
Offloading content routing cost from routers

Janne Salo

Helsinki June 4, 2010

MSc thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Science Department of Computer Science

Janne Salo

Offloading content routing cost from routers

Computer science

MSc thesis June 4, 2010 64 pages

Publish/subscribe, content-based routing, poset

Kumpula Science Library, serial number C-

The publish/subscribe paradigm has lately received much attention. In publish/subscribe systems,

a specialized event-based middleware delivers notifications of events created by producers (publish-

ers) to consumers (subscribers) interested in that particular event. It is considered a good approach

for implementing Internet-wide distributed systems as it provides full decoupling of the commu-

nicating parties in time, space and synchronization. One flavor of the paradigm is content-based

publish/subscribe which allows the subscribers to express their interests very accurately. In order

to implement a content-based publish/subscribe middleware in way suitable for Internet scale, its

underlying architecture must be organized as a peer-to-peer network of content-based routers that

take care of forwarding the event notifications to all interested subscribers. A communication in-

frastructure that provides such service is called a content-based network. A content-based network

is an application-level overlay network.

Unfortunately, the expressiveness of the content-based interaction scheme comes with a price –

compiling and maintaining the content-based forwarding and routing tables is very expensive when

the amount of nodes in the network is large. The routing tables are usually partially-ordered set

(poset) -based data structures. In this work, we present an algorithm that aims to improve scalabil-

ity in content-based networks by reducing the workload of content-based routers by offloading some

of their content routing cost to clients. We also provide experimental results of the performance

of the algorithm. Additionally, we give an introduction to the publish/subscribe paradigm and

content-based networking and discuss alternative ways of improving scalability in content-based

networks.

ACM Computing Classification System (CCS):

C.2.4 [Computer-Communication Networks]: Distributed Systems — Distributed applications

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 The publish/subscribe paradigm 2

2.1 The event-based model . 2

2.2 Topic-based publish/subscribe . 4

2.3 Content-based publish/subscribe . 5

2.4 Data model . 6

2.5 Publish/subscribe architectures . 7

3 Content-based networking 9

3.1 Filters . 10

3.2 Addressing . 11

3.3 Forwarding . 13

4 Content-based routing 16

4.1 Simple routing . 17

4.2 Identity-based routing . 17

4.3 Covering-based routing . 19

4.4 Merging-based routing . 20

4.5 Advertisement-based routing . 21

4.6 CBCB routing scheme . 22

4.6.1 Receiver Advertisements . 22

4.6.2 The SR/UR protocol . 23

4.7 Conclusions . 24

5 Posets and related data structures 25

5.1 Siena filters poset . 26

5.1.1 Definition . 26

5.1.2 Subscriptions and unsubscriptions 27

iii

5.1.3 Adding and deleting entries 28

5.2 Poset-derived forests . 28

6 The offloading algorithm 32

6.1 Dividing the tasks . 33

6.2 Computing and verifying the results 34

6.2.1 Computation in the RTO protocol 35

6.2.2 Computation in the FF protocol 38

6.3 The protocol . 39

6.3.1 RTO computation request . 40

6.3.2 RTO computation response 40

6.3.3 RTO batch mode and timeouts 41

6.3.4 FF (re)assignment message . 42

6.3.5 Subscriptions in FF protocol 42

6.4 Other considerations . 42

6.4.1 Security . 43

6.4.2 Performance . 43

6.4.3 Offloading unsubscriptions . 44

6.4.4 Batch mode adjustments . 44

6.4.5 Extending the FF scheme . 44

7 Experimentation 44

7.1 Implementation and environment . 45

7.2 Tests . 46

7.3 Results . 47

7.4 Summary . 48

8 Related work on improving scalability 53

8.1 Systems based on distributed hash tables 54

8.1.1 Distributed hash tables . 54

iv

8.1.2 Hermes . 55

8.2 Bloom filter based routing . 55

8.2.1 Bloom filters . 56

8.2.2 Routing strategy . 57

8.2.3 The bfposet . 57

8.2.4 The bftree and sbstree . 59

9 Conclusions 60

References 61

1

1 Introduction

There is an increasing number of Internet-wide distributed systems. The traditional

interaction scheme of point-to-point synchronous communication is too rigid and

cumbersome for large-scale distributed systems. Many models have been proposed

to solve the problem. One of them is the publish/subscribe (pub/sub) paradigm

that allows for full decoupling of the communicating parties in time, space and

synchronization [EFGK03]. A pub/sub system is an event-based middleware: the

communicating parties either generate (publish) events or express their interest (sub-

scribe) to certain kinds of events. It is the task of the middleware to deliver the

event notifications to those interested; the event producers need not be aware of the

event consumers or vice versa. The pub/sub paradigm is presented in more detail

in Section 2, where we discuss the event-based nature of pub/sub systems, differ-

ent variants of pub/sub interaction and ways to organize the architecture of such

systems.

There are several ways to implement pub/sub middleware. In this work, we direct

most of our attention to content-based publish/subscribe [CW02]. In content-based

pub/sub, the subscribers express their interest in events by providing filters that are

based on the whole content of the event. This scheme allows for very expressive and

precise subscriptions; the subscribers receive only the events they are interested in.

Other variants, like topic-based pub/sub, lack in expressiveness, because subscribers

cannot accurately express their interests and may have to filter out unwanted con-

tent at their end. In Sections 3 and 4, we discuss the concepts of content-based net-

working and different strategies of forwarding and routing in content-based pub/sub

middleware. A content-based network must also provide a sufficient guarantee of

quality of service, security and reliability, but these issues are outside the scope of

this work for the most part.

Unfortunately, implementing the content-based scheme in a scalable and efficient

way is non-trivial. In this work, we present a method for improving scalability:

offloading parts of the content-based routing algorithm from routers to clients (the

term client in this context may refer to either a subscriber connected to the router

or a neighboring router). Section 5 discusses partially-ordered sets (posets) and re-

lated data structures that are often used in storing and matching the subscription

filters (i.e. forming the routing tables). The routing table offloading (RTO) and

fixed filterset (FF) schemes described in Section 6 attempt to delegate parts of the

computation involved in creating or updating the routing tables to the clients. In

2

Section 7, we give some experimental results for the performance of the RTO scheme

in different cases. Section 8 briefly discusses alternative or additional methods that

can be deployed to improve scalability, such as using distributed hash tables (DHTs)

or Bloom filters. Section 9 gives some concluding remarks and discusses some ques-

tions left for future work.

2 The publish/subscribe paradigm

In the following, we discuss the publish/subscribe model in detail. We define the

two main operations provided by any pub/sub interface, namely publish() and

subscribe(). There is also an auxiliary operation called advertise() provided

by many implementations. We also discuss the two dominant variants of pub/sub

interaction: topic-based and content-based pub/sub. Later on, we focus solely on

content-based pub/sub.

2.1 The event-based model

Pub/sub systems are event-based : subscribers (consumers) express their interest in

an event or a pattern of events. The events are generated by publishers (producers)

and any subscribers whose registered interests match the event are notified of it

[EFGK03]. The pub/sub middleware is required to take care of storing and deliver-

ing the events and managing the subscriptions. We later discuss different ways to

implement these requirements efficiently.

Subscribers register their interest in events by calling an operation named sub-

scribe() on the event service. The event service then stores the subscription in-

formation. Subscriptions can be cancelled by using an unsubscribe() operation.

Publishers generate events by calling a publish() operation on the service. The

middleware then propagates the event to all interested subscribers, generating event

notifications in relevant subscribers. Every subscriber typically provides a callback

operation notify(), through which the event service delivers the notifications to

the client.

In many event services, an operation called advertise() and its opposite unad-

vertise() are also available to the publishers. With advertise(), the publishers

can express what kind of events they are going to produce in the future. In most

systems, the input the advertise() operation accepts is identical to that of the

3

Figure 1: The high-level organization and public interfaces of a publish/subscribe

system. In this example, Subscriber 2 has just issued a new subscription and Pub-

lisher 3 has issued a new advertisement. The event service notifies Subscribers 3

and 4 of event e that matches their previously issued subscriptions. The event e was

published by Publisher 1, but the subscribers do not know its origin. Neither does

Publisher 1 know who eventually receives a notification of the event it has published.

subscribe() operation, making advertise() the dual of subscribe() [Müh02,

4.4]. This allows for the event service to adjust its internal state in a way that

makes delivering subsequent event notifications to interested subscribers more effi-

cient. Advertisements can also be used to inform subscribers whenever a new type

of information becomes available. We later argue that the advertise() operation

plays very important role in content-based routing schemes. The organization and

interfaces of a typical publish/subscribe system are shown in Fig. 1.

An event-based service provides a full decoupling of publishers and subscribers in

space, time and synchronization [EFGK03]. In decoupling lies the strength of the

event-based model: it greatly increases the scalability of distributed systems and

reduces the need for coordination by removing any explicit relations between the

data producers and consumers.

Space decoupling implies that the publishers and subscribers do not need to know

each other – all events are propagated through the event service. Publishers do

4

not hold references to the subscribers; they do not know how many subscribers

will receive the event they generated. Neither do subscribers hold references to the

publishers; it is not known to them which or how many of the publishers generated

the event they received.

Due to time decoupling, the parties do not need to be active or even connected to

the service at the same time: subscribers get notified of events generated while they

were unavailable, or the event service may deliver notifications from publishers that

are no longer connected.

Synchronization decoupling guarantees that no subscribers are blocked when a pub-

lisher produces an event. Conversely, no publishers are blocked while a subscriber

receives a notification of an event. Instead, subscribers get notified of an event

asynchronously through the notify() callback.

It should be noted that despite the network-layer terminology we use in this work

(e.g. ”routing” and ”forwarding”), all current pub/sub implementations (some of

which we will discuss later on) work on the application layer. While there is no

theoretical obstacle for replacing IP with a pub/sub-oriented network (provided of

course that the infrastructure is sufficiently robust, efficient and scalable), in practice

it is most likely infeasible considering the vast size of the current IP infrastructure.

2.2 Topic-based publish/subscribe

In topic-based (or subject-based) pub/sub scheme, each event belongs under some

predefined topic. The publishers are required to classify the events under the topics.

The earliest pub/sub systems were topic-based [EFGK03]. Many industrial-grade

solutions, such as TIBCO Rendezvous and iBus MessageServer also utilize the topic-

based approach.

In topic-based systems, the set of topics is usually predefined and static. Each topic

is identified by an unique string, the topic name. Subscribers subscribe to topics

by simply passing the topic name to the subscribe() operation. Every generated

event is categorized under a certain topic by the publishers and delivered to all

subscribers by the middleware. Alternatively, the system can consist of several

interfaces (channels), one for each topic. Each interface has its own publish()

and subscribe() operations. Subscribing to a topic is then done by calling the

subscribe() operation on the corresponding interface.

The topics can be organized either in flat or hierachical manner [EFGK03]. Flat

5

organization (or flat addressing) is seldom used. It simply divides the event space

into disjoint topics, while hierarchical organization (or hierarchical addressing) al-

lows for containment relationship between topics. In hierarchical addressing scheme,

subscribing to a topic implies also subscribing to all its subtopics. Many systems

also permit the use of wildcards in topic names.

2.3 Content-based publish/subscribe

The static nature of the topic-based approach is its biggest shortcoming. To achieve

granularity finer than just the topics (for example, ”everything under topic T except

events whose property P has a value less than 100”), the subscriber must either ”over-

subscribe”, i.e. subscribe to more events than necessary and filter out events that

are of no interest, or every topic must contain many subtopics that can be used to

narrow down the subscription. Over-subscribing leads to inefficient bandwidth usage

(as there are unnecessary messages sent through the event service). Extensive usage

of subtopics in turn leads to too deep hierarchies and too many topics [EFGK03].

The above problem is solved by the content-based approach. In content-based

pub/sub, the subscriptions are based on the properties (attributes of the event data

structure or separate metadata) of the events themselves and not on any predefined

criteria such as topics. There are several (mostly academic) implementations of

content-based pub/sub systems. These include for example Siena [CRW01], Hermes

[Pie04] and Rebeca [Müh02, Ch. 5].

Subscribers specify the events they wish to receive by passing a filter to the sub-

scribe() operation. There are many ways to express filters, but in this work, we

will mostly focus on string-based filter languages (e.g. the one used by Siena), where

filters are sets of name-operator-value triplets that act as constraints on the event

content. The event service parses these strings into e.g. boolean functions that

are used in matching individual events against subscriptions. In Siena, filters can

also be combined into more complex subscription patterns that are matched against

several events instead of a single event [CRW01]. Later in this work, we will discuss

the different methods of internal organization of the subscription patterns in event

services. There are also alternative ways to represent subscription patterns: some

systems use XML- or SQL-based filter languages or use so-called template objects

or even executable code instead of strings [EFGK03]. In Section 3, we will give a

formal definition of a filter.

6

The content-based model allows for very accurate subscriptions – the subscribers

can precisely express which events they are interested in. Moreover, the model does

not restrict the consumers or the producers in any way, contrary to the topic-based

approach where producers must choose a category for the event from a predefined

set of topics, thus allowing for arbitrary events to be produced and subscribed to. In

fact, it is easy to see that a topic-based system can be implemented using a content-

based one. It is even possible (although impractical) to implement the traditional

IP unicast on top of a content-based system; in this case, the events would be IP

datagrams and the subscription patterns simple filters of format recv addr = my ip

[CW02].

There is, however, a trade-off between the expressiveness and scalability of the in-

teraction model. As the subscribers are permitted to express their interests in more

detail, the complexity of the algorithms needed to route and forward the events

to correct subscribers grows [CRW00]. Content-based routing in particular has re-

ceived much attention and is considered the biggest bottleneck in the scalability of

content-based services. In the remainder of this work, we will primarily concentrate

on content-based networking strategies and their scalability.

2.4 Data model

We now consider the format in which the notifications, subscriptions and advertise-

ments in content-based pub/sub systems is presented. The data format varies per

system; for example XML-based notifications or objects can be used [Müh02, Ch. 4].

However, in this work, we consider only Siena-style structured records. In this model,

an event notification is a nonempty set of attributes. Each attribute is a name-value

pair, or, like in Siena, a typed name-value pair, where attribute types belong to a

predefined set of primitive types (such as int, float or string) [CRW01]. The type

and attribute names in the records are simple strings. In addition to the record of

attributes, the notification may contain fixed administrative data, such as the iden-

tifier of the notification issuer and the time of issuing. An example of a notification

is shown in Fig. 2(a). In subsequent examples we often omit the type definitions,

but assume that type information is available to the routers if needed.

Filters passed to subscriptions and advertisements are formatted much in the same

way as notifications. A filter is a nonempty set of (possibly typed) name-operator-

value triplets (attribute constraints), where allowed operators vary per system. Usu-

ally at least normal comparison operators (=, 6=, <, >,≤,≥) are available. In some

7

string type = flight

string airline = IBERIA

time departure = 2010-05-23 12:50Z

time arrival = 2010-05-23 20:40Z

string origin = BCN

string destination = JFK

string gate = 58B

float price = 600.00
(a) An example notification

string type = flight

string airline = any

time departure > 2010-05-23 00:00Z

string origin = BCN

string destination = JFK

float price ≤ 800.00
(b) An example filter

Figure 2: An example of a notification and a filter that are formatted as structured

records. The attributes are typed.

systems, the value field can also consist of a set of values, in which case the con-

straint is interpreted as a disjunction, i.e. any of the given values will satisfy the

constraint [Müh02]. We also allow the special value any to denote that any value

will satisfy the constraint in question. In addition to the filter record, a subscription

or an advertisement message contains at least the identifier of the issuer. An exam-

ple of a filter is shown in Figure 2(b). For more concise representation of a filter F ,

we sometimes use the following:

F = (type = flight ∧ airline = any ∧ departure > 2010-05-23 00:00Z

∧ origin = BCN ∧ destination = JFK ∧ price ≤ 800.0),

which is equivalent to the filter in Fig. 2(b).

2.5 Publish/subscribe architectures

There are several alternatives for the internal architecture of a pub/sub system

[EFGK03]. The most straightforward one is to implement a centralized system,

8

where the system consists of a specific entity that takes care of managing subscrip-

tions and delivering event notifications. This approach is adequate, if there are no

stringent scalability or performance requirements for the system but instead a high

degree of reliability, data consistency or transactional support is needed.

A pub/sub system can also be fully distributed, where there is no centralized entity.

Instead, the event service’s store and forward mechanisms are implemented by the

producer and consumer processes themselves. Fully distributed architecture is suited

for fast delivery of transient data such as multimedia broadcasting.

In this work, we are interested in an intermediate approach, used by Siena (among

many others): the pub/sub service is provided by a set of dedicated servers (some-

times also called event brokers) that work in a distributed fashion. This removes

the burden of implementing the delivery logic from the subscribers and publishers.

A subscriber S usually interacts with only one server at a time. This server is called

the local server (of S).

There are different ways to organize the topology of the dedicated servers [CRW01].

The most straightforward of them is the hierarchical architecture, where server-to-

server connections are asymmetric; a server acts as a client to the one (”master

server”) that is higher in the hierarchy. A server may have several ”client” servers

but at most one master server. The server that has no master server is the root

server. Subscriptions, advertisements and notifications are ultimately forwarded to

the root server, making the hierarchical architecture essentially an extension of the

centralized one. This approach has two major shortcomings. The load on the servers

that are high in the hierarchy can easily become too high. Furthermore, every server

is a single point of failure as a failure in one server disconnects a whole subtree from

the network.

The first, but not the second, problem of the hierarchical architecture can be over-

come by using acyclic peer-to-peer architecture. In such architecture, servers interact

as peers, allowing the flow of advertisements and subscriptions in both directions.

The acyclic property of the topology allows for relatively simple routing algorithms

[CRW01]. In this approach, each server is still a single point of failure as there is

only one path in the network from a server to another. Also, maintaining the acyclic

property in a wide-area service may be costly.

In the generalized peer-to-peer architecture, the acyclic property is not needed; the

servers form a general undirected graph. General peer-to-peer architecture is more

fault tolerant and flexible and requires less coordination than the other approaches.

9

The flexibility comes with the price of more complex routing: the algorithms must

avoid cycles and possibly choose the optimal paths, causing the need for example for

finding minimal spanning trees in the network. In subsequent sections, we discuss

routing only in a generalized peer-to-peer architecture, unless stated otherwise.

Also hybrid architectures are possible [CRW01]. For example, the backbone of a

pub/sub system may be organized in general peer-to-peer setting, but each event

broker in the backbone network can actually be the root server of its own subnetwork.

This organization is analogous to approaches used in traditional networking.

3 Content-based networking

Implementing content-based publish/subscribe middleware benefits from a special-

ized communication infrastructure that supports the interface of the middleware.

This infrastructure is referred to as a content-based network [CW02]. In this and

the following section, we discuss the properties and strategies of content-based net-

working: addressing, forwarding and routing. We also give a formal definition of

a content-based filter and covering relations between filters as these relations are

important in content-based routing (for instance, the concepts of content-based sub-

netting and supernetting follow immediately from the covering relation between

filters).

Current content-based networks are application-layer overlay networks built on top

of an existing TCP/IP infrastructure (however, as mentioned before, there is no the-

oretical obstacle for implementing a content-based network on the network layer). A

content-based network consists of router nodes that are connected by point-to-point

communication links. Formally, we treat a content-based network as a undirected

general graph (which implies generalized peer-to-peer architecture), where router

nodes form the set of vertices and there is an edge between vertices if and only if

the corresponding router nodes are connected by a point-to-point link.

It should be noted that the fact that two router nodes are connected in the overlay

network does not imply that they are connected (or even topologically close to

each other) in the physical network. Client nodes are connected to the router nodes.

Thus, a router acts as a local server for a set of clients and is responsible of delivering

notifications to those clients and handling subscriptions made by them. A client is

usually connected to one router at a time. A client acts as a subscriber or a publisher

(or as both).

10

A router in a content-based network performs two functions, routing and forwarding

[CW03]. The purpose of routing is to form forwarding tables based on the topological

features of the overlay network and the subscriptions and advertisements issued by

the clients. The forwarding function uses the information provided by the routing

function to determine the set of next-hop destinations (either neighboring routers

or client nodes) for an event notification. We discuss these functions in detail in

Sections 3.3 and 4.

3.1 Filters

Formally, a filter is a stateless boolean function

F : N → {true, false},

where N is the set of all notifications [Müh02]. A notification n ∈ N is said to

match F if F (n) = true. Further, we let N(F) denote the set {n ∈ N |F (n) =

true}, i.e. the notifications that match F . Filters F1 and F2 are identical, written

F1 ≡ F2, if and only if N(F1) = N(F2). In terms of our data model, a filter is

considered a conjunction of attribute constraints and a notification matches a filters

if its attributes satisfy every attribute constraint of the filter. It should be noted that

Siena follows this model only in subscription filters; advertisement filters in Siena

are disjunctions of attribute constraints [CRW01, Müh02]. In this work, we consider

the subscription and advertisement filter models identical – Siena-like functionality

in advertisements can be achieved by allowing multiple values or value ranges in an

attribute constraint (see Section 2.4). If an attribute A present in notification n is

not present in a filter F that is being evaluated for n, it considered that F implicitly

contains the constraint A = any. If a filter contains an attribute constraint that

refers to an attribute not present in the notification being evaluated, then that

constraint is not satisfied (and thus the notification does not match the filter). The

notification in Figure 2(a) is an example of a notification that matches the filter in

Fig. 2(b).

Filters F1 and F2 overlap, written F1uF2, if and only if N(F1)∩N(F2) 6= ∅. Further,

a filter F1 covers filter F2, denoted F1 w F2, iff N(F1) ⊇ N(F2). In other words, F1

is more general than F2. If F1 6w F2 and F2 6w F1, the filters F1 and F2 are said to

be unrelated. Note that using this terminology, two filters may overlap and still be

11

unrelated. For example, consider the following filters:

F1 = (price < 300.00 ∧ price > 400.00),

F2 = (price < 200.00 ∧ price > 500.00),

F3 = (price < 450.00 ∧ price > 600.00),

F4 = (price /∈ [300.00, 400.00]).

For these filters, the following statements are true:

F1 ≡ F4,

F1 w F2,

F2 u F3,

F2 6w F3 ∧ F3 6w F2.

Furthermore, let F denote some set of filters. Now, the predecessors of a filter G ∈ F

are defined as the set Pred(G) = {F ∈ F|F 6= G ∧ F w G}. The successors of G

are defined similarly: Succ(G) = {F ∈ F|F 6= G ∧ G w F}. If F w G and there

is no F ′ ∈ F such that F w F ′ and F ′ w G, we say that F immediately covers

G and denote it with F � G. Now we get the set of immediate predecessors and

immediate successors of a filter G as ImPred(G) = {F ∈ F|F 6= G ∧ F � G} and

ImSucc(G) = {F ∈ F|F 6= G ∧G � F}.

The covering relation w is reflexive, transitive and antisymmetric and thus defines a

partial order over the set of all filters [TK06]. A set with a partial order is called a

partially ordered set or poset. Poset-based data structures and the covering relation

are important when implementing covering- or merging-based routing. These routing

strategies and poset data structures are discussed in detail later.

3.2 Addressing

We now define the implicit content-based addressing scheme. In this, we follow the

concepts introduced by Carzaniga and Wolf [CW02]. In a content-based network,

each node (client or router) advertises a receiver predicate (r-predicate) that defines

the set of datagrams the node is interested in receiving. Optionally, a node may

advertise a sender predicate (s-predicate), which defines the datagrams the node

intends to send. The content-based address of a node n is its r-predicate pn.

Note that contrary to a conventional network address, the content-based address of a

node is implicit and that the rate at which a content-based of a node address changes

12

C1: p < 600.00

C3: orig = JFK

C2: al = IBERIA

C5: p < 400.00

C4: dest = LAX

C6: p < 500.00

R1: (p < 600.00) ∨ (al = IBERIA)

R3: dest = LAX

R2: orig = JFK

R4: (p < 400.00) ∨ (p < 500.00)

Figure 3: A simple content-based network with four routers (R1–R4) and six clients

(C1–C6). The content-based addresses of the nodes are represented by filters.

can be several orders of magnitude faster than with traditional addresses. Also,

several nodes may have the same content-based address. Nodes are not assigned any

unique addresses in a content-based network (however, their network-level addresses

can be used as unique identifiers in routing and forwarding protocols [CW03]).

The model presented by Carzaniga and Wolf is generic; it does not fix the format of

datagrams and predicates. For the purposes of this work, we consider the structured

records presented in Section 2.4 our datagram model. As our predicate model, we use

the string-based filter language and semantics defined in Sections 2.4 and 3.1. We

use the same predicate model for both r- and s-predicates. Using these models, the

content-based address (r-predicate) of a node is defined as

13

• Set of notifications defined by disjunction of all its subscription filters, if the

node is a client node.

• Set of notifications defined by disjunction of all subscription filters of clients

connected to it, if the node is a router node.

Similarly, the s-predicate of a node is either disjunction of its advertisements (for

client nodes) or disjunction of its clients’ advertisements (for router nodes). Also note

that identical filters F1 ≡ F2 make for the same abstract predicate p; they are merely

different representations of the same predicate. In other words, when we refer to a

filter F as a r- or s-predicate, we actually mean the set N(F) as it is unambiguous.

As long as this is kept in mind, these terms can be used interchangeably without

loss of precision. An example of a content-based network and addressing is shown

in Figure 3.

Defining the content-based address of a router node as above allows us to abstract

away the client nodes and only examine networks of routers. We can assume it is

sufficient that a datagram meant for a client be delivered to local router of that client;

the router can then relatively easily forward the datagram to its final destination.

Therefore, in subsequent examples we often leave out the client nodes from the

network and consider only routers.

In traditional networking, a subnet is a set of nodes with similar addresses, usually

topologically close to each other. Subnets are identified by a single address, allowing

routers to treat a subnet as a single entity, greatly improving scalability. Routers

also attempt to do supernetting, i.e. combining subnets into larger subnets while

executing their routing protocols. These principles can be applied also in content-

based networking. Let filters F1 and F2 denote representations of r-predicates p and

q, respectively. If F2 w F1, then p is a content-based subnet if q and q is a content-

based supernet of p. For example, in Fig. 3, router R4 could advertise p < 500

as the subnet of clients that can be reached through it, because N(p < 500) is the

content-based supernet of N(p < 400).

3.3 Forwarding

The purpose of the forwarding function is to determine the set of next-hop desti-

nations for a datagram that has arrived to a router [CW02]. The set of next-hop

destinations may contain both adjacent routers and client nodes connected to the

14

router. The router computes the next-hop destinations based on the datagram con-

tent and its forwarding table. The forwarding table is a data structure internal

to the router. It is compiled and updated by the routing function. Conceptually,

content-based forwarding and routing tables are different entities; the former may

be optimized for fast matching while the latter is optimized for efficient update and

remove operations [CRW04]. The forwarding table is then periodically updated or

rebuilt by the routing function, based on the topological data it has gathered. On

the implementation level, however, routing and forwarding tables may be imple-

mented by the same data structure. Figure 4 shows an example of a content-based

forwarding table.

Interface Node ID Address

I0 local (p < 600.00) ∨ (al = IBERIA)

I1 R2 orig = JFK

I2 R3 dest = LAX

I3 R4 (p < 400.00) ∨ (p < 500.00)

Figure 4: A content-based forwarding table maintained by router R1 (see Fig. 3).

Formally, the forwarding table can be interpreted as a map from the set interfaces

of the router, to the set of r-predicates (content-based addresses) [CW02]. The in-

terfaces of the router represent the neighboring nodes. Usually, the client nodes

directly connected to the router are treated as a single local interface I0 for conve-

nience [CW03]. Thus, performing the forwarding function is equal to finding the set

of next-hop interfaces for incoming datagram d, that is, to deliver it to any interface

whose r-predicate contains the datagram d.

Usually, the data in a content-based forwarding table is used together with some

broadcast forwarding function that is applied to the set of interfaces yielded by the

content-based forwarding function to further limit the set of next-hop destinations in

order to avoid forwarding loops [CW03]. That is, an incoming datagram is forwarded

only to nodes that are on a broadcasting path from the source. The broadcasting

path is defined by the used broadcast function; for example, it may be determined

by a spanning tree rooted at the source of the datagram.

The router usually forwards incoming datagrams sequentially and in FIFO order. As

the throughput of the forwarding function determines the throughput of the router

(as is with conventional network-level routers), it is important that the routing

15

function be computed efficiently. Optimizing the forwarding function a joint effort

between forwarding algorithm and routing function improvements [CW02]. The

forwarding throughput can be improved by developing faster matching algorithms

or more efficient forwarding table data structures. Having the routing function to

produce smaller routing tables and to reduce the amount of unnecessary traffic by

implementing better routing protocols also affects the throughput of the router. In

Section 4, we discuss the methods of producing small forwarding tables and designing

efficient routing protocols, but first we briefly mention some examples of research

done on forwarding algorithms.

Early research related to the forwarding problem was conducted in the context of

event matching in centralized pub/sub systems [CW03]. In this kind of setting,

the straightforward approaches would be either to flood all events to all subscribers

(effectively making subscribers responsible of filtering) or to match all subscriptions

against the event one by one [BCM+99]. As neither of these approaches scales well,

it is evident that the subscription filters (or in more general setting, the content-

based addresses associated with the interfaces of the routers) need to be stored in a

more advanced data structure.

The basic approach for more efficient event matching and forwarding table storage

is the counting algorithm [YGM94] that keeps track of count of satisfied constraints

in partially matched filters. The counting algorithm has later been extended by for

example Carzaniga and Wolf [CW03]. The algorithm due to Carzaniga and Wolf uses

the forwarding table as a dictionary-type data structure that is optimized for searches

but not for updates. The data structure is indexed by attributes that are present

in the filters in the forwarding table. For each of the attributes in an incoming

event notification, the index is searched for satisfied constraints that involve the

attribute in question and the count of satisfied constraints in a incremented for each

conjunction the constraint is present. Because filters associated with interfaces are

disjunctions of conjunctions, a filter can be added to the forwarding set if any of

the conjunctions in the filter is satisfied. In their work, Carzaniga and Wolf also

presented further improvements in their forwarding algorithm.

The algorithm of Carzaniga and Wolf represents the approach where the attributes

of a notification are used as the starting point and find the matching constraints

based on them. This approach is also used by Fabret et al. [FJL+01]. An opposite

approach, used in the tree matching algorithm due to Aguilera et al. [ASS+99] and

binary decision diagrams due to Campailla et al. [CCC+01], is to start from the

16

attribute constraints present in the forwarding table [CW03].

4 Content-based routing

The purpose of content-based routing is to compile and maintain the content-based

forward tables in routers. In order to do this, a router must exchange routing

information with adjacent nodes and use that information to maintain a content-

based routing table. The routing tables are used to create a forwarding state in which

the paths for notifications are set by subscriptions. A good routing strategy results

in compact forwarding tables (and thus to more efficient forwarding) and aims to

minimize unnecessary network traffic in terms of propagating subscriptions.

A good routing strategy should also follow the principles of downstream replication

and upstream evaluation [CRW01]. Downstream replication means that forwarding

state set by the routing function should be such that notifications are forwarded

in one copy as far as possible and replicated downstream, as close as possible to

the subscribers. The upstream evaluation principle states that filters are applied

upstream, as close as possible to the publishers in order to stop the propagation of a

notification towards uninterested parties as early as possible. Thus, the subscriptions

should be pushed close to the publishers.

A routing scheme may be further improved by the use of advertisements that effec-

tively set the paths for subscriptions. The internals of a content-based routing table

are discussed in Section 5. In this section, we discuss different routing algorithms

and their impact on the performance and scalability of a content-based pub/sub

system. We do not, however, address fault-tolerance in these schemes in detail. We

start by presenting some simple routing strategies and move on to more advanced

ones, including those that make use of advertisements. As a concrete example, we

look at the CBCB routing scheme, due to Carzaniga et al. [CRW04].

We use the following notation. Let F be a filter and X be an unique identifier (e.g. IP

address) of a node (either a router or a client). Now, the message subscribe(F, X) is

defined as a subscription to notifications matching F , issued by node X. Messages

unsubscribe(F, X), advertise(F, X) and unadvertise(F, X) are defined similarly.

Further, we let TR denote the routing table of router R. A routing table entry is a

pair (F, X) ∈ TR, where F is a filter and X is a node identifier, i.e. the destination

where notifications matching F should be forwarded to.

17

4.1 Simple routing

In simple routing, each router in the network keeps track of every subscription in the

system [Müh02]. The scheme requires flooding subscriptions to the whole network

and is realized by the following strategy:

• When router R receives a message subscribe(F, X), where X can be either a

neighboring router or a local client:

– The pair (F, X) is added to the routing table if it is not yet present there.

– R sends a new message, subscribe(F, R), to all neighboring routers except

X.

Unsubscriptions are handled in similar fashion. An example scenario of simple rout-

ing is shown in Fig. 5.

If the network topology is acyclic, simple routing minimizes the notification traffic

in the network. In generalized topologies, the same effect can be achieved by using

some broadcasting function instead of flooding. This scheme is suitable for small

networks or for networks where subscriptions are relatively static. In large-scale

networks, however, the administrative traffic (subscriptions and unsubscriptions)

amounts to too large part of the network traffic. Also, the forwarding tables in

this routing scheme tend to grow quite large. Obviously, a router needs to do

more complex processing of a (un)subscription message in order to limit the set of

neighbors it is forwarded to. Thus, there is trade-off between bandwidth usage and

processing overhead.

4.2 Identity-based routing

Identity-based routing is a simple improvement over simple routing. In simple rout-

ing, the routing tables may contain redundant entries. Let F and G be identical

filters, i.e. F ≡ G. A simple routing table might thus unnecessarily contain entries

(F, X) and (G, X) when either one of them alone would suffice to forward a match-

ing notification to X. In identity-based routing, a subscription is not forwarded to a

neighboring router if an identical subscription has been forwarded to that router be-

fore [Müh02]. This involves some processing overhead due to filter identity testing.

On a high level, the protocol works as follows:

18

X R1

R2

R3 R4

1. sub(F, X)
−−−−−−→

3. −−−−−−−→
sub(F,R

1)

3.
sub(F

,R1
)

−−−
−−−
−→

5. sub(F, R3)
−−−−−−−→

2. Add (F, X)

4. Add (F, R1)

4. Add (F, R1)

6. Add (F, R3)

Figure 5: An example of simple routing. The subscription issued by client X for

some filter F is propagated to all routers in the network and corresponding routing

table entries are added.

• When router R receives a message subscribe(F, X), where X can be either a

neighboring router or a local client:

– Form a set D = {Y |(G, Y) ∈ TR ∧ F ≡ G}, that is, the set of nodes who

have issued a subscription using an identical filter and the subscription

has not been cancelled. After this, add (F, X) to TR if X is a client. This

step is needed for unsubscriptions, as explained later.

– If X is in D, do nothing, because an identical subscription has already

been forwarded to all neighbors.

– Else if D is an empty set, add (F, X) to the routing table (if X is a router)

and send message subscribe(F, R) to all neighboring routers except X.

– Else, add (F, X) to the routing table (if X is a router) and do for each

node Y in D: If N is a router, send subscribe(F, R), unless there exists

an entry (Z, G) in TR for which Y 6= Z and F ≡ G, because existence of

such entry implies that an identical subscription has been forwarded to

Y before (when it arrived from Z).

An example scenario is shown in Figure 6.

With identity-based routing, handling unsubscriptions requires some processing. If

a local client X of router R issues an unsubscription for filter F , the entry (F, X) is

removed from TR. An unsubscription message is propagated to neighboring routers

only if no local client has an outstanding subscription with identical filter. In prop-

19

X R1

R2

R3

1. sub(F, X)
−−−−−−→

2.
−−−
−−−
−→

sub(F
,R1

)

TR1
:

. . .

(G, R3)

. . .

F ≡ G

Figure 6: An example of identity-based routing. Router R1 does not forward the

subscription to R2, because it has received a subscription with identical filter G from

R3 at some point in the past. Thus, it has already forwarded that subscription to

R2.

agating the unsubscriptions, an operation inverse to the one used in subscription

propagation is used.

4.3 Covering-based routing

Exploiting the covering relation w instead of the identity relation ≡ is an obvious

improvement, utilized by covering-based routing approach [CRW01, Müh02]. This

approach further reduces redundancy in routing table entries. The basic idea and

strategy in subscription propagation is to some extent the same as in identity-based

routing, the major difference being covering testing instead of identity testing: a

subscription is not forwarded to a neighbor if a more general subscription (that is still

outstanding) has been forwarded to that neighbor before. If a set of subscriptions

becomes covered by a new subscription and the new subscription is not covered by

some other subscription, the router adds the subscription filter as a root filter in its

routing table [CRW01]. The covered subscriptions are retained in the routing table

or a separate data structure, such as the Siena filters poset [CRW01] or poset-derived

forest [TK06].

Using covering-based routing comes with slightly added complexity in unsubscription

handling when compared to identity-based routing. When an unsubscription of

20

filter F is issued by neighbor X, the router forwards the unsubscription message

to its neighboring routers if the filter F associated with the unsubcription message

is a root filter. If F is not a root filter, then there still are some outstanding

subscriptions that cover F and thus no action except removing (F, X) from the

poset structure is required. Now, it is not sufficient that the router forward only the

unsubscription. With the forwarded message, the router must also pass the (possibly

empty) set ImSucc(F), i.e. the immediate successors of F , because otherwise these

subscriptions would be left uncovered once F is removed from the routing table.

This is why the router needs to keep track of covered subscriptions also. This is not

the only way of handling unsubscriptions in covering-based routing, as we will see

when discussing the CBCB routing scheme.

4.4 Merging-based routing

Merging-based routing is not a separate routing scheme. Rather, it can be imple-

mented on top of any of the routing algorithms described above, although it is

usually coupled with covering-based routing. An example of this is the Rebeca

system [Müh02].

In merging-based routing, instead of propagating subscription filters, routers may

propagate merger filters (mergers) that are composed of several filters associated

with the same destination node. The purpose of this is to further reduce subscription

traffic in the network. A merger is said to be perfect if it does not cover any

subscriptions that the filters used to create it did not cover. Otherwise, the merger

is called imperfect.

Using perfect mergers is preferable, because imperfect mergers cause false positives,

notifications that are forwarded to a node even if the node is not interested in

that particular notification. For example, merging filters (price ∈ [50, 100]) and

(price ∈ [110, 150]) into (price ∈ [50, 150]) would produce an imperfect merger,

because it would accept also notifications, where price ∈ (100, 110), in which no

subscriber was originally interested. On the other hand, filters (price ∈ [50, 100])

and (price ∈ [90, 120]) would produce a perfect merger (price ∈ [50, 120]).

Any implementation of merging-based routing must answer at least the following

questions [Müh02]:

• When and how should filters be merged or mergers be cancelled?

21

• To which neighbors should the mergers and their cancellations be forwarded?

• How should the mergers be administered?

Any practical filter merging algorithm is an approximation at best; it has been shown

that optimal filter merging is an NP-complete problem [CBGM03]. Some research

has been done on filter merging frameworks that allow integrating merging-based

routing into content-based routers in a transparent way [TK05] and on merging

algorithms and mergeability detection [Tar08].

4.5 Advertisement-based routing

Similar to merging-based routing, advertisement-based routing can be deployed to

enhance the performance of any routing scheme presented here [Müh02]. As noted

before, advertisements are filters identical to those used in subscriptions. Using

advertisements, a client X may define the set of events they intend to generate by

sending an advertise(F, X) message with some filter F . (Un)advertisements are

propagated through the network using any of the routing schemes presented above

[Müh02]. For advertisements, the routers maintain an advertisement routing table

separate from the subscription routing table described above. The advertisement

routing table entries and structure are the same as in subscription routing tables.

While the subscription routing table is used to create forwarding tables for notifica-

tion traffic, the advertisement routing table has a similar function for subscriptions.

Subscriptions are routed only along the reverse path of advertisements (while also

possibly being subject to other forwarding restrictions imposed by routing schemes

discussed above). An (un)subscription message for filter F and source X is for-

warded (at most) to those neighbors for which there exists an entry (G, Y) in the

advertisement-based routing table, where X 6= Y and F overlaps with G. Note

that overlap check is indeed needed instead of just identity or containment checks,

because an overlap implies that the neighbor Y may be a potential source of some

(if not all) events the subscriber is interested in. Also, the fact that subscriptions

are only forwarded towards advertisement issuers implies that advertising is not op-

tional; the publishers must issue an advertisement before publishing any content

(and the published content must comply to the issued advertisement).

22

4.6 CBCB routing scheme

As an example of a content-based routing scheme, we use the combined broadcast

and content-based (CBCB) routing scheme, due to Carzaniga et al. [CRW04]. It

is essentially a covering-based routing scheme in which also merging and advertise-

ments can be supported easily. CBCB is a two-layer routing scheme; in addition

to a content-based routing protocol, the router runs a broadcast routing protocol.

A broadcasting protocol is needed to maintain a forwarding state that allows for

sending messages from a node to all other nodes in the network. Because the under-

lying network topology forms a general graph and thus may contain cycles, simple

flooding cannot be used. The purpose of the content-based layer in the scheme is to

prune the broadcast trees by utilizing the content-based data. As there are several

well-known ways to implement a broadcasting function (such as minimal spanning

trees, shortest-path trees or reverse path forwarding), we assume one is available

and do not address the broadcasting part of the routing scheme in further detail.

In the following, we consider a network of router nodes (or simply ”nodes” from

now on), each of which has a content-based address (r-predicate) pn, where n is

an identifier unique to each node. As explained in Section 3.2, the clients can be

abstracted away from this model by defining the content-based address of a router

as a disjunction of its local clients’ content-based addresses. As usual, it can be

considered that the predicates are represented by filters and the actual content-

based address is the set of matching notifications defined by that filter.

The content-based layer of the CBCB scheme employs a push-pull mechanism. The

nodes push routing data to their neighbors by using receiver advertisements (RAs).

Further, the nodes can request (pull) routing information from the network by send-

ing out sender requests (SRs) and waiting for update replies (URs). This process is

referred to as the SR/UR protocol.

4.6.1 Receiver Advertisements

Receiver advertisements are the primary vessel of propagating content-based routing

data in the CBCB scheme. An RA is issued by a node whenever its content-based

address changes (basically when one of its clients issues an (un)subscription). RAs

can also be sent out periodically. An RA can be represented as the pair (n, pn), where

n is a node identifier and pn the content-base address of node n. In practice, an RA

may also contain additional fields, such as timestamps. RAs should not be confused

23

with advertisements discussed earlier; an RA is analogous to a subscription whereas

an advertisement indicates what type of content a publisher intends to produce.

Advertisements could, however, be integrated into the CBCB scheme quite easily.

When a router receives an RA (n, pn) through interface i, it processes the message

as follows. If there is a predicate pi associated with interface i in the routing table,

meaning that notifications matching pi should be forwarded to interface i (recall

that the set of local clients is treated as a single interface also), then the router

performs a containment check: if pn is already covered by pi, the router simply

drops the RA. This is called the RA ingress filtering rule. Otherwise, the router

uses the broadcasting function to compute the set of next-hop destinations on the

broadcast tree rooted in n. The router also updates its routing table by setting the

predicate associated with interface i as pi := pi ∨ pn. Some filter merging algorithm

may also be utilized in this step.

4.6.2 The SR/UR protocol

Relying solely on receiver advertisements leads to inflation of content-based ad-

dresses. Consider a case where a router r has associated a predicate pi with interface

i. When the router receives an RA through interface i, it applies the ingress filtering

rule to it and drops the RA if its predicate is already covered by pi. However, the

reason the router received a predicate already covered may be due to an unsub-

scription. Now, because the RA was dropped, the neighboring routers still forward

all notifications matching pi to r, even if no one in the subnet behind interface i is

interested in part of them anymore. In order to avoid excessive address inflation and

false positives, the routers periodically send out sender requests. An SR contains the

identifier of its issuer, an SR number and a timeout field. The SR number is used to

differentiate between several SRs from the same issuer. The timeout indicates how

long the issuer is going to wait for a reply.

An SR issued by a router r is broadcast to all routers. Any router that receives

an SR estimates a new timeout for it (the estimation details are omitted here) and

forwards it downstream on the broadcasting tree. If r is a leaf router, it immediately

responds with an update reply. A UR consists of the SR issuer identifier, the SR

number the UR is reply for, and a predicate. In the case of a leaf node, the predicate

it puts in the UR is its own content-based address, i.e. the predicate p0 associated

with its local interface 0. A non-leaf node must wait for URs from all interfaces it

forwarded the SR. When the node has received all URs (or a timeout occurred), it

24

sends an UR with the predicate set to disjunction of predicates in the received URs

and sends it along the reverse path of the SR.

The broadcast nature of the SR/UR protocol implies that the amount of control

traffic in the network may grow too large if all routers issue SRs on regular basis.

Carzaniga et al. proposed some improvements for the protocol. The basic version

of the SR/UR protocol only allows for the original SR issuer to use the resulting

URs in updating the routing table. In general, this behavior is needed, because the

URs triggered by an SR are specific to the broadcast tree rooted at the SR issuer.

However, in certain cases an intermediate router may be allowed to use an UR to

update its own routing table and/or cache an UR so that it can be used the next time

a similar SR is issued, greatly reducing traffic caused by the protocol. Additionally,

the use of SRs could be limited – instead of broadcasting SRs periodically, the routers

could send them only to a subset of neighbors and only when needed.

4.7 Conclusions

We have discussed some possible schemes for content-based routing: simple, identity-

based and covering-based. Each of these schemes can be augmented with filter

merging and/or advertisements. We also noted that there exists a trade-off between

the amount of control traffic (subscriptions and advertisements) in the network and

processing time needed in a router: by performing e.g. identity or covering checks

on the filter associated with an incoming subscription, a router may be able to stop

the propagation of that subscription. Furthermore, if the routers work in a general

topology, any routing scheme must be combined with a broadcasting function in

order to avoid redirect loops. As an example of this, we discussed the CBCB routing

scheme.

In the remainder of this section, we briefly mention some work on done on per-

formance analysis and fault-tolerance of content-based routing. In a series of tests

conducted by Mühl et al. [MFGB02], it was concluded that advanced routing algo-

rithms (i.e. covering and merging) should be considered mandatory in large-scale

systems; otherwise the routing tables and amount of control traffic grows too large.

Further, using advertisements in any of the schemes greatly improves scalability com-

pared to the same scheme without advertisements. Also, in practical applications,

the routing schemes benefit from the effects of locality. The range of subscription

is usually not uniformly distributed over the network. Rather, subscribers close to

each other commonly have similar interests, allowing the routers to do more efficient

25

merging and covering-based pruning of subscriptions.

It should be noted that Mühl et al. did not test the CPU overhead caused by

more complex filter handling in the more advanced routing schemes. The amount of

processing required at routers is significant in covering-based routing [TK06, Tar07],

which is a limiting factor in terms of scalability. The main goal of this work is to

reduce that overhead. In Section 5, we discuss some data structures needed for

implementation of covering-based routing and in Section 6, we present our method

for reducing the processing overhead.

None of the routing schemes presented above are fault-tolerant, with possibly the

exception of CBCB routing scheme, which can recover from link and node failures

(if the overlay network forms a general graph in which there are several paths from

one node to another) provided that RAs and SRs are issued periodically rather

than just per need. Fault tolerance (as well as such topics as congestion control)

is mostly outside the scope of this work, but we mention some work here. One

proposed approach that is considered to be fault-tolerant, is using soft states. A

soft state can be defined as a state that can be lost due to a failure without causing

any permanent disruption of service. Work on implementing a soft state in pub/sub

systems has been done e.g. in context of the Hermes system [Pie04] and by Jerzak

and Fetzer [JF09]. Furthermore, Mühl [Müh02] has done work on formalizing fault-

tolerance requirements, such as self-stabilization in pub/sub systems. Mühl also

proposed a practical fault-tolerant routing scheme based on subscription leasing, i.e.

an arrangement where subscriptions are considered leased, implying that they need

to be renewed periodically.

5 Posets and related data structures

In this section, we discuss methods of representing partially ordered sets (posets)

used in content-based routing tables. In particular, we focus on the Siena filters poset

and poset-derived forests. The Siena filters poset [CRW01] is a directed acyclic graph

(DAG) based data structure that stores filters (and corresponding subscriptions or

advertisements) by their immediate covering relations. The poset-derived forest and

its variants [TK06] do not keep track of all covering relations, but instead aim at

providing fast operations for insertions, deletions and computing the root set (the

set of filters that cover all other filters) of the filters in the data structure.

26

5.1 Siena filters poset

The Siena filters poset (FP) is a data structure used as the content-based routing

table of Siena routers [CRW01]. In the following, we consider posets for subscrip-

tions; advertisement posets are almost identical to the subscription ones. An FP

consists of a set of filter entries and links between them.

5.1.1 Definition

Let F denote the set of subscription filters stored in the FP of some router. In

an entry for filter F , two lists of pointers to other entries are maintained: one

for ImPred(F) and another for ImSucc(F). As defined in Section 3.1, the set

ImPred(F) is the set of filters in F that are immediate predecessors of F , i.e.

filters that immediately cover F . Similarly, ImSucc(F) is the set of filters in F

immediately covered by F . The set of filters for which ImPred is an empty set, is

called the root set (also non-covered set or minimal cover set) of the poset. The FP

can be visualized as a directed acyclic graph, where the filters in F act as nodes and

there is a directed edge from F to G if and only if G ∈ ImPred(F). Fig. 7 shows

an example of an FP.

type = T ∧ p ≤ 100

type = T ∧ p ∈ [10, 90] type = T ∧ p ∈ [70, 95]

type = T ∧ p ∈ [75, 80] type = T ∧ p ∈ [90, 95]

type = T ∧ p ∈ [75, 80] ∧ name = A type = T ∧ p = 90

Figure 7: An example filters poset. The directed edges reflect the immediate covering

relations between the filters.

In addition to the links to other entries, there are two sets associated with a filter

entry. The set subscribers(F) is the set of interfaces through which the router has

received a subscription with filter F (or an identical filter). The set forwards(F)

27

defines the set of interfaces towards which F needs to be forwarded. It is usu-

ally not stored with the entry rather than computed per need (that is, when an

(un)subscription for F is received over some interface). The forwards(F) set is

defined as [CRW01]

forwards(F) = neighbors−NST (F)−
⋃

F ′∈F∧F ′ 6=F∧F ′wF

forwards(F ′), (1)

where neighbors is the set of all interfaces of the router in question. The term

NST (F) stands for ”Not on any Spanning Tree” and makes sure that in general

topologies, only interfaces downstream in spanning trees rooted at original sub-

scribers of F are taken into consideration in order to avoid forwarding loops, sim-

ilarly to the CBCB routing scheme discussed above. In acyclic topologies, the set

NST (F) consists only of the interface through which the subscription was received,

since the network itself already is a spanning tree. The last term of (1) simply

formalizes the idea of covering-based routing: F is not forwarded to interfaces to

which a more general subscription F ′ has been forwarded before.

5.1.2 Subscriptions and unsubscriptions

Whenever a Siena router receives a subscription for filter F through interface X, it

searches its filters poset F for one of the following:

1. A filter F ′ that covers F and for which X ∈ subscribers(F ′). If such filter

is found, no further actions are needed, as the subscription has been handled

before.

2. A filter F ′ for which F ′ ≡ F and X /∈ subscribers(F ′). If such filter is found,

X is added to subscribers(F ′) and removed from all filters covered by F ′.

3. The possibly empty sets ImPred(F) and ImSucc(F). The router adds F to

F as a new filter between these sets, adds X to subscribers(F) and removes

X from all filters covered by F . The router also forwards the subscription to

interfaces in possibly empty set forwards(F).

In cases 2 and 3, when an interface is removed from the subscribers set of an entry

covered by F , the entry in question is also deleted from F if the removed interface

was the only one in its susbcribers set.

As discussed in Section 4.3, handling of unsubscription has slight complexities in

covering-based routing. An unsubscription may cancel more than one subscription

28

at a time, if it is issued with a filter that covers many subscriptions from the same

source. Further, an unsubscription may cancel a root subscription and may uncover

some subscriptions that need to be forwarded to the neighbors. When an unsub-

scription of filter F is received through interface X, a router takes following actions.

First, the set fold = forwards(F) is computed. Then, X is removed from all entries

covered by F and a new, possibly empty, forwards set fnew is computed for F . The

unsubscription is forwarded to interfaces in the set fold \ fnew. Any uncovered sub-

scriptions are forwarded along the unsubscriptions. Uncovered subscriptions can be

recognized, because they have at least on new element in their forwards sets, added

there due to removal of a covering filter.

5.1.3 Adding and deleting entries

Deleting or adding an entry F in the FP is fairly straightforward [TK06]. The

deletion algorithm first disconnects F from its successors by walking through the

entries in ImSucc(F) and deleting F from their ImPred sets. If F is a root filter,

its immediate successors become new root filters as a result of this procedure and

the operation terminates. If F is not a root filter, it is removed from the ImSucc

sets of entries in ImPred(F). Then the immediate predecessors and successors of

F are connected with each other; an entry Fp ∈ ImPred(F) is connected with an

entry Fs ∈ ImSucc(F) if Fp has no immediate successor that would already cover

Fs.

In adding operation, the first step is to build the ImPred(F) and ImSucc(F) sets

for the new enty F . This is achieved by walking the FP in depth-first order, starting

from the root filters. In each branch, the last filter that covers F is added to

ImPred(F). The ImSucc(F) set can be constructed by walking the subposet (that

may consist of the whole poset if F is to be added as a root filter) defined by

ImPred(F) in breadth-first order. Once the immediate predecessors and successors

of F are known, the new entry can be added into the FP by manipulating the

successor sets of the predecessors and predecessors set of the successors accordingly.

5.2 Poset-derived forests

The poset-derived forest (PF) [TK06] aims to providing faster insert and delete

operations by storing only a subset of the covering relations. In particular, in poset-

derived forest, each filter entry has at most one parent. Formally, the PF is defined

29

as the pair (F ,w′), where F is a set of filters and w′ is a subset of the covering

relation w. The w′ relation is what makes the data structure a forest – for each

F ∈ F there is at most one G ∈ F for which G w′ F . Further, if for some F, G ∈ F

it holds G w′ F , then G w F . Figure 8 has an example of a poset-derived forest.

type = T ∧ p ≤ 100

type = T ∧ p ∈ [10, 90] type = T ∧ p ∈ [70, 95]

type = T ∧ p ∈ [75, 80] type = T ∧ p ∈ [90, 95]

type = T ∧ p ∈ [75, 80] ∧ name = A type = T ∧ p = 90

Figure 8: A poset-derived forest formed from the set of filters in Fig. 7.

A poset-derived forest (F ,w′) is said to be maximal if no filter pairs can be added

to the w′ so that (F ,w′) would remain a poset-derived forest. It is easy to make

any poset-derived forest maximal by adding pairs to the w′ relation, i.e. combining

trees in the forest while respecting the definition of the w′ relation until no more

combinations can be done. In a maximal poset-derived forest, the set of roots of

the trees in the forest is also the root set (minimal cover) of F [TK06]. This is a

useful property and ensures that the minimal cover can be computed efficiently in

poset-derived forests.

Another property usually required from a PF is sibling-purity. A PF is sibling-pure

at node a if there exist no b, c ∈ F for which a w′ b and a w′ c and either b w c or

c w b. A poset-derived forest is sibling-pure if it is sibling-pure at every node. This

definition simply states that children of every node in the forest are unrelated. Note

that a may refer to so-called imaginary root, which is a convenience node that has

all the root nodes of the trees in the forest as children. Maintaining sibling-purity

at every node ensures that filters are stored as deep in the forest as possible. This is

desirable because in a sibling-pure forest the number of covering tests needed when

adding or matching filters is minimized. The forest in Figure 8 is both maximal and

sibling-pure.

30

The add and delete operations of poset-derived forests maintain sibling-purity. The

add operation for new filter F works as follows:

1. If F already exists in the forest, terminate.

2. Else set the imaginary root as the current node and repeat until F is inserted

into the tree:

• If F is unrelated with all children of the current node, add it as a child

of the current node.

• Else if F covers one or more children of the current node, move those

covered children to be children of F and add F as a child of the current

node.

• Else pick one of the children that covers F and set it as the current node.

It is easy to see that the add operation maintains sibling-purity in the forest. Note

that the data structure does not support fast testing of an existence of a filter in the

forest. For this, a separate data structure, usually a hash table, can be used [TK06].

This provides a fast checking of syntactic equivalence, i.e. if a filter by the same

representation is present in the forest. However, checking for semantic equivalence

i.e. identity of filters is considerably more complex computationally and does not

benefit from hash tables. Because of this, identity checking is usually omitted.

Maintaining sibling-purity in delete operation is slightly more complex. When a

filter (node) F is being removed from a poset-derived forest, the node is removed

and its children are added back into the forest by calling the add operation with the

parent node of F (which may be the imaginary root) as the current node for each

of the children. The child node that is being reinserted carries with it the subtree

rooted at that node. When a new parent is found for the node, its children may need

to be relocated further down the tree in order to maintain sibling-purity [TK06].

Unlike the Siena filters poset, the poset derived forest described above does not

keep track of the interfaces through which the filters were received. The PF can be

extended to handle multiple interfaces by storing the set of interfaces in the filter

nodes, as is done in the filters poset. When a filter F is received through interface

i, it is added in the forest if there is no filter that covers F and has i in its set of

interfaces. If a node is added, all descendants of the new node that have the same

interface i in their interface sets are removed from the tree.

31

The information about the interfaces can also be taken into use in implementing

interface-based balancing. In an interface-balanced forest, filters associated with the

same interface are kept close to each other. This can be achieved by storing the

interfaces of the descendants of a node in each node. The insert operation can then

use this index to choose a subtree that has similar interfaces in it. The interface

index is updated by every insert and delete operation.

Additional steps can be taken to remove redundancy from the forest. A filter (F, i),

where i is an interface, is redundant if there is a filter (G, i) for which G w F . A

poset-derived with multiple interfaces is non-redundant if there are no redundant

filters. Note that the process described above removes redundant filters in a subtree

rooted at a newly added filter, but in order to remove all redundant filters, extra

measures are needed. Non-redundancy requirement has a negative impact on the

performance of the data structure. Checking for redundant filters can however be

made relatively efficient by utilizing the interface indices at each node. This allows

for pruning parts of the forest when searching for redundant filters.

The poset-derived forest or one of its variants can be used to replace the filters

poset in routing tables. However, it can also be used to complement the FP – a

poset-derived forest can be set up as a local routing table to manage the local clients

of a router, while the FP still acts as an external routing table that keeps track of

(un)subscriptions received through external interfaces. This allows for the FP to

be updated only when the root set of the PF is changed, a convenient property

when there are many local clients with frequent subscription changes, as the PF can

handle insertions and deletions more efficiently than the FP. Furthermore, using a

separate routing table for local clients relieves the subscribers of keeping track of

covering relations between their subscriptions (recall that in Siena unsubscription

semantics, several subscriptions may be cancelled by issuing one unsubscription that

covers them all).

It has also been proposed that two or more poset-derived forests can be chained

[Tar07]. Chaining forests allows for implementing complex routing structures, such

as matching subscriptions with profiles. A profile can be viewed as a set of triggering

rules based on context (such as time or location) or metadata. An example of

matching subscriptions with profiles would be to deliver notifications to a subscriber

only at a certain weekday defined by the profile of the subscriber.

32

6 The offloading algorithm

In this section, we present our algorithm, which aims to improve scalability of the

content-based routing function by offloading the content routing cost from the router

nodes to the clients (in this context, client may also mean a neighboring router).

In particular, we are interested in the case when new subscriptions are added to

the system. In this, we consider the case where routing tables are either Siena-style

filter posets or poset-derived forests. We will first examine how the tasks should be

divided amongst the clients. Obviously, some overlapping and redundancy is needed

as clients may produce results slowly, disconnect while performing the computation

or provide wrong results on purpose. Thus, the results produced by clients must

be verified and, if they are correct, inserted into the routing table efficiently. Our

goal is to relieve the router of computing covering relations between filters, which is

usually the most time-consuming part in inserting new subscriptions.

The problem and approach addressed here are similar to cookie or computational

puzzle techniques used in some protocols to prevent attacks. In the cookie approach,

a server may send a stateless cookie to a client and refuse further processing of

requests from that client until the client sends back a reply with the same cookie.

This method prevents e.g. denial of service attacks from spoofed IP addresses and is

utilized by, among others, the DTLS protocol [RM06]. In the puzzle (or challenge)

approach, the server may issue the client some task that requires some computation

by the client but whose solution is easily verified by the server. The client is not

served until it has provided a correct solution. This way, mounting a DoS attack from

a single source becomes unfeasible due to the overhead generated by the puzzles.

This approach is used for example in the Host Identity Protocol (HIP) [MNJH08].

We will also describe the protocol over which the offloading process is done. We

present two different options: the routing table offloading protocol (RTO), where a

part of routing table is included in each computation request sent to a client and

the fixed filterset protocol (FF), in which the clients are sent a set of predefined

filters and their relations and the clients then place their subsequent subscriptions

in relation to this set. We describe the message formats and give examples of how

the extended protocol works in different scenarios. We also briefly address other

issues, such as security (the protocol reveals parts of the routing tables). In general,

however, we assume that the routing table data contains no confidential information

and can be disclosed to clients. Detailed security considerations are left for future

work.

33

6.1 Dividing the tasks

For dividing the routing table in the RTO protocol, we use a simple layer-based

vector approach. The routing table (either filters poset or poset-derived forest) will

be ”flattened” into a vector layer by layer. A layer in this context means the set of

filters that are on the same level in the routing table. Thus, the first layer (layer

0) consists of the filters in the root set, the second layer consists of the immediate

successors of the root filters, and so on. Note that if the filters poset is used, a

filter may belong to several layers (Fig. 7 has an example of a filter that belongs

to two different layers). Each client will be issued a part of the filter vector and

a set of filters to place in relation to the given vector. In order to fully determine

a location in the routing table for a new filter, the vector parts sent to the clients

must cover the whole routing table. Each clients returns three sets: (1) The filters

in the assigned vector that cover at least one of the input filters, (2) the filters in

the assigned vector that are covered by at least one of the input filters and (3) a

filters poset formed from the input filters. In practice, it is convenient to represent

sets (1) and (2) as key-value tables where keys are input filter index numbers and

values are sets of routing table filter index numbers.

In order to minimize the negative impact caused by malicious, unresponsive or un-

cooperative clients, the same vector slice and input set can be sent to several clients.

In our scheme, a whole layer is sent to a set of clients. This may leave some room for

improvement, as layer sizes may vary greatly, meaning more work for some clients.

It is usually desirable that the workload is evenly distributed to the clients. It is

easy to amend our scheme so that large layers can be split into several vectors or

small layers can be combined into one vector. In our RTO implementation, we used

the former approach. However, in our presentation we use the simple approach.

The FF protocol is an alternative way of offloading content routing cost. In the FF

protocol, the clients are provided with a fixed set of filters. Then, whenever a client

issues a new subscription, it must place the subscription filter in relation to the

fixed filter set. The router can then use this information to place the filter in its own

routing table. Similar technique can be used also with neighboring routers. Also,

there is less communication overhead, as input vectors need not be transmitted to

the clients.

34

6.2 Computing and verifying the results

In the RTO protocol, it is relatively easy for the router to add filters to the routing

table based on the results returned by the clients. The return vectors are traversed

layer by layer starting from the root layer. If an input filter is marked covered by

a filter in the vector, the search continues to the next layer. The process continues

until no filters in the layer cover the input filter or there are no more layers. The

filter can then be placed as an immediate successor of the last covering filter found

in this process; the router needs not compute any covering relations between the

filters. The details of this process are discussed below for both the filters poset and

the poset-derived forest.

For verifying the results produced by the clients, the router makes use of the fact

that the same filter vector was sent to several clients. It compares the results from

the clients that were issued the same vector and discards results inconsistent with

the majority of results. This does not ensure correctness but in the context of this

work, this level of verification can be considered adequate; in any case, if majority

of clients are malicious or malfunctioning, the scheme presented here will have a

negative impact on the performance of the router. More thorough check may be

done occasionally for some filters. This is done by verifying that the predecessor

filter(s) suggested by the clients actually cover the filter and that all successors of

the predecessor filter(s) are covered by the filter. If absolute correctness is required,

this check can be performed on each filter for which the clients have computed a place

in the routing table. The amount of computation required by the router remains

still less than without offloading, but performing checks on this level is not usually

required.

In the FF protocol, the clients position their filters in relation of some set of static

filters instead of positioning input filters in relation to an input vector. In this

case, the router may need to do some extra processing; namely, the static set may

only form a small subset of the routing table, and the router may have to compute

some covering relations after receiving the results. Thus, the static set approach

is analogous to pruning the routing table so that some options need not to be

considered when inserting a filter.

35

6.2.1 Computation in the RTO protocol

We now present the algorithm the router uses in order to determine the place in

the routing table for a set of new filters based on the covering data returned by the

clients. The process is explained both for the filters poset and the poset-derived

forest. First stage of the algorithm, the cleanup stage, is common to both data

structures. Its purpose is to produce the final result sets on which the filter placing

process will be based. In this stage, incorrect results are discarded and if some results

are missing or inconclusive, they are computed by the router. In the following, let L

represent the number of layers in the routing table. The set of filters to be placed in

the routing table is called the set of input filters and is denoted by F . The result set

returned by each client contains three entries: Pred, Succ and FFP . Entries Pred

and Succ consist of routing table filters that are predecessors and successors of at

least one filter in F , respectively. The entry FFP is a filters poset formed from the

filters in I.

1. Initialize R to be an array of L elements.

2. Initialize FI to be an empty filters poset.

3. For each layer l ∈ [0, L− 1], do

(a) Compute the frequency of each (Pred, Succ) pair returned by the clients

that were assigned the vector representing layer l.

(b) Let (Pred, Succ)µ denote the pair that occurred more frequently than

any other pair. If (Pred, Succ)µ exists, set R[l]← (Pred, Succ)µ.

(c) Else compute the result set for layer l and set it as the value of R[l].

4. Compute the frequency of each poset FFP returned by the clients.

5. Let Fµ denote the poset that occurred more frequently than any other poset.

If Fµ exists, set FI ← Fµ.

6. Else compute the filters poset from filters in I and set it as the value of FI .

Note that in step 3a, some hash function may be used instead of directly comparing

the sets. Also, the rule in steps 3b and 5 is only one metric of deciding which

result set should be considered. It is relatively easy to come up with others. It is

desirable that steps 3c and 6 are executed very rarely if at all as they are the most

36

computation-intensive steps of the cleanup algorithm. They are the last resort if

results from clients cannot be trusted or obtained at all.

In the filter insertion stage, the router inserts the input filter(s) into its routing table.

Depending on the data structure used, either the procedure filter_insert_fp()

(for filters poset) or filter_insert_pf() (for forest) is called. Both procedures

take in as an input the array R and poset FI obtained from the cleanup stage

and a boolean value check that indicates if filter placements should be verified by

computing the covering relations between it and its predecessors and successors. In

normal operation, we usually want to set check to false and maybe occasionally

set it to true. If check has the value true on every call, the correctness of the

routing table is ensured in all situations but a significant overhead is introduced.

The purpose of this procedures is to find the place in the routing table for filters

in FI without having to compute any covering relations. After a correct location

is found for a filter, some measures may still be needed, such as manipulating the

subscribers sets in the filters poset (see Section 5.1.1).

In the following, let Pred(l, f) denote the set of routing table filters that are prede-

cessors of a filter f ∈ FI at layer l. Succ(l, f) is defined similarly. The procedure

filter_insert_fp() is defined as follows:

1. Initialize Fins to an empty set. This set will hold the input filters that have

been inserted into the routing table already.

2. For each layer l in L, do

(a) If layer l − 1 exists, set (Predl−1, Succl−1) ← R[l − 1]. Otherwise, set

Predl−1 ← Succl−1 ← ∅

(b) Set (Predl, Succl)← R[l]

(c) If layer l + 1 exists, set (Predl+1, Succl+1) ← R[l + 1]. Otherwise, set

Predl+1 ← Succl+1 ← ∅

(d) Determine the set of filters in FI that belong to layer l. Let Fl denote

this set. A filter f belongs to layer l, if one of the following conditions is

met (note that filters belonging below the bottom layer are a special case

that will be handled later):

• The set Pred(l, f) is empty and f is not yet in the set Fins.

• Layer l − 1 exists and there exists a filter g′ at layer l that has

a predecessor f ′ at layer l − 1 such that f ′ ∈ Pred(l − 1, f) and

37

g′ /∈ Pred(l, f).

(e) Using the data in FI , Predl−1 and Succl+1, set the immediate predecessor

and successors relations for the filters in Fl, effectively adding them in

the routing table:

• If layer l − 1 exists, filter f ′ at layer l − 1 is added as an immediate

predecessor of filter f ∈ Fl if f ′ ∈ Pred(l − 1, f) and there exists

no filter g ∈ FI for which g ∈ Fl and g covers f and f ′ ∈ Pred(l −

1, g). As an additional check, if an input filter f happens to belong

to two or more layers, and l is not the last one it belongs to (i.e.

Pred(l, f) is nonempty), then filters whose immediate successors are

also predecessors of f are not added immediate predecessors of f .

• The links to immediate successors of f ′ that are in Succ(l, f) are

removed as they are now covered by f and are no longer immediate

successors of f ′ (this phase can also be executed in the end if modi-

fying the relations in the routing table is not desirable at this point,

which may be the case if all relations are to be checked).

• For each filter f ∈ Fl, filter g ∈ Succ(l, f) is added as an immediate

successor of f unless f covers some f ′ ∈ Fl for which it also holds

that g ∈ Succ(l, f ′).

• For each filter f ∈ Fins, if there is a filter g ∈ Succ(l, f), whose

immediate predecessors (that can be either routing table or input

filters) are not covered by f , add f an as immediate predecessor of

g.

• If check = true, each added predecessor and successor link must be

verified by computing the covering relation. If this check fails for

some filter f ∈ Fl, that filter is added into the routing table using

the normal insert operation of the filters poset.

(f) Add to Fins each filter f for which Pred(l, f) is empty; these filters cannot

belong to any lower layer, but they may have some immediate successors

at the lower layers.

3. Insert the filters that belong below the bottom layer L−1. A filter f is inserted

below the bottom layer if it is not in Fins and Pred(L−1, f) is nonempty. All

filters in Pred(L−1, f) are added as immediate predecessors of f , unless they

cover some other filter in FI that covers f and also belongs below the bottom

layer.

38

4. Compute which of the immediate covering relations in FI are retained in the

result poset. This is done by comparing the successors and predecessors (in

the routing table) of each filter pair with an immediate covering relation in

FI . If the intersection of those sets is empty, the immediate covering relation

is retained in the routing table poset also.

The procedure filter_insert_pf() is essentially a simplified version of the pro-

cedure filter_insert_fp(). For example, the condition when a filter f belongs

to a layer l can be relaxed; it is sufficient to consider only the case where the set

Pred(l, f) is empty. This way, also sibling-purity (see Section 5.2) in the tree can

be maintained. Also, inserting the filter is simpler because in a poset-derived forest,

each node has at most one parent. If several filters are being inserted on the same

layer, some of their relations (found in FI) may need to be dropped in order to

maintain the properties of the forest. The procedure filter_insert_pf() can also

be easily extended to work with multiple interface and interface-balanced forests.

6.2.2 Computation in the FF protocol

In the FF protocol, the router assigns the clients some predefined set of filters and

a set of their covering relations (either in the format of a filters poset or a poset-

derived forest). Any client that has received this set will then place their subsequent

subscriptions in relation to this filterset and deliver the information along the sub-

scription message. In order to do this, the client must compute covering relations

between the subscription filter and the filters in the predefined filterset. The place-

ment data delivered to the router consists of two sets: the immediate predecessors

ImPred(f) and the immediate successors ImSucc(f) of the subscription filter f .

Either or both sets may be empty. Furthermore, it is easy to extend the protocol to

handle the insertion of several filters at once, as is the case in the RTO protocol.

The router uses the data provided by a client in pruning the routing table data

structure. Having provided with the immediate predecessors and successors in the

fixed filterset with the subscription, the router is able to exclude from further con-

sideration any filter covered by the immediate successors and all filters covering the

immediate predecessors of the subscription filter. Because the fixed filterset rep-

resents only a subset of all filters in the routing table, there may be some filters

(unknown to the client) between the predecessors and successors proposed by the

client. Thus, the router still needs to compute some covering relations between the

39

subscription filter and the filters in the routing table. The covering relation to filters

in the following sets must be computed in a filters poset:

1. Filters that do not cover a filter in ImPred(f) and either share a layer with

a filter in ImPred(f) or are at a higher layer. These filters are potential

immediate predecessors of f .

2. Filters covered by a filter in ImPred(f) and covering a filter in ImSucc(f),

if both sets are nonempty, or filters covered by a filter in ImPred(f), if

ImSucc(f) is empty, or filters covering a filter in ImSucc(f), if ImPred(f)

is empty. These filters may be immediate successors or predecessors of f (or

unrelated).

3. Filters that are not covered by filter in ImSucc(f) and either share a layer

with a filter in ImSucc(f) or are at a lower layer. These filters are potential

immediate successors of f .

Again, when using a poset-derived forest, not all of these checks are needed; it is

sufficient to compute relations to the sibling candidates in order to ensure sibling-

purity.

Obviously, the benefits of the FF scheme greatly depend on how much of the actual

interest space the fixed filterset covers. If the filterset is only a small subset of all

filters in the routing table, the router needs to compute many covering relations. At

the same time, the filterset should be relatively static so that continuous reissuing

messages and other complications can be avoided. It is outside the scope of this

work to address this problem in detail.

6.3 The protocol

In this section, we describe the functionality and messages needed to implement

our offloading scheme. We consider the request and response messages needed in

the RTO protocol and address some issues in collecting incoming subscription filters

into batches rather than sending out a computation request for every subscription

separately. The RTO protocol must also take into account the fact that some clients

may perform slowly or be uncooperative. Therefore, a timeout mechanism is needed.

After a timeout occurs, the router no longer waits for computation responses rather

than starts working with the responses received so far.

40

We also describe the message used by the routers in the FF protocol to issue the

filterset to the clients. The same message can be used to replace the filterset with

a new one should changes occur. The FF protocol also requires some changes to

the subscription messages, namely including the ImPred and ImSucc sets for the

subscription filter in relation to the fixed filterset.

6.3.1 RTO computation request

An RTO computation request is sent out by a router to a subset of its clients. It

consists of one layer of the routing table and the set of input filters, both encoded

into index-filter pairs. The index numbers are integers and filters are strings. An

example request is shown in Fig. 9.

Layer vector Input filters

0 : p ∈ [10, 90], 1 : p ∈ [70, 95], 2 : name = A 0 : p = 80, 1 : p ≥ 60, 2 : name = B

Figure 9: An RTO computation request

6.3.2 RTO computation response

The response to an RTO computation request, returned by an individual client,

consists of the representations of result set entries Pred, Succ and FFP . Recall from

Section 6.2.1 that the entries Pred and Succ contain the predecessors and successors

of the input filters in relation to the layer vector and FFP is a filters poset formed

from the input filters. The sets Pred and Succ are represented as key-value tables

where input filter indices act as keys and the value associated with a key is a set of

indices in the layer vector. This organization is convenient for finding the Pred(l, f)

and Succ(l, f) sets for a filter f at layer l. The poset FFP is also represented using

only filter indices; for each input filter, there is a key and an associated value. The

value consists of two sets, namely the immediate predecessors and successors of the

filter represented by the index.

Additionally, we require that all keys and the index numbers in the value sets are

sorted in ascending order by their numeric values. This makes it easier to compare

the results as strings (e.g. compute hashes of them) rather than sets in the cleanup

phase, speeding up the process considerably.

41

Pred Succ FFP

0 : {0, 1}, 1 : {}, 2 : {} 0 : {}, 1 : {1}, 2 : {} 0 : [{1}, {}], 1 : [{}, {0}], 2 : [{}, {}]

Figure 10: An RTO computation response to the request in Fig. 9. For each entry in

FFP , the first set represents the immediate predecessors of the filter and the second

one represents the immediate successors.

6.3.3 RTO batch mode and timeouts

If the router receives a large amount of subscriptions in a short period of time,

sending out an RTO request for each one may be inefficient in terms of bandwidth

utilization and may cause an unnecessary load on the clients. Therefore, we will

implement a configurable batch mode in the protocol. Incoming subscriptions are

buffered and an RTO request is sent out when either a predefined time limit or a

threshold set for the number of filters has been reached. Clearly, there is a trade-off

between the frequency of RTO requests and the representativeness of the routing

table; if incoming subscriptions are held too long before issuing the offloading re-

quest, some notifications may not reach the subscribers as their subscriptions have

not been added to the routing table yet.

In order to ensure that slow clients and errors in communication do not freeze the

routing table update process, a timeout mechanism is needed. Whenever a set or

RTO requests is sent for some set of input filters, a timer is started. The router

moves to the cleanup stage when all responses have been received or when the timer

expires, whichever occurs first. Missing results are computed by the router during

the cleanup stage.

Another important parameter in the RTO protocol is the number of clients one layer

of routing table is sent to. Let C denote this number. If the routing table has L

layers, placing a set of input filters into the routing table will require sending CL

RTO computation requests. Increasing the value of C increases the probability of

receiving (correct) results from the clients but it also increases bandwidth usage

and overhead caused to the clients by the offloading scheme. Also, it is usually

preferable that one client is computing at most one RTO request at any given time,

i.e. increasing the value of C may be problematic if the router has very few clients

as there may not be enough clients available for serving the requests.

42

6.3.4 FF (re)assignment message

In the FF protocol, a router assigns its clients with the fixed filterset. This is

done by the FF assignment message. Upon receiving such message, the client must

discard any filtersets received before. Thus, the assignment message can be used

also in changing the fixed filterset. The message consists of string filters and their

immediate covering relations (in the case of filters poset) or parent and child relations

(in the case of poset-derived forest). Filters are indexed and referred to as integers.

An example message is shown in Figure 11.

Fixed filterset

0 : [p ≤ 100, {}, {1, 2}], 1 : [p ∈ [10, 90], {0}, {}], 2 : [p ∈ [70, 95], {0}, {}]

Figure 11: An FF assignment message. Each entry has a filter, the set of imme-

diate predecessors (or a parent) and the set of immediate successors (or children),

respectively.

6.3.5 Subscriptions in FF protocol

The FF protocol defines an extension to the regular subscription messages. In

addition to the fields in the subscription messages, there are two new fields, ImPred

and ImSucc. Both contain a set of indices that represent the immediate predecessors

and successors, respectively, of the subscription filter in relation to the fixed filterset.

Figure 12 shows an example of the subscription extension.

Filter ImPred ImSucc

p ∈ [75, 80] {1,2} {}

Figure 12: Part of a subscription message in the FF protocol. The filter and ImPred

and ImSucc sets are shown. The indices refer to filters in Fig. 11.

6.4 Other considerations

In this section, we address some issues left outside the scope of this work or to

be tested experimentally. These include some security considerations, performance

issues, applying offloading also to unsubscriptions, alternative ways to implement

43

the batch mode in the RTO protocol, and applying the FF scheme in inter-router

communication.

6.4.1 Security

The RTO scheme we have proposed has some security issues. It may not be de-

sirable that the interests of other clients and the structure of the routing table are

revealed in the offloading process. Information about the subscribers is not sent in

the computation request messages, but sometimes we do not wish to reveal even the

interest space. The offloaded version of the routing table may be obfuscated to some

extent by simple transformations. For example, all numeric values can be shifted (by

addition or subtraction) by some constant value and strings may be transformed.

This somewhat masks the interest space but information about the routing table

structure is still revealed. In the FF scheme, routing table exposure is somewhat

more limited. We do not issue these security considerations further. We assume that

these simple obfuscations are adequate means of maintaining client privacy. More

advanced solutions are outside the scope of this work.

6.4.2 Performance

We observe that the RTO scheme may in some cases limit the scalability of a content-

based pub/sub system rather than improve it. This happens if there are very few

clients or a large number of unresponsive, slow or malicious clients. By experiments,

we try to find the threshold where the proposed offloading scheme is no longer

feasible.

Alternative ways of dividing the routing table should also be considered. Assigning

a whole layer to a set of clients may lead to unbalanced burden amongst the clients.

Combining and splitting of layers may be needed.

The RTO scheme could also be expanded further to handle identical filters; the

clients would then report if some of the input filters are identical to one of routing

table filters or to each other. With this addition, the computational effort required

from the clients would grow, but routing table sizes would in turn decrease.

44

6.4.3 Offloading unsubscriptions

An obvious question that follows from the offloading of subscriptions is if the same

approach can be used with unsubscriptions also. In a filters poset, the deletion

operation is quite straightforward and would not benefit from offloading. The poset-

derived forest does however require the computing of covering relations during the

delete operation, if sibling-purity is to be maintained. Thus, the forest may benefit

from offloading.

6.4.4 Batch mode adjustments

In our scheme, the RTO batch mode assigns the whole batch of input filters to clients

once some predefined batch size has been reached or some fixed amount of time has

passed. Instead, it may be optimal to divide a batch into smaller parts and offload

each part separately. This process might be combined with some preprocessing

step in which the router would determine a good way to partition the input filter

batch, possibly by computing some covering relations amongst the batch beforehand

(determining an optimal partitioning may be computationally infeasible).

6.4.5 Extending the FF scheme

The FF scheme could also be used between neighboring routers when forwarding sub-

scriptions. As a further extension, the filterset used may be dynamic and constructed

by each router individually by modeling the interest space of their neighbors. The

routers could then anticipate the needs of their neighbors and provide some initial

data to reduce the load caused to their neighbors by forwarded (un)subscriptions.

7 Experimentation

We now present the experimental results for our algorithm. We will test the per-

formance and correctness of our offloading scheme under varying conditions in the

cases where routing tables are implemented as filter posets and poset-derived forests.

We also compare the results against filter posets and poset-derived forests without

offloading. Section 7.1 describes the test setting in detail, including the parameters

of used filters. In Section 7.2, we describe the test scenarios and in Section 7.3, we

provide the outcome of the tests. A brief summary of the tests and their results is

45

given in Section 7.4.

7.1 Implementation and environment

For the tests, we implemented the server-side functionality of the RTO protocol and

executed it in an environment that simulates a situation where there is a sufficient

number (in terms of dividing the workload) of reliable clients. The implementation

was done in the context of the Fuego middleware1. A layer-based implementation

was made both for the filters poset and poset-derived forest. The Fuego imple-

mentations of these data structures were used as the reference in performance and

correctness tests.

The server-side operation of the RTO consists of five phases. The time taken by each

phase was measured. In the preprocessing phase, the set of new filters is examined

in order to remove duplicates and filters that have already been in the data struc-

ture. Also, some elimination of interfaces (see Section 5.1.2) is done in this phase.

Only syntactically identical filters are detected in this phase. The preprocessing

phase is followed by the layerization phase, in which a layered representation of the

data structure is formed. This representation is needed in order to issue the RTO

computation requests to the clients.

In the offloading phase, the computation of covering relations between the input

filter(s) and the routing table filters is executed by the clients. In the test setting,

this was simulated by executing the computation locally in sequential fashion and

taking into account only the longest time taken by a ”client”. The purpose of this

was to easily simulate the concurrent environment, where the total time taken by the

offloading is determined by the longest time an individual client takes to perform the

computation. Communication latency is thus not not included in the test results.

Also, the results obtained are always correct.

The phase of most interest is the insert phase, which is a realization of the fil-

ter_insert_fp() and filter_insert_pf() (depending on used data structure)

procedures described in Section 6.2.1. Last, in the postprocessing phase, an interface

elimination procedure is called for each of the inserted input filters in order to ensure

that the covered filters do not contain redundant interfaces.

As test data, we used three pre-generated, differently distributed sets of range filters.

Each test case was repeated three times, and test filters were inserted into the

1Available at http://www.tml.tkk.fi/ starkoma/fc/

46

data structures in random order. Both one-dimensional and two-dimensional ranges

were tested. After each insert operation, an integrity check was made to ensure

the correctness of the resulting data structure. In this, a regular poset or forest

containing the same filterset was used as a reference structure against which the

layer-based structure was compared. The time to insert the filters to the reference

data structure was also measured in order to obtain data for insert performance

comparisons.

It soon became obvious that offloading the computation of relations for a whole

layer is infeasible for large layers (the first 2–3 layers of the data structures tend to

be very large compared to lower layers). Therefore, we modified the RTO scheme

presented above to split large layers into vectors of 10 filters.

As the test hardware, we used a desktop computer with a 2.66 GHz Intel Core 2

Quad processor, 4 GB of main memory, Windows Vista and Java JDK 1.6.0.

7.2 Tests

As the first test scenario, we inserted 10000 filters into the test and reference struc-

tures. The purpose of this scenario was to measure the overall performance of the

data structures and the effects of different batch sizes. The following parameters

were used:

• Distribution of subscription space: Gaussian, Zipf and uniform.

• Batch size: 1, 5, 10, 25 and 50 filters.

• Filter dimension: 1d ranges (x ∈ [a, b]) and 2d ranges (x ∈ [a, b] ∧ y ∈ [c, d]).

• Covering checks enabled and disabled.

• Data structure: filters poset and poset-derived forest.

• The number of interfaces was fixed at 20, and inserted filters were assigned an

interface in round-robin fashion.

The total number of test cases in this scenario was thus 96. Each test case was

executed three times to mitigate effects of chance variation. At the same time,

integrity checks were made on the test structures. All tests were successful in terms

of data structure correctness. The cost of integrity checks is not included in the

results

47

The second test scenario measured the scalability of the insert phase. In this sce-

nario, 10000 filters (uniform distribution) were inserted again. This time, the num-

ber of interfaces was fixed at 10000, ensuring that the data structure size equals the

number of inserted filters (as no interface-based elimination can be done). Covering

checks were disabled. Batch size was fixed at 10. Tests were executed for both 1d

and 2d data for poset and poset-derived forest.

In the third test scenario, we measured the effects to performance caused by larger

offload sizes. Increasing the offload size simulates a situation where there are fewer

clients available and the remaining clients must perform more computation. Again,

10000 uniformly distributed filters (both 1d and 2d ranges) were inserted in a poset

and poset-derived forest. Batch size was fixed at 10 and number of interfaces at

10000. The offload size parameter (number of routing table filters in one offloaded

vector) was assigned values of 10 (the value used also in the first two test scenarios),

100, 200 and 500. Note that for layers smaller than the offload size, the layer size

was used instead, i.e. filters from two or more layers are never combined to one

vector.

7.3 Results

The results for the first test scenario are shown in Figures 13 and 14. For the layered

poset, the cost of inserting 10000 filters is lower than that of the reference struc-

ture for all batch sizes when using 2d range filters. Offloading each filter insertion

separately (batch size 1) has a significant overhead over other batch sizes. With 1d

ranges, small batch sizes perform significantly worse than the reference structure.

Moreover, although for large batch sizes the offloading scheme seems to perform

better than the reference structure, the scheme is still not feasible with 1d ranges

when considering additional overheads (such as communication latency).

The situation is similar with poset-derived forests; with 1d range filters, we observe

degraded or similar performance when compared to the reference structure. With

2d ranges, the performance differences between the test structure and the reference

structure are not as large as with regular posets. Further, having covering checks

enabled introduces a significant overhead to layered forest implementation. This is

due to an implementation detail: in the forest, sibling-purity is enforced by recur-

sively relocating the input filters further down the tree, with covering checks being

made with every relocation operation, increasing the number of checks performed

when compared to filters poset, in which the filters are placed in their final places

48

directly.

The results for the second test scenario are shown in Fig. 15. This scenario revealed

a scalability issue with the poset insertion phase. Even with uniform data, the data

structure tends to grow in depth very fast with 1d ranges. The cost of the insert

phase is strongly affected by the number of layers in the poset. The insert phase for

the forest in much simpler and does not suffer from the same issue. With 2d ranges,

the data structure grows slower in depth. The width of the data structure does not

seem to have a significant effect on performance.

For other cases, the cost of the insert phase grows very moderately. This holds

particularly in case of 2d range filters. With 1d ranges and forest, the cost of the

whole operation grows considerably faster than the time taken by insert phase. This

is due to the fact that the layerization phase is expensive and its cost grows linearly

as data structure size grows. In the following section, we propose some improvements

for creating layered representation of the data structures.

Figure 16 show the results for the third test scenario. As the offload size grows,

the computational strain on an individual client (the offload time) grows. This test

also measured the effect of client amount on the scheme. If the client base is large,

offload size can be kept relatively small. Smaller client base (and larger offload size)

has a negative effect on performance.

The results show that poset with 1d range data again suffers from the performance

issue identified in the previous test case. For other cases, the results are consistent:

the offloading time takes a larger proportion of the total operation time as offloading

size grows. It seems that setting the offload size between 10 and 100 is a feasible

option. There is a trade-off between bandwidth usage/communication latency and

computational effort required from the clients: for larger offload sizes, fewer messages

are needed to perform offloading, but an individual client is required to do more work

to complete its task.

7.4 Summary

Above, we have described the test setting and experimental results for our RTO

scheme. Our implementation is not a full realization of the protocols described in

Section 6, but it should provide some indicators of the applications of offloading

content routing cost to clients. Based on the test results, at least the following

observations and suggestions for further improvement can be made:

49

Figure 13: Results for adding 10000 filters into a filters poset (1d and 2d ranges, 20

interfaces).

50

Figure 14: Results for adding 10000 filters into a poset-derived forest (1d and 2d

ranges, 20 interfaces).

51

Figure 15: Cost of insert phase and total operation in comparison to reference

structures as function of data structure size.

• If the subscriptions are simple (including only single range filter), offloading

does not necessarily offer any performance or scalability boost. With the

poset-derived forest, it may even degrade performance. This is mostly due to

the facts that with a small number of interfaces, poset-derived forests tend to

have more nodes than posets [TK06] and that insert operation in a regular

poset-derived forest is generally quite fast.

• For more complex subscriptions, the performance gain is significant. Moreover,

with complex subscriptions, the cost of the insert phase grows considerably

slower than the cost of regular insert operation.

• In practice, the offloading scheme does not work well if the router has very

few clients available for offloading. The cost of the offloaded computation for

the clients is so high that it is preferable to offload only the computation of

10–100 relations per client. Offloading the computation for a whole layer to

one client is not feasible. In future work, the communication cost (latency and

bandwidth usage) needs to be also measured.

52

Figure 16: Cost of offloading phase and total operation in comparison to reference

structures as function of offload size.

• It is beneficial to insert the filters in small batches; using offloading for the

insertion of a single filter is too expensive. Using large batch size does not

offer a significant performance improvement over smaller batch sizes and may

have a negative impact on the freshness of the data structures as insertion of

new subscriptions may be postponed for too long. A batch size of 5 or 10

subscriptions seems to be a good compromise.

• The cost of creating a layered representation of the data structure increases

rapidly as the data structure size increases. In the current implementation, the

layered representation is created in the beginning of each offload cycle. In our

test setting, this cost was one of the most significant bottlenecks, especially

so in the case of poset-derived forest. Maintaining the layered representation

and updating it as the data structure is updated instead of re-creating the

representation every time might increase performance.

• The cost of preprocessing and postprocessing phases seems not to be greatly

affected by the data structure size; the dominant factor here is the batch size.

53

Thus, these operations scale very well.

• Enabling covering checks introduces only a relatively small overhead to the

inserting phase for poset. However, it should be noted that in our tests, no

filter actually failed a covering check. Failed filters may increase the cost

considerably as they need to be inserted using the regular insert operation.

For the poset-derived forest, a significant overhead was introduced if covering

checks were enabled. This is because more covering checks per filter are made

as the filter is being relocated in the forest in order to preserve sibling-purity.

We conclude that our RTO scheme is feasible, provided that the client base of a

router utilizing the scheme is large enough. Further, our current implementation

is not a complete realization of the scheme; implementation and tests of the actual

protocol messaging between the clients and the RTO router is still needed. Future

tests should primarily measure the effects to network traffic, such as latency and

bandwidth usage, caused by the scheme. These are also some known performance

issues in creating layered representation of the data structures; while it is a simple

process, it requires iterating through all nodes in the data structure. Another scal-

ability issue was identified in the implementation of the insert phase of the layered

poset when the data structure is deep. Future work should also aim at solving these

issues.

8 Related work on improving scalability

In the following, we take a look at alternative ways of building scalable content-based

publish/subscribe systems. We discuss two quite recent approaches: systems that

employ distributed hash tables (DHTs) and Bloom filter based routing. Examples of

the former include systems such as Hermes [Pie04] and DHTStrings [AT05]. The

latter approach [JF08] has yielded good experimental results. It does, however, come

with a price: due to the probabilistic nature of Bloom filters, there is a chance of

false positives, i.e. notifications being forwarded to clients who have not subscribed

to them.

54

8.1 Systems based on distributed hash tables

As an example of an overlay network different from what we have used in this work,

we discuss systems based on distributed hash tables. We start with introducing the

concept of a distributed hash table. We then discuss Hermes [Pie04], a pub/sub

system that employs DHTs in its overlay network.

DHT-based systems are usually very scalable and fault-tolerant and provide fast

matching, but they somewhat limit the expressiveness of content-based pub/sub

[JF08], as is the case with Hermes. Furthermore, DHT-based approaches have some

additional requirements, such as globally unique node identifiers.

8.1.1 Distributed hash tables

DHTs [TDVK99] are widely used in implementation of large-scale peer-to-peer sys-

tems. As the name suggests, a DHT maps keys to values that are stored somewhere

in the overlay. As usual, the key for a value is determined by applying a hash func-

tion on the value. In a DHT the key the hash function returns is the identifier of

the node where the value is stored. The overlay is responsible of routing requests

for keys to the corresponding nodes, also in situations where nodes leave and enter.

The details of constructing DHTs are omitted here, but we mention some consider-

ations. First, any DHT needs some keyspace partitioning scheme that defines the

ownership of the keys among the nodes in the DHT. A node owns all keys that are

closer to its id than the id of any other node. The definition of ”close” varies per

system, but in general it is required that there exists some distance metric between

the keys. Second, the following property, or one similar to it, must hold for every

node in any DHT overlay: for any key, the node must either own the key or be

connected to a node that is closer to the key. This property makes it rather sim-

ple to write forwarding algorithms. Additionally, the topology of the DHT overlay

must be organized so that the path between any two nodes is relatively short (so

that requests for values by key are served quickly) while still keeping the degree (the

number of neighbors) of the nodes as low as possible (in order to reduce maintenance

and forwarding overhead).

55

8.1.2 Hermes

The peer-to-peer overlay network of Hermes [Pie04] is DHT-based. Events in Hermes

are typed, but the system allows for clients to opt for additional content-based

filtering of events (”type and attribute -based routing”). On top of the overlay

network layer, there is a event dissemination tree layer. Event dissemination trees

are constructed per event type and are used in routing events from publishers to

subscribers.

Any broker (router) in Hermes can act as a rendezvous node that manages a partic-

ular event type. The purpose of rendezvous nodes is to ensure that the set of event

dissemination trees for some event type remains consistent, that is, all brokers agree

upon them. The rendezvous nodes must be globally known and available, a prop-

erty satisfied by the DHT used in the overlay network; the rendezvous nodes can be

found in the DHT by hashing the event type name. Further, the DHT takes care of

replacing failed rendezvous nodes. There must be at least one rendezvous node for

each event type. Hermes supports adding new event types at runtime. When a new

type is added, it is also assigned a rendezvous node. The system supports special

type creation messages that publishers can issue to their local brokers. The local

broker then takes care of forwarding the message to the corresponding rendezvous

node.

Subscriptions and advertisements for a particular event type are always routed to-

wards the rendezvous node responsible for the event type. If a broker on a path

from the source of the subscription/advertisement to the rendezvous node notices

that a covering filter has been forwarded earlier, the message is dropped. Thus,

Hermes effectively employs a covering-based routing scheme. When operating in

strictly type-based mode, the coverage of two subscriptions is determined by the

type hierarchy. In type and attribute -based mode, subscriptions are also forwarded

towards advertisements in addition to being forwarded to the rendezvous node. This

reduces the load on the rendezvous nodes as all events of the type managed by the

node are not forwarded towards it, contrary to the type-based mode.

8.2 Bloom filter based routing

We now briefly discuss a routing scheme based on Bloom filters [JF08, Jer09]. First

we present the basic idea of Bloom filters, and move on to describing the routing

strategy and the Bloom filter -derived data structures needed in implementing it.

56

In tests conducted by the authors of [JF08], the performance of Bloom filter based

routing surpassed that of the Siena covering-based routing scheme (both with filters

posets and poset-derived forests). Usage of Bloom filters introduces the chance of

false positives, i.e. notifications that are delivered uninterested subscribers, but the

amount of these seems to remain on a tolerable level.

8.2.1 Bloom filters

Bloom filters [Blo70] are probabilistic data structures that are used to represent a

set of elements in a compact way. They are not to be confused with the filters we

have used throughout this work. A Bloom filter has a fixed size of m bits. Querying

the filter for the existence of an element e in the set may yield a false positive; the

answer may be yes even if e was never inserted in the set. There are k independent

hash functions associated with a Bloom filter, each of which returns values in the

range [0, m− 1]. Each value is equally likely.

When an element is inserted into the set, it is first input to each of the hash functions.

Then the bits corresponding to the values returned by the hash functions are set to

1. When the filter is queried for an element, it returns true if and only if all bits in

locations returned by the hash functions are 1. This is where a false positive can

occur; one or more of previous inserts may have switched the corresponding bits on.

It is clear that no false negatives can occur as bits are never switched off once they

are set to 1. The probability of a false positive is proportional to the number of

elements stored in the Bloom filter and inversely proportional to the size m of the

filter [Jer09].

If we want to allow removing elements from a Bloom filter, the data structure needs

to be somewhat modified. Simply setting the bits returned by the hash functions

to 0 will not do, because the same bit can be shared by multiple elements (recall

that false negatives are not allowed). This limitation can be worked around by

using some extra memory and storing a counter with each of the m bits of the filter.

The counter indicates how many times the bit has been set. When an element is

added, the counter is incremented and when an element is removed, the counter is

decremented and the bit is set to 0 only if the counter has the value 0. This also

implies that if an element is added twice, it also needs to be removed twice.

57

8.2.2 Routing strategy

The basic idea of Bloom filter based routing and forwarding is the following. Let us

first consider the case of simple routing where every broker in the network knows

every subscription. Now, when an event is being forwarded from its source to its des-

tinations through the network, it is matched with the subscriptions at each router in

order to determine the set of next hop destinations. This process can be improved

by using edge routing : the set of matched subscriptions is computed at the local

router of the publisher and is forwarded together with the event. It is enough for in-

termediate routers only to compute the set of interfaces associated with the matched

subscriptions. Edge routing obviously increases the size of the event messages. Using

Bloom filters in this makes the overhead quite tolerable. This, however, introduces

the possibility of false positives: a non-matched subscription may be flagged as

matched by the Bloom filter and the event may forwarded to nodes not interested

in it. Thus, additional processing at clients or their local routers is needed.

Unfortunately, edge routing is not possible when covering-based routing is in use.

However, Bloom filters can still be used to improve routing and forwarding perfor-

mance in the network. The authors of [JF08] have presented three data structures

for this. The bfposet encodes the attribute constraints of subscriptions and is used

to match incoming events with subscriptions. The bftree or its optimized version

sbstree is used in finding the set of next hop interfaces for matched subscriptions

provided by the bfposet. If edge routing can be used, the matching in bfposet

is done only at the local router of the publisher and the result is forwarded with

the event. Intermediate routers need only to do matching in bftree/sbstree. If

covering-based routing is used, the matching process with bfposet needs to take

place at every router.

8.2.3 The bfposet

The bfposet consists of several posets, one for each attribute name that has been

present in a subscription received by the router. The top level of a bfposet is a map

whose keys are attribute names and values are references to the root of a poset that

stores Bloom filters for all constraints for the attribute. The root node of the poset

is an imaginary root null and the relationships in the poset follow the immediate

covering relation. The most general constraints are children of the imaginary root.

A Bloom filter associated with a constraint consists of a Bloom filter computed of the

58

Subscription Interface Bloom filter

(type = T ∧ p ≤ 100) I0 583, 900, 1415, 4146

(p ∈ [10, 90]) I1 2561, 2800

(p ∈ [70, 95] ∧ q = 100) I2 54, 1985, 4877, 12702

(type = T ∧ q > 30) I3 583, 3981, 4146, 9046

(p ∈ [90, 95]) I4 5902, 10875

(q > 15) I5 7621, 15762

Figure 17: A set of subscriptions and their corresponding interfaces. Bloom filters

computed for the subscriptions are also shown.

constraint itself, combined with the Bloom filter of the covered constraint, yielded

by a bitwise OR operation over the two filters. The Bloom filter associated with the

imaginary root null is empty, i.e. consists of all zeros.

An example set of subscriptions and their Bloom filters is shown in Figure 17. Figure

18 shows the bfposet formed from the subscriptions. A Bloom filter is represented

by a set of index numbers. These are the indices of the bits set to 1 in the filter, as

returned by the hash functions. In this case, the Bloom filter size m is 214 bits and

the number of hash functions used is k = 2. Thus, the index numbers are from the

interval [0, 16383] and each root constraint has two index numbers. The Bloom filter

of a subscription is a combination of the Bloom filters of its individual constraints.

The purpose of the bfposet is to form a Bloom filter for an incoming event. For

each of the attributes in the event, the top-level map of the bfposet is looked up

for the attribute poset. Then the poset is traversed depth-first, starting from the

leaves, and the first attribute constraint matching the attribute value on each path is

selected. The Bloom filters of the selected constraints are combined with the Bloom

filter of the event by means of bitwise OR. This way, all constraints that cover

the selected constraints are also selected (and matched), because their Bloom filters

are stored as a part of the Bloom filter of the selected constraint. The resulting

Bloom filter is then passed to bftree/sbstree for finding the interfaces to which

the event should be forwarded. As mentioned above, if edge routing can be used,

then the Bloom filter for the event needs to be computed only once and can then be

forwarded together with the event.

59

type p q

null null null

= T ≤ 100 > 15

∈ [10, 90] ∈ [70, 95] > 30

∈ [90, 95] = 100

583, 4146

900, 1415

900, 1415, 2561, 2800

900, 1415, 1985, 12702

900, 1415, 1985, 5902, 10875, 12702

7621, 15762

3981, 7621, 9046, 15762

54, 3981, 4877, 7621, 9046, 15762

Figure 18: A bfposet formed from the constraints in subscriptions in Fig. 17. The

Bloom filter for each constraint is represented as a set of index numbers in the dashed

box next tp the constraint.

8.2.4 The bftree and sbstree

The bftree and its optimized version, sbstree, store Bloom filters for subscriptions.

A bftree has fixed height h+1, where h such that the Bloom filter size m is divisible

by h. In the bftree, the subscription Bloom filters (see Fig 17) are split into h parts

so that the first part contains the first m/h bits of the Bloom filter, the second part

contains the next m/h bits and so forth. Let s0, s1, . . . , sh−1 denote the h parts of

some subscription Bloom filter. Parts are inserted into the tree in order starting

from s0. The insertion procedure starts from the imaginary root null. The part s0

is inserted into the tree as a child of the root node and the new node is selected,

unless an identical child already exists, in which case the existing node is selected.

Then the procedure is repeated for the selected node and the part s1 and again for

each of the subsequent parts until a leaf is inserted or a leaf identical to the last

part is found. Then the subscription source is stored in the leaf. As a result of this

process, there are exactly h levels under the root in the bftree.

60

Finding the set of matched subscriptions from the bftree for the Bloom filter Be of

an incoming event (produced either by bfposet matching or edge routing) is based

on the observation that an event matches a subscription s, represented by Bloom

filter Bs, if Be ∩Bs = Bs. An intersection of two Bloom filters can be interpreted as

the set of index numbers present in both filters. The set of matched subscriptions

is found by partitioning Be into h parts e0, e1, . . . eh−1 as above. Then a depth-first

search is started from the root node. At each level i, the search continues to those

child nodes si+1 for which ei+1 ∩ si+1 = si+1. If the search reaches a leaf node, the

interfaces stored at the leaf are added into the set of next-hop interfaces.

The number of comparisons made determines the time complexity of matching in

the bftree. The worst case scenario occurs when an event matches all subscriptions

at the router. In this case, the depth-first search has to go through all the nodes in

the tree. Because of the representation of the Bloom filters, the number of nodes

in the bftree may grow large, particularly when m and h are large. In practical

applications, at least m needs to be large enough so that excessive numbers of false

positives can be avoided [JF08]. By representing the Bloom filters using sparse bit

sets, the size of the tree can be reduced considerably. The details of the representa-

tion are omitted here, but it resembles the notation used in Figures 17 and 18. The

sparse representation saves space if the Bloom filter it represents has few bits set

(about 1–3%) [JF08]. In practice, this condition usually holds. The sbstree uses

the sparse representation and each node in the tree represents one bit of a subscrip-

tion Bloom filter. The insert and matching algorithms are similar to the ones used

in the bftree.

9 Conclusions

In this work, we have given a short introduction to the publish/subscribe paradigm.

Our main focus has been on large-scale content-based publish/subscribe systems.

We have given a detailed description of content-based networking and routing. We

also addressed some data structures used in content-based routing, namely filters

poset and poset-derived forest. These data structures store the subscription or

advertisement filters by their covering relations. Computing these covering relations

in a large data structure for complex filters is expensive.

To overcome some scalability issues related to routing tables implemented with

posets or poset-derived forests, we proposed two schemes where part of the compu-

61

tational cost is offloaded by the router to neighboring clients. In the RTO scheme,

a layered representation of the routing table is created. This representation is par-

titioned and sent to clients along with filter(s) to be inserted in the routing table.

The actual insertion is made by the router based on the data provided by the clients.

The FF scheme fixes a set of filters the clients use to positions their subscriptions.

We implemented and tested the core parts of the RTO scheme. Our implementation

works correctly for posets and poset-derived forests. The test results propose that

the scheme is feasible if the client based of the implementing router is large enough.

Some issues, such as security and further implementation and testing, were left

outside the scope of this work. Instead, we propose that these issues be addressed

in future works.

We also briefly explored alternative ways of improving scalability in large-scale

pub/sub systems. As examples, we used DHT-based systems and Bloom filter based

routing.

References

ASS+99 Aguilera, M. K., Strom, R. E., Sturman, D. C., Astley, M. and Chan-

dra, T. D., Matching events in a content-based subscription system.

PODC ’99: Proceedings of the eighteenth annual ACM symposium on

Principles of distributed computing, New York, NY, USA, 1999, ACM,

pages 53–61.

AT05 Aekaterinidis, I. and Triantafillou, P., Internet scale string attribute

publish/subscribe data networks. CIKM ’05: Proceedings of the 14th

ACM international conference on Information and knowledge manage-

ment, New York, NY, USA, 2005, ACM, pages 44–51.

BCM+99 Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R. E.

and Sturman, D. C., An efficient multicast protocol for content-based

publish-subscribe systems. ICDCS ’99: Proceedings of the 19th IEEE

International Conference on Distributed Computing Systems, Washing-

ton, DC, USA, 1999, IEEE Computer Society, pages 262–272.

Blo70 Bloom, B. H., Space/time trade-offs in hash coding with allowable er-

rors. Commun. ACM, 13,7(1970), pages 422–426.

62

CBGM03 Crespo, A., Buyukkokten, O. and Garcia-Molina, H., Query merging:

Improving query subscription processing in a multicast environment.

IEEE Transactions on Knowledge and Data Engineering, 15, pages 174–

191.

CCC+01 Campailla, A., Chaki, S., Clarke, E., Jha, S. and Veith, H., Efficient

filtering in publish-subscribe systems using binary decision diagrams.

ICSE ’01: Proceedings of the 23rd International Conference on Software

Engineering, Washington, DC, USA, 2001, IEEE Computer Society,

pages 443–452.

CRW00 Carzaniga, A., Rosenblum, D. S. and Wolf, A. L., Achieving scalability

and expressiveness in an internet-scale event notification service. PODC

’00: Proceedings of the nineteenth annual ACM symposium on Princi-

ples of distributed computing, New York, NY, USA, 2000, ACM, pages

219–227.

CRW01 Carzaniga, A., Rosenblum, D. S. and Wolf, A. L., Design and evaluation

of a wide-area event notification service. ACM Trans. Comput. Syst.,

19,3(2001), pages 332–383.

CRW04 Carzaniga, A., Rutherford, M. J. and Wolf, A. L., A routing scheme

for content-based networking. Proceedings of IEEE INFOCOM 2004,

Hong Kong, China, March 2004.

CW02 Carzaniga, A. and Wolf, A. L., Content-based networking: A new com-

munication infrastructure. IMWS ’01: Revised Papers from the NSF

Workshop on Developing an Infrastructure for Mobile and Wireless Sys-

tems, London, UK, 2002, Springer-Verlag, pages 59–68.

CW03 Carzaniga, A. and Wolf, A. L., Forwarding in a content-based network.

SIGCOMM ’03: Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communications,

New York, NY, USA, 2003, ACM, pages 163–174.

EFGK03 Eugster, P. T., Felber, P. A., Guerraoui, R. and Kermarrec, A.-M.,

The many faces of publish/subscribe. ACM Comput. Surv., 35,2(2003),

pages 114–131.

63

FJL+01 Fabret, F., Jacobsen, H. A., Llirbat, F., Pereira, J., Ross, K. A. and

Shasha, D., Filtering algorithms and implementation for very fast pub-

lish/subscribe systems. SIGMOD ’01: Proceedings of the 2001 ACM

SIGMOD international conference on Management of data, New York,

NY, USA, 2001, ACM, pages 115–126.

Jer09 Jerzak, Z., XSiena: The Content-Based Publish/Subscribe System.

Ph.D. thesis, Dresden University of Technology, 2009.

JF08 Jerzak, Z. and Fetzer, C., Bloom filter based routing for content-based

publish/subscribe. DEBS ’08: Proceedings of the second international

conference on Distributed event-based systems, New York, NY, USA,

2008, ACM, pages 71–81.

JF09 Jerzak, Z. and Fetzer, C., Soft state in publish/subscribe. DEBS ’09:

Proceedings of the Third ACM International Conference on Distributed

Event-Based Systems, New York, NY, USA, 2009, ACM, pages 1–12.

MFGB02 Mühl, G., Fiege, L., Gärtner, F. C. and Buchmann, A., Evaluating ad-

vanced routing algorithms for content-based publish/subscribe systems.

MASCOTS ’02: Proceedings of the 10th IEEE International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommuni-

cations Systems, Washington, DC, USA, 2002, IEEE Computer Society,

page 167.

Müh02 Mühl, G., Large-Scale Content-Based Publish/Subscribe Systems. Ph.D.

thesis, Darmstadt University of Technology, 2002.

MNJH08 Moskowitz, R., Nikander, P., Jokela, P. and Henderson, T., Host

Identity Protocol, RFC 5201 (Experimental), April 2008. URL

http://www.ietf.org/rfc/rfc5201.txt.

Pie04 Pietzuch, P. R., Hermes: A Scalable Event-Based Middleware. Ph.D.

thesis, Queens College, University of Cambridge, February 2004.

RM06 Rescorla, E. and Modadugu, N., Datagram Transport Layer Se-

curity, RFC 4347 (Proposed Standard), April 2006. URL

http://www.ietf.org/rfc/rfc4347.txt. Updated by RFC 5746.

64

Tar07 Tarkoma, S., Chained forests for fast subsumption matching. DEBS

’07: Proceedings of the 2007 inaugural international conference on Dis-

tributed event-based systems, New York, NY, USA, 2007, ACM, pages

97–102.

Tar08 Tarkoma, S., Fast track article: Dynamic filter merging and mergeabil-

ity detection for publish/subscribe. Pervasive Mob. Comput., 4,5(2008),

pages 681–696.

TDVK99 Tewari, R., Dahlin, M., Vin, H. M. and Kay, J. S., Design considera-

tions for distributed caching on the internet. ICDCS ’99: Proceedings

of the 19th IEEE International Conference on Distributed Computing

Systems, Washington, DC, USA, 1999, IEEE Computer Society, page

273.

TK05 Tarkoma, S. and Kangasharju, J., Filter merging for efficient informa-

tion dissemination. Proceedings of the 13th International Conference

on Cooperative Information Systems, 2005, pages 274–291.

TK06 Tarkoma, S. and Kangasharju, J., Optimizing content-based routers:

Posets and forests. Distributed Computing, 19,1(2006), pages 62–77.

YGM94 Yan, T. W. and Garćıa-Molina, H., Index structures for selective dis-

semination of information under the boolean model. ACM Trans.

Database Syst., 19,2(1994), pages 332–364.

