
Date of acceptance Grade

Instructor

Performance of Ajax applications on mobile devices

Mikko Pervilä

Helsinki February 5th, 2008

UNIVERSITY OF HELSINKI

Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
 Tiedekunta/Osasto Fakultet/Sektion –Faculty/Section

Faculty of Science

 Laitos Institution Department

Department of Computer Science
 TekijäFörfattare Author

Mikko Pervilä
 Työn nimi Arbetets titel Title

Performance of Ajax applications on mobile devices
 Oppiaine Läroämne Subject

Computer Science
 Työn laji Arbetets art Level

M.Sc. Thesis

 Aika Datum Month and year

5.2.2008

 Sivumäärä Sidoantal Number of pages

88 pages + appendix 20 pages
 Tiivistelmä Referat Abstract

The Ajax approach has outgrown its origin as shorthand for “Asynchronous JavaScript +
XML”. Three years after its naming, Ajax has become widely adopted by web applications.
Therefore, there exists a growing interest in using those applications with mobile devices.

This thesis evaluates the presentational capability and measures the performance of five
mobile browsers on the Apple iPhone and Nokia models N95 and N800. Performance is
benchmarked through user-experienced response times as measured with a stopwatch. 12
Ajax toolkit examples and 8 production-quality applications are targeted, all except one in
their real environments. In total, over 1750 observations are analyzed and included in the
appendix. Communication delays are not considered; the network connection type is WLAN.

Results indicate that the initial loading time of an Ajax application can often exceed 20
seconds. Content reordering may be used to partially overcome this limitation. Proper testing
is the key for success: the selected browsers are capable of presenting Ajax applications if
their differing implementations are overcome, perhaps using a suitable toolkit.

ACM Computing Classification System (CCS):
C.4 [Performance of Systems]: Performance attributes;
H.3.5 [Information Storage and Retrieval]: Online Information Services---Web-based
services;
H.5.4 [Information Interface and Presentation]: Hypertext/Hypermedia---Architectures,
Navigation, User issues;
H.5.2 [Information Interface and Presentation]: User Interfaces;
D.3.2 [Programming Languages]: Language Classifications---Concurrent, distributed, and
parallel languages, JavaScript;
C.2.4 [Computer-communication Networks]: Distributed systems---Client/Server, Distributed
Applications

 Avainsanat – Nyckelord Keywords

Ajax mobile devices performance web applications DHTML JavaScript
 Säilytyspaikka Förvaringställe Where deposited

 Muita tietoja Övriga uppgifter Additional information

ii

Content

1 Introduction 1

2 The History of Ajax 4

2.1 From Web to Desktop Applications...5

2.2 Ajax Builds on Existing Technology..6

2.2.1 JavaScript..7

2.2.2 XMLHttpRequest..8

2.2.3 Asynchronous Events..9

2.2.4 XML and Verbosity..10

2.2.5 Displaying CSS...10

2.2.6 Document Object Models...11

2.3 Alternative Techniques...13

2.3.1 Dynamic HTML..13

2.3.2 Delayed Inclusion..14

2.3.3 Hidden IFrame..14

2.3.4 Comet and HTTP Pipelining...15

2.3.5 Flash and Java...17

3 Measuring Mobile Devices 17

3.1 Capability and Performance..18

3.2 Motivation for Mobile Ajax..19

3.3 Research Questions and Methodology..20

3.3.1 Grading and Results..21

3.3.2 Measurement Method..21

3.4 Nokia N800 Internet Tablet..22

3.4.1 Opera...23

3.4.2 Mozilla based browser for maemo..24

3.4.3 GTK+ WebCore..24

3.5 N95..25

3.5.1 Nokia Mini Map Browser...26

3.5.2 Opera Mobile..26

3.6 iPhone...27

3.6.1 Safari...27

iii

4 Libraries, Toolkits, and Frameworks 28

4.1 Graphics display..29

4.2 Selection and Manipulation..29

4.3 Widgets...30

4.4 A Look into the Most Popular Toolkits..30

4.4.1 How to Read the Results...32

4.4.2 Prototype...33

4.4.3 script.aculo.us..34

4.4.4 jQuery..36

4.4.5 Yahoo! User Interface Library..37

4.4.6 Dojo...38

4.4.7 Ext JS..39

4.4.8 Google Gears and Web Toolkit...41

4.4.9 Direct Web Remoting...42

4.4.10 MooTools..44

4.4.11 moo.fx...46

4.4.12 ASP.NET AJAX...47

4.4.13 Frost Ajax Library...48

5 Surfing Web Sites with Ajax 50

5.1 How to Read the Results...50

5.2 Google...51

5.2.1 Google Maps...51

5.2.2 Google Suggest...52

5.2.3 Google Mail..54

5.3 Yahoo! Mail..55

5.4 Flickr...56

5.5 Journey Planner for Cycling...57

5.6 Colorado Geographic..59

5.7 myAOL...60

6 Considerations 62

6.1 Cross-Site Scripting Attacks...62

6.2 Cross-Site Request Forgery..63

6.3 External References..64

6.4 Caching Problems...65

iv

6.5 Memory Leaks..66

6.6 Accessibility..67

6.7 A Side Note on Battery Life...68

7 Conclusion 69

7.1 Further Research...71

8 Acknowledgment 72

References 73

Appendix 1. Test notes

1

1 Introduction

During the past decade, the popularity of the World Wide Web has grown tremendously

from its humble origins as the Hypertext Markup Language (HTML) for scientific texts

[W3C03]. The low learning curve of the HTML language, a host of WYSIWYG editors,

and the will to publish are all factors that have enthralled the public as well as enabled it

to participate. Eventually, both small and large organizations and companies caught on

en masse. These new participants brought new requirements into the picture – require-

ments that did not always match with HTML as it was defined. As the number of

interested parties grew, the need arose to make each new web site more special in order

to distinguish it from the existing ones. To meet the increasing demand, new versions of

HTML were specified, adding to the language's power of expression. Later on, its in-

creasing layout capabilities were split and endowed to Cascading Style Sheets (CSS).

The new specifications were eagerly interpreted and implemented by browser de-

velopers, whose aim was to populate the market with their products. But soon it became

clear that the demand far exceeded the supply. The major standards organization, W3C,

could not keep up with the rapid pace of web designers everywhere. While many new

design techniques became available, critics yelled out that some of these techniques

wantonly misinterpreted the intent behind the standards (see any discussion on HTML

tables). To aggravate the problem, browser developers started to extend the standards

with their own, browser-centric features. These extensions started out as guesswork on

which new features the users would next like to see. Some were successful, others for-

gotten. However, the use of such tools forced designers to dedicate their projects to a

specific browser platform. One of the new extensions was JavaScript [W-J07a]; its main

competitor Visual Basic Scripting Edition (VBScript) [Mic07a].

Very early on in this history, another problem emerged as well. As new features and

techniques started to become available, both the designers and the public became aware

of differences in the layout of the pages. Even web sites written to follow the standards

did not always look exactly as intended. The human capacity for error manifested as

faults in the interpretation of the standards, and the faults were reflected in the browsers.

Instead of writing once and displaying everywhere, the designers were now forced to

take into account a number of small discrepancies. The flaws were not fatal, but it took

more time to test the code on several browsers. Warnings and disclaimers became com-

2

mon on web sites, announcing that the site in question was “best viewed” [Yah07a] with

the designer's browser of choice. This struggle was called the browser wars, and it con-

tinues to this day [Wei06].

Gradually, it dawned that these problems were not going to disappear with the next gen-

eration of browsers. Most designers calmed their minds and stopped neglecting the

other platforms. But not all of them. Ever since, each web site's testing cost has been

paid many times, once for each major browser. The strategy is to categorize the public

of the web site, and try to support their chosen browsers. Outside of intranet environ-

ments, this task might well be impossible to perform conclusively. The number of

choices is greater today than ever before, with new browsers released bi-monthly for

open source platforms, home entertainment systems, and mobile devices. Commonly,

the same browser might behave differently when installed on two operating systems.

Automated testing suites [GEO07d] do exist, but their cost and other restrictions remain

prohibitive factors for some designers. Before all the combinations can be tested by

hand, a new browser version might be released, bringing new features and failures into

the mix.

Fortunately, the hardy designers have not given up. Instead, they have created web com-

munities dedicated to avoiding the inconsistencies and writing the best possible code.

These communities have constantly employed the newest technologies to evangelize the

word: first forums, then wiki sites and web logs (blogs). A more experienced web de-

signer will typically have to maintain his palette of techniques by following several

sites. Scientific articles are published only exceptionally, making references scarce.

Writing around the problems has met with partial success. Even though the amount of

code required for exception handling grows, the available network bandwidth and cli-

ent-side processing power seems to grow faster. After the so-called fifth generation

browsers [W-J07b] were released, web sites written in XHTML 1.0 and CSS could be

labeled as adequately accessible. The vast majority of the users see the same page with

little or no differences in layout, and the minority of users with dated browsers are

urged to upgrade as soon as possible. Even mobile devices have begun to support mul-

tiple browsers and upgrading.

The current trend is towards more responsive and desktop-like web applications

[Nie05]. The first web applications used forms and links in order to receive input from

the user. Combined with server-side scripting techniques, the input would be validated

3

and then either processed or the errors returned to the user. From this simple technique,

quite elaborate user interfaces became possible. But these applications were always

forced into the lock-step of the input-validate-process cycle. Usability studies were

quick to declare the validation delays harmful, as they stopped the work flow of the user

[ShM97]. The users felt that after every minor error, they were interrogated with the

same questions over and over. On a larger scale, the bag of tricks created by the ingeni-

ous use and abuse of the form tag was beginning to thin. Some UI solutions remained

simply unreachable as long as every input-output request required a page redraw, caus-

ing its signature interruption to the user.

In the rapid fashion typical of web development, multiple solutions were soon published

by the community. Some of the early ones stem from the first rounds of the browser war

and are dependent on browser-specific capabilities. However, with the heightened in-

terest into writing code accessible for all, only the more compatible solutions have

gained popularity. Common to most of these techniques is the need for JavaScript.

JavaScript has been both the core factor in current Dynamic HTML techniques and, of-

ten simultaneously, infamous for its leaky security implementations. With just cause, a

number of security experts have gone as far as to recommend keeping JavaScript dis-

abled in security-focused environments [CER00], if not everywhere. Luckily for web

designers, users do not always listen.

As JavaScript was soon defined as its own standard, new browsers kept the scripting

language enabled by default. For several years now, even mobile devices have featured

improving support. Through this extending deployment, one method for achieving re-

sponsiveness has gained significantly more popularity than its predecessors. Once a

newcomer, this technique was dubbed Ajax in 2005 [Gar05]. It has since reached a re-

spectable level of maturity, and an explosive coverage in current web services. But Ajax

is not yet beyond the influence of the browser wars. Writing code for the current

browsers requires would-be designers to learn where browser implementations differ.

As mobile devices gain in performance, the number of implementations increases, not

the opposite. The W3C Document Object Model (DOM) aims to give designers a com-

mon interface for all browsers, but accessing this interface requires both new knowledge

and discipline. In order to further lower the learning curve, help has arrived from several

sources. In two years, a multitude of Ajax toolkits have been released to aid designers

master XHTML, CSS, JavaScript, and the DOM. If and when the browser wars will fi-

nally end, the designers can do away with these crutches and really start writing

4

universal web applications for all devices. Until then, it is a question of choosing the

right toolkit amongst the contestants.

The purpose of this study is to measure how well newer mobile devices perform when

handling Ajax requests. Chapter 2 is a review of predecessor techniques, some of which

still exists hand-in-hand with Ajax. The chapter also shows how the component techno-

logies of Ajax play their part from a mobile point of view. The research questions,

methodology, and the selected mobile devices are presented in Chapter 3, along with the

browsers available for them. Chapter 4 explores the most popular toolkits currently and

evaluates some sample applications developed with them. Chapter 5 examines real, pro-

duction-quality applications in their normal environment. Chapter 6 describes still

unresolved problems and critique against using Ajax on a mobile, or any, device. The

results are concluded in Chapter 7, followed by a short acknowledgment of people par-

tially responsible for this thesis.

2 The History of Ajax

Ajax is a loosely defined collection of web design techniques used to make web services

more responsive by minimizing waiting periods through asynchronous server commu-

nication. The name Ajax is based on the abbreviation1 of its core components:

Asynchronous JavaScript and XML. Ajax has become very successful in a relatively

short amount of time. In the two years since its naming [Gar05], the number of both sci-

entific and popular publications has sky-rocketed. However, an easily overlooked fact is

that similar solutions have existed for almost a decade. As many of its predecessors,

Ajax builds on standardized and mature technologies. The main difference is that while

many of the other techniques employ more creative uses of (unintended) side effects,

Ajax relies on browser features that are designed for communication.

Ultimately, all of these techniques rely on browser support. The flood of Ajax-enabled

web sites could not have happened without the gradual shift towards newer browsers.

The common requirement is a so-called fifth-generation browser [W-J07b]. This monik-

er is borrowed from Microsoft Internet Explorer version 5.0, as it was the first browser

that implemented the W3C DOM interface. Other manufacturers were quick to add sup-

port for the new recommendation. Today, it is hard to find a desktop browser that

belongs to any of the previous generations. But on mobile devices, external limitations

1 The capitalized form “AJAX” has quickly fallen out of fashion.

5

might force the amount of features to decline, not increase.

This chapter reviews the motivation towards more desktop-like web applications. Later,

the component technologies of Ajax are reviewed specifically with mobile devices in

mind. Finally, the last parts of this chapter present alternative techniques and how they

may be combined with Ajax. Program examples are omitted in favor of the multitude of

tutorials already available.

2.1 From Web to Desktop Applications

As both the public and the features of the World Wide Web grew, it became first fash-

ionable and then efficient to design services specifically for the web. Commercial

ventures have met with varying success, but public organizations have slowly but surely

spread onwards. Reaching as large a crowd as possible by easily accessible documents

is a notable principle, for it matches well with both advertising and non-commercial ser-

vices. As the web itself is either free or relatively low-cost, it has become a reasonable

development platform for applications previously only released for operating systems.

This transformation from the desktop to the web has also become a limiting factor for

applications. The first hindrances lay in program logic, for client-side scripting support

was riddled with inconsistencies, but also because any client-side processing was by

nature open and unreliable. These problems were solved by shifting control away from

the clients using server-side scripting. Ajax can be seen as an effort to move some of the

processing back towards the client.

Secondly, the web protocol presented an uniform interface for clients everywhere and

every time. Each document request was processed as unique and totally independent of

any other. However, this anonymity logically prevented user authentication necessary

for identification purposes. Thus, cookies and sessions were bolted on the protocol.

Their use met up with heated debate from the web community [StS02], but eventually

the necessity was accepted.

The third problem is the user interface. The request-wait cycle is seen as both disruptive

and disorienting by the users. It is disruptive because the indeterministic delay caused

by other users and network traffic. These factors make it difficult to decide when the re-

quest has failed to reach the server, which may lead to duplicate requests. The cycle's

disorienting effect is caused by the necessity to redraw the browser window after new

output from the server. It requires the user to remember the previous page, read the new

6

one, and try to determine what changes have been made.

These three problems are not random by nature. They closely resemble a common

design pattern, the model-view-controller approach [CPJ05 ch. 3]. Design following this

pattern splits the content of the page into a business model, a view of the the functions

available, and a controller intermediating between the two. On web pages, the output of

the browser is the view, the business model is held within the web server, and controller

functions are traditionally handled by server-side scripting. This split requires every in-

put to pass into the server to be processed, causing both the delay and the redraw.

Logically, responsiveness improves if we can avoid some of the delays and redraws. To

achieve this, two requirements must be met: a communication channel and an interface

for partial redraws. The communication channel must enable delayed or event-driven re-

quests to the server, or push transmissions from the server to the client. Partial redraws

enable the elements of the browser window to be changed individually, either through a

standard interface like the DOM or a more proprietary programming layer. Further re-

quirements for productivity in web applications are listed by Yu et al. [Yu06].

2.2 Ajax Builds on Existing Technology

Ajax is not defined in any specification. There exists no validation service to stamp a

specific web site for Ajax compatibility. Therefore, defining an “Ajax application” is a

somewhat ambiguous task. When an application is said “to be Ajax” or to “use Ajax”,

the application employs a design pattern [Gam95] that is recognizable despite imple-

mentation differences. The implementation depends upon lower-level components or

technologies, some of which may be validated against existing specifications. In addi-

tion to the core components, a number of other technologies are implicitly assumed,

because the primary platform for Ajax applications is the World Wide Web. For ex-

ample, pages may be written in (X)HTML and CSS, JavaScript may use the W3C DOM

to manipulate partial redraws, and XMLHttpRequest objects may be chosen as the asyn-

chronous communication channel. However, using any single component technology is

not strictly required either. The following sections will review the components and

present some ideas on how they could be exchanged with suitable alternatives.

An important design principle with Ajax is the bias towards open technologies, i.e.,

those that are specified and governed by non-profit organizations. At the same time,

Ajax builds on existing technologies in the sense that its components have been proven

7

to be adequately supported by existing browsers. This implies that the technologies have

been around for a while, but note that the support is still not uniform. As Ajax depends

on the underlying technologies, differences in their implementation cause variation in

the execution of the applications.

Ajax components are selected for different purposes. Their tasks can be divided into the

layers describing the content (alt. semantics), presentation and behavior (alt. functional-

ity) of the web application [Yan07]. In this division, (X)HTML is used to mark the

content, CSS to express the presentation, and JavaScript to change the presentation's be-

havior. Refactoring and upkeep are simplified by also separating the code in different

files [Ant07]. The division may be emphasized by writing the application gradually, be-

ginning from the content and continuing through presentation to its behavior. This

iterative approach is labeled progressive enhancement, and it is very closely related to

its sibling, graceful degradation [Cha03, Ols07]. Common to both is the idea that the

browser can “decide” which parts of the application to display, by simply ignoring those

layers that the browser does not support. On mobile devices, progressive enhancement

may be the better solution, since it tries to guarantee that even the most limited viewers

are served a working solution.

Without persistent connections (see Section 2.3.4), each HTTP file request yields a sep-

arate TCP connection to the server. Each connection requires its own TCP handshake,

which takes time [Yah07e, Sou07]. On high-latency links this delay becomes clearly no-

ticeable, and therefore, undesirable. This means that if persistent connections are

unavailable, the benefits of content separation have to be re-evaluated in mobile envir-

onments where the high latency is typical. Placing the layers into a single file may be

the better choice, but note that the idea of progressive enhancement need not suffer. An

example of this technique is the Google default search page, as it embeds both script

and CSS into a single file.

2.2.1 JavaScript

JavaScript (JS) is a client-side scripting language originally designed for use in Nets-

cape web browsers. JavaScript has been widely adopted for use in other browsers, most

notably Microsoft Internet Explorer. In August 1996, Netscape let JavaScript be defined

in an open standard by Ecma International2 [And98]. It is important to note that there

are currently three different versions of the ECMA-262 standard [Ecm99]. All browser

2 Electronic Computer Manufacturers Association, abbreviated ECMA, before its renaming in 1994.

8

implementations offer differing degrees of support of the corresponding version. Nets-

cape, Microsoft, and other developers have extended their implementations with

browser-specific features. At times, browsers have also manifested reduced functional-

ity in parts of the implementation.

There is considerable confusion regarding JavaScript's naming. JavaScript is a re-

gistered trademark of Sun Microsystems3, but the language bears little resemblance to

Java. The project was code named both LiveScript and Mocha during its infancy

[Cro01]. This confusion has not alleviated, as current browsers have chosen to call the

language JavaScript, ECMAScript, or by more local titles. The renaming is done to

avoid potential trademark issues. Internet Explorer's variant is officially called JScript

[Mic07b] whereas Adobe Flash employs a version called ActionScript [Ado07a]. Please

note that Flash is not a browser, but a browser plugin. ECMAScript implementations

have begun to surface in other areas outside the browser sandbox as well. Wikipedia

makes an effort to list all dialects on its ECMAScript page [Wik07a].

Looking at the amount of names, one expects the language to be a dear child of de-

velopers everywhere. In fact, JavaScript's reputation has been quite the contrary. A

number of security concerns once made the language infamous [StS02, NVD07], com-

promising its use in web design. The merit that balances this flaw is JavaScript's

deployment. Barring disabling by the user or a local policy, JavaScript is available

wherever a browser is installed. As the ECMA-262 core has been implemented in mo-

bile browsers as well, the 80 million [IDC07] mobile devices shipped last year alone

make JavaScript one of the largest programming languages in the world.

2.2.2 XMLHttpRequest

The XMLHttpRequest (XHR) object was implemented by Microsoft in March 1997

[Esp00, Wil03]. XHR was originally an Internet Explorer 5.0 ActiveX object designed

to work with Outlook Web Access. Mozilla-, Safari-, and Opera-based browsers were

quick to catch on to the idea and implement their own versions of XHR. Recently, it has

also been accepted as a W3C Working Draft [Kes07]. XHR:s purpose is to combine an

asynchronous communication channel to the server with the XML document format.

Despite its name, XHR also supports plain text as the message format. As JavaScript

objects can be encoded into plain text through JavaScript Object Notation (JSON), it is

clear that XHR provides a reasonable level of versatility for the designer. Even though

3 http://www.sun.com/suntrademarks/

http://www.sun.com/suntrademarks/

9

self-defined message formats may yield performance benefits, the use of XML or JSON

is recommended for reasons of convenience, maintainability, and robustness. In desktop

environments, a well-tested and maintainable interface is worth the performance cost.

An existing limitation with XHR:s communication channel concerns its source domain.

By design, XHR requests may be directed only to the same host name from where the

original document loaded. This is done to avoid cross-site scripting attacks (XSS),

where a malicious host uses the client browser's credentials, e.g., stored passwords, to

request services from a trusting host. XSS will be more thoroughly examined in Section

6.1. Server-side request forwarders may be used to bypass this limitation locally

[CPJ05, ch. 7.2], but special care has to be taken in limiting the hosts addressable

through the forwarder.

2.2.3 Asynchronous Events

Mobile devices are used in varying types of networks, which implies that the network

properties may also vary. The development of mobile carrier networks has enabled con-

nections with increasing amounts of bandwidth, but the latency of current networks has

not decreased at an equal pace [CCP02, Cat05, VRP05]. This means that mobile users

are susceptible to undeterministic amounts of latency, depending on the available net-

work types. A heightened latency quickly yields equally heightened response times,

injuring the sought-after property of responsiveness.

Whereas shortening latency might remain the long-term development goal, an already

available solution is to employ asynchronous requests for the communication channel.

An asynchronous request will yield a response after an unknown round-trip time, but

the user will be able to continue viewing the current page while waiting. The key ele-

ment here is to write the client-side script to react to events from the client browser. An

interface event, e.g., click of a button, might cause the original request to be sent. An-

other event will be generated when the request is sent, and it may be used to pacify the

user by letting her know of the ongoing process. A third event is generated by the arriv-

ing request. A call-back function could then be registered with the third event type. The

function will process the response content, displaying the output or a suitable error mes-

sage.

Taking a look from the usability perspective, the second event may be as important to

the user as the two others. As the whole point of using the asynchronous call is to avoid

10

the now-familiar refresh delay, the user might easily become alarmed that something

went amiss with the original request [Dis06]. In a normal request-reload operation, the

browser's loading icon is animated to signal communication in progress. Due to limita-

tions in display area, a mobile browser might not contain a loading icon at all, or it

might not respond to XHR requests. It is therefore necessary to inform the user with a

separate display element, suitably positioned to convey the meaning but not cause un-

due irritation.

2.2.4 XML and Verbosity

The Extensible Markup Language (XML) [Bra06] is the X in both XHR and Ajax, but it

is not required per se of any Ajax application. As noted, an XHR object is capable of

handling responses in multiple formats through its support for plain text. Further, there

has been grounded concern [KLT05] regarding the verbosity of the XML document

structure and the amount of processing power it takes to read and write XML. These

problems have made it questionable whether XML is suitable for use in mobile devices.

The answer to that question has recently turned out to be positive, with some reserva-

tions [Kan07]. The space and time requirements for XML processing can be much

alleviated through the use of binary XML [GoL05]. Also, HTTP might not be the op-

timal transfer format in wireless environments, due to similar concerns about the

protocol's inherent verbosity.

An important side note here is the necessity of server-side support when responding to

an XHR call with a XML document. The originating browser does not always know the

response type when making the call [Eer06]. Instead, the server-side script must set the

appropriate content type before starting its output. Without an explicitly set content

type, the output will be received as plain text by the browser.

2.2.5 Displaying CSS

Cascading Style Sheets [LiB99] are the most common method for specifying the layout

of a web page today. A long-time division of current layouts is between the fixed

[Hol99] and fluid (alt. liquid or dynamic) methods. Please note that the following defini-

tions mainly address window width, whereas the height is indirectly determined by the

amount of content.

A layout is said to be fixed if it makes assumptions of the browser window size. For ex-

11

ample, fixed layouts use more invariable measurement units, usually pixels or points, to

specify element sizes. This is done to ensure that the layout is rendered equally among

the clients. If the browser window is shrunk beneath the intended display size, the user

will be forced to scroll the window in order to view all of the content. It might hamper

readability a great deal, as forcing the user to scroll the window for every line read is

clearly not a sign of great usability.

If no assumptions on the browser window are made, the layout is said to be fluid. This

means that the browser's layout engine is left with the responsibility of rendering the

page as it sees fit. If the browser window shrinks, the elements may be repositioned in

order to retain readability. The fluid technique presents an alternative flaw: when the

browser window grows, there exists no maximum width for elements. This will, again,

hamper readability if the text lines stretch to become overly long.

Another problem with both fixed and fluid elements concerns the use of images. As bit-

mapped images contain intrinsic width and height properties, they will not scale with

the rest of the page. The use of vector images [FFJ03] has been proposed, but they have

not yet reached wide-scale deployment.

A newer technique designed to answer some of these problems is the use of elastic lay-

outs [Gri04]. Elastic layouts contain both fixed and fluid elements. Picture dimensions

may be specified in units that are relative to the selected font size. As a bit-mapped pic-

ture will not scale without some artifacts, so this is only a partial solution.

As we will see later on, mobile browsers have responded to the layout problem with

browser zooming. Zooming the display window allows the user to catch the overall lay-

out of the page, and then concentrate on the selected level of detail. Pictures are then

typically viewed with a resolution smaller than the inherent dimensions of the image,

causing no artifacts but, instead, some redundancy in the transfer size.

2.2.6 Document Object Models

The abbreviation “DOM” is used interchangeably with “W3C DOM”, even though the

former version is somewhat imprecise. Alternative document models are sometimes

called browser object models (BOM) [Ler06] to distinguish the use of a browser-centric

version. As briefly mentioned earlier, the DOM was first supported by Microsoft Inter-

net Explorer's fifth version. Before Microsoft's decision to support the DOM, competing

browsers had very much contained their own models [Koc04]. An important early com-

12

petitor was Netscape Navigator's layer interface [Sco06a], although it supported a more

limited set of functions. When Internet Explorer 5 became the dominant browser, due to

reasons not discussed here, the DOM consequently gained much in popularity.

Both the DOM and different BOM:s were first used to implement DHTML-like tech-

niques, which are now reused in Ajax. The idea of the W3C DOM [Hég04] is to model

the displayed document as a hierarchical tree structure, which may be manipulated by

adding or removing elements as child nodes. Changes are then propagated to the visual

representation. Using a programmatic approach is desirable, for it allows the designer to

manipulate whole sections of the currently visible page. More advanced techniques also

become available, such as automatically generating repeating elements by just passing

the generating function to the client.

Critique is mainly directed towards the necessity of strict programming techniques, lest

elements be removed with their parent by accident, or other such unwanted side effects

ensue. Also, statements that access the interface can become quite lengthy, depending

somewhat on the programming style chosen for the browser. With desktop browsers, a

tertiary flaw exists, and it becomes more important as we move on to mobile devices.

This issue concerns the speed of the browser's implementation of the DOM. The normal

behavior for a browser is to build the hierarchical model from server output, parsing and

interpreting the text into a tree structure. After this, only small modifications to the

presentation are expected. It is wise to concentrate speed optimizations on the most

common tasks. When the application's behavior changes and more advanced functions

are accessed, speed may quickly become an issue [Geo07c].

A shortcut exists in the form of the innerHTML property, which allows designers to re-

place a node's complete subtree with a text string, subsequently interpreted as code.

Multiple sources [Rah06, Hed07, Leb06, Koc06] have commented that the innerHTML

method is significantly faster on some, but not all, browsers. A similarity exists between

this style and the avoidance of XML for its more processor-intensive interpretation. Ad-

vocates have gone as far as to coin abbreviations such as AHAH, AJAH, and AXAH,

where the replaced letters underscore the use of (X)HTML. The position of this thesis is

that the use of innerHTML may indeed be valuable for mobile devices, but these tech-

niques are already encompassed by the existing name Ajax. XML has never been a

prerequisite, only a suggestion.

13

2.3 Alternative Techniques

The motivation for this partial review of alternative techniques lies within browser dif-

ferences. The techniques are not disjunct in the sense that one is prohibitive of using any

other. Using two different methods to achieve the same goal might improve compatibil-

ity with different browser versions. In the case of Google Maps [Goo07b], the amalgam

of Ajax with the Hidden IFrame technique enables the use of the back button within the

same browser [Web05b]. In fact, Google Maps is one of the most famous Ajax applica-

tions, and it does not use XHR as its main communication channel [Web05a].

A rigorous listing of early communication techniques is by Wilton-Jones [W-J07c].

Many of the solutions listed there have already disappeared from use. In addition to the

more inventive approaches, even a W3C recommendation [StH04] has been reduced to

having nothing but the most rudimentary browser support.

2.3.1 Dynamic HTML

Dynamic HTML [Goo02] is the moniker for the combination of HTML with client-side

scripting and a browser interface. DHTML originally appeared at the height of the

browser wars. Early DHTML pages used browser-specific extensions for scripting and

interface calls, so that their compatibility was severely limited. Later DHTML tech-

niques have embraced JavaScript in combination with CSS and the W3C DOM. Thus,

DHTML today has much in common with Ajax. Both employ the same core technolo-

gies to generate a wider variety of user interfaces.

With DHTML, the goal was to make the content more dynamic, not the interface more

responsive. Beyond those labels, there was little difference in the effect. The major dif-

ference to Ajax was that DHTML, as a technique, did not contain a communication

channel for data transfers. If page redraws were to be avoided, DHTML-enabled pages

had to be populated in advance with the necessary data for partial redraws. This method

was less than optimal, since making each client download irrelevant portions of the ap-

plication database can quickly become either inefficient, insecure or both.

It is worth noting that some designers [Ash00, CPJ05 preface] were craftier than this,

and combined DHTML with a communication channel to avoid the prepopulation of

data. However, without a catchy name, targeted publication to professionals, and popu-

lar applications to capture the audience, these solutions did not reach the fame of Ajax.

14

2.3.2 Delayed Inclusion

The technique of delayed inclusion is similar to many other patterns that achieve reduc-

tions in the initial loading time of the web application [Aja07a]. These resemblances

stem from the same basic assumption: not all users will employ every service available.

A classic example is a web forum were users might read posts anonymously, eventually

register to the service, and then post messages themselves. If the forum is popular, it is

reasonable to assume that the majority of users will mostly read and occasionally post.

Therefore, it is inefficient to force every user to download the program code required

for posting functionality. Different patterns solve this problem by varying the exact mo-

ment the additional functionality is downloaded by the user.

The common factor behind all these patterns is the fact that when new JavaScript files

are loaded by a browser, their contents are immediately evaluated. This means that the

additional JavaScript runs within the context of the current page. By defining a script

element to load a file from the server upon receiving a suitable event, the developer may

control which file is loaded and when it is loaded. This event may be triggered by a cli-

ent-side timer [Lun02] to achieve periodical refreshing of content. It is a small task to

parse the parameters of the request at the server side and generate client-specific con-

tent, if necessary. Further, the communication is not limited to the same server that

supplied the original page – any accessible URL will do. This seemingly minor feature

bypasses the “same domain” -limitation of the XHR, which is revisited in Section 6.1.

Overall, the technique of delayed inclusions is very compatible with the vast majority of

browsers. Therefore, it is helpful in several situations where it is beneficial to let the

server perform parts of the computation. From the client's perspective, responding in

JavaScript offloads the burden of parsing the response. Finally, delayed loading is not

strictly limited to JavaScript. For example, image loading may be fine tuned in order to

present input queries as early as possible, or to smooth transitions from one page to an-

other [Alm07].

2.3.3 Hidden IFrame

The name IFrame stands for ”inline frames”, paying tribute to its predecessor, HTML

frames. The major difference between the two is that while IFrames embed the specified

page within the current document, frames split the browser window into multiple pages

[RHJ99, ch. 16]. Frames and their correct use became a hotly debated topic because

15

they could easily cause a number of user interface problems [Nie96]. Most notably, us-

ing frames made the back button notoriously difficult to predict for the user. Designing

with frames quickly became passé. IFrames have not met with the same explosive fame,

but their success has turned into a more lasting kind.

The hidden IFrame approach is one of the most widely adopted communication chan-

nels for asynchronous communication. It enjoys browser support beginning from the

fourth generation of browsers, i.e., those preceding support for the W3C DOM. It is rel-

atively easy to understand, suffers from no restrictions on the source servers, and has

been around since at least 2002 [Cos02]. Even before that, the same technique was pos-

sible through the use of frames, with some visual differences.

Despite all the praise, the hidden IFrame approach is essentially a hack, meaning that it

employs an unintentional side effect of the way IFrames are loaded and displayed by

most browsers. Hiding an IFrame involves specifying an invisible window element into

the current document, and then loading a page into that element. When the page has fin-

ished loading, its content may be parsed and passed back to the IFrame's parent, the

current document. All this is achieved with a suitable scripting engine. The IFrame

source is not limited to the original server, and the loading may be either caused by an

event from a window element or by any script executing in the browser.

IFrame has an additional forte. Targeting content with the hidden IFrame causes another

side effect – the browser catches on what is happening. This means that the functional-

ity of both the browser's history and back button are easily accessible to the IFrame

approach. The cost is an increase in memory usage relative to the amount of content

loaded into the hidden IFrame. Essentially, the same content is loaded twice. As the

IFrame element is trivially reusable, this cost seems low by many designers.

2.3.4 Comet and HTTP Pipelining

Common to all current communication channels based on HTTP is that transmissions

are always initiated by the client. Clients imitate push behavior by relying on events

triggering requests for updates from the server. By choosing event timers or update con-

ditions intelligently, this approach may be quite adequate for the task at hand. Still,

some of the responses might indicate that no new changes have been made. The most

efficient communication method is to avoid these unnecessary requests altogether. Lo-

gically, this happens when the server can tell the client to update its content. This can be

16

specially desirable in conditions where each message has a resource cost, be that in bat-

tery time or financial units.

HTTP Streaming [Aja07b], also known as “Comet” [Rus06], is a technique designed to

remedy the restriction of one-sided connect initiation. Comet extends HTTP [Rus07a]

by allowing the server to truly push content to its clients. It works by letting the server

keep the TCP connection open, sending delayed responses to the original request. In this

manner, the original synchronization request serves as a client registration, giving the

server permission to push all changes from that point onwards. Except for this initiator

identity, Comet has a resemblance to pipelining, introduced in version 1.1 of the HTTP

specification [Fie99]. With pipelining, the client is able to send multiple requests

through a single TCP connection. Both of these techniques help the client to avoid mak-

ing spurious TCP connections, which can be costly in high-latency environments

[LaH03]. With Comet, the responses just take a little longer to arrive.

Pipelining is an old extension, while Comet is quite new. Their problems resemble each

other, however. Current browsers seem to contain lenient settings for server timeouts

[Bur07, Car07], so employing Comet requires only added server-side support. HTTP

pipelining requires support from the client as well, and its deployment is patchy at best.

The most recent Microsoft Internet Explorer is version 7, and it still does not support

pipelining. Mozilla Firefox has featured support for a while, but it is disabled by default.

The reason for this is the need for heuristic tests for pipelining support on the HTTP

server. Such support can be still seen as experimental, as there are many alternative

servers and their development is volatile. Notably, Opera currently features an heuristic

test for pipelining support, and thus installs with pipelining enabled.

The interest for Comet seems to be increasing [Arc07, IBM07, Kne06], which makes it

conceivable that Comet might become better supported than its predecessor. In environ-

ments where Comet is supported, it may be incorporated with both the IFrame approach

and the standard XMLHttpRequest communication method [Gul07]. But even with the

browsers that support pipelining and/or Comet, there are problems with combining the

technique with multiple windows. As tabbed browsing has become popular, persistent

connections make it easy [Rus07b] to hit the roof of maximum two concurrent connec-

tions to each server in the HTTP specification [Fie99, Section 8.1.4]. One simple fix is

to direct the persistent connections to a host name dedicated for this purpose.

Another problematic area is the need for support in HTTP proxies, which are still popu-

17

lar due to their lowering effect on bandwidth consumption [Dav07]. Moreover, some

mobile browsers employ proxies for content transcoding, e.g., reducing picture resolu-

tion to match screen size [Law01, Leh06]. Leaving the TCP connection open would

require features similar to Network Address Translation (NAT) from the proxies, essen-

tially keeping tabs on each and every client requiring support for persistent connections.

2.3.5 Flash and Java

Adobe Flash [Ado07b] is a browser plugin that excels in vector-based graphics, anima-

tion and sound. It is commonly used on web sites that rely heavily on multimedia.

Typically, Flash is adopted by games and movie advertisement services. Despite its pro-

prietary origin, Flash has reached an unparalleled level of deployment. Plugins exist for

each major combination of operating system and browser. Flash enables partial redraws

and asynchronous communication, among a host of other features. Albeit this overlap,

Flash and Ajax are not strictly competitors. Popular sites like YouTube [You07] have

demonstrated how the two techniques' separate strengths may be successfully combined.

YouTube employs Ajax for the its interface and switches over to Flash for the video

content.

With the release of Java Web Start [Sri01], the runtime environment required by Java

may be bundled together with the application itself. Java Web Start is a step away from

the applet paradigm, and it has been criticized because of its loose integration with web

content [Rob07]. In the field of mobile devices, Java has typically been supported

through the use of the Mobile Information Device Profile (MIDP) [Sun07]. The major

problem is that different platforms have small but relevant disparities concerning the ac-

tual implementation of many interfaces in the Java API [Jao06]. These disparities have

typically required extensive testing to ensure that the cross-platform program truly

works on all devices. The magnitude of testing required has proven to become an in-

centive for designers to look into other possibilities. Here, Ajax enters into the mobile

device scene.

3 Measuring Mobile Devices

For the first time ever, users are voluntarily downgrading to browsers with fewer fea-

tures than the earlier generation. These mobile browsers feature less display area, less

processing power, lower network bandwidth but increased latency, and the completely

18

new factor of a limited battery lifetime. Simultaneously, the use of techniques like Ajax

involve browser capabilities that have only become common enough during the past few

years. It seems questionable if the mobile devices can actually support Ajax in the

needed capacity. And indeed, it is correct to question this, since many devices can not.

As astute reading may have revealed, the selected statistic of 80 million devices manu-

factured in 2006 [IDC07] is limited into a subset of all the mobile devices shipped. This

subset is called the converged mobile devices, and it is loosely defined as the set of

devices that combine features from mobile phones, personal digital assistants (PDA),

cameras, tablet computers, and other electronic aids. Here, converging means merging

multiple separate units into a single, more intelligent device. The selection is limited to

this subgroup because the majority of the devices sold last year, the more old-fashioned

ones, are still incapable of supporting all the component technologies of Ajax.

3.1 Capability and Performance

On the other side of the spectrum, the smallest laptop computers have reached form

factors almost comparable to mobile phones of yesteryear. While testing laptops run-

ning the same browsers and operating systems as their desktop brethren would probably

be indicative of variations in network properties, in this thesis the focus is on the hand-

held category of devices. More specifically, the tests concentrate on the browser

performance of the least capable hardware platforms that still are able to support Ajax.

It is important to realize that because of the selection criteria, the constrained browsers

also feature lessened levels of software capability than their desktop versions. Browsers

are separated into a graphical user interface (GUI), sometimes titled the chrome, and the

background engine, which handles the interpretation and execution of the content

passed to it. While the browser's GUI shares its name with the fully-functional version,

some features may have been removed from the constrained engine. These lacking fea-

tures may greatly benefit rendering performance, as unsupported program code is

simply ignored. The fastest browser is the one that constantly displays a blank page.

Therefore, it is important to not only measure the performance of the constrained

browsers, but also to evaluate how well the browsers are doing the work they are sup-

posed to. This calls for a combined analysis of both the quantitative and qualitative

properties of each browser. Combined with the results of each measurement is an over-

all grade (see Section 3.3.1) of the the tested browser. Comparisons between browsers

19

with a different overall grade are sternly discouraged – they should only be performed

by the most informed readers, e.g., the browser developers.

The selected devices are presented as educated guesses of what the “long tail” of mobile

devices might be like in the near future. At the time of writing, the devices are clearly in

the enthusiast-level of the market, with local price tags ranging from 320 € to 640 €.

Preceding a more thorough description, we present a short motivation for using Ajax in

mobile devices, followed by the research questions that these measurements seek to an-

swer.

3.2 Motivation for Mobile Ajax

Four easily identified benefits with the use of Ajax are user input speed [Nok06], lesser

display processing requirements, smaller amounts of transferred data [Whi05], and bet-

ter compatibility between devices [ByH07]. These benefits are not unique to mobile

Ajax, but their rewards are relatively greater when there is less processing power and

bandwidth available.

First, writing text on a handheld device is categorically slow. The reason for this is that

lugging a 102-key keyboard around is uncomfortable for most of us. Handheld devices

employ smaller input methods: both reduced alphanumerical pads and stylus-based vir-

tual keyboards are well known by now. Predictive text input has become the proverbial

helper wheel. With Ajax, prediction may be performed twice – once on the device, then

once more using a more application-specific vocabulary on the server. The trade-off is

doing a (costly) network call, which should finish faster than the user can enter text.

Second, using the partial redraws customary for Ajax applications allows the mobile

user browser to avoid full page redraws, sparing processing power, and thus, battery

life. The user experience is simultaneously enhanced, since on slower devices, the

white-out between complete redraws is visible for a longer period of time.

Third, when delays are considered, newer wireless techniques like EDGE and UMTS

are categorically high-bandwidth but also high-latency. Returning responses in a verb-

ose format like XML may remain feasible, but XML may also be replaced with JSON

or basic HTML. When compared with a complete page transfer, communicating only

partial changes reduces the amount of transferred data [SmS07]. If both the browser and

the server support pipelining, even the relative overhead of performing the triple TCP

handshake is reduced.

20

Fourth, using the mobile browser as a programming platform offers an additional level

of middleware for application developers. Instead of having to port each application to

every mobile operating system, the effort can be directed towards making the browsers

more compatible. While current browsers are restricted by a security sandbox prevent-

ing access to much of the device's services, e.g., audio, contacts, and GPS, crossover

Java/JavaScript libraries are a suggested remedy. At least one such project has begun

development [ByH07]. Ajax functionality by itself might be improved by using toolkits

specifically designed for mobile devices [Geo07a].

3.3 Research Questions and Methodology

Better than the previous motivation for mobile Ajax, the sheer number of devices avail-

able makes the time seem ripe for a performance measurement of mobile browsers.

While surveying the field of mobile devices, it quickly becomes clear that there are

already several browsers available for most platforms. A newer development is the on-

set of small web-enabled applications or widgets [Geo07b], which offer more narrowly

defined functionality than browsers. Collectively, these mobile user agents reuse com-

ponents from each other and desktop browsers. It is therefore interesting to see how the

components perform on the much more constrained properties of a mobile device.

Wilton-Jones has performed meticulous application measurements for a suite of desktop

browsers [W-J07e], noting significant variance between different browser/platform

combinations. Further, he has duly noted that browser differences make some measure-

ment techniques unreliable [W-J07d]. For example, using JavaScript to measure

JavaScript may yield inconsistent results due to a different ordering of processing and

presentation phases among the compared browsers.

Following the emphasis on practical testing set by Lilja [Lil00], the measurements in

this thesis try to avoid synthetic benchmarks. The benchmarked hardware units are com-

mercial, off-the shelf (COTS) products, not samples or development units. No

modifications have been made to the hardware or their user agents, unless explicitly

specified otherwise. The exceptions to this rule are some cache settings, explained in

detail with the browser descriptions. All of the device measurements were run without

an attached charger to accommodate for power-saving features.

Since Ajax employs so many of the available technologies, the newer Ajax applications

offer a diverse real-world test suite for browser performance. In addition, the number of

21

development projects is impressive. Since an important reason behind the ubiquity of

the World Wide Web is audience participation, a selection of development libraries are

included in the measurements. The rationale is that for Ajax to become successful, the

users must have tools that mask browser differences. At the same time, the libraries

must attract users. Therefore, the benchmarks target twelve sample applications pro-

moted by the developers as showcase examples on what Ajax is capable of.

3.3.1 Grading and Results

Before the performance measurements, the applications are first tested for capability is-

sues on the selected browser. All defects are noted and explained in the corresponding

analyses. Each browser is given a grade on the scale from A to D, explained as follows.

● A represents the highest possible grade, with no defects detected during use.

● B represents minor problems with the layout, or missing functionality.

● C represents major problems that clearly are a hindrance to the user.

● D represents a failure in the workflow, meaning that the user does not receive

the requested service from the application

Note that application speed is considered subjective, and is not factored in the grade, but

may be noted in the analysis (when relevant). This grading is separate from the actual

time taken to load an application, which is presented by the later graphs.

3.3.2 Measurement Method

After possible defects have been determined, the application is measured using ten itera-

tions of the initial loading time or time taken to perform a selected function. The results

reflect user-perceived wall clock time, measured using a stopwatch. Although this meth-

od limits the precision to 1/10 of a second at best, it is fully adequate to represent

human reaction time [Kal04].

Results are separated into cached and cache-cleared categories to calculate an approx-

imation of the upper and lower bound of the (perceived) delay. Cached measurements

try to indicate the best case, i.e., the one where most parts of the application are already

loaded. Conversely, the cache-cleared measurements try to indicate the worst case, i.e.,

the one where no parts of the application are already loaded. Please note that the worst

case still ignores the WLAN connection setup time, as explained below. Preliminary

22

testing includes that the connection time may greatly vary, and indeed be vastly longer

than the time taken to load an application. Additionally, some users may have trouble

distinguishing these components of the overall delay.

Because of the very mobile nature of said devices, performance measurements are tied

to a multitude of real-world factors, the type of the network selected not being the least.

It has been shown earlier that in slow networks, the transmission time easily dominates

the overall wait time for a page load [LaH03]. In this thesis, I have tried to minimize the

dominant factor of the transmission time and concentrate on the browser performance

alone. In all of the following cases, the network connection type is WLAN, with the ac-

cess point connected to a very high-bandwidth, low latency university network. All of

the targets were accessed through a (very plain) XHTML link page so that the WLAN

connection was set up during the first request, not the measured one. To reiterate: these

measurements do not consider network connection properties.

In the cache-cleared category, the disk (flash) cache is cleared between each test, using

the functionality offered by the browser. To further minimize the effect of memory

caches, on the N95 and N800 the browsers are measured by interleaving the tests. In

other words, in each iteration, browser A's cache is cleared, then browser A is meas-

ured, and allowed to completely exit. Then browser B is executed, its cache is cleared,

the measurement is performed, and B is allowed to exit. On the iPhone, memory caches

were flushed by executing other applications between iterations, e.g., viewing photo

slide shows, taking pictures with the camera, or browsing the calendar.

Many of the details in the measurements have been omitted in the written text by neces-

sity. All of the raw data gathered, along with the notes taken during the measurements,

have been included in the appendix. In the electronic version of the appendix, the

benchmarked values are recorded with the precision measured. The values are normally

presented with single decimal precision.

The following browsers have passed initial testing of their basic Ajax functionality. This

means that using short example programs, the browsers have been verified to support

the component technologies of Ajax.

3.4 Nokia N800 Internet Tablet

The Nokia N800 Internet Tablet (N800) [Nok07c] is the oldest device of the three, hav-

ing been released in January 2007. An important first observation is that the device is

23

not a mobile phone – it lacks any and all functionality required to connect to a carrier

network. Despite this drawback, the N800 includes a host of internet-related features

that make it fit into the category of converged mobile devices. To mention a few, the

device supports multiple web browsers, can run its own web server, and offers the pos-

sibility to use both Skype [Sky07] and Google Talk [Goo07a] for voice-over-IP calls.

Mapping services are available through the maemo mapper project. In order to use the

Global Positioning System (GPS), a separate GPS receiver must be connected.

As of writing, the current operating system is titled the “Internet Tablet OS 2007” (OS-

2007). The tested version was 4.2007.26-8. Most notably, it is based on the open

sourced components GNU/Linux and GNOME [Jaa06, Mae07]. The OS2007 contains

its own package manager, allowing the device to connect to multiple repositories in or-

der to fetch updates and community-developed software.

N800's input method is based on a touch screen, either through a virtual keyboard or

handwriting recognition. The display size is 4.2 inches, 800x480 pixels with a color

depth of 65536 colors. The device has 128 MB of RAM. Storage capacity consists of

128 MB of permanent flash space, plus the possibility to insert two removable flash

memory cards, maximum size 2 GB each. The RAM memory may then be extended

with virtual memory on the removable flash card. With a total storage area of over 4

GB, the N800 provides ample space for caching purposes.

As the measurements do not concern applications with huge cache requirements, only a

single 2 GB flash card was used. The maximum virtual memory of 128 MB was exten-

ded through the device's control panel. All system sounds were silenced, which may

have benefited battery life. We feel that this decision has not corrupted the results, since

turning off the system sounds seems to be normal behavior for observed N800 users.

Display brightness and volume level were otherwise left on default levels. Additionally,

a Google Talk account was entered into the presence settings, and four speed contacts

were configured. This is not a synthetic decision, as these are the actual settings for

everyday use.

3.4.1 Opera

For the OS2007, the default browser is based on Opera's version 8. Its code base is

closed and strongly related to the commercial desktop browsers developed by the com-

pany. Opera users are normally forced to purchase a license after a trial period. On the

24

N800, the Opera browser is part of the purchase fee, and therefore licensed by Nokia.

The relevant application packages for the Opera browser were osso-browser-opera-dy-

namic, version 2.0.43-1, and osso-browser-opera-eal, version 2:1.6.8-1. No application

updates were downloaded during the testing period. From the browser settings menu,

the memory cache size was extended to 4096 KB, the maximum value selectable.

3.4.2 Mozilla based browser for maemo

Thanks to OS2007's engine abstraction layer (EAL), multiple browser engines may be

used through the same user interface. The Mozilla-based browser for Maemo4 was re-

leased in July 2007 for the general public [Kin07]. The browser claims no shorter

official title so, in this work, it is henceforth referred to by its package name “microb”.

The installed version of the package microb-browser was 0.0.8-3. By editing the file

/home/user/.browser and changing the value of “hidden” to “true” [sic], the browser

menu was extended to contain a “Set engine” option. This option made switching

between browsers notably easier.

The upcoming newer internet tablet, N810, will be released with the 2008 version of the

operating system. Nokia has announced that OS2008 will ship with Mozilla engine en-

abled by default [Nok07a]. The OS2008 will also be available for the N800 since both

contain the same CPU and memory hardware. However, the new version was not re-

leased in time to be included in these measurements.

3.4.3 GTK+ WebCore

A third browser engine based on the GTK+/WebKit [Kin06] code base has been in de-

velopment since at least August 2007 [Tok07, Wri07]. It is perhaps best known for its

(promised) SVG [FFJ03] support. There was an incentive to include the browser in the

measurements due to the shared code base with the Safari browser described further on.

While the project was briefly reviewed, installation candidates were not yet available to

the general public. Therefore, the browser was left out. This decision is based on the

dual emphasis on currently available technology and the repeatability of the measure-

ments.

4 Not to be confused with the “Minimo” or “Moblin” projects, also based upon Mozilla's Gecko engine.

25

3.5 N95

The Nokia N95 is a “true” converged mobile device in the sense that it is no longer mar-

keted as a mobile phone, but as a multimedia computer. It began shipping in March

2007, which places it between the two other devices. The N95 features an internal GPS

receiver, enhanced support for video playback, and a 5 megapixel (2592x1944 pixels)

camera. The display size is 2.6 inches, 240x320 pixels, and capable of displaying 16

million colors. Notably the display size is much smaller than on the other two devices.

Browsing input is handled by a 12-button numerical/lettered keypad plus a four-way

navigation button, with the selector in its middle. Additional buttons do exist, but they

are reserved for menus and as shortcuts to the device's camera and multimedia applica-

tions.

The operating system is the Symbian Series 60 (S60) 3rd edition with feature pack 1

[S6007]. Firmware version was 12.0.013 (19-06-07). Due to its widespread nature, there

are plenty of mobile browsers available for this platform. In addition to full browsers,

Nokia has begun promoting the development of lightweight internet applications or

widgets [Geo07b]. For example, the N95 ships with support for multiple image-sharing

web sites. The photo application may be configured to transmit pictures directly to these

services through HTTP.

For the context of this work, the decision was made to concentrate the measurements on

just a select few of the available user agents. The rationale is that this should improve

the level of detail possible, as every browser multiplies the number of observations re-

quired. Therefore, in addition to the S60 web browser, the only other user agent is the

Opera Mobile browser. The selection is based on the browsers available for the N800.

A functional SIM card was inserted in the N95 to accommodate for processing power

required to keep the phone subsystem operational. No other background applications

were left running. The local carrier network supports 3G/UMTS [UMT07] and its signal

strength was displayed as the maximum possible. The screen saver was set to activate

after 45 seconds, whereas the backlight timeout was 30 seconds. The light sensitivity

detector was left at its default middle position. Key click sounds were disabled. Wire-

less LAN scanning was left inactive, and the Bluetooth [Blu07] interface was kept

disabled.

26

3.5.1 Nokia Mini Map Browser

The default browser for the S60 operating system is simply titled the “Web Browser for

S60” or sometimes the “S60 Web Browser”. In this work, the latter form is used in its

abbreviated form (S60WB). The S60WB is based on the WebKit [Web07a] project,

which has been open sourced by Apple. To extend the project, modifications made by

Nokia are passed back to the community in the form of the S60WebKit branch

[Nok07b]. WebKit's WebCore and JavaScriptCore components in turn derive from the

Konqueror browser's KHTML and KJS components, also released as open source.

Despite these similarities in their background and naming, it is worth remembering that

the browsers are continuously and aggressively developed. S60WebKit forked from

WebKit already in 2005. As we shall see, in practice their interpretations do differ quite

significantly.

Like all other browsers selected in the benchmark, the S60WB includes zooming func-

tions designed for applications using fixed layouts. Due to the “limited” display size on

the N95, the zooming function was very helpful. In addition, the N95 also features the

ability to turn the display into landscape mode by rotating it 90º counter-clockwise.

However, in these measurements, the S60WB was run in its default portrait mode, with

the full screen option inactive.

3.5.2 Opera Mobile

For the S60 operating system, there are two different Opera browsers available

[Ope07a]. Opera Mini depends on a server-based proxy and is aimed towards less cap-

able devices [Dav07]. The browser engine is split between the proxy and the browser,

allowing the browser to offload processor intensive tasks. Unfortunately, this system

does not support Ajax. Opera Mini was therefore not an option.

The other Opera browser is titled Opera Mobile, and the N95 supports its newer S60 3.x

version 8.65. It is referred to as the “S60OM” in this thesis. The installed build number

was 9730. All of the measurements were run during the 30-day trial offered by the com-

pany. From the settings, cache size was set to “large” and render mode to “quality”.

Opera Mobile contains a feature that rewrites web pages into a single column mode for

easier viewing on a constrained display size. This “fit to screen” function was disabled.

Finally, for easier access, Opera was added to the list of applications available from the

N95's active standby mode, i.e., the device's main screen.

27

3.6 iPhone

The Apple iPhone [App07a] is far from the first mobile device developed by the manu-

facturer, but it is the first with the ability to connect to a carrier network. The operating

system is a variant of OSX, developed by Apple and only available on the iPhone. The

system is heavily targeted towards web-enabled widgets. Several of the included applic-

ations use HTTP to fetch data, e.g., YouTube, Stocks and Weather. The device also

contains a two megapixel camera and enhanced media player functionality.

Display size on the iPhone is 3.5 inches, with a resolution of 320x480 pixels (163 pixels

per inch). Input is handled by a finger-operated multi-touch screen, with three special

buttons for locking the device, accessing the main menu, and disabling the ringer. This

unit had a storage size of 4 GB but no selectable options for the cache size. Keyboard

clicks were turned off during testing.

As of writing, the iPhone has not yet been released in Europe. The device used in these

measurements is from the American batch, with the firmware version 1.0.2 (1C28). Due

to the fact that the American models are currently locked to only operate with SIM

cards from AT&T, there is no carrier network available for the device in Finland. There-

fore, the measurements were performed without the phone function operational. This

may have skewed the results somewhat, but the magnitude should be lost within the

greater one caused by human reaction time.

3.6.1 Safari

Safari is the only browser currently available for the iPhone. As mentioned earlier, Sa-

fari has been developed from the open sourced components in the WebKit project. It is

therefore interesting to see how it compares with the S60WB on the N95.

The iPhone's operating system, OSX, also features a landscape mode usable by some

applications, Safari being one of them. The view can be activated simply by rotating the

device to its side. To maintain compatibility with the results on the N95, and avoid mul-

tiplying the amount of observations by having to go through all the combinations, the

iPhone was also kept in its portrait mode.

28

4 Libraries, Toolkits, and Frameworks

As briefly introduced in Chapter 1, the major problem with current web design is

browser fragmentation. This deviation routinely forces designers to acknowledge the in-

dividual perks of the different browsers and to find ways to circumvent these issues. In

the practical field, much kudos is given out to designers who can invent the cleverest

workarounds for existing problems. Ideally, these helpers will only be used until the rel-

evant cause has been fixed in an upcoming browser release, and that release has become

sufficiently widespread among the users.

Before proceeding into the field of Ajax development, another naming problem must be

solved. The names of these “Ajax helpers” have split into three categories. The projects

presented in this chapter are described alternatively as libraries, toolkits, or frameworks

[Pay07]. For this thesis, the following definitions are adapted.

1. A library is a collection of one or more functions, aimed for reuse, and relating

to a specific task. Examples of this are the browser detection technique incorpor-

ated in XHR object creation, as well as DOM calls for finding a specific element

by its identifier.

2. A toolkit is a collection of one or more libraries related to a specific set of tasks,

designed to follow a common programming style. A toolkit may customize its

selection of libraries, possibly obfuscating or compressing the code contained.

3. A framework is a collection of libraries and toolkits. Using a framework lends

structure to the developed project, possibly forcing the project to adapt one or

more preselected design patterns, e.g., MVC.

Following this definition and the preceding example of Anttila [Ant07], the projects de-

scribed in this section are titled toolkits. Google Gears, which is only briefly mentioned,

may actually constitute a framework, but as the definition is inclusive, this level of im-

precision can be accepted. Note that many of the developers will probably continue to

call their projects as frameworks, conceivably due to the more “official” impression of

the title. This is acceptable, because splitting the application into separate files can be

loosely categorized as a structural decision (see Section 2.2).

In addition to the defined categories, toolkits may be classified according to their style

of programming and intended purpose. Different toolkits have been designed to work

29

with specific server-side programming languages and environments, and some have ad-

apted their counterpart's style into the client-side as well [Web06]. Regarding intended

purpose, there has been a trend to develop separate projects aimed for “pure” animation

and graphics display. Two of the toolkits presented are designed specifically for visual

effects, the rest also incorporate methods for the selection and manipulation of events,

XHR, and the W3C DOM.

4.1 Graphics display

DHTML techniques have not been forgotten with the onset of Ajax. On the contrary,

visualizations developed earlier with the help of browser-centric document object mod-

els and other incompatible interface calls are now being reinvented into more standards-

compliant versions of themselves [Sco06b].

In this chapter, the toolkits script.aculo.us and moo.fx are briefly presented. They are

both visual toolkits and require support from a secondary toolkit to function. The sup-

porting toolkits are usually Prototype and MooTools, although other choices may be

adapted. Complementing the supporting toolkit seems to be a popular decision, since

script.aculo.us and moo.fx show up regularly in Ajax-related tutorials and introductions.

Splitting the functionality into two different projects may also better maintain the devel-

opment focus on the selected task, i.e., employ visual-minded and more algorithm-

oriented developers separately.

4.2 Selection and Manipulation

Without exaggerating, it can be said that events are the heart of any Ajax application.

Writing listeners and handlers for the many event types implemented by modern

browsers allows the designer to truly adapt the static documents into functional models

with many, if not all, of the workings of desktop applications. But event implementa-

tions do vary, and it is unrealistic to expect all designers to be intimately knowledgeable

of all browsers and their differences.

Therefore, most Ajax toolkits involve easily accessed functions for the selection and

manipulation of events and the W3C DOM. These functions mask browser differences

and abstract interface calls, perhaps adding a programming style. Toolkit selection may

very well be based on the style, allowing the designer to more easily fit in through pre-

ceding knowledge of a programming language other than JavaScript.

30

Of the toolkits presented, script.aculo.us and prototype have been developed along the

Ruby on Rails framework [Han07]. Naturally, they borrow idioms from Ruby, even

though the toolkits can be used outside of the framework. Google Web Toolkit (GWT)

is designed work as an Java to JavaScript gateway – the programmer writes Java and

GWT translates the code to JavaScript for the browser. Java is popular with the de-

velopers of Direct Web Remoting (DWR) as well. Microsoft's ASP.NET AJAX follows

their own ASP.NET framework closely.

Not all of the toolkits may be easily categorized by their likeness to an existing lan-

guage other than JavaScript. Some projects have chosen their own programming style or

have decided to be true to JavaScript itself. Strongly related to the reuse of JavaScript

are Widgets, programs that borrow functionality from the installed browser.

4.3 Widgets

When discussing Ajax, “widgets” may refer to at least two separate concepts. First, wid-

gets can be taken to mean semi-independent software modules that can be included in

larger web applications. These web widgets are commonly developed as parts of the

toolkit projects and may require parts of the toolkit to function correctly. Examples are

date pickers, rich text editors, and time line visualizers [SIM07, Mar07]. Secondly, wid-

gets can be understood as lightweight browsers, limited into a single application or a set

of similar applications. The widget applications have already appeared on the desktops

of modern operating systems, and they are now beginning to get ported into mobile plat-

forms5 [Nok07d, App07b]. Examples of widget applications are Really Simple

Syndication (RSS) feed readers [RSS07], weather notifiers, and exchange rate monitors.

In mobile devices, widgets can work as a gateway between the functions offered by the

device itself and web applications [Gra07a]. Widgets can thus benefit from the browser

libraries, e.g., (X)HTML/XML parsers, JavaScript interpreters, and security models.

Simultaneously, as the widget exists outside of the strict browser sandbox, it may access

converged subsystems unavailable from the sandbox. Such subsystems may include

GPS reception, contacts and calendar items, and SMS messages.

4.4 A Look into the Most Popular Toolkits

Two years is a long time in web development. During the two years of fame that Ajax

5 Apple markets iPhone widgets as “Web Apps”, whereas Nokia has coined the name “WidSets”.

31

has enjoyed, the number of web sites employing Ajax has grown explosively. Concur-

rently with the rapid web design, several toolkits have been released as open source in

order to benefit others in their work. The wiki site Ajax Patterns [Aja07c] maintains a

combined effort to list all of the toolkits. The list has grown to over 200 alternatives.

Browsing through the list, it is easy to notice that many toolkit projects have already

been closed or abandoned. This is possibly in favor of the more complete alternatives or

just due to lack of time, interest, or both. It would seem possible that other projects will

follow, so that the palette will converge to a few toolkits with different strengths and

weaknesses. Ajaxian6, a web site dedicated to Ajax development in general, has per-

formed yearly polls on its readers to find out which toolkits are most commonly used

[Alm05, Gal06, Gal07a]. The results show some support for the theory of convergence.

On the other hand, 15 years of web development have not been enough to overcome

browser fragmentation. There is a chance that the toolkits will not fare any better.

The toolkits measured in this chapter have been selected on the basis of their survey

representation. Table 1 shows the ten most popular toolkits, along with their historical

figures from the previous two surveys. Most of the toolkits reviewed in this thesis were

not yet included in the October 2005 survey [Alm05]. 40,0% of the voters proclaimed

that they were not using a toolkit at all, but were developing “directly” with XHR. It is

conceivable that both home brewed libraries and not yet released projects have been in-

6 http://www.ajaxian.com/

Table 1: Ajaxian.com reader surveys 2005-2007.

2005 2006 2007

Prototype 23,1% 43,1% 68,4%

script.aculo.us 17,7% 32,9% 58,7%

jQuery 7,2% 47,5%

YUI 5,0% 40,3%

Dojo 10,2% 18,7% 38,3%

Ext JS 33,8%

Google Gears 22,0%

GWT 3,4% 17,2%

DWR 11,0% 11,6% 12,7%

MooTools 11,3%

moo.fx 11,0%

ASP.NET AJAX 8,3% 4,4%

total votes 763 865 826

http://www.ajaxian.com/

32

cluded in this statistic. The early fragmentation can be clearly observed in the results, as

many toolkits have been voted less than ten times. Interestingly, Ajax was proclaimed to

be in production use as often as in development, with 31,2% and 32,8% of the votes.

By September 2006 [Gal06], the situation had changed somewhat. 25% of the voters

were still using XHR directly. The amount of production and development use was still

balanced at 61,7% and 67,2%. This would seem to underscore the continuous develop-

ment cycle of web applications. Prototype and its sibling script.aculo.us had already

taken a clear lead over the other toolkits.

The latest results are from October 2007 [Gal07a]. Production and development are still

in balance, with 81,2% and 79,3% of the votes. It would seem that the convergence con-

tinues towards a small number of popular toolkits. Prototype and script.aculo.us keep

their top positions, but the gap between them and the next rankings have narrowed con-

siderably. There are still a great number of toolkits with only a few votes each. Please

note that the unintentional omission of the toolkit MooTools [Gal07b] may have thor-

oughly skewed the results for this choice. The percentage shown is gathered from user-

entered free text inputs, i.e., the “other” category.

In addition to the most popular choices, this chapter contains reviews of the Frost and

ASP.NET AJAX toolkits. Frost is an upcoming project dedicated on Mobile Ajax, de-

veloped by Rocco Georgi of PavingWays. Georgi is one of the authors of the Mobile

Ajax FAQ [JGR07]. ASP.NET AJAX is Microsoft's product, which may explain why it

is poorly represented by Ajaxian's user base.

4.4.1 How to Read the Results

For those readers that already know the background information and have skipped

straight to this section: it is strongly recommended to read Section 3.3.1 concerning the

capability grading before trying to interpret the following visualizations. Due to space

constraints, the graphs include information for all browsers, although their presentations

differ significantly. The capability grades are listed in the legends next to both graphs.

The graphs are presented as pairs of cached and cache-cleared measurements. In each

measurement, the X-axis shows the 10 sequential measurement iterations. Each Y-axis

shows time in seconds. Measured results are marked by the icons presented in the le-

gend, and plotted lines are added to enhance visibility. The legend also lists the grades

given to the browsers during each evaluation. As outlined in Section 3.1, these grades

33

are the key element of an unbiased comparison between the measured loading times. If

the grades are ignored, the charts can be easily misread. This is a known limitation of

the chosen presentation format.

4.4.2 Prototype

The Prototype project [PCT07] was created in February 2005 by Sam Stephenson, and

it has been well noted in both literature and web sites. Prototype is possibly best known

for its terse writing style, as it uses only single characters for some function calls. Much

work has been done to improve upon the project's initially criticized level of document-

ation. The web site now contains both an API description and tutorials.

In contrast to many of the other toolkits, Prototype offers no demo applications on their

web site. This disputable lack is balanced by the featured list of production web sites us-

ing Prototype. The target for this Prototype test is a “virtual desktop” application, which

shows how content may be separated into windows and manipulated in the browser user

interface [Gru07]. The PWC-OS sample is prominently a more complex demo, included

herein to seek at least some of the limitations of the mobile browsers. As it is the very

first measurement, it also serves as a yard stick on what may be attempted in the follow-

ing cases.

The S60WB shows a respectable level of capability while presenting the virtual

Figure 1: Prototype PWC-OS demo application, http://prototype-window.xilinus.com/.

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

Cleared results

N95 / S60WB
(B)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(B)

iPhone (B)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

Cached results

iteration

se
co

nd
s

http://prototype-window.xilinus.com/

34

desktop. Drag and drop is actually possible with this browser, despite the device's input

limitations. The S60OM fails the capability, as none of the windows are actually presen-

ted. It also clocks the fastest time in the measurement, which is possibly caused by

ignoring portions of the JS code entirely. As we will see, this hypothesis is supported by

the other cases, as the worst representation of the application is often rendered in the

fastest time. But please note that there are counterexamples of this as well. Sometimes it

seems to take longer to render the page wrong.

On the N800, microb features only a minor problems with the PWC-OS. The most

prominent one is the overall sluggishness of the interface. Opera has more easily per-

ceived difficulties, as drag and drop is not available at all. This seems to be a limitation

of the Opera interface, since drag and drop is not possible in any of the other cases

either.

Safari on the iPhone features no drag and drop either. In this test, the desktop dimen-

sions were drawn too large, causing unnecessary scrolling. Examining the performance

graphs presented in Figure 1, S60WB and Opera seem to be a bit faster than Safari and

microb. microb is the slowest browser, but also the most thorough in its representation.

This effect is repeated multiple times in the following cases.

Curiously, Safari exhibits regular variation of the values in the cached measurement,

prominently visible in Figure 1. Due to yet unidentified factors, every second fetch of

cached content takes significantly longer than the first. As the chosen methodology is

black box -oriented, further diagnosis based on these measurements may be impossible.

The most credible speculation is that Safari might check for cache freshness every

second time, ignoring the expiration headers of HTTP [Fie99] for the content. This sug-

gestion might not be entirely insensible, since cache freshness has been noted as a

problematic area (Section 6.4). Of course, it is also logically possible that all other stud-

ied browsers interprets the same information falsely.

4.4.3 script.aculo.us

script.aculo.us [sic] is an add-on toolkit for Prototype [scr07], designed to extend it with

visual effects such as animation and drag-and-drop interfaces. As can be expected,

script.aculo.us follows the same programming style as Prototype. The project leader for

script.aculo.us is Thomas Fuchs, and the first public version was released in June 2005.

For script.aculo.us, the choice of a measurement target was easy. The project web site

35

offers a demo of a shopping cart interface where the user may drag and drop objects in

order to select them for purchase. This “drag and shop” application is also included with

the microb browser on the N800, as a part of its default home page.

A bit unsurprisingly, as script.aculo.us was already used in the previous case, the

S60WB renders the application quite well. Drag and drop is possible, with the same dif-

ficulties as earlier. The S60OM has major problems with the layout of the page, causing

it to almost fail this test. As noted, drag and drop seems to be a limitation of the Opera

interface, so both Operas pass by handicap. The microb does not, as every page fetch

causes the browser to crash. Safari has the same limitation as the Operas, so it is also

ranked as a near-failure. Drag and drop -centered interfaces are avoided in the following

cases.

Figure 2 shows that performance-wise, all of the browsers render the application in a

sensible time frame. The iPhone seesaw effect is just barely visible, due to the minimal

time scale. The outliers on iteration 5 of the cache-cleared measurements are interesting,

as they do not seem to be caused by network issues. Remember that the while the mi-

crob and Opera browsers were run interleaved, Safari was not. As the S60OM features a

similar outlier on iteration 4 and microb another on iteration 8, our hypothesis about

their cause is server congestion.

Figure 2: script.aculo.us shopping cart, http://demo.script.aculo.us/shop.

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (C)

N800 / microb
(D)

N800 / opera
(C)

iPhone (C)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cached results

iteration

se
co

nd
s

http://demo.script.aculo.us/shop

36

4.4.4 jQuery

John Resig has been in charge of the jQuery project [jQu07] since its beginning in Janu-

ary 2005. The programming style is as terse as Prototype's. Notably jQuery uses the

same character, $, as a function name. This makes incorporating both toolkits challen-

ging, although it is difficult to conceive reasons for wanting to do so. One of jQuery's

strengths is the chaining of function calls, which allows designers to manipulate the

same element multiple times in just one statement.

The demos on jQuery's web site are links to external servers and developed by project

volunteers. Here, jQuery is represented by Jack Born's tutorial site, 15 days of jQuery

[Bor06]. The site contains multiple demos, and for this task we have selected an “edit-

in-place” (EIP) interface. EIP allows (text) paragraphs to be modified just by clicking

the editable area. This is a very small modification, but with significant usability reper-

cussions, as it spares the user from searching for the same text in a separate edit field.

The results shown in Figure 3 are encouraging for Ajax, since four of the five browsers

pass the capability test with no defects detected. This time the exception is the microb,

as it has difficulties displaying the unedited paragraphs after a successfully performed

edit. This issue has been classified as a major one in the scope of this test, although it

might be quite easy to fix. This classification thus serves as an example of the grading

criteria: the level of debugging necessary is not speculated upon evaluation.

Figure 3: 15 days of jQuery, EIP #2. http://15daysofjquery.com/examples/jqueryEditInPlace/demo.php.

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (A)

N800 / microb
(C)

N800 / opera
(A)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

Cached results

iteration

se
co

nd
s

http://15daysofjquery.com/examples/jqueryEditInPlace/demo.php

37

In the benchmarks, microb is the slowest browser by a clear margin, followed by N800's

Opera. Safari on the iPhone does not show the seesaw effect, possibly again due to the

time scale. The highest variation is shown by the S60WB in the cache-cleared measure-

ment, speculatively due to network conditions. Although the time taken might seem like

plenty for only a single application component, it is necessary to keep in mind that ob-

ject instantiation and other setup tasks might easily dominate the overall measurement.

4.4.5 Yahoo! User Interface Library

The Yahoo! User Interface Library (YUI) incorporates both DHTML techniques and

Ajax quite seamlessly [Yah07b]. It is definitely on the larger side of the toolkits, as YUI

is constantly developed by Yahoo!'s dedicated staff. YUI has been used by Yahoo!'s ap-

plications since 2005, and it was released as open source in February 2006. Despite its

open license, no formal method for submitting patches exists.

YUI is represented in this measurement by a dynamically loading tree view picked from

the official YUI library examples. The tree view is quite similar to earlier DHTML con-

structs, as its purpose is simply to display a set of data in a hierarchical data structure.

The key difference with an Ajax-enabled tree is that the data does not have to be pre-

loaded to the browser with the initial view. In this case, the tree contains a large amount

of data, making it too large to completely fit in the memory of a constrained device. Ad-

Figure 4: YUI dynamically loading tree view,
http://developer.yahoo.com/yui/examples/treeview/dynamic_tree_clean.html.

1 2 3 4 5 6 7 8 9 10
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (D)

N800 / microb
(A)

N800 / opera
(D)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

Cached results

iteration

se
co

nd
s

http://developer.yahoo.com/yui/examples/treeview/dynamic_tree_clean.html

38

ditionally, the freshness of the data is guaranteed by dynamically loading the informa-

tion from Yahoo!'s search database.

The cached results displayed in Figure 4 again prominently display the iPhone's signa-

ture seesaw graph. The application seems to be quite well supported on three of the

browsers. The S60WB scores a perfect grading while simultaneously being the fastest

browser in the cached benchmark. Both the Operas fail to display the tree, neglecting

both tree lines and the display of any results when links are clicked.

In this test, the microb browser exhibited its first indeterministic crash. It happened dur-

ing iteration two of the cached benchmark. The second iteration is performed

consecutively after the first, but also after all of the capability testing preceding both.

Therefore, it is conceivable that the missing value signals a memory leak, wherein some

object references have carried over from the earlier testing.

Without cache, the performance results are quite similar in overall. Interestingly, the

S60OM shows the largest variation despite its obvious flaws in the presentation. Figure

4 shows that sometimes it may take longer to display a faulty presentation.

4.4.6 Dojo

Like YUI, the Dojo Toolkit [Doj07a] is on the heavier side of the toolkits. Its origins

run back to a DHTML project called NetWindows by Alex Russell. Russell serves as

the president for the Dojo Foundation, while NetWindows has been incorporated into

the Dojo toolkit along with a number of other projects. Due to its size, Dojo features dy-

namic loading of specified toolkit parts only.

The demo email application presented by the Dojo project was one of the first candid-

ates selected for these measurements. Unfortunately, said application was also removed

just days before the testing phase begun. The reason for the application's removal was

noted as conflicts with nightly builds of the development tree. Therefore, these results

have been run from our computer science department's main web server, against the ap-

plication provided by version 0.9.0 of Dojo's installation package. The package contains

a host of synthetic benchmarks and capability tests, which will unfortunately not be fur-

ther described herein due to reasons of brevity.

Figure 5 shows that most of the browsers had problems with this application. Both the

N95 browsers failed to display the message header list, or indeed much of the layout at

all. In addition, all of the buttons remained unresponsive. The relatively reliable microb

39

could not perform automatic completion on form fields and it felt quite sluggish in use.

microb also crashed twice during the cached measurements, during iterations 7 and 9.

This is quite probably indicative of leaking memory, as no crashes were detected during

the cache-cleared measurement. microb also had problems just loading the application,

as four iterations had to be redone by refreshing or clearing the cache and then retrying

twice, in order to repopulate the cache.

The N800 Opera displayed more severe problems with the message header lists, border-

ing on an overall failure. In contrast to it, the Apple iPhone rose to the challenge and

presented the application correctly after corrupting the layout once. Despite rigorous

retrying, the problem could not be repeated. It might have been caused either by the Sa-

fari browser or by corrupted output from a server-side program.

Dojo's demo email application is quite heavy on the rendering engine, visible by the

minuscule difference between the cached and cleared measurements. The effect of cach-

ing was less than three seconds in all cases, and less than two seconds with both of the

N800 browsers. In practice, it might be questionable if loading times of over 25 seconds

can be tolerated by any user.

4.4.7 Ext JS

The Ext JavaScript library (Ext JS) begun as an extension to YUI written by Jack Slo-

cum. The toolkit was initially named yui-ext, but as its popularity grew, the project split

Figure 5: Dojo email application, ../dojo-release-0.9.0/dijit/demos/mail.html

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(C)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cached results

iteration

se
co

nd
s

40

from YUI and continued as a separate toolkit. At the end of 2006, the name was

shortened to Ext, and version 1.0 was officially released April 1st, 2007. Ext was de-

pendent on a set of other toolkits until version 1.1. Due to this history, Ext contains

adapters that facilitate the use of extensions provided by other toolkits. Some compatib-

ility issues remain, but this feature may become a strength of the Ext toolkit in the long

run.

The Ext JS project hosts a number of examples, of which the dynamic XML form is

chosen as a representative. This is the first application that specifically uses XML as the

communication format. The purpose of the demo is to simply gather a few fields of in-

put from the user, and then return an XML-formatted error message upon submit. To

make things a bit more interesting, the form incorporates a small “date picker”, i.e., a

calendar web widget. It is worth mentioning that for added pedagogic value, in this case

the JavaScript code was left uncompressed, which will affect the results. The XML

form is a practically reusable, but fairly basic application. As such, it might be expected

that the browsers could easily support it.

Figure 6 shows that the reality is more grim. None of the browsers are able to present

the application without defects. At the time of testing, the application was verified to

work with the desktop browsers. It has since stopped working on the Firefox browser,

so changes in development code may have caused some of the tested defects as well.

Figure 6: Ext JS dynamic form using XML, http://extjs.com/deploy/dev/examples/form/xml-form.html.

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(D)

iPhone (C)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cached results

iteration

se
co

nd
s

http://extjs.com/deploy/dev/examples/form/xml-form.html

41

The culprit is the load button, which must be clicked before submitting the form to pop-

ulate the data. Said button remained dysfunctional on both of the N95 browsers. Since

the service requested by the user may not be executed, both browsers are marked as

having failed the test. The S60WB performed better visually, supporting all of the other

form elements, whereas the S60OM had trouble with both the pull-down menu and the

date picker.

On the N800, microb has minor issues with the form. The date picker remains unavail-

able and the pull-down menu is perceivably slow. Opera fails this test, for the load

button remains inaccessible, whereas the date picker works. Finally, Safari is quite close

to hitting the mark, but the whole form is displayed with an inadequate height. Load and

submit seem to work, but only the first input field is visible.

It takes extremely long to display this quite simple form. For microb, the browser with

the best overall presentation, it takes in average over 13 seconds with cache and over 18

without. As similar forms might be expected to be found embedded in more complete

applications, these loading times are definitely too long. However, it must be reiterated

that a production-quality version would probably greatly benefit from a more com-

pressed JavaScript format, as well as reusing the same JavaScript in general.

4.4.8 Google Gears and Web Toolkit

Google Gears [Goo07c] has recently received a great amount of interest from the de-

veloper community [Doj07b]. It is essentially a browser extension that widens the

distributed nature of web (and Ajax) applications with additional offline functionality.

At the time of testing, no version was yet available for the selected mobile platforms, so

Gears was excluded from further study herein.

Google Web Toolkit (GWT) [Goo07d] works by compiling server-side Java into Java-

Script interpretable by the client browser. GWT takes special focus in testing

procedures and debugging tools available to Java but lacking from JavaScript. The com-

pilation allows designers to borrow on Google's experience with browser

inconsistencies, ideally circumventing them totally.

As a representative for GWT, the dynamic table application was selected from the offi-

cial samples. Its purpose is to display planned schedules for university students and

staff. The view changes asynchronously with user-selectable date criteria. The dynamic

schedule is an interesting application from a mobile perspective, for its intended usage

42

is easy to imagine. It also employs a flow-based layout with a very clear interface.

GWT:s dynamic table is well supported by the browsers. Four of the browsers support it

near-perfectly, although both N95 browsers require two back button presses to return

from the application. This might caused by using IFrames as the communication chan-

nel. The only browser that fails the capability test is the default Opera on the N800. It

fails to display either table or controls, so the results have been omitted as redundant.

Looking at the measured performance in Figure 7, microb distinguishes itself by taking

over two seconds longer to display the application in both measurements. It also exhib-

its the largest variance (0,35) in the cached measurement, closely followed by the

iPhone (0,21). S60OM is the fastest browser, with a visibly snappier presentation than

the others.

4.4.9 Direct Web Remoting

Direct Web Remoting (DWR) is a toolkit designed as the client-side counterpart for

server-side Java applications [Get07]. The DWR toolkit also focuses on Reverse Ajax,

meaning the category of push techniques that includes Comet [Rus06]. Like GWT,

DWR also transforms Java to JavaScript. The project is supported by TIBCO and lead

by Joe Walker.

Figure 7: GWT dynamic table, http://gwt.google.com/samples/DynaTable/DynaTable.html.

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (A)

N800 / microb
(A)

N800 / opera
(D)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cached results

iteration

se
co

nd
s

http://gwt.google.com/samples/DynaTable/DynaTable.html

43

DWR is only partially represented in this test. The examples on the project web site

were considered a bit too simple even as components in a larger Ajax application.

Therefore, a hybrid application was selected for this test: the Acme Auctions demon-

stration site [Web07b] designed by Webtide [Web07c], the main developers of the

open-sourced Java container Jetty. In addition to DWR and Jetty, the auction application

contains features from Apache's ActiveMQ Ajax [Apa07]. The purpose of this amalgam

is to demonstrate the use of a Comet-style push technique. Even though it is not imme-

diately clear from Figure 8, Comet works spectacularly well in this application.

Both of the Operas have failed the capability test for the simple reason that the login

button is inaccessible from their user interface. The cached measurements show that the

Operas have also clocked the two fastest loading times for the application. It is thus

credible that the errors are due to JS code getting ignored by the browsers.

More interestingly, Comet works in each of the tree other mobile browsers. The minor

problem encountered with the S60WB is that after the server has pushed updates to the

client, the S60WB has problems of displaying the results properly. Also, the S60WB

crashed pseudo-regularly in the benchmarks. The S60WB crashed regularly every

fourth time the application was loaded. After each crash, the application was loaded

twice to ensure caching. The crashes look like a clear indication of a memory leak, since

no crashes were detected during the cache-cleared measurement.

Figure 8: DWR / Jetty Hightide auction demonstration, http://www.webtide.com/auctiondemo/.

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

36,0

Cleared results

N95 / S60WB
(B)

N95 / Opera
Mobile (D)

N800 / microb
(A)

N800 / opera
(D)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

36,0

Cached results

iteration

se
co

nd
s

http://www.webtide.com/auctiondemo/

44

The screen saver (not the backlight) on the S60WB will disconnect the open TCP con-

nection, so testing this application requires the user to activate the screen regularly. On

the iPhone and the N800 microb, no such user operations are necessary. In the three

functioning browsers, the passive HTTP connection was kept alive for 10 minutes. Ad-

ditional testing (not included) on the N800 showed that connections remained open after

30 minutes. Both platforms might well be able to keep the TCP connection alive indef-

initely. Further, it should be emphasized that these tests were run through a network

address translation (NAT) device. The capability evaluation has also been repeated with

a second N800 device and a separate, NAT-operated network.

Examining the performance results in Figure 8, it can be seen that Safari is slower than

any other browser in the cached measurement. Safari is also slowest in the cleared

measurements in average, although the S60WB displays a greater variance of results.

There, variation is also displayed by the S60OM. Remembering that cache-cleared

measurements on a platform were interleaved, it is possible that the variances are due to

network conditions or server congestion. First-hand observation of the loading process,

as noted in the notes in the appendix, supports this possibility. The client-server com-

munication seemed to vary between iterations, whereas the rendering phase was similar.

4.4.10 MooTools

The MooTools toolkit has a threefold focus: being compact, modular, and object-ori-

ented [Pro07]. It is an independent open source project led by Valerio Proietti. As

mentioned, the architecture division of MooTools and moo.fx resemble Prototype and

script.aculo.us somewhat. The difference is that MooTools v1.00 was released as late as

28.1.2007, making this project much younger and possibly more aggressively motivated

in their development. Hypertext Preprocessor (PHP) [PHP07] programmers might con-

sider the programming style familiar.

The HistoryManager [Kir06] developed by Harald Kirschner is designed as an invisible

web widget. It is meant to be used as a modular fix for the back button problem,

wherein partial updates do not necessary cause changes to the browser's page history.

Using the HistoryManager, the user should be able to undo each interface click re-

gistered to the widget. This is a quite simple application, and it could thus be expected

to work universally with the browsers. Yet browser support remains lacking.

The S60WB manages to support the lists and the accordion pane as intended, but click-

45

ing on any of the numbered content links make the browser to consistently crash. Invok-

ing the back button causes a complete screen redraw. Opera on the N95 manages a bit

better, supporting both the lists and content links, whereas the animation effect of the

accordion is not displayed. The S60OM also performs complete redraws each time back

is invoked.

Figure 9 shows a single working presentation of the application, the one displayed by

the microb browser on the N800. Opera on the same device performs complete redraws

upon each invocation of the back button, but this time the UI remains unchanged. Al-

though most of the UI remains visible, this classifies as a failure in the capability test.

Finally, Safari supports all links, but each click yields a complete redraw. The back but-

ton does the same.

Looking at the cached measurements of the browsers, the results are curious. The Safari

browser has the worst support for the application, but manages to clock the slowest load

time as well. Conversely, the S60OM suffers from only minor problems, but its load

time is the fastest. Second slowest is the microb, offering the best overall support for the

application. Turning over to the cache-cleared measurements, S60OM is still the fastest,

but here the iPhone outpaces both the microb or the S60WB. A single outlier for the

S60WB is drawn outside the scale of the graph. Its value has been kept, although no ex-

planation for it can be offered. This emphasizes that only outliers caused purely by user

input errors have been purified from the results.

Figure 9: MooTools HistoryManager, http://digitarald.de/playground/history.html.

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cleared results

N95 / S60WB
(C)

N95 / Opera
Mobile (B)

N800 / microb
(A)

N800 / opera
(D)

iPhone (D)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cached results

iteration

se
co

nd
s

http://digitarald.de/playground/history.html

46

4.4.11 moo.fx

moo.fx [mad07] is possibly the smallest of all the toolkits presented in this chapter, con-

stituting only 3 kilobytes in total. In addition to MooTools, moo.fx may complement

Prototype as well. It is notably easier to install the toolkit through MooTools, as moo.fx

may be included in the download.

Asset.images demonstrates a project built using moo.fx's visual effects. The demo con-

sists of a very basic image gallery that asynchronously loads five pictures and separates

them with a fading transition effect. It is available through MooTools demos [Pro07]. In

addition to the self-running demo, the application's JavaScript, HTML, and CSS pro-

gram code tabs were also tested.

Two of the browsers support the application without incidents, two with minor remarks

and one fails completely. With the S60WB, the pictures were displayed outside the des-

ignated container with the black background. S60OM could not display the gallery

reliably: sometimes the asynchronous transfers failed and the cache had to be com-

pletely cleared to fix this. On the microb, a curious and undeterministic glitch was

encountered. Sometimes the last picture failed to load, while all the others were presen-

ted correctly. This problem is designated as a minor one, since it was encountered with

the desktop Firefox as well. Opera on the N800 and Safari on the iPhone support the ap-

plication without issues.

Figure 10: MooTools / moo.fx Asset.images, http://demos.mootools.net/Asset.images.

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

Cleared results

N95 / S60WB
(B)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(A)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

Cached results

iteration

se
co

nd
s

http://demos.mootools.net/Asset.images

47

Three of the five browsers in Figure 10 display great variance of their results in the

cache-cleared measurement. The N800 browsers perform more constantly than the oth-

ers. It is possible that the variance is caused by network conditions. But this analysis

may also be duly criticized, as it would require said conditions to disappear during the

interleaved N800 measurements, only to reappear when the iPhone was benchmarked.

Please note that the measurement targets the initial loading time, and not the overall

time to complete the picture slide show.

4.4.12 ASP.NET AJAX

ASP.NET AJAX [Mic07c] is Microsoft's product, formerly code named Atlas7 [Smi06].

As the newer title implies, ASP.NET AJAX operates close to Microsoft's other

products, e.g., .NET and Visual Studio 2008. The toolkit consists of multiple compon-

ents that can be chosen depending on the desired level of interoperability with

ASP.NET. When complemented with all of the server-side technologies, the toolkit dis-

tinctly manifests all the characteristics of a framework.

The ASP.NET showcase contains an ample amount of real-world examples, but as such

they are more suitable for Chapter 5. It is harder to find the ASP.NET AJAX Control

Toolkit samples [Mic07d], which are also fairly basic when compared to the previous

demos. The selected application is a rich text editor developed by Eric Williams. Willi-

7 It is still common to see Atlas in use, conceivably because the official naming is considered difficult.

Figure 11: ASP.NET AJAX HTML editor, http://winthusiasm.com/Pages/HtmlEditor.aspx.

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(A)

N800 / opera
(D)

iPhone (D)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

Cached results

iteration

se
co

nd
s

http://winthusiasm.com/Pages/HtmlEditor.aspx

48

ams has also designed the Colorado Geographic application featured in the showcase,

and analyzed in Section 5.6. The editor allows an user to employ an interface resem-

bling a word processor to format HTML code. Rich text editors like this one are

currently popular as Ajax widgets, if only for their pedagogic value.

Unfortunately, this specific application is poorly supported by the browsers. All but one

fail the presentation completely. Conversely, the single browser capable of presenting

the application does so without glitches. These failures are curious, since the other ap-

plication by the same author presents fairly well. The best presentation is offered by the

microb browser on the N800. All the others fail to display any content in the design or

preview tabs. Additionally, clicking on preview causes a full page redraw on both Oper-

as and the Safari browser.

Before looking at the performance, it must be mentioned that the cached measurements

of both of the N95 browsers were performed in a separate wireless network due to time

constraints on the selected devices. The results were later verified using the regular net-

work connection. There is little new to be gained from the charts in Figure 11: microb

offers the best presentation, but also the second slowest time. Safari is marginally

slower in average, but only because of its distinctive seesaw variation.

The cache-cleared measurements are performed in the same network as all other cases.

There is significant variation in all results, possibly due to server congestion or network

conditions. The application seems to contain a lot of code, visible by the difference in

scale between the two measurement methods.

4.4.13 Frost Ajax Library

Frost [Geo07a] is an upcoming toolkit based on the work by Rocco Georgi of Paving-

Ways. This toolkit will be specifically targeted towards mobile devices. The project web

site is yet sparse on the details, but it contains a very usable capability test. As of writ-

ing, no Frost demos or release candidates have been released, so the following

measurement may be seen as misleadingly named.

However, the conjecture is that the upcoming toolkit will build on the experience of its

developers, which means their earlier projects. It is easy to consider the XML 2006

event schedule [Pav06] as an interesting target, for it can demonstrate the effects of

good testing on a mobile Ajax application. The schedule is also arguably the first “real”

application, as it has been used in a real environment. Therefore, this event schedule

49

serves as a gateway between this chapter and the next, which concerns production-qual-

ity web applications.

In overall, it is easy to feel that this application is useful in practice. The event schedule

allows users to list currently active program items, combined with color-coded informa-

tion on upcoming and already passed items. Users may enter comments on the program

items, and the written text is saved using XHR calls. By looking at the overall capability

grades in Figure 12, it is clear that mobile testing has been done well. Every single

browser is able to support the application with no defects detected.

While uniformly excellent support is encouraging from a designer's perspective, it

leaves little to be analyzed. Fortunately, the measured values provide additional insight.

As may be deduced from its name, the XML 2006 event schedule employs XML as the

browser-server message format. All of the browsers are able to congest the data without

incidents, save one: the S60WB. Both the cached and cache-cleared measurements

show without doubt that the browser has serious performance problems parsing XML.

Further, the virtually nonexistent difference between the two measurement methods

shows that S60WB's poor performance has nothing to do with caching. The exhibited

slowness is fortunately not totally disruptive for the user. While the page loads, the user

may continue viewing the already parsed event information. In fact, the loading of new

items is visible by continuously scrolling the page downwards.

Figure 12: Pre-Frost XML 2006 event schedule, http://pwmwa.com/xml06/.

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

25,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (A)

N800 / microb
(A)

N800 / opera
(A)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

25,0

Cached results

iteration

se
co

nd
s

http://pwmwa.com/xml06/

50

5 Surfing Web Sites with Ajax

In theory, the applications selected in the following sections have gone through much

more testing than the samples and demos presented in the previous chapter. This theory

will subsequently be put to testing, as checking for compatibility on all browsers has

already been noted as nontrivial. If desktop browser support has already been verified,

the question remains if the mobile browser version is able to present the same level of

capability and performance. The initial hypothesis is that the selected mobile browsers

will show comparable levels of capability, but with significantly reduced performance.

Evaluating the capability and measuring the performance of mobile devices should be

indicative of potential issues concerning the support of Ajax applications.

There are already far more Ajax applications than could be ever measured in a work of

any single author. New applications seem to be developed constantly, whereas old ones

are re-released as new versions. Therefore, the following sections present a snapshot of

the situation as it was, hopefully informative to application designers and device manu-

facturers.

As the following cases are analyzed, we will see that graceful degradation becomes a

problem when determining mobile browser support. Many times it seems that the de-

signers have erred on the side of caution, prohibiting mobile users from even trying to

access the full version of the application.

5.1 How to Read the Results

For those readers that already know the background information and have skipped

straight to this section: it is strongly recommended to read Section 3.3.1 concerning the

capability grading before trying to interpret the following visualizations. Due to space

constraints, the graphs include information for all browsers, although their presentations

differ significantly. The capability grades are listed in the legends next to both graphs.

The graphs are presented as pairs of cached and cache-cleared measurements. In each

measurement, the X-axis shows the 10 sequential measurement iterations. Each Y-axis

shows time in seconds. Measured results are marked by the icons presented in the le-

gend, and plotted lines are added to enhance visibility. The legend also lists the grades

given to the browsers during each evaluation. As outlined in Section 3.1, these grades

are the key element of an unbiased comparison between the measured loading times. If

51

the grades are ignored, the charts can be easily misread. This is a known limitation of

the chosen presentation format.

5.2 Google

Google's products are in many ways the pathfinders of current web technology. It is un-

common to find a source describing Ajax that does not mention Google Maps [Goo07b]

as well as Garrett's original text [Gar05]. Maps is a service that undeniably has benefits

for mobile users, if the browsers are able to present it adequately. There are similar be-

nefits with other Google applications: the N800 features no calendar application,

making Google Calendar a very attractive choice. However, Google Calendar was ex-

cluded from the test due to its similar behavior to Google Mail, tested below.

5.2.1 Google Maps

Google Maps [Goo07b] uses graceful degradation actively, perhaps even too eagerly.

Previous evaluations show that both of the tested S60 browsers are able to present Ajax

applications, provided that they have gone through adequate testing for differing inter-

pretations. Maps' take is more conservative, offering a very reduced version of the

application for the S60WB, while allowing the others to proceed to the full version.

Inconsistently, the degraded version also returns very dissimilar service. The limited

version includes no Ajax functionality, but more importantly it also returns different

Figure 13: Google Maps, http://maps.google.com/.

1 2 3 4 5 6 7 8 9 10
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(A)

N800 / opera
(A)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

Cached results

iteration

se
co

nd
s

http://maps.google.com/

52

result sets. It would seem that the mobile version yields only those services that have

participated in Google's advertisement campaigns. Summa summarum, the capability

test can only be marked as a failure for the S60WB, as none of the local street addresses

entered yielded results closer than several tens of kilometers. Opera on the N95 is able

to access the full version of the Google Maps, but unable to present it correctly. Com-

plete results are fetched and displayed, but the map never centers on them, and neither

can it be manually scrolled due to Opera's input limitations.

Turning over to the N800, the microb and Opera browsers offer a vastly improved

presentation. Opera's only problem was sometimes showing the dialogue bubbles as

blank. The microb can be criticized for a somewhat slow responsiveness, giving cause

to re-evaluate more specific functionality measurements in this case. Because of time

constraints, such measurements have been left as a subject for a further study. In addi-

tion to the slowness, microb detected the address input field only occasionally, correctly

bringing up the virtual keyboard. During the ten iterations, the keyboard was presented

thrice. Again, the major problem with microb was randomly crashing. Figure 13 shows

missing values during iterations four and seven of the cached measurement, and during

iteration two of the cache-cleared measurement. Crashing despite a cleared cache is

highly unusual and therefore worth noting. Additional testing was performed to check

for repeatability; the results are available in the appendix.

Last but not least, Google Maps on the iPhone is able to interact with the locally in-

stalled widget. Search results are passed on to the widget and visualized there instead of

the Safari browser window. This feature is currently quite unique.

Moving on to the performance analysis, an extremely strange phenomena may be ob-

served by comparing the two measurement methods. Opera and microb on the N800, as

well as Safari on the iPhone, sometimes perform worse when operating with already

cached content. The visual observation carries over to the calculated averages for both

the Opera and Safari, whereas microb's variation is too great for a straight-forward com-

parison. Ten more iterations were performed for the microb and Safari. Although the

values observed were now closer to the cache-cleared measurements, both the average

and the variance remained greater. See the appendix for details.

5.2.2 Google Suggest

Google Suggest [Goo07e] offers, in theory, extreme benefits for mobile browsers. The

53

applications' ability to predict search terms by suggesting strings matching the already

entered portion can greatly enhance the overall input speed of the user. Because the

sheer physical size of the mobile devices forces the user to use less optimal input meth-

ods, Suggest is a very interesting choice for an often-used functionality, searching for

web sites. The application's program logic has been dissected by Justus [Jus04].

Figure 14 shows that Suggest is a very fast application to load. Despite its simplicity,

the browsers had some trouble presenting all of Suggest's functionality. With the

S60WB, browser detection techniques caused a graceful degradation into normal

Google Search. By the definition of the capability grades, this must be labeled as

passing without defects, since the user receives the requested functionality. Opera Mo-

bile on the N95 shows that the degradation may be warranted. With this browser, the

application seems to be fully functional. Yet the major problem with the S60OM is that

only the first of the suggested results may be selected.

Both of the N800 browsers present Google Suggest in a similar vein. At first, the dis-

tinctive functionality of this application seems to be completely missing. After some

testing, the lack of any and all suggestions was discovered to depend on the events gen-

erated by the browsers. Once the user presses the backspace key or equivalent, a

suitable event is generated and the suggested results are presented. This somewhat

hampers the usability of the application, but the suitably informed user may still benefit

from the general input speedup. Finally, Safari degrades into the normal version of the

Figure 14: Google Suggest, http://www.google.com/webhp?complete=1&hl=en.

1 2 3 4 5 6 7 8 9 10
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (B)

N800 / microb
(B)

N800 / opera
(B)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Cached results

iteration

se
co

nd
s

http://www.google.com/webhp?complete=1&hl=en

54

search, yielding the same overall grade as the N95 browsers despite no improvements in

input speed.

Moving over to the performance analysis, Safari displays an uncharacteristically high

variance in the cached measurement, even despite its distinctive seesaw effect. A second

run of ten iterations was performed, leading to a somewhat reduced variation. Neverthe-

less, even the second calculation returned a standard deviance more than double that of

the second highest browser.

This time, microb's significantly slower performance in both measurements does not

yield a better overall presentation. Opera on the same device is almost twice as fast, but

with the exact same problems in presentation, and a slower variance to boot. In the

cache-cleared measurement, the S60WB show the highest variation. The variation is not

only due to the single outlier.

5.2.3 Google Mail

Google Mail [Goo07f] is probably the second best known Ajax application, straight

after Google Maps. The target for this measurement was the previous version of the

mail application, not the recently-released update [Pup07a]. Due the new version's

gradual release, it had not yet reached the author's user account.

In contrast with some other Google applications, Google Mail has a built-in function

that allows bypassing the browser detection techniques usually involved with graceful

degradation. Initial capability testing was performed using this optional feature, but it

was soon discovered that the browser check defends its position well. Both the S60WB

and S60OM returned horribly broken presentations of the application, whereas Safari

refused to even try displaying the full version. In all three cases, the degraded, mobile

version works well. Its responsiveness is beneath what can be reliably measured using

the selected method, and thus no benchmark results have been recorded.

In contrast, both of the N800 browsers are capable of displaying the full application,

and they even manage quite well. However, Figure 15 shows that their performance

leaves something to be desired. Whereas an average loading time of 13-14 seconds for

Opera users might be acceptable, microb's 24-26 seconds will quite probably give cause

not to use the application twice. The overall impression while using the application was

that microb was definitely too slow. All of the functions were eventually performed, but

only after noticeable response times. Despite this critique, it should be emphasized that

55

Google Mail is a very complex application, and being able to present it at all is a her-

culean task for a mobile browser.

5.3 Yahoo! Mail

Yahoo! has been aggressively developing DHTML and Ajax techniques, as evident by

the increasing popularity of their YUI toolkit (Section 4.4). The company develops mul-

tiple products with YUI. Since the development of YUI, Yahoo! has also acquired the

Flickr service [Yah07c]. As Flickr has previously been developed with their own code

base, the application is handled separately in the next section. Here, we will concentrate

on Yahoo! Mail [Yah07f], a web e-mail application not totally unlike Google Mail.

Unfortunately, this evaluation can only be categorized as a total failure, in the scope that

no figure is presented here. Yahoo! Mail uses browser detection techniques and de-

grades into “Mail Classic”. The designers have been thoughtful and left a selectable

option to turn over to the full version, but it remains unusable in each one of the tested

browsers. Presentation failures include exhausting the memory space of the browser.

Nondeterministically, the application may also detect faults in the loading process and

degrade into Mail Classic despite the opposite selection.

Mail Classic is fully usable with both microb and Safari. Opera on the N800 has major

issues with this presentation as well, whereas Opera on the N95 performs better visu-

Figure 15: Google Mail, http://mail.google.com/mail?nocheckbrowser/.

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

Cleared results

N800 / microb
(A)

N800 / opera
(A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

Cached results

iteration

se
co

nd
s

http://mail.google.com/mail?nocheckbrowser/

56

ally. Navigation on it is tricky because of the lack of a cursor, but manageable after

some training. The S60WB fails to load Mail Classic due to some text popups that

quickly exhaust the available memory and cause the browser to crash.

5.4 Flickr

Flickr [Yah07c] is one of the best known online image services currently available. It

offers both free and subscription-based services for its users. Having started out with its

own code base, Flickr is now being (partially) developed with the YUI toolkit. An inter-

esting detail concerning Flickr is that the service now provides widget applications for

some mobile platforms, like the product series that the N95 is part of [Yah07d].

The target for this benchmark is the loading of a single picture, together with the manip-

ulation interface provided by the image gallery. Thus, one important factor concerns the

size of the picture that is downloaded, for it linearly affects the initial loading time of

the gallery application. Because we are interested in the performance of the interface,

and not the actual image presented, these measurements target a dummy image consist-

ing of a single black pixel on a white background, with a size of 817 bytes.

Proceeding to the capability evaluation, all of the browsers present Flickr quite well.

Specially the S60WB surprises positively. The only defect detected with it relates to the

automated slide show function, which refuses to work. However, as the slide show is

Figure 16: Flickr image gallery, http://www.Flickr.com/.

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

25,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (B)

N800 / microb
(A)

N800 / opera
(B)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

25,0

Cached results

iteration

se
co

nd
s

http://www.flickr.com/

57

actually a Flash application, it has been excluded from the overall grading. Opera on the

N95 has more problems, failing to present the edit-in-place text fields, the photo stream

selector arrows, and the slide show.

Turning over to the N800 browsers, microb manages to present the Flickr application

without detected defects. However, microb performs a bit slower than Opera. Con-

versely, Opera has minor issues here as well. It fails to present the same selector arrows

as its N95 sibling, but in contrast to it, the N800 version almost fully manages the slide

show. Only the “back to your photos” link is broken. It must be mentioned that Opera

crashed once during the initial capability testing, while displaying the slide show.

Again, Safari on the iPhone performs quite well. The slide show remains broken, but

everything else works. Moving over to the performance charts, iPhone seems to have

trouble loading Flickr – Safari is the slowest browser in the cached measurement, while

being second slowest with a cleared cache. Interestingly, the slowest browser starting is

not microb in this cache-cleared measurement. With Flickr, the S60WB clocks the slow-

est result, combined with a variance just below Safari's. Both Operas are incredibly fast

in both measurements, but they also have the most problems with the presentation. This

gives reason to doubt that the browsers may have completely ignored some of the ap-

plication code while loading.

5.5 Journey Planner for Cycling

The Journey Planner for Cycling [YTV07] provides a pathfinder algorithm that plans

near-optimal bicycling routes between locations in the greater Helsinki area. The func-

tionality is somewhat complex, as both selectable way points and a dynamically

generated, scalable route image are served to the user. The service is an extremely inter-

esting application for mobile cyclists, and as the analysis proceeds, it becomes clear that

the application has been well tested with the predicted field of client browsers.

Safari makes the exception to this rule, since it crashes consistently each time the Jour-

ney Planner is accessed. Despite these problems, Safari must be noted for its overall

stability, as this is the only application that did cause Safari to crash. Simultaneously, it

must also be repeated to the application's benefit that the iPhone had not yet been re-

leased in Europe at the time of testing. Therefore, the Journey Planner had probably not

yet been tested with the Safari browser.

58

In addition to Safari, the S60WB crashed once during iteration five of the cached meas-

urement. Outside of the crash, the S60WB's presentation is quite good. The arrow

images used to move the map can not be accessed, but clicking on the way points cen-

ters the map correctly. Not all map levels seem to display quite as intended, though.

Automatic text completion seems to work, but only if focus leaves the text field, i.e., the

user clicks outside the input field containing the partial search term. Opera on the N95

behaves similarly, although it has more problems with the text completion. Due to the

way Opera uses its selector field, the browser skips to the end of the list when it is

scrolled. This means that only the last seven addresses are selectable. Using the Journey

Planner on either of the N95 browsers requires some zooming, as the design is based on

a fixed layout.

Opera on the N800 resembles its N95 version, but all the list elements are now select-

able thanks to the stylus-based input. Strangely, the arrow keys still refuse to work.

While benchmarking microb, a singular network glitch was encountered during iteration

five in the cache-cleared measurement, reported by the browser as a communication er-

ror. Ignoring this fault, microb managed a fully functional presentation. The cost is

high, though: microb was approximately a third slower than the N95 browsers, and

more than twice as slow as Opera on the same device. The S60OM was the fastest

browser in both of the measurements, but its selector field is certainly problematic in

some applications. Responsiveness is noticeably improved by presenting the user with

Figure 17: YTV / Journey Planner for Cycling, http://kevytliikenne.ytv.fi/.

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

Cleared results

N95 / S60WB
(B)

N95 / Opera
Mobile (B)

N800 / microb
(B)

N800 / opera
(A)

iPhone (D)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

Cached results

iteration

se
co

nd
s

http://kevytliikenne.ytv.fi/

59

the input fields as early as possible. The benchmarks in Figure 17 reflect this – the

measurement stops when the user may start to input data.

5.6 Colorado Geographic

Microsoft provides a showcase of applications built using its ASP.NET AJAX tools on

the product home pages [Mic07c]. The candidates are well presented, but a closer in-

spection reveals that many of the applications make use of Ajax in ways that are

difficult to isolate for a repeatable benchmark. Colorado Geographic [Col07] is an ex-

ception as its content is quite static, yet informative.

The target application is mobile by nature, being a touring site of photographic locations

complete with driving instructions. During testing, it was somewhat difficult not to take

a liking to the content, as it is well chosen. The interface uses asynchronous calls in

abundance, both in browsing through the images and also in transitions between the cat-

egories. Colorado Geographic was presented quite uniformly by the browsers, but the

details caused significant hindrances for the application's usability.

The S60WB had major problems with the asynchronous requests. Every link access

seemed to cause a redraw, but the target was also retrieved correctly. On the right hand

side of the interface, highlighted links were not recognized at all. It may be worth noting

that a desktop Firefox also had problems with the links in question, causing a very re-

Figure 18: ASP.NET AJAX, Colorado Geographic, http://www.coloradogeographic.com/.

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

Cleared results

N95 / S60 Web
Browser (C)

N95 / Opera
Mobile cleared
(B)

N800 / microb
cleared (A)

N800 / opera
cleared (B)

iPhone cleared
(C)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

Cached results

iteration

se
co

nd
s

http://www.coloradogeographic.com/

60

cognizable “link flicker” when the cursor was positioned above a link. Also, the

presentation text flowed over the bottom edge of the container, making it impossible to

scroll or read said text. S60OM did a bit better, retrieving the highlighted links asyn-

chronously, but both the left hand navigation and the navigation arrows caused full page

redraws.

Following almost typical behavior for it by now, microb crashed once but also offered

the best presentation. The only defect detected was a broken back button. This flaw has

been excused, as the button does not work on a desktop Firefox either. The detected

crash occurred after the capability test, during iteration three of the cached measure-

ment. Ten extra iterations were performed in order to check for a memory leak, but

microb remained solid after the singular crash. However, the server did throw four ex-

ceptions (during all of the iterations) to the client as JavaScript alerts. The details are in

the appendix. Opera had the same problems as on the N95, although this time the

presentation text remained visible despite overflowing.

Interestingly, the application was quite difficult to present for Safari. Responsiveness

was hampered by a general slowness during use, and also it took visibly longer to load

the last stages of the application. As it is difficult to judge when the interface has com-

pleted loading on some of the browsers, the measurements presented in Figure 18 end

when the default picture starts to become visible. This seemed to be the only fair altern-

ative, as some of the browsers render the interface piece by piece, while others seem to

display the results only after everything has been loaded.

Deduced from the difference between the measurement methods charts in Figure 18,

Colorado Geographic seems like a graphics intensive application. Conversely, the aver-

age loading time of the S60OM changes by less than three seconds in average, despite

the outlier in the cache-cleared measurement. This quickness carries over to Opera on

the N800 as well – the average increase is just under two seconds. Other browser aver-

ages are more obviously affected: the S60WB almost doubles the loading time, whereas

loading times for microb and Safari increase by over a half.

5.7 myAOL

AOL LLC8 is a very large internet service provider operating in the USA. Their myAOL

service [AOL07] can be described as a personal portal page that allows users to design

8 Formerly America Online, Inc. (AOL).

61

their own home pages. The piecemeal content is served in the form of small widget win-

dows. AOL develops applications using the Dojo toolkit (Section 4.5.5); myAOL used

version 0.4.3 at the time of testing.

Unfortunately, myAOL as a target was an almost complete failure in every sense of the

capability test. Coincidentally, it was also the very last target in the planned suite. From

the capability perspective, both of the N95 browsers failed to present the application as

intended. The S60WB was caught by the applications browser detection and redirected

to AOL Mobile, which is only accessible by registered users. No method for activating

the full application could be found. S60OM displayed almost all of the application con-

tent on the second try, but none of the window controls worked, and many windows

were altogether devoid of content.

Opera and microb on the N800 managed a bit better, although usability was severely in-

jured by a splash screen that must be closed before accessing the application. The screen

could only be closed by activating the browsers' full screen mode. Opera loaded the in-

terface correctly and activated the window controls, but many of the window contents

were left blank. The window tabs worked, and the Mgnet section loaded its image as-

sortment asynchronously, but it also crashed the browser consistently. microb managed

to display seemingly every piece of the interface, both the windows and their content.

When accessing tabs, some uninformative (see appendix) errors were returned to the

user as JavaScript alerts.

Figure 19: myAOL, http://my.aol.com/.

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(B)

iPhone (B)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cached results

iteration

se
co

nd
s

http://my.aol.com/

62

The above-mentioned splash screen was worse for Safari, though. For the first nine iter-

ations the splash screen controls were inaccessible, so that it could not be closed. After

the tenth iteration the splash screen disappeared. Weirdly, clearing the cache and reload-

ing the application did not reinstate the splash screen on the first time, but it did do so

on the second attempt.

The performance measurements in Figure 19 are visibly lacking. The reason for this is

the great variance of presentation errors. These disparities have made it impossible to

reliably select a common “loading target”, upon which the measurement would depend.

Moreover, there were differences in the presentation between iterations on the same

browser. All of these facts together have given sufficient cause to leave the measure-

ment as incomplete. The iPhone's results are the only ones present in the cache-cleared

measurement, and they exist only to verify the iPhone's distinguishing seesaw variation.

6 Considerations

In the two years that have passed since the coining of the name Ajax [Gar05], it has

been criticized for a plethora of flaws, both real and imagined. This chapter is a review

of those flaws that have passed the test of time. By now, these issues can and should be

addressed as real risks and disadvantages of using Ajax techniques. Many of the issues

are independent of the type of client browser, mobile or otherwise, but they may be fur-

ther exacerbated by the constrained properties of mobile devices.

In no way should this chapter be taken as the conclusive list of issues that must be ad-

dressed by every web designer. The purpose is only to demonstrate that problems still

remain. Some of the matters described herein, e.g., external references, might have no

optimal solutions. Instead, their solutions consist of finding the right balance for the task

at hand.

6.1 Cross-Site Scripting Attacks

Cross-site scripting (XSS9) attacks [CER00, Cgi02] employ security flaws in the client

browsers to execute code with the access privileges granted to the non-compromised ap-

plication. In essence, during a successful XSS attack the client's (necessary) trust on an

application is extended to all additional content generated by other users of the applica-

9 Formerly CSS, but then renamed to avoid naming issues with Cascading Style Sheets.

63

tion. XSS attacks are common in the sense that if users are allowed to store data, and

that data can later be retrieved (by any user), all web applications must take some coun-

termeasures [Oll07] to ensure the presentational safety of said data. If the application

does not properly validate the input/output format, stored information meant to be rep-

resented as data may be instead evaluated by the client browser as program code,

enabling an attack vector. The attack vectors can be divided into three categories based

on the methods taken to bypass the browser security mechanisms [Kle05, Wik07b].

XSS attacks attacks are in no way uniquely bound to the use of Ajax. Earlier attacks

have abused JavaScript security flaws, causing part of the language's infamy, but all

scripting languages are potentially vulnerable [Mic05]. In addition to scripting lan-

guages, XSS attacks may be enabled by vulnerabilities in other HTML entities as well,

e.g., applets, objects, and forms [Cer00]. As Ajax is fundamentally based on existing

technologies, vulnerabilities from the components carry over to Ajax.

XSS attacks are mitigated by the same origin policy [Rud01, LiE07] implemented by

the browsers. This policy prohibits scripts originating from a specific host to request or

access content provided by other hosts. By itself, the policy does not protect users from

attacks launched by other users on the same site [CER07]. With vast distributed applica-

tions being served from singular host names, the same origin policy becomes inadequate

protection against all XSS attack vectors. The policy may also be circumvented by sev-

eral normally useful techniques, like hidden IFrames and delayed references to external

script files. When the policy is circumvented, the attack type changes to a cross-site re-

quest forgery.

6.2 Cross-Site Request Forgery

Cross-site request forgery (CSRF10) [Har88, Aug07] shares common properties with

XSS attacks, but when an attacker executes a CSRF successfully, the goal is to gain ac-

cess to a secondary host where the compromised client has already been authenticated.

An attacker may not require initial information on what hosts the target client has access

to [Wal07]. For example, many users advertise their web e-mail accounts by default,

and the attacker can launch an attack against all potential users of the e-mail service.

The reduced input methods set by the constrained physical size of mobile devices have

been mentioned earlier. As the requirements for password complexity rise in accordance

10 CSRF is also abbreviated XSRF.

64

with the available processing power, longer passwords are required to offer reasonable

security. Security-conscious users have little reason to trust multiple web applications

by reusing the same password, which multiplies the mental capacity required to remem-

ber all the keys to commonly accessed services. Entering multiple lengthy pass phrases

with reduced input quickly becomes a tedious task and allowing the browser to save the

passwords is an alluring alternative. If a malicious entity is then able to bypass the se-

curity mechanism of the browser, saved passwords greatly enhance the severity of a

CSRF attack. Even if the attacker is unable to download the credentials (XSS), the com-

promised browser may allow further requests without additional authorization.

6.3 External References

External references are a nontrivial topic from the mobile communications perspective

because their use may both enhance and hamper performance. HTML files may include

JavaScript, CSS, and other elements either inline or through an external reference. In

beginner's tutorials, external references are praised by default, for they enable code re-

use and also subtly direct the would-be web designer into current best practices, i.e., the

layering of web content [Yan07]. Through the expertise of more advanced engineers,

we find out that inline code has its own merits. A recent book by Souders [Sou07]

presents a checklist that high performance web site designers should be aware of. The

same suggestions are also published by Yahoo! [Yah07e]. In this ordered list, the pole

position is taken by the suggestion to minimize HTTP requests. Conversely, the eight

list item describes reasons for making JavaScript and CSS external references.

As external references target file names as uniform resource locators (URI), each un-

cached reference causes a HTTP request for content. In complex applications, multiple

host names may be used to bypass the two-connection limit set by the HTTP [Fie99]

and increase parallelism [The07a]. If these new host names are initially unknown by the

client, each host name will yield an additional DNS query. After the initial requests,

caching will reduce further request delays. However, constrained memory properties

may effectively limit the amount of entries in the cache.

Although these delays normally cumulate only in complex applications with multiple

references, their lengths depend entirely on the round-trip time (RTT) exhibited by the

communications network. Mobile devices may very well encounter RTT:s that are or-

ders of magnitude higher than those tested by the designers.

65

The balance question between inline elements and external references is influenced by

the predicted usage profile of the application [Yah07e]. If the typical user visits only a

single page and then leaves, aggregating content into a smaller number of files may be

the optimal solution. Ultimately, all content may be combined into a single file. This

may also be the case if the additional file sizes are very small. The alternative behavior,

a single user visiting multiple pages, should be met with separating the content and en-

suring that it will be cached through the use of HTTP:s expiration headers. When

external references are used, care should be taken to position CSS and JavaScript seg-

ments correctly. Depending on the order of rendering phases implemented by the

browser, waiting for external requests may block rendering [Nok07e, Yah07e]. Thus, it

is recommended to reference CSS in the meta headers and JavaScript as late as possible.

Finally, the approaches may be combined by allowing the user to quickly load the pre-

dicted page, and then use delayed loading to request the external references. Advanced

techniques combine this approach with image clipping [Gra07b] or CSS sprites [She04].

Asynchronous requests may benefit the loading phase, while very long default expira-

tion periods combined with file name versioning can enhance caching.

6.4 Caching Problems

The beneficial effects of successful caching systems have been long since known [Ab-

r95, Bae97, Jia99], and they carry over to HTTP transfers quite elegantly. Observations

made by Yahoo!'s performance team have given cause to adapt the Pareto principle,

also known as the 80/20 rule, into browser-server communications [The06]. In this case,

the principle tells us that 80% of the presentation delay can be affected by the front-end

engineering of the user interface, i.e., how the browser fetches external references to

page elements. These observations also form the rationale for the high ranking of the

HTTP minimization suggestion, described in the previous section. Again, these meas-

urements were done in near-optimal conditions; there is little reason to disbelieve that

the dominant delay should be enforced when the RTT increases.

Exactly how the browsers implement caching has become a mire of surprises for inex-

perienced designers [Not06]. The detailed workings of the caching mechanisms defined

in the HTTP are somewhat complex by necessity; the subject gets cloudier when actual

implementation differences are considered. In some cases, the encountered behavior

may differ due to (transparent) proxies or server-side redirects administered on legacy

66

applications. For example, if a XHR request should silently handle such redirects or ex-

pect them to be processed by a separate function is an open question.

Fortunately, it seems that at least the major browsers handle caching for the XHR re-

quests similar to HTTP caching in general. Still, disparities do exist. As the multiple

benchmarks in Chapters 4 and 5 demonstrate, the cached performance varies signific-

antly between browsers. There is a risk that the strange behavior exhibited by the Safari

browser steals part of the show. Two speculated causes for its dualistic cached bench-

mark results are presented in Section 4.4.2. Nevertheless, Safari is by no means the only

browser that has exhibited paranormal caching behavior [Dav06]. Here, it is sometimes

difficult indeed to separate bugs from features.

On mobile devices, the possibility to employ caching has been constrained by the avail-

able storage space. The situation is changing, as all of the devices presented in this

thesis feature storage capacities in the gigabyte range. With such capacities, comparable

client-side permanent caches depend only on the selected storage algorithms [GaT05],

as care must be taken to avoid unnecessary wear out of the flash memories. Another in-

teresting development is the release of Google Gears [Goo07c], as the project aims to

enable offline use of internet applications, including Ajax.

But caching is not the silver bullet for HTTP performance. An empty cache must be ini-

tially filled by requesting every content element. The same behavior is also encountered

when the client determines that the contents of its cache are stale. Studies concerning

the amount of clients with either empty or stale caches have predicted [Abr95, Bae97]

or measured [The07b] that the hit maximum hit rate achievable is between 30% and

60%. Other techniques must be implemented to ensure adequate performance for the re-

maining portion of the clients.

6.5 Memory Leaks

A major factor affecting application crashes are the occurrence of memory leaks

[Eri02], and web browsers are no exception. Partially caused by caching techniques,

leaks occur when the browser fails to free unused memory reservations through garbage

collection techniques [Par07, Pup07b]. Such techniques may be confused by repeated

DOM manipulations that cause removed elements to remain referenced by data struc-

tures or event handlers [Cro07]. The culprit need not always be a bug in the browser

engine, for certain programming techniques can also result in situations where the

67

garbage collection process may not justly tear down memory objects [Gur07, Lec07].

Also, a memory leak may be hard to distinguish from main memory caching [Moz07] if

the leak does not progress into a full blown browser crash.

Multiple crashes were encountered during the capability tests of Chapters 4 and 5. The

crashing applications were further tested for memory leaks by executing additional iter-

ations. Results were somewhat inconclusive, for while at least one clear memory leak

was detected (Section 4.4.9), many times the repeated iterations were insufficient to

cause further crashes. One possible reason is that simply loading the application does

not trigger the conditions causing the memory leak – they are only met after prolonged

use, such as the initial capability evaluation at the beginning of each measurement.

If the memory leak does not cause the browser to crash, increasing amounts of memory

are hogged by the process. On mobile devices, the amount of main memory has not in-

creased at the same pace as the amount of storage capacity. Battery drain is one of the

factors limiting development [VeF05]. Therefore, a memory leak may exhaust the full

memory space far more quickly than on a desktop computer. If the operating system is

inadequately protected against such incidents, the user may be left without access to the

other features offered by the converged device, e.g., voice calls [Mol07]. During the

performance measurements, several situations were encountered when power cycling

was left as the only option available. These situations were extremely frustrating, al-

though individual reactions are naturally subjective.

6.6 Accessibility

Accessibility is a hard property to quantify in the web environment, where clients may

present vastly different capabilities concerning nearly every property, e.g., input type,

display resolution, and network connection. This includes screen readers, i.e., client

browsers with minimal or non existing visual elements, replaced by audio feedback.

Screen readers' additional limitations may include notably reduced scripting support

[Edw06]. Examining the least capable clients has more than pedagogic value, for polit-

ical decisions have been made to ensure that user interfaces remain accessible for all

potential visitors. Regulations like the U.S. Section 508 law [Sec07] must be acknow-

ledged if the designed application is a public service. This is important, since public

services have already embraced web technologies like electronic forms, and one of the

main benefits of Ajax is the improved responsiveness of such forms.

68

The question if Ajax can be made accessible has been met with heated debate . Pro-

gressive enhancement techniques may make the designing of complex applications a

heavily iterative process, where the same application is written more than once to ensure

accessibility. In a worst case scenario, the same application would have to be now de-

signed once more for screen readers, a task which requires very specialized quality

assurance skills. No doubt should exist that the additional amount of work increases de-

velopment costs.

Fortunately, this issue has not been neglected by the designers. As web development is

by nature fast-paced, multiple people have remarked on the accessibility problems, and

proceeded to develop workarounds for them [Fea05, Koc05, Kra05]. Thiessen and Chen

[ThC07] recently demonstrated a chat application that uses Ajax and specific markup

called live regions to inform assistive technologies, like screen readers, of updated ele-

ments.

6.7 A Side Note on Battery Life

Battery lifetime has been repeatedly mentioned when considering the limitations of mo-

bile devices. This amount of attention may not be unwarranted, as there is reason to

believe that mobile batteries will remain one of the bottlenecks in the near future.

Moore's law says nothing about the electrical capacities of batteries, and comparing the

current properties with those of the 1990's, we learn that capacities have only tripled

[CaC05]. As all of the measurements were executed with no attached chargers, the fol-

lowing observations concerning charging periods may be made.

N95 was charged five times during the testing period of one week. This is about twice

(or less) the normal charging count for an equivalent usage period with no web brows-

ing, but “normal” voice calls and SMS messaging. The N95 certainly has issues with its

battery life in normal usage. This might be indicative of parasitic drain [VeF05] caused

by the number of functional components present in the converged device.

N800 was charged four times. This is about thrice the normal charging count for the

equivalent period with some, but not continuous, use of the device. The N800 has a

great battery lifetime, probably enhanced by the large physical size of its battery.

The iPhone was charged three times. Please note that the iPhone was also powered

down at the end of each benchmark workday. As noted in Section 3.6, the iPhone was

not connected to a carrier network during the tests. I have no experience with the daily

69

use or charging pattern of an iPhone, and can thus offer no further analysis concerning

it.

Based on the N95 and the N800, even extreme Ajax usage does not seem to increase the

battery drain by a factor greater than four. Note that despite the heavy usage, the devices

still remained on standby and idle for most of the testing period. It seems reasonable to

confirm that the parasitic drain currently dominates over the active drain.

7 Conclusion

While beginning the initial tests, it seemed that the component technologies of Ajax

were adequately supported by the chosen mobile browsers. After testing the browsers'

support for the toolkit applications, it becomes clearer that testing is the key for success

for full-blown mobile Ajax applications. One can not yet assume that applications sup-

ported by the desktop browsers would be consequently supported by the mobile

browsers [Raa07]. Browser fragmentation seems to flow over to the mobile devices

with the shared code bases of the mobile and desktop user agents.

Table 2 shows the frequencies of different capability grades listed by browser. Note that

these results ignore caching, as it affects only the performance. In the table, Safari on

the iPhone and microb on the N800 have the most perfect (A) grades, signaling capabil-

ity evaluations with no defects detected. The S60WB is not far behind, though.

Combining the number of perfect and near-perfect (B) grades, microb is the better

browser in overall. It also enjoys the fewest number of total failures. Safari is very close

to microb, while the S60WB shows its disadvantage: significantly more failures in total.

In the evaluations, Opera Mobile on the N95 had the most problems. These problems

can not be explained by the age of the browser, as the evaluated version 8.65 was re-

leased as late as October 1st, 2007 [Ope07b].

Table 2: Frequencies of overall capability grades for the selected
browsers. Range from A (best) to D (worst).

A B C D

S60 Web Browser 8 4 2 5

S60 Opera Mobile 4 5 1 9

microb on N800 10 7 1 1

Opera on N800 6 5 2 6

iPhone 11 2 3 3

70

Table 3 shows the benchmark results listed by speed, calculated by the average timings

of each measurement respectively. Failed measurements are indicated by the 'x' column.

Measurement failures are typically caused by significant deviations in the visual

presentations of the applications, causing the lack of a common measurement target.

Detailed reasons for not measuring a browser are listed in the analyses.

By far, the fastest browser is Opera Mobile on the N95. This seems to be well in line

with the overall worst capability in the capability evaluations. This combination seems

to be indicative of ignored program directives, meaning that the browser gains speed by

not executing some parts of the application code. Safari's high number (14) of slow res-

ults is caused by the browser's distinctive performance variation, specifically of

pairwise high and low values. This phenomena has not yet been satisfactorily explained.

The Opera-based browser on the N800 defends its place as the default browser for the

OS2007 well. Opera is decidedly faster than microb, but the cost is paid in reduced cap-

ability. Just by looking at the table, microb seems to be just a little faster than Safari.

This conclusion may be a bit misleading, as the visual representations of the graphs bet-

ter shows the stability of microb's measurements. Safari may be faster than microb on

every second attempt, but it remains invisible here.

Table 3: Rankings by speed, represented by the result averages of each measurement,
scale from 1 (fastest) to 5 (slowest). A rank of 'x' indicates a failed measurement, caused
by unacceptable differences in the presentation..

Table 4: Rankings of perfect presentations by speed, represented by the result averages
of each measurement, scale from 1 (fastest) to 5 (slowest). A rank of 0 indicates a
capability grade below A, meaning that the presentation contained errors.

1 2 3 4 5 x

S60 Web Browser 6 8 6 7 7 1

S60 Opera Mobile 22 8 3 1 0 1

microb on N800 1 4 9 14 7 2

Opera on N800 8 16 7 4 0 2

iPhone 0 1 10 8 14 2

1 2 3 4 5 0

S60 Web Browser 2 6 1 2 3 21

S60 Opera Mobile 5 1 0 0 0 29

microb on N800 1 3 6 9 1 17

Opera on N800 5 3 2 2 0 25

iPhone 0 0 6 5 9 15

71

Last but not least, Table 4 aggregates the results of the capability grades and the per-

formance results. The relative speeds are now calculated by only considering perfect

presentations, i.e., those with capability grades of 'A'. Both Operas dominate the number

one positions, but at a high cost: these browsers also exhibit the most defects.

Now that only perfect grades are considered, microb is no longer the slowest browser.

This honor falls to Safari, although it is a fair trade-off. Safari may never be the fastest,

but it gets the job done most often. In the measurements, it also displayed the fewest

crashes. But please note that its main competitor, microb, was still considered a devel-

opment version at the time of testing. On the other hand, browser development is

definitely a continuous process.

And it well should continue, for there is certainly room for improvements. While initial

loading times of over 20 seconds are perhaps endurable by those users who enjoy the

newest in mobile gadgetry, almost half a minute is an unacceptable delay if the applica-

tion is to be used regularly. The benefits for heightened responsiveness that Ajax brings

are lost if the user never executes the application at all. Likewise, improved network

connections and successful caching prove insufficient when the browser becomes the

bottleneck. Fortunately, the same benchmarks also convey glimmers of hope. As we

have seen with the Journey Planner for cycling (Section 5.5), the waiting period may be

diminished by cleverly reordering the content so that users may begin to input their

query while loading continues. The XML 2006 event schedule and GWT:s dynamic

table demonstrate that mobile Ajax application not only exist, but are also be presented

in a (nearly) uniform vein. Ajax toolkits will eventually feature support for mobile

browsers, although much work yet remains undone.

7.1 Further Research

The measurements in this thesis should be further extended by more in-depth perform-

ance analysis of the mobile browsers' rendering phases. As noted, parsing errors of the

different code types, e.g., HTML, CSS and JavaScript, may cause the relevant execution

or presentation phases to be aborted, which heavily enhances performance at the cost of

capability. Such an analysis will probably require a switch from the current method of

black-box testing into a white-box setup, where the browsers are injected with timing

hooks. Otherwise, transitions from one phase to another may remain invisible for meas-

urement purposes. Additionally, multiple synthetic Ajax benchmarks have recently been

72

developed. A review of such applications could be the subject of a further study, as

some have shown initial promise and acceptance by the development community.

8 Acknowledgment

The following people must be acknowledged for their aid in the effort of writing this

thesis:

Kimmo Raatikainen for the original innovation and the name for the thesis. Professor

Raatikainen managed to instruct this thesis well by sparking the right ideas early on, and

then by gently nudging towards the possible answers. I sincerely hope that he has the

possibility to inspire many more students.

Jussi Kangasharju for making time during the original instructor's absence and taking

special interest in this thesis. The alternative analysis of Safari's benchmark behavior

came from professor Kangasharju.

Kimmo Vehkalahti for consultation concerning the visualization of the results. His ex-

pertise formed the basis of the presentation of the graphs, whereas all flaws are naturally

mine (the graphs have proven resistant to further improvements). It is hard to think of a

more approachable lecturer.

Guido Grassel and Mikko Honkala for asking a great many intelligent questions. Trying

to answer them helped me clarify the benchmarking procedure and what could be ex-

pected from the results. The idea of dividing the measurements into separate phases in a

future work came from Mikko Honkala.

Niko Välimäki, Samppa Kytömäki, and Janne-Pekka Ahvo for several discussions on

how to best present the analysis and make the results as easy to approach as possible.

Through our discussions it was easier to focus on the relevance of the conclusions. The

spark of the idea of what Safari might be doing in the benchmarks came from Samppa.

Finally, my grandmother, Seija Latonummi for teaching me how to read, my grand-

father, Pentti Savolainen for urging me to study, and my mother for making it possible.

73

References

Abr95 Abrams, M., et al., Caching Proxies: Limitations and Potentials. Electr.

Proc. 4th International WWW Conference '95: The Web Revolution (Boston,

MA, 11.-14.12.1995).

Ado07a Adobe Systems Incorporated, ActionScript Technology Center,

http://www.adobe.com/devnet/actionscript/. [1.1.2008]

Ado07b Adobe Systems Incorporated, Adobe Flash CS3 Professional,

http://www.adobe.com/products/flash/. [1.1.2008]

Aja07a AjaxPatterns.org, On-Demand JavaScript. AjaxPatterns wiki, http://ajaxpat-

terns.org/On-Demand_Javascript. [1.1.2008]

Aja07b AjaxPatterns.org, HTTP Streaming. AjaxPatterns wiki, http://ajaxpat-

terns.org/HTTP_Streaming. [1.1.2008]

Aja07c AjaxPatterns.org, Frameworks. AjaxPatterns wiki,

http://ajaxpatterns.org/Frameworks. [1.1.2008]

Alm05 Almaer, D., Ajax Survey Results Are In, 20.10.2005,

http://ajaxian.com/archives/ajax-survey-results-are-in. [1.1.2008]

Alm07 Almaer, D., Yahoo! Search Conceptual Precaching, 16.11.2007, http://ajaxi-

an.com/archives/yahoo-search-contextual-precaching. [1.1.2008]

And98 Andreessen, M., Innovators of the Net: Brendan Eich and JavaScript. Nets-

cape TechVision columns, 24.6.1998, http://wp.netscape.com/columns/

techvision/innovators_be.html. [1.1.2008]

Ant07 Anttila, E., Ajax-työkalupakit. Master's Thesis for the Department of Com-

puter Science, University of Helsinki, 23.5.2007 (in Finnish). [Also

available from http://www.cs.helsinki.fi/u/eeanttil/cv/Ajax-tyokalupakit-

Eero_Anttila.pdf. [1.1.2008]

AOL07 AOL LLC, myAOL, http://my.aol.com/. [1.1.2008]

Apa07 The Apache Software Foundation, Apache ActiveMQ, http://activemq.a-

pache.org/. [20.12.2007]

App07a Apple Inc., Apple iPhone Technical Specifications,

http://www.apple.com/iphone/specs.html. [1.1.2008]

http://www.apple.com/iphone/specs.html
http://activemq.apache.org/
http://activemq.apache.org/
http://my.aol.com/
http://www.cs.helsinki.fi/u/eeanttil/cv/Ajax-tyokalupakit-Eero_Anttila.pdf
http://www.cs.helsinki.fi/u/eeanttil/cv/Ajax-tyokalupakit-Eero_Anttila.pdf
http://wp.netscape.com/columns/techvision/innovators_be.html
http://wp.netscape.com/columns/techvision/innovators_be.html
http://ajaxian.com/archives/yahoo-search-contextual-precaching
http://ajaxian.com/archives/yahoo-search-contextual-precaching
http://ajaxian.com/archives/ajax-survey-results-are-in
http://ajaxpatterns.org/Frameworks
http://ajaxpatterns.org/HTTP_Streaming
http://ajaxpatterns.org/HTTP_Streaming
http://ajaxpatterns.org/On-Demand_Javascript
http://ajaxpatterns.org/On-Demand_Javascript
http://www.adobe.com/products/flash/
http://www.adobe.com/devnet/actionscript/

74

App07b Apple Inc., iPhone Dev Center, http://developer.apple.com/iphone/devcen-

ter/designingcontent.html. [1.1.2008]

Arc07 Arcand, J-F., Introducing Grizzlet! Building Ajax/Comet based application

with POJO, Jean-Francis Arcand's Blog, 21.9.2007, http://weblogs.java.net/

blog/jfarcand/archive/2007/09/introducing_gri_1.html. [1.1.2008]

Ash00 Ashley, B., Remote Scripting. Ashley IT Remote Scripting Resources ...and

home of JSRS, http://www.ashleyit.com/rs/. [1.1.2008]

Aug07 Auger, R., The Cross-Site Request Forgery (CSRF/XSRF) FAQ v1.58.

Cgisecurity.net, Articles, 28.1.2007,

http://www.cgisecurity.com/articles/csrf-faq.shtml. [1.1.2008]

Bae97 Baentsch, M., et al., Enhancing the Web's Infrastructure: From Caching to

Replication. Internet Computing, IEEE, 1,2(March/April 1997), pages 18-

27.

Blu07 Bluetooth Special Interest Group (SIG), the Official Bluetooth Technology

Info Site, http://www.bluetooth.com/bluetooth/, [1.1.2008]

Bor06 Born, J., 15 Days of jQuery, http://15daysofjquery.com/. [1.1.2008]

Bra06 Bray, T., et al., Extensible Markup Language (XML) 1.0 (Fourth Edition).

W3C Recommendation 29.9.2006, http://www.w3.org/TR/2006/REC-xml-

20060816/. [1.1.2008]

Bur07 Burckart, E., The allure of Comet. IBM, developerWorks, WebSphere,

Comment lines, 7.11.2007, http://www.ibm.com/developerworks/web-

sphere/techjournal/0711_col_burckart/0711_col_burckart.html. [1.1.2008]

ByH07 Byers, P., Hendry, K., Aplix's AJAX platform,

http://wiki.webvm.net/pp2007/. [1.1.2008]

Car07 Carter, M., HTTP Streaming and Internet Explorer. CometDaily, Articles &

News, 25.10.2007, http://cometdaily.com/2007/10/25/http-streaming-and-

internet-explorer/. [1.1.2008]

CaC05 Casas, R., Casas, O., Battery Sensing for Energy-Aware System Design.

Computer, 38,11(November 2005), pages 48-54.

Cat05 Catalan, M., et al., TCP/IP analysis and optimization over a precommercial

live UMTS network. Wireless Communications and Networking Confer-

ence, 2005 IEEE, vol. 3, 13.-17.3.2005, pages 1503-1508.

http://cometdaily.com/2007/10/25/http-streaming-and-internet-explorer/
http://cometdaily.com/2007/10/25/http-streaming-and-internet-explorer/
http://wiki.webvm.net/pp2007/
http://www.ibm.com/developerworks/websphere/techjournal/0711_col_burckart/0711_col_burckart.html
http://www.ibm.com/developerworks/websphere/techjournal/0711_col_burckart/0711_col_burckart.html
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://15daysofjquery.com/
http://www.bluetooth.com/bluetooth/
http://www.cgisecurity.com/articles/csrf-faq.shtml
http://www.ashleyit.com/rs/main.htm
http://weblogs.java.net/blog/jfarcand/archive/2007/09/introducing_gri_1.html
http://weblogs.java.net/blog/jfarcand/archive/2007/09/introducing_gri_1.html
http://developer.apple.com/iphone/devcenter/designingcontent.html
http://developer.apple.com/iphone/devcenter/designingcontent.html

75

CER00 CERT, CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in

Client Web Requests, 3.2.2000, http://www.cert.org/advisories/CA-2000-

02.html. [1.1.2008]

CER07 CERT, Understanding Malicious Content Mitigation for Web Developers.

CERT Coordination Center,

http://www.cert.org/tech_tips/malicious_code_mitigation.html. [1.1.2008]

Cgi02 Cgisecurity.com, The Cross Site Scripting (XSS) FAQ, May 2002,

http://www.cgisecurity.com/articles/xss-faq.shtml. [1.1.2008]

CCP02 Chakravorty, R., Cartwright, J., Pratt, I., Practical Experience with TCP

over GPRS. Global Telecommunications Conference, 2002 (GLOBECOM

'02, IEEE, 17.-21. November, 2002, Taipei, Taiwan), vol. 2, pages 1678-

1682.

Cha03 Champeon, S., Progressive Enhancement and the Future of Web Design.

Webmonkey, 18.6.2003, http://www.webmonkey.com/webmonkey/03/21/

index3a.html?tw=design. [1.1.2008]

Col07 Colorado Geographic, http://www.coloradogeographic.com/. [1.1.2008]

Cos02 Costello, E., Remote Scripting with IFrame. O'Reilly Network, 8.2.2002,

http://www.oreillynet.com/pub/a/javascript/2002/02/08/iframe.html. [Also

available from http://developer.apple.com/internet/webcontent/iframe.html

1.1.2008].

CPJ05 Crane, D., Pascarello, E., James, D., Ajax in Action. Manning Publications

Co., Greenwich, October 2005.

Cro01 Crockford, D., JavaScript: The World's Most Misunderstood Programming

Language, 2001, http://www.crockford.com/javascript/javascript.html.

[1.1.2008]

Cro07 Crockford, D., JScript Memory Leaks,

http://javascript.crockford.com/memory/leak.html. [1.1.2008]

Dav06 Davison, B. D., Caching-related browser bugs. web-caching.com, Browser

Bugs, 21.9.2006, http://www.web-caching.com/. [1.1.2008]

Dav07 Davis, F., Mobile browsing proxies. S60 Browser Blog, 17.8.2007,

http://blogs.s60.com/browser/2007/08/mobile_browsing_proxies.html.

[1.1.2008]

http://blogs.s60.com/browser/2007/08/mobile_browsing_proxies.html
http://www.web-caching.com/
http://javascript.crockford.com/memory/leak.html
http://www.crockford.com/javascript/javascript.html
http://developer.apple.com/internet/webcontent/iframe.html
http://www.oreillynet.com/pub/a/javascript/2002/02/08/iframe.html
http://www.coloradogeographic.com/
http://www.webmonkey.com/webmonkey/03/21/index3a.html?tw=design
http://www.webmonkey.com/webmonkey/03/21/index3a.html?tw=design
http://www.cgisecurity.com/articles/xss-faq.shtml
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html

76

Dis06 Disabato, N. J., The effects of Ajax web technologies on user expectations:

a workflow approach. Master's Thesis for the School of Information and

Library Science, University of North Carolina, Chapel Hill, 10.4.2006,

http://etd.ils.unc.edu:8080/dspace/handle/1901/269. [1.1.2008]

Doj07a The Dojo Foundation, The Dojo Toolkit, http://www.dojotoolkit.org/.

[1.1.2008]

Doj07b The Dojo Foundation, The Dojo Offline Toolkit, http://dojotoolkit.org/off-

line. [1.1.2008]

Ecm99 Standard ECMA-262, ECMAScript Language Specification, 3rd edition.

Ecma International, December 1999, http://www.ecma-international.org/

publications/standards/Ecma-262.htm. [1.1.2008]

Edw06 Edwards, J., AJAX and Screenreaders: When Can it Work? SitePoint,

JavaScript & Ajax Tutorials, 5.5.2006,

http://www.sitepoint.com/article/ajax-screenreaders-work. [1.1.2008]

Eer06 Eernisse, M., Build Your Own AJAX Web Applications. SitePoint, JavaS-

cript & Ajax Tutorials, 28.6.2006, http://www.sitepoint.com/article/build-

your-own-ajax-web-apps. [1.1.2008]

Eri02 Erickson, C., Memory leak detection in embedded systems. Linux Journal,

2002,101(September 2002), page 9. [Also available from http://www.linux-

journal.com/article/6059 1.1.2008].

Esp00 Esposito, D., Exchanging Data Over the Internet Using XML. MSDN

Magazine, 15,4(April 2000). [Also available from http://msdn.microsoft.-

com/ msdnmag/issues/0400/cutting/default.aspx 1.1.2008].

Fea05 Featherstone, D., JavaScript and Accessibility. Box of chocolates,

12.5.2005, http://www.boxofchocolates.ca/archives/2005/06/12/javascript-

and-accessibility. [1.1.2008]

FFJ03 Ferraiolo, J., 藤沢 淳 (FUJISAWA Jun), Jackson, D., Scalable Vector

Graphics (SVG) 1.1 Specification. W3C Recommendation 14.1.2003,

http://www.w3.org/TR/SVG11/. [1.1.2008]

Fie99 Fielding, R., et al., Hypertext Transfer Protocol – HTTP/1.1. Request for

Comments 2616, 1999. http://www.w3.org/Protocols/rfc2616/rfc2616.html

[1.1.2008]

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/SVG11/
http://www.boxofchocolates.ca/archives/2005/06/12/javascript-and-accessibility
http://www.boxofchocolates.ca/archives/2005/06/12/javascript-and-accessibility
http://msdn.microsoft.com/msdnmag/issues/0400/cutting/default.aspx
http://msdn.microsoft.com/msdnmag/issues/0400/cutting/default.aspx
http://www.linuxjournal.com/article/6059
http://www.linuxjournal.com/article/6059
http://www.sitepoint.com/article/build-your-own-ajax-web-apps
http://www.sitepoint.com/article/build-your-own-ajax-web-apps
http://www.sitepoint.com/article/ajax-screenreaders-work
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://dojotoolkit.org/offline
http://dojotoolkit.org/offline
http://www.dojotoolkit.org/
http://etd.ils.unc.edu:8080/dspace/handle/1901/269

77

Gal06 Galbraith, B., Ajaxian.com 2006 Survey Results, 23.9.2007, http://ajaxian.-

com/archives/ajaxiancom-2006-survey-results. [1.1.2008

Gal07a Galbraith, B., Ajaxian.com 2007 Survey Results, 12.10.2007, http://ajaxi-

an.com/archives/ajaxian-2007-survey-results. [1.1.2008]

Gal07b Galbraith, B., Moo on Us: Survey Update, 16.10.2007,

http://ajaxian.com/archives/moo-on-us-survey-update. [1.1.2008]

Gam95 Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley Longman Publishing Co. Inc., Boston, MA,

USA, December 1995.

Gar05 Garrett, J. J., Ajax: A New Approach to Web Applications. Adaptive Path

essay archives, Feb. 2005, http://www.adaptivepath.com/publications/es-

says/ archives/000385.php. [1.1.2008]

GaT05 Gal, E., Toledo S., Algorithms and data structures for flash memories. ACM

Computing Surveys (CSUR), 37,2(June 2005), pages 138-163.

Geo07a Georgi, R., Frost Ajax Library. PavingWays, 2007, http://www.paving-

ways.com/frost-ajax-library/. [1.1.2008]

Geo07b Georgi, R., Mobile Widgets: the ubiquitous mobile web. PavingWays,

6.5.2007, http://www.pavingways.com/mobile-widgets-the-ubiquitous-mo-

bile-web_84.html. [1.1.2008]

Geo07c Georgi, R., Ajax on mobile devices – making mobile web apps ubiquitous.

XTech 2007 (15.-18.5.2007, Paris, France),

http://2007.xtech.org/public/schedule/paper/58. [1.1.2008]

GEO07d GEOTEK IT Consulting, Web Rendering Services,

http://ipinfo.info/html/rendering_services.php. [1.1.2008]

Get07 Getahead, DWR – Easy Ajax for Java, http://getahead.org/dwr. [1.1.2008]

GoL05 Goldman, O., Lenkov, D., XML Binary Characterization. W3C Working

Group Note 31.3.2005, http://www.w3.org/TR/xbc-characterization/.

[1.1.2008]

Goo02 Goodman, D., Dynamic HTML: The Definitive Reference, 2nd edition.

O'Reilly Media Inc., September 2002.

Goo07a Google, Google Talk, http://www.google.com/talk/. [1.1.2008]

Goo07b Google, Google Maps, http://maps.google.com/. [1.1.2008]

http://maps.google.com/
http://www.google.com/talk/
http://www.w3.org/TR/xbc-characterization/
http://getahead.org/dwr
http://ipinfo.info/html/rendering_services.php
http://2007.xtech.org/public/schedule/paper/58
http://www.pavingways.com/mobile-widgets-the-ubiquitous-mobile-web_84.html
http://www.pavingways.com/mobile-widgets-the-ubiquitous-mobile-web_84.html
http://www.pavingways.com/frost-ajax-library/
http://www.pavingways.com/frost-ajax-library/
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://ajaxian.com/archives/moo-on-us-survey-update
http://ajaxian.com/archives/ajaxian-2007-survey-results
http://ajaxian.com/archives/ajaxian-2007-survey-results
http://ajaxian.com/archives/ajaxiancom-2006-survey-results
http://ajaxian.com/archives/ajaxiancom-2006-survey-results

78

Goo07c Google, Google Gears Beta, http://gears.google.com/. [1.1.2008]

Goo07d Google, Google Web Toolkit, http://code.google.com/webtoolkit/.

[1.1.2008]

Goo07e Google, Google Suggest,

http://www.google.com/webhp?complete=1&hl=en. [1.1.2008]

Goo07f Google, Google Mail, http://mail.google.com/. [1.1.2008]

Gra07a Grassel, G., AJAX in Widgets and Web UIs. Position paper, W3C/Open-

Ajax Alliance Workshop on Mobile Ajax (Microsoft Silicon Valley campus,

Mountain View, California, USA, 28.9.2007), http://www.w3.org/2007/06/

mobile-ajax/papers/nokia.grassel.pdf. [1.1.2008]

Gra07b Graef, A., pzImageCombine. dev.portalZINE, 25.11.2007, http://dev.-

portalzine.de/index?/pzImageCombine. [1.1.2008]

Gri04 Griffits, P., Elastic Design. A List Apart, no. 167(9.1.2004), http://www.a -

listapart.com/articles/elastic/. [1.1.2008]

Gru07 Gruhier, S., Prototype Window Class (PWC) version 1.3, 24.4.2007,

http://prototype-window.xilinus.com/. [1.1.2008]

Gul07 Gully, S., How to implement COMET with PHP. Zeitoun.net, 22.7.2007,

http://www.zeitoun.net/index.php?2007/06/22/46-how-to-implement-comet-

with-php. [1.1.2008]

Gur07 Gurevich, P., IE+JScript Performance Recommendations Part 3: JavaScript

Code Inefficiencies. MSDN, The Microsoft Internet Explorer Weblog,

4.1.2007, http://blogs.msdn.com/ie/archive/2007/01/04/ie-jscript-perform-

ance-recommendations-part-3-javascript-code-inefficiencies.aspx.

[1.1.2008]

Han07 Hansson, D. H., Ruby on Rails, http://www.rubyonrails.org/. [1.1.2008]

Har88 Hardy, N., The Confused Deputy. ACM SIGOPS Operating Systems Re-

view, 22,4(October 1988), pages 36-38. [Also available from

http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html 1.1.2008].

Hed07 Hedges, A., Speed test: innerHTML versus DOM manipulation, 5.7.2007,

http://andrew.hedges.name/experiments/innerhtml/. [1.1.2008]

Hég04 Le Hégaret, P., Document Object Model (DOM) Techical Reports. W3C

technical reports, http://www.w3.org/DOM/DOMTR. [1.1.2008]

http://www.w3.org/DOM/DOMTR
http://andrew.hedges.name/experiments/innerhtml/
http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html
http://www.rubyonrails.org/
http://blogs.msdn.com/ie/archive/2007/01/04/ie-jscript-performance-recommendations-part-3-javascript-code-inefficiencies.aspx
http://blogs.msdn.com/ie/archive/2007/01/04/ie-jscript-performance-recommendations-part-3-javascript-code-inefficiencies.aspx
http://www.zeitoun.net/index.php?2007/06/22/46-how-to-implement-comet-with-php
http://www.zeitoun.net/index.php?2007/06/22/46-how-to-implement-comet-with-php
http://prototype-window.xilinus.com/
http://www.alistapart.com/articles/elastic/
http://www.alistapart.com/articles/elastic/
http://dev.portalzine.de/index?/pzImageCombine
http://dev.portalzine.de/index?/pzImageCombine
http://www.w3.org/2007/06/mobile-ajax/papers/nokia.grassel.pdf
http://www.w3.org/2007/06/mobile-ajax/papers/nokia.grassel.pdf
http://mail.google.com/
http://www.google.com/webhp?complete=1&hl=en
http://code.google.com/webtoolkit/
http://gears.google.com/

79

Hol99 Holzschlag, M., Dynamic vs. Fixed: A Proposal for Peace at the Table. web-

techniques, 10(October 1999). [Also available from

http://molly.com/articles/markupandcss/1999-10-dynamic.php 1.1.2008].

IBM07 IBM, WebSphere Application Server Feature Pack for Web 2.0 Beta Pro-

gram, https://www14.software.ibm.com/iwm/web/cc/earlyprograms/

websphere/ibmajaxw/. [1.1.2008]

IDC07 IDC, Converged Mobile Device Market Surges Ahead on 42% Growth in

2006, According to IDC. IDC Press Release, 26.2.2007, http://www.idc.-

com/getdoc.jsp?containerId=prUS20578607. [1.1.2008]

Jaa06 Jaaksi, A., Building consumer products with open source. LinuxDevices.-

com, 11.12.2006,

http://www.linuxdevices.com/articles/AT7621761066.html. [1.1.2008]

Jao06 Jaokar, A., Mobile web 2.0: AJAX for mobile devices – why mobile AJAX

will replace both J2ME and XHTML as the preferred platform for mobile

applications development. Open Gardens, futuretext, 1.1.2006,

http://opengardensblog.futuretext.com/archives/2006/01/mobile_web_20_a.

html. [1.1.2008]

JGR07 Jaokar, A., Georgi, R., Rieger, B., Mobile Ajax FAQ. Horizon Channel,

1.7.2007, http://www.horizonchannel.com/archives/26. [3.12.2007]

Jia99 Jia, W., A survey of web caching schemes for the Internet. ACM SIG-

COMM Computer Communications Review, 29,5(October 1999), pages 36-

46.

jQu07 jQuery, official site, http://jquery.com/. [1.1.2008]

Jus04 Justus, C., Google Suggest Dissected..., Server Side Guy blog, http://server-

sideguy.blogspot.com/2004/12/google-suggest-dissected.html. [1.1.2008]

Kal04 Kalat, J. W., Biological Psychology. Wadsworth Pub. Co., July 2003.

Kan07 Kangasharju, J., An XML Messaging Service for Mobile Devices. Licenti-

ate Thesis for the Department of Computer Science, Helsinki University,

4.2.2006, http://urn.fi/URN:NBN:fi-fe20061478. [1.1.2008]

Kes07 van Kesteren, A., The XMLHttpRequest Object. W3C Working Draft 10-

June-2007, http://www.w3.org/TR/XMLHttpRequest/. [1.1.2008]

Kin06 Kinnunen, K., GTK+ WebCore Project Home Page. SourceForge.net, 2006,

http://gtk-webcore.sourceforge.net/. [1.1.2008]

http://gtk-webcore.sourceforge.net/
http://www.w3.org/TR/XMLHttpRequest/
http://urn.fi/URN:NBN:fi-fe20061478
http://serversideguy.blogspot.com/2004/12/google-suggest-dissected.html
http://serversideguy.blogspot.com/2004/12/google-suggest-dissected.html
http://jquery.com/
http://www.horizonchannel.com/archives/26
http://opengardensblog.futuretext.com/archives/2006/01/mobile_web_20_a.html
http://opengardensblog.futuretext.com/archives/2006/01/mobile_web_20_a.html
http://www.linuxdevices.com/articles/AT7621761066.html
http://www.idc.com/getdoc.jsp?containerId=prUS20578607
http://www.idc.com/getdoc.jsp?containerId=prUS20578607
https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/ibmajaxw/
https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/ibmajaxw/
http://molly.com/articles/markupandcss/1999-10-dynamic.php

80

Kin07 Kingman, H., Nokia N800 gains a Mozilla-based browser. Linuxdevices.-

com, 19.7.2007, http://www.linuxdevices.com/news/NS8360022837.html.

[1.1.2008]

Kir06 Kirschner, H., HistoryManager, http://digitarald.de/playground/history.html.

[1.1.2008]

Kle05 Klein, A., DOM Based Cross Site Scripting or XSS of the Third Kind. Web

Application Security Consortium, Articles, 4.7.2005,

http://www.webappsec.org/projects/articles/071105.shtml. [1.1.2008]

KLT05 Kangasharju, J., Lindholm, T., Tarkoma, S., Requirements and design for

XML messaging in the mobile environment. Proc. 2nd International Work-

shop on Next Generation Networking Middleware (6.5.2005, Waterloo, ON,

Canada), 2005, pages 29-36. [Also available from

http://www.cs.helsinki.fi/u/jkangash/xml-messaging-mobile.pdf, 1.1.2008].

Kne06 Kneschke, J., COMET meets mod_mailbox. lighty's life, lighttpd's blog,

27.11.2006, http://blog.lighttpd.net/articles/2006/11/27/comet-meets-

mod_mailbox. [1.1.2008]

Koc04 Koch, P-P., A history of browsers. QuirksMode.org, 2004, http://www.-

quirksmode.org/browsers/history.html. [1.1.2008]

Koc05 Koch, P-P., You should've been @media - part 2. QuirksMode.org,

14.6.2005, http://www.quirksmode.org/blog/archives/2005/06/

you_shouldve_be_1.html. [1.1.2008]

Koc06 Koch, P-P., Benchmark – W3C DOM vs. innerHTML. QuirksMode.org,

August 2006, http://www.quirksmode.org/dom/innerhtml.html. [1.1.2008]

Kra05 Krantz, P., AJAX and Accessibility. Standards Schmandards, 1.3.2005,

http://www.standards-schmandards.com/2005/ajax-and-accessibility/.

[1.1.2008]

LaH03 Laukkanen, M., Helin, H., Web Services in Wireless Networks – What

Happened to the Performance? Proc. International Conference on Web Ser-

vices (ICWS'03), Las Vegas, Nevada, USA, June 2003, pages 278-284.

Law01 Lawton, G., Browsing the Mobile Internet. Computer, 34,12(December

2001), pages 18-21.

http://www.standards-schmandards.com/2005/ajax-and-accessibility/
http://www.quirksmode.org/dom/innerhtml.html
http://www.quirksmode.org/blog/archives/2005/06/you_shouldve_be_1.html
http://www.quirksmode.org/blog/archives/2005/06/you_shouldve_be_1.html
http://www.quirksmode.org/browsers/history.html
http://www.quirksmode.org/browsers/history.html
http://blog.lighttpd.net/articles/2006/11/27/comet-meets-mod_mailbox
http://blog.lighttpd.net/articles/2006/11/27/comet-meets-mod_mailbox
http://www.cs.helsinki.fi/u/jkangash/xml-messaging-mobile.pdf
http://www.webappsec.org/projects/articles/071105.shtml
http://digitarald.de/playground/history.html
http://www.linuxdevices.com/news/NS8360022837.html

81

Leb06 Lebedev, G., DHTML JavaScript Benchmark (DOM and innerHTML),

15.10.2007, http://www.gloo.ru/blogs/gloom.dhtml_javascript_benchmark.

_l_en.wiki.aspx. [1.1.2008]

Lec07 Lecomte, J., The Problem With innerHTML. Julien Lecomte's Blog,

12.12.2007, http://www.julienlecomte.net/blog/2007/12/38/. [1.1.2008]

Leh06 Lehtonen T., et al., Towards user-friendly mobile browsing. Proc. 2nd inter-

national workshop on Advanced architectures and algorithms for internet

delivery and applications, Pisa, Italy, 2006, article no. 6.

Ler06 Lerner, R., JavaScript. At the Forge series, Linux Journal,

2006,149(September 2006), page 10. [Also available from

http://www.linuxjournal.com/article/9131 17.12.2007].

LiB99 Lie, H.W., Bos, B., Cascading Style Sheets, level 1. W3C Recommendation

17.12.1996, revised 11.1.1999, http://www.w3.org/TR/CSS1. [1.1.2008]

LiE07 Livshits, B., Erlingsson, U., Using Web Application Construction Frame-

works To Protect Against Code Injection Attacks. Proc. 2007 workshop on

Programming languages and analysis for security (PLAS '07, 14.6.2007,

San Diego, California, USA), ACM, New York, NY, USA, 2007, pages 95-

104. [Also available from http://research.microsoft.com/~livshits/ 1.1.2008].

Lil00 Lilja, D. J., Measuring computer performance: A practitioner's guide. Cam-

bridge University Press, Cambridge, U.K., 2000.

Lun02 Lundqvist, D., Remote scripting with javascript.

http://www.dotvoid.com/view.php?id=13. [1.1.2008]

mad07 mad4milk, moo.fx – super lightweight javascript effects library,

http://moofx.mad4milk.net/. [1.1.2008]

Mae07 Maemo 4.0 Architecture, Maemo documentation, http://maemo.org/devel-

opment/documentation/how-tos/4-x/maemo_architecture.html. [1.1.2008]

Mar07 Martin, B., Ajax Timelines and the Semantic Web. Linux Journal,

2007,153(January 2007), page 8. [Also available from http://www.linux -

journal.com/article/9301 1.1.2008].

http://www.linuxjournal.com/article/9301
http://www.linuxjournal.com/article/9301
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://moofx.mad4milk.net/
http://www.dotvoid.com/view.php?id=13
http://research.microsoft.com/~livshits/
http://www.w3.org/TR/CSS1
http://www.linuxjournal.com/article/9131
http://www.julienlecomte.net/blog/2007/12/38/
http://www.gloo.ru/blogs/gloom.dhtml_javascript_benchmark._l_en.wiki.aspx
http://www.gloo.ru/blogs/gloom.dhtml_javascript_benchmark._l_en.wiki.aspx

82

Mic05 Microsoft Corporation, Secure Code. Managing a Secure IIS 6.0 Solution,

IIS 6.0 Technical Reference, Microsoft Windows Server TechCenter, Mi-

crosoft TechNet, 22.8.2005, http://technet2.microsoft.com/windowsserver/

en/library/d07fa94f-2b2c-4b31-9545-c97f4ec845b01033.mspx?mfr=true.

[1.1.2008]

Mic07a Microsoft Corporation, VBScript User's Guide. MSDN technical document,

http://msdn2.microsoft.com/en-us/library/sx7b3k7y.aspx. [1.1.2008]

Mic07b Microsoft Corporation, JavaScript (JScript/ECMAScript). MSDN technical

document, http://msdn2.microsoft.com/en-us/office/aa905433.aspx.

[1.1.2008]

Mic07c Microsoft Corporation, AJAX: The Official Microsoft ASP.NET Site,

http://asp.net/ajax/. [1.1.2008]

Mic07d Microsoft Corporation, ASP.NET AJAX Control Toolkit samples,

http://www.asp.net/ajax/ajaxcontroltoolkit/samples/. [1.1.2008]

Mol07 Moltzen, E., Mozilla Still Flummoxed by Firefox' Appetite for Memory.

ChannelWeb network, blogs, 11.11.2007,

http://www.crn.com/software/202804814. [1.1.2008]

Moz07 MozillaZine, Reducing memory usage – Firefox,

http://kb.mozillazine.org/Reducing_memory_usage_-_Firefox. [1.1.2008]

Nie96 Nielsen, J., Why Frames Suck (Most of the Time). Jakob Nielsen's Alert-

box, December 1996, http://www.useit.com/alertbox/9612.html. [1.1.2008]

Nie05 Nielsen, J., Forms vs. Applications. Jakob Nielsen's Alertbox, September

19th 2005, http://www.useit.com/alertbox/forms.html. [1.1.2008]

Nok06 Nokia Plc., Overview of AJAX Support in Nokia Web Browser v1.0 (Eng-

lish). Forum Nokia, 2006, http://www.forum.nokia.com/info/sw.nokia.

com/id/1e66bc62-0a3e-4e36-b8c9-4e20e8b8cdd8/Overview_

of_AJAX_Support_in_Nokia_Web _Browser_v1_0_en.pdf.html. [1.1.2008]

Nok07a Nokia Plc., Featured devices. The maemo platform, Forum Nokia, Plat-

forms, http://www.forum.nokia.com/main/platforms/maemo/. [1.1.2008]

Nok07b Nokia Plc., S60WebKit. Projects, Open Source at Nokia, http://open-

source.nokia.com/. [1.1.2008]

Nok07c Nokia Plc., Nokia N800 Internet Tablet Technical Specifications. Nokia

Phones, http://www.nokiausa.com/A4779086. [1.1.2008]

http://www.nokiausa.com/A4511049
http://opensource.nokia.com/
http://opensource.nokia.com/
http://www.forum.nokia.com/main/platforms/maemo/index.html
http://www.forum.nokia.com/info/sw.nokia.com/id/1e66bc62-0a3e-4e36-b8c9-4e20e8b8cdd8/Overview_of_AJAX_Support_in_Nokia_Web_Browser_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/1e66bc62-0a3e-4e36-b8c9-4e20e8b8cdd8/Overview_of_AJAX_Support_in_Nokia_Web_Browser_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/1e66bc62-0a3e-4e36-b8c9-4e20e8b8cdd8/Overview_of_AJAX_Support_in_Nokia_Web_Browser_v1_0_en.pdf.html
http://www.useit.com/alertbox/forms.html
http://www.useit.com/alertbox/9612.html
http://kb.mozillazine.org/Reducing_memory_usage_-_Firefox
http://www.crn.com/software/202804814
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
http://asp.net/ajax/
http://msdn2.microsoft.com/en-us/office/aa905433.aspx
http://msdn2.microsoft.com/en-us/library/sx7b3k7y.aspx
http://technet2.microsoft.com/windowsserver/en/library/d07fa94f-2b2c-4b31-9545-c97f4ec845b01033.mspx?mfr=true
http://technet2.microsoft.com/windowsserver/en/library/d07fa94f-2b2c-4b31-9545-c97f4ec845b01033.mspx?mfr=true

83

Nok07d Nokia Plc., Widgets. Forum Nokia, Web Technologies, http://www.for-

um.nokia.com/main/resources/technologies/browsing/ widgets.html.

[1.1.2008]

Nok07e Nokia Plc, S60WebKit FAQ. Open Source at Nokia, http://opensource.noki-

a.com/projects/S60browser/s60-oss-browser-faq.html. [1.1.2008]

Not06 Nottingham, M., The State of Browser Caching. mnot's Web log, 3.6.2006,

http://www.mnot.net/blog/2006/05/11/browser_caching. [1.1.2008]

NVD07 National Vulnerability Database, CVE and CCE Vulnerability Database Ad-

vanced Search. National Institute of Standards and Technology, 2007,

http://nvd.nist.gov/nvd.cfm?advancedsearch. [1.1.2008]

Oll07 Ollman, G., HTML Code Injection and Cross-site scripting - Understanding

the cause and effect of CSS (XSS) Vulnerabilities. Technical Info, whitepa-

pers, http://www.technicalinfo.net/papers/CSS.html. [1.1.2008]

Ols07 Olsson, T., Graceful Degradation & Progressive Enhancement. Acces-

sites.org, 6.2.2007, http://accessites.org/site/2007/02/graceful-degradation-

progressive-enhancement/1/. [1.1.2008]

Ope07a Opera Software ASA, Opera Mobile. Opera's web site, http://www.opera.-

com/products/mobile/. [1.1.2008]

Ope07b Opera Software ASA, Opera Mobile™ 8.65 for Windows Mobile now

available for Smartphone and Pocket PC enthusiasts, handset OEMs and

mobile carriers. Opera's web site, press release,

http://www.opera.com/pressreleases/en/2007/10/01/. [1.1.2008]

Par07 Parmenter, S., Memory fragmentation. Pavlov.net, 10.11.2007, http://blo-

g.pavlov.net/2007/11/10/memory-fragmentation/. [1.1.2008]

Pav06 PavingWays, XML 2006 Events, Mobile Event Finder,

http://pwmwa.com/xml06/. [1.1.2008]

Pay07 Payne, L., What is a Toolkit? Dojo Toolkit Documentation, The Dojo Book

0.4, Introduction, 1.9.2007, http://dojotoolkit.org/book/dojo-book-0-4/part-

1-introduction/what-toolkit. [1.1.2008]

PCT07 Prototype Core Team, Prototype JavaScript framework, http://www.proto-

typejs.org/. [1.1.2008]

PHP07 The PHP Group, PHP: Hypertext Preprocessor, http://www.php.net/.

[1.1.2008]

http://www.php.net/
http://www.prototypejs.org/
http://www.prototypejs.org/
http://dojotoolkit.org/book/dojo-book-0-4/part-1-introduction/what-toolkit
http://dojotoolkit.org/book/dojo-book-0-4/part-1-introduction/what-toolkit
http://pwmwa.com/xml06/
http://blog.pavlov.net/2007/11/10/memory-fragmentation/
http://blog.pavlov.net/2007/11/10/memory-fragmentation/
http://www.opera.com/pressreleases/en/2007/10/01/
http://www.opera.com/products/mobile/
http://www.opera.com/products/mobile/
http://accessites.org/site/2007/02/graceful-degradation-progressive-enhancement/1/
http://accessites.org/site/2007/02/graceful-degradation-progressive-enhancement/1/
http://www.technicalinfo.net/papers/CSS.html
http://nvd.nist.gov/nvd.cfm?advancedsearch
http://www.mnot.net/blog/2006/05/11/browser_caching
http://opensource.nokia.com/projects/S60browser/s60-oss-browser-faq.html
http://opensource.nokia.com/projects/S60browser/s60-oss-browser-faq.html
http://www.forum.nokia.com/main/resources/technologies/browsing/widgets.html
http://www.forum.nokia.com/main/resources/technologies/browsing/widgets.html

84

Pro07 Proietti, V., MooTools – the compact javascript framework, http://www.-

mootools.net/. [1.1.2008]

Pup07a Pupius, D., Code changes to prepare Gmail for the future. The Official

Gmail blog, 29.10.2007, http://gmailblog.blogspot.com/2007/10/code-

changes-to-prepare-gmail-for.html. [1.1.2008]

Pup07b Pupius, D., Garbage Collection in IE6, 7.3.2007,

http://pupius.co.uk/log/2007-03-07/. [1.1.2008]

Raa07 Raatikainen, K., Mobile Ajax. Position paper, W3C/OpenAjax Alliance

Workshop on Mobile Ajax (Microsoft Silicon Valley campus, Mountain

View, California, USA, 28.9.2007), http://www.w3.org/2007/06/mobile-

ajax/papers/hiit.raatikainen.MobileAjaxPositionPaper.pdf. [1.1.2008]

Rah06 Rahman, R., innerHTML vs createElement. Cute solutions and something

else..., 4.7.2006, http://cute-solutions.blogspot.com/2006/07/innerhtml-vs-

createelement.html. [1.1.2008]

RHJ99 Raggett, D., Le Hors, A., Jacobs. I., HTML 4.01 Specification. W3C Re-

commendation 24.12.1999, http://www.w3.org/TR/html401/. [1.1.2008]

Rob07 Roberts, E., Resurrecting the Applet Paradigm. Proc. 38th SIGCSE technic-

al symposium on Computer science education (SIGCSE'07, 7.-10.3.2007,

Covington, Kentucky, USA), ACM Press, New York, NY, USA, pages 521-

525.

Rud01 Ruderman, J., The Same Origin Policy. JavaScript Security, mozilla.org,

24.8.2001, http://www.mozilla.org/projects/security/components/same-ori-

gin.html. [1.1.2008]

Rus06 Russell, A., Comet: Low Latency Data for the Browser. Continuing Inter-

mittent Incoherency, 23.3.2006, http://alex.dojotoolkit.org/?p=545.

[1.1.2008]

Rus07a Russell, A., et al., Bayeux Protocol – Bayeux 1.0draft0. Dojo Foundation,

2007, http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html. [1.1.2008]

Rus07b Russell, A., The Browser.Next list. Continuing Intermittent Incoherency,

12.9.2007, http://alex.dojotoolkit.org/?p=623. [1.1.2008]

RSS07 RSS Advisory Board, RSS 2.0 Specification (version 2.0.10),

http://www.rssboard.org/rss-specification. [1.1.2008]

http://www.rssboard.org/rss-specification
http://alex.dojotoolkit.org/?p=623
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://alex.dojotoolkit.org/?p=545
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.w3.org/TR/html401/
http://cute-solutions.blogspot.com/2006/07/innerhtml-vs-createelement.html
http://cute-solutions.blogspot.com/2006/07/innerhtml-vs-createelement.html
http://www.w3.org/2007/06/mobile-ajax/papers/hiit.raatikainen.MobileAjaxPositionPaper.pdf
http://www.w3.org/2007/06/mobile-ajax/papers/hiit.raatikainen.MobileAjaxPositionPaper.pdf
http://pupius.co.uk/log/2007-03-07/
http://gmailblog.blogspot.com/2007/10/code-changes-to-prepare-gmail-for.html
http://gmailblog.blogspot.com/2007/10/code-changes-to-prepare-gmail-for.html
http://www.mootools.net/
http://www.mootools.net/

85

S6007 S60 3rd Edition, S60.com, http://www.s60.com/business/productinfo/ soft-

wareversions/3rdedition. [1.1.2008]

Sco06a Scott, L., Ajax: Home Was Never Like This! Musings from Mars, 9.2.2006,

http://www.musingsfrommars.org/2006/02/ajax-home-was-never-like-

this.html. [1.1.2008]

Sco06b Scott, L., Ajax/DHTML Library Scorecard: How Cross Platform Are They?

Musings from Mars, 4.3.2006, http://www.musingsfrommars.org/2006/03/

ajax-dhtml-library-scorecard.html. [1.1.2008]

scr07 script.aculo.us, http://script.aculo.us/. [1.1.2008]

Sec07 Section 508, The Road to Accessibility, http://www.Section508.gov/.

[1.1.2008]

She04 Shea, D., CSS Sprites: Image Slicing’s Kiss of Death. A list apart, number

173, 5.3.2004, http://alistapart.com/articles/sprites. [1.1.2008]

ShM97 Shubin, H., Meehan, M., Navigation in Web Applications. Interactions, vol.

4, issue 6 (Nov./Dec. 1997), pages 13-17.

SIM07 SIMILE project, Timeline, http://simile.mit.edu/timeline/. [1.1.2008]

Sky07 Skype Ltd., Skype official website, http://www.skype.com/intl/en/.

[1.1.2008]

Smi06 Smith, K., Simplifying Ajax-Style Web Development. Computer, 39,5(May

2006), pages 98-101.

SmS07 Smullen, C. W., Smullen, S. A., AJAX application server performance.

SoutheastCon, 2007. Proc. IEEE, March 2007, pages 154-158.

Sou07 Souders, S., High Performance Web Sites, http://stevesouders.com/hpws/.

[1.1.2008]

StH04 Stenback, J., Heninger, A., DOM Level 3 Load and Save Specification 1.0.

W3C Recommendation 07-April-2004, http://www.w3.org/TR/2004/REC-

DOM-Level-3-LS-20040407. [1.1.2008]

Sri01 Srinivan, R. N., Java Web Start to the rescue. JavaWorld.com, 7.6.2001,

http://www.javaworld.com/javaworld/jw-07-2001/jw-0706-webstart.html.

[1.1.2008]

StS02 Stein, L. D., Stewart, J. N., The World Wide Web Security FAQ, version

3.1.2. W3C, 4.2.2002, http://www.w3.org/Security/Faq/. [1.1.2008]

http://www.w3.org/Security/Faq/
http://www.javaworld.com/javaworld/jw-07-2001/jw-0706-webstart.html
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407
http://stevesouders.com/hpws/
http://www.skype.com/intl/en/
http://simile.mit.edu/timeline/
http://alistapart.com/articles/sprites
http://www.section508.gov/
http://script.aculo.us/
http://www.musingsfrommars.org/2006/03/ajax-dhtml-library-scorecard.html
http://www.musingsfrommars.org/2006/03/ajax-dhtml-library-scorecard.html
http://www.musingsfrommars.org/2006/02/ajax-home-was-never-like-this.html
http://www.musingsfrommars.org/2006/02/ajax-home-was-never-like-this.html
http://www.s60.com/business/productinfo/softwareversions/3rdedition
http://www.s60.com/business/productinfo/softwareversions/3rdedition

86

Sun07 Sun Microsystems, Mobile Information Device Profile (MIDP); JSR 37, JS-

R118, http://java.sun.com/products/midp/. [1.1.2008]

Thc07 Thiessen, P., Chen, C., Ajax live regions: chat as a case example. Proc.

2007 international cross-disciplinary conference on Web accessibility

(W4A'07, 7.-8.3.2007, Banff, Canada), ACM, New York, NY, USA, pages

7-14.

The06 Theurer, T., Performance Research, Part 1: What the 80/20 Rule Tells Us

about Reducing HTTP Requests. Yahoo! User Interface Blog, 28.11.2006,

http://yuiblog.com/blog/2006/11/28/performance-research-part-1/.

[1.1.2008]

The07a Theurer, T., Performance Research, Part 4: Maximizing Parallel Downloads

in the Carpool Lane. Yahoo! User Interface Blog, 11.4.2007, http://yuiblog.-

com/blog/2007/04/11/performance-research-part-4/. [1.1.2008]

The07b Theurer, T., Performance Research, Part 2: Browser Cache Usage – Ex-

posed! Yahoo! User Interface Blog, 4.1.2007,

http://yuiblog.com/blog/2007/01/04/performance-research-part-2/.

[1.1.2008]

Tok07 Toker, A., WebKit Maemo port, N800 and the EAL. Alp Toker's blog,

7.8.2007, http://www.atoker.com/blog/2007/08/07/webkit-maemo-port-

n800-and-the-eal/. [1.1.2008]

UMT07 UMTSWorld.com, 3G and UMTS Frequently Asked Questions,

http://www.umtsworld.com/umts/faq.htm. [1.1.2008]

VeF05 Venkatachalam, V., Franz, M., Power reduction techniques for micropro-

cessor systems. ACM Computing Surveys (CSUR), 37,3(September 2005),

pages 195-237.

VRP05 Vacirca, F., Ricciato, F., Pilz, R., Large-scale RTT measurements from an

operational UMTS/GPRS network. Proc. First International Conference on

Wireless Internet, 2005 (WICON'05), 10.-14.7.2005, pages 190-197.

W3C03 World Wide Web Consortium, Some early ideas for HTML.

http://www.w3.org/MarkUp/historical. [1.1.2008]

Wal07 Walker, J., CSRF Attacks or How to avoid explosing your GMail contacts.

Joe Walker's Blog, 1.1.2007, http://getahead.org/blog/joe/2007/01/01/

csrf_attacks_or_how_to_avoid_exposing_your_gmail_contacts.html.

[1.1.2008]

http://getahead.org/blog/joe/2007/01/01/csrf_attacks_or_how_to_avoid_exposing_your_gmail_contacts.html
http://getahead.org/blog/joe/2007/01/01/csrf_attacks_or_how_to_avoid_exposing_your_gmail_contacts.html
http://www.w3.org/MarkUp/historical
http://www.umtsworld.com/umts/faq.htm
http://www.atoker.com/blog/2007/08/07/webkit-maemo-port-n800-and-the-eal/
http://www.atoker.com/blog/2007/08/07/webkit-maemo-port-n800-and-the-eal/
http://yuiblog.com/blog/2007/01/04/performance-research-part-2/
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/
http://yuiblog.com/blog/2006/11/28/performance-research-part-1/
http://java.sun.com/products/midp/

87

Web05a Webber, J., Mapping Google. as simple as possible, but no simpler blog,

9.2.2005, http://jgwebber.blogspot.com/2005/02/mapping-google.html.

[1.1.2008]

Web05b Webber, J., Making the Back Button Dance. as simple as possible, but no

simpler blog, 12.2.2005, http://jgwebber.blogspot.com/2005/02/making-

back-button-dance.html. [1.1.2008]

Web06 Webb, D., The JavaScript Library World Cup. SitePoint, JavaScript & Ajax

Tutorials, 14.6.2006, http://www.sitepoint.com/article/javascript-library/.

[1.1.2008]

Web07a The WebKit Open Source Project, http://webkit.org/. [1.1.2008]

Web07b Webtide, Acme Auctions auction demonstration site, http://www.webtide.-

com/auctiondemo/. [1.1.2008]

Web07c Webtide, the Ajax and Comet Server, http://www.webtide.com/. [1.1.2008]

Wei06 Weiss, A., The Web Designer's Dilemma: When Standards and Practice Di-

verge. netWorker 10,1(March 2006), pages 18-25.

Whi05 White, A., Measuring the benefits of Ajax. Developer.com, XML Articles,

October 2005,

http://www.developer.com/xml/article.php/10929_3554271_1. [1.1.2008]

Wik07a Wikipedia, ECMAScript, http://en.wikipedia.org/wiki/ECMAScript.

[1.1.2008]

Wik07b Wikipedia, Cross-site scripting, http://en.wikipedia.org/wiki/XSS.

[1.1.2008]

Wil03 Wilson, B., Browser Timelines, 2003,

http://www.blooberry.com/indexdot/history/browsers.htm. [1.1.2008]

W-J07a Wilton-Jones, M., The history of JavaScript.

http://www.howtocreate.co.uk/jshistory.html. [1.1.2008]

W-J07b Wilton-Jones, M., XML importing script. http://www.howtocreate.co.uk/tu-

torials/jsexamples/importingXML.html. [1.1.2008]

W-J07c Wilton-Jones, M., Communicating with the server. http://www.howtocre-

ate.co.uk/loadingExternalData.html. [1.1.2008]

W-J07d Wilton-Jones, M., Safari and page load timing. http://www.howtocre-

ate.co.uk/safaribenchmarks.html. [1.1.2008]

http://www.howtocreate.co.uk/safaribenchmarks.html
http://www.howtocreate.co.uk/safaribenchmarks.html
http://www.howtocreate.co.uk/loadingExternalData.html
http://www.howtocreate.co.uk/loadingExternalData.html
http://www.howtocreate.co.uk/tutorials/jsexamples/importingXML.html
http://www.howtocreate.co.uk/tutorials/jsexamples/importingXML.html
http://www.howtocreate.co.uk/jshistory.html
http://www.blooberry.com/indexdot/history/browsers.htm
http://en.wikipedia.org/wiki/XSS
http://en.wikipedia.org/wiki/ECMAScript
http://www.developer.com/xml/article.php/10929_3554271_1
http://www.webtide.com/
http://www.webtide.com/auctiondemo/
http://www.webtide.com/auctiondemo/
http://webkit.org/
http://www.sitepoint.com/article/javascript-library/
http://jgwebber.blogspot.com/2005/02/making-back-button-dance.html
http://jgwebber.blogspot.com/2005/02/making-back-button-dance.html
http://jgwebber.blogspot.com/2005/02/mapping-google.html

88

W-J07e Wilton-Jones, M., Browser speed comparisons. http://www.howtocre-

ate.co.uk/browserSpeed.html. [1.1.2008]

Wri07 Wright, G., WebKit and the N800. George Wright's Blog, 7.8.2007,

http://blog.gwright.org.uk/articles/2007/08/07/webkit-and-the-n800.

[1.1.2008]

Yan07 Yank, K., Simply JavaScript: The Three Layers of the Web. SitePoint,

JavaScript & Ajax Tutorials, 27.7.2007, http://www.sitepoint.com/article/

simply-javascript/. [1.1.2008]

Yah07a Yahoo! Inc., Graded Browser Support. Yahoo! Developer Network,

http://developer.yahoo.com/yui/articles/gbs/index.html. [1.1.2008]

Yah07b Yahoo! Inc., The Yahoo! User Interface Library (YUI). Yahoo! Developer

Network, http://developer.yahoo.com/yui/. [1.1.2008]

Yah07c Yahoo! Inc., Flickr, http://flickr.com/. [1.1.2008]

Yah07d Yahoo! Inc., Flickr: Mobile Tools, http://www.flickr.com/tools/mobile/.

[1.1.2008]

Yah07e Yahoo! Inc., Best Practices for Speeding Up Your Web Site. Yahoo! De-

veloper Network, http://developer.yahoo.com/performance/rules.html.

[1.1.2008]

Yah07f Yahoo! Inc., Yahoo! Mail, http://mail.yahoo.com/. [1.1.2008]

You07 YouTube, http://www.youtube.com/. [1.1.2008]

YTV07 Pääkaupunkiseudun yhteistyövaltuuskunta YTV, Journey Planner for Cyc-

ling, http://kevytliikenne.ytv.fi/?lang=en. [1.1.2008]

Yu06 Yu, J., et al., OpenXUP: an Alternative Approach to Developing Highly In-

teractive Web Applications. Proc. 6th International conference on Web

engineering (11.-14.7.2006, Palo Alto, California, USA), ACM, New York,

NY, USA 2006, pages 289-296. [Also available from http://www.cse.un-

sw.edu.au/~jyu/icwe06/fp697-yu.pdf, 1.1.2008].

http://www.cse.unsw.edu.au/~jyu/icwe06/fp697-yu.pdf
http://www.cse.unsw.edu.au/~jyu/icwe06/fp697-yu.pdf
http://kevytliikenne.ytv.fi/?lang=en
http://www.youtube.com/
http://mail.yahoo.com/
http://developer.yahoo.com/performance/rules.html
http://www.flickr.com/tools/mobile/
http://flickr.com/
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/articles/gbs/index.html
http://www.sitepoint.com/article/simply-javascript/
http://www.sitepoint.com/article/simply-javascript/
http://blog.gwright.org.uk/articles/2007/08/07/webkit-and-the-n800
http://www.howtocreate.co.uk/browserSpeed.html
http://www.howtocreate.co.uk/browserSpeed.html

1

Appendix 1. Test notes

Appendix 1 contains my notes from the capability tests and performance measurements.

The notes have been gone through only marginal editing, as the intent is only to provide

the numerical results for additional analysis. Each case contains a time stamp in order to

make it possible for developers to verify the actual versions of the target applications.

Toolkit versions have been recorded if they were available in the source code. Results

marked with a red color signal that the browser's capability test was rated as a failure.

Additional iterations have been performed during selected tests. Reasons for the extra

observations are recorded in the notes. The usual reason is a search for memory leaks.

Name PWC-OS demo application
Category prototype + window extension

Version(s)
URL http://prototype-window.xilinus.com/PWC-OS
Test description loading time, measurement ends when windows and background are visible, border shadows drawn last.
test begun 29.10.07 18:13
test ended 29.10.07 20:44

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev

0 N95 / S60 Web Browser cached 7,2 6,9 7,2 7,1 6,9 6,8 7,5 7,4 6,9 7,2 7,12 7,14 0,23
1 N95 / Opera Mobile cached 3,1 3,1 3,1 3,2 3,1 3,2 3,0 3,1 3,1 3,0 3,09 3,09 0,06
2 N800 / microb cached 12,3 11,4 11,2 12,2 11,7 11,2 11,5 11,2 11,2 12,0 11,6 11,48 0,43
3 N800 / opera cached 9,5 9,6 9,4 9,4 9,1 9,4 9,6 9,4 9,8 9,3 9,46 9,44 0,19
4 iPhone cached 15,1 10,4 14,5 10,1 17,7 10,2 17,6 9,9 15,2 10,0 13,08 12,45 3,27

5 N95 / S60WB (B) 13,5 13,9 13,5 13,0 13,1 13,2 14,2 13,4 13,1 14,0 13,48 13,42 0,41
6 N95 / Opera Mobile (D) 4,6 4,9 4,6 4,7 5,4 4,5 6,6 8,9 4,7 4,6 5,34 4,7 1,39
7 N800 / microb (B) 20,8 16,1 19,9 15,9 17,9 15,5 15,4 15,6 15,6 15,7 16,83 15,77 2,01
8 N800 / opera (B) 12,6 12,4 19,5 11,9 11,6 11,7 11,6 11,6 15,6 11,7 13,03 11,81 2,58
9 iPhone (B) 18,3 18,7 18,4 15,5 15,3 14,8 17,5 15,7 14,1 17,6 16,6 16,6 1,68

Notes
ref id nota bene

all at test start, browser cache is cleared. after initial loading, app is tested for defects.
0 Task bar is positioned in the middle of the screen. D&D and all else works. (MINOR)
1 Does not render the windows at all. (FAILURE)
2 Everything works, but extremely slowly. (MINOR)
3 No D&D available, buttons work. (MINOR)
4 No D&D available, buttons work, desktop dimensions too large. (MINOR)
4 Note the variance in results

prototype 1.5.1_rc3, script.aculo.us effects.js v1.7.1_beta1, window v1.3, script.aculo.us dragdrop.js
v1.7.1_beta1

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

Cleared results

N95 / S60WB
(B)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(B)

iPhone (B)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

Cached results

iteration

se
co

nd
s

2

Name script.aculo.us shopping cart
Category prototype + script.aculo.us
Version(s) prototype 1.3.0
URL http://demo.script.aculo.us/shop
Test description loading time, test ends when all elements have loaded.
test begun 29.10.07 21:42
test ended 29.10.07 22:51

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev

10 N95 / S60 Web Browser cached 4,0 3,6 2,8 2,9 3,0 3,0 2,9 2,9 3,0 2,9 3,1 2,94 0,4
11 N95 / Opera Mobile cached 2,0 1,7 1,6 2,0 2,2 1,7 2,5 1,7 1,6 1,8 1,89 1,78 0,3
12 N800 / microb cached
13 N800 / opera cached 2,7 2,9 3,1 3,0 2,8 2,8 2,9 2,7 2,4 2,9 2,82 2,86 0,19
14 iPhone cached 3,8 3,4 4,1 3,6 4,6 3,7 3,9 3,1 3,0 2,6 3,57 3,65 0,57

15 N95 / S60WB (A) 5,5 5,3 6,3 5,8 6,1 5,7 5,9 6,8 6,7 8,1 6,23 6,01 0,81
16 N95 / Opera Mobile (C) 5,0 3,0 4,3 8,2 5,7 3,3 2,8 2,8 3,0 3,4 4,14 3,34 1,74
17 N800 / microb (D)
18 N800 / opera (C) 4,0 4,0 3,8 3,8 6,3 3,9 3,8 5,0 3,8 3,9 4,23 3,89 0,82
19 iPhone (C) 4,9 3,3 4,8 4,4 5,8 4,5 4,7 3,6 3,3 3,4 4,27 4,46 0,84

Notes
ref id nota bene

all at test start, browser cache is cleared. after initial loading, app is tested for defects.
10 renders correctly. d&d possible, but tricky due to 4-way nav button with selector in middle (PASSED)
11 d&d not possible, some layout bugs (MAJOR)
12 browser crashes, measurement impossible (FAILURE)
13 d&d not possible, some layout bugs (MAJOR)
14 d&d not possible. (MAJOR)

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (C)

N800 / microb
(D)

N800 / opera
(C)

iPhone (C)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cached results

iteration

se
co

nd
s

3

Name 15days of jquery Edit-in-place 2
Category jQuery
Version(s)
URL http://15daysofjquery.com/examples/jqueryEditInPlace/demo.php
Test description loading time, test ends when text has stopped flowing
test started 30.10.07 09:13
test finished 30.10.07 10:45

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev

20 N95 / S60 Web Browser cached 2,9 2,2 1,8 1,9 1,9 1,8 2,2 1,9 2,0 2,0 2,05 1,94 0,34
21 N95 / Opera Mobile cached 2,3 2,1 2,1 2,0 2,0 2,1 2,1 2,0 2,0 1,9 2,06 2,06 0,09
22 N800 / microb cached 5,7 5,2 5,6 5,1 5,6 5,2 5,5 5,4 5,2 5,3 5,38 5,35 0,21
23 N800 / opera cached 4,1 3,8 3,8 3,9 3,7 3,8 3,7 3,8 3,6 3,8 3,81 3,82 0,13
24 iPhone cached 4,1 3,0 3,6 3,1 3,1 3,2 3,3 3,2 3,2 3,0 3,26 3,15 0,34

25 N95 / S60WB (A) 4,0 4,0 3,9 3,8 5,0 3,0 4,0 5,1 3,8 3,8 4,04 3,96 0,6
26 N95 / Opera Mobile (A) 4,0 3,3 3,1 3,1 3,8 2,9 3,4 3,2 2,9 3,2 3,3 3,21 0,37
27 N800 / microb (C) 6,4 5,8 6,6 7,0 6,9 6,2 6,5 6,3 6,5 6,4 6,44 6,46 0,34
28 N800 / opera (A) 5,1 5,1 5,2 5,0 5,1 5,0 5,1 5,1 5,0 5,2 5,07 5,06 0,07
29 iPhone (A) 4,9 4,0 3,9 3,5 3,9 3,9 4,1 4,0 4,3 4,4 4,07 3,97 0,38

Notes
ref id nota bene

all at test start, browser cache is cleared. after initial loading, app is tested for defects.
20 No defects found (PASSED)
21 No defects found (PASSED)
22 After saving and receiving the alert, only the saved paragraph is shown. (MAJOR)
23 No defects found (PASSED)
24 No defects found (PASSED)

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (A)

N800 / microb
(C)

N800 / opera
(A)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

Cached results

iteration

se
co

nd
s

4

Name Dynamically loading TreeView
Category YUI
Version(s) YUI, Event, Connection, Treeview, 2.3.1
URL http://developer.yahoo.com/yui/examples/treeview/dynamic_tree_clean.html
Test description loading time, test ends whentext has stopped flowing or throbber stops (whichever last)
test started 30.10.07 11:15
test finished 30.10.07 12:36

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev
30 N95 / S60 Web Browser cached 2,8 2,7 2,8 2,7 2,7 2,9 2,7 2,7 2,7 2,7 2,73 2,74 0,06
31 N95 / Opera Mobile cached 2,8 3,1 3,1 3,1 3,4 3,2 2,9 3,2 3,0 2,9 3,06 3,06 0,17
32 N800 / microb cached 4,4 4,3 4,4 4,4 4,2 4,0 4,4 5,2 4,19 4,36 4,35 0,35
33 N800 / opera cached 4,9 4,7 4,6 5,0 4,6 4,7 6,2 4,6 4,9 4,6 4,89 4,74 0,48
34 iPhone cached 9,7 3,5 9,9 3,6 11,6 3,4 8,5 2,6 11,4 2,6 6,69 6,06 3,84

35 N95 / S60WB (A) 8,6 8,2 7,2 8,8 7,3 6,6 6,7 9,5 7,3 9,9 8,01 7,77 1,16
36 N95 / Opera Mobile (D) 8,5 11,2 9,0 10,9 6,6 6,5 10,2 16,6 14,8 8,6 10,27 9,59 3,27
37 N800 / microb (A) 8,0 7,3 7,4 7,2 7,0 7,1 7,2 6,8 7,7 7,0 7,26 7,15 0,36
38 N800 / opera (D) 8,2 9,0 9,5 10,3 9,5 9,2 9,7 9,7 8,4 8,9 9,24 9,32 0,63
39 iPhone (A) 10,4 11,2 10,2 8,8 11,7 10,2 11,0 9,1 11,9 11,0 10,54 10,7 1,02

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
30 No defects detected (PASSED)
31 Does not render tree lines, clicking on visible links engages pacifier but no results (FAILURE)
33 Does not render tree lines, clicking on visible links engages pacifier but no results (FAILURE)
33 Throbber starts twice, items remaining shows 1-10 of 10 and then 11-13 of 13.
32 No defects detected (PASSED)
32 On second iteration, browser crashed. Time was as follows 7,2
30&31 Noticed that N95 rebooted by itself after running these and test 33, during test 32. Probably unrelated to testing.
34 No defects detected (PASSED)
34 Note the variance.
33&38 Does not always render even the first-level links. Seems to be timing-oriented, sometimes loads on second (cached) try.

1 2 3 4 5 6 7 8 9 10
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (D)

N800 / microb
(A)

N800 / opera
(D)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

Cached results

iteration

se
co

nd
s

5

Name Demo Mail Application
Category dojo toolkit
Version(s) dojo 0.9.0
URL http://www.cs.helsinki.fi/u/pervila/dojo-release-0.9.0/dijit/demos/mail.html
Test description loading time, test ends when layout has stopped flowing or throbber stops (whichever last)
test started 30.10.07 14:43
test finished 30.10.07 17:25

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev
40 N95 / S60 Web Browser cached 4,6 4,4 4,0 3,8 4,0 3,9 4,1 3,8 4,0 4,0 4,1 4,0 0,24
41 N95 / Opera Mobile cached 7,6 7,5 7,4 8,4 7,3 7,7 7,7 7,4 8,0 8,0 7,7 7,7 0,34
42 N800 / microb cached 29,4 32,4 29,3 29,3 29,3 29,7 30,2 28,5 29,8 29,4 1,17
43 N800 / opera cached 26,7 26,0 26,3 26,1 29,3 26,1 25,7 25,9 25,6 25,9 26,4 26,0 1,06
44 iPhone cached 27,0 31,9 26,7 29,6 26,6 31,1 26,4 31,3 26,6 31,5 28,9 28,3 2,41

45 N95 / S60WB (D) 5,6 5,0 6,3 5,8 5,5 4,2 8,2 8,0 6,0 7,6 6,2 5,9 1,33
46 N95 / Opera Mobile (D) 7,6 8,6 7,6 7,4 8,6 7,5 7,5 8,4 7,8 9,4 8,0 7,7 0,66
47 N800 / microb (B) 31,8 32,3 30,7 31,8 30,7 30,3 30,2 31,2 29,6 30,9 31,0 30,8 0,83
48 N800 / opera (C) 28,9 28,0 28,9 28,7 27,1 27,1 27,1 28,0 27,6 27,2 27,9 27,8 0,75
49 iPhone (A) 31,9 31,1 31,3 31,5 31,3 31,4 31,3 31,2 31,5 31,0 31,4 31,3 0,26
Notes
ref id nota bene avg cache diff
all at test start, browser cache is cleared. after initial loading, app is tested for defects. 2,17
all the dojo email online test was recently broken, decided to run from the local web server 0,33
40 No message list, no layout, buttons dead. Application unusable (FAILURE) 1,19
41 No message list, no layout, buttons dead. Application unusable (FAILURE) 1,51
41 Throbber continues way past layout flow, no changes 2,51
42 Almost no defects. New message slow, autocomplete in to- or subject fields do not work. (MINOR)
42 Fails to load application 4 times, refresh or cache clearing helps. (MAJOR)
42 Browser crashed during 7. iteration, failed to load app during 9.
43 Fails to display msg header list in any folder, New message broken (MAJOR)
44 Initially: Options menu works, new message button visible, get mail works, everything else broken. (FAILURE)
44 Subsequently, everything seems to work (PASSED)
47&48 There doesn't seem to be any difference on when the cache is cleared, as long as its cleared outside of the app.
42&43&44 Loading a message with the color picker is noticeably slow , 3~4 seconds
all This app requires some rendering: effect of caching the files diminishes into very small.

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(C)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cached results

iteration

se
co

nd
s

6

Name XML Form
Category Ext JS
Version(s) Library 2.0 beta 1
URL http://extjs.com/deploy/dev/examples/form/xml-form.html
Test description Loading time. Test ends when layout has stopped flowing or throbber stops (whichever latest)
test started 30.10.07 18:38
test finished 30.10.07 21:20

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev
50 N95 / S60 Web Browser cached 16,0 14,2 14,7 15,6 15,2 14,7 17,7 16,1 14,1 14,6 15,3 14,9 1,11
51 N95 / Opera Mobile cached 10,5 10,3 9,2 8,8 9,7 8,9 10,2 9,7 9,6 9,7 9,7 9,7 0,58
52 N800 / microb cached 13,6 13,4 15,0 13,4 13,5 14,3 13,6 13,3 13,9 13,8 13,8 13,6 0,51
53 N800 / opera cached 8,1 8,2 8,4 8,4 15,5 8,5 8,3 8,3 8,3 8,1 9,0 8,3 2,27
54 iPhone cached 20,4 19,1 21,2 17,1 18,5 17,7 22,8 21,2 18,8 17,7 19,5 19,0 1,86

55 N95 / S60WB (D) 18,1 19,0 21,4 19,6 20,0 17,9 20,9 19,5 17,9 18,3 19,3 19,3 1,24
56 N95 / Opera Mobile (D) 13,2 10,9 8,2 8,1 8,2 8,1 13,8 9,2 10,0 8,2 9,8 8,7 2,16
57 N800 / microb (B) 21,7 17,0 17,5 17,4 17,1 18,9 17,0 21,3 16,8 17,2 18,2 17,3 1,83
58 N800 / opera (D) 17,0 15,1 18,0 19,0 15,8 15,2 16,1 14,4 15,0 15,3 16,1 15,6 1,46
59 iPhone (C) 27,4 28,3 21,8 24,2 26,3 20,8 32,3 20,1 21,2 23,4 24,6 23,8 3,92

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
all The JS is not “minified”, i.e., not compressed. This increases loading time.
50
51 Form was not displayed on two first attempts. Load button, pull-down menu, date picker do not work. (FAILURE)
52 Date picker is broken, state selector slow. (MINOR)
53 Load button does not work. Date picker works, but cannot be minimized. (FAILURE)
53 No explanation for the outlier.
54 Form is drawn too small. Both load and submit seem to work. (MAJOR)

Load button does not work. Consequently, form may not be submitted. Everything else works. (FAILURE)

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(D)

iPhone (C)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cached results

iteration

se
co

nd
s

7

Name Dynamic Table: School Schedule
Category GWT
Version(s)
URL http://gwt.google.com/samples/DynaTable/DynaTable.html
Test description Loading time. Test ends when layout has stopped flowing
test started 30.10.07 21:43
test finished 30.10.07 22:45

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev
60 N95 / S60 Web Browser cached 4,8 4,8 5,1 4,7 4,8 4,7 4,7 4,5 5,1 4,9 4,8 4,8 0,19
61 N95 / Opera Mobile cached 3,3 4,1 3,6 3,1 3,5 2,6 3,5 3,2 3,2 3,7 3,4 3,4 0,4
62 N800 / microb cached 7,9 7,2 8,1 8,7 7,1 8,7 8,4 7,7 7,5 8,6 8,0 8,0 0,59
63 N800 / opera cached
64 iPhone cached 5,3 5,3 5,5 5,9 6,2 5,7 5,7 5,3 6,0 6,7 5,8 5,7 0,46

65 N95 / S60WB (A) 5,7 5,8 4,7 4,7 4,8 5,4 4,8 5,8 5,3 4,5 5,1 5,1 0,5
66 N95 / Opera Mobile (A) 4,4 3,8 4,6 3,9 6,8 4,0 4,2 4,4 4,1 4,0 4,4 4,1 0,86
67 N800 / microb (A) 8,2 8,0 7,7 8,2 7,8 8,0 8,4 8,1 8,1 7,8 8,0 8,0 0,21
68 N800 / opera (D)
69 iPhone (A) 5,1 6,1 5,3 5,8 5,5 5,4 6,0 5,3 5,7 6,1 5,6 5,6 0,36

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
60 throbber get stuck at 78 KB, clears when arrows are pressed, no other defects found (PASSED)
61 no defects found (PASSED)
60&61 requires double press of back button. Due to IFrame?
62 no defects found (PASSED)
63&68 displays no table or controls (FAILURE)
64 no defects found (PASSED)

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (A)

N800 / microb
(A)

N800 / opera
(D)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cached results

iteration

se
co

nd
s

8

Name Webtide Acme Auctions
Category DWR + reverse ajax / comet
Version(s) DWR, scriptaculous, prototype, dojo
URL http://www.webtide.com/auctiondemo/
Test description loading time, ends when text has stopped flowing (throbber sometimes shows 0 KB)
test started 31.10.07 10:06
test finished 31.10.07 14:18

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev
70 N95 / S60 Web Browser cached 10,7 10,4 10,7 13,4 12,0 12,1 13,1 11,0 11,7 11,5 1,16
71 N95 / Opera Mobile cached 4,6 4,1 4,2 4,1 4,1 4,0 4,2 4,2 4,1 4,5 4,2 4,2 0,19
72 N800 / microb cached 9,5 9,0 8,6 8,7 8,9 8,0 9,1 9,1 8,5 9,2 8,9 9,0 0,42
73 N800 / opera cached 6,6 6,4 6,4 6,4 6,6 6,6 6,5 6,5 6,5 6,5 6,5 6,5 0,08
74 iPhone cached 21,7 20,4 21,0 22,7 17,8 21,7 16,7 20,5 20,7 21,9 20,5 20,9 1,88

75 N95 / S60WB (B) 12,4 33,3 13,2 27,9 35,9 20,9 30,3 22,4 18,2 13,0 22,8 21,7 8,73
76 N95 / Opera Mobile (D) 21,9 15,1 10,7 15,7 29,9 18,2 19,0 9,8 7,3 5,2 15,3 15,4 7,43
77 N800 / microb (A) 14,3 13,0 13,4 13,2 12,8 13,1 14,4 12,5 14,9 14,9 13,6 13,3 0,9
78 N800 / opera (D) 10,1 12,3 10,3 10,2 10,2 11,1 10,4 10,3 11,9 12,6 10,9 10,4 0,98
79 iPhone (A) 29,6 27,4 22,8 27,7 29,6 24,8 23,9 25,0 24,0 22,2 25,7 24,9 2,68

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
70 with continuous bids, connection stays open for at least 120 seconds
70 without, 30 seconds ok, 60 seconds ok, 90 seconds ok IF the browser is “watched”
70 if not, screen saver kills the connection. If screen saver is avoided by regular clicks, comet works after 10 minutes.
70 if connection is killed, subsequent updates, even from the client, are unable to touch the amount field (MINOR)
70 browser crashed after iteration 4 and iteration 8 and iteration 12. Seems to be a pattern: 1 uncached + 4 cached.
70 results for 4 and 8 are as follows 10,6 10,6
71
72 login button broken (FAILURE)
73 App was left running by itself for >10 minutes, comet still works after that. (PASSED)
74 login button broken (FAILURE)
75 App was left running by itself for >10 minutes, comet still works after that. (PASSED)
75&76 browser crashes consistently if back button is pressed before doing app login

high variation probably due to network conditions (deduced from loader progress)

Note that 5 and 9 are cached results.

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

36,0

Cleared results

N95 / S60WB
(B)

N95 / Opera
Mobile (D)

N800 / microb
(A)

N800 / opera
(D)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

36,0

Cached results

iteration

se
co

nd
s

9

Name Harald's HistoryManager 1.0rc2
Category Mootools / moo.fx
Version(s) mootools “1.2/dev” (modified 2.8.2007)
URL http://digitarald.de/playground/history.html
Test description loading time, ends when text has stopped flowing, “start” visible
test started 31.10.07 21:52
test finished 31.10.07 23:17

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev
90 N95 / S60 Web Browser cached 3,8 3,8 4,0 3,7 4,0 3,4 4,3 4,2 4,2 4,3 4,0 4,0 0,28
91 N95 / Opera Mobile cached 1,9 2,1 2,1 2,2 2,2 2,3 2,2 4,3 2,1 2,7 2,4 2,2 0,69
92 N800 / microb cached 4,5 4,4 4,4 4,5 4,5 4,4 4,5 4,4 4,4 4,4 4,5 4,4 0,05
93 N800 / opera cached 3,0 3,1 3,1 3,1 3,1 3,1 3,0 3,1 3,0 3,0 3,1 3,1 0,03
94 iPhone cached 4,6 5,6 5,1 5,4 5,0 6,0 5,3 5,2 5,3 5,2 5,3 5,2 0,37

95 N95 / S60WB (C) 8,5 16,4 6,0 5,5 5,6 6,3 6,6 6,0 5,8 5,6 7,2 6,0 3,34
96 N95 / Opera Mobile (B) 3,0 3,5 4,9 2,5 2,7 2,5 2,6 2,5 2,8 2,6 3,0 2,6 0,76
97 N800 / microb (A) 5,7 5,8 5,7 5,7 5,4 5,9 5,7 5,6 5,7 5,8 5,7 5,7 0,13
98 N800 / opera (D) 3,6 4,4 3,7 7,6 3,3 3,5 3,2 4,6 3,6 3,4 4,1 3,6 1,32
99 iPhone (D) 5,4 5,3 5,2 5,2 5,2 5,3 5,3 5,6 5,8 5,2 5,3 5,3 0,21

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
90 lists and accordion work, content 1,2,3,4 -links consistently crash browser, back causes screen redraw (MAJOR)
91 lists work, accordion does not compress but correct text shows, content-links work, back causes redraw (MINOR)
92 No defects detected (PASSED)
93 Contents visible, accordion compresses. All links cause redraw, back button causes redraw but no change. (FAILURE)
94 All links work, but also cause screen redraws. Back causes redraw (FAILURE)

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cleared results

N95 / S60WB
(C)

N95 / Opera
Mobile (B)

N800 / microb
(A)

N800 / opera
(D)

iPhone (D)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

Cached results

iteration

se
co

nd
s

10

Name Asset.images
Category Mootools / moo.fx
Version(s) mootools v1.11/SVN,
URL http://demos.mootools.net/Asset.images
Test description loading time, ends when text has stopped flowing, “start” visible
test started 31.10.07 15:48
test finished 31.10.07 17:39

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev
80 N95 / S60 Web Browser cached 4,2 6,0 4,3 4,3 7,4 4,1 4,0 4,6 4,2 3,9 4,7 5,6 1,12
81 N95 / Opera Mobile cached 7,6 3,3 3,3 6,3 3,5 3,6 3,6 3,5 3,5 3,3 4,1 3,5 1,51
82 N800 / microb cached 5,1 5,9 5,7 5,3 6,3 5,6 5,6 6,0 6,0 5,2 5,7 5,6 0,37
83 N800 / opera cached 4,6 5,1 4,7 7,2 6,1 4,7 4,9 4,6 4,9 5,0 5,2 4,9 0,86
84 iPhone cached 16,1 4,8 11,6 4,6 9,0 4,4 9,4 4,3 9,4 4,4 7,8 6,9 4,01

85 N95 / S60WB (B) 14,5 10,0 19,0 13,9 15,5 21,8 9,5 9,1 9,2 8,0 13,0 11,9 4,71
86 N95 / Opera Mobile (D) 11,0 14,0 9,8 19,5 15,8 7,1 8,0 10,5 9,1 8,2 11,3 10,1 3,96
87 N800 / microb (B) 12,1 7,8 7,8 7,8 8,0 7,8 8,0 8,1 7,7 7,6 8,3 7,8 1,37
88 N800 / opera (A) 6,6 6,4 6,5 6,6 10,9 6,5 6,4 6,3 11,1 6,4 7,4 6,5 1,89
89 iPhone (A) 22,1 15,5 11,6 10,4 12,1 10,4 13,4 16,2 28,0 14,0 15,4 13,7 5,63

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
all doc ref and js/html/css “code divs” are also tested with each browser
80 Pictures outside picture frame, sometimes the same “last cow problem” (MINOR)
81 Unreliable: sometimes works with cache cleared. Problems with always visible code divs. (FAILURE)
82 On mozillas (desktop too) last cow pic sometimes refuses to load. (MINOR)
83 No defects detected (PASSED)
84 No defects detected (PASSED)
85,86,87 Outliers possibly due to network conditions?

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

Cleared results

N95 / S60WB
(B)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(A)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

Cached results

iteration

se
co

nd
s

11

Name HTML Editor
Category ASP.NET AJAX
Version(s) ASP.NET 2.0, AJAX Extensions 1.0
URL http://winthusiasm.com/Downloads/HtmlEditor/Demo.aspx
Test description loading time, starts when link is accessed, ends when text in edit field is visible or reflow stops
test started 01.11.07 22:19 02.11.07 12:20
test finished 01.11.07 23:00 02.11.07 14:36

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev
110 N95 / S60 Web Browser cached 4,7 4,6 4,6 4,7 4,6 4,5 4,6 4,7 4,4 4,5 4,6 4,6 0,11
111 N95 / Opera Mobile cached 3,6 2,3 2,9 3,4 3,0 3,0 3,0 3,0 2,9 3,8 3,1 3,0 0,41
112 N800 / microb cached 7,3 7,5 7,4 7,4 7,5 7,5 7,8 7,2 7,5 8,2 7,5 7,5 0,3
113 N800 / opera cached 3,8 3,3 3,4 3,4 3,3 3,3 3,9 4,4 3,9 4,1 3,7 3,6 0,4
114 iPhone cached 9,6 4,3 11,4 7,0 11,8 7,0 9,2 4,4 10,7 1,8 7,7 8,1 3,38

115 N95 / S60WB (D) 14,7 10,6 9,8 9,7 11,4 12,1 21,7 10,2 10,4 10,6 12,1 10,6 3,68
116 N95 / Opera Mobile (D) 13,9 5,9 5,3 7,8 5,9 8,6 6,8 8,4 9,52 8,8 8,1 8,1 2,48
117 N800 / microb (A) 10,7 13,2 10,3 10,6 11,6 15,2 10,6 10,4 10,9 11,1 11,5 10,8 1,56
118 N800 / opera (D) 9,9 9,2 8,8 8,7 8,4 14,8 7,8 9,5 14,3 8,7 10,0 9,0 2,48
119 iPhone (D) 8,4 15,8 12,8 14,3 12,8 12,9 11,6 10,5 10,1 11,5 12,1 12,2 2,14

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
110&111 these measurements were performed using a separate 10/10 Mbit/s LAN without other users.
110&111 results were verified to be consistent with the cs wlan
110 GUI fully visible, but no content in Design or Html tabs. (FAILURE)
111 GUI fully visible, no content in Design or Html tabs, preview works but causes refresh (FAILURE)
112 No additional defects detected. There are some bugs with desktop browsers as well. (PASSED)
113 GUI fully visible, no content in Design or Html tabs, preview works but causes refresh (FAILURE)
114 GUI fully visible, no content in Design or Html tabs, preview works but causes refresh (FAILURE)

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(A)

N800 / opera
(D)

iPhone (D)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

Cached results

iteration

se
co

nd
s

12

Name XML 2006 event schedule
Category Frost
Version(s) Frost “predecessor”, app from 2006
URL http://www.pwmwa.com/xml06/
Test description loading time, starts when “show all” is clicked, ends when text stops reflowing
test started 01.11.07 11:30
test finished 01.11.07 13:00

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med std dev
100 N95 / S60 Web Browser cached 20,9 23,0 19,6 19,5 19,4 19,3 19,4 19,4 19,3 19,4 19,9 19,4 1,2
101 N95 / Opera Mobile cached 1,6 1,5 1,6 1,5 1,6 1,6 1,5 1,6 1,4 1,5 1,5 1,5 0,07
102 N800 / microb cached 3,4 3,4 3,5 3,5 3,6 3,6 3,5 3,4 3,4 3,1 3,4 3,4 0,13
103 N800 / opera cached 1,9 1,9 2,1 2,1 2,3 2,1 2,0 2,1 2,0 2,0 2,0 2,0 0,13
104 iPhone cached 3,0 2,8 2,9 3,2 3,4 2,8 2,9 4,2 3,0 2,6 3,1 3,0 0,45

105 N95 / S60WB (A) 23,5 20,5 20,3 20,6 20,4 19,9 20,0 20,1 20,8 20,5 20,7 20,5 1,04
106 N95 / Opera Mobile (A) 1,8 1,6 1,6 1,6 1,6 1,6 1,5 1,6 1,5 1,6 1,6 1,6 0,09
107 N800 / microb (A) 3,2 3,1 2,8 3,2 3,0 3,9 3,6 2,6 2,7 3,2 3,1 3,1 0,39
108 N800 / opera (A) 2,1 2,0 1,9 1,9 1,9 1,8 4,9 1,9 2,0 1,9 2,2 1,9 0,93
109 iPhone (A) 2,6 2,6 2,4 4,0 3,4 4,5 5,0 2,9 2,7 2,3 3,2 2,8 0,95
109b iPhone without other apps 3,15 2,85 2,7 2,74 2,75 2,77 3,04 2,9 2,8 0,17

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
all the XML file loads in <1 s on desktop browser in same LAN
100 No defects detected, back button works. (PASSED)
100 User may begin browsing after ~3 seconds, while XML loads. The positioning of new text is actually visible!
101 No defects detected, back button works, user may browse while loading. (PASSED)
102 No defects detected, back button works, user may browse while loading. (PASSED)
103 No defects detected, back button works, user may browse while loading. (PASSED)
104 No defects detected, back button works, user may browse while loading. (PASSED)
106 Crash after clearing cache, exiting S60, starting opera at the beginning of iteration 8. Could not force quit, so power cycled
109b Is without running other apps in between iterations. This should be indicative of the memory cache?

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

25,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (A)

N800 / microb
(A)

N800 / opera
(A)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

25,0

Cached results

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

iPhone, cache cleared but no other apps run

iPhone (A)

iPhone without
other apps

iteration

se
co

nd
s

13

Name Google Maps
Category Google
Version(s)
URL
Test description loading time, starts when link is accessed, ends when search form accepts input
test started 02.11.07 14:40
test finished 02.11.07 18:49

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg c. avg med stdev
120 N95 / S60 Web Browser cached 1,5 1,1 1,1 1,4 1,3 1,8 1,3 1,2 1,2 1,2 1,3 1,3 0,21
121 N95 / Opera Mobile cached 5,9 5,8 6,2 5,5 5,8 5,8 5,7 5,8 5,6 5,7 5,8 5,8 0,2
122 N800 / microb cached 15,0 16,6 16,6 9,3 16,8 10,2 9,5 9,3 12,9 12,6 3,62
122b N800 / microb cached 11,7 18,6 15,3 18,1 18,5 20,1 15,1 16,8 18,1 2,87

122 & 122b combined 14,7 15,3 3,75
123 N800 / opera cached 5,6 6,3 6,4 6,6 6,3 6,0 6,1 5,9 6,3 9,0 6,5 6,3 0,94
124 iPhone cached 14,3 11,3 18,0 11,5 16,9 13,1 14,8 14,3 11,0 13,7 13,9 14,0 2,32
124b iPhone cached 14,6 10,5 9,3 10,3 9,1 10,3 17,0 12,0 16,1 10,7 12,0 10,6 2,87

124 & 124b combined 12,9 12,6 2,72

125 N95 / S60WB (D) 4,9 2,4 1,9 1,5 1,4 1,8 1,4 1,4 1,3 1,2 1,9 1,4 1,12
126 N95 / Opera Mobile (D) 6,2 7,2 8,4 8,5 7,7 5,9 5,7 7,81 7,4 8,1 7,3 7,6 1,03
127 N800 / microb (A) 18,3 11,3 13,8 16,4 15,5 11,9 15,9 13,3 15,2 14,6 15,2 2,26
128 N800 / opera (A) 3,8 4,5 4,4 4,0 4,4 4,3 4,0 4,3 4,6 4,3 4,3 4,3 0,24
129 iPhone (A) 10,1 11,0 15,2 10,9 10,7 10,8 11,2 11,2 11,0 10,9 11,3 11,0 1,42

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
120 Content is degraded into non-ajax, only mobile web sites available? (MAJOR/FAILURE)
120 Could greatly benefit from form autocomplete.
121 onwards Maps seems to implement delayed loading?
121 Submitting an address yields results, but map will not center on target. (FAILURE)
121 GUI almost fully visible at minimal zoom, but not scrollable. Map partially visible. Back button works.
122 Closing dialogue bubbles is slow, as is drag and drop. Back button works. No further defects detected (PASSED)
122 Loading app sometimes (5,9,10) brings up virtual keyboard, sometimes not (1,2,3,6,8).
122 One crash detected while testing functionality, outside timing iterations
122 crashed after iteration 4,7, before showing application
122b crashed after iteration 3,5,9, before showing application
123 Dialogue bubbles show up blank, no d&d, otherwise as good as 122. (PASSED)
124 Some addresses can not be found, even though they are in 122&123. (PASSED)
124 Maps seems to be able to interact with phone widget: results are displayed there.
127 microb crashed after iteration 2, time as follows 11,5
122&123 full screen mode was activated
129&127

http://maps.google.com/

Noncached results were lower than cached, so I redid 124,122 straight afterwards. Aggregate results in column N

1 2 3 4 5 6 7 8 9 10
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(A)

N800 / opera
(A)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

Cached results

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

Cached results, 122 & 124 redone

iteration

se
co

nd
s

14

Name Google Suggest
Category Google
Version(s)
URL http://www.google.com/webhp?complete=1&hl=en
Test description loading time, starts when link is accessed, ends when UI fully visible.
test started 02.11.07 19:00
test finished 02.11.07 20:16

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg c. avg med stdev
130 N95 / S60 Web Browser cached 1,4 1,1 1,6 1,5 1,4 1,4 1,4 1,5 1,4 1,2 1,4 1,4 0,13
131 N95 / Opera Mobile cached 1,3 1,2 1,2 1,1 1,2 1,3 1,3 1,2 1,2 1,2 1,2 1,2 0,05
132 N800 / microb cached 2,0 2,5 2,7 2,5 2,6 2,5 2,3 2,5 2,4 2,5 2,5 2,5 0,19
133 N800 / opera cached 1,7 1,6 1,7 1,6 1,6 1,3 1,7 1,6 1,6 1,6 1,6 1,6 0,13
134 iPhone cached 2,0 1,6 1,5 2,8 1,9 1,4 2,2 1,7 1,6 1,8 1,8 1,8 0,4
134b iPhone cached 1,5 1,5 1,8 2,0 2,0 2,3 2,0 1,9 1,6 1,4 1,8 1,8 0,29

134 & 134 b combined 1,8 1,8 0,34
135 N95 / S60WB (A) 4,0 1,6 1,6 1,6 2,5 2,1 2,1 1,6 1,6 1,6 2,0 1,6 0,76
136 N95 / Opera Mobile (B) 1,8 1,6 1,5 1,4 1,7 1,6 1,8 1,57 1,7 1,5 1,6 1,6 0,13
137 N800 / microb (B) 2,8 2,6 2,9 2,9 2,7 2,8 2,8 2,7 2,8 2,9 2,8 2,8 0,12
138 N800 / opera (B) 2,0 2,0 2,2 2,1 1,9 1,9 2,0 2,0 2,3 2,0 2,0 2,0 0,14
139 iPhone (A) 2,0 2,0 2,1 1,6 2,5 2,2 2,4 1,9 1,8 1,9 2,0 2,0 0,27

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
130 Degrades gracefully into normal google search. (PASSED)
131 Almost full functionality. Can only select the first of the results shown (MINOR)
131 Browser crashed while loading at the beginning of iteration 1, could not force quit, so power cycled the device.
132 Full functionality, but only when erasing text with backspace (MINOR)
133 Full functionality, but only when erasing text with backspace (MINOR)
134 Degrades gracefully into normal google search. (PASSED)
134b Extra iterations due to high variance, again.

1 2 3 4 5 6 7 8 9 10
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (B)

N800 / microb
(B)

N800 / opera
(B)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Cached results

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Cached results, iPhone redone

iteration

se
co

nd
s

15

Name GMail
Category Google
Version(s) beta
URL http://mail.google.com/mail?nocheckbrowser/
Test description Loading time. Ends when message header list is visible.
test started 03.11.07 21:50
test finished 03.11.07 23:14

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med stdev
180 N95 / S60 Web Browser cached PASSED
181 N95 / Opera Mobile cached PASSED
182 N800 / microb cached 23,2 22,9 24,2 23,6 23,0 22,7 23,0 23,5 23,5 25,7 23,5 23,4 0,89
183 N800 / opera cached 13,6 13,2 13,1 13,9 13,4 12,7 13,0 13,6 13,0 14,2 13,4 13,3 0,47
184 iPhone cached PASSED

185 N95 / S60WB (A)
186 N95 / Opera Mobile (A)
187 N800 / microb (A) 24,6 27,1 26,7 25,3 26,4 28,4 25,0 25,1 25,5 25,9 26,0 25,7 1,14
188 N800 / opera (A) 13,7 14,0 14,7 15,0 14,4 14,3 14,6 13,7 14,5 14,4 14,3 14,4 0,42
189 iPhone (A)

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
180 Gracefully degrades to mobile, basic HTML can be selected, but no Ajax. Faster than measurement method. (PASSED)
181 Without browser check, the UI is very broken, inbox contents invisible, most links do not work.
181 With browser check, gracefully degrades into basic HTML . Faster than measurement method. (PASSED)
182&183 Full screen mode activated.
182 Address autocomplete requires leaving form field and returning to it.
182 Most functions take 1~2s, noticeable for user. (PASSED)
183 As 182. Backspace seems to trigger autocomplete as well. (PASSED)
184 As 180, Ajax version inaccessible. Selecting “standard” yields “mobile”.(PASSED)

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

Cleared results

N800 / microb
(A)

N800 / opera
(A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

Cached results

iteration

se
co

nd
s

16

Name Yahoo! Mail
Category YUI
Version(s)
URL
Test description
test started 03.11.07 15:00
test finished 03.11.07 16:25

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med stdev
150 N95 / S60 Web Browser cached FAILURE
151 N95 / Opera Mobile cached MINOR
152 N800 / microb cached PASSED
153 N800 / opera cached MAJOR
154 iPhone cached PASSED

155 N95 / S60 Web Browser (D)
156 N95 / Opera Mobile (B)
157 N800 / microb cleared (A)
158 N800 / opera cleared (C)
159 iPhone cleared (A)

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
150 User is offered choice between full site and mail classic
150 Ran out of memory while accessing the full application, after loading 1,29 MB but did so in a controlled manner.
150 However, choosing the mail classic after this is difficult.
150 Mail classic seems to include some text popups that quickly fill S60 memory and cause browser crash.
152

152 app noticed that the screen resolution was beneath the minimum (1024x768) and offered mail classic.
152 no defects found from mail classic. There is some DHTML functionality, but in overall every fetch causes redraw.
152 some links send the user back into new mail and then the degradation phase
151 App is switched to mail classic automatically upon login. Navigation tricky without a cursor.
151 clicking on “all-new mail” link yields multiple JS errors on load, and a broken app.
153 As 151, mail classic automatically. The right edge is cropped off messages, despite zooming.
153 Additionally, browser detection is used to prohibit the loading of the full site. Browser upgrade is required.
154 Browser is detected and app selects yahoo mobile mail automatically. App recommends internal widget

http://mail.yahoo.com/

Yahoo mail experienced a login error: name:NS_ERROR_DOM_WRONG_DOCUMENT_ERR message:Node cannot be used in a
document other than the one in which it was created lineNumber: 512 App noticed that “loading was taking longer than usual” and
offered the choice to use mail classic instead.

17

Name flickr
Category internal development + YUI?
Version(s) internal development
URL http://www.flickr.com/photos/9092161@N07/1843554028/
Test description loading time. measured page includes a test photo of 817 bytes, test ends when picture visible
test started 03.11.07 16:30
test finished 03.11.07 19:22

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med stdev
160 N95 / S60 Web Browser cached 10,6 10,0 9,8 10,1 9,1 9,2 9,2 9,2 9,7 10,2 9,7 9,8 0,52
161 N95 / Opera Mobile cached 1,5 1,3 1,2 1,3 1,2 1,3 1,4 1,3 1,6 1,2 1,3 1,3 0,12
162 N800 / microb cached 10,7 9,0 9,3 8,9 9,1 9,5 8,8 10,9 8,9 9,3 9,4 9,2 0,74
163 N800 / opera cached 4,7 4,2 4,0 4,4 4,3 3,7 4,2 4,1 4,3 4,0 4,2 4,2 0,26
164 iPhone cached 13,3 9,3 12,9 9,2 13,7 8,8 17,2 8,9 13,1 9,7 11,6 11,3 2,82

165 N95 / S60WB (A) 23,9 21,3 21,0 21,2 19,5 21,1 21,4 21,4 19,3 20,5 21,0 21,1 1,25
166 N95 / Opera Mobile (B) 5,6 4,4 4,3 4,9 4,1 5,2 4,8 4,4 5,2 5,7 4,9 4,9 0,54
167 N800 / microb (A) 13,5 11,4 12,4 12,6 12,6 12,2 12,0 12,1 11,6 13,0 12,3 12,3 0,63
168 N800 / opera (B) 7,9 8,0 8,4 8,1 8,1 7,5 7,8 7,9 7,8 7,7 7,9 7,9 0,25
169 iPhone (A) 13,4 13,0 16,3 15,0 17,2 15,9 13,4 13,2 13,9 14,4 14,6 14,2 1,46

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
160&161 offers mobile version upon login, full version accessible. Browsing easier at 50% zoom
160 EIP works (1-2 s), photostream works, slideshow is broken, overall very good (PASSED)
161 Photostream selector broken, arrows can not be accessed, slide show broken
161 EIP does not work (no “click here”) in main view, unclickable in photo view. (MINOR)
162 No defects detected. Slide show works, hovered captions work (PASSED)
163 Photostream selector broken, arrows can not be accessed, slide show works but “back to your photos” does not (MINOR)
163 crashed during initial testing, while using slide show
164 Everything works except slide show (PASSED)
166 with opera, select “view full version” from mobile flickr, then clear cache, then click on link to repeat measurement.
165&166 note that flickr defaults to mobile if on n95. Thus, only disk, not all cached data was cleared during these tests.

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

25,0

Cleared results

N95 / S60WB
(A)

N95 / Opera
Mobile (B)

N800 / microb
(A)

N800 / opera
(B)

iPhone (A)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

25,0

Cached results

iteration

se
co

nd
s

18

Name Journey Planner for Cycling
Category YTV
Version(s) NaviciAjaxApi.js, klero_pack.js
URL http://kevytliikenne.ytv.fi/
Test description loading time, starts when link is accessed, ends when text can be entered into search
test started 02.11.07 20:45
test finished 02.11.07 22:17

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med stdev
140 N95 / S60 Web Browser cached 7,0 5,9 6,1 6,0 6,4 5,9 6,1 5,9 6,1 6,1 6,1 0,35
141 N95 / Opera Mobile cached 5,0 5,1 5,6 5,0 4,6 5,8 5,3 5,5 5,4 4,7 5,2 5,2 0,37
142 N800 / microb cached 10,3 9,3 9,5 9,3 9,8 11,4 9,6 9,4 9,8 9,4 9,8 9,6 0,64
143 N800 / opera cached 4,7 3,9 4,9 4,4 3,6 3,5 4,4 3,9 4,4 4,9 4,3 4,4 0,51
144 iPhone cached

145 N95 / S60WB (B) 7,7 7,5 7,5 7,7 7,4 8,3 9,8 8,2 7,6 7,6 7,9 7,7 0,72
146 N95 / Opera Mobile (B) 7,4 6,6 6,0 6,1 7,1 9,4 7,8 6,7 6,7 7,3 7,1 6,9 0,98
147 N800 / microb (B) 10,6 10,2 10,4 10,2 10,6 10,3 10,2 10,4 10,2 10,4 10,3 0,16
148 N800 / opera (A) 4,8 4,2 4,5 3,7 4,6 4,2 4,0 4,4 4,4 4,4 4,3 4,4 0,31
149 iPhone (D)

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
140 Arrow keys inaccessible, but clicking on waypoint links centers map correctly. Zooming is a bit slow. (MINOR)
140 Not all zoom levels work perfectly.
140 Crash after extensive testing + iteration 5. Time as follows 5,9
141 Crash before iteration 1, possibly due to 140. Force quit did not work, so N95 was power cycled.
141 Autocomplete scrolls to bottom 7 of list. If there are fewer items, list is usable.
141 Zoom and arrow keys unselectable, but map scrolls from waypoint links. Back button does not work. (MINOR)
141 Since Opera does not use a cursor, it is harder to select the input field.
140&141 Viewing map and entering text require use of zooming functions.
142&143 full screen mode
142 Arrow keys inaccessible, but clicking on waypoint links centers map correctly. Back button does not work. (MINOR)
143 Back button does not work. Everything else does. (PASSED)
144 Crash while loading (FAILURE)
147 communication error in iteration 5. Time as follows 10,5

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

Cleared results

N95 / S60WB
(B)

N95 / Opera
Mobile (B)

N800 / microb
(B)

N800 / opera
(A)

iPhone (D)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

Cached results

iteration

se
co

nd
s

19

Name Colorado Geographic
Category Microsoft
Version(s) ASP.NET AJAX
URL http://www.coloradogeographic.com/
Test description Loading time. Ends when I can see the blue sky above Kebler pass in the main window.
test started 03.11.07 19:37
test finished 03.11.07 21:21

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg c. avg med stdev
170 N95 / S60 Web Browser cached 11,6 11,1 11,1 10,9 11,3 11,5 11,5 11,6 11,3 11,5 11,3 11,4 0,22
171 N95 / Opera Mobile cached 6,2 6,7 6,1 6,5 6,2 6,1 6,0 6,3 6,2 6,0 6,2 6,2 0,22
172 N800 / microb cached 9,7 9,8 9,9 10,2 10,0 9,6 9,5 10,1 9,8 9,8 9,8 0,21
172b N800 / microb cached 9,6 10,9 10,4 9,9 10,6 9,6 10,0 10,1 9,4 9,8 10,0 9,9 0,48

172 & 172b combined 9,9 9,9 0,38
173 N800 / opera cached 7,9 7,5 7,4 12,8 8,3 10,6 8,9 8,4 7,9 7,5 8,7 8,1 1,73
174 iPhone cached 6,9 8,8 6,5 11,2 6,7 14,4 7,7 10,5 6,2 11,8 9,1 8,3 2,78

175 N95 / S60 Web Browser (C) 22,3 18,1 21,9 18,9 20,8 18,5 19,0 17,0 20,8 20,0 19,7 19,5 1,72
176 N95 / Opera Mobile cleared (B) 10,8 5,2 9,8 5,3 20,0 8,0 12,0 5,1 6,1 5,4 8,8 7,0 4,69
177 N800 / microb cleared (A) 16,1 15,6 15,5 15,3 15,5 15,4 15,5 14,1 16,1 15,3 15,4 15,5 0,56
178 N800 / opera cleared (B) 9,8 10,5 10,1 12,4 10,3 10,6 10,2 11,3 10,9 10,0 10,6 10,4 0,77
179 iPhone cleared (C) 18,9 14,6 14,2 13,0 16,4 15,1 10,8 15,5 11,8 10,7 14,1 14,4 2,59

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
170 UI loads correctly. Every transition causes a redraw. “Highlights” links are not recognized (MAJOR)
170 Desktop mozilla also has problems with the “Highlights”, causing the infamous “link flicker”
170 Right hand text flows beneath div, not all of the text is scrollable or readable.
171 UI loads correctly, left hand set pic and upper right arrows cause redraws. “Highlights” load correctly with async call.
171 Right hand text flows beneath div, all of it is readable. Back button works. (MINOR)
172&173 Full screen mode activated
172 Back button does not work. (PASSED)
172 Crash after initial testing AND iteration 3, when clicking back button. Time as follows 10,1
172b Additional iterations in order to detect a possible memory leak as the cause of the crash above.
172b

173 As 171, but full text visible beyond border. Back works here too. (MINOR)
174 As 170, but red arrows are broken. Additionally, site is extremely sluggish. (MAJOR)
174 Last stage of loading takes 5~10s more than on the others. But that's okay, delayed loading is accepted.
174 Here, again, the differing speeds are clearly visible as different loading types on the Safari. everything at once = slow
176 The outlier is possibly either due to 1) network error 2) erraneous cache clearing phase, causing including of connection setup
177&178 windowed mode

Iterations 9,16,18,19 caused the following while exiting with back button: JS alert:
Sys.WebForms.PageRequestManagerServerErrorException: An unknown error occurred while processing the request on the
server. The status code returned from the server was: 2147746065

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

Cleared results

N95 / S60 Web
Browser (C)

N95 / Opera
Mobile cleared
(B)

N800 / microb
cleared (A)

N800 / opera
cleared (B)

iPhone cleared
(C)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

Cached results

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

Cached results, microb redone

iteration

se
co

nd
s

20

Name myAOL (beta)
Category AOL
Version(s) dojo 0.4.3
URL http://my.aol.com/
Test description Loading time. Ends when content of “Right Now on AOL” is visible.
test started 05.11.07 10:00
test finished 05.11.07 11:41

iteration
test identifier name 1 2 3 4 5 6 7 8 9 10 avg med stdev
190 N95 / S60 Web Browser cached
191 N95 / Opera Mobile cached
192 N800 / microb cached 27,5 30,5 27,7 27,2 30,2 27,6 29,6 31,3 29,1 29,4 29,0 29,2 1,43
193 N800 / opera cached 14,6 14,9 15,3 14,8 14,7 18,1 15,1 15,1 15,5 15,0 15,3 15,0 1,02
194 iPhone cached 27,7 16,9 27,8 15,4 23,4 19,1 20,8 31,0 26,7 31,9 24,1 25,0 5,8

195 N95 / S60WB (D)
196 N95 / Opera Mobile (D)
197 N800 / microb (B)
198 N800 / opera (B)
199 iPhone (B) 24,5 19,2 19,1 19,1 18,8 19,4 18,8 19,0 18,6 21,1 19,8 19,1 1,8

Notes
ref id nota bene
all at test start, browser cache is cleared. after initial loading, app is tested for defects.
all myAOL heavily employs delayed loading
190 degrades into AOL mobile, server content only for registered users. no link to full content (FAILURE)
191 seems to load full version, content may not be navigated
191 if fit to window is activated, most content seems to be readable. many links do not work
191 on second iteration, loads most of UI. window controls unaccessible, many windows blank. (FAILURE)
191 tabs seem to work
192 splash window can be closed only through full screen mode
192&193 full screen mode activated
192 back button does not work at all, chokes on ”Connecting”
192 JavaScript alerts when accessing tabs: “Sorry, the first time could not be finished. Please try again later”
192 loading tabs notably slow (MINOR)
193 UI loads correctly, splash screen can be closed. Window controls work. Most windows without content.
193 blank windows: AOL public galleries, AOL mail, local news, weather, most of AOL video search, right now on AOL
193 this is time to load app + advertisement window, since attempted target (test description) does not load
193 tabs work, mgnet loaded pictures asynchronously but froze browser, back button works.
194 splash window's controls inaccessible, as are all links in it – it remains on top of UI. back button works.
194 the variance is not due to 1) how long I spend time on the previous page 2) if the target is allowed to load completely
194 after iteration 9, the splash screen was disabled. was not able to repeat this. (MINOR)
194 clearing cache and cookies did not reinstate loading of the splash screen on the first time. Second time did it.
194 clearing the cache twice might have an effect (iteration 10)

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cleared results

N95 / S60WB
(D)

N95 / Opera
Mobile (D)

N800 / microb
(B)

N800 / opera
(B)

iPhone (B)

iteration

se
co

nd
s

1 2 3 4 5 6 7 8 9 10
0,0

3,0

6,0

9,0

12,0

15,0

18,0

21,0

24,0

27,0

30,0

33,0

Cached results

iteration

se
co

nd
s

	1Introduction
	2The History of Ajax
	2.1From Web to Desktop Applications
	2.2Ajax Builds on Existing Technology
	2.2.1JavaScript
	2.2.2XMLHttpRequest
	2.2.3Asynchronous Events
	2.2.4XML and Verbosity
	2.2.5Displaying CSS
	2.2.6Document Object Models

	2.3Alternative Techniques
	2.3.1Dynamic HTML
	2.3.2Delayed Inclusion
	2.3.3Hidden IFrame
	2.3.4Comet and HTTP Pipelining
	2.3.5Flash and Java

	3Measuring Mobile Devices
	3.1Capability and Performance
	3.2Motivation for Mobile Ajax
	3.3Research Questions and Methodology
	3.3.1Grading and Results
	3.3.2Measurement Method

	3.4Nokia N800 Internet Tablet
	3.4.1Opera
	3.4.2Mozilla based browser for maemo
	3.4.3GTK+ WebCore

	3.5N95
	3.5.1Nokia Mini Map Browser
	3.5.2Opera Mobile

	3.6iPhone
	3.6.1Safari

	4Libraries, Toolkits, and Frameworks
	4.1Graphics display
	4.2Selection and Manipulation
	4.3Widgets
	4.4A Look into the Most Popular Toolkits
	4.4.1How to Read the Results
	4.4.2Prototype
	4.4.3script.aculo.us
	4.4.4jQuery
	4.4.5Yahoo! User Interface Library
	4.4.6Dojo
	4.4.7Ext JS
	4.4.8Google Gears and Web Toolkit
	4.4.9Direct Web Remoting
	4.4.10MooTools
	4.4.11moo.fx
	4.4.12ASP.NET AJAX
	4.4.13Frost Ajax Library

	5Surfing Web Sites with Ajax
	5.1How to Read the Results
	5.2Google
	5.2.1Google Maps
	5.2.2Google Suggest
	5.2.3Google Mail

	5.3Yahoo! Mail
	5.4Flickr
	5.5Journey Planner for Cycling
	5.6Colorado Geographic
	5.7myAOL

	6Considerations
	6.1Cross-Site Scripting Attacks
	6.2Cross-Site Request Forgery
	6.3External References
	6.4Caching Problems
	6.5Memory Leaks
	6.6Accessibility
	6.7A Side Note on Battery Life

	7Conclusion
	7.1Further Research

	8Acknowledgment

