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Chapter 1.  Introduction 
 
We are about to embark on a quest to build a recommendation system for an 

online community based multimedia sharing service.  We fully understand the 

wisdom in the old saying that “Rome wasn’t built in a day”; nevertheless, we are 

curious to see whether we can cobble together a decent recommendation 

system with efforts and time typical of a Master’s thesis.  In this chapter, we 

begin our mission by laying out our motivation, goal and plan of action. 

 

1.1  Background 

 
With the advent of Internet, information sharing has become significantly easier 

than before. The prevalence of broadband has also made sharing photos and 

videos a reality. Many online services that offer publishing and sharing of 

photos and videos have spawned over the recent years. Major players in the 

market include Yahoo Flickr, Google YouTube, Photobucket, Google Picasa, 

Zooomr, etc. As an example of the popularity of these services, at the very 

minute that this sentence is being typed, Photobucket has had over 

3,911,633,403 images uploaded by users to date and is increasing at a rate of 

about 70 images per second! 

 

Not all services are created equal, some have more features and offerings than 

others but the core functionalities are similar across the board.  For instance, 

many sites allow users to add metadata to photos such as title, description and 

tags.  Tags are essentially keywords or terms used to describe a photo and they 

are typically single words in lower case.  For example, a cat photo may be 

tagged with the term “cat”, “kissa” (Finnish word for cat), “kitten”, “kitty”, “feline”, 

“garfieldthecat”, “orange”, “rambunctious”, etc.  The purpose of tagging is to 

enable text-based retrieval and management of photos; so for example, 

somebody who wishes to view cat photos can search for all photos with the tag 

“cats”.  Another common feature appearing in many photo sharing services is 

the ability for users to comment or rate each other’s photos.  This social 

engagement in fact is the tie that binds the users of a service into an active 
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community of contributors and peer reviewers, and it is also the basis for our 

study. 

 

1.2  Objective 

 
The central focus of this thesis is to investigate and attempt to design a 

multimedia recommendation system.  We would like to be able to proactively 

suggest multimedia items that may be of interest to users based on some 

measures of interestingness.  The proposed system is predictive and 

unintrusive in that recommendations are drawn by passively observing and 

analyzing the activities collected about users and their items from an online 

multimedia sharing service.  Since such data typically accumulates over time as 

the size of the user base increases and the amount of activities grows, the 

recommendations offered by the system are also implicitly dynamic and 

adaptive to the growing breadth and depth of the data. 

 

Apparently, the success of the recommendation system hinges on the definition 

of interestingness which is an admittedly rather slippery and elusive concept.  

While this may seem like a formidable task at first, in fact, a simple definition of 

interestingness exists and is prevalent among sites that let users rate items 

online.1  The most interesting items can be defined as the ones that received 

the highest average rating from the community.  This formulation of 

interestingness is global in the sense that the recommendation produced by the 

measure is the same for all users.  The advantage of global interestingness is 

that it maximizes viewership of the topmost interesting items.  This maximum 

exposure may entice contributors to strive for the top interestingness ranking by 

contributing better items all the time.  As the site becomes more prominent, 

these top spots not only offer fame to the contributors but can also carry 

monetary compensation as well.2  Inevitably, with the users being humans, the 

battleground for the top is also littered with treachery and manipulation.  A 

                                                
1 Flickr is different in that its recommendations are computed using some interestingness algorithms 
according to their patent applications [15, 16].  Unfortunately, the algorithm is proprietary and is not 
disclosed to public. 
2 The author is aware of at least one instance where an advertisement agency purchased exclusive rights 
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simple rating averaging mechanism for computing global interestingness can be 

easily gamed by dishonest users.  One of our goals, therefore, is to devise an 

alternative formulation of global interestingness that is more resilient against 

manipulation. 

 

Earlier, we described the importance and benefits of interestingness from the 

point of view of contributors, we now switch gears and put ourselves in the 

shoes of viewers.  If we think of the recommendation system as a marketing 

ploy where we promote items to potential buyers, then global interestingness is 

a one-size-fits-all strategy and completely ignores the nuances between the 

preferences and needs of individuals.  The chance of having all the top 

recommended items appealing broadly to the individual interests of the masses 

is rather slim.  To boost our hypothetical sales, what we would like is a 

personalized interestingness algorithm that takes into account user preferences 

by studying users’ past behavior based on the information that was collected 

about them from the online service.  The development of such a personalized 

algorithm is the second target of this thesis.  

 

1.3  Methodology 

 
For the purpose of this study, we have available to us a small data set extracted 

from Flickr which is an online photo sharing service.  The data set composes of 

2524 users who collectively own 2,177,103 photos.  Of these photos, 34.97% 

are commented by users within the set.  On average, each user commented 

302 photos and marked 120 photos as their favorites.  Some of the photos 

commented by a user can include his/her own photos while photos that are 

marked as favorites belong to other users.  In terms of tags, there are 577,353 

unique tags in the collection.  While there are also other types of metadata 

available in the data set such as title and description of photos and albums, we 

concentrate on using tags alone as the textual representation for photos.  We 

do not attempt to analyze the photos through any image processing or 

recognition means to look for clues of what is in the photo.  Our 

                                                                                                                                          
to photos from Flickr members for marketing use. 
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recommendation engine is based entirely on tags, ownership and evaluation 

information.  By evaluation, we mean the trail of comments and favorite photos 

left behind by the users. 

  

To ascertain the quality of the recommendation produced by the global and 

personalized interestingness algorithm, we conducted an informal user study.  

We chose 26 of the 2524 users from the data set and had them grade the 

proposed recommendation based on several criteria such as general 

interestingness, personal appeal, aesthetics and overall quality of the photos 

recommended. 

 

For the rest of the discussion, Chapter 2 and 3 lay out the theoretical foundation 

for the thesis.  Much of the proposed algorithm relies on linear algebra and with 

insights borrowed from web mining algorithms, in particular, PageRank and 

HITS.  Unfortunately, Linear Algebra is an extensive field so it is beyond the 

scope of this thesis to cover its entirety.  Rather, only important and germane 

concepts are drawn and reviewed in Chapter 2.  In Chapter 3, we devote the 

entire discussion to PageRank and HITS.  An understanding of the inner 

workings of PageRank and HITS will allow us to develop our own algorithm in 

the following chapters.  The thrust of the thesis is in Chapter 4 and 5.  We first 

explore and develop various methods to rank photos by global interestingness 

in Chapter 4.  In Chapter 5, we utilize the results from the previous chapter to 

customize recommendation to individual users.  We put our algorithms to test in 

Chapter 6 where we discuss the results of our user study.  In Chapter 7, we 

conclude our discussion and explore future possibilities. 
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Chapter 2.  Concepts from Linear Algebra 
 
This chapter provides a cursory overview of some of the important results from 

linear algebra that will be used in the discussion of our topic.  By no means is it 

intended as a crash course on linear algebra but merely as a refresher for 

concepts already familiar to the readers.  For a more complete and thorough 

treatment of the subject, the readers is advised to consult the materials 

provided in the references [6, 11, 13]. 

 

Vector 

 

A vector is an abstraction with magnitude and direction and can be visualized 

as an arrow on a plane.  Using the origin as a point of reference in Euclidean 

space, a vector can be thought of as a set of coordinates.  By convention, we 

write a vector as a vertical array of numbers such as 







=

5

3
v .  To address the 

kth element of the vector, we subscript the index next to the variable as such, 

v1=3 and v2=5.  A vector can also be multiplied by a scalar to increase or 

decrease its magnitude, or added/subtracted by another vector to alter both 

magnitude and direction.  While the example vector given above is two 

dimensional, a vector can have any dimension.  We say that a vector is of size 

n if it has n elements or dimensions. 

 

Vectors and matrices can be considered as the elementary data structures in 

linear algebra.  The study of their properties and operations lies in the core of 

linear algebra.  One of the ways that we will be using vectors is to store the 

interestingness scores for multimedia items. 

 

Vector Dot Product 

 

Two vectors of the same size can be mapped to a scalar through the dot 

product operation.  The dot product, also called the scalar product or Euclidean 

inner product, sums the component wise products of two vectors.  For example, 
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for the two vectors x and y such that, 

 

















=
3

2

1

x  and 
















=
6

5

4

y  

 
the dot product x●y is 1·4+2·5+3·6=32.  An important concept related to dot 

product is orthogonality.  We say two vectors are orthogonal if their dot product 

is 0. 

 

Vector Norm 

 

The norm of a vector is its length and there is more than one way to measure 

the length of a vector.  Perhaps the most notable way is the 2-norm or 

Euclidean-norm which is related to the Pythagorean Theorem and is defined as, 

 

∑
=

=•=
n

k
kvvvv

1

2

2
 

 
Another example of norms is the 1-norm better known as Manhattan norm and 

is defined as, 

 

∑
=

=
n

k
kvv

1
1

 

 
Sometimes, when we are operating with vectors, it is convenient to normalize 

the vector so its norm is 1.  We called such normalized vectors unit vectors 

since they have unit length.  Different norms produce different unit vectors.  

Below, we show the unit vectors for 2-norm and 1-norm where any vector 

starting from the origin and ending on the circle or square is a unit vector. 
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Figure 2.1   2-norm unit vectors Figure 2.2  1-norm unit vectors 

 

 

Cosine Similarity 

 

The dot product described earlier has a geometric interpretation.  If u and v are 

two vectors of the same dimension and we align them so that they share the 

same initial point, then the angle between them is, 

 

θ = 












 •−

22

1

vu
vu

cos  

 = 













•−

22

1

v
v

u
u

cos  

 
In other words, the angle between any two vectors is the inverse cosine of the 

dot product of the two vectors normalized to unit length.  The cosine of the 

angle is known as the cosine similarity. 

  

The cosine similarity of two vectors plays a very important role in information 

retrieval.  Often times, in text mining, documents are treated as bags of words 

without any order between the words.  Each document is represented as a 

vector where the elements in the vector are the frequencies of the terms in the 

document scaled by some factor.  Two documents are considered similar if the 

angle between their vectors is small.  In terms of cosine similarity, this means 

the value approaches 1.  (The vectors are nonnegative as the elements in the 

vector represent frequencies, so the cosine of the angle is always between 0 

-1 1 

1 

-1 

-1 1 

1 

-1 
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and 1.)  When two documents are identical, their cosine similarity is 1. 

 

For our purpose, we use cosine similarity to measure the similarity between 

users through the tags associated with the photos they own.  For example, 

suppose we have three users with the following distribution of tag frequencies, 

 

 cats dogs flowers 
user 1 8 2 0 
user 2 5 5 2 
user 3 0 10 2 

 

Each row of the table lists the number of times a tag occurs in the collection of 

photos owned by the user.  To compute the cosine similarity between user 1 

and 2, we first compute the Euclidean norm of the two vectors, 

 

















=
0

2

8

1u  and 
















=
2

5

5

2u  

68028 222

21 =++=u  

54255 222

22 =++=u  

 
The cosine similarity between u1 and u2 is then, 

 

cos θ = 830
5468

205258
.=

⋅
⋅+⋅+⋅

 

 
If we carried out the cosine similarity between all pairs of users, we obtain the 

following results. 

 

 User 1 User 2 User 3 
User 1 1 0.8251 0.2378 
User 2 0.8251 1 0.7206 
User 3 0.2378 0.7206 1 

 

From the table, we conclude that user 1 is more similar to user 2 than to user 3, 

and that user 2 is more similar to user 1 than to user 3. 
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Matrix 

 

A matrix is a two dimensional array of numbers.  In link analysis, we use a 

matrix to describe the relationship between a set of entities.  For example, 

suppose we are dealing with web pages, then a matrix can be used to describe 

the hyperlink relationship between web pages.  To illustrate this with a small 

example, consider the following miniature web with 4 web pages, 

 

 
Figure 2.3   Link structure of web 

 

The arrows on the graph denote hyperlinks between web pages.  We can define 

a matrix A so that the element in the ith row and jth column is 1 if there exists a 

link from the ith page to the jth page.  This matrix A would look like, 

 



















=

0000

1010

0100

1110

A  

 
In this case, our matrix A is a square matrix but typically, a matrix can be of any 

sizes.  We say a matrix is of size m-by-n if it has m rows and n columns. 

 

By convention, an upper case alphabet is used to denote a matrix.  To refer to 

an element in a matrix, we use the lower case of the matrix symbol and append 

the row and column indices to be referenced.  For example, the element in the 

second row and third column of A is referenced by a2,3 which in our example is 

equal to 1.  Sometimes, we may also wish to refer to any element in A, we do 

1 2 

3 4 
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so with ai,j (or aij as shorthand) where i refers to any row and j refers to any 

column.  At other times, we may also need to refer to any column or row in a 

matrix.  To address any column, we use a·j and for row, we use ai·.  It should be 

apparent that a·j can be treated as a column vector while ai· is a row vector. 

 

A common matrix that we often encounter is the identity matrix, denoted as I.  

The identity matrix is a square matrix with ones along the main diagonal and 

zeros everywhere else. 

 

Matrix Multiplication 

 

A matrix can be multiplied by a vector to produce another vector or by a matrix 

to produce another matrix.  We first define matrix-vector multiplication and from 

that, we can see that matrix-matrix multiplication follows naturally.  To multiply a 

matrix with a vector, the dimension has to match.  For an m-by-n matrix A to be 

post-multiplied by a column vector x, x must be of size n.  The product of the 

multiplication Ax is a column vector of size m.  Formally, matrix-vector 

multiplication is defined as, 

 

∑
=

⋅==
n

j
jjaxAxb

1

 

 
We can interpret the product as a weighted sum of the column vectors of A.  For 

example, suppose A = 








43

21
 and x = 









6

5
, then b = Ax = 5 









3

1
 + 6 









4

2
 = 









39

17
. 

 

A matrix times a matrix also has a dimension compatibility requirement.  A p-by-

m matrix can only be multiplied by an m-by-n matrix and the result is a p-by-n 

matrix.  Formally, let A be a p-by-m matrix and C be an m-by-n matrix, then 

B=AC is defined as, 

 

∑
=

⋅⋅⋅ ==
m

k
kkjjj acAcb

1
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In other words, the jth column of B is the weighted sum of the column vectors of 

A and the weights are the elements in the jth column of C.  For example, 

 

A = 








43

21
 and C = 









86

75
 →  AC = 
















+
















+









4

2
8

3

1
7

4

2
6

3

1
5  = 









5339

2317
 

 

Matrix Transposition 

 

The transposition operation for a matrix interchanges the row and column 

elements of the matrix.  Formally, let A=[aij], the transpose of A denoted by A' is 

[aji].  For a square matrix, this operation is akin to flipping the elements in the 

matrix along the main diagonal, for example, for matrix A= 








43

21
, A'= 









42

31
. 

In general, for a column vector which is an m-by-1 matrix, its transpose is the 

row vector which is a 1-by-m matrix. 

 

Matrix Norm 

 

Like vectors, matrices have norms as well.  A common way to introduce matrix 

norm is through the vectors that a matrix operates on.  Formally, a vector 

induced matrix norm is defined as, 

 

x

Ax
supA

x 0≠
=  

 
Plainly speaking, this matrix norm is the maximum stretching ratio induced by 

the matrix on a vector. 

 

Symmetric Matrix 

 

A symmetric matrix is a square matrix that is equal to its transpose.  It can be 

shown that the product of a matrix with its transpose forms a symmetric matrix.  

We give an example here without proof. 
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A = 








654

321
 and AA'  = 








=


























7732

3214

63

52

41

654

321
 

 

Matrix Inverse 

 

A square matrix B is invertible if there exists a matrix C such that CB = BC = I 

where I is the identity matrix.  The matrix C is called the inverse of B while B is 

the inverse of C.  Not all square matrices are invertible but if an inverse exists, it 

must be unique.  By convention, we denote the inverse of an invertible matrix B 

as B-1, hence, B-1B = BB-1 = I. 

 

For our purpose, we will focus on a special class of matrices called the diagonal 

matrices which can easily be shown to be invertible.  We already encountered 

the identity matrix I which is a diagonal matrix.  In general, a matrix D is a 

diagonal matrix if dij=0 where i≠j.  The definition requires that all elements off 

the main diagonal of the matrix are zeros while the elements along the diagonal 

can have any values including zeros.  A diagonal matrix is invertible if and only 

if all of its diagonal elements are nonzero.  The inverse D-1 is also a diagonal 

matrix with diagonal elements being the reciprocal of the diagonal elements of 

D.  For example, 

 

















=
300

020

001

D  and  
















=−

3
1

2
11

00

00

001

D  → =
















=−

100

010

001
1DD  I 

 

Orthogonal Matrix 

 

A matrix U is orthogonal if the product of the matrix with its transpose is the 

identity matrix, that is, U'U = UU' = I.  In other words, the transpose of the matrix 

is also the inverse of the matrix.  We will encounter the orthogonal matrix again 

when we discuss eigenvalue decomposition. 
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Eigenvalues and Eigenvectors 

 

For a square matrix A, if there exists a scalar λ and a non-zero vector x such 

that Ax=λx, then we say λ is an eigenvalue for A and x is called an eigenvector 

corresponding to λ, and together, the pair (λ,x) is called an eigenpair for A.  

Plainly speaking, an eigenvector for a matrix A is a vector such that when 

multiplied by the matrix its direction remains unchanged or reversed while its 

magnitude is scaled by λ.  For example, for matrix 

 

B = 
















−
−
−

231

121

132

, 

 

the eigenpairs are (0, 
















−
−
−

580

580

580

.

.

.

), (1, 
















410

410

820

.

.

.

) and (1, 














−

730

020

680

.

.

.

). 

 

There are numerous properties related to eigenvalues and eigenvectors.  The 

ones that we will encounter are: 

 
1. λ is an eigenvalue of A if and only if λ is an eigenvalue of A'. 

2. |λ| ≤ ||A|| where ||.|| denotes any norm and λ is an eigenvalue of A. 

 

Spectral Radius 

 

The spectral radius of a matrix A is the magnitude of the largest eigenvalue(s) 

for A and is denoted by ρ(A).  The eigenvalues for a matrix can be real or 

complex (all matrices and vectors are assumed to be real in this paper 

however).  If we plot the eigenvalues for A on a complex plane that is centered 

at the origin, then all the eigenvalues must lie within the spectral radius from the 

origin.  The circle with spectral radius centered at the origin on the plane is 

called the spectral circle of A.  We give an example of a spectral circle in Figure 

2.4 for the eigenvalue set {-1, 0, ½}. 
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Figure 2.4   Spectral circle with radius ρ(A)=1. 

 

Similarity Transformation 

 

If matrix X is invertible, then the map A→X-1AX is called a similarity 

transformation of A.  We say that A and B are similar if B = X-1AX for some 

invertible matrix X.  One very important property of similarity transformation is 

that it preserves spectral properties such as eigenvalues, i.e. if matrix A and B 

are similar, then their eigenvalues are identical.  Two well known instances of 

similarity transformation are eigenvalue decomposition and Schur factorization. 

 

Eigenvalue Decomposition 

 

An eigenvalue decomposition for matrix A exists if A can be factorized into the 

form XΛX-1 where X is invertible and Λ is diagonal.  The column vectors x·j are 

the eigenvectors of A and the diagonal elements Λij are the eigenvalues 

corresponding to eigenvectors x·j. 

  

Not all square matrices have eigenvalue decomposition.  A special class of 

matrices that has eigenvalue decomposition includes the symmetric matrices.  

The eigenvectors of symmetric matrices are also orthogonal, i.e. the dot product 

between any pair of eigenvectors is 0.  As a result, matrix X can be made 

orthogonal by normalizing the eigenvectors by their Euclidean norm. 

 

Re 

Im 

½ -1 

eigenvalue -1 on 
spectral circle 

eigenvalue ½ inside 
spectral circle 



  15 

Schur Factorization 

 

Every square matrix A has a Schur factorization of the form QTQ' where Q is an 

orthogonal matrix and T is an upper triangular matrix.  The Schur factorization 

of A may not be unique.  When T is a diagonal matrix, Schur factorization is the 

same as eigenvalue decomposition.  Since the Schur factorization is a similarity 

transformation, the eigenvalues of A and T are identical.  In fact, since T is 

triangular, the eigenvalues are located on its main diagonal.  Because of this 

property, the factorization is often used to analyze the eigenvalues of a matrix.  

We will be using Schur factorization quite frequently when we discuss 

PageRank.  The proof of Schur factorization by induction on the dimension of A 

is straightforward and we provide it here for the convenience of reference [6, 

14:187]. 

 

Suppose A is an m-by-m matrix where m ≥ 2 (the case for m=1 is trivial) and let 

λ be an eigenvalue of A with corresponding normalized eigenvector x.  Let U be 

an orthogonal matrix with the first column equal to x, then 

 

AU = 








C

B
U

0

λ
 for some submatrix B and C 

 

Since U is invertible, we rewrite the above as U'AU = 








C

B

0

λ
 = T1.  By induction 

hypothesis, we know C has a Schur factorization VT2V'.  To find Q, the 

orthogonal matrix that factorizes A, we let Q = 








V
U

0

01
, then 

 

Q'AQ = 
'

V







0

01
U'AU 









V0

01
 

 = 








'V0

01
 









C

B

0

λ
 









V0

01
 

 = 








C'V

B

0

λ
 









V0

01
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 = 








CV'V

BV

0

λ
 

 = 








20 T

BVλ
 

 = T 

 

Power Method 

 

Power Method is a numerical iterative algorithm for computing the dominant 

eigenvalue and corresponding eigenvector of a matrix.  It is also perhaps the 

slowest method available but it has the advantage that it requires minimal 

storage space in carrying out the steps making it suitable for computation 

involving a large matrix.  For our purpose, we use the power method to find the 

dominant eigenvector only.  The dominant eigenvector is the eigenvector 

corresponding to the largest eigenvalue in magnitude.  The iterative steps for 

finding the dominant eigenvector x of matrix A are, 

 

 
x0 = e/||e|| 

while ||xk-xk-1|| > some threshold 

 qk = Axk-1 

 xk = qk/||qk|| 

 
Figure 2.5   Power Method for finding dominant eigenvector. 

 

where e is a vector with 1s and ||.|| denotes any vector norm.  The purpose for 

normalizing qk by ||qk|| is to avoid overflow so theoretically speaking, it is not 

needed.  Without the normalization step, the method simply becomes xk = Axk-1 

which is equivalent to computing Akx0. 

 

We can visualize the operation of Power Method by following the course of xk 

through the iterations.  In each execution of the loop, the multiplication Axk-1 

pulls xk toward the direction of the dominant eigenvector.  Repeating executions 
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of the loop further amplifies the pull until at some point the changes becomes 

small enough that the loop terminates and the approximated dominant 

eigenvector x is returned. 

 

We mentioned earlier that Power Method is slow.  To be exact, if A has 

eigenvalues |λ1| > |λ2| ≥ |λ3| ≥ ...  ≥ |λn|, then the convergence rate is |λ2|/|λ1|. 

 

Perron-Frobenius Theorem 

 

Perron-Frobenius Theorem for nonnegative matrices enables us to understand 

the spectral characteristics of a matrix.  Two important results from the theorem 

are irreducibility and primitivity.  A matrix P is reducible if there exists a similarity 

transformation such that X'PX= 








C

BA

0
 where A, B and C are matrices.  

Irreducibility can be made more clearly understood if we interpret P as an 

adjacency matrix for a directed graph.  For example, the directed graph 

illustrated in Figure 2.3 can be represented by the adjacency matrix, 

 

P = 



















0101

0011

0101

0000

 

 
The element in the ith row and jth column of P denotes the existence of a link 

from node j to node i.  P is irreducible if and only if there exists a directed path 

between any two vertices on the graph.  In graph theory terminology, such 

graph is also called strongly connected.  For the example above, P is not 

irreducible because there is no path that connects from node 2 to node 1. 

 

Perron-Frobenius theorem states that if A ≥ 0 is an irreducible square matrix, 

then the following must be true [9:172]: 

 
1. A unique real eigenvalue λ > 0 exists that lies on the spectral circle of A, 

hence, no other eigenvalue has magnitude bigger than λ. 
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2. There exists an eigenvector x with all elements xi > 0 such that Ax=λx. 

 

Irreducibility alone does not guarantee that λ is the only eigenvalue on the 

spectral circle, e.g. -λ might be on the spectral circle as well.  However, if λ is 

the only eigenvalue on the spectral circle, then the matrix is also called 

primitive.  Primitivity is very important when we discuss PageRank in Chapter 3.  

There are at least two possible tests for primitivity when A is a square 

nonnegative matrix [9:174], 

 
1. A is primitive if and only if Am > 0 for some m > 0. 

2. A is primitive if A is irreducible with at least one positive diagonal 

element. 
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Chapter 3.  Web Mining Algorithms 
 
Besides the enormous amount of content available on the World Wide Web, the 

web also holds a very special kind of data that prior to the invention of 

PageRank [2] and HITS [8] went largely unnoticed and untapped by the 

information retrieval community.  The basis of the web is formed by hyperlinks 

connecting web pages together.  These hyperlinks are like referrals.  A page 

may link to another page because the other page may hold some valuable 

information that the viewer of current page may also like to check out.  From the 

point of view of the linked page, the links it receives are tantamount to 

endorsement by other pages.  The web then can be viewed as a giant 

recommendation system where each page recommends other pages while it 

receives recommendations from others.  In this context, two separate 

algorithms, PageRank and HITS, were developed coincidentally around the 

same time by two different groups that exploit the hyperlink structure of the web.  

The algorithms differ by the way they assign importance to the web pages 

based on knowledge of the collective recommendations and the mechanism for 

arriving at the rankings.  In this chapter, we will pay homage to PageRank and 

HITS but it is also worth to mention that other graph-based algorithms have 

been developed over the years such as TrafficRank [13] and SALSA [10]. 

 

3.1  PageRank 

 
PageRank, the key ingredient behind the popular Google search engine, was 

invented in 1998 by Sergey Brin and Larry Page who were then graduate 

students at Stanford University [2].  The idea behind PageRank is surprisingly 

simple yet effective.  Exploiting the hyperlink structure of the web, PageRank 

surmises that each web page has a prestige score that ties to the number of 

inlinks a page receives.  The more prestigious sources linking to a page, the 

more prestigious the page becomes.  The presumption is that a web page with 

high prestige score tends to contain more valuable information than one with 

low prestige; hence, it is more useful to a searcher and deserves a higher 

position in the search results.  To see why this might be the case, we need to 
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articulate the idea more rigorously. 

 

First, we define the weighted adjacency matrix Q such that, 

 

qij = 
jN

1
 if web page j links to page i, otherwise 0 

 
where Nj is the number of outlinks page j has.  The non-zero elements in each 

column of Q represent the weights of the outbound links from a page.  The non-

zero elements in each row of Q represent the weights of the inbound links to a 

page.  The weighting scheme enables us to interpret the outbound links of a 

page as probabilistic transitions from the page.  For example, for a page with 

three outlinks, each outbound destination has a one-third chance of being 

reached from the page.  We can visualize the entire web then as a giant 

network of state transitions with each state corresponding to a web page.  The 

prestige that we seek traverses the states and diffuses through the network until 

equilibrium is reached assuming one exists. 

 

Formally, we define prestige as, 

 
r = Qr (3.1.1) 

 
where r is a column vector of prestige scores for the pages.  The above 

equation says that the prestige of a page is the sum of the prestige of the 

sources weighted by the probabilities of transition from the sources to the page.  

For example, for the following weighted adjacency matrix and prestige score, 

 

















=
0

0

00

ed

cb

a

Q         

















=

3

2

1

r

r

r

r  

 
The prestige for page 2 is r2 = br1 + 0r2 + cr3 and the prestige for page 3 is r3 = 

dr1 + er2 + 0r3.  The prestige scores that we are looking for are the prestige 

scores at equilibrium with Equation 3.1.1.  Interpreting Equation 3.1.1 as an 

eigenvalue problem, it assumes eigenvalue 1 exists and we are looking for the 



  21 

corresponding eigenvector.  Obviously, whether eigenvalue 1 exists depends on 

Q.  If we can somehow guarantee its existence, then we have a chance for 

solving the equation.  (If we would be more lenient with Equation 3.1.1 and 

instead define prestige as λr = Qr where λ is the largest positive eigenvalue of 

Q, then we might stand a better chance of finding a solution though the 

sensibility of the solution would still need to be verified by experiments on test 

data.)  A more practical problem is that the size of matrix Q limits our choice of 

computation methods for solving the equation.  For the World Wide Web, the 

number of web pages is in the billions and the size of matrix Q is billions to the 

power of 2.  Even when sparsity is considered since many entries in Q are likely 

0, the space requirement to carry out the computation is still immense.  The 

only viable option is the Power Method which requires minimal intermediate 

storage in carrying out the iterative steps toward solution.  A sacrifice has to be 

made though in choosing the Power Method, the nature of the method requires 

that Qk converges to a stable matrix as k→∞.  What can possibly go wrong is 

that there is more than one distinct eigenvalue on the spectral circle of Q.  To 

illustrate the problem, suppose +1 and -1 are both eigenvalues of Q with 

spectral radius 1, then by Schur Factorization, 

 
Qk = (UTU')k 

 = UTU'UTU'...UTU'  

= UTIT...ITU' 

 = UTkU' 

 
where U is an orthogonal matrix and T is upper-triangular.  This means that the 

convergence of Qk rests on Tk.  Since T is upper-triangular with eigenvalues of 

Q along the main diagonal, the main diagonal of Tk consists of eigenvalues of T 

raised to the kth power, 

 

















−=
O

K

*)(

**

T k

k

k 10

1

 

 
where * denotes any real number.  With eigenvalue -1 to the kth power toggling 
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between -1 and +1, it is apparent that Qk will not converge. 

 

It turns out that we can guarantee eigenvalue 1 exists and is the only distinct 

eigenvalue on the spectral circle of Q if we modify Q slightly.  The enabler 

behind the maneuver is Perron-Frobenius Theorem.  The key properties from 

the Perron-Frobenius Theorem that we utilize are irreducibility and primitivity.   

 

3.1.1  Random Surfer 

 
Earlier, we envisioned Equation 3.1.1 as prestige flowing across a network, we 

now take a slightly different interpretation.  The original conception of PageRank 

was based on the notion of a random surfer.  The random surfer navigates the 

web by following the links of the web pages.  Each outlink on a page is chosen 

randomly by the surfer.  Over time, the surfer may revisit the same page over 

and over again simply by navigating the link structure.  The idea is that the 

proportion of time spent by the surfer on a given page reflects the importance of 

that page and the pages that are linked from an important page must also be 

relatively important as well.  All is swell except that some of the pages on the 

web have no outlinks.  The random surfer, therefore, gets stuck on those pages.  

To avoid getting stuck, Brin and Page altered the weighted adjacency matrix Q 

so that all linkless pages now link to every other pages, in other words, the 

prestige of the formerly linkless page is now propagated and shared evenly by 

all other pages so no particular page benefits from the adjustment exclusively.  

Formally, the new weighted adjacency matrix P is, 

 

pij = 
jN

1
 if web page j links to page i, otherwise 

τ

1
 

 
where τ  is the total number of web pages available on the web.  In effect, we 

turn P into a column stochastic matrix in that each column of the matrix sums to 

1.  The stochasticity of the matrix means that eigenvalue 1 exists since P'e=e 

where e is a column vector of ones, implies 1 is an eigenvalue of both P and P' 

(the eigenvalues of a matrix and its transpose are identical).  Furthermore, 

eigenvalue 1 is also on the spectral circle of P, i.e. no other eigenvalue has 
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magnitude greater than or equals to 1, because ρ(P) ≤ ||P||1 = 1 where ||P||1 is 

the largest column sum of P. 

 

3.1.2  Teleportation 

 
We have now guaranteed the existence of eigenvalue 1 but to be able to 

compute PageRank by Power Method, we still need to ensure eigenvalue 1 is 

the only eigenvalue on the spectral circle of P.  To this end, Brin and Page 

proposed the idea of teleportation.  The insight behind teleportation is that on 

any given page, our random surfer may get bored and decide to jump to 

another page without following the links on the page.  This action is akin to 

entering a random URL address on the location bar on most browsers.  Hence, 

each page has a minute chance of transitioning to any other pages on the web 

by default.  To maintain stochasticity for the sake of eigenvalue 1, we further 

modify the weighted adjacency matrix P to G where, 

 

n
'ee

)(PG αα −+= 1  (3.1.2.1) 

 
for some 0 ≤ α ≤ 1, n is the number of web pages on the web and e is a column 

vector with n ones.  The matrix G is sometimes called the Google matrix.  What 

the equation does is to reserve a fraction of the transition weights from a page 

and redistribute them evenly across all pages.  We illustrate this with a small 

example.  Let α = 0.8 and P = 








2
1

2
1

0

1
, then G = 0.8 









2
1

2
1

0

1
 + (1- 0.8) 









2
1

2
1

2
1

2
1

 = 










5010

5090

..

..
. 

 

The Google matrix is not only stochastic but it has the additional property that it 

is irreducible and primitive.  By irreducibility, we mean that all the modified 

pages on the web are now strongly connected, i.e. each page is reachable from 

any other page through a sequence of link traversals.  By Perron-Frobenius 

Theorem, irreducibility guarantees that our eigenvalue 1 is unique and has 

corresponding eigenvector with positive elements.  While we were not seeking 
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for such feature explicitly, it is still good to have since this guarantees the 

prestige scores are unique.  What we would like to know is whether eigenvalue 

1 is the only eigenvalue on the spectral circle of G.  Primitivity of the Perron-

Frobenius Theorem ensures us this is the case.  The litmus test is the property 

that a square nonnegative matrix A is primitive if and only if Am > 0 for some m 

> 0 which in our case is trivially so since G is a positive matrix to begin with 

[9:174]. 

 

3.1.3  Rate of Convergence 

 
We have established that the Google matrix has a spectral radius of 1 and that 

eigenvalue 1 is the only eigenvalue on the spectral circle.  Consequently, we 

can rest assured that the Power Method will converge iteratively to a unique 

stable solution.  We also know that the Google matrix is primitive, so its second 

largest eigenvalue must be less than one, hence, the convergence rate should 

be λ2/λ1=λ2.  Since primitivity was the result of teleportation, it is natural to 

wonder how the teleportation parameter α affects the rate of convergence.  To 

answer this question, we analyze Equation 3.1.2.1 to see how α affects the 

eigenvalues of the Google matrix by applying Schur Factorization to G to reveal 

its eigenvalues.  The outline of our approach is to find a common orthogonal 

matrix U that can be used to factorize the matrices in the first and second term 

of Equation 3.1.2.1 [4:151, 9:46]. 

 

First, we decompose the rank one matrix ee'/n in the second term of Equation 

3.1.2.1 into its Schur Factorization form U'ee'/nU where U is an orthogonal 

matrix.  We note that ee'/n has an eigenvalue 1 with any multiple of e as 

corresponding eigenvector.  For reasons that will become obvious when we 

factorize P, we choose ê which has Euclidean norm 1 as the eigenvector 

instance and let the first column of U be ê and the rest of the columns of U be 

some U1 so that U = [ê U1] is orthogonal.  The Schur Factorization of ee'/n is 

then, 
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Λ = U
n

'ee
'U  

 = [ ]1Uê'ee
'U

ê'

n 








1

1
 

 = [ ]1Ue'êe'
e'U

eê'

n 








1

1
 

 = 





















0

n

n
n

n

n 0

1
 

 = [ ]01
n

n 








0

1
 

 = 








00

01
 

 
From the result of the factorization, we see that U1 is not constrained by Λ and 

is free to take on any values as long as U is an orthogonal matrix. 

 

Next, we apply Schur Factorization to the column stochastic matrix P in the first 

term of Equation 3.1.2.1 but first we note that the factorization of P is equivalent 

to the transpose of the factorization of P', 

 
Q'P'Q = (Q'P'Q)' = Q'PQ 

 
where Q is an orthogonal matrix.  Therefore, by finding the Schur Factorization 

for P', we also find the Schur Factorization for P by taking its transpose.  We 

proceed to factorize P' which is easier since we know P' has an eigenvalue 1 

with any multiple of e as corresponding eigenvector.  For the orthogonal matrix 

Q, we can re-use U from above since it already has ê as its first column with 

subsequent orthogonal columns open for choosing, hence, 

 
T = U'P'U  

 = [ ]1Uê'P
'U

ê'









1
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 = [ ]1U'Pê'P
'U

ê'









1

 

 = [ ]1UP'ê
'U

ê'









1

 

 = 








1

1

UP''Uê'U

UP'ê'êê'

11

 

 = 








1

1

UP''U0

UP'ê'1

1

 

 = 








C0

B1
 

 
where B = ê'P'U1 and C = U1'P'U1.  We can repeat Schur Factorization for C 

and so on until we have a complete upper triangular T.  Since T and P' are 

similar, their eigenvalues are preserved.  As a matter of fact, since T is a 

triangular matrix, the eigenvalues are located along the main diagonal of T so C 

must contain the rest of the eigenvalues of P' along its diagonal. 

 

We are now ready to put together our proof of convergence.  Let the 

eigenvalues of P' be {1, λ2, ..., λn}, the Schur Factorization of G, 

 
U'G'U = U'(αP' + (1-α)ee')U 

 = αU'P'U + (1-α)U'ee'U 

 = α 








C0

B1
 + (1-α) 









00

1 0
 

 = 








C0

B1

α

α
 

 
shows that the eigenvalues of G are {1, αλ2, ..., αλn}.  The convergence rate by 

Power Method, therefore, is αλ2.  In the worst case when λ2=1, the rate of 

convergence becomes α.  By adjusting the level of teleportation, we are in fact 

controlling the rate of convergence. 
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3.2  Hypertext Induced Topic Search (HITS) 

 
HITS was invented by Jon Kleinberg in 1998 at IBM Almaden Research Center 

around the same time PageRank was invented [8].  Similar to PageRank, HITS 

utilizes the hyperlink structure of the web to rank web pages but unlike 

PageRank, the ranking for web pages is based on two criteria which are the 

authority and hub score.  The definition for authority and hub score are mutually 

dependent and recursive.  A web page is considered a good authority if it is 

linked by many good hubs while a web page is considered a good hub if it links 

to many good authorities.  A user can select the type of web pages she desires 

by weighing the authority and hub score.  For example, a web page with high 

hub score might be a directory containing links to good information about a 

subject while a web page with high authority score may contain a good exposé 

to a topic. 

 

To appreciate the intricacy of the HITS idea, we first define formally the 

adjacency matrix B to describe the hyperlink structure, 

 
bij = 1 if web page i links to page j, otherwise 0 

 
Using the adjacency matrix, we formulate the authority score as, 

 
a = φB'h 

 
where a is a column vector containing the authority scores, h is the column 

vector of hub scores and φ is a proportionality constant.  Similarly, the hub 

score is defined as, 

 
h = ωBa 

 
where ω is a proportionality  constant.  We can solve for either equation by 

substituting a or h into the other which yields the following pair of equations for 

the authority and hub score, 

 
a = φωB'Ba (3.2.1) 
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h = φωBB'h (3.2.2) 
 
where matrix B'B and BB' are known as the authority and hub matrix.  Solving 

Equation 3.2.1 and Equation 3.2.2 becomes an eigenvalue problem and we will 

show that a stable solution exists (though not unique) when we apply Power 

Method.  To avoid a proliferation of symbols, we will only demonstrate the steps 

for Equation 3.2.1 but the same procedure applies to Equation 3.2.2. 

 

3.2.1  HITS Solution 

 
From Chapter 2, we know that the authority matrix being symmetric has 

eigenvalue decomposition with orthogonal eigenvectors.  It turns out that the 

eigenvalues of B'B are also nonnegative.  To prove this, let λ be an eigenvalue 

of B'B and x be corresponding eigenvector, then, 

 
λx'x = x'λx = x'B'Bx = (Bx)'(Bx) = 02 ≥∑

k
k)Bx(  

 
Since x'x ≥ 0, λx'x ≥ 0 implies that λ must also be ≥ 0.  While the eigenvalues for 

B'B are nonnegative, they are not necessarily distinct due to reducibility.  

Suppose the eigenvalues for B'B are λ1 = λ2 > λ3 ≥  ...  ≥  λn sorted in 

descending magnitude, the power method converges by computing the kth 

power of B'B multiplied by some initial vector a0, 

 
a = (B'B)ka0 (3.2.1.1) 

 
Let UΛU' be the eigenvalue decomposition for B'B, where Λ is the diagonal 

matrix containing the sorted eigenvalues of B'B and U is the orthogonal matrix 

with the corresponding eigenvectors, then the kth power of B'B is, 

 
 (B'B)k = (UΛU')k 

 = UΛU'UΛU'...UΛU' 

 = UΛIΛ...IΛU'  

 = UΛkU' 

 
From this, we see that the computation of Equation 3.2.1.1 depends only on the 
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diagonal matrix Λk as k→∞.  To examine the convergence rate, we normalize Λk 

by the dominant eigenvalue λ1
k so that, 
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This indicates that the convergence rate depends on the ratio λ3/λ1 which is < 1.  

As k→∞, (λi/λ1)
k= 0 for i ≥ 3 so Ω=Λk/λ1

k becomes, 
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Basically, all the eigenvalues drop out except the two dominant ones, λ1 and λ2.  

Multiplying a = UΩU'a0 out term by term, we obtain, 

 
a = (u1'a0)u1 + (u2'a0)u2  

 
where u1 and u2 are the eigenvectors corresponding to λ1 and λ2, respectively.  

This shows that the convergent authority vector is not unique due to reducibility 

but is a linear combination of the leading eigenvectors where the constants in 

the combination are the scaled dot products of the initial vector a0 with the 

dominant eigenvectors. 

 

There are other variations of HITS that guarantees uniqueness of solution such 

as by applying PageRank's ”teleportation” [12].  As it stands, the HITS 

formulation is a powerful one and also quite versatile.  As we shall see in the 

next chapter, we can adapt a similar mutually recursive definition for our 

purpose of ranking multimedia items. 
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Chapter 4.  Finding Globally Interesting Multimedia  Items 
 
The goal of this chapter is to come up with ways to identify multimedia items 

that are interesting to the general public irrespective of individual user 

preferences.  Since our data set consists only of photos, we will use the term 

multimedia item and photo interchangeably without loss of generality by 

assuming that multimedia items have the same properties as photos, i.e. they 

are owned and evaluated by users and items are annotated with tags.  The 

photos that we want to recommend in this chapter are the ones that carry broad 

appeal to everybody.  As we shall see in the next chapter, we can incorporate 

this concept of universal interestingness into our other objective of finding 

interesting photos that are localized to specific users. 

 

So what exactly constitutes interestingness?  This is a difficult question and 

there is no single consensual and decisive factor that makes a photo 

interesting.  For example, we can claim a photo is interesting by its aesthetic 

quality.  Alternatively, we can base interestingness by theme.  If a photo depicts 

a well-liked theme, then it is perhaps interesting.  Another possibility would be to 

grade a photo based on feedback by previous viewers.  This approach, in fact, 

is implemented in some online multimedia sharing applications that allow users 

to rate or comment each other's photos and the most reviewed photos are the 

ones deemed most interesting.  While this approach is sound, a simple counting 

of votes is vulnerable to manipulation by malicious users.  To encompass all 

these qualities into a single interestingness measure is futile as some of these 

criteria like aesthetic value are subjective and immeasurable.  Also, the criteria 

themselves may not be compatible with each other.  Instead, we will hone our 

definition on a single criterion which can be most fittingly described as 

popularity similar to the simple vote counting scheme but more robust.  As we 

will see shortly, we can gauge the interestingness/popularity of a photo 

objectively by analyzing its association with interesting/popular users.  The two 

types of association possible between users and photos are ownership and 

evaluation. 
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In the following sections, we introduce three popularity based methods which 

bear resemblance to PageRank and HITS.  Each of these methods takes a 

different approach in assigning interestingness scores to photos.  We will show 

that not all of them are applicable to our data set as indicated by the results of 

our informal experiment.  As a baseline for comparison, we will use the top 100 

photos with the most commentators for reference.  To expedite the discussion, 

we will first standardize the symbols and elucidate the common intuition behind 

the methods. 

 

4.1  Notation and Intuition 

 
Our entire discussion in this chapter revolves around two vectors and two 

matrices.  The vectors encapsulate the interestingness for photos and users 

while the matrices describe the relationship between photos and users.  We 

start off with defining the matrices first.  The ownership matrix B is defined as, 

 
bij = 1 if photo i belongs to user j, otherwise 0 

 
The nonzero entries in each column of B indicate the photos owned by a user 

while the nonzero entries in each row of B indicate the owner of the photo.  

Since each photo can only have one owner, B is row stochastic.  In other words, 

the sum of the row entries must equal to 1.  Next, we define the evaluation 

matrix E as, 

 

eij = 
jN

1
 if user j evaluated photo i, otherwise 0 

 
where Nj is the number of photos evaluated by user j.  By evaluation, we mean 

any one of the following actions taken by a user toward a photo such as 

dropping comments for a photo, rating a photo or marking a photo as favorite.  

Furthermore, we make no distinction between actions taken toward one's own 

photos or photos of others. 

 

We surmise that users who own interesting photos know what is interesting and 
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their knowledge of interestingness influences them to pick out interesting photos 

to evaluate.  The emphasis here is that interesting photos are bridged by 

interesting users (users who know what is interesting) through ownership and 

evaluation, and vice versa, interesting users are bridged by interesting photos 

through ownership and evaluation.  The relationship between interesting photos 

and interesting users can be modeled by the equations, 

 
 p = Eu Interesting photos are evaluated by interesting users. (4.1.1) 

 u = E'p Interesting users evaluate interesting photos. (4.1.2) 

 p = Bu Interesting photos belong to interesting users. (4.1.3) 

 u = B'p Interesting users own interesting photos. (4.1.4) 

 
where p is a column vector containing the global interestingness score for 

photos and u is a column vector containing the interestingness score for users.  

We can combine any of the equations by substituting for p and u to create a 

PageRank/HITS type formulation, some of which are given below with their 

interpretation. 

 

p = EB'p Interesting photos are evaluated by owners of interesting 

photos. 

(4.1.5) 

u = B'Eu Interesting users own photos evaluated by interesting 

users. 

(4.1.6) 

p = BB'p Interesting photos are owned by users with interesting 

photos.  Equivalently, interesting photos are pointed to by 

interesting owners and interesting owners point to 

interesting photos. 

(4.1.7) 

p = EE'p Interesting photos are evaluated by users who evaluate 

interesting photos.  Equivalently, interesting photos are 

pointed to by interesting evaluators and interesting 

evaluators point to interesting photos. 

(4.1.8) 

 
Of course, any of the resulting formulations is only a hypothesis in modeling the 

proposed global interestingness of users and photos.  Their validity still needs 

to be verified by experiments.  As it turns out, not all of them yield desirable 
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results.  In the sections to follow, we will address each of the above 

formulations and test them against our data set. 

 

4.2  MediaRank (p = EB'p) 

 
From a computational aspect, this equation resembles PageRank.  Here, B' is a 

column stochastic matrix since each photo has one and only one owner and E 

is almost column stochastic except for some columns of zeros which 

correspond to users who have not reviewed any photos.  We can follow the 

exact steps as PageRank to seek a solution.  First, we convert E to be column 

stochastic by replacing all 0-columns with column vectors of uniform 

distribution.  With both E and B' now column stochastic, their product EB' is 

necessarily column stochastic.  Next, we apply ”teleportation” to eliminate any 

zero elements in EB'.  Since EB' is now primitive, we know a solution exists for 

p=EB'p.  We can solve for the stable solution p using Power Method. 

 

To check the validity of the model, we carried out a small experiment on our test 

data to rank the approximately two million photos in the collection.  Each photo 

received an interestingness score from p which is in the range from 0 to 1.  We 

picked the top 100 photos for evaluation.  To our disappointment, the results 

from the test showed that the top ranked photos were rather mundane, the kind 

that looked like snapshots of ordinary everyday's events or somebody's family 

photos.  The top ranked photos also received very few comments indicating that 

they were not popular either. 

 

To understand the failure, we need to take a closer look at the matrix EB'.  The 

(i, j) entry of EB' is the ith row of E multiplied by the jth column of B'.  The ith row 

of E contains the weights of evaluation from each user for photo i.  The jth 

column of B' indicates the owner of photo j.  The (i, j) entry of EB' is nonzero 

only if the owner of photo j evaluated photo i and the weight received by photo i 

from photo j is the reciprocal of the number of photos reviewed by the owner of 

photo j.  We illustrate this with an example. 
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Figure 4.2.1   Graphical interpretation of matrix EB’.  Shaded 

photos are owned by user 2 and unshaded photo is owned 

by user 1. 

 
We see that the weights from photo 1 to 2 and from photo 1 to 3 are smaller 

than vice versa because user 1 who owns photo 1 evaluated more photos than 

user 2.  If we interpret EB' as a Markov chain where the arrows on the above 

graph represent probabilities of transition, then photo 1 is more likely to be 

visited than photo 2 or 3.  Photo 1 received higher ranking because its evaluator 

reviewed few photos while photo 2 and 3 received lower ranking because their 

evaluator reviewed many photos.  The difference in the amount of evaluation 

contributed by users can be quite high.  Besides some users being more active 

than others in evaluating photos, the number of evaluations also accumulates 

over time for older users further reducing the outbound weight of the photos 

owned by those users.  It would be wrong to favor newer or less active users 

over the more senior or active ones by reducing the influence of the latter group 

in the recommendation decision process.  For this fact alone, we can eliminate 

p=EB'p as a contender. 

 

4.3  UserRank (u = B'Eu) 

 
Our second algorithm takes an indirect approach in assigning interestingness 

Photo 1 

Photo 2 

Photo 3 

1 0.5 

1 

0.5 
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ranking to photos.  We do not rank photos directly.  Instead we rank users first 

and from the ranked users we assign interestingness to photos through their 

association with users.  Just like the previous section, the equation u=B'Eu 

resembles PageRank in form.  The product B'E can be transformed into a 

primitive matrix which in turn guarantees a stable solution for u.  The (i, j) entry 

of B'E is the ith row of B' multiplied by the jth column of E.  The ith row of B' 

contains the photos owned by user i.  The jth column of E contains the weighted 

evaluation of photos by user j.  The (i, j) entry of B'E is nonzero only if any of the 

photos owned by user i were evaluated by user j and the actual value is the 

proportion of user j's evaluations directed to user i.  We illustrate this with an 

example. 
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interpreted graphically as, 

 

 
Figure 4.3.1   Graphical interpretation of matrix B’E 

 
From the graph of B'E, we see that 1/3 of user 2's evaluations goes to user 1 

while the other 2/3 goes to user 3 and in return, user 2 gets full evaluation from 

user 1 and 3.  We can imagine the graph as depicting a competition for 

attention between the users.  Each user is vying for the attention of the other 

users by submitting interesting photos.  In our example, user 2 receives the 

most attention followed by user 3 and then user 1. 

 

User 1 

User 2 User 3 

1/3 1 

1 

2/3 
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Since we surmised earlier that users with interesting photos tend to evaluate 

other interesting photos, we can identify interesting photos by following the 

ownership and evaluations of interesting users.  For each photo, we obtain the 

ownership score and the evaluation score from the interestingness score of the 

users as, 

 
pownership = Bu 

pevaluation = Êu 

 
where Ê is the unnormalized version of E, that is, êij = 1 if user j evaluated photo 

i, otherwise 0.  The reason being we do not want to penalize active and senior 

users as discussed in section 4.2.  There exists other variations of Ê that also 

work for our data set, for example, êij = 1/Nj
k where Nj is the number of photos 

evaluated by user j and k<0.5 gives acceptable results as well.  The photo 

evaluation score pevaluation is the sum of the evaluators’ interestingness scores 

weighted by Ê.  The photo ownership score pownership is the interestingness 

score of the owner.  To obtain the final ranking for a photo, we can use a 

convex combination of pownership and pevaluation, 

 

p = γ
1ownership

ownership

p

p
 + (1-γ)

1evaluation

evaluation

p
p

 (4.3.1) 

 
where γ is a real number from 0 to 1.  We can either use a cutoff threshold to 

return interesting photos meeting some minimum score or we can pick the top 

M photos to return as recommendation.  We can vary γ to control the 

significance of prominent ownership.  When γ=1, the recommended photos are 

sorted by the popularity of the owners in descending order.  When γ is small, 

the recommendation tends to be less dominated by any single user. 

 

As a sanity check prior to our user study, we tested UserRank with γ=0.1 and 

êij=1 as the parameter settings for our data set.  We examined the top 100 

photos with the highest interestingness scores.  Compared to the photos in the 

previous section, the UserRank photos were much more presentable and 

professional looking.  In terms of the commentator baseline, 35% of the photos 
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were identical to top 100 photos with the most commentators.  In fact, as we will 

see in the next section, many of the UserRank photos also appeared in the top 

photos from EigenRumor. 

 

In addition to being able to return interesting photos, UserRank also the 

advantage that different “shades” of photo interestingness scores can be 

produced quickly by adjusting γ in Equation 4.3.1.   The bulk of UserRank 

computation lies in solving the equation u=B'Eu for the dominant eigenvector u.  

Once the user interestingness scores are obtained, the interestingness scores 

for photos can be computed simply from Equation 4.3.1.   By adjusting γ, we 

can produce different shades of recommendation to allow viewers the option to 

choose the best one. 

 

4.4  EigenRumor (p = BB'p and p = EE'p) 

 
The EigenRumor algorithm was originally designed for ranking blogs [5].  The 

blogosphere has the same general properties as an online multimedia sharing 

application in that blog entries are authored by a blogger and the entries may 

have links to the entries of other bloggers thereby forming indirect ”evaluation” 

links from bloggers to the entries of other bloggers.  Both ownership and 

evaluation characteristics are present in blogosphere and the EigenRumor 

exploits these two properties to derive scores for bloggers and blog entries. 

 

In the original words of the authors of EigenRumor, three scores are defined: 

the authority scores for bloggers, the hub scores for bloggers, and the 

reputation scores for blog entries.  The authority score expresses to what 

degree the blogger contributed entries in the past that were aligned with the 

direction of the community.  The idea is that bloggers who submit entries 

coinciding with the interest of the community are good authorities of the 

community.  In terms of our notation, the authority score can be expressed as 

 
a = B'r (4.4.1) 

 
where vector a holds the authority scores for bloggers and vector r holds the 
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reputation scores for blog entries.  The hub score captures to what degree the 

blogger evaluated entries in the past that were aligned with the direction of the 

community.  The idea is that bloggers who evaluate entries that coincide with 

the interest of the community are good hubs of the community.  In our notation, 

this can be expressed as, 

 
h = E'r (4.4.2) 

 
where vector h holds the hub scores for bloggers.  Finally, the reputation score 

is the level of support a blog entry receives from bloggers either through 

ownership or evaluation.  The belief is that an entry submitted by good authority 

or evaluated by good hubs tends to follow the direction of the community.  

Expressed in our notation, the reputation score is, 

 
r = αBa + (1-α)Eh (4.4.3) 

 
where α governs the weight of the authority and hub score and vector r holds 

the reputation scores.  Replacing the authority and hub term with Equation 4.4.1 

and Equation 4.4.2, respectively, the reputation score becomes, 

 
r = αBB'r + (1-α)EE'r 

 
Since BB' and EE' are both symmetric matrices, their convex combination must 

also be symmetric.  For clarity, we rewrite the above formula as, 

 
r = Sr (4.4.4) 

 
where S = αBB' + (1-α)EE' and is a symmetric matrix.  From Equation 4.4.4, we 

see that this is essentially the HITS equation and we have already seen how 

HITS can be solved in Chapter 3.2. 

 

Applying EigenRumor to our problem domain is straightforward since Equation 

4.4.4 is a convex combination of Equation 4.1.7 and 4.1.8 but instead of blog 

entries, we are dealing with multimedia items.  While the intuition that guided 

our derivation differs somewhat, the outcome is the same. 
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As sanity check prior to the user study, we tested EigenRumor on our data set 

using the same normalization procedure for B and E as described in the original 

paper for blogs, that is, 

 

bij = 
jM

1
 if photo i belongs to user j, otherwise 0 

 

eij = 
jN

1
 if user j evaluated photo i, otherwise 0 

 
where Mj and Nj is the total number of items owned and evaluated by user j, 

respectively.  For α, we found that a small value works best for our data set so 

we set it to 0.1.  We inspected the top 100 photos with the highest 

interestingness score and found them to be the same quality as the ones 

returned by UserRank.  Comparing to the commentator baseline, 55% of the 

photos also appeared in the set.  In terms of the top 100 photos returned by 

UserRank, 55% of the photos were identical between the two sets.  
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Chapter 5.  Finding Personalized Interesting Multim edia Items 
 
In the previous chapter, we were interested in finding globally interesting photos 

irrespective of individual user preferences and we examined UserRank and 

EigenRumor as two potential algorithms.  In this chapter, we take user 

preferences into account and attempt to produce localized recommendation 

based on user preferences.  For our approach, we use collaborative filtering 

which attempts to propose recommendation based on what other users of 

similar interests have liked in the past [1, 3:115].  In Chapter 2, we introduced 

cosine similarity as a way of measuring how close two vectors are.  We also 

gave an example for computing the similarity between two photos by comparing 

the tag frequencies of the photos.  We shall now apply this idea to match users 

with similar interests.  To put it more precisely, we will match users through the 

tags associated with the photos they owned.  The assumption is that the set of 

tags chosen by a user to describe her photos bears the telltale sign of her 

preference.  To recommend interesting photos to that user, we find all other 

users with similar preference and return their interesting photos to the user.  

The way we determine interesting photos is by using either UserRank or 

EigenRumor.  To expedite testing, we chose UserRank as the plug-in method 

but a more careful comparison between UserRank and EigenRumor should be 

conducted in the future.  We should state at this point that we can also use the 

tags associated with the photos evaluated by users for computing user 

similarity, however, our own sanity check suggested that the tags of owned 

photos are more indicative of user preferences than the tags of evaluated 

photos.  As usual, we begin our discussion by fixing our notation in Section 5.1 

before delving into the algorithm in Section 5.2 

 

5.1  Notation 

 
In Chapter 4.1, we defined the ownership matrix B where 

 
bij = 1 if photo i belongs to user j, otherwise 0 
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We now define the ranked ownership matrix P as, 

 
pij = rank(j) if photo j belongs to user i, otherwise 0 

 
where rank(j) is the global interestingness score for photo j obtained by any one 

of the working methods in Chapter 4.  Basically, the ranked ownership matrix P 

is identical to the transpose of ownership matrix B except the 1’s are replaced 

by the global interestingness score of the photos.  We also add to our repository 

the tag-photo matrix D defined as, 

 
dij = 1 if photo j contains tag i, otherwise 0 

 
From matrix B and D, we derive the unnormalized tag-user matrix Â=DB so that, 

 
âij = number of photos owned by user j with tag i 

 
Each column in Â lists the tag frequencies for the photos owned by a user.  For 

example, suppose we only have one user in our system who owns two photos 

so that B = 








1

1
 and D = 









11

01
.  The second row of the tag-photo matrix D 

contains all ones which indicate that the two photos share a common tag.  We 

compute the unnormalized tag-user matrix as Â = DB = 








2

1
. 

 

Our final addition is the normalized tag-user matrix A which is derived from Â by 

normalizing each column of Â with its Euclidean norm.  For the example above, 

this produces A = 












5
2
5

1

. 

 

5.2  Personalized Recommendation Algorithm 

 
At this point, we have all the necessary artifacts to customize recommendations 

to individual users.  First, we obtain the similarity between the users by 

computing the pairwise cosine similarity for the columns of A so that two users 

are similar if their tag usages are similar.  In matrix notation, this is equivalent to 
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computing A'A which is a symmetric matrix.  Each row or column in A'A 

contains the cosine similarities between a user and all other users and the 

values are from 0 to 1, inclusively.  The elements along the diagonal are the 

cosine similarities between a user and herself which is always 1.  For our test 

data, A'A is a 2524x2524 matrix. 

 

For each user, we find all similar users and recommend their photos based on 

the ranking of the photos which is computed by the global interestingness score 

of a photo weighed by the cosine similarity between the owner of the photo and 

the target user.  A photo would obtain a high score if it is globally interesting and 

the owner of the photo is similar to the user.  In matrix form, this is the same as 

computing, 

 
R = A'AP (5.2.1) 

 
where R is the recommendation matrix.  Each row in R holds the ranking for 

2,177,103 photos customized to a user.  For our test data, R is a 2,524 x 

2,177,103 matrix since A'A is a 2,524 x 2,524 matrix and P is a 2,524 x 

2,177,103 matrix.  As a sanity check prior to the user study, we inspected the 

top 100 ranked photos recommended to a small set of randomly chosen users 

and found that the approach gave sensible results.  For example, for users who 

own many photos tagged with ”cat”, a sizable portion of the recommendations 

composed of cat photos and the photos were of presentable quality. 

 

While it is reasonable that we stop here and recommend photos according to 

Equation 5.2.1, we can further refine our algorithm by relaxing the similarity 

requirement between users.  To motivate the need, consider the case where we 

have three users.  User 1 owns only photos tagged with ”lizard”, user 2 owns 

photos tagged with ”lizard” and ”snake”, and user 3 owns only photos tagged 

with ”snake”.  If we were to compute A'A for all three users, then user 1 and 2 

are similar to each other as well as user 2 and 3 but user 1 and 3 are not similar 

at all.  It is not wrong, of course, to only recommend user 2's photos to user 1, 

but it may not be a bad idea to also return some of the user 3's photos as well 

since there is a chance user 1 who enjoys lizards may also like snakes and user 
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3's snake photos might be more interesting than user 2's snake photos.  

Therefore, what we would like to have in the user similarity matrix A'A is that 

user 1 and 3 are also similar due to their common similarity to user 2, however, 

the strength of this similarity is less than the direct similarity between user 1 and 

2 or between user 3 and 2.  Taking this idea a bit further, we can extend the 

notion of indirect similarity to span any number of intermediate users so that any 

two users are indirectly similar if there exists a path of pair-wise similarity along 

the path of users. 

 

We now formally redefine our recommendation matrix R to account for indirect 

similarity:   

 
R = (c1(A'A) +c2(A'A)2 + ... + cn(A'A)n)P (5.2.2) 

 
where c1 > c2 > ... > cn.  The constant ck dampens similarity over long distance 

of indirection.  The parameter n represents the distance.  When n=1, the 

formula reduces to Equation 5.2.1 scaled by an innocuous constant.  Each 

ck(A'A)k term in Equation 5.2.2 represents the similarity between users at k 

distance away.   The computation of Equation 5.2.2 for large n requires 

enumerating powers of A'A which are time consuming especially if A'A is large.  

It turns out that we can avoid this if we allow the constants ck to take on certain 

values.  Since A'A is a symmetric matrix, we know eigenvalue decomposition 

exists for A'A with orthogonal eigenvectors.  Let UΛU' be the eigenvalue 

decomposition for A'A with U containing the orthogonal eigenvectors of A'A, 

then Equation 5.2.2 becomes 

 
R = (c1UΛU' +c2(UΛU')2 + ... + cn(UΛU')n)P 

 = (c1UΛU' +c2(UΛ
2U')+ ... + cn(UΛ

nU'))P 

 = U(c1Λ +c2Λ
2+ ... + cnΛ

n)U'P 

 = U(∑
=

n

k

k
kΛc

1

)U'P 

 
If we choose ck to be 1/µk where µ > ρ(Λ), in other words, ck is less than the 

reciprocal of the largest eigenvalue of Λ (largest element along the main 
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diagonal of Λ), then the sum ∑
=

n

k
k

kΛ

1 µ
 is known as the Neumann series and 

converges to (I-
µ

Λ
)-1- I [11:126].  Substituting back into the above formula, we 

obtain, 

 

R = U((I -
µ

Λ
)-1 - I)U'P 

 = (U(I -
µ

Λ
)-1U' - UIU')P 

 = (U(I -
µ

Λ
)-1U' - I)P 

 = U(I -
µ

Λ
)-1U'P - P 

 
Since we only recommend photos that are not self owned, the second term has 

no bearing on the final recommendations, hence, we can compact the formula 

to, 

 

R = U(I -
µ

Λ
)-1U'P (5.2.3) 

 
Compared to Equation 5.2.2, we now only have one parameter to tune which is 

µ.  We can optimize the recommendations by selecting a suitable value for µ.  

For the data set, varying µ from 1.01 to 100 shows a discernible difference in 

the recommendations for users.  The smaller the µ is, the more homogeneous 

the recommendations become across the users.  For larger µ, the 

recommendations are more localized to individual users.  This seems to agree 

with the role of µ as a dampener for distanced similarity.  After sampling the 

recommendations for a small set of randomly chosen users, we judged the best 

value for µ to be 2ρ(Λ).  (Interestingly, in the context of bibliographic citation 

networks or the web where A'A represents the co-citation matrix or the authority 

matrix, µ in fact controls the weighting between the measurement of relatedness 

(when µ is large) and importance (when µ is small) of papers or web pages in 
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the summation ∑
∞

=1k
k

k)A'A(
µ

 [7].) 

 

Before we end this chapter and ready ourselves to recommend photos to users, 

it is worthwhile to note that the eigenvalue decomposition of A'A is related to its 

singular value decomposition (SVD).  From a data compression point of view, 

we can approximate A'A by using its truncated SVD thus reducing the number 

of steps needed to carry out the computation of R.  Also, while beyond the 

scope of this thesis, it may be worthwhile to examine the structure and 

composition of the SVD for it may reveal some special characteristics of the 

data set.  Finally, as an additional improvement to performance, we can pre-

process the tags prior to matching users.  For example, we can use a semantic 

lexicon like WordNet to cluster synonyms and we can also stem the tags to their 

root forms thereby reducing the tag space. 
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Chapter 6.  Evaluation 
 
So far, we relied solely on our own judgment in evaluating the recommendation 

produced by the global and personalized interestingness algorithms.  To seek a 

second opinion and also as a more thorough sanity check, we asked 26 users 

from the data set who own at least 50 tagged and publicly shared photos to rate 

the top 100 recommended photos proposed to them by our algorithms.  We 

chose UserRank as the plug-in for the personalized interestingness algorithm 

simply because we did not have the resources for complete test coverage.  For 

each person, we gave 3 sets of recommendation created by varying the degree 

of personalization factor µ in Equation 5.2.3.  The values chosen were 

1.0001*ρ(Λ), 2*ρ(Λ) and 10000*ρ(Λ); in this order, the recommendations ranged 

from entirely global to wholly personalized.  The order of which the sets were 

served to the volunteers was random.  For each set, the volunteers rated the 

quality of the recommended photos by completing the following questionnaire: 

 
Overall, on a scale of 1-5 with 5 being the best, 

 
1. Do you find these photos interesting? 

2. Are these photos related to your interests? 

3. Are the photos aesthetically pleasing? 

4. How would you rate the general quality of the recommendation? 

 Why (optional)? 

 
The intent of the questions was to let the testers grade the recommendations 

according to general interestingness, personal appeal, aesthetics and overall 

quality.  Unfortunately, not all volunteers were able to complete the trial.  Of the 

initial 26 volunteers, we only received completed surveys from 19 of them.  

Therefore, we only examined the results from the 19 respondents.  We 

processed the scores given for each question from the completed 

questionnaires and calculated the means and standard deviations.  For each 

question, we then plotted the average score and standard deviation as a 

function of the degree of personalization µ.  In the sections to follow, we present 

the evaluation results for each of the questions. 
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6.1  General Interestingness 

 

For Question #1 which asked the participants to evaluate the sets based on 

whatever interestingness criteria s/he had in mind, the results are given in the 

following figure. 
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Figure 6.1   General interestingness of the recommendation.  Error bars indicate 1 standard 

deviation in both directions.  Left: global, middle: intermediate, right: personalized 

 
For all 3 sets of recommendation, on average the testers found all of them to be 

somewhat interesting with the global set 1.0001*ρ(Λ) leading the score slightly.  

Admittedly, the sample size was too small to draw a definitive conclusion but it 

did seem to suggest that the photos returned were of certain quality and not 

merely random photos which we would expect the score to be close to 1.0. 

 

6.2  Personal Appeal 

 

Question #2 was more specific than Question #1 in that it asked the volunteers 

to rate the recommendations in direct relation to what they like or to put it more 

simply, by personal appeal.  To succeed, the algorithm must be able to predict 

the preferences and needs of the participants and at the same time avoid 
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recommending something that the users dislike.  We expected the 10000*ρ(Λ) 

set which was the personalized set to score higher in this category than the 

1.0001*ρ(Λ) set which is the global set.  Unfortunately, this was not the case as 

indicated in the plot below. 
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Figure 6.2   Personal appeal of the recommendation.  Error bars indicate 1 standard deviation in 

both directions.  Left: global, middle: intermediate, right: personalized 

 
For all 3 sets of recommendation, the scores were neutral with average scores 

of around 3.1.  While the personalized set did not perform as expected, the 

spread of the average score was smaller than the global set.  In fact, there was 

a noticeable trend in the narrowing of the spread across µ from the global set to 

the personalized set.  This indicated that the personal appeal scores assigned 

to the personalized set were more even across the users which implied that the 

personalized recommendation was less random in nature in capturing user 

preferences. 

 

6.3  Aesthetics 

 

Question #3 asked the volunteers to grade the recommendations based on 

aesthetics alone.  As the old adage “beauty is in the eye of the beholder” goes, 
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we left it up to the testers to decide what is beautiful.  We anticipated that the 

global interesting set would excel in this category since the photos in the set 

tended to be more popular and we believe that aesthetics plays an important 

part in popularity.  The plot for question #3 below indeed seems to suggest this. 
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Figure 6.3   Aesthetics of the recommendation.  Error bars indicate 1 standard deviation in both 

directions.  Left: global, middle: intermediate, right: personalized 

 
In fact, not only the global set performed well but all the other sets produced 

rather good results.  Again, this indicated that the photos recommended were of 

certain caliber and not merely random photos or mundane photos of everyday 

lives.  As a side note and to exemplify the old adage, one of the test participants 

deemed the photos in the global set to be “too pretty” hence gave it a neutral 

score of 3.   

 

6.4  Overall Quality 

 

Question #4 was the exit summarative question which let the testers graded the 

overall recommendation based on whatever factors he or she decided.  Being 

the last question to be answered on the questionnaire, we suspected the criteria 

chosen by the testers were most likely influenced by the first three questions.  
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Our true motivation behind this question was to collect feedback from the 

testers on their evaluation process and what they were looking for.  We 

obtained quite many valuable inputs this way but first we give the plot of the 

results below. 
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Figure 6.4   Quality of the recommendation.  Error bars indicate 1 standard deviation in both 

directions.  Left: global, middle: intermediate, right: personalized 

 
Overall, the scores were above average for all three sets with the global set 

leading the pack slightly.  To summarize the important points collected from the 

participants, variety seemed to be a very important criterion among some of the 

testers.  They did not prefer photos that were dominated by few categories, 

themes or subjects.  There were also apparent likes and dislikes for some 

testers.  For example, one tester preferred dog photos over cat photos and 

another preferred people photos over photos of scenery.  There were also 

praises when photos of contacts and friends were shown or when photos of 

places they have visited were included in the set.  Also, some testers judged the 

photos by how much they had been altered digitally such as by using 

Photoshop.  For this group, they tended to prefer photos that were more 

authentic and natural. 



  51 

Chapter 7.  Conclusion  

 
In this paper, we introduced the global and personalized interestingness 

measures for multimedia items that could be used as part a recommendation 

system for an online community based multimedia sharing service.  We also 

tested the performance of these two measures by conducting an informal user 

evaluation study.  Our first measure of interestingness is global in the sense 

that it yields recommendations that are uniform across users.  Such a global 

measure is useful when the purpose of the recommendation is to showcase and 

promote the best items that a site has to offer.  For new visitors to the site, the 

globally interesting set of items offers a good first impression and entices the 

visitors to become members.  For contributors of items, being showcased for all 

to see is rewarding and an encouragement to continually upload quality items to 

compete for the top spots.  Our second measure of interestingness is about 

personalization.  Rather than recommending only the best items, personalized 

interestingness takes into account of user interests and preferences by 

individualizing the recommendation.  Personalization is important for positive 

user experience.  In addition, personalized recommendation can be regarded as 

target marketing if the purpose is to promote items for sales or advertisement 

associated with items. 

 

We sought the lowest hanging fruits in coming up with the global and 

personalized interestingness measures and their algorithms.  The focus of our 

study was limited to analyzing the link structure of evaluation and ownership of 

multimedia items and tags associated with items.  We made no effort in 

analyzing the content of the multimedia items by any image processing means.  

To limit the scope of the study, we used a group of 2524 users and the 

2,177,103 photos owned by them from an online photo sharing service as our 

data set.  We chose 19 of the 2524 users to rate the recommendations 

produced by the algorithms.  While our test group was too small to draw any 

definitive conclusion, the results seem to suggest that both global and 

personalized interestingness measures were able to recommend photos of 

certain aesthetic quality and general interestingness to the evaluators.  In terms 
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of personalization, the personalized interestingness measure did not produce 

any significant results in relating the recommendation to user interests and 

preferences.  We speculated that one of the reasons for the failure might be that 

the data set was too small with too few users for collaborative filtering to work.  

Another possible cause could be that since we only had access to publicly 

shared photos owned by the users, the photos that the users chose to share to 

the world do not necessarily reflect their true preferences.  

 

We gathered some valuable feedback from the evaluation study that raises the 

possibility of improving the algorithm in the future.  Variety in the 

recommendation was deemed quite important by the evaluators.  One way to 

achieve this is to avoid having the recommendation set dominated by a few item 

owners.  Another way is to select interesting items from different categories or 

themes.  We can add a post-processing step after the recommendation 

algorithm to implement this objective.  For the personalized interestingness 

algorithm, we can boost the interestingness score of items that are owned by 

contacts of the recipient of the recommendation.  It is likely that items owned by 

friends are more personally interesting than items owned by strangers.  

Currently, the personalized recommendation algorithm relies on the tag 

frequencies of items owned by a user to compute similarity with other users.  

Unfortunately, not all users tag their items and even if all the items were tagged, 

the quality of the tags may be poor.  To supplement the deficiency of tags, we 

can also add previous search terms of the users, interest group affiliation, and 

previous item click-throughs as a basis for computing user similarity.  If we are 

limited to using tags only, we can still expand their coverage to include tags of 

items commented by the user and the tags of his/her favorite items.  As a 

further improvement to the algorithm, we can also return not only interesting 

items owned by users similar to the recommendation recipient but also 

interesting items that were commented or marked as favorites by the similar 

users. 

 

Finally, the recommendation system we proposed is passive and unsupervised 

in that it mines and analyzes the data of users and their interaction with items in 
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order to make recommendation.  Some evaluators in the user study expressed 

interest in giving interactive feedback to the system to guide the 

recommendation.  This can be a possibility worth investigating in the future.  

One possible implementation would be to let users rate each recommended 

item individually on a Boolean scale and then use the Boolean labels along with 

tags for classification of user preference.  By having users optionally engaged in 

the recommendation process, the quality of the personalized recommendation 

may improve significantly and at the same time, provide a richer user 

experience through the interaction with the system. 
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