ow has some ations added into it, be it ations or other work�ows,empty work�ows an't be saved. When saving a work�ow Composer only saves theinformation what ations are used in the work�ow and what are the parameters theyhave. This follows the idea used in BPEL [ES06℄, in a BPEL proess it is spei�edwhat Web servies are used and where they are found. In Composer the ations areloally available, either the WSDL �le must be present or the ation �le must bepresent, otherwise the work�ow annot be loaded.An important part of saving the work�ow is the parameters the ations have. Pa-rameters are a good way to ustomise the ations. So in order to ease the reuse ofthe work�ows, the parameters need to be saved also. Parameters are stored in thework�ow module as a list of key - value pairs. The parameters are saved with thework�ow so that only the values are saved. The keys are then available from theations itself, they are not hanged so it is not sensible to save them.Below is an example of a work�ow that is saved to a phone's memory, shown inlisting 5. It inludes 4 di�erent ations. Some of the ations have parameters saved.First lines inlude the name of the work�ow, type of the ation, whih in this aserefers to the ation being in fat a work�ow and the longer doumentation of thework�ow. Beginning on line 5 starts the list of the ations. Eah ation has the

31Listing 5: An example of a saved work�ow1 data = {' do ' : u 'A omposite a t i on . ' ,3 ' type ' : ' wflow ' ,'name ' : u ' Da i lyDi lber t ' ,5 ' a t ions ' : [{ ' paramvals ' : [([u ' DailyDilbertImagePath ' , u ' Dai lyDi lbertImage' ℄ , 1) ℄ ,7 ' f i l e ' : ' d a i l y d i l b e r t a t i o n . wsdl ' } ,{ ' paramvals ' : [℄ , ' f i l e ' : ' base64_deode_ation . py ' } ,9 { ' paramvals ' : [u ' : \\ f i l e . jpg ' ℄ , ' f i l e ' : ' save_to_f i l e_at ion .py ' } ,{ ' paramvals ' : [℄ , ' f i l e ' : ' show_image_ation . py ' }11 ℄ ,' tags ' : [' s t r i ng ' , ' show ' , 'web s e r v i e ' , ' save f i l e ' ,13 ' base64 ' , ' deode ' , ' phone ' , ' sreen ' , 'WSDL' , ' image ' ℄}parameter values and the �lename of the ation on the phone saved. On line 12 aresaved the tags of the work�ow. Work�ows get all the tags of the individual ations,so that when searhing for ations, it is also possible to �nd work�ows that ontainations with ertain tags.3.5 Ations and Web ServiesAs stated before, ations are the building bloks of servie ompositions in Com-poser. Ations are referring to both Python-made ations that use the phone's ser-vies and Web servies desribed with WSDL. From the start ations were plannedto be as generi as possible so that they ould be used in many plaes as possible.They were also planned to be easily on�gurable so that it would be easy to users tohange the behaviour and to use them in di�erent plaes. These goals were partlyattained, but with the use ases in the devie management demo it was not possibleto try to stay on the generi ation path.The third type of ations is the �ow ontrol ations. They are not used in manyoasions, the only one available at the moment is an ation that allows users tomake simple loops. The handling of these ations is not di�erent to normal ations,

32the looping ation runs the spei�ed ations for the required amount of loops andthen the exeution ontinues on the next ation after the loop. This requires thework�ow to do some extra administrative tasks when the loop ends, but otherwisethe handling of the �ow ontrol ations is the same than the normal Python-madeations.3.5.1 AtionsThe Python-made ations have a ertain format that must be followed in order touse them in Composer. This is required to have so that all ations an be handledsimilarly. This format de�nes where the neessary data is to be put and whatfuntion is alled when the ation is run. There is an example ation in listing6, whih probably is the simplest ation of them all. The purpose of this ationis to show a text box on the sreen, in where user an input text. The ationhas parameters that an be on�gured to show the default text and the title forthe text box. On lines 1-10 is �rst the data-�eld that holds spei� informationfor ation store and work�ow on how to handle the ation and what is its namefor example. This data �eld is loaded when Composer is started. It has all theneessary information for the ation store to be able to �nd the ations and givethem to work�ows.At line 13 starts the run-funtion that inludes the ode whih is run when theation is alled. Every Python-made ation needs to have this funtion so that itan be run. It does not matter if the ation has a number of other funtions, it justneeds to have this one in order to work properly. In the example the funtion is notvery long nor very di�ult to understand. That is what makes the ation a goodexample. Listing 6: An example of an ationdata = { 'name ' : u ' Query text ' ,2 " type " : "python " ,' do ' : u ' Request a t ex t from the user ' ,4 ' parameters ' : [(' l abe l ' , ' text ' , u 'my labe l ') ,(' d e f au l t ' , ' text ' , u ' value ') ℄ ,6 ' tags ' : [' text ' , ' r equest ' , ' d ia log ' ℄ ,' input ' : ' anything ' ,8 ' output ' : ' s t r i ng '}

3310 #−−−12 de f run (input , p) :14 import appuifw16 output = appuifw . query (p [" l a b e l " ℄ , ' text ' , p [" d e f au l t " ℄)input [0 ℄ = output18 re turn inputPreviously introdued parameters are also important to ations. With them it ispossible to hange how the ation behaves, depending of ourse what the parametersare made to a�et. On line 4 is the parameter �eld in the example ation. Theparameters are formatted already so that they an be, without modi�ations, shownin the parameter on�guration sreen in the work�ow. The on�guration form takesa list of three items, the name of the �eld, the �eld type and the �eld default value.The format is spei�ed to be this beause the form that shows the parametersrequires all �elds to be in this format.The example is missing a ouple of extra de�nitions that tell Composer what kindof input list to use and if the ation is using a ertain type of parameters. The �rstde�nition is for the previously mentioned demo-ations, they need a more powerfulinput list than just a list, so if the parameter is set, the ation gets a hashtable asan input (that inludes the possible outputs from the previous ations), not a list.The other de�nition is related to having a list of pre-de�ned values in one of theparameters. Composer hanges the pre-de�ned list of parameter values to a simplerform when the de�nition is present, this helps the usage of the parameter value inthe ation.3.5.2 Web ServiesThe seond main type of ations are the Web servies. They are WSDL �les, thatdesribe one or multiple di�erent Web servies. Composer does not itself handleWSDL �les. Instead, they are given to the SOAPpy library, whih makes a proxyout of them whih allows the alling of the servies from Python. The proxy onthe other hand is not diretly alled from Composer, but the proxy is given toa wrapper lass, that makes the Web servies funtion like normal Python-madeations. There are some problems with input and output types with Web servies.

34If the Web servies use omplex datatypes as their input or output types, it is hardto �nd out what really are the types that the omplex type is omposed of. Theproblems mainly are beause of the library beause it is not �nished and it wouldrequire more work to better handle the omplex SOAP types.The WSDL wrapper lass has also a run-method whih gets alled when the work�owis run. The run method inludes only the funtion all to the proxy. If the WSDL �lehas more than one servie available, it is the users job to selet the most appropriateservie by on�guring the entry in the work�ow. Con�guring the entry shows thelist of the available servies to the user. There are no other parameters for Webservies available. The proxy is then invoked with the information what servie isalled and the parameters that the previous ation has returned.The returned output an be many things. A list of simple datatypes, a omplexdatatype that inludes multiple simple datatypes and so on. This makes the handlingof output a bit omplex in some ases. The easiest way (that is used at the moment)is to just return the whole output, be it a list of some simple types or a single string,number or what ever the servie happens to return. This way is not neessarily thebest way, beause it might be that the next ation in the work�ow does not needall the di�erent items in the list. Also the generality is immediately lost if somehowonly one spei� part of the output is needed and it is neessary to be separatedfrom the list. Although returning the whole output is the Composer way to do it,there might be a need to try and break up the output.

354 Appliation to Devie ManagementAs a pratial use ase for Interative Servie Composer I will desribe the experi-enes and insights reeived from using Composer in a demo. In this demo Composeris used to send ommands to a devie management server in order to allow an ad-ministrator to use the server without his laptop or his desktop omputer. This demowill be presented to the Finnish partners in the S4ALL onsortium. During develop-ment the examples never were too omplex beause I'd want to test out the newestfeature implemented and move on. But in this demo the use ases are omplex andit was interesting to note that Composer was able to deal with them.We are working with S4ALL partners Capriode and Nokia to build this demo. Inthe demo the work is divided into three distint elements. Our job is to handle thesending of devie management (DM) [L+06℄ ommands from Composer to the deviemanagement server made by Capriode. The server sends ommands to the mobileterminals, that have a devie management lient made by Nokia. These interationsan be seen in �gure 6.The interation with Composer and the devie management server is in fat donevia a proxy. This proxy was fully made by Pekka Kanerva, we worked togetherto build this demo. More about the proxy an also be found in [Kan07℄. It wasnoted early in the demo planning that the Python SOAP library that Composeris using will not be able to ommuniate with the server in the orret way. Likestated previously, the SOAP library is not �nished and it is not able to handle allparts of the SOAP spei�ation. To takle this we are using a proxy software odedwith Ruby to handle the SOAP requests and responses. Ruby has a library thatsupports SOAP better than the Python libraries available at the time of writing.Like Python, Ruby has numerous powerful libraries in the basi distribution whihmakes developing small appliations fast and easy.Composer uses REST-alls to send ommands to the proxy. These alls are thentransformed into SOAP requests whih are then delivered to the devie managementserver. The transformation is simple beause from the REST-alls it is easy toseparate the needed parameters for the SOAP request. This way the omplex SOAPrequests an be populated and sent using the proxy. The data that the deviemanagement server returns is mediated to Composer on the HTTP response of theREST-all. This way Composer does not need to make more than one onnetionto the proxy. This though might be problemati when the SOAP alls take a long

36

Figure 6: Interations in the devie management demo.time to exeute and Composer has to wait for the proxy to send a response bak.The proxy does not have sessions, eah ommand runs and ends in its own spaeand no information is stored between the ommands.Eah ommand for the devie management server has its own REST-all. Thismakes easier to parse the parameters and set them in the SOAP request. Thedevie management jobs on the server are aessible through Web servies desribedwith WSDL. The proxy uses the WSDL �les to aess the servies. The deviemanagement server is thus funtioning as a normal Web servie, where there aremultiple servies on one server. Di�erene to normal Web servies here is the fat,that in order to use the servies, an authentiation servie must be �rst used to beable to use the rest of the servies. After this the proxy is able to send the SOAPrequests to the other Web servies. When the server sends the SOAP response tothe proxy, the response is �rst parsed in the SOAP library. The data in the response

37is given to the proxy from the library and it is put without any modi�ations to theHTTP response. The response to Composer is an XML message without the SOAPheaders, the SOAP library removed them in the proxy. From the XML responseComposer parses the neessary information and stores it. After this like with allations the output is then passed to the next ation. The general arhiteture ofthe proxy is shown in �gure 7, piture taken from [Kan07℄.

Figure 7: Proxy Arhiteture (taken from [Kan07℄)
4.1 StatusAt the time of the writing we have kept the demo with two of the three spei�ed useases. I have desribed here what experienes we gained mostly from the �rst usease, where we had most of the problems. The seond use ase was not problemati,but most of the biggest problems were solved while developing the �rst use ase.The seond use ase was implemented few months after the �rst use ase was ready.This was due to one of the partners being busy. The third use ase was left out fromthe demo, beause we did not have enough time to implement it. I will desribe itin any ase how it was planned to be implemented.4.2 Devie ManagementDevie management (DM in short) refers to administering remote devies fromservers. An administrator an remotely handle on�gurations, install and removeprograms and detet problems on devies. The administrators an as well be wirelessoperators, servie providers or administrators on a �rm responsible for the mobilephones. With the inreased interest in devie management and the number of avail-able produts there are various proprietary devie management implementations

38that have evolved, whih makes a threat for the interoperability among the deviesand servers. To takle this OMA (Open Mobile Alliane) Devie Management spe-i�ation [OMA04, L+06, AMV04℄ aims to unify them. The OMA DM spei�ationhas evolved from SynML DM.In general terms the OMA DM spei�ation onsists of three distint parts. Theseare the protool and mehanism spei�ation, the data model and the poliies. Theprotool and mehanism spei�ation desribes the protool used in the ommu-niation between the devie management server and a mobile devie. Data modeldesribes the data made available in the mobile devie, for example aess pointsettings and email settings. The poliies de�ne who an manipulate a partiularparameter or update a partiular objet in the devie.4.2.1 Protool and Mehanism Spei�ationThe protool is de�ned based on SynML Representation protool and SynMLSynhronisation protool. It inludes paket elements that onstrut the deviemanagement messages, message transfer mehanism, and treatments that serversand lients should perform. To suessfully perform a omplete devie managementtask, servers and lients go through two phases: the setup phase (�gure 8) and themanagement phase (�gure 9), �gures taken from [L+06℄. During the setup phaselients and servers authentiate eah other and send devie information. Paket 0 insetup phase is an optional pakage whih an be used to start a devie managementsession. After the lient suessfully sends the authentiation and its devie informa-tion in paket 1, the server sends its redential and information about managementoperations or user interation ommands in paket 2.After ompleting the setup phase the management phase begins. This phase ouldhave several iterations in single session until the required management tasks areompleted. In this phase the lient �rst sends its response to the server in paket3 to the ommand in paket 2. After this the server an send another operation tothe lient in paket 4. After this there an be more iterations or otherwise the phasean end here.About mehanisms, OMA DM spei�es bootstrap and noti�ation initiated session.Bootstrapping is a proess where a lean devie is provisioned to a state where itan initiate devie management sessions. It is also possible to further bootstrap adevie to be able to initiate sessions with another devie management server. The

39

Figure 8: Setup Phase in Devie Management (taken from [L+06℄)

Figure 9: Management Phase in Devie Management (taken from [L+06℄)bootstrapping an be done as a server-initiated proess, from smart ards, or throughustomised bootstraps, whih may be done during the devie manufaturing.The seond mehanism, the noti�ation initiated session mehanism, atually spe-i�es the paket 0 in �gure 8. Normally lients don't have the resoures or theyare not otherwise onsistently listening to servers' noti�ations beause of seurityreasons. This mehanism provides a way for servers to notify the lient to initi-

40ate a new devie management session. These oasions are for example when anadministrator triggers a request on the devie management server user interfae toondut some tasks. One oasion might also be that there are faults that requirerepairing. Seurity in devie management is implemented with TLS 1.0 or SSL 3.0as the protool between servers and lients. MD5 ensures the integrity of deviemanagement messages.4.2.2 Data ModelEah devie that supports OMA DM ontains a management tree. The managementtree ontains and organises all the available management objets, so that the nodesan be aessed diretly through a unique URI. Nodes are entities that an bemanipulated using the OMA DM protool, for example the settings for e-mail orinformation about a ertain appliation. An interior node an have in�nite numberof hild nodes, while a leaf node must ontain a value, null being a possible value.There are a set of assoiated run-time properties in eah node. The properties areonly valid for the assoiated node, exept for the Aess Control List (ACL). TheACL property an be inherited from a parent, so this property is not neessaryassoiated only for this node. The ACL of a ertain node tells whih server anmanipulate that node. The manipulation an be one of the following: adding ahild node, getting node's properties, replaing the node, or deleting the node. Anexample management tree is found in �gure 10, taken from [L+06℄.Trying to perform devie management tasks on OMA DM onformane devieswould be insu�ient without any ommon objets. Therefore OMA DM requiresboth lients and servers to implement three mandatory management objets andone optional objet for lients and servers. The mandatory objets are OMA DMaount management objet, DevInfo management objet and the DevDetail man-agement objet. The optional management objet is alled Inbox management ob-jet. These objets are de�ned in devie desription framework (DDF). The DDFprovides servers the information that is neessary in order to manage the lientdevies. Devie manufaturers an publish desriptions of their devies so that or-ganisations operating devie management servers an update the new desriptionsto their servers. The servers an utilise the desriptions to manage the new funtionsthe existing devies have or manage totally new devies.

41

Figure 10: Example Management Tree (taken from [L+06℄)4.3 Use CasesWe have planned three di�erent use ases for the demo, whih show some of thetehnologies present in devie management. These features are not the only fea-tures present in the server and there are a lot of possibilities of what an be donewith devie management. The general senario of the demo is that there is an ad-ministrator who needs to aess the devie management server from di�erent plaesother than his o�e in whih ase he must use his mobile phone to do the things.The mobile phone in this ase has Composer installed in it.Inluding these three use ases, Composer is used to log in to the devie managementserver and also it is possible to request a status of a ertain job that is added tothe server. These additional tasks were neessary to be implemented. Without theability to query the status of a ertain task Composer (and in this ase the user)would not be able to know anything about it after the job has been added. The serverdoes not ontat Composer (or the user) after the task reation is done. Also beauseSOAP only allows request-response type interation, it is easier for Composer toquery the server about a ertain task. The need for this extra funtionality beamequikly lear, it is a good feature in testing the demo and the feature is useful foradministrators too.The logon proedure was required to be implemented so that it would not be possible

42for everyone to send ommands to the devie management server. Only if the userhas a valid token inluded in the request the server will run the ommands. Thistoken is reeived after suessfully authentiating with the server. The token ispresent in every request that Composer makes to the server, in order to keep thesession seure.4.3.1 Loking a DevieIn the �rst use ase we are demonstrating how it is possible to lok a mobile phoneremotely. For example when someone has lost his phone or it has been stolen, it ispossible for the administrator to aess the devie management server and send aommand to the phone to lok itself. The loking is done on the mobile terminalby using the phone's own mehanisms. Di�erent types of terminals have di�erentways to lok the phone. Usually loking means that the user annot aess anyfuntionality of the phone without �rst entering an unlok ode. After entering theode the user is able to use the terminal again. This shema is helpful when thephone might be stolen. If the person who stole the phone does not know the unlokode, it renders the phone useless to him. And the quiker the loking an be done,the less damage the stealer an make to the phone and the subsription. The proessspeeds up with Composer beause the administrator does not need a laptop or adesktop omputer to do the job.In Composer the �rst use ase is fairly simple. In order to lok the devie, thedevie management server only needs the phone number of the devie to be loked.This an be fethed from the phone's ontat database. Also the user an type thenumber by himself. This phone number is then sent to the proxy, whih delivers theSOAP request to the devie management server.When the devie management server reeives the request, it �rst heks that thedevie has been bootstrapped. This means that the devie is present in the serversdevie database and it is able to initiate devie management sessions when the serversends ommands to the terminal. If the terminal is found in the database, the lokommand is sent to the terminal. Before this the devie management server returnsa message to Composer via the proxy, whih tells that the devie management jobhas been added to the queue and will be run when other jobs before it are ompleted.After this the phone is loked in due ourse. Composer does not get any other statusreports about the job without asking. By using the status query after the job hasbeen added the administrator an hek the situation, has the job been ompleted

43or not.4.3.2 Initialising a DevieThe seond use ase is about adding a new terminal to the devie management server,i.e. bootstrapping a devie. With di�erent devie management implementationsthere might be a bit di�erent ways to do this. Usually when the devie phone number(or generally the information about the phone) is added to the devie managementserver, the terminal that possesses the phone number reeives a message, whereit is instruted to feth a speial terminal software, whih understands the deviemanagement ommands that the server sends. This usually requires some userinteration. It also might be that the devie does not require any terminal software.This is the ase with the Nokia mobile terminals used in the demo. Bootsrappingin this ase is done by registering the server with the built in devie managementlient. This might require exhanging redentials or requiring user to allow thebootsrapping to be done.In this use ase Composer has the following tasks. The user is required to enterthe phone number of the phone that will be initialised. This an be found on theontat database, but in this ase it is more likely that the user will have to enter thenumber by hand. It was planned on the use ase senario that the added phone willbe for a new employee, whih is starting on the workplae. The workplae's phonesinlude all the numbers of the workers there, so in this ase the phone number an'tbe found in the ontat database. In the senario the phone number ould be givento the administrator via phone by the new employees nearest superior for example.The phone number is then sent to the devie management server (via the proxy ofourse). The devie management server adds the job to the queue and the serversends Composer a response to the request, response inluding the identi�ation num-ber of the job added. This job is then run in its time and like stated previously, theterminal that is to be initialised gets a request to either feth the required terminalsoftware or on�gure the built-in lient to use the ompany's devie managementserver.In the API there are separate alls for adding a new devie to the server and speif-ially starting the bootstrapping proess. What Composer is required to do afteradding the devie to the server is to invoke another method, whih will start the jobto send the servie message instruting the user to feth the terminal software. For

44this invoation the server requires a phone number, whih the user must input againin Composer. Adding the devie in Composer is in this ase a two step proess, inwhih the steps are separate work�ows. When the phone has been initialised andadded to the server the use ase senario also inludes a task of sending of a basisoftware pakage to the terminal.This pakage inludes some neessary software in order to be used in the workplae.The terminal fethes the software pakage from the devie management server whenthe server sends the ommand. This pakage is then automatially installed on theterminal, requiring only minor user interation. There an be multiple di�erentsoftware pakages on the devie management server, the required software pakagean be seleted in Composer when the phone number is sent. Optionally the softwarepakage might also inlude all the required settings for the new phone, whih willbe installed with the pakage. These settings might inlude aess point settings,email settings and so on.4.3.3 Sending Settings to a DevieThe third and last planned use ase is a situation where user needs the settings forInternet aess to be sent to the phone. For example a omputer illiterate person hassomehow deleted the settings from the phone and now wants to aess the Internetusing his/her phone. The settings an be sent from the devie management server,administrators might have added a set of ommon settings to all the phones in theompany. These settings an then be easily sent to the phone so that the user anagain aess Internet.This is implemented in the following way. Composer requires the user to supplya phone number that the settings will be sent to. This phone number is availableeither on the ontat database on the phone or the user an input it by himself.The phone number is then sent to the devie management server via the proxy. Theserver heks if the phone is present in the database and then sends the request toinitiate a devie management session to the terminal.It might be that a ompany has a speial set of settings for the aess points andthat is why it is neessary to use the settings that are present on the server, notthe basi settings that the mobile operator supplies. The new settings are thenfethed to the terminal and installed. After this the terminal an be again used toaess the Internet. Composer will again only reeive a response from the server

45that the devie management job has been added to the queue, but after this moreinformation need to be requested from the server. It is possible to query the statusof the job after it has been added, like stated before.4.4 ExperieneUsing Interative Servie Composer in a demo gave a lot of new perspetives. It isa fairly di�erent thing to test Composer with a few ations than trying to build ademo that interats with a real produt. It requires a bit more from the programand from the start of the demo planning it was lear that it would require more workput on Composer in order to be able to use it in the demo. But inluding theseinsights we notied some problems with Composer, relating to a ertain library andrelating to the implementation of inputs and outputs between the ations.Maybe one of the biggest problems with Composer were problems with the SOAPlibrary. I have already previously stated how the library is not �nished and it doesnot handle all parts of the SOAP spei�ation well. When we �rst got the WSDLdesriptions for the devie management servers' servies we tested them with theSOAP library that Composer uses. By using debugging features present in thelibrary it quikly beame obvious that the requests sent to the server were notformed orretly, the parameters were inorretly formed.The WSDL desriptions inluded a list of simple parameters (whih orrespondsto a omplex type in SOAP) as an input to the servies. In the desription theitems in the list are named so that the servie an easily get the orret parametersthe lients are sending, see listing 7 for example. Also in this ase the list itselfis named. These parts of the desription seem to be problemati for the SOAPpylibrary. SOAPpy library was not able to orretly name the items in the list, whihwas not aepted by the servie.Like stated previously, to takle this problem we built a proxy that hanges theREST alls Composer is sending to SOAP alls that the Web servies are able tounderstand. The proxy of ourse brought more work, but it really was a relief. Beingable to use REST style Web servies from Composer is easier, beause not having toload the SOAP library to the environment. This makes using Composer a lot fastertoo. In [Kan07℄ there is a lot more talk about SOAP libraries and problems withthem in this projet, interested readers should refer to it for more information.Another thing that ould be listed more of an insight than problem was with param-

46Listing 7: An Example Complex Type<xsd : element name="Login"><xsd : omplexType><xsd : sequene><xsd : element name="domain" type="xsd : s t r i n g"/><xsd : element name="username" type="xsd : s t r i n g "/><xsd : element name="password" type="xsd : s t r i n g "/></xsd : sequene></xsd : omplexType></xsd : element>In a SOAP message i t should look l i k e<Login><domain>domain</domain><username>uname</username><password>pass</password></Login>eter passing between ations. Before the demo parameters passed between ationsin Composer were plain lists, whih had one or multiple items. When we learntthat in order to use the servies Composer needs to authentiate to the server andarry a token that is given after suessful authentiation, the simple list was notpereived to be enough. To save a token in the list to be used somewhere later inthe work�ow will not work. It might be that the work�ow has some ations thatdon't keep the list intat, although our poliy was that ations only use the amountof parameters they need from the list and keep the rest intat. But 'maybe' is notgood enough.The �rst ideas of Composer were borrowed from Apple's Automator, as desribedin hapter 3. This simple list idea might work with a losed environment that Applehas, but with ations that has been made by someone else than you, it is more likelythat something will go wrong or it might be that someone has made an ation thathas only intention to do harm. Trying to store speial inputs somewhere in the listto save them for ations somewhere later in the work�ow will not work. We wantedto have a more preise solution for this problem.This ultimately lead to hanging the input parameter list type to be di�erent whenrunning the demo ations. It gives more options to the ations to save the neessaryitems. The new type of input list is a hashtable that in fat has the basi input list

47in it and the demo ations have the token saved there. The hashtable is not givento all ations, only ations spei�ed to be able to handle it get it. This is saved usfrom hanging all the ations to support the new type of input list. Although at�rst I was going to hange all ations aording to it, but when I realised I oulduse the data-�eld for it, the hange only a�eted ations that needed the new inputlist.While we were able to takle some of the parameter passing problems with a moreomplex list of parameters, the amount of parameters in some of the SOAP alls wereso big that it is not feasible for Composer anymore. Espeially while implementingthe seond use ase I was struk by the big number of parameters required in somealls. While being able to supply the parameters by asking them from the user,in my opinion it is not feasible anymore, when the �rst ideas were to keep inputand output to be simple and only one item. Some of the SOAP alls required sixto seven di�erent parameters, supplying all these parameters is seriously rippledby the unavailability of good user interfae elements in Python for Series 60. Onthe other hand parameters an be supplied via the ation parameter interfae, butthis is not neessarily a good way. That is beause people might forget to lookat the on�gurable parameters and the default values someone has de�ned are notneessarily good. One point is also that on�gurable parameters were not spei�edto use in this way when the �rst plans for Composer were made, they were spei�edto alter the behaviour of the ation.The experienes generally gained from the demo were good. We were happy howComposer was able to perform with the demo. Also making the proxy gave usgood experiene about REST-style Web servies, of whih we didn't have a lotof experiene beforehand. Although there were some problems at �rst, I think wemanaged very well and we were able to overome the problems by making Composerbetter.

485 Experiene Developing for Mobile PhonesWith the reent inrease in the mobile phones' proessing power it has beome fea-sible to develop software for mobile terminals. This is a very interesting subjet forservie providers and mobile phone operators as more and more people are arryingmobile phones. These mobile terminals are with people where ever they go, whihgives a huge amount of possible new usage senarios and business potential.Developing appliations for mobile phones has been possible for several years nowwith mobile operating systems like Symbian OS [Sym07℄, Windows Mobile [Mi07℄and Qtopia [Tro07℄. Albeit the languages needed to learn to develop for theseoperating systems are not very easy to learn (the ase with Symbian C++, whihhas some speial onventions to learn), there has been people developing for theseplatforms for quite a some time now. But when Nokia brought Python for Series 60environment on its Series 60 phones developing beame a fairly large amount easier,at least when looking on the viewpoint of language omplexity.Like introdued earlier, Python for Series 60 is a full Python implementation runningon the Series 60 smartphones. The Python programming language is simple to learn,yet it has some powerful features built in. With PyS60 users are able to aessthe smartphone features and build appliations without having to learn the speialfeatures of the spei� language, Python is the same on desktop PC and on themobile phone. With simple user interfae elements it's easy to build appliationson the mobile phone with Python, espeially prototyping an be done quikly andeasily.Composer was �rst developed for a Nokia 6600. It has 6 megabytes of memoryand it has a 32 megabyte memory ard. Developing for this mobile phone beamequikly a tedious task, beause the phone is fairly slow, being one of the early Series60 mobile phones. When adding new features it beame lear that there will be aneed to get a better mobile phone in the near future. The last straw was when westarted to use the SOAP-libraries whih took a really long time to load. Amount oftime required to load the library on the PyS60 version bak then was one minuteand few seonds.The next mobile phone we developed for was a Nokia N70, whih worked muh moresmoothly. It has 22 megabytes of memory and a 64 megabyte memory ard. Withthis mobile phone it was more smooth and the library loading did not take thatlong time. And when the loading of ations was hanged it was fairly smooth to use

49Composer on the N70. With the latest development on PyS60, running Composerhas beome even smoother, see next hapter for more details.5.1 Resoure Limitations on Mobile PhonesThe amount of memory and proessor speed are not problems when planning andimplementing a piee of software for a desktop PC. With big amounts of memory andfast proessors even more and more omplex piees of software are being able to runon desktop PCs. But this is not the ase with mobile phones. Mobile phones haveonly reently been gaining more proessing power and more memory, still havingonly a small amount of what desktop PCs have.It would not be feasible to put a proessor that powerful on a mobile phone thatdesktop PCs have. It would drain the battery instantly and the advantage gainedfrom this would be very small. Mobile phone users would muh rather have mobilephones that have batteries that last long. Also it most ertainly is what ompaniesare aiming for. Users have similar needs, users want the mobile phones to be smallerand smaller the batteries an't be big sized. This on the other hand means that thebatteries have less power. There is a lear ontradition here. Mobile phones needto have more proessing power but at the same time keeping the size small, keepingthe battery long living and fairly small.A lear example of the resoure limitations on mobile phones is the following ase.We are running fairly large libraries on Composer, whih are needed to handle theWeb servie invoations. The library onsists of multiple �les with over 5500 linesof ode. This does not inlude all the other libraries it is using. When runningComposer on the mobile devie, loading this library takes a long time. Some of theslowness is beause of the Python environment and its memory handling. In thestart of the June of 2007 Nokia released a new version of the environment whihmade the library loading two times faster than it used to be. I have provided somemeasurements about this in listing 8. Clearly the Python distribution has beomefaster, but this also shows that there is still a huge gap between how the desktopPC performs related to mobile phones.Another example of having limited resoures is the ase with Composer inspetingthe ations when starting. The ations are not loaded fully when Composer starts,but only partially read, so that starting the appliation would not take so long. Evenwith the amount of ations nearing 20 the loading of Composer beame quikly slow,

50Listing 8: Timings on Library LoadingHardware and | Time in seonds | Time to bu i ldPlatform | to import l i b r a r y | SOAPpy WSDL proxy
−−Linux 2 . 6 . 2 0 | 0 .08 | 0 .01P4 3ghz , 2gb | seonds | seondsPython 2 .4 | |
−−Nokia N70 | |22mb memory | |PyS60 1 . 3 . 1 7 | 40 seonds | 15 seondsPyS60 1 . 3 . 2 2 | 21 seonds | 2 seonds
−−Nokia 6600 | |6mb memory | |PyS60 1 . 3 . 1 7 | 58 seonds | 19 seondsPyS60 1 . 3 . 2 2 | 31 seonds | 3 seonds
−−while all ations were imported to the environment at start time. Beause all of theations are not used in work�ows, there is no need to load them all at startup.This hange to reading only a part of the �le made the starting of Composer faster.Aessing �les from a memory ard on the mobile phone is not a problem in thisase. It is as fast as reading from the internal memory.I don't exatly reall the amount of time that it took to start up omposer anymore,beause it has been at least seven to eight months sine it was hanged. But Ithink it was lose to being thirty seonds. This probably partially also dependedon the Python for Series 60 environment, beause it has had a lot of problems withimporting �les to the environment being slow. It seems that now with the reentdevelopment the problem has been �xed it and the importing works a lot faster thanit used to be. We have never had muh more than 20 ations in Composer so it'shard to say how the urrent solution would work with amounts like hundred or moreations. I do believe though that it would work better than the �rst solution.These two things learly show what things need to be addressed when implementinga piee of software for mobile phones. Big libraries are a problem, they usually areplanned to be used with desktop PCs that are a lot faster than mobile phones. And

51when something is repeated multiple times it is usually smart to stop for a whileand think if some part of it ould be done faster. Or alternatively an it be donewith less memory, or with generally less resoures.5.2 Libraries and Python for Series 60When developing with a mobile phone one has to pay attention to the size of theprograms beause the resoure restritions of the mobile terminals. This does not�t to the piture where developed programs need to use libraries that are made fordesktop omputers. This is the usual ase when developing something with PyS60.There are a lot of libraries available for Python in general, but they are big or requireother libraries to work. Libraries that use other libraries very quikly make a pile oflibraries that all need to be ported to PyS60. It might require some extra work toget the libraries working on the mobile phone, beause the Python distribution isnot omplete. For example the weak referene implementation is missing from thedistribution, this relates losely to the implementation of XML.When onsidering spei�ations like SOAP it is lear that the library is big in orderto support all the features in the spei�ation. This might then make using thelibrary on a devie with less memory and lower proessing power slower. With thesize of the library also usually the amount other libraries needed inrease. Thismakes the job of trying to use the library on a mobile phone harder, beause morelibraries are needed to heked to be working with the mobile phone. Our experieneswith SOAP libraries for Python were not enouraging. The libraries we tested werenot omplete nor fully funtional. In [Kan07℄ there is a lot more disussion aboutSOAP libraries for Python and Ruby and the experienes gained from this projet.Another big spei�ation is UDDI. The library we are using to ondut UDDIsearhes in fat also uses SOAPpy SOAP library, whih was hosen before thinkingabout UDDI. It was a relief that there was no need to provide another SOAP libraryfor the UDDI searh. Still the library in this ase is fairly big too. In Composerwe are only using the searh funtions of the UDDI spei�ation. The spei�ationalso inludes funtionality for adding new entries to the registry. This funtionalityis not needed in Composer and it would make the library size smaller if it wouldbe removed. On the other hand it would not be sensible to just implement somepart of the spei�ation and leave some parts out. When porting the library for themobile phone, we tried to remove some of the imports in order to keep the size ofthe imported library smaller. This same operation was done for SOAPpy whih also

52inluded some server-side funtionality, those parts are not loaded when using thelibrary in Composer.5.2.1 Problems with LibrariesWe had most of our library problems with either big libraries or big amount oflibraries that were needed to be supplied in order to make the library work. Thismade porting the libraries to the mobile phone harder. Usually problems relatingto big amount of library referenes were beause some of the libraries were spei�to ertain operating system and if the devie's Python distribution did not havethe library inluded, we needed to supply a library taken from the desktop PCsdistribution with some hanges. These hanges were not neessarily big, but in anyase it required some work to make the hanges and move the library to the mobilephone.It didn't help the developing and working with libraries when at �rst we didn'tknow how we ould send all �les from one library at one and also to put them ina diretory in the mobile phone where we wanted them to go. We eventually ameout with a notion of making a SIS-pakage (Symbian Installation Soure pakages)out of the library �les so that they an be easily opied to the mobile phone. Thelibraries need to be at a ertain diretory on the mobile phone in order to be able touse them. Single �les an be of ourse be opied automatially to the library folderwith the help of PyS60, but after that they need to be moved to another folder tokeep all libraries organised. This also gave a requirement to �nd a way to opy all�les at one.As we were developing with Linux, it was not easy to �nd the right tools whihare able to make SIS-pakages. In this ase it helped that some of my o-workerswere been developing for PyS60 earlier and had been able to �nd a program thatwas able to build the pakages. Eventually we were able to automate the pakagingproess so, that we had a sript �le whih was able to build all neessary pakagesif there had been any hanges in the soure �les. This made transferring the �les alot easier when one needs to send only one or two �les to the mobile phone.5.3 Problems and SolutionsThe extra di�ulty when developing for mobile phones is the fat that one has to�rst transfer the �les to the mobile phone in order to test out the newly implemented

53feature. This beame a nuisane in one point while trying to �x some errors and itrequired ontinuously to send a new version of the �les to the mobile phone. One ofmy o-workers used a sript to transfer the spei�ed �les to the mobile phone witha serial able. This would have helped in some point when we had not yet ome upwith the system to reate SIS-pakages out of the required �les. When transferring�les to a phone and trying out the hanges it requires you to onentrate on adi�erent thing and you might lose thoughts of what you were about to do next.Possible solution for this problem is using an emulator. This would be possible if notusing Linux or Ma OS for development beause for these operating systems thereare no emulators available. Nokia has emulators only for Mirosoft Windows. Withemulators it is possible to test out the simplest features and see if they are workingor not. Nonetheless it is not possible to test the features available in Python forSeries 60, like the amera funtionality or sending an SMS-message. The installationalso requires a fair amount of work to be able to use them properly.There is also one Python library [Rim06℄ available that is able to show the userinterfae elements of the mobile phone on a desktop omputer by using anotherlibrary to build frames and lists. The library inludes the same API as the Pythonfor Series 60 user interfae and it shows a same kind of view what the software wouldlook like on the mobile phone. This is also a good option for testing out featuresthat don't use any of the smartphone's features. It is also easy to test features thatrequire Internet onnetion beause Python's normal libraries for network aessan be used. This library was made here in HIIT, but only late in the projet Istarted to use it. It helped in a few situations where I needed to make some fairlylarge hanges to the software.Generally debugging on mobile phones is harder beause of the extra yle withsending new version of the �le to the mobile phone. Also if you run into a problemwith libraries that you have ported you have to �rst hek the libraries on thedesktop p to see what might have aused the problem and then again send the new�les. Debugging at its worst ase usually meant that I needed to inlude printingof debugging information in the problemati plaes to see where the exeution wentwrong. This usually lead to many yles of trial and error, whih were a nuisanewhile developing Composer.

545.4 ConlusionWhile developing Composer there has been a lot of problems, be it smaller or biggerproblems. These problems helped to see the development for mobile phones beinga fair amount of di�erent than for desktop PCs. I'm happy to see what we wereable to develop but naturally there were some ideas that were not pursued further.I was hoping Web servies would work better with Composer, but when I realisedthere were not many usable Web servies available (beause of the library) I was abit disappointed how it turn out.I see problems related to libraries as the biggest problems we had with Composer.Problems with SOAP library are a big thing in itself, but also when trying tobring new libraries to the mobile phone there were already some problems. Anotherbig problem we had was with SOAP. There still is no really good, working SOAPlibraries for Python. There has been a lot of development lately in one library whihunfortunately does not �t the needs of Composer. Composer needs to have a proxy-like struture, where inputs and outputs are easily handled, the library reently beingworked on o�ers a sript that transfers WSDL-�les to runnable Python sripts. Thiskind of setting does not really �t to Composer.When developing for mobile phones it is neessary to �rst think what needs to bedone. After the thinking you should then see how it performs on the devie you aredeveloping for. It is also neessary to think what libraries are needed in using theprogram. Are they available in the spei� Python distribution (Python for Series 60does not have all the standard libraries)? Do the libraries need other libraries? Andwhen solving a problem, the easiest solution might not always be the best solution.These are the main points I got from developing for mobile phones.

556 ConlusionWith inreasing interest in Web servies, servie oriented arhitetures and servieomposition, the thought of developing appliations with the servie ompositionparadigm has beome more and more aepted. With servie omposition users areable to build new appliations by ombining existing servies into more omplexappliations. Servie omposition is a way to master omplexity, ombining simplerbuilding bloks into a omplex appliation.The dominant tehnologies in Web servies arhiteture are SOAP for ommunia-tion, WSDL for desription and UDDI for the registries. These are not the onlytehnologies available for Web servie arhiteture, but usually these are the oneswhih are onneted with Web servies. This arhiteture is based on three ompo-nents: the servie requester, the servie provider and the servie registry. This is asimilar way to how onventional middleware are built.For the S4ALL vision I have reated and desribed the Interative Servie Composerfor Mobile Phones in this thesis. With Composer users are able to reate servieompositions, whih are built from web servies or ations funtioning on the phone'sown resoures. By ombining di�erent Web servies users are able to build appli-ations that suit their needs. By reon�guring, saving and reusing work�ows usershave a lot of possibilities to develop for their own needs.While Composer is able to build simple ompositions, I would have liked to seeComposer being able to use all kinds of Web servies, urrently the SOAP libraryis onstraining the hoie of servies. I would also liked to be able to develop someof the more sophistiated sides of the plans that were made in the S4ALL projet.This would have required a lot of time and resoures than we had in our use.While developing Composer the best way to test its apabilities was to use it ina demo. In the demo Composer is used to build servie ompositions whih sendommands to a devie management server. All problems and errors are not usuallyfound when developing the program and trying to realise the plans made out for it.By building the demo with the partners we learnt a lot of Composer and its defetsand good sides.The whole demo proess was not only about �xing the problems Composer had, butit was also very useful for us to see what Composer was able to do. Mainly beauseour partners were busy with other things, one of the three use ases is still undone.While the �rst use ase gave us a lot of good experienes I'm wondering what other

56experienes we ould have reeived from them.When developing for mobile phones the developer needs to take aount di�erentthings than while developing for desktop PCs. While developing Composer I hadproblems with libraries on the Python for Series 60 environment. These problemsoriginated from the fat that the libraries were either not �nished or while trying tobring the required libraries to the mobile phone the dependenies (on other libraries)aused problems. A problem of its own was the size with ertain libraries, whih isa problem for resoure sare mobile phones.Though SOAP is one of the dominant tehnologies in Web servies arhiteture,the library problems (size, dependenies) render it hardly usable on mobile devies.While not trying to defame SOAP itself, the libraries we tried to work with werenot very well �t to be used in a mobile devie with low proessing power.Finally there were few interesting things I learnt from designing and building Com-poser. First of all the servie-oriented arhiteture is an interesting onept. Servieomposition is also very interesting topi. By using servies already built to maketotally new servies is an interesting idea, whih ould ease the development of newappliations. At the start of the projet it was a bit hard to understand all thetehnologies related to SOA, but after a while they started to seem lear.What omes to developing with mobile phones the biggest insight I reeived wasthe problems with libraries. It seemed to follow all the way through the wholedevelopment proess. First in the start when we were trying to �nd suitable librariesfor the development and in the end while developing the demo. These problems arenot only about libraries being broken, but also library size problems, dependenyproblems and so on. Another thing learnt was the lak of proessing power on mobilephones. It beame very quikly obvious how the lak of proessing power a�etedthe development.The environment is so muh di�erent and interesting than with desktop PCs thatalthough the lak of proessing power is lear, the appeal is so big that there will alot of development for mobile phones. And the trend seems to be ontinuing. As isthe trend of developing software with servie-oriented arhiteture paradigm.

57ReferenesA+03 Austin, D. et al., Web Servies Arhiteture Requirements, Otober2003. URL http://www.w3.org/TR/wsa-reqs.A+04 Alonso, G. et al., Web Servies; Conepts, Arhitetures and Applia-tions. Springer, 2004.AC+03 Andrews, T., Curbera, F. et al., Business Proess Exeution Languagefor Web Servies version 1.1, May 2003. URL http://www.ibm.om/developerworks/library/ws-bpel/.AMV04 Adwankar, S., Mohan, S. and Vasudevan, V., Universal Manager:Seamless Management of Enterprise Mobile and Non-mobile Devies.IEEE International Conferene on Mobile Data Management, 2004.App07 Apple, Apple's Automator, 2007. URL http://www.apple.om/maosx/features/automator/.B+06 Bray, T. et al., Extensible Markup Language (XML) 1.0, August 2006.URL http://www.w3.org/TR/2006/REC-xml-20060816/.BDFR03 Benatallah, B., Dumas, M., Fauvet, M.-C. and Rabhi, F., TowardsPatterns of Web Servies Composition. In Patterns and Skeletons forParallel and Distributed Computing, Springer-Verlag, 2003, pages 265�296.BL06a Bihler, M. and Lin, K.-J., Servie-Oriented Computing. IEEE Com-puter, 39,3(2006), pages 99�101.BL06b Booth, D. and Liu, C. K., Web Servies Desription LanguageWSDL Version 2.0, Marh 2006. URL http://www.w3.org/TR/wsdl20-primer.BSD03 Benatallah, B., Sheng, Q. Z. and Dumas, M., The Self-Serv Envi-ronment for Web Servies Composition. IEEE Internet Computing,7,1(2003), pages 40�48.C+00 Casati, F. et al., Adaptive and Dynami Servie Composition in eFlow.Pro. of 12th International Conferene on Advaned Information Sys-tems Engineering (CAiSE), 2000.

58C+02 Curbera, F. et al., Unraveling the Web Servies Web: An introdutionto SOAP, WSDL and UDDI. IEEE Internet Computing, 6,2(2002),pages 86�93.C+03 Curbera, F. et al., The Next Step in Web Servies. Communiations ofthe ACM, 46,10(2003), pages 29�34.Col04 Colan, M., Servie-Oriented Arhiteture expands the vision ofWeb servies, part 1, April 2004. URL http://www-128.ibm.om/developerworks/library/ws-soaintro.html.CS01 Casati, F. and Shan, M.-C., Dynami and Adaptive Composition ofE-Servies. Information Systems, 21,3(2001), pages 143�163.DK75 DeRemer, F. and Kron, H., Programming-in-the-large VersusProgramming-in-the-small. Proeedings of the International Confereneon Reliable Software, 1975, pages 114�121.ES06 Ezenwoye, O. and Sadjadi, S. M., Composing AggregateWeb Servies inBPEL. ACM-SE 44: Proeedings of the 44th annual Southeast RegionalConferene, 2006, pages 458�463.Fie00 Fielding, R., Arhitetural Styles and the Design of Network-based Soft-ware Arhitetures. Ph.D. thesis, University of California, Irvine, 2000.FW04 Fallside, D. C. andWalmsley, P., XML Shema Seond Edition, Otober2004. URL http://www.w3.org/TR/xmlshema-0/.G+06 Gudgin, M. et al., SOAP Version 1.2, Deember 2006. URL http://www.w3.org/TR/soap12.HS05 Huhns, M. and Singh, M. P., Servie-Oriented Computing: Key Con-epts and Priniples. IEEE Internet Computing, 9,1(2005), pages 75�81.JM76 Jones, N. D. and Muhnik, S. S., Binding time optimization in pro-gramming languages: Some thoughts toward the design of an ideallanguage. POPL '76: Proeedings of the 3rd ACM SIGACT-SIGPLANsymposium on Priniples on programming languages, 1976, pages 77�94.

59Kan07 Kanerva, P., State-of-the-Art of SOAP Libraries in Python and Ruby.Tehnial Report 2007-2, Helsinki Institute for Information Tehnology,2007. URL http://www.hiit.fi/node/87.Kha02 Khalaf, R., Business Proess with BPEL4WS: Learning BPEL4WS,Part 2, 2002. URL http://www-128.ibm.om/developerworks/webservies/library/ws-bpelol2/.KS06 Kobti, Z. and Sundaravadanam, M., An Enhaned Coneptual Frame-work to Better Handle Business Rules in Proess Oriented Appliations.ICWE '06: Proeedings of the 6th international onferene on Web en-gineering, 2006, pages 273�280.L+06 Lin, S. et al., An introdution to OMA Devie Management, Otober2006. URL http://www.ibm.om/developerworks/library/wi-oma/index.html.Lin00 Linthium, D. S., Enterprise Appliation Integration. Addison-Wesley,2000.MH05 Mendling, J. and Hafner, M., From Inter-Organizational Work�ows toProess Exeution: Generating BPEL from WS-CDL. In Leture Notesin Computer Siene, volume 3762, Springer-Verlag, 2005, pages 506�515.Mi07 Mirosoft, Mirosoft Windows Mobile, June 2007. URL http://www.mirosoft.om/windowsmobile/default.mspx.Min06 MindReef, MindReef SOAPSope, 2006. URL http://www.mindreef.om/mindreef/soapsope.php.MJS06 Molina-Jimenez, C. and Shrivastava, S., Maintaining Consisteny be-tween Loosely Coupled Servies in the Presene of Timing Constraintsand Validation Errors. ECOWS '06 4th European Conferene on WebServies, 2006.MM04 Milanovi, N. and Malek, M., Current Solutions for Web Servie Com-position. IEEE Internet Computing, 8,6(2004), pages 51�59.OAS05 OASIS, UDDI version 3.0, February 2005. URL http://www.uddi.org/.

60OMA04 OMA, OMA Devie Management Spei�ation version 1.1.2, Jan-uary 2004. URL http://www.openmobilealliane.org/release_program/dm_v112.html.Pap03 Papazoglou, M. P., Servie-Oriented Computing: Conepts, Charater-istis and Diretions. Pro. of the Fourth International Conferene onWeb Information Systems Engineering (WISE'03), 2003.Pel03 Peltz, C., Web Servies Orhestration and Choreography. IEEE Com-puter, 36,10(2003).PG03 Papazoglou, M. P. and Georgakopoulos, D., Servie-Oriented Comput-ing. Communiations of the ACM, 46,10(2003), pages 25�28.PL03 Perrey, R. and Lyett, M., Servie-Oriented Arhiteture. Symposiumon Appliations and the Internet Workshops, 2003.Rim06 Rimey, K., PyS60 Emulation Library, 2006. URL http://soureforge.net/projets/pys60-ompat/.RTF06 Ross-Talbot, S. and Flether, T., Web Servies Choreography Desrip-tion Language: Primer, June 2006. URL http://www.w3.org/TR/ws-dl-10-primer/.Rub07 Rubio, D., An Introdution to JSON, February 2007. URL http://dev2dev.bea.om/pub/a/2007/02/introdution-json.html.SBDM02 Sheng, Q. Z., Benatallah, B., Dumas, M. and Mak, E. O.-Y., SELF-SERV: A Platform for Rapid Composition of Web Servies in a Peer-to-Peer Environment. VLDB 2002, Proeedings of 28th International Con-ferene on Very Large Data Bases, Hong Kong, China, August 2002,pages 1051�1054.SK03 Srivastava, B. and Koehler, J., Web Servies Composition - CurrentSolutions and Open Problems. ICAPS 2003 Workshop on Planning forWeb Servies, 2003.Sym07 Symbian, Symbian OS Mobile Operating System, June 2007. URLhttp://www.symbian.om/symbianos/index.html.TBB03 Turner, M., Budgen, D. and Brereton, P., Turning Software into aServie. IEEE Computer, 36,10(2003), pages 38�44.

61Tro07 Trollteh, Qtopia, June 2007. URL http://trollteh.om/produts/qtopia/.VBS04 Vidal, J. S., Buhler, P. and Stahl, C., Multiagent Systems with Work-�ows. IEEE Internet Computing, 8,1(2004), pages 76�82.vdADtH03 van der Aalst, W., Dumas, M. and ter Hofstede, A., Web Servie Com-position Languages: Old Wine in New Bottles? Pro. of the 29thEUROMICRO Conferene New Waves in System Arhiteture, 2003.Vin02a Vinoski, S., Putting the "Web" into Web Servies - Web Servies In-teration Models Part 2. IEEE Internet Computing, 6,4(2002), pages90�92.Vin02b Vinoski, S., Web Servies Interation Models - Part 1: Current Pratie.IEEE Internet Computing, 6,3(2002), pages 89�91.XMe07 XMethods, XMethods UDDI Registry, 2007. URL http://www.xmethods.net.

