
Measuring and tracking quality factors
in Free and Open Source Software projects

Fabian Fagerholm

Helsinki October 9, 2007

Master’s Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science



Faculty of Science Department of Computer Science

Fabian Fagerholm

Measuring and tracking quality factors in Free and Open Source Software projects

Computer Science

M. Sc. Thesis October 9, 2007 77 pages

free software, open source software, foss, software quality, software metrics

Kumpula Science Library, serial number C-

Free and Open Source Software (foss) has gained increased interest in the computer
software industry, but assessing its quality remains a challenge. Foss development
is frequently carried out by globally distributed development teams, and all stages
of development are publicly visible. Several product and process-level quality factors
can be measured using the public data.

This thesis presents a theoretical background for software quality and metrics and
their application in a foss environment. Information available from foss projects
in three information spaces are presented, and a quality model suitable for use in a
foss context is constructed. The model includes both process and product quality
metrics, and takes into account the tools and working methods commonly used in
foss projects.

A subset of the constructed quality model is applied to three foss projects, high-
lighting both theoretical and practical concerns in implementing automatic metric
collection and analysis. The experiment shows that useful quality information can
be extracted from the vast amount of data available. In particular, projects vary in
their growth rate, complexity, modularity and team structure.

ACM Computing Classification System (CCS):
Categories and subject descriptors:
D.2.8 [Software Engineering]: Metrics;
D.2.9 [Software Engineering]: Management—Life cycle, Programming teams, Software con-
figuration management, Software process models (e.g., CMM, ISO, PSP), Software quality
assurance (SQA);
H.4.2 [Information systems applications]: Types of systems—Decision support (e.g., MIS);
K.6.3 [Management of computing and information systems]: Software management

General terms:

Human Factors, Management, Measurement

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI



i

Contents

1 Introduction 1

2 Quality as a measurable quantity 2

2.1 The intuitive view of quality . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Translating intuition into a quality system . . . . . . . . . . . . . . . 6

2.3 Metrics as the building blocks of quality measurement . . . . . . . . . 9

2.3.1 Analysis and design metrics . . . . . . . . . . . . . . . . . . . 11

2.3.2 Code metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Object-oriented metrics . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Maintenance metrics . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.5 General metrics problems . . . . . . . . . . . . . . . . . . . . 17

3 Quality in the context of Free and Open Source Software 19

3.1 The foss mind set: catalyst or obstacle? . . . . . . . . . . . . . . . . 20

3.1.1 How foss compares to process models . . . . . . . . . . . . . 22

3.1.2 Process maturity and success . . . . . . . . . . . . . . . . . . 24

3.1.3 Openness and reliability . . . . . . . . . . . . . . . . . . . . . 26

3.2 Previous work and case studies . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Growth, evolution and structural change . . . . . . . . . . . . 27

3.2.2 Mining public repositories . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Empirical tests of statistical quality models . . . . . . . . . . . 31

3.2.4 Object-oriented metrics for foss . . . . . . . . . . . . . . . . 33

3.2.5 Foss quality assessment model . . . . . . . . . . . . . . . . . 35

4 Quality model for Free and Open Source Software projects 36

4.1 Preliminary description and project hypotheses . . . . . . . . . . . . 36



ii

4.2 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Discussion space sources . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Documentation space sources . . . . . . . . . . . . . . . . . . 39

4.2.3 Implementation space sources . . . . . . . . . . . . . . . . . . 41

4.3 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Metric taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Experiment: Applying quality analysis to real Free and Open Source
Software projects 45

5.1 Project selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Data identification, acquisition and cleaning . . . . . . . . . . . . . . 46

5.3 Description of metrics calculation . . . . . . . . . . . . . . . . . . . . 50

6 Experiment: Results 51

6.1 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Process quality . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.2 Product quality . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Blender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Process quality . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 Product quality . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.3 Object-oriented features . . . . . . . . . . . . . . . . . . . . . 62

6.3 The gimp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Process quality . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.2 Product quality . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusions 69

References 70



List of Figures

1 Software Quality Characteristics Tree . . . . . . . . . . . . . . . . . . 7

2 Ieee software quality metrics framework . . . . . . . . . . . . . . . . 8

3 Layered organisational structure of an idealised foss project . . . . . 25

4 Fact extraction process of Columbus framework . . . . . . . . . . . . 34

5 Foss project data model . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Foss project quality model . . . . . . . . . . . . . . . . . . . . . . . 44

7 Commits per author: Linux and Linux-historical . . . . . . . . . . . . 53

8 Posts per poster and bugs per submitter: Linux . . . . . . . . . . . . 55

9 Sloc evolution: Linux and Linux-historical . . . . . . . . . . . . . . 55

10 Subsystem growth: Linux and Linux-historical . . . . . . . . . . . . . 56

11 Commit and post frequency: Linux and Linux-historical . . . . . . . 56

12 Bug frequency and arrival rate per commit rate: Linux . . . . . . . . 57

13 Sloc per nom and cyc per nom: Linux . . . . . . . . . . . . . . . . 57

14 Fan-in and fan-out per sloc: Linux . . . . . . . . . . . . . . . . . . . 58

15 Commits per author, posts per poster and bugs per submitter: Blender 59

16 Sloc evolution and subsystem growth: Blender . . . . . . . . . . . . 60

17 Commit and post frequency: Blender . . . . . . . . . . . . . . . . . . 61

18 Bug arrival rate and arrival rate per commit rate: Blender . . . . . . 61

19 Sloc per nom and cyc per nom: Blender . . . . . . . . . . . . . . . 62

20 Fan-in and fan-out per sloc: Blender . . . . . . . . . . . . . . . . . . 62

21 Information flow, dit and noc, and cbo, wmc, and fan-in: Blender . 63

22 Commits per author, posts per poster and bugs per submitter: gimp 64

23 Sloc evolution and subsystem growth: gimp . . . . . . . . . . . . . 65

24 Commit and post frequency: gimp . . . . . . . . . . . . . . . . . . . 66

25 Bug frequency and arrival rate per commit rate: gimp . . . . . . . . 66

26 Sloc per nom and cyc per nom: gimp . . . . . . . . . . . . . . . . 67

27 Fan-in and fan-out per sloc: gimp . . . . . . . . . . . . . . . . . . . 67



List of Tables

1 Knowledge requirements in software quality measurement . . . . . . . 4

2 Halstead’s software science indicators . . . . . . . . . . . . . . . . . . 13

3 Object-oriented metrics by Chidamber and Kemerer . . . . . . . . . . 16

4 Object-oriented metric hypotheses by Ferenc et al. . . . . . . . . . . 34

5 Foss information spaces and data sources . . . . . . . . . . . . . . . 40

6 Data sources for experiment . . . . . . . . . . . . . . . . . . . . . . . 47

7 Number of messages and time to import them . . . . . . . . . . . . . 47

8 Number of bugs and time to import them . . . . . . . . . . . . . . . 48

9 Number of revisions, run interval for metrics calculation, and time to
import them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10 Description of calculated metrics . . . . . . . . . . . . . . . . . . . . 52

11 Developer classes: Linux and Linux-historical . . . . . . . . . . . . . 54

12 Developer classes: Blender . . . . . . . . . . . . . . . . . . . . . . . . 59

13 Developer classes: gimp . . . . . . . . . . . . . . . . . . . . . . . . . 64

14 Summary and interpretation of experiment results . . . . . . . . . . . 68



1 Introduction

Free and Open Source Software (foss) has attracted increased attention in the
computer software industry. Producing computer software is a complicated and
laborious task. To people familiar with some of the well-known, rigid process models
used in the industry, it may seem surprising that such a loosely defined work method
can produce any results at all. Meanwhile, foss projects have produced a staggering
amount of software, ranging from simple, single-purpose tools to complete operating
systems, server applications, and desktop suites. foss is now a serious competitor
in several market segments, and is likely to change the business patterns of the
software industry [Lin04].

Foss emerged from a culture of hobbyist and professional computer programmers
[HaO01, Lin04]. It was not originally a defined concept; it was simply the way in
which these pioneers found themselves practising their activity in an environment
with active exchange of ideas and program code, and strong ties to an academic
research environment. As the commercial software market developed, the concepts
of Free Software [Fre07] and later Open Source [Ope07] were established to capture
two important parts of that culture. Understanding them is vital for anyone who
wishes to observe or participate in foss [Lin04].

In foss development, quality and measurement of quality-related attributes are
just as important as in conventional software development, and is unfortunately
neglected at least as often. However, the value system of foss development often
emphasizes different aspects of quality due to different underlying assumptions and
a different working method. The differences may be subtle in some cases and more
explicit in others.

Since foss projects are typically carried out using publicly accessible mailing lists,
documentation, and source code repositories or version control systems, the software
is in a constant state of change and every change is visible to all. It may be difficult
to grasp the current state of the software and to evaluate its suitability for a partic-
ular use. On the other hand, since the information is available without restriction,
it is possible to make quite an elaborate and accurate evaluation. Care must be
taken, however, not to misinterpret the findings or compare them without taking
the intended state of development into consideration.

Emphasis on quality is important in a foss context for several reasons. Customer
expectations determine success in the marketplace, and competition is less and less



2

restricted by copyright but instead based on competence [Lin04]. At the same time,
competence among foss project participants varies greatly and as a result, quality
is not reliably managed. The ability to understand quality, to measure it, or to
take appropriate steps to assure it are not among the frequently found skills in foss

projects. However, interest in the subject is slowly rising.

This thesis explores the relationship and tensions between existing systematic quality
practices and the diverse and often ad hoc practices of the foss community. It is
our belief that the foss community has a will to improve software and process
quality beyond what is currently achieved, and that it will assimilate knowledge and
methods that are practically usable. Also, entities wishing or needing to observe or
participate in foss development or use can benefit from knowledge of how to apply
and interpret quality assessment in a foss environment.

The rest of this thesis is organised as follows. Section 2 describes how quality, a
subjective concept, can be quantified and measured by identifying a value system,
choosing a quality system, decomposing it into discrete metrics and calculating those
in a given piece of software. It also introduces some existing metrics and models of
quality. Section 3 briefly explores the different value systems that are applicable to
foss, and then proceeds to discuss quality in a foss context. Finally, it presents a
number of metrics and metric models. The section approaches these themes from
the perspective of existing work on the subject. Section 4 presents and classifies
a set of metrics that are useful for foss projects. At the end of the section, a
taxonomy is constructed that describes the overall quality of a foss project and
provides drill-down capability into the components of this view of quality. The
section explains why it is important to choose metrics that are easy to understand
and can, as far as possible, be collected automatically. Section 5 describes the
experiment environment and applies the taxonomy constructed in Section 4 to a
number of real-life foss projects. Section 6 presents the results of the experiment
described in Section 5. Section 7 presents conclusions and findings based on the
entire thesis, and summarizes central concepts.

2 Quality as a measurable quantity

According to the ieee Standard for Software Quality Metrics Methodology (ssqmm),
quality is “the degree to which software possesses a desired combination of attributes”
[IEE04]. Boehm et al. define overall quality as some function of metrics that provide



3

“a quantitative measure of the degree to which the program has the associated char-
acteristic” [Boe76]. These are very high-level definitions that do not yet specify how
to actually measure quality in any amount of detail. Their application is much more
complicated than what might be inferred from these simple, one-sentence definitions.

2.1 The intuitive view of quality

Intuitively, software quality is about a computer program working “as it is supposed
to”. Customer satisfaction is a key ingredient [Roy90, MäM06]. In other words,
there is an element of expectancy that the program does not act in ways which
surprises the user. For example, a particular user may feel that the program must
not carry out its actions too slowly, it should not produce incorrect results, and it
should not crash or lock up. Another user might not care as much about the speed of
the program, as long as its result is always very precise. However, user expectations
may be misleading; yet another user may be accustomed to bad performance and
reliability, and is not surprised at all if the program works only randomly. In this
case, quality will in fact deviate from user expectations.

Also, the intuitive view of quality might include requirements that the program is
easy enough to use, and could also include matters of taste and habit, such as the
colour scheme used or the particular order in which certain actions are performed;
local law and culture, such as the ability to retain call data in a telecommunications
system or to protect the privacy of a health care client; or the particular needs of a
single organisation or group of people.

The intuitive view of quality is useful, because it is a starting point from which
to approach a definition of quality. In the ieee ssqmm, the establishment of soft-
ware quality requirements starts with an intuitive view of quality, from which the
requirements and constraints are drawn:

Use organizational experience, required standards, regulations, or laws to cre-

ate this list. . . . Consider contractual requirements and acquisition concerns,

such as cost or schedule constraints, warranties, customer metrics require-

ments, and organisational self-interest [IEE04].



4

It should also be noted that quality at this level is fundamentally a patchwork of
conflicting needs. As Boehm et al. state:

. . . added efficiency is often purchased at the price of portability, accuracy,

understandability, and maintainability; added accuracy often conflicts with

portability via dependence on word size; conciseness can conflict with legibility.

Users generally find it difficult to quantify their preferences in such conflict

situations [Boe76].

Similarly, Schneidewind lists several areas of knowledge that are required in soft-
ware quality measurement [Sch02]. Quality measurement can benefit from multi-
disciplinary input, including different types of engineering, economy, and mathe-
matics (Table 1). Pinning down the intuitive view of quality is not straightforward
and it must be done in several overlapping ways simultaneously. Software engineers,
Schneidewind argues, must be fluent in several of these areas in order to understand
“why and when to measure quality”. Why to measure quality is directly associ-
ated with the chosen value system, whereas when to measure quality is a matter
of knowing how to tie quality measurement into the overall software development
process.

An intuitive view of quality concerns not only the user, but also the designer and
writer of software. To the designer, conceptual elegance is sometimes considered high

Issue Function Knowledge

Goals Analyse quality goals and specify
quality requirements.

Quality engineering, requirements en-
gineering

Cost and risk Evaluate economics and risk of qual-
ity goals.

Economic analysis, risk analysis

Context Analyse the applications environ-
ment.

Systems analysis, software design

Operational profile Analyse the software environment. Probability and statistical analysis
Models Model quality and validate the

model.
Probability and statistical models

Data requirements Define data type, phase, time, and
frequency of collection.

Data analysis

Types and granularity
of measurements

Define the statistical properties of the
data.

Measurement theory

Product and process
test and evaluation

Analyse the relationship between
product quality and process stability.

Inspection and test methods

Product and process
quality prediction

Assess and predict software quality. Measurement tools

Table 1: Knowledge requirements in software quality measurement [Sch02].



5

quality. A well designed class hierarchy does not break or lose its logical composition
when introducing new classes as the program evolves. The task of programming
according to specifications becomes possible, and there is little need to redesign
the program. Programming tasks are easily divided among the programmers. For
example, the program can be written one class at a time and one method at a time,
relying on the designed interfaces. Even if one module is changed, the change stays
limited and does not cause a need for further change in other modules. There is no
risk of incompatibility, because the design is correct and of high quality. It fits into
the overall production process and enables product quality.

To the writer of software, quality goes beyond the design and into the lowest levels
of the program. Each line of code can have an aesthetic quality. It can be easy
to understand, making the code fluent to read and thus easy to modify. However,
other constraints, such as efficiency requirements, might lead to code that is hard
to read but performs exceptionally well. This is also an aspect of quality, as is the
ability to write terse, compact code – including as much functionality as possible in
as few statements as possible. It is impossible to dismiss any such view of quality
without first establishing what is to be accomplished.

To both designers and writers of software, it seems that ease of change, or flexibility,
is a key quality criterion on the intuitive level [Roy90]. It is a prerequisite for ongoing
development. Unless the software can be practically changed, there is a real risk of
financial loss to users and developers. We observe that flexibility is one of the key
motivators behind the structure of many foss projects.

This intuitive view provides little or no possibility to assess whether or not a software
product is of high quality, but it provides the value system from which a more formal
definition of quality can be drawn. In other words, there exists no universal definition
of quality. Rather, each application of quality methods must take into account the
particular setting in which the software is to be used and maintained. By analysing
quality goals, requirements, and context; and assessing the cost and risks of these, a
software project can determine what the value system of the users is. Fortunately,
many value systems have a lot in common, and therefore quality practitioners can
reuse existing work, enabling comparison of software and development processes.

Since quality is such a multi-faceted concept, a rigorous definition is needed to
remove the ambiguities and allow a group of people to work toward the same, known
quality goals [Sto90]. This view of quality must be measurable, otherwise it is
impossible to know whether or not quality has been achieved.



6

2.2 Translating intuition into a quality system

Given an intuitive view of quality, it seems obvious that choices must be made to
remove ambiguity and balance conflicting needs if one is to systematically approach
quality. Several methods have been proposed, some of which are completely theo-
retical and others which are based on established industry practice.

Boehm et al. reported their findings in 1976. Their work has been ground-breaking
in the software industry. They describe results from an earlier study that was to
identify a set of characteristics of software quality. Initially, they set out to define a
single overall quality value based on a combination of metrics:

1. Given an arbitrary program, the metric provides a quantitative measure
of the degree to which the program has the associated characteristic, and

2. Overall software quality can be defined as some function of the values of

the metrics [Boe76].

However, after closer evaluation, they concluded that “there is . . . no single metric
which can give a universally useful rating of software quality”. They proceeded to
describe one possibility for breaking down quality into a hierarchical set of charac-
teristics and a set of anomaly-detecting metrics. The goal was no longer to provide a
single model in which all software could be assessed, but rather to provide a concep-
tual framework in which each software project could find guidance in establishing
their own software quality practice.

They used a stepwise approach to define quality characteristics and metrics attached
to those. In each step, they manually refined the characteristics and metrics to avoid
overlap and increase coverage. They found that the characteristics were related in
a type of tree structure (Figure 1). The lower levels of the tree are preconditions
for their parent characteristics, so for example, the degree of understandability and
testability directly influence the degree of maintainability of the program. Thus,
the tree reflects the value system that they chose. Also, the idea of a single, overall
quality value was not abandoned. The desire was to have a quality system that
would allow some degree of comparison between different software products.

It is interesting to note that the view of software held by Boehm et al. is similar to
the foss view in one important way: it implicitly assumes that whoever acquires
the software has access to the source code. In fact, software seems to be equated
with source code. At the top of Boehm’s tree of quality is the characteristic general



7

utility. This includes, but is not limited to, the answer to three questions which
Boehm claims are the main questions when acquiring a software package [Boe76]:

• How well (easily, reliably, efficiently) can I use it as-is?

• How easy is it to maintain (understand, modify, and retest)?

• Can I still use it if I change my environment?

Software is often distributed in compiled object form only, and the source code is not
provided. Thus, the notion of general utility must have changed, or software quality
has been significantly obscured, because there is generally no way to understand,
modify, or retest the binary form of a program with the purpose of maintaining it,
and it can generally not be used if the environment changes – recompilation would be
necessary. Of course, this only serves as evidence that the underlying value system
is decisive when assessing quality. The software industry was different in 1976.
Software was not yet as pervasive a consumer product as it is today. Boehm et al.
operated in a specific environment, but some aspects of that time and environment
have been retained in foss.

Boehm’s tree of quality is problematic in other ways as well, as is any model of quality
that is more or less strictly arranged in a similar fashion. While it does provide

Figure 1: Software Quality Characteristics Tree [Boe76].



8

insight into the quality characteristics and their relations, it does not accurately
define them. The final and decisive definition becomes an exercise in interpreting
ambiguous human language, instead of being defined in an objectively measurable
way. Also, the notion of an overall quality measure is extremely difficult to apply in
practice, and could at best be used in a limited subset of software with very similar
requirements [Sto90].

Even so, the notion continues to be part of many definitions of quality systems. The
ieee ssqmm describes a flexible framework that helps an organisation to divide the
view of quality into meaningful parts, quality attributes, which describe the quality
of the software system that is being built (Figure 2). The quality attributes are then
assigned quality factors, which can in turn be assigned subfactors. Finally, factors
and subfactors are associated to metrics that serve as quantitative, measurable rep-
resentations of the factors. It should be noted that there is no assumption or claim
in this framework that the metrics or factors can be recombined to give one single
quality value. Rather, the framework serves as a conceptual aid to establish which
facets of quality the organisation wishes to monitor.

The task of upholding a quality system in an organisation is called quality assur-
ance. It is performed by a department or organisation that defines the standards for
quality, specifies and sometimes implements tools and aids for assessing quality, and
applies the tools to the software created by other parts of the organisation in order
to check for adherence to quality standards, to give them feedback, and to suggest
areas of improvement [Gaf81]. This function is commonly folded into the program-

Figure 2: Ieee software quality metrics framework [IEE04].



9

ming team in order to make communication more effective or when resources are
scarce, but it may also be an external function.

In order to translate intuition into a quality system, intimate knowledge of several
different issues is required, and they must be balanced to fulfil the requirements
in each particular situation. As the requirements change over the lifetime of the
software, it may be necessary to revisit the choices and adjust the balance. Therefore,
it is important to retain some knowledge of the underlying value system and the
choices made in the translation to a quality system.

2.3 Metrics as the building blocks of quality measurement

Software metrics are measurements of some properties of a software system, its
specifications, and the software project to develop it [Cha06]. Some possible uses
of software metrics are to estimate the time required to build a certain piece of
software, the cost of the same, the number of programmers required given certain
time constraints, or, in the case of software quality metrics, to establish whether the
software meets the defined quality requirements and to alert an ongoing project of
emerging quality issues.

As indicated in the previous section, there is both theoretical and practical support
for a general view of quality measurement that relies on metrics. The complete
picture of quality is broken down into pieces, possibly in a hierarchical fashion
and in multiple steps. Each piece is a measurable attribute of the software. The
measurements can be divided into static or internal and dynamic or external. The
former is derived from the program itself, such as the source code. The latter
is derived from the behaviour of the program, such as assessment of the running
program or an aspect of running it [Gaf81, Nag04, Nag05]. In general, we wish
to influence the external aspects, but we are limited to affecting the internal ones.
Internal metrics can be collected earlier and easier than external ones, and have
been shown to correlate with externally visible quality [Nag04, Nag05].

The purpose of metrics is both descriptive and predictive. In their descriptive capa-
city, they help to classify software and projects. For example, the size of the source
code, the number of developers, the programming language used, and the age of the
software product are useful classifiers.

In their predictive capacity, metrics assist in performing educated guesses and sup-
port decisions that affect the future of the software or project. For example, field



10

defects are defined as user-reported, code-related problems requiring programmer
intervention to correct. Predictive metrics can be used to estimate the number or
likely location of the field defects, so that their number can be minimised before the
software is deployed and put to use. This implies that some metric data must be
available before the software is finished.

When assessing quality, samples are taken from the software and used in a software
metric model. In general, the model relates the measured attributes – predictor
metrics – to a target metric. The target metrics are quality factors as specified by
the quality system. Some models attempt to give an overall quality value by taking
all factors into account and relating them to a single target factor, while others
simply highlight different aspects of quality.

Once a metric model has been constructed, it is important to validate it, both theo-
retically and with empirical data. The purpose of validation is to ensure that our
measurements are in fact giving us the information we seek. One part of validation is
to run the metric model against a data set that has been validated by human obser-
vation, and see how well it predicts the known outcome in those cases. For stochastic
models, the prediction accuracy may be expressed as an error margin. Another part
of validation is to theoretically confirm that a metric is an accurate representation of
the phenomenon it measures. Knowledge of statistical and measurement-theoretic
concepts is needed in validation (Table 1).

Comparing metric models of different kinds can lead to adoption of valid models
with better accuracy. Khoshgoftaar et al. have compared regression modelling with
neural network modelling in software quality models. Initially, they observe that the
set of available metrics is large, and that the metrics are often highly correlated. This
is not desirable in multiple regression modelling. On the other hand, it is beneficial
for neural network models. In those, multiple inputs should lead to a more complete
model as the metrics focus on different, but overlapping and complementary aspects
of the software. In their comparison, Khoshgoftaar et al. find that neural network
models yield more accurate results although they require more time to train than
regression-based methods [Kho95].

Not all metrics are important for every case, nor is there likely to exist a single
technique that suits all cases [Ola92]. To establish a predictor as important, Li et
al. list three methods [Li05]. First, high correlation between the predictor and field
defects can be shown. Second, it can be shown that the predictor is selected using
a model selection method. Third, it can be shown that the accuracy of predictions
improves with the predictor included in the prediction model.



11

A great number of predictor or metric models and related metrics have been con-
structed, described, and validated over more than 30 years. At the same time,
software metrics are not put to good use in mainstream software engineering, partly
because of their complexity but also because their relation to practical decision-
making is vague [FeN00]. Metrics are often used as simple passing criteria for a
specific process phase, typically the testing phase. From a quality perspective, it
is not adequate to simply count the amount of automated tests that the software
passes, or the number of defects discovered by the tests – quality is built into every
action during the entire software production process [Oga96]. This is also important
because quality assessment must be performed early enough to allow developers to
take corrective action [Nag04, Nag05].

2.3.1 Analysis and design metrics

Analysis and design metrics, also known as structure metrics, are global indicators
of quality which can be taken early in the software life-cycle. They measure those
features of the software product that have come into existence during the analysis
and design phases [Kaf85]. Thus, they function as early indicators of the potential
quality of the final product, and also as a basis for effort, cost and risk estimation.

The primary use of analysis and design metrics is before the implementation phase
starts. If the design quality is too low, the project may have to take a few steps back
and revisit some design decisions [Roy87]. Missing knowledge might be a reason for
bad design, and that could be alleviated by choosing an iterative process model that
does not assume that all the required knowledge is in place from the start. Structure
metrics can also be used to compare the potential quality inherent in the software
design with actual quality in the final product.

The information flow metric is a structure metric that measures the sources (fan-in)
and destinations (fan-out) of all data related to a given software component. These
factors are used to compute the communication complexity of the component, which
is taken as a measure of the strength of its communication relationship with other
components. The fan-in consists of all function parameters and global data struc-
tures from which the function retrieves its information, while the fan-out consists of
the return values from function calls and the global data structures that the function
updates [Kaf85, WaH88].



12

Another important structure metric draws attention to the “ripple effect” that occurs
when a change to one component causes a need for change in other components. In
this stability measure, the flow of data through parameters and global variables is
used to identify the components which could be affected by a change in a particular
component [Kaf85].

Both of these metrics reflect a quality risk. If program components are designed to
be too dependent on each other, flexibility is lost. This means the program is more
difficult to change in the future.

Other metrics that can be taken once the analysis and design phases are complete
are the number of documents produced, the size of these documents, and several
metrics that analyse the contents of the documents. Using these, a project could
determine whether the analysis and design quality is sufficient, or if more work is
needed.

2.3.2 Code metrics

Code metrics are all those metrics that measure the actual code produced in the
implementation phase of a software process. Together with structure metrics, they
belong to the class of internal attributes of a program. Code metrics are problematic
in the sense that they are available only after the code has been produced, and thus
it is relatively expensive to correct the problems they might reveal compared to
addressing the issues in the design phase [Kaf85, Roy87]. When simply measuring
software quality, they are of course useful regardless of whether addressing them is
practical or not.

Perhaps the oldest and most obvious metric is the lines of code metric (loc). It is a
measure of program size, and although simple at first glance, there are some issues
to consider when defining the precise way of calculating it, such as whether blank
lines and comments should be included. Loc is a basic metric that is frequently a
component in several higher-level calculations. For example, programmer produc-
tivity measures and quality criteria have used loc as their basis. Loc has received
criticism, but it has been found no less valid than other, more sophisticated size
measures [Kaf85].

Halstead’s software science is a collection of metrics and equations based on the
number of unique operators and operands, and the number of total operators and
operands in a program [Hal75]. From these, Halstead derives measures of program



13

size, level of effort, programming time, and other measures of the software and
implementation language (Table 2). Some studies support Halstead’s equations
and empirically find correlation between, for example, effort level and number of
defects, indicating that the metrics may have an application in quality measurement.
However, other studies find no support for the equations [Kaf85, Coo82].

Basic parameters Calculated metrics

n1 unique operators used Program length N = N1 + N2

n2 unique operands used Vocabulary n = n1 + n2

N1 total operators used Volume V = N × log2(n)

N2 total operands used Effort indicator E = V
2

n2
× n1

N2

Table 2: Some of Halstead’s software science indicators. Adapted from Halstead
[Hal75] and from Wake and Henry [WaH88].

Cyclomatic complexity, defined by McCabe, is a count of the number of decision
points in a program. The number is based on a graph representation of the pro-
gram. The formal definition is v(G) = e − n + 2, where e is the number of edges
in the graph, and n is the number of nodes. McCabe has shown that this number
relates to the cyclomatic number of the graph representing the control flow of the
program, and he further associates this with ease of testing the program [Kaf85].
However, it is not entirely clear that the cyclomatic complexity corresponds to per-
ceived, or psychological complexity, even though it is often interpreted as a measure
of comprehensibility [Kaf85, Coo82]. As with the Halstead metrics, an increase in
this metric could indicate quality issues. The program might be complex and hard
to maintain. However, the implemented algorithm also has an inherent lower com-
plexity bound, so it is not possible to decrease complexity beyond a certain lower
limit.

2.3.3 Object-oriented metrics

Since the rise of object-oriented programming languages, a number of researchers
have attempted to apply traditional software measurement on object-oriented pro-
grams. However, this has been criticised both because of the lack of a theoretical
foundation of the traditional metrics and because object-oriented programming may
be fundamentally different when it comes to problem-solving behaviour. Therefore,
a set of metrics designed specifically for object-oriented software is justified. Because
the abstraction level of object-oriented languages is different than that of procedural



14

languages, design of object-oriented systems produces designs that are closer to the
implementation code. Therefore, these metrics can be partly used to measure both
design and implementation – although some of them can only be used when the
implementation exists.

Chidamber and Kemerer have developed object-oriented metrics that have a rigorous
theoretical foundation and have validated them empirically [ChK94]. Their approach
focuses on the design of object-oriented software, and they argue that the benefits
of design evaluation can be substantially greater than metrics aimed at later phases
of the software life-cycle. Their metrics are independent of the particular object-
oriented language. This means that upon actual use, some choices must be made
depending on the language in question.

The authors draw from theoretical philosophy in defining the following terms:

Coupling: The degree of interdependence between parts. Two objects are coupled if at
least one of them acts upon the other.

Cohesion: The internal consistency within parts. In object-oriented programming, the
degree to which related things are kept together; similarity between methods. Simi-
larity between methods can be seen as the intersection of the sets of instance variables
used by the methods.

Complexity: The larger the number of properties, the higher the complexity. It can be
defined as the cardinality of the set of properties of an object.

Scope: How far the influence of a property extends in the class hierarchy. The influence of
a property on descendant classes is indicated by the number of children of the class
that has the observed property. The influence from properties of ancestors of a class
is indicated by how deeply into the inheritance tree the observed class is located.

Combination: The result of combining two or more classes to generate another class.

This is related in some programming languages to multiple inheritance, but also to

class hierarchy, and the result is that the obtained class has as its properties the

union of the properties of the component classes.

Using these definitions, which the authors define precisely using set-theoretical con-
cepts, a number of object-oriented metrics are given (Table 3). Weighted methods
per class (wmc) is the sum of the complexities of all methods in a class. Chidamber
and Kemerer purposely do not define how the complexity of a method is calculated,
to avoid making this metric specific to any programming language. They suggest



15

that some traditional metric may be appropriate. The utility of this metric is that
it predicts the time and effort required to develop and maintain the class. With
increased wmc, the potential impact on the children of the class is increased, which
means the class may have a greater impact on the quality of the program. Also, the
possibility of reusing the class is decreased due to specialisation.

Depth of inheritance tree (dit) is the maximum length of a path from the node
representing a class to the root. This metric relates to the scope of the class, and
it measures how many ancestor classes may potentially affect the class under ob-
servation. With increased dit, the complexity of the class is likely to increase as
there are more possible ancestors to inherit methods from. Also, a large overall dit

means more classes and methods and thus greater design complexity. The deeper
a particular class is in the hierarchy, the greater the potential reuse of inherited
methods. All these factors have potential quality implications.

Number of children (noc) is the number of immediate descendants of the class
under observation. This also relates to the scope of the class, and measures how
many subclasses inherit the methods of the class. With increased noc, the reuse
through inheritance has increased, but the likelihood of subclassing misuse has also
increased. noc is also a measure of the potential influence the class has on the
overall design.

Coupling between object classes (cbo) is the count of the number of other classes to
which the class under observation is coupled. Coupling between two classes exists
when one of them uses methods or instance variables of the other. A lower cbo

means the class is more independent and has greater potential for reuse. Also, a high
overall cbo means greater sensitivity to changes, increased maintenance difficulty
and greater need for testing.

Response for a class (rfc) is the number of methods that can potentially be invoked
in response to a method being called from outside the object. Increased rfc means
the class is more complex and testing and debugging is more complicated.

Lack of cohesion in methods (lcom) relates to the similarity between all method
pairs in the class. The similarity is determined by the number of instance variables
that both methods use. Decreased lcom means the class is more cohesive, which
promotes the desired trait of encapsulation. Increased lcom increases complexity
and implies that the class should probably be split into two or more subclasses.



16

Chidamber and Kemerer argue that a well architected system will have a stable
class hierarchy, which will be reflected in the wmc, noc and dit metrics over time.
rfc and cbo metrics can be checked to detect if there are unwarranted connections
between classes. If the definitions of the classes themselves are changed, wmc and
lcom metrics will reflect this. Thus, a manager can use these metrics to gain an
evolutionary overview of the implementation and maintenance quality of an object-
oriented program.

Abbreviation Name Description

wmc Weighted methods per class WMC =
∑n

i=1
ci, where c1, . . . , cn are the complexities of

each method in a class.
dit Depth of inheritance tree The maximum length of a path from the node representing a

class to the root.
noc Number of children The number of immediate descendants of a class.
cbo Coupling between objects The count of the number of other classes to which a class

is coupled. Coupling exists when one class uses methods or
instance variables of the other.

rfc Response for class RFC = |RS|, where RS = {M} ∪∀i {Ri}. {M} is the set of
all methods in the class and {Ri} is the set of methods in any
class called by method i in the observed class.

lcom Lack of cohesion in methods LCOM =

{
|P | − |Q| if |P | > |Q|

0 otherwise
, where P is the set

of method pairs whose number of shared instance variables is
zero, and Q is the set of method pairs whose number of shared
instance variables is not zero.

Table 3: Object-oriented metrics as proposed by Chidamber and Kemerer [ChK94].

2.3.4 Maintenance metrics

Software maintenance is an extremely important part of the software life-cycle. Esti-
mates of the relative amount of resources spent on maintenance during the entire
life-cycle range from 40% to 67%, and the cost of fixing a defect increases as the
software life-cycle progresses [WaH88, Roy87]. The value of high quality software
is thus at its peak during the maintenance phase, and it is therefore economical to
try to predict the maintainability, and correct defects that affect maintainability as
early as possible in the software life-cycle. Since the maintenance phase can con-
tinue for an indefinite amount of time, metrics that are usable during that phase are
valuable.

Visaggio’s structural information (I(v)) metric [Vis97], is an example of further
development of the “ripple effect” idea, introduced in Section 2.3.1. It attempts to



17

connect decisions made in the requirements analysis, design and implementation
phases of a software project. Visaggio constructs a dependency graph that shows
how decisions in the analysis phase have resulted in design artefacts in the design
phase, and how these in turn have resulted in specific parts of the implementation.
The metric then measures how a change in one part of the system will affect other
parts. Visaggio relates this metric to the notion of quality of organisation in the
software.

Visaggio lists several advantages of this metric compared to what he calls “the com-
mon complexity metrics” which are presumably code metrics such as those described
by Halstead and McCabe (Section 2.3.2). The metric has not been empirically vali-
dated, and its biggest practical weakness is that the dependency graph cannot be
built automatically, because the necessary tools to produce machine-readable arte-
facts in all stages of development are not commonly available. Such tools would
have to be used from the earliest point in the process, and could make the design
work more tedious and less flexible.

As another example of a metric model that predicts quality in the maintenance stage,
Sharma and Jalote define stabilisation time, a metric that measures how long it takes
for a software product to reach a steady state of defect arrival frequency after it has
been installed [ShJ06]. They note that the failure rate often declines after software
installation, and then stabilises at a certain level, after a certain time. Possible
causes for this are that users learn to work around the defects, that configuration
issues in new installations are resolved, and that user experimentation ceases after
some time. This metric could be applied to foss, with proper adjustments to fit
each project.

In general, metrics for the maintenance phase are the same as those for other phases,
but instead of taking single samples at the end of each development phase, regular
samples are taken and the rate of change is noted. Maintenance metrics can be
thought of as software evolution metrics.

2.3.5 General metrics problems

One frequent problem with software metrics, which is accentuated in quality metrics,
is that of incomplete data or missing samples. Chan et al. have applied statistical
methods to such data in an effort to reduce the impact of this missing data. They
used an imputation method to fill in missing data, which proved successful in their



18

case study. Also, they have tested a formal method to verify the statistical sig-
nificance of predictor metrics on the target metrics and to eliminate unnecessary
categories in categorical predictor metrics [Cha06].

Another problem, prominently present in foss development, is the lack of software
engineering experience, easily understandable metrics, and general understanding of
quality models. This leads to an inability to comprehend and make use of quality
improvement methods, or to participate in projects where such methods are used.
Conversely, foss projects already using such methods have a higher barrier of entry
and may fail to attract the needed number of programmers.

Houdek and Kempter propose a method to address this issue in any software or-
ganisation [HoK97]. Their aim is to explore how experience can be collected, stored
and disseminated without distortion – written material is often ambiguous and in-
correctly interpreted. They wish to use the findings for quality improvement. They
observe that the ability to understand why a software project has succeeded is key
to a repeatable process. They propose to use a systematic, scientific method to gain
insight into the process and then package this insight for reuse in later projects.

The scientific method of systematic information collection is an important step, and
its primary objective is to describe the methods involved. However, Houdek and
Kempter emphasise that the insights gained through observation must be dissemi-
nated or packaged in a reusable form. With this in mind, the authors propose the
use of patterns, pairs of problem and solution that can be applied, with some modi-
fication, to a new problem. Similarly to design patterns, which guide the design and
implementation of software, quality patterns would be employed to guide quality
assurance.

Another problem is that statistics and machine learning can be very challenging to
interpret. The methods produce results, but the underlying model is often incom-
prehensible to humans. Developing ways to visualise metrics can help observers who
do not have the time or knowledge to interpret complex, number-heavy statistical
models to extract the underlying rules. Also, if data exploration is desired, the
choice of one particular model may be premature and visual presentation beneficial.

Langelier et al. have experimented with mapping metrics to three-dimensional visual
objects. They mapped the size, cohesion and coherence of classes in object-oriented
programs to the size, colour and rotation of three-dimensional cubes and arranged
them together to form a map of the program [Lan05]. This allows the observer to
gain an overview of the software, and assists in choosing more specific features for
closer observation.



19

Liu et al. emphasise that practical exercise in using quality prediction models is
important in education [Liu07]. They describe an experiment set-up with prepared
data that can be used to train students in the use of quality metrics. There is an
abundance of foss documentation that describes the use of software and partici-
pation in projects in a how-to or pedagogical fashion, but we have not found any
such document regarding foss quality. This is an area where foss could improve
significantly.

3 Quality in the context of Free and Open Source

Software

In the philosophical and reflective works that define foss, the motivation of practi-
tioners is idealistic, regardless of whether their primary focus is ethics or economics.
This value system concerns the potential use and re-use of the software, not its func-
tional aspects. At the same time, other foss advocates often cite higher quality in
technical form as the primary practical benefit. Defects, or bugs, will be eliminated
because of the sheer number of people looking at them – this is the reasoning often
presented. Peer review could be considered the primary method of quality assurance
in foss projects. It somewhat resembles both the academic notion of peer review
[Mic05a] and a formal technical review of program code, but may take many forms
in practice [MäM06].

However, simply labelling a piece of software “foss” does not increase its technical
quality. In fact, most foss projects struggle with the same kinds of quality and
process issues as most traditional software projects. Controlling functionality, effi-
ciency, reliability, usability, maintainability, and portability of software is difficult.
The challenge to deliver a product on schedule and according to specifications is not
automatically met by placing the source code in a publicly accessible repository.

In fact, foss may be completely overlooking certain aspects of software quality
simply because the notion of quality has not been defined for foss. Developers
may be eager to solve their own problems and cater to their own needs but believe
that all others are able or inclined to do the same. Quality is often equated with
the number of discovered defects that have been removed, and it is believed that a
vast number of random tests will efficiently remove all defects. Similarly, it is often
said that foss will automatically result in more secure software [Gre03] – again



20

assuming that source code availability will ensure this. Not all advocates emphasise
these aspects of quality; some focus on non-technical benefits instead. But if foss

is to be a repeatable practice, more insight into the reasons for success and failure
is needed.

3.1 The foss mind set: catalyst or obstacle?

We observe that foss projects can quickly adapt and change their working methods,
but that they are surprisingly resistant to certain types of change. Also, foss

developers usually have a very specific picture of themselves and their projects.
Does this support or undermine quality assurance, and how do foss projects lend
themselves to quality assessment? We will explore these questions by presenting a
detailed account of what foss development is or can be, and what it is not.

In an analysis of exploratory interviews with seven foss developers, Michlmayr et
al. present the mind set of the developers and describe some key characteristics of
foss projects, such as formation, membership, and work processes [Mic05a]. They
tie the analysis into a question of quality: what is the current understanding of
quality in foss projects, and how could these projects improve quality in both their
work processes and in the final software deliverable?

Michlmayr et al. draw attention to two foss project characteristics that have impor-
tant implications on quality assurance: their distributed nature, and the fact that
the participants are usually unpaid volunteers. Project-level practices that are com-
monly referred to as human resource management are difficult to achieve, since the
participants cannot easily be held accountable for their involvement in the project.
For instance, it is difficult to delegate tasks that no-one volunteers to perform. The
project can only do things that a contributor is prepared to carry out. In a foss

project with paid employees, the mechanism for affecting motivation is different, but
the topic of how to motivate participants is different from the question of whether
the work is performed or not.

A common pattern that Michlmayr et al. present as background to their research
is that a multitude of foss projects are abandoned early, and only relatively few
have a large number of participants. Michlmayr et al. note that “more interesting
projects with a higher potential will probably attract a larger number of volunteers”
but also that project failures might be related to lacking project management skills
[Mic05a]. Thus, it appears that a project needs both skilled management and a
“critical mass” of contributors to be sustainable.



21

Although only including comments from seven developers, the interviews appear to
have captured some of the beliefs that are commonly found among foss developers.
The interviewees were asked questions about quality management in foss and non-
foss projects, and otherwise the interviews were allowed to take a free form. Thus,
the interviews attempted to capture a subjective or intuitive perception.

The interviewees presented the opinion that foss has a “higher potential to achieve
greater quality” and “can react faster to critical issues” such as security flaws, com-
pared to non-foss software. This is attributed to a number of factors such as more
feedback in the form of bug reports and feature requests, higher motivation because
contributors participate by their own free choice, and chance of attracting better
human resources because the projects are distributed in nature and can draw from
a greater pool of knowledge and expertise. The authors note that it is difficult to
compare foss software with non-foss software, because there is seldom access to
source code and defect reports from the latter. The authors do not report on the
interviewees’ overall software engineering experience.

The authors note very varied practices among different foss projects. For instance,
the infrastructure varies: projects use many different tools for defect tracking, com-
munication, and source code storage and versioning. Some projects have rigorous
requirements that must be fulfilled before committing new or changed source code
into the source code repository, while others have more relaxed requirements. Some
projects allow nearly anyone to commit directly into the repository, some have entry
requirements and others allow only a small, fixed number of developers to commit
while other contributors have to submit patches for review and possible later inclu-
sion. Naturally, this is also affected by the capabilities of the source code repository
system.

Michlmayr et al. note a number of process-level practices that differ between projects.
Projects can differ in the way they allow new participants to join, what requirements
they impose upon releasing a new version of their software, how they create and
manage different versions or branches during development and after release, how
peer review is performed, if at all, how testing is organized, and finally, what overall
provisions the project has in place for quality assurance.

Furthermore, different kinds of projects have different kinds of goals and may re-
quire different kinds of leadership [Nak02]. Nakakoji et al. have explored evolution
patterns in foss systems and communities, and draw attention to three types of
foss projects. Exploration-oriented projects wish to share innovation and know-



22

ledge and have an individual, centralised style of control. Utility-oriented projects
aim to satisfy individual needs and have a decentralised style of control. Service-
oriented projects attempt to provide a stable service and have a central governing
body with a small number of members.

3.1.1 How foss compares to process models

It is easy to think that foss is a process model. It would fit conveniently beside
traditional process models, such as the waterfall model, and iterative or change-
embracing models, such as Agile software development models. While there may be
similarities, and while foss may apply some of the same steps and procedures, there
is too much variance in foss projects to support the claim that all foss projects
would share a common process model or meta-model. Foss projects may employ
any process model, or none at all. However, foss does have a direct impact on
the process employed by a project, whether or not that process is consciously or
rigorously defined.

Some of the main characteristics of foss are posed as differences compared to tra-
ditional, industrial software development. Mockus et al. list a number of such differ-
ences [Moc02]. Foss is built by potentially large numbers of participants, ranging
in the hundreds or thousands. Work is not assigned, participants choose their own
work. There is no explicit system-level design, or even detailed design, no project
plan, schedule, or list of deliverables.

However, Mockus et al. may not have looked carefully enough. They observe that
the chance of success increases if developers use the software they write. If so,
the requirements and design exists privately with the developer, although it is not
communicated. In other cases, and we believe this is increasingly common, foss

projects do have plans, schedules and other project-level documentation [Mic05c],
but they are part of a continuous design effort that runs in parallel with the rest of
development.

Mockus et al. also explicitly distinguish “pure” foss projects, which they define as
those that have no significant commercial involvement. This is a highly problematic
label, and it is not clear what its utility is. First, commercial involvement does not
appear to select the development methodology or process, and second, it may be
impossible to determine which foss projects do have a commercial involvement and
which do not – individual developers may benefit financially although the project



23

does not charge fees for the software. Third, the notion of significant commercial
involvement would have to be based on the real impact of the involvement, which
Mockus et al. do not define.

In our view, the foss process can be described as the emergent behaviour of a large
number of parallel iterations, varying but short in size. Nearly all foss activity
consists of this kind of parallel iteration, whether it is design, code writing, testing,
documentation writing, debugging, or something else. All the phases of more clear-
cut models occur more or less at once, similarly to the Unified Software Development
Process, but the iterations can be significantly shorter. It is not uncommon to
have several iterations occur per day. In large projects with many participants,
the iterations frequently become shorter and more numerous, while smaller projects
progress at a slower pace.

Each individual iteration includes only a small subset of the project participants,
often just one or two developers, while the others are observers to that iteration.
This is supported by the tools that foss has developed for its own work. Mailing
lists and on-line chat are used for the inception phase of each micro-iteration. Col-
laborative on-line editing tools, such as the wiki, are used to create documentation
and plans. Recent version control tools support completely distributed work and
allow each individual developer to handle a complete, separate branch of the entire
project source code – the work process ensures that changes are shared and applied
efficiently. These findings are similar to those of Huntley, who observes that while
the individual developer’s actions may appear chaotic, the overall learning process
is fairly rigorous with specialised tools to support each stage [Hun03].

Huntley describes the foss method as a continuous organisational learning pro-
cess, “where the development starts with a rudimentary but useful implementation,
which is then iteratively improved as the team learns about use cases, designs, and
coding techniques through experiment and user feedback” [Hun03]. However, not
all projects are learning efforts, as Nakakoji et al. demonstrated [Nak02].

We note that the previous observations correspond remarkably well with the insights
presented by Royce in his description of large software system development [Roy87].
It is ironic that the most valuable part of his contribution, the need for flexibility
in the process, has been carried forward by a working method that has generally
eschewed process as a concept.

When observing foss work, the overall process can be impossible to distinguish,
because participants are constantly adapting and optimising for current require-
ments. Therefore, in Michlmayr’s definition of process, what is described is actually



24

quite technical and may be characterised as the working methods of the project
rather than a high-level, managerial process. Nevertheless, to apply the insights
of Schneidewind, understanding that foss views process very differently than tra-
ditional software engineering is vital when asking both when and why to measure
quality [Sch02]. We propose that quality in foss projects should be measured at
the level of each micro-iteration as well as by an overall, separate quality assurance
process.

3.1.2 Process maturity and success

Process maturity is often cited as a prerequisite for repeatable quality. Like Polančič
et al., Michlmayr hypothesises that there is a link between process maturity and the
success of a foss project [Pol04, Mic05c]. Michlmayr observes that foss projects
have an important volunteer component among contributors, and that they are
usually globally distributed. This leads to a different set of motivations and a
different value system than that of traditional software organisations, and a re-
evaluation of traditional software engineering insights in a foss context is required.

Michlmayr uses the amount of software downloads as an indicator of success. It can
thus be inferred that this view of success relates to popularity, and that popularity
can be an indirect indicator of quality. However, a large part of available foss

projects were started as mere experiments or as hobby activities, where success is
not necessarily defined as popularity, or at all.

Michlmayr’s methodology does correctly observe that comparison can only be mean-
ingful if the compared projects are similar in all aspects except those whose relation
is under scrutiny. He compares successful projects with unsuccessful ones and at-
tempts to detect whether the process maturity differs in the two sets. Michlmayr
finds that the maturity of the process employed in foss projects has an impact on
the success of the project. However, the nature of this relationship is not inves-
tigated and Michlmayr suggests thorough code quality comparison and qualitative
evaluation of release strategies as further research.

Crowston et al. have examined the work practices – effectively, the development
process – of foss projects from the perspective of organisational theory [Cro04].
They describe a hypothetical, layered team structure in foss projects. Mockus et
al. have made similar findings in their study of Apache and Mozilla [Moc02].



25

The team structure reflects the role of project participants (Figure 3). At the centre
are the core developers, including the project founder and release coordinator(s).
The next layer consists of co-developers who contribute more sporadically. In the
following layer are the active users, who participate in development by testing new
versions of the software and submitting bug reports and feature requests. Those are
followed by readers, who may look at the source code, compile it for their own use,
and make local changes, but do not communicate their findings, or only participate
in discussions very sporadically. The outermost layer, whose size is most difficult to
estimate, is that of the passive users who only use the software.

Figure 3: Layered organisational structure of an idealised foss project. Adapted
from several sources and observations.

As Mockus et al. note, this structure has not been verified. It represents a simplified,
prototypical model of a foss community. Its value lies in the insight that foss

projects are not anarchic; they have intricate team dynamics, power structures and
work processes that enable or prevent quality assurance.

Crowston and Howison observe that membership in inner layers changes less fre-
quently than in the outer ones, and change at the core layer may be very infrequent
[CrH06]. However, successful change can be a sign of maturity, as can the current
composition of the inner layers. Therefore, examining the organisational structure of
a foss project is important background information in quality assessment. Anoma-
lies in the organisation may pose a risk to the continuity of the entire project, or
result in neglected quality assurance.



26

3.1.3 Openness and reliability

Van Wendel de Joode and de Bruijne have explored the relationship between open-
ness and reliability [WeB06]. The authors conducted a small survey to explore the
relationship between source code access and defect correction. Respondents agreed
that there is a relationship, but when asked to give further explanation, they con-
cluded that “most users do not analyse the source code or try to report and solve
bugs”, that “half of the bugs are resolved by only one person” and “the ten most ac-
tive bug reporters are responsible for 85% of all bug reports”. The authors conclude
that access does not guarantee quality.

Using organisational theories, the authors attempt to gain some insight into the
relationship between openness and reliability. One theory, normal accident theory,
states in part that if the elite in a group is unaffected by quality failure, then
resources will not be allocated toward ensuring safety and reliability. It also states
that unencumbered access to information within the organisation is vital, as it allows
the organisation to learn from mistakes. Another theory, high reliability theory,
states that certain organisations have nurtured conditions where reliability can be
maintained despite the complexity of the systems managed. A strong presence of
external, stake-holding observers is one of these conditions.

Drawing from these theories, van Wendel de Joode and de Bruijne formulate three
hypotheses on openness and reliability in foss communities. First, corresponding to
the elite: the bigger the percentage of developers who actually use the software they
develop, the more reliable the software. Second, corresponding to organisational
learning: the more transparent the flow of information, the more reliable the soft-
ware. Third, corresponding to external observers: the more popular the software,
the more reliable it is [WeB06]. These hypotheses, while certainly not empirically
proven, correspond well with what can be seen in real foss projects.

3.2 Previous work and case studies

A quick glance at some random foss projects may lead to conclusions that there is no
planning, requirements, quality goals, or project costs involved. Deeper knowledge of
several foss projects reveals that thought is given to many complex quality-related
questions, and that significant amounts of time and money have been invested in
foss. However, many projects have not explicitly taken all the possible steps to
correct their quality issues.



27

Furthermore, obtaining samples from foss projects requires deep understanding of
the tools with which foss development is carried out. Enormous amounts of data
is generated and stored in a wide variety of formats and in places that are not found
without some technical knowledge. For instance, while some research claims it is
impossible to know the number of developers involved in a particular foss project,
this information is actually available to a great extent, for example in the package
database of the Debian gnu/Linux distribution [Rob06] and in files accompanying
the source code. It is important to review existing foss quality research and study
foss projects in detail to gain an understanding of what information is available.

3.2.1 Growth, evolution and structural change

Godfrey and Tu have written a series of papers concerning the evolution of foss.
They employ mostly statistical measures to examine the well-known Linux kernel
project from a source code perspective. They also draw on observations of foss

development principles and philosophy in general, and combine them with the mea-
surements to explain certain behaviour in the Linux project [GoT00, GoT01].

Lehman’s laws of software evolution state, among other things, that systems growth
leads to increasing difficulty in adding new code unless explicit steps are taken
to reorganize the overall design [Leh97]. However, Godfrey and Tu find that the
evolution of the Linux kernel has seen a dramatic increase in size over a period of
six years, contradicting Lehman’s hypothesis [GoT00]. The authors attribute this
to a number of factors, the most important being that the Linux kernel source code
consists mostly of device driver code, and that the actual core is relatively small.

Further, Godfrey and Tu observe related work indicating that a top-level, full view
of the modules or subsystems of a large code base is not enough to detect the
important evolutionary behaviour of the software process, and that a more detailed
view of individual parts is needed. In their own work, it was important to detect the
distinction between the core code of Linux, and the relatively large body of device
driver code. When viewed separately, different conclusions could be drawn about
the kernel compared to an overall view.

The authors compared the overall size of the source code and the size of the differ-
ent subsystem modules in different versions of the Linux kernel over time. In other
words, they tracked the evolution of different branches of the kernel, and the evolu-
tion of the different subsystems. They also used external knowledge of features and



28

changes that the kernel developers had introduced at different points in time, such
as the porting of Linux to several different processor architectures. The authors did
not expand their research beyond loc analysis.

Although Godfrey and Tu present statistical evidence that seems to contradict
Lehman’s law, they fail to apply their own conclusion about the need for a more
detailed view to their own claim of contradiction. Since the Linux project is divided
into several parallel projects, each maintaining a particular subsystem, the project
as a whole does not have to work with the entire code base at once. It appears that
Lehman’s explicit steps have indeed been taken in the Linux project to organise the
overall design of the system as well as that of the working process in a manner that
supports the current size and complexity of the system. Godfrey and Tu may have
become blinded by the surprise of the total loc evolution curve. In any case, later
studies have found that the super-linear growth has at least not been permanent.

Izurieta and Bieman have repeated some aspects of Godfrey’s and Tu’s study and
also applied the analysis to the freebsd kernel [IzB06]. In particular, they found
that the claim of super-linear growth in Linux had no support. Both Linux and
freebsd displayed sub-linear or, at most, linear growth, which is what previous
studies by Lehman on industrially produced software have shown [Leh97].

There are several important methodological aspects of Izurieta’s and Bieman’s study.
They used the existing project directory structure to divide the project into modules
for individual study, as suggested by Godfrey and Tu, to eliminate observer bias.
They used simply physical loc, and measured program size by loc. They also
provided an interesting overview of the different released versions of freebsd. Their
study concentrates only on the released versions of the software, and thus fails to
capture the impact of ongoing work.

3.2.2 Mining public repositories

Since our goal is to automate the collection and analysis of metric data as far as
possible, we must consider the practical possibilities and difficulty of data mining in
publicly accessible data repositories. Koch and Schneider have presented a method-
ology similar to that of Godfrey and Tu. Their metrics and analysis displays a
wider variety, taking into account the continuous development process that takes
place in the source code repository and project discussion lists. They apply their
methodology to the gnome project [KoS00].



29

Koch and Schneider use a more rigorous approach than Godfrey and Tu, first gain-
ing an understanding of the relationships between the different pieces of data by
modelling them using an entity-relationship diagram. The model encompasses the
people involved in the process, the discussion guiding it, and the actual source code
produced. The model is based on observation of discussion list activity and activity
within the gnome cvs source code repository.

Koch’s and Schneider’s methodology displays important characteristics that allows
capturing a number of defining aspects of foss development. First, the sample
granularity is much smaller than in Godfrey and Tu. For source code, the sample
is a single cvs commit action, instead of an entire release. Second, each action is
associated with the person who performs it. Godfrey and Tu have no concept of actor
in their model, whereas Koch and Schneider demonstrate that it is an important
factor in the foss project. Third, Koch and Schneider include the discussion lists
in the model, and although they do not analyse the discussion contents, they do
find temporal correlation between discussion list activity and cvs activity. Fourth,
Koch and Schneider apply time-line analysis throughout their methodology. Each
action is placed on a time-line with very fine granularity, allowing the authors to
make effort estimations and track progress on a very accurate scale, among other
things.

In this work, loc remains the primary metric to describe the size of source code and
the size of changes to source code. The authors describe the different metrics where
loc is used: loc added, loc deleted and loc changed, the last of which is defined
as the difference between the first and the second during a given time period. The
authors use a simple definition of loc, counting physical lines regardless of their
contents.

For the discussion lists, the authors define the metric number of postings. The
authors then go on to define the checkin metric, and finally proceed to define derived
metrics such as time spent on the project, programmer activity, loc added per checkin
and loc added per hour.

Using these metrics and the correlations of the data model, the authors make a
number of observations. They observe that the contributions to source code for each
programmer follows a power law: a majority of programmers contribute only a small
amount of code, while the bulk is committed by a small core team. Further, they
attempt to define certain correlation patterns that concern the amount of change
in the code, the tendency of active programmers to use smaller or larger commit



30

chunks, the difference in programming style and the connection between long project
membership and amount of contribution.

The authors observe similar patterns in the discussion lists: a small number of pro-
grammers contribute to most discussion list postings, while the majority of posters
contribute quite infrequently. Correlating postings with loc added, the authors
conclude that programmers who contribute more code are also more active in the
discussion lists. However, the authors could not find a correlation between the total
amount of postings and the total amount of added code within a given time interval.

The authors derive a number of interesting trend graphs. For example, they at-
tempt to detect whether a particular module of the gnome project is undergoing
an acceleration in development, or if it is nearing completion and development is
slowing down.

The authors confirm that a higher number of contributors lead to more output.
However, they note that the organisational structures may not support more than
a given number of participants. When this saturation point is reached, an or-
ganisational change is needed to sustain output growth, an observation that is
consistent with the findings presented by Mockus et al. and Dinh-Trong and Bie-
man [Moc02, DiB04, DiB05].

Asklund and Bendix have successfully captured the state of the art in foss config-
uration management in 2002 [AsB02]. They note that traditionally, configuration
management has been a manager activity, where the stages of the software develop-
ment process have their defined activities within a configuration management tool.
These activities include configuration identification, where the product structure
is determined; configuration control, where changes to a configuration item is per-
formed; configuration status accounting, where the status of each change is recorded
and deviations from the specified basic configurations is noted; and configuration
audits, where configuration items are checked for conformance with their configura-
tion, such as performance characteristics.

In foss however, configuration management is a developer activity, and includes
version control, build management, configuration selection, workspace management,
concurrency control, change management and release management. These are so
central to foss development that it is only in the most special cases that they
are not used in some form. While Asklund and Bendix make several assumptions
and conclusions that are no longer valid in a modern foss environment, they have
correctly identified configuration management as a crucial enabler for the distributed



31

work method common in foss. The important activity happens within the source
code repository, which is an increasingly distributed environment of which each
developer holds a copy. To properly understand the decisions behind the source
code changes, researchers must correlate mailing list and other on-line discussion
activity with actual code commits. Asklund and Bendix correctly emphasize the
importance of open communication to coordinate and plan the programming.

Massey reports challenges when obtaining data from foss version control systems
[Mas05]. Extraction of data seems simple, but in practice it is not. A particular
problem is that foss projects have periodically restarted their version control, either
due to problems in the version control software, because of project forks, or because
the project has moved to a newer version control system. However, we note that it is
not always necessary to obtain or analyse the entire version control history. Instead,
intelligently selecting a certain period of time can be sufficient and useful to explain
important events in the history of a project, as noted by Massey. Furthermore,
analysing and recording the current activity could yield usable results in a relatively
short time. Models based on historical data may be invalid if the project has changed
its production process.

3.2.3 Empirical tests of statistical quality models

Zhou and Davis have empirically tested a software reliability model on eight foss

projects [ZhD05]. They confirm that the defect arrival rate follows a Weibull distri-
bution, but find no support that it would follow the more specific Rayleigh distribu-
tion commonly found by the industry in non-foss software. They suggest that each
foss project may require its own Weibull shape parameter, and that the parameter
may change over time depending on several factors. They conclude that the defect
arrival rate stabilises at a low level if the project continues for long enough. Simi-
lar results are reported by Tamura and Yamada, who emphasise that interaction
between software components should be taken into account [TaY05]. Also similar
is the stabilisation time metric proposed by Sharma and Jalote, as described in
Section 2.3.4 [ShJ06].

The significance and utility of these findings is that stabilisation of the defect arrival
rate has been used in the industry as a sign of reliability. When the curve stabilises,
testing can cease and the software can be released. Adapting this to a foss envi-
ronment could be an important tool for measuring overall quality and aid in release
management.



32

Li et al. also attempt to fit a Weibull model to development defect arrival, examining
the openbsd project [Li05]. Their results show that it is not possible to obtain
results before most of the defects have occurred, meaning that there is insufficient
data to fit the model. Thus, they conclude that this approach is infeasible, and
turn to metrics-based field defect prediction instead. They find the most important
predictor to be the number of messages to the technical mailing list during the
development period. The lack of causal information suggests that this may be a
case of confusing cause and effect – it is not the preceding discussion that creates
the defects; it is the testing and search for the defect that causes the discussion,
which in turn causes the defect report to be filed. Nevertheless, the increase in
discussion may indicate that the project does perform active quality assurance.

Phadke and Allen have made similar experiments, and conclude that quality mo-
delling is viable for predicting modules with a high risk of defects [PhA05]. They
compare logistic regression and decision trees, and while both methods do perform
correct classification in some cases, neither produce satisfactory results over their
entire data set.

Dick and Sadia argue that parametric statistical models are not suitable for accurate
quality prediction [DiS06]. As there is no conclusive theory that maps software
metrics to software defect rates, research in this area is reduced to a trial-and-error
search through an infinite space of models. Instead, useful results could be achieved
by using machine learning. At the very minimum, managers could benefit from a
binary decision about the expected quality of a code unit – that it needs or does not
need additional effort. They also note that the lack of large data sets with many
software metrics and defect data included is problematic, but in foss projects, these
items are available.

The authors further note that no quality assessment process or metrics currently
exist for foss, but they do not state why or how it would be different from non-
foss. They collect a data set from the Mozilla project, and then analyse it using
fuzzy clustering algorithms. They conclude that their method was able to identify
groups of modules with a higher defect density than traditional models, yielding a
basis for a useful tool in quality assurance.



33

3.2.4 Object-oriented metrics for foss

Gyimóthy et al. have validated a number of object-oriented metrics for fault pre-
diction on foss projects [Gyi05]. The analyses used to validate the metrics were
regression analysis, logistic regression, and machine learning. All methods yielded
similar results and thus they should have high validity according to the authors.
They were able to validate the wmc, dit, rfc, cbo, lcom, lcomn, and loc met-
rics as valid predictors of future faults. The best single predictor was cbo, but loc

also performed well. dit and noc metrics were unsuitable for fault prediction.

Studying object-oriented programs is not without complication. Some of the object-
oriented languages widely in use, such as c++ and Java, provide some features of
generic programming. Briefly, this allows the creation of classes that are generic
with respect to the objects they can interact with. The compiler, preprocessor or
virtual machine will instantiate versions of these template classes for each class that
the template class will interact with. This poses a problem for analysing code,
because the class hierarchy, and thus the program architecture, is not the same
when analysing the source code and the code that is actually run. Also, program
architecture may be very hard to recreate without duplicating the operation of the
build system.

Gyimóthy et al. used a data-collecting script as a wrapper for the build tools and
were thus able to extract information from source code that was generated during
the build. Compiler wrapping was used previously by the same authors to detect
fault-proneness in the Mozilla suite [Fer04]. The authors describe the technique and
their overall fact extraction process in detail.

The process was carried out using Columbus, a reverse engineering framework, and
consists of five steps (Figure 4). The first step, acquiring project and configuration
information, is particularly problematic since the automatic actions of the build
system might produce code that should be analysed, but escapes analysis because it
is only available during the build. This is in contrast to Robles et al., who explicitly
avoid counting automatically generated code, presumably because of the tool they
used [Rob06].

Ferenc et al. redirected calls normally made to the compiler and other build pro-
grams to a wrapper script. This script behaved externally exactly like the original
program, accepting the same input and parameters and producing the same output
and return value. It invoked the real program with the original parameters, but it



34

Figure 4: Fact extraction process of Columbus framework [Fer04].

also invoked another program that arranged the analysis of the output files, allowing
the automatically generated code to be analysed as well.

Ferenc et al. analysed Mozilla using the previously described technique and a number
of hypotheses about object-oriented metrics (Table 4). They did not attempt to
produce any new validation of the metrics, and relied rather on previous results.
They found decreased overall fault-proneness in Mozilla from version 1.0 to version
1.6, but did find individual classes with increased fault-proneness.

Ferenc et al. justify their choice to examine the compile-time architecture by observ-
ing that the source code is split among several different files and directories, and that
the architecture must be extracted before proper analysis can be made. Another
view is that the generated code is not written by humans, and thus represents no

Metric Hypothesis

wmc A class with significantly more member functions than its peers is more com-
plex and, by consequence, tends to be more fault-prone.

dit A class located deeper in a class inheritance lattice is supposed to be more
fault-prone because the class inherits a large number of definitions from its
ancestors.

rfc Classes with larger response sets implement more complex functionalities and
are therefore more fault-prone.

noc Classes with a large number of children are expected to be more fault-prone.
lcom Classes with low cohesion among its methods suggests an inappropriate design

which is likely to be more fault-prone.
cbo Highly coupled classes are more fault-prone than weakly coupled classes.

Table 4: Object-oriented metric hypotheses used by Ferenc et al. [Fer04], originally
drawn up by Basili et al.



35

increase in programming effort. Also, one could argue that if one layer of abstrac-
tion is removed, the next layer should also be removed by the same reasoning. This
would lead to analysis of the compiled object form of the program. If the metric is
to capture some aspect of human effort, it is not advisable to measure automatically
generated code. If the architecture can be extracted during the build, it must be
possible to recreate it from the source code, since this is what the build system
does. However, extending the build tools, including the compiler, to output metrics
at build-time is more practical than writing completely new tools that duplicate
already implemented functionality.

3.2.5 Foss quality assessment model

Polančič et al. describe a software selection model specific to foss projects that
uses easily accessible data [Pol04]. The model is based on a manual procedure. The
authors observe that the model must not be too time-consuming or expensive to
use, because this is impractical in a foss setting. The proposed model consists of
six steps. First, software alternatives are identified. Second, quality metrics are
identified based on the amount of information available for the alternatives. Third,
metric weights are assigned on a scale from one to three. The authors recommend
that multiple experts select the weights to reduce subjectivity. Fourth, metrics are
calculated and normalised. Fifth, quality characteristics values are calculated and
normalised. Finally, weights are assigned to quality characteristics by the party
requesting the evaluation.

The method is quite straightforward and thus fulfils the requirement of simplicity,
but there are some issues. Some steps are very subjective, although this could be
ignored when the same experts review several software alternatives at once for the
same client. However, the model is very loose when defining quality metrics, and
none of the quality metrics used in the authors’ experiment measure the actual
source code of the program. The model seems to be focused on measuring foss

project meta-data, but does not validate its quality impact.

The utility of the method is not clear. Although the authors claim that it could be
used by a foss user when choosing among software alternatives, it ignores several
aspects. The potential of young projects is ignored because the age of the project is
directly correlated with functionality, reliability and usability without any consider-
ation of actual work. The willingness of the user to participate in development or
funding of the project, or the time frame within which the user wishes to take the



36

software into use are also relevant to such selection. Project meta-data might not
be usable at all except for comparing the project’s own view of itself against a more
objective analysis.

4 Quality model for Free and Open Source Software

projects

There are many ways in which the quality of foss may be assessed and improved.
Software consultants in the industry use simple methods, similar to the one described
by Polančič et al., to assess the quality of foss products before recommending them
to customers [Pol04]. Integrators test the software using both static and dynamic
methods before and during deployment [MäM06]. These practices are likely to be
very specialised and the results are seldom reported back to foss projects. Quality
assurance that can occur both within the foss project itself, as well as externally,
provides an opportunity for quality improvement instead of mere acceptance or
rejection of the software as a whole. At best, the project incorporates continuous
measurement and, as a result, grows more mature.

We shall focus on metrics as a primary means of obtaining information, and our
base assumption is that certain process traits are key to continuous achievement of
quality. Our aim is not to describe a quality assurance process for some particular
product, but rather to explore how quality factors in foss projects can be measured
and tracked generally. Our model is generalised to fit the most common traits in
most foss projects. Applications will reduce or adapt the model according to each
particular case. Given a list of real requirements, this approach can be applied to
measure the quality in a product for a particular user.

4.1 Preliminary description and project hypotheses

Wake and Henry have observed several quality studies and note that it is important
to examine changes in software from one version to the next, because maintenance
activity results in structural complexity growth, a quality risk [WaH88]. They are
inspired by the “ripple effect”, among other individual metrics, and attempt to cor-
relate different metrics and quality observations.



37

In their experiment, Wake and Henry use a “code library” – probably an equivalent
of a source code management or version control system – to track changes to the
studied software over time. The smallest unit of change in this system is a single
line of code. Additions as well as deletions of lines are stored, and a modification is
identified when a deleted line is followed directly by an added line.

Wake and Henry describe a number of additional facts that can be obtained from
the code library. An important one is in which procedure each change has occurred.
The authors note that by tabulating the additions, deletions, and number of changes
for each procedure, they obtain an indication of the maintenance activity that the
program has gone trough during a specified period of time. This is an important
observation for foss, where version control tools are frequently used. Wake and
Henry use these facts as control data against which they verify the experiment.

The goal of the experiment was to predict how many lines of code were changed
during the maintenance phase, based on a number of metrics. In other words, change
in lines of code is the dependent variable and the metric values are independent
variables in the statistical model. Wake and Henry chose to use multiple metrics
because in initial tests with single metrics, the model was not accurate enough.
Better accuracy was achieved using a multiple regression model with several metrics,
but they still note that the selection of the metrics pose a challenge.

The authors compared and ranked several models, and then selected one for pre-
sentation. They showed a prediction example where they consider two hypothetical
procedures in the software. They calculate Halstead’s effort metric, McCabe’s cyclo-
matic complexity and a metric further developed from information flow, information
flow with effort. The prediction equation directs the project manager toward one of
the procedures where changes are likely to be required. Naturally, to act properly
on the indication, a programmer needs to understand the code and make the proper
change. The method does not say what is wrong with the code.

However, version control systems include only the source code of the product. There
are several other sources of information. Mockus et al. find that mailing lists, version
control systems and bug tracking systems include important information about foss

projects [Moc02]. They pose seven hypotheses about foss projects, obtained by
first observing the Apache project and then refining their findings by observing
the Mozilla project. Dinh-Trong and Bieman have checked the hypotheses against
freebsd, and found support for some of them [DiB04, DiB05].



38

The first hypothesis is that foss projects will have a core of developers who control
the code base, and will create approximately 80% or more of the new functionality.
If this core group uses only informal means of coordinating their work, the group
will be no larger than 10 to 15 people.

The second hypothesis is that if a project is so large that more than 10 to 15 people
are required to complete 80% of the code in the desired time frame, then other
mechanisms than informal arrangements will be required to coordinate the work.
These mechanisms may include explicit development processes, individual or group
code ownership, and required inspections.

The third hypothesis is that in successful foss projects, a group larger by an order of
magnitude than the core will repair defects, and a group larger by yet another order
of magnitude will report problems. Taken together, these first three hypotheses
imply that project structures will break down if the group grows large, and there is
no effort of coordination. The composition of human resources in a foss project is
a quality factor.

The fourth hypothesis concerns projects that have a strong core of developers but
never achieve large numbers of contributors beyond that core. It states that they will
be able to create new functionality, but will ultimately fail to become sustainable
because their resources do not suffice to find and repair defects.

The fifth hypothesis is that defect density in foss releases will generally be lower
than in commercial code that has only been feature-tested, that is, received a com-
parable level of testing. The sixth hypothesis is that in successful foss projects,
developers will also be users of the software. The seventh hypothesis is that foss

projects exhibit very rapid responses to customer problems.

4.2 Data sources

It is easy to fall into the trap of only analysing data that is easy to obtain, such as
automatically collected download statistics, or statistics produced by foss projects
themselves. This may skew results as the easily obtainable data may highlight only
a single viewpoint. Similarly distorting is the practice of disconnecting artefacts
and the people who produce them. Foss is an activity where discussion and code
interact and are mixed. Discussion can frequently occur in or through the code, and
vice versa [Bar05].



39

To avoid distortion and one-sided analysis, we include data sources from three prin-
cipal information spaces (Table 5). In the discussion space, project participants
discuss and negotiate different aspects of the project using discussion lists and fora,
as well as other means of communication. In the documentation space, the project
documents both its rules and practices and creates user documentation. Documen-
tation external to the project exists in this space. In the implementation space, the
actual software deliverable is produced, often using a network-accessible code repo-
sitory or versioning system. Also, the implementation space is where users of the
software deploy the project deliverable. A similar taxonomy has been used in other
studies [Bar05]. We will subsequently describe the three spaces in greater detail.

4.2.1 Discussion space sources

The discussion space of a project consists of mailing lists, web fora, newsgroups
and other real-time and non-real-time communications systems. In the discussion
space, participants contribute to a free flow of information. Individual participants
can be identified by their email address, name, or another identification token. Par-
ticipation frequency, participation volume, the number of discussion threads the
participant takes part in, and several other metrics can be calculated. It is possi-
ble to connect the actions of a participant to actual work in the documentation or
implementation space, allowing observers to explore the relationships between the
three spaces.

In the discussion space, the flow of information is carried forward using several meth-
ods. Barcellini et al. have compared a threading model and a quotation-based model
and concluded that the latter is better suited to analyse design-oriented discussions
[Bar05]. These discussions can be evaluated to assess design quality. However, it is
computationally intensive and hard to automate. A simpler alternative is to mea-
sure only the frequency and volume of such discussions. This provides some insight
into how much design is performed overall.

4.2.2 Documentation space sources

In the documentation space, contributors can be identified for each artefact. As
project-level documentation is revised over time, some contributors will have the
status of initial author, while others will have an editorial role. This can be correlated
to participation in the discussion space and implementation space.



40

Information space Data category Data sources

Discussion

Real-time
irc and other on-line chat networks

Telephone, teleconference, including VoIP

Face-to-face discussion and meetings

Non-real-time

Mailing lists

Web fora

Newsgroups

Personal email

Blogs

Documentation

Project goals, mission and
vision statements

Web site

Wiki, mailing lists, web fora

Administrative documentation
Web site

Wiki, mailing lists, web fora

Development documentation;
coding style; granularity of
changes; branch usage;
commit policy

Web site

Wiki

Mailing lists, web fora

Documentation in or with source code

User documentation: manuals,
guides, tutorials, etc.

Web site

Wiki

Documentation in or with source code

External documentation External sources, e.g. third-party web sites

Implementation

Accepted code Version control system

Proposed code (patches)
Bug tracking systems

Mailing lists, newsgroups, web fora

Defect reports
Bug tracking systems

Mailing lists, newsgroups, web fora

Feature requests
Bug tracking systems

Mailing lists, newsgroups, web fora

Table 5: Foss information spaces and data sources. The reliability of each source
must be evaluated separately. This list of data sources is not conclusive, as new
tools emerge continuously.



41

Furthermore, the availability and type of project-level and development documenta-
tion can affect the sustainability and quality of the project. For example, complete
lack of a coding style decision could lead to inconsistent code, which then becomes
difficult to maintain over time as new developers enter the project. On the other
hand, lack of written documentation could be compensated in the discussion space,
as new contributors learn how the project works by direct feedback or by looking
at previously given feedback. In that sense, some of the discussion space artefacts
may transfer into the documentation space. Conformance to existing documentation
can be assessed by comparison with the actual implementation. If the documenta-
tion is not followed, this could be due to lack of agreement or understanding of the
documentation, or due to outdated documentation.

The existence of user documentation must be viewed in light of the project goals.
Not all programs need extensive documentation, but if it is directed to non-technical
users, documentation can be an essential component.

4.2.3 Implementation space sources

Perhaps the most important data sources are the implementation space sources.
They form the main part of the project deliverable, and most of the work is assumed
to be directed to them. Since the implementation space artefacts are often stored in
a source code repository with versioning capabilities, extracting data over given time
periods is possible, enabling research into software evolution. A change in quality
over time can indicate the direction of the project, and allow the project to take
corrective steps if quality is declining.

Another implementation space data source are the bug tracking systems that the
project uses to keep track of defects and feature requests. Bug tracking systems are
frequently used in foss projects to determine when the software can be released. A
common development pattern is to work on a development version of the code and
then go into “freeze”, introducing no new functionality while bugs are being fixed.
When certain criteria are met in the bug tracking system, a release can be made.
Recently, attention has been given to time-based releases, where the release date
is set in advance and a new version of the software is released if it meets quality
criteria on that date [Mic05b, Mic07]. This method is most relevant when applied
to software collections – the collection follows a time-based release schedule, and the
parts which are ready by release time are released, while those that are not have old
versions re-released.



42

When coupled with the discussion and documentation space sources, the background
and reasons for changes in the implementation space can be evaluated, making it
possible to assess how the three spaces interact and thus how the project functions
as a whole.

4.3 Data model

Several systems to support metrics extraction and analysis, both theoretical and
practical, have been proposed. Examples include the athena software quality
and certification tool [Chr89], Toshiba’s esqut quality evaluation tool [Oga96], the
Columbus tool by the University of Szeged, Nokia and FrontEndArt [Fer04] and
the soccer software quality evolution tool [Bou06]. Each of these have a slightly
different focus, some emphasising a theoretical model and some solving very specific
data-collection issues. However, no such tool has gained widespread use in the foss

community.

In order to facilitate data collection and arrange the available data in the three
information spaces, we have constructed a data model (Figure 5). It consists of the
following classes. The project class represents a foss project. A project has a web
site, a version control system, a bug tracking system and a discussion forum, but
each of these can be absent or exist in multiplicity.

A web site consists of pages, authored by one or more persons. A version control
system contains a number of change sets, consisting of files. Each change set is
committed into the system by one person. A bug tracking system consists of bugs,
whose modification over time is described in a log of bug events. Each bug event
results from the actions of one person.

A discussion forum is a generalisation of mailing lists, web fora, and news groups. It
consists of posts, each of which is created by a single person. Posts may be placed in
one or several discussion fora, and may be related to other posts through a followup
mechanism.

A person is a named entity, and the model can identify any number of identifiers
that act as unique tokens to identify the user in the systems represented by the
other classes. Furthermore, each person may possess one or more blog, consisting of
blog posts. The posts may be in reference to other blog posts through a mechanism
called linkback.



43

Although the model does not include all data sources presented, it allows the imple-
mentation of a system to collect, store and analyse metric data as it is created. The
model does not show the details needed to support systems currently in use in foss

projects. Actual data collection needs to consider several different access methods
and data formats.

Figure 5: Uml diagram of our foss project data model. Based in part on an er

diagram by Koch and Schneider [KoS00].

4.4 Metric taxonomy

Based on the research and observations presented so far, we construct our metric
taxonomy (Figure 6). We make the following assumptions. Functionality is assessed
by other means; projects have equal or comparable functionality, or they are the
only available alternatives for some other reason. Cost is not considered, and is
assumed to be constant or to be some function of quality. Legal issues, such as the
software license, are not considered, and we assume that the projects to be assessed
fall within an undefined set of minimum legal requirements for foss. The taxonomy
is based on the ieee ssqmm framework [IEE04].

The taxonomy divides the quality of a foss project into process quality and product
quality. The process quality factors are organisation and work flow, and measures
the most important traits that have been identified as crucial in the success of foss

projects.



44

Figure 6: Foss project quality model.

As product quality factors, we have chosen to reflect flexibility, fault density, and
quality risk. Flexibility can be viewed as a form of maintainability measure, which
estimates how easy it is to make changes to the program. Fault density is an estimate
which balances two concepts: how good is the code that has been written, and how
effective are the procedures we use for finding faults? Finally, quality risk estimates
to what extent we have found the defects that exist or are only repairing peripheral
symptoms, giving rise to new faults in the same area. Also, it measures whether the
bugs found are concentrated to a particular part of the code or are spread evenly.
The quality risk attempts to evaluate how large the potential is for defects to occur
in the program or in a particular part of it. In other words, it reflects reliability.

Since foss developers have a very varying degree of knowledge, we have chosen met-
rics that are as easy to understand as possible. Otherwise, project participants may
reject the model or make incorrect decisions due to misunderstanding. Since foss

development is rapid and frequently produces amounts of code that is impractical to
analyse manually, the metrics have been chosen so that they can be automatically
collected and analysed with reasonable effort and computational resources. Also,
their implementation is straightforward.



45

The model could be further extended, for example by including some of Boehm’s
quality characteristics, but this would ultimately lead to metrics that cannot be
collected automatically. For example, interoperability is a quality characteristic
that is very difficult to test automatically. It should evaluate data exchange formats
and other interfaces of the program that allow communication with components that
are not part of the program itself. Usability is left out completely – it is such a large
field of its own that we could not hope to cover enough of it in this work. Another
area of quality which has been left out is that of performance, both in the sense of
efficiency and scalability. It is doubtful whether these have any general meaning,
although they can be of great importance in specific cases.

5 Experiment: Applying quality analysis to real

Free and Open Source Software projects

We have analysed three foss projects using the quality model described in the
previous section. We first conducted an experiment prototype, in which we made
feasibility tests for obtaining data and taking measurements from it. We experi-
mented with approximately ten different foss projects, including the Linux kernel
project and a few software packages of the Debian gnu/Linux distribution. Our pro-
totype used a database schema directly derived from our data model (Figure 5) with
small technical and practical changes. We wrote simple tools to collect data from
several different sources and calculate the metric values. We also evaluated more
than a dozen metric tools, and found some partly suitable to our needs. However,
we were unable to find tools to cover all our needs.

The prototype revealed that many tools currently in use in foss projects are either
not capable of easily and automatically exporting their entire event history, or an
impractical amount of work would have been required to develop tools for extracting
the complete event history. For example, the Bugzilla bug tracking system can only
export the current status of a bug. Although the event history is stored, it cannot
be accessed in an unambiguous format that would be easily machine-readable unless
direct access to the back-end database is obtained. Another example is the Debian
bug tracking system, where complete bug logs are available, but the log format
is a human-readable representation which does not lend itself well to automatic
processing. Therefore, we elected to use arrival rates for this experiment instead of
a full time-line event analysis.



46

5.1 Project selection

From the initial set of approximately ten foss projects, we selected three: Linux
2.6, an operating system kernel, The gimp, a graphics program for creating and ma-
nipulating two-dimensional images, and Blender, a 3d content creation suite which
includes modelling, animation, rendering and interactive 3d features. Additionally,
we included source code from old versions of the Linux kernel, ranging approximately
from February 2002 to April 2005, as a comparison to the current Linux kernel tree.
We refer to this code as Linux-historical.

These projects were selected because they are large and complex in terms of source
code, features, developer base and user base, and because their code has had the
opportunity to reach a certain maturity during at least five years. Together, they
cover a range of quite different approaches to and stages of foss development; the
Linux kernel has an extremely rapid pace of development, The gimp is undergoing
major refactoring to modernise it, and Blender is a highly specialised tool with a
highly specialised audience and developer base. Also, the necessary data for all three
was available and obtainable with reasonable effort.

5.2 Data identification, acquisition and cleaning

For each project, we identified the relevant data sources (Table 6). This information
was obtained by visiting the web sites of each project, and by reading the project
documentation available there. This was trivial – less than an hour of time was
spent on obtaining the information. Also, all three projects have an enormous mass
of documentation available, ranging from user manuals and tutorials to complete
books. They cover a wide range of audiences and are of many different levels of
quality. Therefore, we decided not to include the web sites and documentation in
this comparison.

To acquire the data from each data source, we wrote special programs based on the
earlier prototypes. All programs insert the results of their computation into an sql

database. The values of each computation can then be retrieved efficiently along
with information about its context – from which project it was obtained, to which
point in time the value is connected, and so on. The programs were written in the
Python language.

The first program processes compressed mailing list archives in the mbox format.
The messages archives were downloaded manually. For each message, the program



47

Linux 2.6 Linux-historical Blender The gimp

vcs
type

git git svn svn

vcs url git://git.kernel.org/
pub/scm/linux/kernel/
git/torvalds/linux-2.6.git

git://git.kernel.org/
pub/scm/linux/kernel/
git/tglx/history.git

https://svn.blender.org/
svnroot/bf-blender/
trunk/blender

http://svn.gnome.org/
svn/gimp/trunk

bts
type

Bugzilla Ad-hoc / none gforge Bugzilla

bts url http://bugzilla.kernel.org Various / none http://projects.blender.
org/tracker/?group_id=9
&atid=125

http://bugzilla.gnome.org/

Relevant
mailing
lists

lkml lkml bf-committers,
bf-python

gimp-developer

Mailing
list
archives

http://userweb.kernel.org/
∼akpm/lkml-mbox-
archives/

http://userweb.kernel.org/
∼akpm/lkml-mbox-
archives/

http://lists.blender.org/
pipermail/bf-committers/,
http://lists.blender.org/
pipermail/bf-python/

https://lists.xcf.berkeley
.edu/lists/gimp-
developer/

Table 6: Data sources for each project.

extracts the sender, subject, message identifier and the date when the message was
sent. These are subjected to data cleaning. For example, the mailing list archives
for the Blender project had some of the sender addresses set to the mailing list
address. In this case, we used only the sender name as identifier. In other messages,
the sender address was obscured by replacing the @ sign with the word “at”. We
reversed this in the data cleaning stage. Finally, the date of sending was specified
in a wide variety of formats. We wrote logic to convert each of these into a format
that could be used by the database. Unfortunately, the date in some messages
was impossible to repair. As these cases were relatively rare, we decided to omit
the messages from analysis. Table 7 shows the number of messages and the time
required to import them into the database for each mailing list.

Mailing list Messages imported Time required

lkml 646 001 approx. 7 hours
bf-committers 19 029 approx. 30 minutes
bf-python 4862 approx. 10 minutes
gimp-developer 20 320 approx. 30 minutes

Table 7: Number of messages and time required to import them on a 1.2ghz pc.

The second program obtains bug reports from bug tracking systems via http re-
quests. We wrote support for the Bugzilla and gforge systems, since the first is
used by Linux and gimp, and the second by the Blender project. The program
first obtains a list of all relevant bugs, and then downloads individual bug reports.
Bugzilla was able to export the bug list in csv format and the individual bugs as
xml. We attempted to use the gforge soap interface, but were unsuccessful due



48

to incompatibilities between the server and the Python soap client libraries we at-
tempted to use. Instead, we parsed the gforge html pages by a series of regular
expressions to extract the needed information. The number of queries needed was
greater, since gforge splits the bug list into 25 bugs per page, and the submitter
information is on a separate page.

Despite the fact that the number of queries to obtain data for n bugs were qbugzilla =

1+n for the Bugzilla system, and qgforge = n
25

+2n for gforge, the latter was faster.
The reason is not conclusive, but we note that our network connection to the Blender
gforge server was better, and the parsing overhead of the Bugzilla xml data was
significantly greater than the regular expression approach used for the gforge html

data. Table 8 shows the number of bugs and the time required for importing them
into the database.

Bug tracking system Bugs imported Time required

Linux Bugzilla 8954 approx. 8 hours
Blender gforge 4048 approx. 1,5 hours
The gimp Bugzilla 7232 approx. 5,5 hours

Table 8: Number of bugs and time required to import them on a 1.2ghz pc.

The third program obtains source code from network-accessible repositories one re-
vision at a time and runs metrics on the obtained source code with regular intervals.
We wrote support for Subversion and Git systems, since the first is used by Blender
and gimp, and the second by the Linux project. Since these systems differ consider-
ably in operation, our program abstracts the differences and reduces the operation of
the systems to a common subset. The Subversion part first downloads the complete
revision log, and then downloads the first revision of the repository. It can then
step through the revisions forwards or backwards, and download the minimal set of
changes, called a diff, to bring the local copy to the state of the specified revision.
It can also download and show the diff between the current local copy and the state
in which it was before the last operation.

The Git part works similarly, but the Git system supports distributed development.
The source tree is branched every time a developer clones another developer’s tree,
and can be merged back either directly or via other developers. Several separate
time-lines of development may exist simultaneously. This makes it very complicated
and in some cases impossible to follow the global changes to the source code. We
chose to observe development through one particular tree, the main tree maintained



49

by Linus Torvalds. Changes made to other trees are reviewed and later included into
this tree, temporarily merging the time-lines. Because of the way the Git system
works, our program first downloads the entire tree of revisions, and then performs
the required operations locally.

The performance characteristics of the two systems are different. The Subversion
part is network-dependent in all stages, while the Git part is heavily network-
dependent in the initial stage, and is then dependent on storage system i/o.

After obtaining the initial data, the program steps through each revision, noting the
revision identifier of the underlying version control system and the author and date
of the revision, and inserts these into the database. With regular, user-definable
intervals, the program can run a number of metrics on the source code. These are
further explained in Section 5.3. Table 9 shows the number of revisions imported,
the metric run interval, and the time required to perform this data acquisition.

Source code repository Revisions imported Full metrics interval Time required

Linux (git) 64 707 every 300 revisions approx. 44 hours
Linux-historical (git) 63 428 every 3000 revisions approx. 14 hours
Blender (svn) 10 826 every 100 revisions approx. 8 hours
The gimp (svn) 21 157 every 500 revisions approx. 9.5 hours

Table 9: Number of revisions, run interval for full metrics calculation, and time
required to import the data on a 1.2ghz pc.

All programs make use of the data already stored in the database to identify the
actor whose action resulted in a mailing list message, a submitted bug, or a source
code revision. As artefacts were analysed, the database was automatically consulted
to see if the associated actor identifier had already been recorded. If so, we assume
that the actor is the same person. Thus, we were able to make some correlation
between actions in the different information spaces, although we did not use all the
possible data sources.

On inspection of the discovered correlations, we found that the identification tokens
have too little overlap between the different systems. In the Subversion system, the
actor is identified only by a user name local to the main Subversion server. We found
that this user name was frequently different from the name or email address used
elsewhere, so unambiguously connecting the actors in all three data sources was not
possible. We considered an approach where the analysis would be re-run each time
a new identifier token is added, using tokens from previous runs to bootstrap the



50

identification. However, the time required to run that many iterations would have
exceeded reasonable limits.

Another approach considered was to manually produce the identifier tokens, but we
rejected this because the time required would have been significant, and we wanted
to see how well this completely automatic approach would work. We note now that
the order of data source analysis is relevant; if we had started with the version
control systems, we could have obtained greater overlap by using the local part of
the actors’ email addresses as well as the whole email address as an identifier in
later stages. The identifiers obtained from the version control systems seem to be
the most consistent and have the least amount of errors and variations.

5.3 Description of metrics calculation

As noted in the previous section, our programs calculated a set of metrics at regular
revision intervals during the source code analysis phase. We divide the metrics into
six families: cccc metrics, static c metrics, static Python metrics, diff statistics,
file type analysis and version control log analysis.

The cccc metrics are produced by the cccc program, a metrics tool for c, c++ and
Java source code. These metrics were run against Blender and The gimp. We were
unable to run them against the Linux source code, because the program locked up
during analysis of that code. cccc produces a large amount of metric data, but we
extracted only a number of metrics.

For the entire source tree, we extracted source lines of code, comment lines, lines
rejected by cccc, the cyclomatic complexity number, information flow, and the
number of modules, for all files whose names ended in .c, .h or .cc. For each mod-
ule, we extracted coupling between object classes, depth of inheritance tree, number
of children, weighted methods per class, fan-in, fan-out, and information flow. We
note that the definitions of these are given in the cccc program. For example,
the cyclomatic complexity is actually an approximation obtained by counting the
number of decision point statements in the program, fan-in is the number of users a
module has in its producer capacity, and fan-out is the number of modules a module
makes use of in its consumer capacity.

The static c and Python metrics were written to extract simple syntactic structures
from the source code. For the entire source tree, the metrics are source lines of
code, physical lines of code, blank lines of code, comment lines, number of modules,



51

an approximation of McCabe’s cyclomatic complexity, obtained by counting the
number of decision statements in the code, and variants of fan-in and fan-out that
calculate the number of parameters in a function or method, and the number of
return statements in a function or method. For individual modules, the same metrics
were used and run against all programs for all files that ended in .c, .h or .py.
We chose to include Python code, as it is used in two of our selected projects as a
scripting and extension language, and since we have prior experience with automatic
analysis of this language.

The diff statistics counts the number of files changed and the number of added and
deleted lines of code. The file type analysis tries to guess the type of each file by
looking at the file name. The version control log analysis extracts authors, time
stamps and native revision identifiers from a version control system log. These were
run against all programs. Table 10 shows all metrics and their codes.

For each program to be analysed, the full metrics were run against only a subset of
the source code revisions. For the Blender project, full analysis was performed every
100 revisions, for gimp, every 500 revisions, for the historical Linux code, every
3000 revisions, and for the Linux 2.6 code, every 300 revisions (Table 9). These
numbers were chosen based on the observed activity in the project and practical
considerations such as the time available to perform data acquisition and analysis.
This provides a sufficient approximation of the full data. It loses the ability to tell,
for example, precisely how much code each contributor has written, but the number
of commits is an acceptable substitute.

The data obtained was a total of 521 mb in size, measured as sql statements. Before
deciding on the exact values to present, we explored the data using data mining
techniques and simple graphing of the variables over time. We focused primarily
on the correlations between different data items and time-line analysis of single and
multiple variables. We used the model in Figure 6 to guide our exploration.

6 Experiment: Results

The collected data can be used as a basis for a wide variety of quality-related obser-
vations. In the following sections, we will present metric observations that highlight
some of the important quality factors in our quality model for each of the three
selected projects. We find that the three foss projects vary in the amount of con-
tributors involved and the amount of code produced and bugs submitted, but that



52

Metric family Metric source Metric code Metric description

cccc

All code

sloc Source lines of code

cloc Comment lines

rejloc Lines rejected by cccc

cyc Cyclomatic complexity

if Information flow

nom Number of modules

Per module

cbo Coupling between object classes

dit Depth of inheritance tree

wmc Weighted methods per class

fanin Fan-in (producer role)

fanout Fan-out (consumer role)

if Information flow

Static c and static Python All and per module

sloc Source lines of code

ploc Physical lines of code

bloc Blank lines of code

cloc Comment lines

nom Number of modules

cyc Cyclomatic complexity

fanin Fan-in (function parameters)

fanout Fan-out (return statements)

Diff statistics All code
fc Files changed

loc_add Lines of code added

loc_del Lines of code deleted

File types All files
ftype mime type of file

comp Compression type, if any

Version control log Revision log
author Author of the revision

timestamp Timestamp of the revision

revid Native revision identifier

Table 10: Description of calculated metrics.



53

these are not decisive when determining the quality of the end result. However,
some patterns are visible that are typical of foss projects.

6.1 Linux

Linux is an operating system kernel initially written in 1991 by Linus Torvalds, at the
time a student at the University of Helsinki. The kernel was written by replacing
parts of the educational Minix system until none of the original parts remained.
Since then, each part of the kernel has been rewritten or extended, and very little
remains of the original Linux version 1.0. Linux is used worldwide for a variety of
tasks. The project has worked on the 2.6 branch since December 2003. Our data
begins in January 2000 for the mailing lists, in October 2002 for the bugs, and in
April 2002 for the source code. We will make comparisons with the Linux-historical
data where appropriate.

6.1.1 Process quality

The number of commits per author follows a power law, with most commits being
contributed by a small number of authors (Figure 7). Estimating the number of
commits for core developers at 500 or more, and for co-developers at 50 or more, we
find that the core developers constitute approximately half a percent of all commit-
ters, and co-developers slightly more than 6% (Table 11). It should be noted that
this definition of developer classes is only an approximation of the socially assigned
roles within the project.

0 500 1000 1500 2000 2500 3000 3500

Author

0

200

400

600

800

1000

1200

1400

1600

C
o
m
m
it
s

Linux

0 200 400 600 800 1000 1200 1400 1600

Author

0

1000

2000

3000

4000

5000

6000

7000

C
o
m
m
it
s

Linux-historical

Figure 7: Commits per author for Linux (a) and Linux-historical (b).



54

Developer class Size:

Linux

Size:

Linux-

historical

Size: dif-

ference

Percentage of

committers:

Linux

Percentage of

committers:

Linux-historical

Percentage of

committers:

difference

Core developers
(≥ 500 commits)

18 26 −8 0.54% 1.65% −1.11%

Co-developers
(≥ 50 commits)

213 125 88 6.38% 7.93% −1.55%

Active users 3106 1426 1680 93.08% 90.42% 2.66%

Table 11: Developer classes in Linux and Linux-historical.

Compared to Linux-historical, the core team has shrunk by more than one percent-
age unit, and the co-developers set has shrunk by slightly more than one and a half
percentage units. The active user set has in turn grown by more than two and a half
percentage units. This could indicate that there is a trend toward more distributed
development, where a shrinking core is moderating a growing mass of changes. The
quality implication is that the use of the Git tool has enabled development to be-
come more distributed, reducing the load on the core and co-developers, but also
increasing the need for a hierarchical peer-review process.

We made no attempt to estimate the number of passive users and readers. The
former is likely to range in the millions, and the latter in at least the thousands.
Therefore, they constitute a significant positive contribution to the organisational
quality; there is a very large number of external observers.

We detected a total of 22 236 distinct persons posting to the Linux kernel developers’
mailing list, and a total of 646 001 messages. The same kind of distribution applies
to mailing list participation and bug submission as to source code commits (Figure
8). These findings are consistent with the studies presented earlier; a majority of all
work is done by a small number of contributors, while the majority of contributors
contribute only once. There are no special quality implications compared to other
foss projects other than the scale of the project.

6.1.2 Product quality

The sloc evolution graph shows that Linux 2.6 has been growing at a linear rate.
The same is true for Linux-historical (Figure 9). In light of this data, we observe
that there is no evidence for the super-linear growth found by Godfrey and Tu
[GoT00, GoT01]. They formulated the polynomial y = 0.21x2 + 252x + 90 055 to
model the uncommented sloc number y based on the number of days x since the



55

0.0 0.5 1.0 1.5 2.0 2.5

Poster x1e+4

0.0

0.5

1.0

1.5

2.0

M
e
s
s
a
g
e
s

x1e+4 Linux

0 1000 2000 3000 4000 5000

Submitter

0

10

20

30

40

50

60

70

B
u
g
s

Linux

Figure 8: Posts per poster (a) and bugs per submitter (b) for Linux.

Feb 2005 Jun 2005 Oct 2005 Feb 2006 Jun 2006 Oct 2006 Feb 2007 Jun 2007 Oct 2007

Timestamp

3.4

3.6

3.8

4.0

4.2

4.4

M
e
tr

ic
 v

a
lu

e

x1e+6 Linux

SLOC: C
SLOC

Mar 2002Jul 2002Nov 2002Mar 2003Jul 2003Nov 2003Mar 2004Jul 2004Nov 2004Mar 2005

Timestamp

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

M
e
tr

ic
 v

a
lu

e

x1e+6 Linux-historical

SLOC: C
SLOC

Figure 9: Sloc evolution for Linux (a) and Linux-historical (b).

release of Linux 1.0 on the 13th of March 1994. Given that x is now approximately
4900, y should be approximately 6 366 955, but the current size is almost two million
lines short of that (Figure 9(a)). Perhaps the time period measured by Godfrey and
Tu was an initial growth phase. As seen today, Linux has been following the same
linear growth rate as industrial software [Leh97]. This is also true at the subsystem
level; the great majority of source code is in the drivers subsystem, which also
exhibits the fastest growth, but not a super-linear one (Figure 10).

Thus, our findings give no reason to believe that the process employed by Linux
is of superior quality when sustained super-linear growth is desired. However, the
data does show that the Linux project has been able to keep its pace despite an
increasingly large and complex code base.

The commit frequency shows that activity has been varying between a few hundred
commits to nearly 4000 commits per 30-day interval (Figure 11(a)). It is difficult
to detect a trend, but the activity does seem to be cyclic, more or less following the



56

Feb 2005 Jun 2005 Oct 2005 Feb 2006 Jun 2006 Oct 2006 Feb 2007 Jun 2007 Oct 2007

Timestamp

0.0

0.5

1.0

1.5

2.0

2.5

M
e
tr

ic
 v

a
lu

e

x1e+6 Linux

SLOC: /fs
SLOC: /drivers
SLOC: /net
SLOC: /kernel

Mar 2002Jul 2002Nov 2002Mar 2003Jul 2003Nov 2003Mar 2004Jul 2004Nov 2004Mar 2005

Timestamp

0.0

0.5

1.0

1.5

2.0

M
e
tr

ic
 v

a
lu

e

x1e+6 Linux-historical

SLOC: /fs
SLOC: /drivers
SLOC: /net
SLOC: /kernel

Figure 10: Subsystem growth in Linux (a) and Linux-historical (b).

Oct 2004Feb 2005Jun 2005Oct 2005Feb 2006Jun 2006Oct 2006Feb 2007Jun 2007Oct 2007

Timestamp

0

500

1000

1500

2000

2500

3000

3500

4000

M
e
tr

ic
 v

a
lu

e

Linux

Commits per 30 days

2001 2002 2003 2004 2005 2006 2007 2008

Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
e
tr

ic
 v

a
lu

e

x1e+4 Linux

Posts per 30 days

Figure 11: Commit (a) and post (b) frequency for Linux.

development phases in use in the project. The post frequency shows a rising trend
(Figure 11(b)). Discussion seems to be increasing, which could be a sign that more
design work and coordination is performed as the code base grows. Alternatively,
it could be a result of the steps taken to distribute development – as the barrier of
participation decreases, the pace of discussion increases.

The bug arrival rate shows no consistent trends (Figure 12(a)). It appears that the
bug arrival rate has been declining during the year 2007, and that a similar decline
occurred from 2004 to mid-2005. The bug arrival rate per commit rate shows that the
Linux project is capable of countering the amount of reported bugs without problems
(Figure 12(b)). We note that the Linux project is somewhat divided in the use of
the Bugzilla bug tracking system, as the project has traditionally communicated bug
reports on the mailing list or directly between users and subsystem maintainers, a
practice still in active use. Also, Linux distributions carry a significant percentage
of the bugs originating from end-users in their own bug tracking systems, and thus
only a part of the bugs exist in the bug tracking system of the Linux project.



57

2003 2004 2005 2006 2007

Timestamp

0

50

100

150

200

250

M
e
tr

ic
 v

a
lu

e

Linux

Bugs per 30 days

Apr 2005Aug 2005Dec 2005Apr 2006Aug 2006Dec 2006Apr 2007Aug 2007Dec 2007

Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
 v

a
lu

e

Linux

Bug frequency per commit frequency per 30 days

Figure 12: Bug frequency (a) and arrival rate per commit rate (b) for Linux.

Jun 2005 Sep 2005Dec 2005Mar 2006Jun 2006 Sep 2006Dec 2006Mar 2007Jun 2007

Timestamp

460

465

470

475

480

M
e
tr

ic
 v

a
lu

e

Linux

SLOC/NOM

Jun 2005 Sep 2005Dec 2005Mar 2006Jun 2006 Sep 2006Dec 2006Mar 2007Jun 2007

Timestamp

52.0

52.5

53.0

53.5

54.0

54.5

M
e
tr

ic
 v

a
lu

e

Linux

CYC/NOM

Figure 13: Sloc per nom (a) and cyc per nom (a) for Linux.

Linux is becoming more modular, with a decreasing average module size (Figure
13(a)). Also, the cyclomatic complexity is decreasing (Figure 13(b)). This indicates
that the Linux project is taking steps to ensure maintainability.

Finally, the fan-in and fan-out per source lines of code is slowly increasing (Figure
14). This indicates that there is either an increased number of small functions, or the
functions accept more parameters. Either of these is an indication of work toward
more maintainable code, since an increased number of small functions means each
function performs a more specific, well-defined task, and more parameters indicates
more general functions that can be reused in a larger number of cases. Detailed
code inspection would be required to establish the exact details, however.



58

Jun 2005 Sep 2005Dec 2005Mar 2006Jun 2006 Sep 2006Dec 2006Mar 2007Jun 2007

Timestamp

0.045

0.050

0.055

0.060

0.065

0.070

M
e
tr

ic
 v

a
lu

e

Linux

FANIN/SLOC
FANOUT/SLOC

Figure 14: Fan-in and fan-out per sloc for Linux.

6.2 Blender

Blender is a 3d content creation suite. It includes modelling, animation, shading,
rendering, a physics and particle system, imaging and compositing facilities, and
real-time 3d and game creation functions. Blender was initially an in-house tool
developed for an animation studio. The tool was spun off in 1998 to a separate
company which was later shut down because of economical difficulties. In 2002, the
newly formed Blender Foundation bought the source code using donated funds from
the foss community. Since then, Blender has been developed as a foss project.

6.2.1 Process quality

Figure 15 shows the commits per author, posts per poster and bugs per submitter
for the Blender project. The latter two display the usual power law distribution
common in foss projects, but the first has some unusual properties. The number of
code-submitting actors in the project is smaller than what might be expected from
the code size and complexity of the project. Less than 70 persons have committed
code into the repository. Using the same definitions as for Linux, we see that the
number of core developers is only two, and there is a surprisingly large amount of
co-developers (Table 12).

We believe that this is consistent with the very modular nature of the program.
Blender acts as a framework for all 3d content creation tasks – tasks which are
related within their field, but which result in very different implementation details
and requirements of mathematical knowledge. The large co-developer class may
indicate that developers of specific sub-features work outside the Blender repository
to implement the desired functionality, committing them in relatively few steps.



59

0 10 20 30 40 50 60 70

Author

0

500

1000

1500

2000

2500

3000

3500

C
o
m
m
it
s

Blender

0 100 200 300 400 500 600 700 800

Poster

0

500

1000

1500

2000

M
e
s
s
a
g
e
s

Blender

0 200 400 600 800 1000 1200 1400

Submitter

0

20

40

60

80

100

120

140

160

180
B
u
g
s

Blender

Figure 15: Commits per author (a), posts per poster (b) and bugs per submitter (c)
for Blender.

Developer class Size Percentage of committers

Core developers (≥ 500 commits) 2 3.03%
Co-developers (≥ 50 commits) 36 54.55%
Active users 28 42.42%

Table 12: Developer classes in Blender.

We detected a total of 733 distinct persons posting to the two Blender development
lists, one for the main program development and the other for Python-related de-
velopment. A total of 23 891 messages were detected. We observe that Blender has
a highly specialised and small audience participating in the visible activities. We
suspect that the activity is higher in the Blender web forums, but also that there is
a very high number of passive users compared to the other actor classes. Blender
is directed toward artistic users who may not have an interest in participating in
traditional foss activities. This is also visible when comparing the amount of com-
mits, posts, and bugs – the last is perhaps the most anonymous and quick form of
feedback, and the amount of bug submitters is roughly 30% larger than the amount
of mailing list posters.



60

We conclude that communication in Blender is quite streamlined, and we suspect
that much of it occurs outside the observed data sources. The organisation is small
enough to work without complicated processes, and the challenge in this project lies
in the knowledge of 3d graphics and 3d content production required to write this
kind of program.

6.2.2 Product quality

The sloc evolution of Blender shows a steady increase in the amount of Python
code (Figure 16(a)). It also shows a carefully super-linear growth until mid-2006,
after which there is a large, sudden increase in code size. After that, sloc growth
continues, but at a decreased pace.

Examining the subsystem-level sloc evolution reveals that the sudden increase in
code size is due to two external libraries being imported into the Blender vcs:
ffmpeg, a collection of libraries to handle digital audio and video, and Verse, a
library for sharing 3d data over a network. Figure 16(b) shows the impact of these,
and also reveals that the sloc evolution in the main Blender code continues its
super-linear growth. The recent decrease in total sloc count likely results from
external libraries being shrunk or removed. We thus have reason to believe that the
project is highly efficient and can produce code at a rapid pace. Based on this data,
the reason appears to be that Blender is a small enough project to avoid unnecessary
communication overhead, that the developers are well synchronised, and that there
is a high degree of knowledge among the project members.

2003 2004 2005 2006 2007 2008

Timestamp

0

1

2

3

4

5

6

7

M
e
tr

ic
 v

a
lu

e

x1e+5 Blender

SLOC: Python
SLOC: C
SLOC

2003 2004 2005 2006 2007 2008

Timestamp

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
e
tr

ic
 v

a
lu

e

x1e+5 Blender

SLOC: /extern/verse
SLOC: /extern/ffmpeg
SLOC: /source

Figure 16: Sloc evolution (a) and sloc evolution for selected subsystems (b) in
Blender.



61

The commit frequency shows that activity has been varying between less than 100
to approximately 450 commits per 30-day interval (Figure 17(a)). The activity has
slowly increased, but during 2007, it has decreased. The post frequency shows a
more or less constant activity (Figure 17(b)). We believe that more activity occurs
in the Blender web fora.

2003 2004 2005 2006 2007

Timestamp

0

100

200

300

400

500

M
e
tr

ic
 v

a
lu

e

Blender

Commits per 30 days

2003 2004 2005 2006 2007

Timestamp

0

100

200

300

400

500

600

700

800

M
e
tr

ic
 v

a
lu

e

Blender

Posts per 30 days

Figure 17: Commit (a) and post frequency (b) for Blender.

The bug arrival rate is increasing, and its variation is also increasing (Figure 18(a)).
We suspect that the Blender user community is growing, and that each new release
attracts more sporadic bug submitters. The bug frequency per commit frequency
shows that Blender is able to work faster than the bug submissions arrive, giving a
careful indicator that the project is capable of addressing the issues brought up by
users (Figure 18(b)).

2003 2004 2005 2006 2007

Timestamp

0

50

100

150

200

250

300

M
e
tr

ic
 v

a
lu

e

Blender

Bugs per 30 days

2003 2004 2005 2006 2007

Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
 v

a
lu

e

Blender

Bug frequency per commit frequency per 30 days

Figure 18: Bug arrival rate (a) and arrival rate per commit rate (b) for Blender.

Blender has a tendency to become less modular, but regular decreases in the sloc

per nom metric indicates that the project may refactor the code to reduce this
tendency (Figure 19(a)). The same is seen in the cyclomatic complexity distribution
over modules (Figure 19(b)).



62

Dec 2002Jun 2003Dec 2003Jun 2004Dec 2004Jun 2005Dec 2005Jun 2006Dec 2006Jun 2007

Timestamp

450

500

550

600

M
e
tr

ic
 v

a
lu

e

Blender

SLOC/NOM

Dec 2002Jun 2003Dec 2003Jun 2004Dec 2004Jun 2005Dec 2005Jun 2006Dec 2006Jun 2007

Timestamp

75

80

85

90

95

100

M
e
tr

ic
 v

a
lu

e

Blender

CYC/NOM

Figure 19: Sloc per nom (a) and cyc per nom (b) for Blender.

Finally, the fan-in per sloc is slowly increasing while the fan-out per sloc has
begun decreasing slightly in the second quarter of 2006 (Figure 20). This could
indicate that functions are becoming more generic, accepting a greater number of
parameters to control their behaviour, while the project is attempting to lower the
complexity of the program by reducing the number of exit points from each function.
However, since the decrease in fan-out appears to level out, this might be a pure
coincidence.

Dec 2002Jun 2003Dec 2003Jun 2004Dec 2004Jun 2005Dec 2005Jun 2006Dec 2006Jun 2007

Timestamp

0.03

0.04

0.05

0.06

0.07

M
e
tr

ic
 v

a
lu

e

Blender

FANIN/SLOC
FANOUT/SLOC

Figure 20: Fan-in and fan-out per sloc for Blender.

6.2.3 Object-oriented features

Since Blender is written largely in c++, this project was the most suitable to ap-
ply the object-oriented metrics on. The growth of information flow indicates that
the coupling between classes has increased (Figure 21(a)). We can see that the
dit and noc metrics react to the same changes: as the depth of the inheritance
tree increases, the number of classes increases by the same relative amount (Figure



63

21(b)). These figures indicate that Blender is becoming more modular and that
there is greater potential for code reuse. The flexibility of the code increases, but as
a result, understandability could decrease.

The increasing wmc metric shows that the functionality of all classes has increased
(Figure 21(c)). We also see correlation between cbo and fan-in – they measure essen-
tially the same thing. Coupling between objects seems to have increased moderately
over time, but the growth curve has stopped increasing in 2007, indicating that the
class hierarchy has stabilised.

Dec 2002Jun 2003Dec 2003Jun 2004Dec 2004Jun 2005Dec 2005Jun 2006Dec 2006Jun 2007

Timestamp

0.7

0.8

0.9

1.0

1.1

1.2

M
e
tr

ic
 v

a
lu

e

x1e+6 Blender

IF

Dec 2002Jun 2003Dec 2003Jun 2004Dec 2004Jun 2005Dec 2005Jun 2006Dec 2006Jun 2007

Timestamp

200

300

400

500

600

M
e
tr

ic
 v

a
lu

e

Blender

DIT
NOC

Dec 2002Jun 2003Dec 2003Jun 2004Dec 2004Jun 2005Dec 2005Jun 2006Dec 2006Jun 2007

Timestamp

0.5

1.0

1.5

2.0

2.5

M
e
tr

ic
 v

a
lu

e

x1e+4 Blender

CBO
WMC
FANIN

Figure 21: Information flow (a), dit and noc (b), and cbo, wmc, and fan-in (c)
for Blender.

6.3 The gimp

The gimp, also known as gimp, is a graphics program for tasks such as photo
retouching, image composition and image authoring. It can be used as a simple paint
program, an on-line batch processing system, a mass production image renderer, or
an image format converter. Other uses are possible through scripting and plug-in
mechanisms. gimp has been in development since 1996.



64

6.3.1 Process quality

The commits per author, posts per poster and bugs per submitter for the gimp

project all display the usual power law distribution common in foss projects, the
first having an unusually steep slope for the first few authors (Figure 22). The
number of posters is more than five times as many as the code contributors, while
the number of bug submitters is another two and a half times more numerous. Using
the same definitions as for Linux, we see that the number of core developers is three,
the number of co-developers is 47 and the number of active users is 186 (Table 13).

0 50 100 150 200 250

Author

0

1000

2000

3000

4000

5000

6000

7000

8000

C
o
m

m
it

s

The GIMP

0 200 400 600 800 1000 1200 1400

Poster

0

500

1000

1500

2000

2500

M
e
s
s
a
g

e
s

The GIMP

0 500 1000 1500 2000 2500 3000 3500

Submitter

0

20

40

60

80

100

120

140

B
u

g
s

The GIMP

Figure 22: Commits per author (a), posts per poster (b) and bugs per submitter (c)
for gimp.

Developer class Size Percentage of committers

Core developers (≥ 500 commits) 3 1.27%
Co-developers (≥ 50 commits) 47 19.92%
Active users 186 78.81%

Table 13: Developer classes in gimp.



65

We detected a total of 1306 distinct posters on the gimp developer mailing list,
contributing to a total of 20 320 messages. This is not surprising given the age of
the project.

We conclude that gimp is quite a typical foss project, consistent with the hypothe-
ses put forward by Mockus et al. [Moc02]. In particular, the fourth hypothesis has
strong support: gimp has successfully gained contributors beyond the core develop-
ers, and has thus been able to sustain itself over a period of nearly ten years.

6.3.2 Product quality

The sloc evolution of gimp shows that code size increased sub-linearly until 2001,
after which it returned to roughly its earlier size (Figure 23(a)). After that, growth
has been more controlled, but approximately linear. One reason for this may be
that much of the user interface code written for the program has been broken out
into a separate gui library called gtk+, and new functionality has gradually moved
from the gimp project to gtk+.

Examining the subsystem-level sloc evolution shows that a significant portion of
the code consists of the main application and the plug-ins. Another major part of
the code is the libgimp library (Figure 23(b)).

The commit frequency shows that activity has been varying between less than 100
to almost 500 commits per 30-day interval (Figure 24(a)). The activity appears to
have two phases, each being a rapid increase followed by a longer decrease. The
post frequency shows a more or less constant activity (Figure 24(b)). The anomaly

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Timestamp

0

1

2

3

4

5

6

7

8

M
e
tr

ic
 v

a
lu

e

x1e+5 The GIMP

SLOC: Python
SLOC: C
SLOC

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Timestamp

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
e
tr

ic
 v

a
lu

e

x1e+5 The GIMP

SLOC: /app

SLOC: /plug-ins

SLOC: /libgimp

Figure 23: Sloc evolution (a) and sloc evolution for selected subsystems (b) in
gimp.



66

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Timestamp

0

100

200

300

400

500

M
e
tr

ic
 v

a
lu

e

The GIMP

Commits per 30 days

2000 2001 2002 2003 2004 2005 2006 2007

Timestamp

0

1000

2000

3000

4000

5000

M
e
tr

ic
 v

a
lu

e

The GIMP

Posts per 30 days

Figure 24: Commit (a) and post frequency (b) for gimp.

at the end of 2005 suggests that the time stamps of a large number of messages in
2004 to 2005 have been displaced to that period.

The bug arrival rate has begun decreasing after a long period of increase (Figure
25(a)). We can apply the idea of stabilisation time to this observation: the program
has reached a level of maturity, and as a result, bug reports are decreasing. However,
the arrival rate has not yet reached a steady level. Also, work is ongoing to change
the program to be more similar to other, more modern paint programs. This could
lead to an increased bug arrival rate as new code is deployed by users.

The bug frequency per commit frequency shows that gimp is mostly able to work
faster than the bug submissions arrive (Figure 25(b)). However, even recently, the
rate of bug submissions has momentarily been higher than the commit frequency,
suggesting that there is sometimes a surge in bug arrival rates that the project is
not able to counter. However, this is compensated later.

2000 2001 2002 2003 2004 2005 2006 2007 2008

Timestamp

0

50

100

150

200

250

M
e
tr

ic
 v

a
lu

e

The GIMP

Bugs per 30 days

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Timestamp

0.0

0.5

1.0

1.5

2.0

2.5

M
e
tr

ic
 v

a
lu

e

The GIMP

Bug frequency per commit frequency per 30 days

Figure 25: Bug frequency (a) and arrival rate per commit rate (b) for gimp. The
dashed line indicates the point where the bug arrival rate exceeds the commit rate.



67

Gimp has become more modular (Figure 26(a)). However, it may be reaching its
practical lower limit for sloc per number of modules, since the decrease in this
number has slowed down. The cyclomatic complexity per module reflects exactly
the same pattern, suggesting that the code itself has not become less complex, but
has been split up into more manageable parts (Figure 26(b)).

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Timestamp

0

100

200

300

400

500

600

700

800

M
e
tr

ic
 v

a
lu

e

The GIMP

SLOC/NOM

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Timestamp

10

20

30

40

50

60

70

M
e
tr

ic
 v

a
lu

e

The GIMP

CYC/NOM

Figure 26: Sloc per nom (a) and cyc per nom (b) for gimp.

Finally, the fan-in per sloc is slowly increasing while the fan-out per sloc is more
or less constant (Figure 27). This indicates that the project has not observed a need
to simplify the interface of functions.

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Timestamp

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
e
tr

ic
 v

a
lu

e

The GIMP

FANIN/SLOC
FANOUT/SLOC

Figure 27: Fan-in and fan-out per sloc for gimp.

6.4 Summary

Our experiment shows that the quality model described in Section 4 can be applied
to real foss projects. Both general software quality factors and foss-specific fac-
tors contribute to the overall quality assessment in our experiment (Table 14). The



68

metric trends are either increasing or decreasing, or they follow a repeated cycle of
increase and decrease over some time interval. In Linux, increased distribution of
development poses significant challenges, but our data shows that the project is han-
dling this well. Increased discussion could be a sign of growing needs of coordination.
However, the team roles have adjusted to include more hierarchical moderation. In
Blender, there is a quality risk with regard to the program architecture; complexity
is increasing and modularity is decreasing. The source code growth is super-linear,
which may indicate that the project is undergoing heavy development compared to
the other two projects. The gimp appears to have moved to the maintenance phase,
since the bug arrival rate has been decreasing for three years after a four-year period
of increase. The project may have to turn resources toward handling bug reports,
especially if new features are to be introduced in the future.

Linux Linux-historical Blender The gimp

Core developers
(≥ 500 commits)

18 (0.54%) 26 (1.65%) 2 (3.03%) 3 (1.27%)

Co-developers
(≥ 50 commits)

213 (6.38%) 125 (7.93%) 36 (54.55%) 47 (19.92%)

Active users 1306 (93.08%) 1426 (90.42%) 28 (42.42.%) 186 (78.81%)
Posters 22 236 – 733 1306

Messages 646 001 – 23 891 20 320

Growth linear linear super-linear sub-linear / linear
Bug submitters 4877 – 1214 3468

Bugs 8954 – 4048 7232

Total sloc
4 366 435 3 361 971 596 815 560 408

(21.8.2007) (15.2.2005) (6.8.2007) (12.6.2007)

Commit fre-
quency trend

cyclic cyclic slow increase cyclic

Post frequency
trend

increasing – constant constant

Bug arrival rate
trend

cyclic – increasing decreasing
(after increase)

Bug frequency
per commit
frequency trend

constant low – increasing moderate constant moderate
(≤ 0.25) (≤ 0.8) (≤ 1.6, most

samples ≤ 0.8)

Modularity
increasing increasing decreasing increasing

(some variation)
Complexity decreasing decreasing increasing decreasing

Table 14: Summary and interpretation of experiment results.



69

7 Conclusions

We have presented a theoretical background for software quality, metrics, and their
application in a foss environment. We have shown that a vast amount of infor-
mation is available from foss projects in three information spaces and we have
constructed a quality model suitable for use in a foss context. Finally, we have ap-
plied a subset of this model to three foss projects and highlighted both theoretical
and practical concerns in implementing automatic metric collection and analysis.

Foss projects are faced with challenges seldom seen in traditional software develop-
ment projects. The scale at which many foss projects are operating belongs to the
high end of software development in terms of participant numbers, code size, and
problem complexity. The cultural and practical barriers that have to be overcome
are significant, as are the requirements on leadership and administration. There-
fore, we believe that foss projects can benefit from automatically collected data
that allows a higher-level view of progress than what is currently available.

We identify three core challenges that the foss community must overcome to im-
prove quality processes. First, the tools used in foss development must be fitted
with features that allow data to be extracted in sensible formats. Currently, one of
the most popular bug tracking systems, Bugzilla, lacks features to remotely export
the entire bug event history in a machine-readable format. Similarly, the overhead
required to download the entire event history from the Subversion version control
system is significant, as each operation requires network communication with the
main server. The gcc compiler would be a natural location to place source code
metric calculation facilities, since it already implements a semantic parser for many
programming languages. Also, it benefits from information in the software build
system. Writing a completely new tool to extract all this information would be a
significant task.

Second, as foss has a low barrier to adoption of new technologies – we can safely
say that foss creates most of its own technology – metric tools for these are needed.
Logic, dynamic, and interpreted languages such as Python and Ruby have enabled
accelerated development through higher expressive power, reusable code libraries,
and in-language support for streamlined development and test cycles, but there
are few tools and methods to assess the complexity of programs written in these
languages. There is also little knowledge of the architecture and design patterns that
these languages encourage. In the same way as object-oriented design is different



70

from procedural design, these languages encourage a different cognitive approach.
The quality of design cannot be assessed without further knowledge of the patterns
that these languages enable.

Finally, the foss culture has traditionally eschewed rigid processes and management-
by-numbers, relying more on established experience and experimentation. In order
to introduce quality concepts and metrics-based evaluation, foss practitioners must
learn about these and see their benefit in assisting their work. At best, foss projects
work as finely tuned engines, and any change in work flow must ensure that there
are no bottlenecks or single points of failure.

The most important factor for enabling quality in foss lies without doubt in the
transparent, publicly visible development method and the code of conduct that
encourages sharing of knowledge in all its forms. Without these traits, foss projects
would cease to experiment, their communities of users and developers would collapse,
and they would become obsolete. An understanding of this value system must be
present in any attempts to enhance the quality of Free and Open Source Software
projects.

References

AsB02 Asklund, U. and Bendix, L., A Study of Configuration Management in
Open Source Software Projects. IEEE Software, 149, pages 40–46.

Bou06 Bouktif, S., Antoniol, G. and Merlo, E., A feedback based quality as-
sessment to support open source software evolution: the GRASS case
study. Proceedings of the 22nd IEEE international conference on soft-
ware maintenance, Washington, DC, USA, 2006, IEEE Computer So-
ciety, pages 155–165.

Boe76 Boehm, B. W., Brown, J. R. and Lipow, M., Quantitative evaluation
of software quality. Proceedings of the 2nd international conference on
software engineering, Los Alamitos, CA, USA, 1976, IEEE Computer
Society Press, pages 592–605.

Bar05 Barcellini, F., Détienne, F., Burkhardt, J.-M. and Sack, W., Thematic
coherence and quotation practices in OSS design-oriented online dis-
cussions. Proceedings of the 2005 international ACM SIGGROUP con-



71

ference on supporting group work, New York, NY, USA, 2005, ACM
Press, pages 177–186.

Cro04 Crowston, K., Annabi, H., Howison, J. and Masango, C., Effective work
practices for software engineering: free/libre open source software de-
velopment. Proceedings of the 2004 ACM workshop on interdisciplinary
software engineering research, New York, NY, USA, 2004, ACM Press,
pages 18–26.

CrH06 Crowston, K. and Howison, J., Assessing the health of open source
communities. IEEE Computer, 39,5(2006), pages 89–91.

ChK94 Chidamber, S. R. and Kemerer, C. F., A metrics suite for object ori-
ented design. IEEE Transactions on Software Engineering, 20,6(1994),
pages 476–493.

Coo82 Cook, M. L., Software metrics: an introduction and annotated bibliog-
raphy. SIGSOFT Software Engineering Notes, 7,2(1982), pages 41–60.

Chr89 Christodoulakis, D., Tsalidis, C., van Gogh, C. and Stinesen, V., To-
wards an automated tool for software certification. IEEE international
workshop on tools for artificial intelligence, Fairfax, VA, USA, 1989,
IEEE, pages 670–676.

Cha06 Chan, V. K. Y., Wong, W. E. and Xie, T. F., Application of a statisti-
cal methodology to simplify software quality metric models constructed
using incomplete data samples. Proceedings of the 6th international con-
ference on quality software, Washington, DC, USA, 2006, IEEE Com-
puter Society, pages 15–21.

DiS06 Dick, S. and Sadia, A., Fuzzy clustering of open-source software quality
data: a case study of Mozilla. International Joint Conference on Neural
Networks, Vancouver, BC, Canada, 2006, pages 4089–4096.

DiB04 Dinh-Trong, T. and Bieman, J. M., Open source software development:
a case study of FreeBSD. Proceedings of the 10th international sym-
posium on software metrics, Washington, DC, USA, 2004, IEEE Com-
puter Society, pages 96–105.

DiB05 Dinh-Trong, T. and Bieman, J. M., The FreeBSD project: a replication
case study of open source development. IEEE Transactions on Software



72

Engineering, 31,6(2005), pages 481–494. Senior Member-James M. Bie-
man.

FeN00 Fenton, N. E. and Neil, M., Software metrics: roadmap. Proceedings
of the conference on the future of software engineering, New York, NY,
USA, 2000, ACM Press, pages 357–370.

Fre07 Free Software Foundation Inc., The Free Software Definition, Www, 14
June 2007. URL http://www.gnu.org/philosophy/free-sw.html.

Fer04 Ferenc, R., Siket, I. and Gyimothy, T., Extracting facts from open
source software. Proceedings of the 20th IEEE international conference
on software maintenance, Washington, DC, USA, 2004, IEEE Com-
puter Society, pages 60–69.

Gaf81 Gaffney, J. E. J., Metrics in software quality assurance. Proceedings of
the ACM ’81 conference, New York, NY, USA, 1981, ACM Press, pages
126–130.

Gre03 Greiner, S., Boskovič, B., Brest, J. and Žumer, V., Security issues in
information systems based on open-source technologies. The IEEE Re-
gion 8 EUROCON 2003. Computer as a Tool., 2, pages 12–15.

Gyi05 Gyimothy, T., Ferenc, R. and Siket, I., Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE
Transactions of Software Engineering, 31,10(2005), pages 897–910.

GoT00 Godfrey, M. and Tu, Q., Evolution in open source software: A case
study. Proceedings of the international conference on software main-
tenance, Washington, DC, USA, 2000, IEEE Computer Society, page
131.

GoT01 Godfrey, M. and Tu, Q., Growth, evolution, and structural change in
open source software. Proceedings of the 4th international workshop
on principles of software evolution, New York, NY, USA, 2001, ACM
Press, pages 103–106.

Hal75 Halstead, M. H., Toward a theoretical basis for estimating programming
effort. Proceedings of the 1975 ACM annual conference, New York, NY,
USA, 1975, ACM Press, pages 222–224.

http://www.gnu.org/philosophy/free-sw.html


73

HoK97 Houdek, F. and Kempter, H., Quality patterns – an approach to packag-
ing software engineering experience. Proceedings of the 1997 symposium
on software reusability, New York, NY, USA, 1997, ACM Press, pages
81–88.

HaO01 Hars, A. and Ou, S., Working for free? – motivations of participating
in open source projects. Proceedings of the 34th annual Hawaii interna-
tional conference on system sciences, volume 7, Washington, DC, USA,
2001, IEEE Computer Society, page 7014.

Hun03 Huntley, C. L., Organizational learning in open-source software
projects: An analysis of debugging data. IEEE Transactions on Engi-
neering Management, 50,4(2003), pages 485–493.

IzB06 Izurieta, C. and Bieman, J., The evolution of FreeBSD and Linux. Pro-
ceedings of the 2006 ACM/IEEE international symposium on empirical
software engineering, New York, NY, USA, 2006, ACM Press, pages
204–211.

IEE04 IEEE Computer Society, New York, NY, USA, IEEE Standard for a
Software Quality Metrics Methodology (IEEE Std 1061), R2004 edition,
24 June 2004.

Kaf85 Kafura, D., A survey of software metrics. Proceedings of the 1985 ACM
annual conference on the range of computing: mid-80’s perspective, New
York, NY, USA, 1985, ACM Press, pages 502–506.

KoS00 Koch, S. and Schneider, G., Results from Software Engineering Re-
search into Open Source Development Projects Using Public Data.
Discussion paper for Tätigkeitsfeld Informationsverarbeitung und In-
formationswirtschaft, Wirtschaftsuniversität Wien, 2000.

Kho95 Khoshgoftaar, T. M., Szabo, R. M. and Guasti, P. J., Exploring the
behaviour of neural network software quality models. Software Engi-
neering Journal, 10, pages 89–96.

Li05 Li, P. L., Herbsleb, J. and Shaw, M., Finding predictors of field defects
for open source software systems in commonly available data sources:
a case study of OpenBSD. Proceedings of the 11th IEEE international
software metrics symposium, Washington, DC, USA, 2005, IEEE Com-
puter Society, page 32.



74

Lin04 Lindman, J., Effects of open source software on the business patterns of
software industry. Master’s thesis, Helsinki School of Economics, 2004.

Leh97 Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E. and Turski,
W. M., Metrics and laws of software evolution - the nineties view. Pro-
ceedings of the 4th international symposium on software metrics, Wash-
ington, DC, USA, 1997, IEEE Computer Society, page 20.

Lan05 Langelier, G., Sahraoui, H. and Poulin, P., Visualization-based analy-
sis of quality for large-scale software systems. Proceedings of the 20th
IEEE/ACM international conference on automated software engineer-
ing, New York, NY, USA, 2005, ACM Press, pages 214–223.

Liu07 Liu, Y., Yao, J.-F., Williams, G. and Adkins, G., Studying software
metrics based on real-world software systems. Journal of Computing in
Small Colleges, 22,5(2007), pages 55–61.

MäM06 Mäki-Asiala, P. and Matinlassi, M., Quality assurance of open source
components: Integrator point of view. Proceedings of the 30th annual
international computer software and applications conference, Washing-
ton, DC, USA, 2006, IEEE Computer Society, pages 189–194.

Mas05 Massey, B., Longitudinal analysis of long-timescale open source repo-
sitory data. Proceedings of the 2005 workshop on predictor models in
software engineering, New York, NY, USA, 2005, ACM Press, pages
1–5.

Moc02 Mockus, A., Fielding, R. T. and Herbsleb, J. D., Two case studies of
open source software development: Apache and Mozilla. ACM Trans-
actions on Software Engineering and Methodology, 11,3(2002), pages
309–346.

Mic05a Michlmayr, M., Hunt, F. and Probert, D., Quality practices and prob-
lems in free software projects. Proceedings of the First International
Conference on Open Source Systems, Scotto, M. and Succi, G., editors,
Genova, Italy, 2005, pages 24–28.

Mic05b Michlmayr, M., Quality improvement in volunteer free software
projects: Exploring the impact of release management. Proceedings
of the First International Conference on Open Source Systems, Scotto,
M. and Succi, G., editors, Genova, Italy, 2005, pages 309–310.



75

Mic05c Michlmayr, M., Software process maturity and the success of free soft-
ware projects. Software Engineering: Evolution and Emerging Tech-
nologies, Zielinski, K. and Szmuc, T., editors, Krakow, Poland, 2005,
IOS Press, pages 3–14.

Mic07 Michlmayr, M., Quality Improvement in Volunteer Free and Open
Source Software Projects: Exploring the Impact of Release Manage-
ment. Ph.D. thesis, University of Cambridge, March 2007.

Nag04 Nagappan, N., Toward a software testing and reliability early warn-
ing metric suite. Proceedings of the 26th international conference on
software engineering, Washington, DC, USA, 2004, IEEE Computer
Society, pages 60–62.

Nag05 Nagappan, N., Williams, L., Vouk, M. and Osborne, J., Early estima-
tion of software quality using in-process testing metrics: a controlled
case study. Proceedings of the third workshop on software quality, New
York, NY, USA, 2005, ACM Press, pages 1–7.

Nak02 Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K. and Ye, Y.,
Evolution patterns of open-source software systems and communities.
Proceedings of the international workshop on principles of software evo-
lution, New York, NY, USA, 2002, ACM Press, pages 76–85.

Ola92 Olagunju, A. O., Concepts of operational software quality metrics. Pro-
ceedings of the 1992 ACM annual conference on communications, New
York, NY, USA, 1992, ACM Press, pages 301–308.

Ope07 Open Source Initiative, The Open Source Definition, Www, 14 June
2007. URL http://www.opensource.org/docs/osd.

Oga96 Ogasawara, H., Yamada, A. and Kojo, M., Experiences of software
quality management using metrics through the life-cycle. Proceedings of
the 18th international conference on software engineering, Washington,
DC, USA, 1996, IEEE Computer Society, pages 179–188.

PhA05 Phadke, A. A. and Allen, E. B., Predicting risky modules in open-source
software for high-performance computing. Proceedings of the second
international workshop on software engineering for high performance
computing system applications, New York, NY, USA, 2005, ACM Press,
pages 60–64.

http://www.opensource.org/docs/osd


76

Pol04 Polančič, G., Horvat, R. V. and Rozman, T., Comparative assessment
of open source software using easy accessible data. Proceedings of the
26th international conference on information technology interfaces, vol-
ume 1, Slovenia, 2004, Faculty of Electrical Engineering and Computer
Science, Maribor University, pages 673–678.

Rob06 Robles, G., Gonzalez-Barahona, J. M., Michlmayr, M. and Amor, J. J.,
Mining large software compilations over time: another perspective of
software evolution. Proceedings of the 2006 international workshop on
mining software repositories, New York, NY, USA, 2006, ACM Press,
pages 3–9.

Roy87 Royce, W. W., Managing the development of large software systems:
concepts and techniques. Proceedings of the 9th international confer-
ence on software engineering, Los Alamitos, CA, USA, 1987, IEEE
Computer Society Press, pages 328–338. Reprinted from Proceedings,
IEEE Wescon, August 1970, pages 1-9.

Roy90 Royce, W., Pragmatic quality metrics for evolutionary software devel-
opment models. Proceedings of the conference on TRI-ADA ’90, New
York, NY, USA, 1990, ACM Press, pages 551–565.

Sch02 Schneidewind, N. F., Body of knowledge for software quality measure-
ment. IEEE Computer, 35,2(2002), pages 77–83.

ShJ06 Sharma, V. S. and Jalote, P., Stabilization time - a quality metric for
software products. Proceedings of the 17th international symposium
on software reliability engineering, Washington, DC, USA, 2006, IEEE
Computer Society, pages 45–51.

Sto90 Stockman, S. G., Todd, A. R. and Robinson, G. A., A Framework
for Software Quality Measurement. IEEE Journal on selected areas in
communications, 8,2(1990), pages 224–233.

TaY05 Tamura, Y. and Yamada, S., Comparison of software reliability assess-
ment methods for open source software. Proceedings of the 11th in-
ternational conference on parallel and distributed systems – workshops,
Washington, DC, USA, 2005, IEEE Computer Society, pages 488–492.



77

Vis97 Visaggio, G., Structural information as a quality metric in software
systems organization. Proceedings of the International Conference on
Software Maintenance. IEEE, 1997, pages 92–99.

WeB06 van Wendel de Joode, R. and de Bruijne, M., The organization of open
source communities: Towards a framework to analyze the relationship
between openness and reliability. Proceedings of the 39th annual hawaii
international conference on system sciences, Washington, DC, USA,
2006, IEEE Computer Society, page 118.2.

WaH88 Wake, S. A. and Henry, S. M., A model based on software quality
factors which predicts maintainability. Technical Report, Department
of Computer Science, Virginia Tech, Blacksburg, VA, USA, 1988.

ZhD05 Zhou, Y. and Davis, J., Open source software reliability model: an
empirical approach. Proceedings of the fifth workshop on open source
software engineering, New York, NY, USA, 2005, ACM Press, pages
1–6.


	1 Introduction 
	2 Quality as a measurable quantity 
	2.1 The intuitive view of quality
	2.2 Translating intuition into a quality system
	2.3 Metrics as the building blocks of quality measurement
	2.3.1 Analysis and design metrics 
	2.3.2 Code metrics 
	2.3.3 Object-oriented metrics
	2.3.4 Maintenance metrics 
	2.3.5 General metrics problems


	3 Quality in the context of Free and Open Source Software 
	3.1 The foss mind set: catalyst or obstacle?
	3.1.1 How foss compares to process models
	3.1.2 Process maturity and success
	3.1.3 Openness and reliability

	3.2 Previous work and case studies
	3.2.1 Growth, evolution and structural change
	3.2.2 Mining public repositories
	3.2.3 Empirical tests of statistical quality models
	3.2.4 Object-oriented metrics for foss
	3.2.5 Foss quality assessment model


	4 Quality model for Free and Open Source Software projects 
	4.1 Preliminary description and project hypotheses
	4.2 Data sources
	4.2.1 Discussion space sources
	4.2.2 Documentation space sources
	4.2.3 Implementation space sources

	4.3 Data model
	4.4 Metric taxonomy

	5 Experiment: Applying quality analysis to real Free and Open Source Software projects 
	5.1 Project selection
	5.2 Data identification, acquisition and cleaning
	5.3 Description of metrics calculation 

	6 Experiment: Results 
	6.1 Linux
	6.1.1 Process quality
	6.1.2 Product quality

	6.2 Blender
	6.2.1 Process quality
	6.2.2 Product quality
	6.2.3 Object-oriented features

	6.3 The gimp
	6.3.1 Process quality
	6.3.2 Product quality

	6.4 Summary

	7 Conclusions 
	References

