
Date of a

eptan
e GradeInstru
tor

Servi
e Composition on a Mobile PhoneVille Mäntysaari

Helsinki November 26, 2007M. S
. ThesisUNIVERSITY OF HELSINKIDepartment of Computer S
ien
e

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fa
ulty of S
ien
e Department of Computer S
ien
eVille MäntysaariServi
e Composition on a Mobile PhoneComputer S
ien
eM. S
. Thesis November 26, 2007 61 pages

web servi
es,
omposition, or
hestration, mobile phoneKumpula S
ien
e Library, serial number C-

With the re
ent in
rease in interest in servi
e-oriented ar
hite
tures (SOA) and Webservi
es, developing appli
ations with the Web servi
es paradigm has be
ome feasible.Web servi
es are self-des
ribing, platform-independent
omputational elements. Newappli
ations
an be assembled from a set of previously
reated Web servi
es, whi
hare
omposed together to make a servi
e that uses its
omponents to perform a
ertain task. This is the idea of servi
e
omposition.To bring servi
e
omposition to a mobile phone, I have
reated Intera
tive Servi
eComposer for mobile phones. With Intera
tive Servi
e Composer, the user is able tobuild servi
e
ompositions on his mobile phone,
onsisting of Web servi
es or servi
esthat are available from the mobile phone itself. The servi
e
ompositions are reusableand
an be saved in the phone's memory. Previously saved
ompositions
an also beused in new
ompositions.While developing appli
ations for mobile phones has been possible for some time, theusability of the solutions is not the same as when developing for desktop
omputers.When developing for mobile phones, the developer has to more
arefully
onsider thede
isions he is going to make with the program he is developing. With the la
k ofpro
essing power and memory, the appli
ations
annot fun
tion as well as on desktopPCs. On the other hand, this does not remove the appeal of developing appli
ationsfor mobile devi
es.ACM Computing Classi�
ation System (CCS):C.2.4 [Distributed Systems℄D.2.12 [Interoperability℄

Tiedekunta/Osasto � Fakultet/Sektion � Fa
ulty Laitos � Institution � DepartmentTekijä � Författare � AuthorTyön nimi � Arbetets titel � TitleOppiaine � Läroämne � Subje
tTyön laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pagesTiivistelmä � Referat � Abstra
t

Avainsanat � Ny
kelord � KeywordsSäilytyspaikka � Förvaringsställe � Where depositedMuita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

iiA
knowledgementsWhen starting to write this thesis in January 2007 it didn't feel like I would ever beable to write the a
knowledgements, it felt like a thing in the far future. But nowafter nine months it's starting to feel that soon I'm able to say this is done.I wish to thank HIIT and espe
ially Ken Rimey and Kimmo Raatikainen for thejob opportunity, this thesis was made during the S4ALL proje
t at HIIT. Big thankyou for Ken for the
omments and suggestions. I also want to give big
redit toPekka Kanerva for all the work he did with me for Composer and for the proxy.Also I want to thank Tero Hasu for the work he did for Composer. Also a thankyou for Capri
ode for the
ooperation is in pla
e, namely Kimmo Kuusipalo, HarriSalokorpi and Maija Metso.I also want to give a big thank you to Esa Pitkänen on the valuable
omments hegave on this thesis.Last but not
ertainly least. Thank you Kaisa, for everything.I tried my best to follow Ken's advi
e on 'removing anything that seems to saynothing', but I'm not sure if I really was able to do it. This following quote is oneof my favourite quotes, it has the same idea Ken tried to tell me. It's not about thelength but the
ontents.La perfe
tion est atteinte non quand il ne reste rien à ajouter, maisquand il ne reste rien à enlever.-Antoine de Saint-ExupéryIn Helsinki, November 26, 2007Ville Mäntysaari

iiiContents1 Introdu
tion 12 Ba
kground 42.1 Web Servi
e Te
hnologies . 52.1.1 SOAP . 52.1.2 REST . 62.1.3 WSDL . 72.1.4 UDDI . 92.2 Servi
e Oriented Ar
hite
ture . 102.3 Servi
e Composition . 122.3.1 BPEL . 132.3.2 WS-CDL . 152.3.3 Related Work . 173 Intera
tive Servi
e Composer for Mobile Phones 203.1 Ar
hite
ture . 203.2 User Interfa
e . 223.3 A
tion Store . 243.3.1 A
tion Handling . 243.3.2 Storage and Retrieval . 253.3.3 UDDI sear
h . 263.4 Work�ow Stru
ture . 273.4.1 Populating the Work�ow . 273.4.2 Running the Work�ow . 283.4.3 Saving the Work�ow . 303.5 A
tions and Web Servi
es . 313.5.1 A
tions . 323.5.2 Web Servi
es . 33

iv4 Appli
ation to Devi
e Management 354.1 Status . 374.2 Devi
e Management . 374.2.1 Proto
ol and Me
hanism Spe
i�
ation 384.2.2 Data Model . 404.3 Use Cases . 414.3.1 Lo
king a Devi
e . 424.3.2 Initialising a Devi
e . 434.3.3 Sending Settings to a Devi
e 444.4 Experien
e . 455 Experien
e Developing for Mobile Phones 485.1 Resour
e Limitations on Mobile Phones 495.2 Libraries and Python for Series 60 . 515.2.1 Problems with Libraries . 525.3 Problems and Solutions . 525.4 Con
lusion . 546 Con
lusion 55Referen
es 57

11 Introdu
tionWith the re
ent in
rease in interest in servi
e-oriented ar
hite
tures (SOA) and Webservi
es, developing appli
ations with the Web servi
es paradigm has be
ome moreand more a

epted. With the basi
 Web servi
es paradigm developers are able toinvoke Web servi
es made by other developers or
ompanies. Although this mightbe enough for simple development, more
omplex te
hnologies are needed to buildeven more
omplex appli
ations in the Internet.To pursue this further te
hnologies for Web servi
e
omposition have been developed.In Web servi
e
omposition appli
ations
an be assembled from a set of previously
reated Web servi
es available in di�erent servi
e registries. These servi
es together
ompose an appli
ation, whi
h rea
hes its goal by invoking ea
h individual servi
e.Web servi
e
omposition is a simple way to master
omplexity, by using elementaryservi
es as building blo
ks the developer does not need to worry how the the blo
ksare made or what programming languages are used to make them. This helps thedeveloper to
on
entrate on di�erent matters, if the building blo
ks are well de�nedand do
umented.While appli
ation development for desktop PCs has been
ommonpla
e for a longtime, mobile phones have been gaining more and more pro
essing power lately,making them an interesting platform for new business s
enarios and appli
ationdevelopment. In the resear
h proje
t S4ALL it has been envisioned to being ableto
ompose Web servi
es using mobile devi
es. Web servi
e
omposition paradigmbrings a lot of new possibilities for the devi
es. For this vision, I have
reated theIntera
tive Servi
e Composer for Mobile phones whi
h will I will des
ribe in thisthesis.With te
hnologies like BPEL [ES06℄ (Business Pro
ess Exe
ution Language) andWS-CDL [RTF06℄ (Web Servi
e Choreography De�nition Language) developers areable to build Web servi
e
ompositions. But these te
hnologies are not viable for amobile environment, where the pro
essing power and the amount of memory avail-able are low. These te
hnologies are made to be used in environments, where thepro
essing power is not a problem. On the other hand with Intera
tive Servi
eComposer I am showing how we are able to do simple servi
e
omposition with-out requiring for example the mobile devi
e to transfer the
omposition to anotherma
hine for running. Admittedly Intera
tive Servi
e Composer is not able to usethe most sophisti
ated methods, but this doesn't redu
e its abilities to perform

2
omposition.Intera
tive Servi
e Composer is one of the many systems able to
ondu
t servi
e
omposition. Other interesting systems are eFlow [C+00℄ and SELF-SERV [BSD03℄.What makes them interesting are the fa
t that both
omposition types, namelyor
hestration and
horeography, are represented in these two. In or
hestration thereis a
entral entity that
ontrols the exe
ution of the servi
e
omposition. Thisis di�erent in
horeography, where entities that take part in the
omposition are
ommuni
ating together to exe
ute the task. SELF-SERV is a system that uses
horeography as a way to
ompose servi
es, where servi
es are
ollaborating togetherto implement a spe
i�
 operation without a
entral entity. In eFlow servi
es are
omposed as an or
hestration, where a
entral entity
ontrols the exe
ution of the
omposition.Intera
tive Servi
e Composer (Composer in short) is a simple or
hestrating servi
e
omposer made with Python for mobile phones. The main subje
t of this thesisis to des
ribe the work made for Composer. Before going too deep on the detailsof Composer I will present some ba
kground regarding Web servi
es and servi
e
omposition. Web servi
es paradigm allows developers to �nd new servi
es anda

ess them. With servi
e
omposition it is possible to build new servi
es thatin
lude elementary servi
es as building blo
ks. This
omposition then
an be usedas a normal Web servi
e.Composer has three distin
t parts, the a
tion store that is responsible for the a
tions(the building blo
ks) that are saved in the phone's memory, the work�ow stru
turethat is the base for building new servi
e
ompositions and the user interfa
e thatkeeps the user informed of the
urrent state of the program. With Composer usersare able to build new work�ows and use them over and over again by saving thework�ow. What allows more reuse is the possibility of using previously saved work-�ows as building blo
ks in a new work�ow.Simpli
ity, re-usability and generality (of the a
tions) were the main points
on-sidered when Composer was planned. Users should be able to make new servi
eseasily without requiring any knowledge of the implementation details. More ad-van
ed users were planned to be able to make a
tions of their own by
oding asimple Python program whi
h
onforms with the format that the a
tions need tohave. Generality in terms of a
tions was a tempting
hara
teristi
 to have. The ini-tial a
tions were planned to be usable in many di�erent pla
es so that users wouldhave some general tools available to them before building their own work�ows. Re-

3usability was also a very mu
h
onsidered point. Existing work�ows should be usableas part of new work�ows and the saving and loading of work�ows were
onsideredto be important.During the resear
h proje
t Composer was made in, it was used in a demo. Inthe demo Composer is used to exe
ute devi
e management tasks. These tasks are
ondu
ted by using a SOAP API that allows Composer to
reate devi
e managementtasks. This brought good experien
es on how Composer
ould be made better by
ontinuing the development. On the other hand good experien
e was not the onlything re
eived from the demo. In addition it was noti
ed that some of the de
isionsmade earlier in the development were not su�
ient to ta
kle the problems we raninto in the demo.What software development is for desktop PCs, is not the same as developing formobile phones. Although with the re
ent in
rease in the pro
essing power of themobile devi
es and the in
rease of mobile platforms, there is a need for a mobileplatform that is easy to develop for. Besides that the la
k of pro
essing power makesdeveloping harder when additionally the developer needs to
onsider the problem ofhaving small amount of memory and a slower pro
essor than the desktop PCs have.Python for Series 60 is a promising environment to develop software. What makesit espe
ially interesting is the simpli
ity and rapidity of developing for it.The rest of this thesis is organised as follows: In
hapter 2 I will
over some ba
k-ground of Web servi
es and the di�erent Web servi
e te
hnologies that are used inIntera
tive Servi
e Composer. Web servi
e
omposition and servi
e-oriented ar
hi-te
ture will have their own subse
tions. Chapter 3 is devoted to introdu
ing theIntera
tive Servi
e Composer and how it is made, what kind of de
isions we had tomake when developing it.In
hapter 4 I will
over some insights re
eived from using the Intera
tive Servi
eComposer in a demo. Intera
tive Servi
e Composer was used to invoke devi
e man-agement tasks. Chapter 5 is about the experien
e gained from developing for mobilephones. Mobile phones having limited resour
es and pro
essing power gives an ex-tra
onsideration when developing for mobile phones. The libraries needed in thepro
ess are usually made for desktop PCs whi
h makes the libraries unusable in themobile devi
e environment.

42 Ba
kgroundThe Web started as a te
hnology for sharing information on the Internet. However, itqui
kly be
ame the medium for
onne
ting remote
lients with appli
ations a
rossthe Internet and more re
ently (with the arrival of Web servi
es) a medium forintegrating appli
ations over the Internet, built on top of existing web proto
ols andbased on open XML standards.The growing trend in the industry is to build platform-independent software
ompo-nents,
alledWeb servi
es, whi
h are available in the Internet. New appli
ations
anbe assembled from a set of appropriate Web servi
es and no longer must be writ-ten from s
rat
h. Seamless
omposition of Web servi
es has enormous potential instreamlining business-to-business or enterprise appli
ation integration [SK03℄. Theterm Web servi
es is very widely used nowadays, although not always with the samemeaning. World Wide Web
onsortium (W3C) de�nes Web servi
es asa software system identi�ed by a URI, whose publi
 interfa
es and bind-ings are de�ned and des
ribed using XML. Its de�nition
an be dis
ov-ered by other software systems. These systems may then intera
t withthe Web servi
e in a manner pres
ribed by its de�nition, using XMLbased messages
onveyed by Internet proto
ols. [A+03℄The W3C de�nition is quite a

urate and also hints at how Web servi
es shouldwork. The de�nition stresses that Web servi
es should be
apable of being de�ned,des
ribed, and dis
overed thereby
larifying the meaning of a

essible and makingmore
on
rete the notion of Internet-oriented, standards-based interfa
es. It alsostates that Web servi
es should be servi
es similar to those in
onventional middle-ware. Not only they should be up and running, but they should be des
ribed andadvertised so that it is possible to write
lients that bind and intera
t with them. Inother words Web servi
es are
omponents that
an be integrated into more
omplexdistributed appli
ations.The W3C also states that XML (eXtensible Markup Language) [B+06℄ is part ofthe solution. In fa
t XML is so popular and widely used today that, just like HTTPand Web servers, it
an be
onsidered as being part of the web te
hnology. It islikely that XML will be used as a data format for many web-based appli
ations inthe future.There are two types of servi
es: simple and
omposite servi
es. The unit of reuse is

5fun
tionality that is in pla
e and readily available and deployable as servi
es that are
apable of being managed to a
hieve the required level of servi
e quality. Compositeservi
es involve assembling existing servi
es that a

ess and
ombine information andfun
tions from possibly multiple servi
e providers. More about the issue of servi
e
omposition
an be found in
hapter 2.3.2.1 Web Servi
e Te
hnologiesLeading standards when talking about Web servi
es are SOAP [G+06℄ (Simple Ob-je
t A

ess Proto
ol), WSDL [BL06b℄ (Web Servi
e Des
ription Language) andUDDI [OAS05℄ (Universal Des
ription Dis
overy & Integration). Many appli
a-tions today are made a

essible to other appli
ations using these three standards.These standards are so
ommon that usually when talking about Web servi
es theseare presumed to be used [TBB03℄. There are also other standards that
an be usedwith Web servi
es, namely REST [Fie00℄ (Representational State Transfer), whi
his in fa
t an ar
hite
tural style and, JSON [Rub07℄ (Javas
ript Simple Obje
t Nota-tion), to name a few. However, these standards do not
onstitute the essen
e of Webservi
es te
hnology: the problems underlying Web servi
es are the same regardlessof the standards used.2.1.1 SOAPSOAP (Simple Obje
t A

ess Proto
ol) is an XML-based
ommuni
ation proto-
ol [G+06, A+04, C+02℄. SOAP de�nes how information is organised using XML ina stru
tured and typed manner so that the data
an be ex
hanged between peers.As a
ommuni
ation proto
ol, SOAP is stateless and one-way. This means thatSOAP is
reated by design to support loosely-
oupled appli
ations that intera
tby ex
hanging one-way asyn
hronous messages with ea
h other. Any further
om-plexity in the
ommuni
ation pattern su
h as two-way syn
hronous messaging orRPC-style intera
tion requires SOAP to be
ombined with an underlying proto
olor middleware. Rather than de�ning a new transport proto
ol, SOAP works on ex-isting transport proto
ols, su
h as HTTP (Hypertext Transfer Proto
ol) and SMTP(Simple Mail Transport Proto
ol). SOAP uses XML S
hema [FW04℄ to de�ne thedo
ument types.Information ex
hange in SOAP is done using messages. The messages are used as anenvelope where the appli
ation en
loses whatever information needs to be sent. The

6Listing 1: An example SOAP Message (taken from [C+02℄)<SOAP:Envelope xmlns:SOAP=" ht tp : // s
hemas . xmlsoap . org / soap/ enve lope/"><SOAP:Body><et : eT i
k e t xmlns : e t=" h t tp : //www. a
me−t r a v e l .
om/ e t i
 k e t /s
hema"><et:passengerName f i r s t="Joe" l a s t="Smith"/><e t : f l i g h t I n f o air l ineName="AA"f l ightNumber=" I I I I "departureDate="2002−01−01"departureTime="1905"/></ e t : eT i
k e t></SOAP:Body></SOAP:Envelope>message format des
ribes how information is pa
kaged into an XML do
ument. Theenvelope
ontains two parts: a header and a body. The header
ontains informationwhi
h
an be pro
essed by intermediate nodes (they might be able to supply someadded value servi
es for the sender and re
eiver) between the sender and the re
eiver.If there are no intermediate nodes in a SOAP transmission, the header might notbe ne
essary at all. That is why it is de�ned to be optional. The message body isthe
ontent the sender wants to send to the re
eiver. This follows the idea of thestandard
ommuni
ation proto
ol approa
h. An example SOAP message is shown inlisting 1, taken from [C+02℄. In the example the optional SOAP header is not presentand the message only in
ludes the required SOAP body. This message in
ludes dataabout a �ight booking, details being the name of the booker and the date and timeof the booked �ight. A real example would also in
lude the sender's
redentials andother required information.2.1.2 RESTAlthough it is often mistaken for a transport proto
ol, HTTP is really an appli
a-tion proto
ol. SOAP
an be transported over HTTP for example, an a
t known astunneling. In reality HTTP is mu
h more than just transporter of bytes. In his do
-toral dissertation, Roy Fielding [Fie00℄ introdu
ed the term representational statetransfer, i.e. REST, to des
ribe the Web's ar
hite
tural style. REST uses standard-

7ised interfa
es to promote stateless intera
tions by transferring representations ofresour
es, rather than operating dire
tly on those resour
es [Vin02a℄.HTTP provides appli
ation-level semanti
s via its �verbs�: GET, POST, PUT andDELETE. These verbs form a generi
 appli
ation interfa
e that
an be applied inpra
tise to a broad range of distributed appli
ations despite the fa
t that it wasoriginally designed for hypermedia systems. This intera
tion model that RESTde�nes is suitable for Web servi
es as well. Web servi
es are identi�able via URIs,and regardless of the wide variety of abstra
tions they might
olle
tively represent,they
an all be implemented using the same generi
 interfa
e that HTTP's verbsprovide [Vin02a℄.REST style Web servi
es are more lightweight to use, additional libraries are notneeded as basi
 HTTP
ommuni
ation is usually available in every programminglanguage by default. When developing appli
ations with a mobile phone it is alwayseasier to use servi
es that do not require big libraries, be
ause of the low
omputingpower and low memory availability. SOAP might be the de-fa
to standard whentalking about Web servi
es, but when one is developing a lightweight software on amobile phone it is not very usable. I will des
ribe more experien
es with developingon a mobile phone in
hapter 5.2.1.3 WSDLFor Web servi
es, SOAP is usually used in
ommuni
ation between the servi
es, butSOAP is not able to supply the information what messages need to be ex
hangedto intera
t with a
ertain servi
e. WSDL (Web Servi
es Des
ription Language) isan XML format language developed by IBM, Mi
rosoft and Ariba [BL06b, A+04,C+02℄. It was made to des
ribe Web servi
es as end points that
an ex
hange
ertain messages. WSDL des
ribes what messages need to be ex
hanged to use theservi
e, also it des
ribes where the servi
e is lo
ated and what vo
abulary is usedin the messages. Vo
abulary here is referring to the datatypes and message formatsused in the Web servi
e. WSDL uses external type systems to provide datatypede�nitions for the information ex
hange. Most servi
es use XML S
hema, but ingeneral any type system
an be used. XML S
hema has built-in basi
 data typesand it allows users to de�ne more
omplex data types su
h as stru
tures.A
ompleteWSDL servi
e des
ription provides two pie
es of information: an appli
a-tion-level servi
e des
ription, in other words an abstra
t interfa
e, and the spe
i�

8proto
ol-dependent details that users must follow to a

ess the servi
e at
on
reteservi
e end points. The abstra
t part is made of port type de�nitions, where ea
hport type is a logi
al
olle
tion of related operations. Ea
h operation de�nes a simpleex
hange of messages. These are then used in the
on
rete part of the des
ription.Message en
oding and proto
ol bindings for all operations are spe
i�ed within In-terfa
eBindings-element. These Interfa
eBindings are then used in Port-de�nition,where ports
ombine the Interfa
eBinding information to a network address, spe
i-�ed by a URI. And again Port is then used in Servi
e-de�nition. This de�nition isthe logi
al grouping of ports. An example WSDL des
ription is shown in listing 2,taken from [C+02℄. The example has all the ne
essary elements in
luded. The ab-stra
t part is the message and port type de�nitions at the start. The
on
rete partis the binding and servi
e de�nitions in the end of the example.Listing 2: An example WSDL des
ription (taken from [C+02℄)<?xml v e r s i on="1.0"?><d e f i n i t i o n s name="Pro
urement "targetNamespa
e="http : // example .
om/pro
urement / d e f i n i t i o n s "xmlns : tns="http : // example .
om/pro
urement / d e f i n i t i o n s " . . . ><message name="OrderMsg"><part name="produ
tName" type="xs : s t r i n g "/><part name="quant i ty " type="xs : i n t e g e r "/></message><portType name="pro
urementPortType"><opera t i on name="orderGoods"><input message = "OrderMsg"/></operat ion></portType><binding name="Pro
urementSoapBinding "type="tns : pro
urementPortType"><soap : binding s t y l e="do
ument "t ranspor t="http : // s
hemas . xmlsoap . org / soap/http"/><opera t i on name="orderGoods"><soap : ope ra t i onsoapA
tion="http : // example .
om/orderGoods"/><input><soap : body use=" l i t e r a l "/></input><output>

9<soap : body use=" l i t e r a l "/></output></operat ion></binding><s e r v i
 e name="Pro
urementServi
e"><port name="Pro
urementPort "binding="tns : Pro
urementSoapBinding"><soap : addressl o
 a t i o n="http : // example .
om/pro
urement /"/></port></s e rv i
 e ></d e f i n i t i o n s >The di�eren
e relative to normal middleware platforms is the need to de�ne thelo
ation at whi
h the servi
e is available [A+04℄. In
onventional middleware, theservi
e provider
an simply implement an interfa
e and register the implementedservi
e with the middleware. The absen
e of
entralised platform in Web servi
esmeans that the
lient should be able to identify the lo
ation at whi
h the servi
eis made available. This problem
an be addressed for example using
entralisedregistries, like UDDI registries.2.1.4 UDDIThe UDDI (Universal Des
ription Dis
overy & Integration) spe
i�
ations [OAS05,C+02, A+04℄ o�er users a uni�ed and systemati
 way to �nd servi
e providersthrough a
entralised registry of servi
es that is roughly equivalent to an auto-mated online phone dire
tory of Web servi
es. A

essing the registry is done usinga standard SOAP API for both query and update operations. UDDI provides twobasi
 spe
i�
ations that de�ne a servi
e registry's stru
ture and operation. Firstone is the de�nition of the information to provide about ea
h servi
e and how it isen
oded. The se
ond one is the API for querying and updating the registry, whi
hdes
ribes how this information
an be a

essed and updated. Being about Webservi
es, UDDI APIs are also spe
i�ed in WSDL with SOAP binding, so that theregistry
an itself be a

essed as a Web servi
e and also its
hara
teristi
s
an bedes
ribed in the registry itself, just like any other Web servi
e.The information in UDDI registries
an be simply
ategorised by the way what ea
htype of information is used for. This
ategorisation is analogous to a telephone

10dire
tory. The white pages of the registry provide a listing of organisations, their
onta
t information and the listing of the servi
es these organisations have. In theyellow pages there are
lassi�
ations of both
ompanies and Web servi
es a

ordingto systemati
s that
an be either standardised or user-de�ned. It is possible tosear
h through the yellow pages for a servi
e that belongs to a
ertain
ategory.The green pages of the registry provide information on how a given Web servi
e
anbe invoked. It is provided by means of pointers to servi
e des
ription do
uments,typi
ally stored outside the registry, for example at the servi
e provider's site.There is a free UDDI registry available on the Internet provided by XMethods[XMe07℄. The site provides both programmable interfa
e to the servi
es the registryhas listed (using UDDI version 2 spe
i�
ation) or one
an sear
h for servi
es usingtheir web based interfa
e. XMethods' registry is the registry that is used in ourservi
e
omposer when a user wants to sear
h for new Web servi
es. XMethodsalso has an interfa
e for testing the Web servi
es with a web browser, using Min-dReef's SOAPS
ope servi
e [Min06℄. There are a multitude of servi
es available atXMethods' registry, both free and
ommer
ial servi
es.2.2 Servi
e Oriented Ar
hite
tureAlthough the Web was intended from the start to be used by humans, most peo-ple have agreed that it will have to evolve - for example through the design anddeployment of modular servi
es - to have a better support for automated usage.When talking about Servi
e-Oriented Computing (SOC) [HS05, BL06a, PG03℄, ser-vi
es are used as the fundamental element while developing new appli
ations. Theseservi
es are platform- and network-independent operations that
lients or other ser-vi
es invoke, as they were des
ribed in the previous
hapter. Sin
e servi
es
an beo�ered by di�erent organisations and sin
e they
ommuni
ate over the Internet, theyprovide a distributed
omputing infrastru
ture for both intra- and
ross-enterpriseappli
ation integration and
ollaboration. SOC
on
ept has evolved from earlier
omponent-based software frameworks su
h as J2EE, CORBA, and DCOM. Webservi
es standards - in
luding SOAP, WSDL, UDDI and BPEL - are based on thereadily and openly available Internet proto
ols XML and HTTP, and thus are easierand
heaper to adopt [BL06a℄.In order to build the servi
e model, SOC relies on the Servi
e-Oriented Ar
hite
ture(SOA) [A+04, Pap03℄. In SOA a set of previously
reated software appli
ations andsupport infrastru
ture are organised into an inter
onne
ted set of servi
es, ea
h a
-

11
essible through standard interfa
es and messaging proto
ols. When all the pie
esof an enterprise ar
hite
ture are in pla
e, existing and future appli
ations
an a

essthese servi
es as ne
essary without the need of
ompli
ated point-to-point solutionsbased on proprietary proto
ols. This ar
hite
tural approa
h is parti
ularly appli
a-ble when multiple appli
ations running on varied te
hnologies and platforms needto
ommuni
ate with ea
h other. SOA represents the big pi
ture of what you
ando with Web servi
es.A good explanation of the SOA
on
ept
an be found in [Pap03℄, see also �gure 1.SOA is de�ned there as being[...℄ a logi
al way of designing a software system to provide servi
esto either end-user appli
ations or other servi
es distributed in a net-work. SOA de�nes an intera
tion between software agents as an ex
hangeof messages between servi
e requesters (
lients) and servi
e providers.Clients are software agents that request the exe
ution of a servi
e. Providersare software agents that provide the servi
e. Agents
an be simultane-ously both servi
e
lients and providers. Providers are responsible forpublishing a des
ription of the servi
es they provide. Clients must beable to �nd the des
riptions of the servi
es they require and must be ableto bind (in other words to be able to use the servi
e) to them. [Pap03℄SOA is not only a servi
e ar
hite
ture, it is in general a relationship between threekinds of parti
ipants: the servi
e provider, the servi
e dis
overy agen
y, and theservi
e requester (
lient). The intera
tions involve the publish, �nd and bind op-erations, as des
ribed in �gure 1. These parti
ipants and operations a
t upon theservi
e artifa
ts (the representations of a servi
e): the servi
e des
ription and theservi
e implementation.As a
onsequen
e of the dynami
 binding
apability there is a loose
oupling modelbetween the appli
ations. Loose
oupling means that the requester has no knowledge(or does not require any knowledge) of any internal stru
tures or
onventions theservi
e might have, for example programming language or deployment platform. Inloosely
oupled systems, intera
tions between parties take pla
e via messages in anasyn
hronous environment with messages ex
hanged over separated
ommuni
ationsessions. This idea reminds of the late binding [JM76℄ in programming theory.Loose
oupling allows software on ea
h side of the
onversation to
hange withoutimpa
ting the other, provided that the message s
hema stays the same. Loose

12

Figure 1: Servi
e-Oriented Ar
hite
ture
oupling is often
ited [MJS06℄ as a de�ning and desirable
hara
teristi
 of servi
e-oriented
omputing as it keeps the intera
ting parties independent.2.3 Servi
e CompositionTo move further from the basi
 Web servi
e ar
hite
ture (des
ribe, publish, inter-a
t) me
hanisms for servi
e
omposition are required to be applied. The
ompositionof Web servi
es to handle more
omplex problems is gaining a lot of attention inenabling business-to-business
ollaborations [BSD03℄. New appli
ations
an be as-sembled from a set of appropriate Web servi
es and no longer written from thes
rat
h. Servi
e
omposition
an be seen as a way to master
omplexity, where
omplex servi
es are in
rementally built out of servi
es at a lower abstra
tion level.Web servi
e
omposition has a lot of potential to streamline the development of newappli
ations and to make enterprise appli
ation integration easier. Servi
e
ompo-sition is not a new idea at all. It has been proposed before and is in fa
t what EAI(Enterprise Appli
ation Integration) [Lin00℄ and work�ows are about. The main bigdi�eren
e between work�ows and servi
e
omposition is the fa
t that the a
tions areWeb servi
e invo
ations, not normal appli
ation operations.In servi
e
omposition new servi
es are made from existing servi
es
omposing them

13into a single servi
e, whi
h takes
are of the required invo
ations for the servi
eswhi
h it is
omposed of. Several standards and spe
i�
ations have been proposed inthis area, in
luding Business Pro
ess Exe
ution Language for Web Servi
es [AC+03℄(BPEL for short), proposed by IBM, Mi
rosoft and BEA, and Web Servi
es Chore-ography Des
ription Language [RTF06℄ (WS-CDL) proposed by W3C.BPEL is a language whi
h is used to build
ompositions in the form of businesspro
esses, whi
h are
omposed of Web servi
es. BPEL is essentially a layer on topof WSDL, with WSDL de�ning the operations allowed and BPEL de�ning how theoperations
an be sequen
ed. In BPEL there is a single entity
oordinating all Webservi
e invo
ations. This type of
omposition is
alled or
hestration. WS-CDL isa language for spe
ifying peer-to-peer proto
ols where ea
h party wishes to remainautonomous and in whi
h no party is a master over another, su
h that there isno
entral entity. Ea
h involved party
an des
ribe its part in the intera
tion byitself. This type of
omposition is
alled
horeography. In
horeography messagessequen
es are tra
ked between the entities in order to follow the exe
ution of the
omposition.2.3.1 BPELBPEL (Business Pro
ess Exe
ution Language for Web Servi
es) [ES06, AC+03,Pel03℄ supports a pro
ess-oriented form of servi
e
omposition. Ea
h BPEL
ompo-sition is a business pro
ess or work�ow that intera
ts with a set of Web servi
es toa
hieve a
ertain task. BPEL is simply a �ow language that
ombines together basi
and stru
tured a
tivities to
reate the logi
 of a business pro
ess. BPEL
omposi-tions are
alled pro
esses, the servi
es the pro
ess intera
ts with are
alled partnersand the message ex
hange or intermediate result transformation is
alled an a
tiv-ity. With these terms a pro
ess
ontains a set of a
tivities. A pro
ess, like anyother Web servi
e, supports a set of WSDL interfa
es that enable it to ex
hangemessages with its partners. BPEL brings the notion of two-level programming toWeb servi
es: programming in the small for implementing the basi
 servi
es used bya
omposite servi
e itself and programming in the large for spe
ifying the
ompositeservi
e. Programming in the small is done using the usual programming languages,for example Java and C#. Programming in the large is done based on a businesspro
ess language, e.g. BPEL. BPEL's development
ame out of the notion thatprogramming in the large [DK75℄ and programming in the small required di�erenttype of languages.

14The pro
ess intera
ts with partners by invoking the operations they support and re-
eiving messages through the pro
ess servi
e interfa
e. BPEL also in
ludes a
tivitiesthat allows it to perform a
tions su
h as signalling faults, terminating the pro
essexe
ution and manipulating data. These a
tivities
an be
ombined into
omplexalgorithms. These are for example the ability to de�ne an ordered sequen
e of stepsand to de�ne a loop. These stru
tured a
tivities are derived from a
ombination ofseveral a
tivities, either basi
 or other stru
tured a
tivities.BPEL supports both exe
utable and abstra
t business pro
esses. An exe
utable pro-
ess des
ribes the parti
ipants behaviour in a parti
ular business intera
tion, in fa
tdes
ribing a private work�ow. An abstra
t pro
ess, also
alled a business proto
ol,spe
i�es the publi
 messages ex
hanged between the parti
ipants. Business proto-
ols are not exe
utable and do not
arry a pro
ess �ow's internal details [Pel03℄.In fa
t these pro
ess types des
ribe the two di�erent servi
e
omposition meth-ods: exe
utable pro
esses des
ribe or
hestration and abstra
t pro
esses des
ribe the
horeography of servi
es.An example BPEL pro
ess is shown in listing 3, taken from [Kha02℄. The exampleis about a loan approving pro
ess. The pro
ess has two parties involved, a
ustomerand a �nan
ial institution, both de�ned under the <partners> -tag.Listing 3: An example BPEL pro
ess (taken from [Kha02℄)<pro
e s s name="loanApprovalPro
ess "targetNamespa
e="http : // a
me .
om/ s imp l e l o anp r o
 e s s i n g"xmlns="http : // s
hemas . xmlsoap . org /ws/2002/07/ bus iness−pro
e s s /"xmlns : l n s="http : // l oans . org /wsdl / loan−approval "xmlns : l oande f="http : // tempuri . org / s e r v i
 e s / l o a n d e f i n i t i o n s "xmlns : apns="http : // tempuri . org / s e r v i
 e s / loanapprover "><partners><partner name="
ustomer"servi
eLinkType="ln s : loanApproveLinkType "myRole="approver "/><partner name="approver "servi
eLinkType="ln s : loanApprovalLinkType "partnerRole="approver "/></partners><
onta ine r s><
onta ine r name="reque s t "messageType="loande f : CreditInformationMessage "/>

15<
onta ine r name="approva l In fo"messageType="apns : approvalMessage"/></
onta ine r s><sequen
e><r e
 e i v e name="r e
 e i v e 1 " partner="
ustomer"portType="apns : loanApprovalPT"ope ra t i on="approve "
onta ine r="reque s t "
 r e a t e I n s t an
 e="yes"></re
e ive ><invoke name="invokeapprover "partner="approver "portType="apns : loanApprovalPT"ope ra t i on="approve "inputContainer="reque s t "outputContainer="approva l In fo"></invoke><rep ly name="rep ly "partner="
ustomer"portType="apns : loanApprovalPT"ope ra t i on="approve "
onta ine r="approva l In fo"></reply></sequen
e></pro
ess>2.3.2 WS-CDLWS-CDL (Web Servi
es Choreography Des
ription Language) [RTF06, MH05℄ isan XML-based language that
an be used to des
ribe the behaviour of multipleservi
es that need to intera
t in order to a
hieve some goal, the intera
tion betweenthe servi
es and the a

epted rules that need to be satis�ed in the intera
tion. WS-CDL des
ribes this behaviour from a global or neutral perspe
tive rather than fromone perspe
tive of any one party. The
omplete WS-CDL des
ription is
alled aglobal model. The term
ommon
ollaborative observable behaviour is used in WS-CDL to des
ribe the behaviour of system of servi
es, from a global perspe
tive. Ea
hservi
e has a behaviour of its own whi
h
an be des
ribed with WSDL for example.Individual servi
e behaviours
an be used in a
omposition in whi
h a set of servi
eswith their own behaviours
ould be e�e
tively used. In order to do so a global model

16that des
ribes the peer to peer intera
tions of su
h a set of servi
es is required toensure that the servi
es will in fa
t
ooperate to a
ommonly understood s
ript.That s
ript is the global model and that s
ript is what WS-CDL is used to des
ribe.An example of a WS-CDL des
ription is shown in listing 4, taken from [MH05℄. Theexample is thoroughly explained in the arti
le, interested readers
an refer to it forexplanations. Although the example is fairly long already, I have left out some partsof the des
ription whi
h denoted by [...℄'s. Details available in the referen
ed arti
le.The WS-CDL
horeography des
ription is
ontained in a pa
kage (as shown in theexample) and it is a
ontainer for a
olle
tion of a
tivities that may be performedby one or more parti
ipants. The three main types of a
tivities that are de�nedin WS-CDL are
alled
ontrol �ow a
tivity, work unit a
tivity and basi
 a
tivity.The a
tivities in
ontrol �ow are sequen
e, parallel and
hoi
e. A work unit a
tivitydes
ribes the
onditional and repeated exe
ution of an a
tivity. Sequen
e, parallel,
hoi
e and work unit a
tivity of WS-CDL represent the basi

ontrol �ow stru
turesu
h as sequen
e, while and swit
h in a typi
al programming language. The thirdtype of WS-CDL a
tivity is the basi
 a
tivity. Basi
 a
tivities in WS-CDL are forexample intera
tion, no a
tion or assign.The information sent or re
eived during an intera
tion is des
ribed by a namedvariable. Variables in WS-CDL are used to represent three di�erent types of in-formation: appli
ation-dependent information (for example produ
t
ode), stateinformation (for example order sent) and
hannel information. Variables
ontainvalues and have an information type. These variables are a

essed using WS-CDLXPath 1.0 extension fun
tions.Listing 4: An example WS-CDL des
ription (taken from [MH05℄)<pa
kage name ="AnnualStatementServi
e " . . . ><informationType name="
 o r r e l a t i o n I d " type="s t r i n g "/><informationType name="annualStatement"type="annualStatement . xsd"/><roleType name="Serv i
 eProv ide rRo l e"><behavior name="Re
eiveAnnualStatement"i n t e r f a
 e="TaxAdvisor . wsdl"/></roleType><roleType name="Serv i
 eReques t e rRo le"><behavior name="Re
eiveTaxAssessment"i n t e r f a
 e="TaxAdvisor . wsdl"/></roleType><re la t i onsh ipType name ="ClientTaxAdvisor "><r o l e type="Cl i entRo l e" /><r o l e type="Serv i
 eProv ide rRo l e"/></re l a t i onsh ipType >[. . . ℄<part i
 ipantType name ="TaxAdvisor"><ro l e type="Serv i
 eProv ide rRo l e"/><ro l e type="Serv i
 eReques t e rRo le"/></part i
 ipantType >[. . . ℄<
hannelTypename="SubmitAnnualStatementChannel"

17a
 t i on="reques t"><pas s ing a
 t i on= " respond "
hannel = "ReturnPro
essedTaxAssessmentChannel"/><re f e r e n
 e ><token name ="taxAdvisorRef"/></re f e r e n
e ><ident i ty ><token name ="pro
e s s Id "/></ident i ty ></
hannelType>[. . . ℄<
horeography name ="AnnualStatementSubmission"root="true"><r e l a t i o n s h i p type ="tns : ClientTaxAdvisor "/><r e l a t i o n s h i p type ="tns : TaxAdvisorMuni
 ipali ty"/>[. . . ℄<v a r i a b l eDe f i n i t i o n s ><va r ia b l e name = "AS"mutable = " true "f r e e= " f a l s e "informationType = " annualStatement"s i l e n t= " f a l s e "/>roleTypes ="Cl ient , TaxAdvisor"[. . . ℄</va r i a b l eDe f i n i t i o n s ><sequen
e><in t e r a
 t i o n name ="AnnualStatementSubmission"
hannelVar iable ="tns : SubmitAnnualStatementChannel"ope ra t i on ="Re
eiveAnnualStatement" i n i t i a t e="true"><pa r t i
 i p a t e r e l a t i onsh ipType ="ClientTaxAdvisor "fromRole="tns : C l i en tRo l e"toRole="Serv i
 eProv ide rRo l e"/><ex
hange name = "AnnualStatementSubmissionEx
hange "a
 t i on= " reques t "informationType = "annualStatement"><send va r i ab l e = "AS"/><re
 e iv e v a r i ab l e = "AS"/></ex
hange></in t e r a
 t i o n >[. . . ℄</sequen
e ></
horeography ></pa
kage>2.3.3 Related WorkThere is a lot of related work in the �eld of servi
e
omposition. Here I will presenttwo di�erent servi
e
omposition systems, that represent a
horeography approa
hand a or
hestration approa
h. The Self-Serv environment is building
ompositionswith
horeography approa
h. It is developed by a resear
h proje
t in University ofNew South Wales and Queensland University of Te
hnology. eFlow is a platformthat is building
ompositions using or
hestration approa
h. It is developed by HP.Self-ServSelf-Serv [BSD03, SBDM02℄ aims to enable the de
larative
omposition of new ser-vi
es from existing ones, the multi-attribute dynami
 sele
tion of servi
es within

18a
omposition and peer-to-peer or
hestration of
omposite servi
e exe
utions. TheSelf-Serv ar
hite
ture features a servi
e manager and a pool of servi
es. In Self-Serva
omposite servi
e is an umbrella stru
ture that brings together other
ompositeand elementary servi
es that
ollaborate to implement a set of operations. Elemen-tary servi
es provide a

ess to Internet-based appli
ations. In
ontrast
ompositeservi
es are made of multiple
omponent servi
es. The system expresses the businesslogi
 of a
omposite servi
e operation as a state
hart that en
odes a �ow of invo-
ations to
omponent servi
e operations. A state
hart is made up of states, whi
h
an be either basi
 or
ompound, and transitions, whi
h are labelled a

ording to aset of rules.In order to support s
alable exe
ution of
omposite servi
es over the Internet, ser-vi
es should be self-or
hestrating: they should be
apable of exe
uting
ompositeservi
es without relying on a
entral s
heduler. A

ordingly, Self-Serv adopts an or-
hestration model based on peer-to-peer intera
tions between software
omponentshosted by the providers parti
ipating in the
omposition. The exe
ution of a
om-posite servi
e in Self-Serv is
oordinated by several peer software
omponents
alled
oordinators.Coordinators are atta
hed to ea
h state of a
omposite servi
e. They are in
hargeof initiating,
ontrolling, monitoring the asso
iated state, and
ollaborating withtheir peers to manage the servi
e exe
ution. The knowledge required at runtime byea
h of the
oordinators involved in a
omposite servi
e is stati
ally extra
ted fromthe servi
e's state
hart and represented in a simple tabular form
alled routingtables. Routing tables
ontain pre
onditions and post
onditions. They are used todetermine when the servi
e should be exe
uted and what should be done after theexe
ution. This way
oordinators do not need to implement any
omplex s
hedulingalgorithms.eFlowIn eFlow [C+00, CS01℄ a
omposite servi
e is modelled as business pro
ess, ena
tedby a servi
e pro
ess engine. A
omposite servi
e is modelled by a graph, whi
h de-�nes the order of exe
ution among the nodes in the pro
ess. The graph may in
ludeservi
e, de
ision and event nodes. Servi
e nodes represent the invo
ation of basi
or
omposite servi
e. De
ision nodes spe
ify the alternatives and rules
ontrollingthe exe
ution �ow, while event nodes enable servi
e pro
esses to send and re
eiveseveral types of events. Ar
s in the graph may be labelled with transition predi
ates

19de�ned over pro
ess data, meaning that as a node is
ompleted, nodes
onne
ted tooutgoing ar
s are exe
uted only if the
orresponding transition predi
ate evaluatesto true. A servi
e pro
ess instan
e is the pro
ess s
hema instan
e. The same servi
epro
ess may be instantiated several times, and several instan
es may be running atthe same time.In order to manage and even take advantage of the frequent
hanges in the Webservi
e environment, servi
e pro
esses need to be adaptive, i.e.,
apable of adjustingthemselves to
hanges in the environmental
onditions with minimal or no manualintervention. eFlow provides dynami
 servi
e dis
overy, multi servi
e nodes andgeneri
 nodes in order to a
hieve this goal. With dynami
 servi
e dis
overy ser-vi
e sele
tion
an be made at run-time, i.e. sele
ting the servi
e that best �ts the
ustomers' need. Multi servi
e nodes allow eFlow to invoke multiple instan
es ofthe same type of servi
es, in order to request information from multiple servi
es. Ageneri
 servi
e node is a servi
e node, that is not stati
ally bound or limited to aspe
i�
 set of servi
es. Instead, it in
ludes a
on�guration parameter that
an be setwith a list of a
tual servi
e nodes either at pro
ess instantiation time or at runtime.Generi
 nodes are resolved ea
h time they are a
tivated, in order to allow maximum�exibility and to
ope with pro
esses exe
uted in highly dynami
 environments.Pro
ess instan
es are run by the eFlow engine. The main fun
tion of the engine is topro
ess messages notifying
ompletions of method nodes, by updating the value of
ase pa
ket variables a

essed by the nodes and by subsequently s
heduling the nextmethod node to be a
tivated in the instan
e, a

ording to the method �ow de�nition.When a method �ow (i.e., an intera
tion with a given servi
e) is
ompleted, thenthe servi
e node is also
onsidered
ompleted. The engine then determines thenext servi
e node to be a
tivated (a

ording to the servi
e node de�nition), sele
tsthe servi
e to be exe
uted, and eventually starts invoking the methods on the newservi
e. The engine also pro
esses events, either internal events or external events,by delivering them to the requesting event nodes.

203 Intera
tive Servi
e Composer for Mobile PhonesIn the ITEA (E!2023) proje
t S4ALL (Servi
es for All) the goal is to have a worldof user-
entri
 servi
es that are easy to
reate, share and use. In the proje
t it isvisioned that mobile terminals are used to a

ess these servi
es and
ompose servi
esthe way the end user wants to use them. Adhering to these goals of the proje
t Ihave
reated Intera
tive Servi
e Composer for Mobile Phones (later on referred asComposer), whi
h is essentially a simple servi
e
omposer for mobile phones.Intera
tive Servi
e Composer is a simple appli
ation that is able to do servi
e
om-position. Composer is an or
hestrating servi
e
omposer, being only able to dosimple servi
e
omposition. It was designed to be a very simple appli
ation fromthe start. First ideas were borrowed from Apple's Automator [App07℄, whi
h allowsusers to make simple linear work�ows, where ea
h work�ow is
omposed of multiplesimple tasks. These work�ows
an be saved and reused multiple times. These samefeatures are available in Composer, there are a library of simple a
tions available, thework�ow is
omposed of these a
tions and the work�ows
an be saved for later use.In Automator user is able to drag and drop a
tions from the de�ned list of a
tionsinto the work�ow. Composer was never planned to be able to support dragging anddropping, but it is generally made to be simple and easily understood and used.The building blo
ks of the work�ows in Composer are
alled a
tions. The a
tions
an be normal Web servi
es, whi
h are des
ribed with WSDL, or they
an be smallPython programs whi
h use the phone's own resour
es to run a simple task. Thereare a lot of features in the Python runtime, whi
h allows to make simple a
tions thatfor example send an SMS message to another person. The a
tions have a spe
i�edform whi
h they have to be in to work with Composer, see
hapter 3.5. This allowsthe automated handling of the a
tions, like inspe
ting the data �eld and runningthe a
tion. The Python a
tions need to have only one fun
tion, named run, whi
his
alled when the a
tion is exe
uted in the work�ow. Other fun
tions are optionaland
an be made to make the reading of the a
tion easier for other developers.3.1 Ar
hite
tureIntera
tive Servi
e Composer is a program made fully with Python running onPython for Series 60 (later on referred as PyS60) software on a series 60 softwareplatform on a mobile phone. Python was
hosen be
ause it is a fast language todevelop with. Together with PyS60 it was easy to make a
hoi
e what to use be
ause

21building simple user interfa
es and developing prototypes is fast.PyS60 is a Python runtime made for series 60 software platform. It is a full portof the Python programming language and it also provides a

ess to many of thephone's smartphone fun
tions, like
amera,
onta
ts and bluetooth
ommuni
ations.Be
ause of the simple usage of the phone's own fun
tions it is very easy to make sim-ple yet powerful software with Python on the series 60 software platform. AlthoughPyS60 does not in
lude all the libraries that are available in the basi
 Python distri-bution, it is fairly easy to port the ne
essary libraries for the phone. Composer usesexternal libraries for SOAP handling and UDDI requests. The libraries are madefor desktop
omputers, whi
h brings some problems be
ause of the small memoryand low pro
essing power of the mobile phones. I will des
ribe more of this librarysize problem in
hapter 5.2.Composer has been from the start divided into three main elements. First of allthere is the repository of a
tions whi
h takes
are of all the a
tions that has beensaved into the phone's memory, be it a
tions
oded with Python or Web servi
esdes
ribed with WSDL. Se
ond part is the work�ow-stru
ture that takes
are of therunning the work�ow, adding and removing a
tions from the work�ow. The thirdmain part of the program is the user interfa
e, whi
h is responsible for displayingthe ne
essary elements on the s
reen in di�erent parts of the program. The generalar
hite
ture is shown in �gure 2.

Figure 2: The general ar
hite
ture of ISC

22In order to handle the SOAP requests and responses Composer is using a SOAPlibrary
alled SOAPpy. SOAPpy is one of the few SOAP libraries available forPython. At the time SOAP libraries were looked into there were no other goodimplementations available, at least not so simple as SOAPpy. SOAPpy does nothandle
omplex types in WSDL spe
i�
ations very well, whi
h makes using more
omplex Web servi
es di�
ult. The
omplex types in this
ase refer to for example
olle
tions of items, where the items are a simple type elements (string, numberet
). SOAPpy is not able to
onstru
t a
orre
t request message when these kindsof elements are in the servi
e spe
i�
ation.UDDI queries are handled with UDDI4py library. It is a fairly simple UDDI library,whi
h implements the UDDI 2.0 fun
tionality. The library is also using SOAPpyfor sending the SOAP requests, whi
h made the
hoi
e easier when sele
ting whatlibrary to use. The UDDI library also in
ludes an API for adding new entries tothe UDDI registry. This feature is not very feasible for a mobile phone, where theamount of required information is big. This information in
ludes for example theURI where the WSDL �le is found. I will des
ribe more about the library problemswith Composer on
hapter 5.2.3.2 User Interfa
eThe user interfa
e was kept simple throughout the development of the program.The simple user interfa
e is both a nuisan
e and a bene�t. The main thing theUI is working with are simple lists, whi
h is also restri
ted by PyS60 whi
h hasa limited number of options on what to show on the s
reen. Composer does notneed more
omplex elements than lists to show the work�ow, but in some
ases thelists were not able to show enough information. The work�ows are shown as lists ofa
tions, whi
h also tells how they are run. Work�ows are always run linearly onea
tion at a time. It is possible to do simple loops in the work�ow, though duringthe development they were not needed ex
ept for testing.Building user interfa
es on a mobile phone usually involves using a lot of menus. InComposer too most of the fun
tionality is in the di�erent menus that are relatedto di�erent views. For example in the main s
reen the menu has fun
tionality for
reating a new work�ow or loading a previously saved work�ow, as shown in �gure 3.The work�ow view has one work�ow showing at a time. The view
onsists of a list ofa
tions that have been added into the work�ow, or alternatively a note saying that

23

Figure 3: Main view - Main view menuthere are no a
tions in the
urrent work�ow. The heading shown in the top of thes
reen shows the name of the
urrently open work�ow. The list shows the names ofthe a
tions that have been added into the work�ow. In
ase of WSDL-�les the a
tionnaming is two-fold. The name
an be a generi
 name or it
an be a name takenfrom the WSDL-�le, be
ause all WSDL �les do not ne
essary in
lude the name in apla
e where the SOAP library
ould �nd it. The longer do
umentation of the a
tionis shown as a text-�eld on its own, also the
on�guration is done outside the basi
list stru
ture. There are a lot of items in the work�ow menu, as the �gure 4 shows.The work�ow view supports many di�erent operations, like adding new a
tions,removing old a
tions, running the
urrently open work�ow or saving it.

Figure 4: Work�ow view - Work�ow view menu

243.3 A
tion StoreThe repository of a
tions, or just a
tion store, is responsible for the a
tions that aresaved in the phone's memory. The module is a simple storage/retrieval
lass for thea
tions used in Composer. A
tion store takes
are of the a
tions for the work�owmodule and delivers the required information to the user interfa
e about a
tions.The �rst thing it is responsible for is when Composer is started to inspe
t all thea
tions (a
tions made with Python) that are present on the phone and make a listof them. Also at the same time the WSDL �les (whi
h des
ribe Web servi
es) areread and inspe
ted. The a
tions are not loaded fully when the program starts, butonly partially read, so that startup would be faster.The a
tions made with Python have a spe
ial data-�eld in the �le. This data-�eld isread when Composer is started. The data-�eld in
ludes administrative informationfor Composer on how to deal with the a
tion. This information is one of the
entralparts of the a
tion. As the data-�eld has been read and the
ontent stored in thea
tion store model, the information
an be used when adding new a
tions into thework�ow. More information about the stru
ture of the a
tions
an be found in
hapter 3.5.1.A
tion store is a

essed by the work�ow module frequently when it is dealing witha
tions. As new a
tions are added to the work�ow the input and output parametertypes are
he
ked. The types of the previous a
tion and the a
tion that the useris adding must mat
h. These parameter types are available in the data-�eld of thea
tion. Composer is also able to use previously saved work�ows as a
tions in otherwork�ows. The saved work�ows are stored in the same pla
e as the Python a
tionsand are loaded to the a
tion list when starting the program. More information aboutthe work�ow stru
ture
an be found in se
tion 3.4.3.3.1 A
tion HandlingComposer was planned from the start to be simple and generi
 tool. This sameideology
an be seen in the a
tion store. Although there are three types of a
tions,the handling of those three types is made to be as mu
h similar as possible. The userinterfa
e requires a lot of information from the a
tion store regarding the a
tions,what is the full name of the a
tion, what are its parameters and so on. A
tionstore
an supply the required information for the user interfa
e. The three typesof a
tions are the �rstly planned and made Python a
tions, the WSDL a
tions

25(i.e. Web servi
es des
ribed with WSDL) and the last are �ow
ontrol a
tions.Previously saved work�ows
an also, as stated earlier, be used as a
tions, thoughthey are
omposed of multiple a
tions.To support the handling of all a
tions in the same way, the WSDL �les are handledusing a spe
ial wrapper that is able to supply the required information to the othermodules. The module referen
es (that are required to run the a
tions) in a
tionstore in the
ase of WSDL a
tions point to the wrapper
lass. The wrapper takes
are of
alling the instantiated WSDL proxy, made by the SOAPpy library, whi
hin turn sends the request to the Web servi
e. Both the wrapper and the proxy aregenerated only when the work�ow is run. This saves time when some Web servi
eis added into the work�ow but the work�ow is not run.The Python programming language requires all �les imported into the environmentbefore they are usable. This is due to Python being an interpreted language. Thatis why all a
tions must be imported to the environment before running a work-�ow. Importing the Python a
tions dynami
ally to the PyS60 environment is fairlystraightforward, as the �le name is already known it is easy to use the dynami
 im-porting method that is built in to the Python environment, whi
h imports a spe
i�ed�le to the environment as a module. WSDL-a
tions are not used that way, they haveto be given to the SOAP-library, whi
h makes a WSDL proxy out of the �le, whi
hthen
an be a

essed via its API. Generating a proxy of the WSDL-�le makes a
-
essing the Web servi
e easier, although the SOAP library used in Composer is notable to understand all of the more sophisti
ated sides of SOAP.3.3.2 Storage and RetrievalThe a
tions are stored in a hashtable, where they are indexed with the �le name ofthe a
tion without its �le type extension. Besides the data-�eld the table stores areferen
e for the loaded module of the a
tion. Only when the work�ow is run thea
tions are imported to the Python environment and module referen
es are updatedto point to the loaded modules. If the a
tion is a Web servi
e des
ribed with aWSDL-�le, the referen
e to the module is a referen
e to the WSDL wrapper
lass,
reated by the a
tion store. The hashtable is kept
urrent by refreshing the datain it after
ertain events. These events in
lude saving a work�ow to the phone'smemory and sear
hing and downloading a new Web servi
e de�nition �le from aUDDI server. By refreshing the list at these events it is possible for the a
tion storeto know at all times what a
tions are present.

26When WSDL �les are seen for the �rst time, Composer will generate a spe
ial
a
he-�le out of them to make the loading faster. In the
a
he �le Composer stores samekind of information that the Python a
tions have in their data-�eld. For WSDL�les the input and output types are not known when the �les are being added intoa work�ow, be
ause it would require either initialising the WSDL proxy or parsingthe XML. In the
ase of
ertain more
omplex Web servi
es it might be that inputand output types are not available even when the proxy is made. This is due to thelibrary not being able to return more spe
i�
 parameter list than just the
omplextype name required as the input. This will
ause problems with servi
es of whi
hparameters the user does not know beforehand.When user wants to add a new a
tion into the work�ow it is a
tion store's responsi-bility to
ondu
t the sear
h on the a
tions. User
an sear
h for a
tions with a nameof the a
tion or a
ertain tag that has been given to the a
tion by the developerof the a
tion. Tags
an be for example related to what the a
tion does or is it ana
tion made with Python or a Web servi
e. Problems with sear
hing are the limitedpossibilities to show the mat
hing a
tions on the s
reen. In its simplest
ase theresults are only shown as names of a
tions that mat
h the
riteria. This might makethe sele
tion of a
tions hard, be
ause the user
annot see any longer do
umentationat that point. User
an also sear
h for new a
tions from an UDDI registry. Moreabout this
an be found in the
hapter 3.3.3.3.3.3 UDDI sear
hA
tion store is responsible in
ondu
ting a sear
h for new a
tions from a UDDI(Universal Des
ription Dis
overy & Integration) registry. When a user makes aUDDI sear
h, the a
tion store retrieves the mat
hing a
tions (mat
hing by nameor mat
hing by a
ertain tag) from the registry, whi
h are then presented to theuser. The list possibly is big so it might be hard for user to sele
t the servi
ethat suits him/her the best. Also be
ause the user interfa
e has so few options inshowing the results the list only has the names of the servi
es that are available inthe UDDI registry (mat
hing the sear
h
riteria). A more sophisti
ated result listwould in
lude a some kind of des
ription of the servi
es that were found, this wouldmake the
hoi
e for the user mu
h easier.After the user has sele
ted the servi
e that suits his/her needs, the WSDL of theservi
e is downloaded into the phone's memory. At this point Composer does notknow anything about the servi
e, ex
ept that the WSDL �le is available and it

27
an be added into a work�ow. Like said previously, from all WSDL-�les Composerwill generate a spe
ial
a
he-�le, whi
h helps in handling the Web servi
es. The
a
he �le in this
ase is done after the downloading �nishes and the list of a
tionsis refreshed. After the WSDL �le has been downloaded and saved into the phone'smemory they
an be added into work�ows like usual.3.4 Work�ow Stru
tureWork�ows are the base for building new servi
e
ompositions in Composer. Work-�ows are simple lists of a
tions, be it Python
oded a
tions, Web servi
es or otherwork�ows fun
tioning as a
tions. Work�ows are run linearly starting from top,
urrently work�ows are not supporting
onditional exe
ution (if-then). There is apossibility to also do simple loops, but they are not used in many o

asions. Thereis always only one work�ow open at any time. The work�ow model represents asingle work�ow that has any number of a
tions whi
h
an be run, saved and usedin other work�ows. The work�ow module is responsible for loading, saving, runningand populating the work�ows.The a
tions, that are available from the a
tion store, are stored in a simple list. Thea
tions are in the list in the same order that they are shown on the s
reen. Whena user wants to add a new a
tion to the bottom of the list or insert one betweentwo a
tions the list is modi�ed a

ording to the users
ommands. Work�ow liststores the whole a
tion modules, so that when referring to an a
tion it
an be donestraight, not by referring to the a
tion store �rst.A
tions made with Python usually have some
on�gurable parameters. Work�owmodule takes
are of allowing the user to see and
hange the parameters. Parameters
an be either freely enterable text or a list of pre-de�ned values from whi
h user
an
hoose the �tting one. The parameters are shown to the user in a form-type listwhere the parameter names and values are �rst shown in their default values. Whenthe work�ow is run, the parameters are passed to the a
tion, be them
hanged bythe user or not. More information about the parameters
an be found in se
tion3.5, where the a
tions are des
ribed.3.4.1 Populating the Work�owWhen new a
tions are added into a work�ow, the a
tion is added to the list of a
-tions in this work�ow. At this point the a
tion has not been loaded fully (imported

28into the environment), the information available about the a
tion is its name, de-s
ription, input and output types and some administrative information. The inputand output types are ne
essary to have, as they are
he
ked to �t with the pre-vious and next a
tions in the work�ow. Input and output types in Composer arebasi
 programming language types, numbers and strings. The input type
he
kingis done by just
he
king that the a
tions that are going to pass parameters to ea
hother have mat
hing types de�ned. The parameter type
he
king is espe
ially hardwhen
onsidering Web servi
es. As Web servi
es have the types de�ned only intheir WSDL �les, it's hard to make the
he
k work with the
urrent SOAP library,espe
ially if the output type is
omposed of multiple simple types. If the input andoutput types do not mat
h, then the a
tion is not added into the work�ow.Removing an a
tion from the work�ow does not require any spe
ial operation. Thea
tion that user wants to remove is removed from the work�ow list so there is noreferen
e to the a
tion anymore. After that the list is reorganised due to one a
tionpossibly being removed from the middle of the list. When the a
tion is removedfrom the middle of the list Composer does not
he
k the input and output types ofthe remaining a
tions that were neighbouring the removed one. This might
auseproblems later when running the work�ow, be
ause the input and output types mightnot be
ompatible anymore. This modi�ed work�ow is
onsidered to be di�erentthan the previous work�ow with one more a
tion, so the work�ow
an be saved asa new work�ow, di�erent than the previous one with one a
tion less.Like mentioned before, work�ows
an be reused after saving them. A saved work�owlists all the a
tions that was added to the work�ow when it was made. This meansthat when loading a work�ow Composer
he
ks that all the a
tions are still availablein the phone's memory. If one or multiple a
tions are not available the work�ow
annot be loaded. Saved work�ow also stores the parameter values that the a
tionshave. These are loaded and inserted into the work�ow model, whi
h holds the a
tionsand their parameters. When the ne
essary a
tions are loaded and the parametersare set, the work�ow is runnable.3.4.2 Running the Work�owBefore work�ows
an be run the work�ow module has to
ondu
t some administra-tive tasks. Be
ause work�ows
an in
lude work�ows that
an in
lude work�ows andso on, the module has to make sure there are no endless loops in the work�ow. Thisis done by
he
king all the a
tions in the work�ows and sub-work�ows and mak-

29ing sure there are no loops. As the a
tions are not imported to the system at thestarting phase of Composer, before starting to run the work�ow all of the Pythonmade a
tions are imported, so that the modules are runnable. If there are any Webservi
es in the work�ow the required libraries are also loaded and the proxies areinstantiated before being able to run the Web servi
es.

Figure 5: Running a Work�owThe running of the work�ow (see �gure 5) starts with
alling the �rst a
tion with anempty input. There is no way of giving an input to the �rst a
tion in the work�owin the
urrent version of Composer. It might turn out to be ne
essary to give inputto the �rst a
tion, so this might
hange in the future. Input is spe
i�ed to be a list,whi
h helps in handling the di�erent types of outputs that di�erent a
tions return.Also during the demo preparations, we dis
overed that we needed a better way tostore outputs than just a basi
 list. Be
ause of this the demo a
tions save theirmore
omplex outputs into a hashtable whi
h is given to them as an input. Moreabout the demo and the experien
e re
eived from it
an be found in
hapter 4. Thisinformation
an then be a

essed by a
tions later in the work�ow. The pre-spe
i�edfun
tion in the �rst a
tion is
alled and the a
tion runs and returns something atthe end. The output that the a
tion returns is given to the next a
tion and thesame thing happens again. The whole work�ow is run through the same way and inthe end the result (or the returned item from the last a
tion) is shown to the user.This is no di�erent to a
tions being work�ows, the inner work�ow gives the inputto its �rst a
tion as it would have
ome from a previous a
tion.There are also a few types of spe
ial a
tions that require di�erent to normal handling.These are the a
tions that are used in the devi
e management demo and �ow
ontrol

30a
tions that are related to loops. Di�eren
e to normal a
tions with the demo a
tionsare that they are given a bit di�erent input list. This is be
ause the a
tions in thedemo need to store more information that we are able to pass in the normal input-lists. This in
ludes, but does not restri
t to, login information to the server wherethe Web servi
es are hosted. The �ow
ontrol a
tions require di�erent to normalhandling be
ause the looping requires work�ow to observe when the loop is ending.Work�ow does not itself
ondu
t the looping, but it passes the responsibility to thea
tion. Work�ow is then required to
ontinue the running after the looping is done.3.4.3 Saving the Work�owWork�ows
an be saved for later use after user has
omposed the a
tions he/shewants it to have. The main point from the start of the development was to ease thereuse of existing work�ows. This follows the ideas from Apple's Automator, whi
hwas made to help users to do tasks that repeat multiple times. Users are able touse their work�ows over and over again, also as part of more
omplex work�ows.Work�ows are saved in the same pla
e as a
tions so that they are easily found.Every work�ow has some a
tions added into it, be it a
tions or other work�ows,empty work�ows
an't be saved. When saving a work�ow Composer only saves theinformation what a
tions are used in the work�ow and what are the parameters theyhave. This follows the idea used in BPEL [ES06℄, in a BPEL pro
ess it is spe
i�edwhat Web servi
es are used and where they are found. In Composer the a
tions arelo
ally available, either the WSDL �le must be present or the a
tion �le must bepresent, otherwise the work�ow
annot be loaded.An important part of saving the work�ow is the parameters the a
tions have. Pa-rameters are a good way to
ustomise the a
tions. So in order to ease the reuse ofthe work�ows, the parameters need to be saved also. Parameters are stored in thework�ow module as a list of key - value pairs. The parameters are saved with thework�ow so that only the values are saved. The keys are then available from thea
tions itself, they are not
hanged so it is not sensible to save them.Below is an example of a work�ow that is saved to a phone's memory, shown inlisting 5. It in
ludes 4 di�erent a
tions. Some of the a
tions have parameters saved.First lines in
lude the name of the work�ow, type of the a
tion, whi
h in this
aserefers to the a
tion being in fa
t a work�ow and the longer do
umentation of thework�ow. Beginning on line 5 starts the list of the a
tions. Ea
h a
tion has the

31Listing 5: An example of a saved work�ow1 data = {' do
 ' : u 'A
omposite a
 t i on . ' ,3 ' type ' : ' wflow ' ,'name ' : u ' Da i lyDi lber t ' ,5 ' a
 t ions ' : [{ ' paramvals ' : [([u ' DailyDilbertImagePath ' , u ' Dai lyDi lbertImage' ℄ , 1) ℄ ,7 ' f i l e ' : ' d a i l y d i l b e r t a
 t i o n . wsdl ' } ,{ ' paramvals ' : [℄ , ' f i l e ' : ' base64_de
ode_a
tion . py ' } ,9 { ' paramvals ' : [u '
 : \\ f i l e . jpg ' ℄ , ' f i l e ' : ' save_to_f i l e_a
t ion .py ' } ,{ ' paramvals ' : [℄ , ' f i l e ' : ' show_image_a
tion . py ' }11 ℄ ,' tags ' : [' s t r i ng ' , ' show ' , 'web s e r v i
 e ' , ' save f i l e ' ,13 ' base64 ' , ' de
ode ' , ' phone ' , ' s
reen ' , 'WSDL' , ' image ' ℄}parameter values and the �lename of the a
tion on the phone saved. On line 12 aresaved the tags of the work�ow. Work�ows get all the tags of the individual a
tions,so that when sear
hing for a
tions, it is also possible to �nd work�ows that
ontaina
tions with
ertain tags.3.5 A
tions and Web Servi
esAs stated before, a
tions are the building blo
ks of servi
e
ompositions in Com-poser. A
tions are referring to both Python-made a
tions that use the phone's ser-vi
es and Web servi
es des
ribed with WSDL. From the start a
tions were plannedto be as generi
 as possible so that they
ould be used in many pla
es as possible.They were also planned to be easily
on�gurable so that it would be easy to users to
hange the behaviour and to use them in di�erent pla
es. These goals were partlyattained, but with the use
ases in the devi
e management demo it was not possibleto try to stay on the generi
 a
tion path.The third type of a
tions is the �ow
ontrol a
tions. They are not used in manyo

asions, the only one available at the moment is an a
tion that allows users tomake simple loops. The handling of these a
tions is not di�erent to normal a
tions,

32the looping a
tion runs the spe
i�ed a
tions for the required amount of loops andthen the exe
ution
ontinues on the next a
tion after the loop. This requires thework�ow to do some extra administrative tasks when the loop ends, but otherwisethe handling of the �ow
ontrol a
tions is the same than the normal Python-madea
tions.3.5.1 A
tionsThe Python-made a
tions have a
ertain format that must be followed in order touse them in Composer. This is required to have so that all a
tions
an be handledsimilarly. This format de�nes where the ne
essary data is to be put and whatfun
tion is
alled when the a
tion is run. There is an example a
tion in listing6, whi
h probably is the simplest a
tion of them all. The purpose of this a
tionis to show a text box on the s
reen, in where user
an input text. The a
tionhas parameters that
an be
on�gured to show the default text and the title forthe text box. On lines 1-10 is �rst the data-�eld that holds spe
i�
 informationfor a
tion store and work�ow on how to handle the a
tion and what is its namefor example. This data �eld is loaded when Composer is started. It has all thene
essary information for the a
tion store to be able to �nd the a
tions and givethem to work�ows.At line 13 starts the run-fun
tion that in
ludes the
ode whi
h is run when thea
tion is
alled. Every Python-made a
tion needs to have this fun
tion so that it
an be run. It does not matter if the a
tion has a number of other fun
tions, it justneeds to have this one in order to work properly. In the example the fun
tion is notvery long nor very di�
ult to understand. That is what makes the a
tion a goodexample. Listing 6: An example of an a
tiondata = { 'name ' : u ' Query text ' ,2 " type " : "python " ,' do
 ' : u ' Request a t ex t from the user ' ,4 ' parameters ' : [(' l abe l ' , ' text ' , u 'my labe l ') ,(' d e f au l t ' , ' text ' , u ' value ') ℄ ,6 ' tags ' : [' text ' , ' r equest ' , ' d ia log ' ℄ ,' input ' : ' anything ' ,8 ' output ' : ' s t r i ng '}

3310 #−−−12 de f run (input , p) :14 import appuifw16 output = appuifw . query (p [" l a b e l " ℄ , ' text ' , p [" d e f au l t " ℄)input [0 ℄ = output18 re turn inputPreviously introdu
ed parameters are also important to a
tions. With them it ispossible to
hange how the a
tion behaves, depending of
ourse what the parametersare made to a�e
t. On line 4 is the parameter �eld in the example a
tion. Theparameters are formatted already so that they
an be, without modi�
ations, shownin the parameter
on�guration s
reen in the work�ow. The
on�guration form takesa list of three items, the name of the �eld, the �eld type and the �eld default value.The format is spe
i�ed to be this be
ause the form that shows the parametersrequires all �elds to be in this format.The example is missing a
ouple of extra de�nitions that tell Composer what kindof input list to use and if the a
tion is using a
ertain type of parameters. The �rstde�nition is for the previously mentioned demo-a
tions, they need a more powerfulinput list than just a list, so if the parameter is set, the a
tion gets a hashtable asan input (that in
ludes the possible outputs from the previous a
tions), not a list.The other de�nition is related to having a list of pre-de�ned values in one of theparameters. Composer
hanges the pre-de�ned list of parameter values to a simplerform when the de�nition is present, this helps the usage of the parameter value inthe a
tion.3.5.2 Web Servi
esThe se
ond main type of a
tions are the Web servi
es. They are WSDL �les, thatdes
ribe one or multiple di�erent Web servi
es. Composer does not itself handleWSDL �les. Instead, they are given to the SOAPpy library, whi
h makes a proxyout of them whi
h allows the
alling of the servi
es from Python. The proxy onthe other hand is not dire
tly
alled from Composer, but the proxy is given toa wrapper
lass, that makes the Web servi
es fun
tion like normal Python-madea
tions. There are some problems with input and output types with Web servi
es.

34If the Web servi
es use
omplex datatypes as their input or output types, it is hardto �nd out what really are the types that the
omplex type is
omposed of. Theproblems mainly are be
ause of the library be
ause it is not �nished and it wouldrequire more work to better handle the
omplex SOAP types.The WSDL wrapper
lass has also a run-method whi
h gets
alled when the work�owis run. The run method in
ludes only the fun
tion
all to the proxy. If the WSDL �lehas more than one servi
e available, it is the users job to sele
t the most appropriateservi
e by
on�guring the entry in the work�ow. Con�guring the entry shows thelist of the available servi
es to the user. There are no other parameters for Webservi
es available. The proxy is then invoked with the information what servi
e is
alled and the parameters that the previous a
tion has returned.The returned output
an be many things. A list of simple datatypes, a
omplexdatatype that in
ludes multiple simple datatypes and so on. This makes the handlingof output a bit
omplex in some
ases. The easiest way (that is used at the moment)is to just return the whole output, be it a list of some simple types or a single string,number or what ever the servi
e happens to return. This way is not ne
essarily thebest way, be
ause it might be that the next a
tion in the work�ow does not needall the di�erent items in the list. Also the generality is immediately lost if somehowonly one spe
i�
 part of the output is needed and it is ne
essary to be separatedfrom the list. Although returning the whole output is the Composer way to do it,there might be a need to try and break up the output.

354 Appli
ation to Devi
e ManagementAs a pra
ti
al use
ase for Intera
tive Servi
e Composer I will des
ribe the experi-en
es and insights re
eived from using Composer in a demo. In this demo Composeris used to send
ommands to a devi
e management server in order to allow an ad-ministrator to use the server without his laptop or his desktop
omputer. This demowill be presented to the Finnish partners in the S4ALL
onsortium. During develop-ment the examples never were too
omplex be
ause I'd want to test out the newestfeature implemented and move on. But in this demo the use
ases are
omplex andit was interesting to note that Composer was able to deal with them.We are working with S4ALL partners Capri
ode and Nokia to build this demo. Inthe demo the work is divided into three distin
t elements. Our job is to handle thesending of devi
e management (DM) [L+06℄
ommands from Composer to the devi
emanagement server made by Capri
ode. The server sends
ommands to the mobileterminals, that have a devi
e management
lient made by Nokia. These intera
tions
an be seen in �gure 6.The intera
tion with Composer and the devi
e management server is in fa
t donevia a proxy. This proxy was fully made by Pekka Kanerva, we worked togetherto build this demo. More about the proxy
an also be found in [Kan07℄. It wasnoted early in the demo planning that the Python SOAP library that Composeris using will not be able to
ommuni
ate with the server in the
orre
t way. Likestated previously, the SOAP library is not �nished and it is not able to handle allparts of the SOAP spe
i�
ation. To ta
kle this we are using a proxy software
odedwith Ruby to handle the SOAP requests and responses. Ruby has a library thatsupports SOAP better than the Python libraries available at the time of writing.Like Python, Ruby has numerous powerful libraries in the basi
 distribution whi
hmakes developing small appli
ations fast and easy.Composer uses REST-
alls to send
ommands to the proxy. These
alls are thentransformed into SOAP requests whi
h are then delivered to the devi
e managementserver. The transformation is simple be
ause from the REST-
alls it is easy toseparate the needed parameters for the SOAP request. This way the
omplex SOAPrequests
an be populated and sent using the proxy. The data that the devi
emanagement server returns is mediated to Composer on the HTTP response of theREST-
all. This way Composer does not need to make more than one
onne
tionto the proxy. This though might be problemati
 when the SOAP
alls take a long

36

Figure 6: Intera
tions in the devi
e management demo.time to exe
ute and Composer has to wait for the proxy to send a response ba
k.The proxy does not have sessions, ea
h
ommand runs and ends in its own spa
eand no information is stored between the
ommands.Ea
h
ommand for the devi
e management server has its own REST-
all. Thismakes easier to parse the parameters and set them in the SOAP request. Thedevi
e management jobs on the server are a

essible through Web servi
es des
ribedwith WSDL. The proxy uses the WSDL �les to a

ess the servi
es. The devi
emanagement server is thus fun
tioning as a normal Web servi
e, where there aremultiple servi
es on one server. Di�eren
e to normal Web servi
es here is the fa
t,that in order to use the servi
es, an authenti
ation servi
e must be �rst used to beable to use the rest of the servi
es. After this the proxy is able to send the SOAPrequests to the other Web servi
es. When the server sends the SOAP response tothe proxy, the response is �rst parsed in the SOAP library. The data in the response

37is given to the proxy from the library and it is put without any modi�
ations to theHTTP response. The response to Composer is an XML message without the SOAPheaders, the SOAP library removed them in the proxy. From the XML responseComposer parses the ne
essary information and stores it. After this like with alla
tions the output is then passed to the next a
tion. The general ar
hite
ture ofthe proxy is shown in �gure 7, pi
ture taken from [Kan07℄.

Figure 7: Proxy Ar
hite
ture (taken from [Kan07℄)
4.1 StatusAt the time of the writing we have kept the demo with two of the three spe
i�ed use
ases. I have des
ribed here what experien
es we gained mostly from the �rst use
ase, where we had most of the problems. The se
ond use
ase was not problemati
,but most of the biggest problems were solved while developing the �rst use
ase.The se
ond use
ase was implemented few months after the �rst use
ase was ready.This was due to one of the partners being busy. The third use
ase was left out fromthe demo, be
ause we did not have enough time to implement it. I will des
ribe itin any
ase how it was planned to be implemented.4.2 Devi
e ManagementDevi
e management (DM in short) refers to administering remote devi
es fromservers. An administrator
an remotely handle
on�gurations, install and removeprograms and dete
t problems on devi
es. The administrators
an as well be wirelessoperators, servi
e providers or administrators on a �rm responsible for the mobilephones. With the in
reased interest in devi
e management and the number of avail-able produ
ts there are various proprietary devi
e management implementations

38that have evolved, whi
h makes a threat for the interoperability among the devi
esand servers. To ta
kle this OMA (Open Mobile Allian
e) Devi
e Management spe
-i�
ation [OMA04, L+06, AMV04℄ aims to unify them. The OMA DM spe
i�
ationhas evolved from Syn
ML DM.In general terms the OMA DM spe
i�
ation
onsists of three distin
t parts. Theseare the proto
ol and me
hanism spe
i�
ation, the data model and the poli
ies. Theproto
ol and me
hanism spe
i�
ation des
ribes the proto
ol used in the
ommu-ni
ation between the devi
e management server and a mobile devi
e. Data modeldes
ribes the data made available in the mobile devi
e, for example a

ess pointsettings and email settings. The poli
ies de�ne who
an manipulate a parti
ularparameter or update a parti
ular obje
t in the devi
e.4.2.1 Proto
ol and Me
hanism Spe
i�
ationThe proto
ol is de�ned based on Syn
ML Representation proto
ol and Syn
MLSyn
hronisation proto
ol. It in
ludes pa
ket elements that
onstru
t the devi
emanagement messages, message transfer me
hanism, and treatments that serversand
lients should perform. To su

essfully perform a
omplete devi
e managementtask, servers and
lients go through two phases: the setup phase (�gure 8) and themanagement phase (�gure 9), �gures taken from [L+06℄. During the setup phase
lients and servers authenti
ate ea
h other and send devi
e information. Pa
ket 0 insetup phase is an optional pa
kage whi
h
an be used to start a devi
e managementsession. After the
lient su

essfully sends the authenti
ation and its devi
e informa-tion in pa
ket 1, the server sends its
redential and information about managementoperations or user intera
tion
ommands in pa
ket 2.After
ompleting the setup phase the management phase begins. This phase
ouldhave several iterations in single session until the required management tasks are
ompleted. In this phase the
lient �rst sends its response to the server in pa
ket3 to the
ommand in pa
ket 2. After this the server
an send another operation tothe
lient in pa
ket 4. After this there
an be more iterations or otherwise the phase
an end here.About me
hanisms, OMA DM spe
i�es bootstrap and noti�
ation initiated session.Bootstrapping is a pro
ess where a
lean devi
e is provisioned to a state where it
an initiate devi
e management sessions. It is also possible to further bootstrap adevi
e to be able to initiate sessions with another devi
e management server. The

39

Figure 8: Setup Phase in Devi
e Management (taken from [L+06℄)

Figure 9: Management Phase in Devi
e Management (taken from [L+06℄)bootstrapping
an be done as a server-initiated pro
ess, from smart
ards, or through
ustomised bootstraps, whi
h may be done during the devi
e manufa
turing.The se
ond me
hanism, the noti�
ation initiated session me
hanism, a
tually spe
-i�es the pa
ket 0 in �gure 8. Normally
lients don't have the resour
es or theyare not otherwise
onsistently listening to servers' noti�
ations be
ause of se
urityreasons. This me
hanism provides a way for servers to notify the
lient to initi-

40ate a new devi
e management session. These o

asions are for example when anadministrator triggers a request on the devi
e management server user interfa
e to
ondu
t some tasks. One o

asion might also be that there are faults that requirerepairing. Se
urity in devi
e management is implemented with TLS 1.0 or SSL 3.0as the proto
ol between servers and
lients. MD5 ensures the integrity of devi
emanagement messages.4.2.2 Data ModelEa
h devi
e that supports OMA DM
ontains a management tree. The managementtree
ontains and organises all the available management obje
ts, so that the nodes
an be a

essed dire
tly through a unique URI. Nodes are entities that
an bemanipulated using the OMA DM proto
ol, for example the settings for e-mail orinformation about a
ertain appli
ation. An interior node
an have in�nite numberof
hild nodes, while a leaf node must
ontain a value, null being a possible value.There are a set of asso
iated run-time properties in ea
h node. The properties areonly valid for the asso
iated node, ex
ept for the A

ess Control List (ACL). TheACL property
an be inherited from a parent, so this property is not ne
essaryasso
iated only for this node. The ACL of a
ertain node tells whi
h server
anmanipulate that node. The manipulation
an be one of the following: adding a
hild node, getting node's properties, repla
ing the node, or deleting the node. Anexample management tree is found in �gure 10, taken from [L+06℄.Trying to perform devi
e management tasks on OMA DM
onforman
e devi
eswould be insu�
ient without any
ommon obje
ts. Therefore OMA DM requiresboth
lients and servers to implement three mandatory management obje
ts andone optional obje
t for
lients and servers. The mandatory obje
ts are OMA DMa

ount management obje
t, DevInfo management obje
t and the DevDetail man-agement obje
t. The optional management obje
t is
alled Inbox management ob-je
t. These obje
ts are de�ned in devi
e des
ription framework (DDF). The DDFprovides servers the information that is ne
essary in order to manage the
lientdevi
es. Devi
e manufa
turers
an publish des
riptions of their devi
es so that or-ganisations operating devi
e management servers
an update the new des
riptionsto their servers. The servers
an utilise the des
riptions to manage the new fun
tionsthe existing devi
es have or manage totally new devi
es.

41

Figure 10: Example Management Tree (taken from [L+06℄)4.3 Use CasesWe have planned three di�erent use
ases for the demo, whi
h show some of thete
hnologies present in devi
e management. These features are not the only fea-tures present in the server and there are a lot of possibilities of what
an be donewith devi
e management. The general s
enario of the demo is that there is an ad-ministrator who needs to a

ess the devi
e management server from di�erent pla
esother than his o�
e in whi
h
ase he must use his mobile phone to do the things.The mobile phone in this
ase has Composer installed in it.In
luding these three use
ases, Composer is used to log in to the devi
e managementserver and also it is possible to request a status of a
ertain job that is added tothe server. These additional tasks were ne
essary to be implemented. Without theability to query the status of a
ertain task Composer (and in this
ase the user)would not be able to know anything about it after the job has been added. The serverdoes not
onta
t Composer (or the user) after the task
reation is done. Also be
auseSOAP only allows request-response type intera
tion, it is easier for Composer toquery the server about a
ertain task. The need for this extra fun
tionality be
amequi
kly
lear, it is a good feature in testing the demo and the feature is useful foradministrators too.The logon pro
edure was required to be implemented so that it would not be possible

42for everyone to send
ommands to the devi
e management server. Only if the userhas a valid token in
luded in the request the server will run the
ommands. Thistoken is re
eived after su

essfully authenti
ating with the server. The token ispresent in every request that Composer makes to the server, in order to keep thesession se
ure.4.3.1 Lo
king a Devi
eIn the �rst use
ase we are demonstrating how it is possible to lo
k a mobile phoneremotely. For example when someone has lost his phone or it has been stolen, it ispossible for the administrator to a

ess the devi
e management server and send a
ommand to the phone to lo
k itself. The lo
king is done on the mobile terminalby using the phone's own me
hanisms. Di�erent types of terminals have di�erentways to lo
k the phone. Usually lo
king means that the user
annot a

ess anyfun
tionality of the phone without �rst entering an unlo
k
ode. After entering the
ode the user is able to use the terminal again. This s
hema is helpful when thephone might be stolen. If the person who stole the phone does not know the unlo
k
ode, it renders the phone useless to him. And the qui
ker the lo
king
an be done,the less damage the stealer
an make to the phone and the subs
ription. The pro
essspeeds up with Composer be
ause the administrator does not need a laptop or adesktop
omputer to do the job.In Composer the �rst use
ase is fairly simple. In order to lo
k the devi
e, thedevi
e management server only needs the phone number of the devi
e to be lo
ked.This
an be fet
hed from the phone's
onta
t database. Also the user
an type thenumber by himself. This phone number is then sent to the proxy, whi
h delivers theSOAP request to the devi
e management server.When the devi
e management server re
eives the request, it �rst
he
ks that thedevi
e has been bootstrapped. This means that the devi
e is present in the serversdevi
e database and it is able to initiate devi
e management sessions when the serversends
ommands to the terminal. If the terminal is found in the database, the lo
k
ommand is sent to the terminal. Before this the devi
e management server returnsa message to Composer via the proxy, whi
h tells that the devi
e management jobhas been added to the queue and will be run when other jobs before it are
ompleted.After this the phone is lo
ked in due
ourse. Composer does not get any other statusreports about the job without asking. By using the status query after the job hasbeen added the administrator
an
he
k the situation, has the job been
ompleted

43or not.4.3.2 Initialising a Devi
eThe se
ond use
ase is about adding a new terminal to the devi
e management server,i.e. bootstrapping a devi
e. With di�erent devi
e management implementationsthere might be a bit di�erent ways to do this. Usually when the devi
e phone number(or generally the information about the phone) is added to the devi
e managementserver, the terminal that possesses the phone number re
eives a message, whereit is instru
ted to fet
h a spe
ial terminal software, whi
h understands the devi
emanagement
ommands that the server sends. This usually requires some userintera
tion. It also might be that the devi
e does not require any terminal software.This is the
ase with the Nokia mobile terminals used in the demo. Bootsrappingin this
ase is done by registering the server with the built in devi
e management
lient. This might require ex
hanging
redentials or requiring user to allow thebootsrapping to be done.In this use
ase Composer has the following tasks. The user is required to enterthe phone number of the phone that will be initialised. This
an be found on the
onta
t database, but in this
ase it is more likely that the user will have to enter thenumber by hand. It was planned on the use
ase s
enario that the added phone willbe for a new employee, whi
h is starting on the workpla
e. The workpla
e's phonesin
lude all the numbers of the workers there, so in this
ase the phone number
an'tbe found in the
onta
t database. In the s
enario the phone number
ould be givento the administrator via phone by the new employees nearest superior for example.The phone number is then sent to the devi
e management server (via the proxy of
ourse). The devi
e management server adds the job to the queue and the serversends Composer a response to the request, response in
luding the identi�
ation num-ber of the job added. This job is then run in its time and like stated previously, theterminal that is to be initialised gets a request to either fet
h the required terminalsoftware or
on�gure the built-in
lient to use the
ompany's devi
e managementserver.In the API there are separate
alls for adding a new devi
e to the server and spe
if-i
ally starting the bootstrapping pro
ess. What Composer is required to do afteradding the devi
e to the server is to invoke another method, whi
h will start the jobto send the servi
e message instru
ting the user to fet
h the terminal software. For

44this invo
ation the server requires a phone number, whi
h the user must input againin Composer. Adding the devi
e in Composer is in this
ase a two step pro
ess, inwhi
h the steps are separate work�ows. When the phone has been initialised andadded to the server the use
ase s
enario also in
ludes a task of sending of a basi
software pa
kage to the terminal.This pa
kage in
ludes some ne
essary software in order to be used in the workpla
e.The terminal fet
hes the software pa
kage from the devi
e management server whenthe server sends the
ommand. This pa
kage is then automati
ally installed on theterminal, requiring only minor user intera
tion. There
an be multiple di�erentsoftware pa
kages on the devi
e management server, the required software pa
kage
an be sele
ted in Composer when the phone number is sent. Optionally the softwarepa
kage might also in
lude all the required settings for the new phone, whi
h willbe installed with the pa
kage. These settings might in
lude a

ess point settings,email settings and so on.4.3.3 Sending Settings to a Devi
eThe third and last planned use
ase is a situation where user needs the settings forInternet a

ess to be sent to the phone. For example a
omputer illiterate person hassomehow deleted the settings from the phone and now wants to a

ess the Internetusing his/her phone. The settings
an be sent from the devi
e management server,administrators might have added a set of
ommon settings to all the phones in the
ompany. These settings
an then be easily sent to the phone so that the user
anagain a

ess Internet.This is implemented in the following way. Composer requires the user to supplya phone number that the settings will be sent to. This phone number is availableeither on the
onta
t database on the phone or the user
an input it by himself.The phone number is then sent to the devi
e management server via the proxy. Theserver
he
ks if the phone is present in the database and then sends the request toinitiate a devi
e management session to the terminal.It might be that a
ompany has a spe
ial set of settings for the a

ess points andthat is why it is ne
essary to use the settings that are present on the server, notthe basi
 settings that the mobile operator supplies. The new settings are thenfet
hed to the terminal and installed. After this the terminal
an be again used toa

ess the Internet. Composer will again only re
eive a response from the server

45that the devi
e management job has been added to the queue, but after this moreinformation need to be requested from the server. It is possible to query the statusof the job after it has been added, like stated before.4.4 Experien
eUsing Intera
tive Servi
e Composer in a demo gave a lot of new perspe
tives. It isa fairly di�erent thing to test Composer with a few a
tions than trying to build ademo that intera
ts with a real produ
t. It requires a bit more from the programand from the start of the demo planning it was
lear that it would require more workput on Composer in order to be able to use it in the demo. But in
luding theseinsights we noti
ed some problems with Composer, relating to a
ertain library andrelating to the implementation of inputs and outputs between the a
tions.Maybe one of the biggest problems with Composer were problems with the SOAPlibrary. I have already previously stated how the library is not �nished and it doesnot handle all parts of the SOAP spe
i�
ation well. When we �rst got the WSDLdes
riptions for the devi
e management servers' servi
es we tested them with theSOAP library that Composer uses. By using debugging features present in thelibrary it qui
kly be
ame obvious that the requests sent to the server were notformed
orre
tly, the parameters were in
orre
tly formed.The WSDL des
riptions in
luded a list of simple parameters (whi
h
orrespondsto a
omplex type in SOAP) as an input to the servi
es. In the des
ription theitems in the list are named so that the servi
e
an easily get the
orre
t parametersthe
lients are sending, see listing 7 for example. Also in this
ase the list itselfis named. These parts of the des
ription seem to be problemati
 for the SOAPpylibrary. SOAPpy library was not able to
orre
tly name the items in the list, whi
hwas not a

epted by the servi
e.Like stated previously, to ta
kle this problem we built a proxy that
hanges theREST
alls Composer is sending to SOAP
alls that the Web servi
es are able tounderstand. The proxy of
ourse brought more work, but it really was a relief. Beingable to use REST style Web servi
es from Composer is easier, be
ause not having toload the SOAP library to the environment. This makes using Composer a lot fastertoo. In [Kan07℄ there is a lot more talk about SOAP libraries and problems withthem in this proje
t, interested readers should refer to it for more information.Another thing that
ould be listed more of an insight than problem was with param-

46Listing 7: An Example Complex Type<xsd : element name="Login"><xsd :
omplexType><xsd : sequen
e><xsd : element name="domain" type="xsd : s t r i n g"/><xsd : element name="username" type="xsd : s t r i n g "/><xsd : element name="password" type="xsd : s t r i n g "/></xsd : sequen
e></xsd :
omplexType></xsd : element>In a SOAP message i t should look l i k e<Login><domain>domain</domain><username>uname</username><password>pass</password></Login>eter passing between a
tions. Before the demo parameters passed between a
tionsin Composer were plain lists, whi
h had one or multiple items. When we learntthat in order to use the servi
es Composer needs to authenti
ate to the server and
arry a token that is given after su

essful authenti
ation, the simple list was notper
eived to be enough. To save a token in the list to be used somewhere later inthe work�ow will not work. It might be that the work�ow has some a
tions thatdon't keep the list inta
t, although our poli
y was that a
tions only use the amountof parameters they need from the list and keep the rest inta
t. But 'maybe' is notgood enough.The �rst ideas of Composer were borrowed from Apple's Automator, as des
ribedin
hapter 3. This simple list idea might work with a
losed environment that Applehas, but with a
tions that has been made by someone else than you, it is more likelythat something will go wrong or it might be that someone has made an a
tion thathas only intention to do harm. Trying to store spe
ial inputs somewhere in the listto save them for a
tions somewhere later in the work�ow will not work. We wantedto have a more pre
ise solution for this problem.This ultimately lead to
hanging the input parameter list type to be di�erent whenrunning the demo a
tions. It gives more options to the a
tions to save the ne
essaryitems. The new type of input list is a hashtable that in fa
t has the basi
 input list

47in it and the demo a
tions have the token saved there. The hashtable is not givento all a
tions, only a
tions spe
i�ed to be able to handle it get it. This is saved usfrom
hanging all the a
tions to support the new type of input list. Although at�rst I was going to
hange all a
tions a

ording to it, but when I realised I
oulduse the data-�eld for it, the
hange only a�e
ted a
tions that needed the new inputlist.While we were able to ta
kle some of the parameter passing problems with a more
omplex list of parameters, the amount of parameters in some of the SOAP
alls wereso big that it is not feasible for Composer anymore. Espe
ially while implementingthe se
ond use
ase I was stru
k by the big number of parameters required in some
alls. While being able to supply the parameters by asking them from the user,in my opinion it is not feasible anymore, when the �rst ideas were to keep inputand output to be simple and only one item. Some of the SOAP
alls required sixto seven di�erent parameters, supplying all these parameters is seriously
rippledby the unavailability of good user interfa
e elements in Python for Series 60. Onthe other hand parameters
an be supplied via the a
tion parameter interfa
e, butthis is not ne
essarily a good way. That is be
ause people might forget to lookat the
on�gurable parameters and the default values someone has de�ned are notne
essarily good. One point is also that
on�gurable parameters were not spe
i�edto use in this way when the �rst plans for Composer were made, they were spe
i�edto alter the behaviour of the a
tion.The experien
es generally gained from the demo were good. We were happy howComposer was able to perform with the demo. Also making the proxy gave usgood experien
e about REST-style Web servi
es, of whi
h we didn't have a lotof experien
e beforehand. Although there were some problems at �rst, I think wemanaged very well and we were able to over
ome the problems by making Composerbetter.

485 Experien
e Developing for Mobile PhonesWith the re
ent in
rease in the mobile phones' pro
essing power it has be
ome fea-sible to develop software for mobile terminals. This is a very interesting subje
t forservi
e providers and mobile phone operators as more and more people are
arryingmobile phones. These mobile terminals are with people where ever they go, whi
hgives a huge amount of possible new usage s
enarios and business potential.Developing appli
ations for mobile phones has been possible for several years nowwith mobile operating systems like Symbian OS [Sym07℄, Windows Mobile [Mi
07℄and Qtopia [Tro07℄. Albeit the languages needed to learn to develop for theseoperating systems are not very easy to learn (the
ase with Symbian C++, whi
hhas some spe
ial
onventions to learn), there has been people developing for theseplatforms for quite a some time now. But when Nokia brought Python for Series 60environment on its Series 60 phones developing be
ame a fairly large amount easier,at least when looking on the viewpoint of language
omplexity.Like introdu
ed earlier, Python for Series 60 is a full Python implementation runningon the Series 60 smartphones. The Python programming language is simple to learn,yet it has some powerful features built in. With PyS60 users are able to a

essthe smartphone features and build appli
ations without having to learn the spe
ialfeatures of the spe
i�
 language, Python is the same on desktop PC and on themobile phone. With simple user interfa
e elements it's easy to build appli
ationson the mobile phone with Python, espe
ially prototyping
an be done qui
kly andeasily.Composer was �rst developed for a Nokia 6600. It has 6 megabytes of memoryand it has a 32 megabyte memory
ard. Developing for this mobile phone be
amequi
kly a tedious task, be
ause the phone is fairly slow, being one of the early Series60 mobile phones. When adding new features it be
ame
lear that there will be aneed to get a better mobile phone in the near future. The last straw was when westarted to use the SOAP-libraries whi
h took a really long time to load. Amount oftime required to load the library on the PyS60 version ba
k then was one minuteand few se
onds.The next mobile phone we developed for was a Nokia N70, whi
h worked mu
h moresmoothly. It has 22 megabytes of memory and a 64 megabyte memory
ard. Withthis mobile phone it was more smooth and the library loading did not take thatlong time. And when the loading of a
tions was
hanged it was fairly smooth to use

49Composer on the N70. With the latest development on PyS60, running Composerhas be
ome even smoother, see next
hapter for more details.5.1 Resour
e Limitations on Mobile PhonesThe amount of memory and pro
essor speed are not problems when planning andimplementing a pie
e of software for a desktop PC. With big amounts of memory andfast pro
essors even more and more
omplex pie
es of software are being able to runon desktop PCs. But this is not the
ase with mobile phones. Mobile phones haveonly re
ently been gaining more pro
essing power and more memory, still havingonly a small amount of what desktop PCs have.It would not be feasible to put a pro
essor that powerful on a mobile phone thatdesktop PCs have. It would drain the battery instantly and the advantage gainedfrom this would be very small. Mobile phone users would mu
h rather have mobilephones that have batteries that last long. Also it most
ertainly is what
ompaniesare aiming for. Users have similar needs, users want the mobile phones to be smallerand smaller the batteries
an't be big sized. This on the other hand means that thebatteries have less power. There is a
lear
ontradi
tion here. Mobile phones needto have more pro
essing power but at the same time keeping the size small, keepingthe battery long living and fairly small.A
lear example of the resour
e limitations on mobile phones is the following
ase.We are running fairly large libraries on Composer, whi
h are needed to handle theWeb servi
e invo
ations. The library
onsists of multiple �les with over 5500 linesof
ode. This does not in
lude all the other libraries it is using. When runningComposer on the mobile devi
e, loading this library takes a long time. Some of theslowness is be
ause of the Python environment and its memory handling. In thestart of the June of 2007 Nokia released a new version of the environment whi
hmade the library loading two times faster than it used to be. I have provided somemeasurements about this in listing 8. Clearly the Python distribution has be
omefaster, but this also shows that there is still a huge gap between how the desktopPC performs related to mobile phones.Another example of having limited resour
es is the
ase with Composer inspe
tingthe a
tions when starting. The a
tions are not loaded fully when Composer starts,but only partially read, so that starting the appli
ation would not take so long. Evenwith the amount of a
tions nearing 20 the loading of Composer be
ame qui
kly slow,

50Listing 8: Timings on Library LoadingHardware and | Time in se
onds | Time to bu i ldPlatform | to import l i b r a r y | SOAPpy WSDL proxy
−−Linux 2 . 6 . 2 0 | 0 .08 | 0 .01P4 3ghz , 2gb | se
onds | se
ondsPython 2 .4 | |
−−Nokia N70 | |22mb memory | |PyS60 1 . 3 . 1 7 | 40 se
onds | 15 se
ondsPyS60 1 . 3 . 2 2 | 21 se
onds | 2 se
onds
−−Nokia 6600 | |6mb memory | |PyS60 1 . 3 . 1 7 | 58 se
onds | 19 se
ondsPyS60 1 . 3 . 2 2 | 31 se
onds | 3 se
onds
−−while all a
tions were imported to the environment at start time. Be
ause all of thea
tions are not used in work�ows, there is no need to load them all at startup.This
hange to reading only a part of the �le made the starting of Composer faster.A

essing �les from a memory
ard on the mobile phone is not a problem in this
ase. It is as fast as reading from the internal memory.I don't exa
tly re
all the amount of time that it took to start up
omposer anymore,be
ause it has been at least seven to eight months sin
e it was
hanged. But Ithink it was
lose to being thirty se
onds. This probably partially also dependedon the Python for Series 60 environment, be
ause it has had a lot of problems withimporting �les to the environment being slow. It seems that now with the re
entdevelopment the problem has been �xed it and the importing works a lot faster thanit used to be. We have never had mu
h more than 20 a
tions in Composer so it'shard to say how the
urrent solution would work with amounts like hundred or morea
tions. I do believe though that it would work better than the �rst solution.These two things
learly show what things need to be addressed when implementinga pie
e of software for mobile phones. Big libraries are a problem, they usually areplanned to be used with desktop PCs that are a lot faster than mobile phones. And

51when something is repeated multiple times it is usually smart to stop for a whileand think if some part of it
ould be done faster. Or alternatively
an it be donewith less memory, or with generally less resour
es.5.2 Libraries and Python for Series 60When developing with a mobile phone one has to pay attention to the size of theprograms be
ause the resour
e restri
tions of the mobile terminals. This does not�t to the pi
ture where developed programs need to use libraries that are made fordesktop
omputers. This is the usual
ase when developing something with PyS60.There are a lot of libraries available for Python in general, but they are big or requireother libraries to work. Libraries that use other libraries very qui
kly make a pile oflibraries that all need to be ported to PyS60. It might require some extra work toget the libraries working on the mobile phone, be
ause the Python distribution isnot
omplete. For example the weak referen
e implementation is missing from thedistribution, this relates
losely to the implementation of XML.When
onsidering spe
i�
ations like SOAP it is
lear that the library is big in orderto support all the features in the spe
i�
ation. This might then make using thelibrary on a devi
e with less memory and lower pro
essing power slower. With thesize of the library also usually the amount other libraries needed in
rease. Thismakes the job of trying to use the library on a mobile phone harder, be
ause morelibraries are needed to
he
ked to be working with the mobile phone. Our experien
eswith SOAP libraries for Python were not en
ouraging. The libraries we tested werenot
omplete nor fully fun
tional. In [Kan07℄ there is a lot more dis
ussion aboutSOAP libraries for Python and Ruby and the experien
es gained from this proje
t.Another big spe
i�
ation is UDDI. The library we are using to
ondu
t UDDIsear
hes in fa
t also uses SOAPpy SOAP library, whi
h was
hosen before thinkingabout UDDI. It was a relief that there was no need to provide another SOAP libraryfor the UDDI sear
h. Still the library in this
ase is fairly big too. In Composerwe are only using the sear
h fun
tions of the UDDI spe
i�
ation. The spe
i�
ationalso in
ludes fun
tionality for adding new entries to the registry. This fun
tionalityis not needed in Composer and it would make the library size smaller if it wouldbe removed. On the other hand it would not be sensible to just implement somepart of the spe
i�
ation and leave some parts out. When porting the library for themobile phone, we tried to remove some of the imports in order to keep the size ofthe imported library smaller. This same operation was done for SOAPpy whi
h also

52in
luded some server-side fun
tionality, those parts are not loaded when using thelibrary in Composer.5.2.1 Problems with LibrariesWe had most of our library problems with either big libraries or big amount oflibraries that were needed to be supplied in order to make the library work. Thismade porting the libraries to the mobile phone harder. Usually problems relatingto big amount of library referen
es were be
ause some of the libraries were spe
i�
to
ertain operating system and if the devi
e's Python distribution did not havethe library in
luded, we needed to supply a library taken from the desktop PCsdistribution with some
hanges. These
hanges were not ne
essarily big, but in any
ase it required some work to make the
hanges and move the library to the mobilephone.It didn't help the developing and working with libraries when at �rst we didn'tknow how we
ould send all �les from one library at on
e and also to put them ina dire
tory in the mobile phone where we wanted them to go. We eventually
ameout with a notion of making a SIS-pa
kage (Symbian Installation Sour
e pa
kages)out of the library �les so that they
an be easily
opied to the mobile phone. Thelibraries need to be at a
ertain dire
tory on the mobile phone in order to be able touse them. Single �les
an be of
ourse be
opied automati
ally to the library folderwith the help of PyS60, but after that they need to be moved to another folder tokeep all libraries organised. This also gave a requirement to �nd a way to
opy all�les at on
e.As we were developing with Linux, it was not easy to �nd the right tools whi
hare able to make SIS-pa
kages. In this
ase it helped that some of my
o-workerswere been developing for PyS60 earlier and had been able to �nd a program thatwas able to build the pa
kages. Eventually we were able to automate the pa
kagingpro
ess so, that we had a s
ript �le whi
h was able to build all ne
essary pa
kagesif there had been any
hanges in the sour
e �les. This made transferring the �les alot easier when one needs to send only one or two �les to the mobile phone.5.3 Problems and SolutionsThe extra di�
ulty when developing for mobile phones is the fa
t that one has to�rst transfer the �les to the mobile phone in order to test out the newly implemented

53feature. This be
ame a nuisan
e in one point while trying to �x some errors and itrequired
ontinuously to send a new version of the �les to the mobile phone. One ofmy
o-workers used a s
ript to transfer the spe
i�ed �les to the mobile phone witha serial
able. This would have helped in some point when we had not yet
ome upwith the system to
reate SIS-pa
kages out of the required �les. When transferring�les to a phone and trying out the
hanges it requires you to
on
entrate on adi�erent thing and you might lose thoughts of what you were about to do next.Possible solution for this problem is using an emulator. This would be possible if notusing Linux or Ma
 OS for development be
ause for these operating systems thereare no emulators available. Nokia has emulators only for Mi
rosoft Windows. Withemulators it is possible to test out the simplest features and see if they are workingor not. Nonetheless it is not possible to test the features available in Python forSeries 60, like the
amera fun
tionality or sending an SMS-message. The installationalso requires a fair amount of work to be able to use them properly.There is also one Python library [Rim06℄ available that is able to show the userinterfa
e elements of the mobile phone on a desktop
omputer by using anotherlibrary to build frames and lists. The library in
ludes the same API as the Pythonfor Series 60 user interfa
e and it shows a same kind of view what the software wouldlook like on the mobile phone. This is also a good option for testing out featuresthat don't use any of the smartphone's features. It is also easy to test features thatrequire Internet
onne
tion be
ause Python's normal libraries for network a

ess
an be used. This library was made here in HIIT, but only late in the proje
t Istarted to use it. It helped in a few situations where I needed to make some fairlylarge
hanges to the software.Generally debugging on mobile phones is harder be
ause of the extra
y
le withsending new version of the �le to the mobile phone. Also if you run into a problemwith libraries that you have ported you have to �rst
he
k the libraries on thedesktop p
 to see what might have
aused the problem and then again send the new�les. Debugging at its worst
ase usually meant that I needed to in
lude printingof debugging information in the problemati
 pla
es to see where the exe
ution wentwrong. This usually lead to many
y
les of trial and error, whi
h were a nuisan
ewhile developing Composer.

545.4 Con
lusionWhile developing Composer there has been a lot of problems, be it smaller or biggerproblems. These problems helped to see the development for mobile phones beinga fair amount of di�erent than for desktop PCs. I'm happy to see what we wereable to develop but naturally there were some ideas that were not pursued further.I was hoping Web servi
es would work better with Composer, but when I realisedthere were not many usable Web servi
es available (be
ause of the library) I was abit disappointed how it turn out.I see problems related to libraries as the biggest problems we had with Composer.Problems with SOAP library are a big thing in itself, but also when trying tobring new libraries to the mobile phone there were already some problems. Anotherbig problem we had was with SOAP. There still is no really good, working SOAPlibraries for Python. There has been a lot of development lately in one library whi
hunfortunately does not �t the needs of Composer. Composer needs to have a proxy-like stru
ture, where inputs and outputs are easily handled, the library re
ently beingworked on o�ers a s
ript that transfers WSDL-�les to runnable Python s
ripts. Thiskind of setting does not really �t to Composer.When developing for mobile phones it is ne
essary to �rst think what needs to bedone. After the thinking you should then see how it performs on the devi
e you aredeveloping for. It is also ne
essary to think what libraries are needed in using theprogram. Are they available in the spe
i�
 Python distribution (Python for Series 60does not have all the standard libraries)? Do the libraries need other libraries? Andwhen solving a problem, the easiest solution might not always be the best solution.These are the main points I got from developing for mobile phones.

556 Con
lusionWith in
reasing interest in Web servi
es, servi
e oriented ar
hite
tures and servi
e
omposition, the thought of developing appli
ations with the servi
e
ompositionparadigm has be
ome more and more a

epted. With servi
e
omposition users areable to build new appli
ations by
ombining existing servi
es into more
omplexappli
ations. Servi
e
omposition is a way to master
omplexity,
ombining simplerbuilding blo
ks into a
omplex appli
ation.The dominant te
hnologies in Web servi
es ar
hite
ture are SOAP for
ommuni
a-tion, WSDL for des
ription and UDDI for the registries. These are not the onlyte
hnologies available for Web servi
e ar
hite
ture, but usually these are the oneswhi
h are
onne
ted with Web servi
es. This ar
hite
ture is based on three
ompo-nents: the servi
e requester, the servi
e provider and the servi
e registry. This is asimilar way to how
onventional middleware are built.For the S4ALL vision I have
reated and des
ribed the Intera
tive Servi
e Composerfor Mobile Phones in this thesis. With Composer users are able to
reate servi
e
ompositions, whi
h are built from web servi
es or a
tions fun
tioning on the phone'sown resour
es. By
ombining di�erent Web servi
es users are able to build appli-
ations that suit their needs. By re
on�guring, saving and reusing work�ows usershave a lot of possibilities to develop for their own needs.While Composer is able to build simple
ompositions, I would have liked to seeComposer being able to use all kinds of Web servi
es,
urrently the SOAP libraryis
onstraining the
hoi
e of servi
es. I would also liked to be able to develop someof the more sophisti
ated sides of the plans that were made in the S4ALL proje
t.This would have required a lot of time and resour
es than we had in our use.While developing Composer the best way to test its
apabilities was to use it ina demo. In the demo Composer is used to build servi
e
ompositions whi
h send
ommands to a devi
e management server. All problems and errors are not usuallyfound when developing the program and trying to realise the plans made out for it.By building the demo with the partners we learnt a lot of Composer and its defe
tsand good sides.The whole demo pro
ess was not only about �xing the problems Composer had, butit was also very useful for us to see what Composer was able to do. Mainly be
auseour partners were busy with other things, one of the three use
ases is still undone.While the �rst use
ase gave us a lot of good experien
es I'm wondering what other

56experien
es we
ould have re
eived from them.When developing for mobile phones the developer needs to take a

ount di�erentthings than while developing for desktop PCs. While developing Composer I hadproblems with libraries on the Python for Series 60 environment. These problemsoriginated from the fa
t that the libraries were either not �nished or while trying tobring the required libraries to the mobile phone the dependen
ies (on other libraries)
aused problems. A problem of its own was the size with
ertain libraries, whi
h isa problem for resour
e s
ar
e mobile phones.Though SOAP is one of the dominant te
hnologies in Web servi
es ar
hite
ture,the library problems (size, dependen
ies) render it hardly usable on mobile devi
es.While not trying to defame SOAP itself, the libraries we tried to work with werenot very well �t to be used in a mobile devi
e with low pro
essing power.Finally there were few interesting things I learnt from designing and building Com-poser. First of all the servi
e-oriented ar
hite
ture is an interesting
on
ept. Servi
e
omposition is also very interesting topi
. By using servi
es already built to maketotally new servi
es is an interesting idea, whi
h
ould ease the development of newappli
ations. At the start of the proje
t it was a bit hard to understand all thete
hnologies related to SOA, but after a while they started to seem
lear.What
omes to developing with mobile phones the biggest insight I re
eived wasthe problems with libraries. It seemed to follow all the way through the wholedevelopment pro
ess. First in the start when we were trying to �nd suitable librariesfor the development and in the end while developing the demo. These problems arenot only about libraries being broken, but also library size problems, dependen
yproblems and so on. Another thing learnt was the la
k of pro
essing power on mobilephones. It be
ame very qui
kly obvious how the la
k of pro
essing power a�e
tedthe development.The environment is so mu
h di�erent and interesting than with desktop PCs thatalthough the la
k of pro
essing power is
lear, the appeal is so big that there will alot of development for mobile phones. And the trend seems to be
ontinuing. As isthe trend of developing software with servi
e-oriented ar
hite
ture paradigm.

57Referen
esA+03 Austin, D. et al., Web Servi
es Ar
hite
ture Requirements, O
tober2003. URL http://www.w3.org/TR/wsa-reqs.A+04 Alonso, G. et al., Web Servi
es; Con
epts, Ar
hite
tures and Appli
a-tions. Springer, 2004.AC+03 Andrews, T., Curbera, F. et al., Business Pro
ess Exe
ution Languagefor Web Servi
es version 1.1, May 2003. URL http://www.ibm.
om/developerworks/library/ws-bpel/.AMV04 Adwankar, S., Mohan, S. and Vasudevan, V., Universal Manager:Seamless Management of Enterprise Mobile and Non-mobile Devi
es.IEEE International Conferen
e on Mobile Data Management, 2004.App07 Apple, Apple's Automator, 2007. URL http://www.apple.
om/ma
osx/features/automator/.B+06 Bray, T. et al., Extensible Markup Language (XML) 1.0, August 2006.URL http://www.w3.org/TR/2006/REC-xml-20060816/.BDFR03 Benatallah, B., Dumas, M., Fauvet, M.-C. and Rabhi, F., TowardsPatterns of Web Servi
es Composition. In Patterns and Skeletons forParallel and Distributed Computing, Springer-Verlag, 2003, pages 265�296.BL06a Bi
hler, M. and Lin, K.-J., Servi
e-Oriented Computing. IEEE Com-puter, 39,3(2006), pages 99�101.BL06b Booth, D. and Liu, C. K., Web Servi
es Des
ription LanguageWSDL Version 2.0, Mar
h 2006. URL http://www.w3.org/TR/wsdl20-primer.BSD03 Benatallah, B., Sheng, Q. Z. and Dumas, M., The Self-Serv Envi-ronment for Web Servi
es Composition. IEEE Internet Computing,7,1(2003), pages 40�48.C+00 Casati, F. et al., Adaptive and Dynami
 Servi
e Composition in eFlow.Pro
. of 12th International Conferen
e on Advan
ed Information Sys-tems Engineering (CAiSE), 2000.

58C+02 Curbera, F. et al., Unraveling the Web Servi
es Web: An introdu
tionto SOAP, WSDL and UDDI. IEEE Internet Computing, 6,2(2002),pages 86�93.C+03 Curbera, F. et al., The Next Step in Web Servi
es. Communi
ations ofthe ACM, 46,10(2003), pages 29�34.Col04 Colan, M., Servi
e-Oriented Ar
hite
ture expands the vision ofWeb servi
es, part 1, April 2004. URL http://www-128.ibm.
om/developerworks/library/ws-soaintro.html.CS01 Casati, F. and Shan, M.-C., Dynami
 and Adaptive Composition ofE-Servi
es. Information Systems, 21,3(2001), pages 143�163.DK75 DeRemer, F. and Kron, H., Programming-in-the-large VersusProgramming-in-the-small. Pro
eedings of the International Conferen
eon Reliable Software, 1975, pages 114�121.ES06 Ezenwoye, O. and Sadjadi, S. M., Composing AggregateWeb Servi
es inBPEL. ACM-SE 44: Pro
eedings of the 44th annual Southeast RegionalConferen
e, 2006, pages 458�463.Fie00 Fielding, R., Ar
hite
tural Styles and the Design of Network-based Soft-ware Ar
hite
tures. Ph.D. thesis, University of California, Irvine, 2000.FW04 Fallside, D. C. andWalmsley, P., XML S
hema Se
ond Edition, O
tober2004. URL http://www.w3.org/TR/xmls
hema-0/.G+06 Gudgin, M. et al., SOAP Version 1.2, De
ember 2006. URL http://www.w3.org/TR/soap12.HS05 Huhns, M. and Singh, M. P., Servi
e-Oriented Computing: Key Con-
epts and Prin
iples. IEEE Internet Computing, 9,1(2005), pages 75�81.JM76 Jones, N. D. and Mu
hni
k, S. S., Binding time optimization in pro-gramming languages: Some thoughts toward the design of an ideallanguage. POPL '76: Pro
eedings of the 3rd ACM SIGACT-SIGPLANsymposium on Prin
iples on programming languages, 1976, pages 77�94.

59Kan07 Kanerva, P., State-of-the-Art of SOAP Libraries in Python and Ruby.Te
hni
al Report 2007-2, Helsinki Institute for Information Te
hnology,2007. URL http://www.hiit.fi/node/87.Kha02 Khalaf, R., Business Pro
ess with BPEL4WS: Learning BPEL4WS,Part 2, 2002. URL http://www-128.ibm.
om/developerworks/webservi
es/library/ws-bpel
ol2/.KS06 Kobti, Z. and Sundaravadanam, M., An Enhan
ed Con
eptual Frame-work to Better Handle Business Rules in Pro
ess Oriented Appli
ations.ICWE '06: Pro
eedings of the 6th international
onferen
e on Web en-gineering, 2006, pages 273�280.L+06 Lin, S. et al., An introdu
tion to OMA Devi
e Management, O
tober2006. URL http://www.ibm.
om/developerworks/library/wi-oma/index.html.Lin00 Linthi
um, D. S., Enterprise Appli
ation Integration. Addison-Wesley,2000.MH05 Mendling, J. and Hafner, M., From Inter-Organizational Work�ows toPro
ess Exe
ution: Generating BPEL from WS-CDL. In Le
ture Notesin Computer S
ien
e, volume 3762, Springer-Verlag, 2005, pages 506�515.Mi
07 Mi
rosoft, Mi
rosoft Windows Mobile, June 2007. URL http://www.mi
rosoft.
om/windowsmobile/default.mspx.Min06 MindReef, MindReef SOAPS
ope, 2006. URL http://www.mindreef.
om/mindreef/soaps
ope.php.MJS06 Molina-Jimenez, C. and Shrivastava, S., Maintaining Consisten
y be-tween Loosely Coupled Servi
es in the Presen
e of Timing Constraintsand Validation Errors. ECOWS '06 4th European Conferen
e on WebServi
es, 2006.MM04 Milanovi
, N. and Malek, M., Current Solutions for Web Servi
e Com-position. IEEE Internet Computing, 8,6(2004), pages 51�59.OAS05 OASIS, UDDI version 3.0, February 2005. URL http://www.uddi.org/.

60OMA04 OMA, OMA Devi
e Management Spe
i�
ation version 1.1.2, Jan-uary 2004. URL http://www.openmobileallian
e.org/release_program/dm_v112.html.Pap03 Papazoglou, M. P., Servi
e-Oriented Computing: Con
epts, Chara
ter-isti
s and Dire
tions. Pro
. of the Fourth International Conferen
e onWeb Information Systems Engineering (WISE'03), 2003.Pel03 Peltz, C., Web Servi
es Or
hestration and Choreography. IEEE Com-puter, 36,10(2003).PG03 Papazoglou, M. P. and Georgakopoulos, D., Servi
e-Oriented Comput-ing. Communi
ations of the ACM, 46,10(2003), pages 25�28.PL03 Perrey, R. and Ly
ett, M., Servi
e-Oriented Ar
hite
ture. Symposiumon Appli
ations and the Internet Workshops, 2003.Rim06 Rimey, K., PyS60 Emulation Library, 2006. URL http://sour
eforge.net/proje
ts/pys60-
ompat/.RTF06 Ross-Talbot, S. and Flet
her, T., Web Servi
es Choreography Des
rip-tion Language: Primer, June 2006. URL http://www.w3.org/TR/ws-
dl-10-primer/.Rub07 Rubio, D., An Introdu
tion to JSON, February 2007. URL http://dev2dev.bea.
om/pub/a/2007/02/introdu
tion-json.html.SBDM02 Sheng, Q. Z., Benatallah, B., Dumas, M. and Mak, E. O.-Y., SELF-SERV: A Platform for Rapid Composition of Web Servi
es in a Peer-to-Peer Environment. VLDB 2002, Pro
eedings of 28th International Con-feren
e on Very Large Data Bases, Hong Kong, China, August 2002,pages 1051�1054.SK03 Srivastava, B. and Koehler, J., Web Servi
es Composition - CurrentSolutions and Open Problems. ICAPS 2003 Workshop on Planning forWeb Servi
es, 2003.Sym07 Symbian, Symbian OS Mobile Operating System, June 2007. URLhttp://www.symbian.
om/symbianos/index.html.TBB03 Turner, M., Budgen, D. and Brereton, P., Turning Software into aServi
e. IEEE Computer, 36,10(2003), pages 38�44.

61Tro07 Trollte
h, Qtopia, June 2007. URL http://trollte
h.
om/produ
ts/qtopia/.VBS04 Vidal, J. S., Buhler, P. and Stahl, C., Multiagent Systems with Work-�ows. IEEE Internet Computing, 8,1(2004), pages 76�82.vdADtH03 van der Aalst, W., Dumas, M. and ter Hofstede, A., Web Servi
e Com-position Languages: Old Wine in New Bottles? Pro
. of the 29thEUROMICRO Conferen
e New Waves in System Ar
hite
ture, 2003.Vin02a Vinoski, S., Putting the "Web" into Web Servi
es - Web Servi
es In-tera
tion Models Part 2. IEEE Internet Computing, 6,4(2002), pages90�92.Vin02b Vinoski, S., Web Servi
es Intera
tion Models - Part 1: Current Pra
ti
e.IEEE Internet Computing, 6,3(2002), pages 89�91.XMe07 XMethods, XMethods UDDI Registry, 2007. URL http://www.xmethods.net.

