
Department of Computer ScienceSeries of Publications AReport A-1995-1�
Mapping Bayesian Networks to Stochastic NeuralNetworks: A Foundation for HybridBayesian-Neural Systems�Petri Myllym�aki�

University of HelsinkiFinland

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of HelsinkiDepartment of Computer ScienceSeries of Publications A, No. A-1995-1Petri Myllym�akiMapping Bayesian Networks to StochasticNeural Networks: A Foundation for HybridBayesian-Neural SystemsTo be presented, with the permission of the Faculty of Science of theUniversity of Helsinki, for public criticism in Auditorium XII, MainBuilding, on December 5th, 1995, at 2 p.m.
Department of Computer ScienceP. O. Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, FinlandHelsinki, December 1995

Contact informationPostal address:Department of Computer ScienceP.O.Box 26 (Teollisuuskatu 23)FIN-00014 University of HelsinkiFinlandEmail address: postmaster@cs.Helsinki.FI (Internet)URL: http://www.cs.Helsinki.FI/Telephone: +358 0 708 51Telefax: +358 0 708 44441
ISSN 1238-8645ISBN 951-45-7211-4Computing Reviews (1991) Classi�cation: G.3, F.1.1, G.1.6, I.2.5Helsinki 1995Yliopistopaino

Mapping Bayesian Networks to Stochastic Neural Networks:A Foundation for Hybrid Bayesian-Neural SystemsPetri Myllym�akiDepartment of Computer ScienceP.O.Box 26, FIN-00014 University of Helsinki, FinlandPetri.Myllymaki@cs.Helsinki.FI, http://www.cs.Helsinki.FI/�myllymak/Ph. D. Dissertation, Series of Publications A, No. A-1995-1Helsinki, December 1995, 93 pagesISSN 1238-8645, ISBN 951-45-7211-4AbstractIn this work, we are interested in the problem of �nding maximum a posteriori prob-ability (MAP) value assignments for a set of discrete attributes, given the constraintthat some of the attributes are permanently �xed to some values a priori. For build-ing a system capable of this type of uncertain reasoning in practice, we need �rst toconstruct an accurate abstract representation of the problem domain, and then toestablish an e�cient search mechanism for �nding MAP con�gurations within theconstructed model. We propose a hybrid Bayesian network-neural network systemfor solving these two subtasks. The Bayesian network component can be used forconstructing a compact, high-level representation for the problem domain probab-ility distribution quickly and reliably, assuming that suitable expert knowledge isavailable. The neural network component provides then a computationally e�cient,massively parallel platform for searching the model state space. The main applic-ation areas for these kinds of systems include con�guration and design problems,medical diagnosing and pattern recognition.For implementing a hybrid Bayesian-neural system as suggested above, we presenthere methods for mapping a given Bayesian network to a stochastic neural net-work architecture, in the sense that the resulting neural network updating processprovably converges to a state which can be projected to a MAP state on the probab-ility distribution corresponding to the original Bayesian network. From the neuralnetwork point of view, these mappings can be seen as a method for incorporatinghigh-level, probabilistic a priori information directly into neural networks, withoutrecourse to a time-consuming and unreliable learning process. From the Bayesiannetwork point of view, the mappings o�er a massively parallel implementation ofsimulated annealing where all the variables can be updated at the same time. Ourempirical simulations suggest that this type of massively parallel simulated an-nealing outperforms the traditional sequential Gibbs sampling/simulated annealingprocess, provided that suitable hardware is available.i

Computing Reviews (1991) Categories and Subject Descriptors:G.3 [Probability and statistics]: Probabilistic algorithmsF.1.1 [Models of computation]: Neural networksG.1.6 [Optimization]: Constrained optimizationI.2.5 [Programming languages and software]: Expert system toolsand techniquesGeneral Terms: Algorithms, Theory.Additional Key Words and Phrases: Hybrid systems, Bayesian belief net-works, connectionism, Monte Carlo algorithms, Gibbs sampling, simulated anneal-ing, massive parallelism

ii

AcknowledgmentsI am grateful to my advisors, Professor Pekka Orponen and Professor EskoUkkonen, for their valuable comments and suggestions concerning this thesis.I also wish to thank all the other members of the Complex Systems Com-putation Group at the Department of Computer Science of the University ofHelsinki, especially the \primus motor" of the group, Henry Tirri, for provid-ing a very stimulating and encouraging working environment, and for all thesupport I have been given during our work together.The Department of Computer Science at the University of Helsinki, headedby Professor Martti Tienari, has provided me excellent working conditions forthis research. I am also very grateful to the Computing Center at the Uni-versity of Helsinki, headed by Lars Backstr�om, for o�ering a most pleasantworking atmosphere during the time I have worked there, and for the sympath-etic attitude towards my requests for leave of absence. I also wish to thankProfessor Alex Gammerman, and other members of the sta� of the RoyalHolloway and Bedford New College, University of London, for the pleasanttime I spent at their beautiful campus during the spring of 1995. The �n-ancial support of the Jenny and Antti Wihuri Foundation, Leo and ReginaWainstein Foundation, University of Helsinki, and Technology DevelopmentCenter (TEKES) is gratefully acknowledged.
iii

iv

Contents1 Introduction 12 The MAP problem 113 Solving the MAP problem by Bayesian networks 153.1 Bayesian networks : 153.2 Complexity of the MAP problem : : : : : : : : : : : : : : : : : : : 203.3 Simulated annealing : 233.3.1 Markov chains : 233.3.2 Markov chain Monte Carlo methods : : : : : : : : : : : : : : 253.3.3 Gibbs sampling : 273.3.4 Gibbs distributions and simulated annealing : : : : : : : : : 293.4 Simulated annealing for Bayesian networks : : : : : : : : : : : : : : 343.4.1 Markov random �elds : 343.4.2 Mapping Bayesian networks to Markov random �elds : : : : 364 Solving the MAP problem by stochastic neural networks 394.1 Boltzmann machines : 424.2 Harmony networks : 454.2.1 The harmony function : 454.2.2 Maximizing the harmony function : : : : : : : : : : : : : : : 475 Mapping Bayesian networks to stochastic neural networks 515.1 Mapping Bayesian networks to harmony networks : : : : : : : : : : 555.2 Mapping Bayesian networks to two-layer Boltzmann machines : : : 595.3 Coping with multi-valued variables : : : : : : : : : : : : : : : : : : 616 Empirical results 676.1 Algorithms : 676.2 Cooling schedule : 726.3 Results : 767 Conclusion 80v

vi

Chapter 1IntroductionThis research deals with methods for developing expert system applicationsin real-world problem domains. In these domains | unlike with most arti-�cial toy problems | the data is typically noisy: imprecise, incomplete orinconsistent. This means that traditional rule-based system relying on purelogic su�er from the brittleness of the resulting software: as the programsare sensitive even to the slightest inaccuracy or incompleteness in their in-put data [2], the systems tend to grow to have rule bases consisting of tensof thousands of rules, when trying to provide a speci�c rule for every pos-sible situation [28]. Collecting these kinds of large rule bases can be a veryexpensive and time-consuming task in practice, and moreover, maintainingand updating large rule bases (while preserving consistency) appears to beextremely di�cult [93]. Consequently, it is clear that some kind of a com-putational mechanism capable of handling uncertain data is necessary forproviding expert systems with the robustness required for practical applica-tions.Several di�erent frameworks for handling noisy data have been developedduring the last two decades. In this work, we concentrate on numerical ap-proaches for uncertain reasoning. The �rst systems of this kind, the mostfamous example being the MYCIN [15] system for diagnosing bacterial in-fections, used uncertainty factors and heuristic rules for manipulating thesefactors. It has been later discovered [48] that MYCIN's original heuristiccomputational scheme can actually be interpreted as (Bayesian) probabilisticreasoning with certain independence assumptions, similar to those used forconstructing the �rst simple Bayesian schemes for uncertain reasoning, suchas the PROSPECTOR [30] system. Unfortunately, in many problem domainsthese independence assumptions are not valid [74]. Recently, uncertain reas-oning systems based on fuzzy logic [119] have gained popularity, especially inJapan [72, 94]. However, it has been shown that any consistent computational

2 Introductionframework representing degree of uncertainty as numbers has to be based onaxioms of probability theory [20, 77]. Consequently, Bayesian probabilitytheory seems to o�er a solid, unifying framework for uncertain reasoning ingeneral [16, 37, 64].In this work, we study uncertain reasoning in the probabilistic framework.We assume that the problem domain probability distribution is modeled byusing a set of discrete attributes (i.e. discrete random variables), and concen-trate on studying an abductive inference problem, where the goal is to �nd amaximum a posteriori probability (MAP) value assignment for the variables,given the constraint that some of the variables are instantiated to some �xedvalues in advance (a formal description of the MAP problem can be found inChapter 2). Obviously, a MAP solver can be used for solving various con�g-uration and design problems, where the goal is to �nd the best combinationof discrete attributes. In addition, many problems in e.g. medical diagnosing,pattern recognition and natural language processing can be formulated in theMAP framework [111].The structure of a generic MAP solver is shown in Figure 1.1. The systemconsists of two modules: a model construction module and a query processingmodule. The task of the model construction module is to build an accur-ate model of the problem domain probability distribution, i.e. to select themost suitable instance within the chosen family of mathematical models. Thisselection is done either by using low-level problem domain sample data (inwhich case the problem is often referred to as machine learning), or by us-ing a priori high-level data provided by domain experts, or by using bothtypes of data. The task of the query processing module is, given a partialattribute value assignment as the input (\query"), to �nd a MAP attributevalue con�guration among all the possible (i.e. consistent with the given par-tial instantiation) complete attribute value con�gurations within the chosenmodel.In Chapters 3 and 4 we describe two di�erent families of models |Bayesian networks and neural networks | and discuss how they can be usedfor building MAP solvers of the type described above. In Chapter 5, we showhow to build a hybrid Bayesian-neural MAP solver, which o�ers an inter-esting possibility to avoid the disadvantages that occur when using either ofthese two families of models alone.A Bayesian (belief) network [96, 106] is a graphical high-level represent-ation of a probability distribution over a set of discrete variables. Intuitivelyspeaking, a Bayesian network model is constructed by explicitly determin-ing all the direct (causal) dependencies between the random variables of theproblem domain: each node in a Bayesian network represents one of therandom variables of the problem domain, and the arcs between the nodes

3
Sampledata ExpertknowledgeModelconstructionmodule DomainmodelModeldistributionQueryprocessingmodulePartial valueassignment Complete MAP value assignmentFigure 1.1: Structure of a generic MAP solver.represent the direct dependencies between the corresponding variables. Inaddition, each node has to be provided with a table of conditional probabil-ities, where the variable in question is conditioned by its predecessors in thenetwork (a formal de�nition of Bayesian networks can be found Section 3.1).The importance of Bayesian network representations lies in the way such astructure can be used as a compact representation for many naturally oc-curring distributions, where the dependencies between variables arise from arelatively sparse network of connections, resulting in relatively small condi-tional probability tables. In these cases, a Bayesian network representationof the problem domain probability distribution can be constructed e�cientlyand reliably, assuming that appropriate high-level expert domain knowledgeis available. There exists also several interesting approaches for constructingBayesian networks from sample data, and moreover, theoretically solid tech-niques for combining domain expert knowledge with the machine learningapproach [49].The Bayesian network theory o�ers a framework for constructing algorithmsfor di�erent probabilistic reasoning tasks (for a survey of probabilistic reason-ing algorithms, see [52]). In Section 3.2, we discuss the complexity of theMAPproblem within the Bayesian network framework, and review brie
y someattempts to develop algorithms for solving MAP problems in the Bayesiannetwork framework. Unfortunately, for a general network structure, the MAPproblem can be shown to be NP-hard [19, 112], which means that very prob-ably it is not possible for any algorithm to solve this task (in the worst case)

4 Introductionin polynomial time with respect to the size of the network. Consequently,recently there has been a growing interest in developing stochastic algorithmsfor the MAP problem, where instead of aiming at an accurate, determin-istic solution, the goal is to �nd a good approximation for a given problemwith high probability. In this study, we shall concentrate on this type of astochastic, approximative approach.From the optimization theory point of view, the task of the query pro-cessing module of the MAP solver is to solve a constrained global optimizationproblem, where the constraints are the initial values for a subset of randomvariables, and the function to be maximized is (within the Bayesian networkframework) the probability distribution de�ned by the given Bayesian net-work. Markov Chain Monte Carlo (MCMC) algorithms [80, 45] are stochasticalgorithms that can be used in exponentially large search spaces for �nd-ing global maxima in feasible time with high probability. In this study, weare mainly concerned with the most common of the MCMC methods, Gibbssampling [40] (for a short survey of other stochastic simulation methods,see [52]). In Gibbs sampling, a large collection of representative con�gur-ations of the problem domain model is generated by iterative local sampling,and the actual variable-value combination occurrence probabilities can be es-timated by sample frequencies. On the other hand, combined with a stochastictechnique called simulated annealing (SA) [80, 71], the Gibbs sampling pro-cess will, with high probability, converge to the global maximum of a givenfunction consistent with the initial constraints. This iterative process can beseen as a kind of a stochastic local search, where the probability of �ndingthe globally optimal solution approaches one as the number of iterative stepsused approaches in�nity [40, 1]. Consequently, simulated annealing can beused for solving the MAP problem stochastically. In Section 3.3 we presentthe general theoretical framework for MCMC algorithms and the simulatedannealing technique.After being introduced to the optimization theory community in [71], SAhas been applied to many di�erent (NP-hard) optimization problems, suchas TSP [71], graph partitioning [65], graph coloring [66], number set parti-tioning [66] and clustering [105, 14] (for an extensive survey of applications,see [73] or [1, pp. 89{90]). One of the main di�culties with the SA algorithmis that the SA theory requires that the objective function to be optimized hasto be representable in a speci�c Gibbs distribution form. Usually, a suitableGibbs distribution has to be constructed manually for each separate optimiz-ation problem instance using very low-level concepts of the problem domain.However, there exists a graphical model called a Markov random �eld (MRF)[27, 11, 70, 40], which can be used as a formal tool for constructing Gibbsdistributions. Similarly to Bayesian networks, an MRF representation con-

5sists of a graphical representation of the dependencies between the variables,together with a set of parameters, clique potentials. The values of the cliquepotentials determine uniquely a Gibbs distribution on the variable value as-signment space.Unfortunately, generally the MRF clique potentials cannot be easily de-termined directly, as they have no semantically clear probabilistic interpreta-tion. In the Bayesian network framework, however, there is a straightforwardmapping from a given Bayesian network to an MRF, which gives a methodfor determining the MRF clique potentials automatically from the conditionalprobabilities of the Bayesian network. This means that the problem domainexpert can produce an SA process corresponding to the problem domain prob-ability distribution by simply determining a Bayesian network structure andthe corresponding conditional probabilities, which can then be mapped to anMarkov random �eld. The Gibbs distribution corresponding to the resultingMRF can then be used for constructing an SA process. This transformationprocess from the domain expert knowledge to an SA process is described inSection 3.4.As noted above, Bayesian network theory o�ers an elegant solution for themodel construction module of our MAP solver. Furthermore, the concept ofMarkov random �elds allows us to construct simulated annealing processesfor solving MAP problems in the Bayesian network framework, thus providingus with a computational mechanism for the query processing module. Thestructure of the corresponding Bayesian MAP solver is shown in Figure 1.2.The main di�culty with this approach in practice lies in the ine�ciencyof the standard sequential simulated annealing: sampling of con�gurationsrequires a lot of iterative processing, and consequently implementations ofthe algorithm on conventional serial computers can be excruciatingly slowwith large Bayesian networks.In Chapter 4 we consider another family of models for building MAPsolvers, neural networks (NN). Neural networks are massively parallel com-putational models consisting of a large number of very simple processing units(for a survey of neural models, see e.g. the collections [5, 6, 103, 78]). Thesemodels can perform certain computational tasks extremely fast when runon customized parallel hardware, and hence they have been suggested as acomputationally e�cient tool for solving NP-hard optimization problems ap-proximatively [59, 10]. Especially suitable for these tasks are stochastic neuralnetwork architectures, as these models are based on a stochastic updating pro-cess very similar to simulated annealing. In Section 4.1 we describe such anetwork architecture, called the Boltzmann machine (BM) [57, 58], and showhow the updating process of a BM provably converges to a state which max-imizes the consensus function, which is an objective function determined by

6 Introduction
Sampledata ExpertknowledgeBayesiannetworktheory BayesiannetworkMRFrepresentationGibbsdistributionSimulatedannealingprocessPartial valueassignment Complete MAP value assignmentFigure 1.2: Structure of a Bayesian network MAP solver with a stochasticSA query processing module.the states of the binary nodes of the network, and by the (constant) paramet-ers (\weights") attached to the connecting arcs. In principle the BM modelcan be regarded as a massively parallel Gibbs sampler, but in order to ensureconvergence of the updating process, the nodes have to be updated sequen-tially, which prevents e�cient parallel implementations on neural hardware.In Section 4.2 we present a special case of the BM structure, the harmonynetwork [114], which consists of two separate layers of nodes. The two-layerstructure of the harmony network model allows us to update all the nodes inone layer simultaneously, making massively parallel implementations possible.Boltzmann machines can be used as a computationally e�cient tool for�nding maximum points of the consensus function corresponding to a givennetwork structure (provided that suitable massively parallel hardware is avail-able). In order to apply these models for building MAP solvers, we needalso an e�cient method for constructing neural network structures with theconsensus function having the same maximum points as the probability dis-tribution of the problem domain (see Figure 1.3).Boltzmann machines, and neural network models in general, are usuallyconstructed from sample data by �rst selecting (more or less arbitrarily)some network architecture by �xing the number of nodes and the connec-tions between the nodes, assigning (randomly chosen) weights to the connec-

7Sampledata BMlearningalgorithm BoltzmannmachineConsensusfunctionBMupdatingprocessPartial valueassignment Complete MAP value assignmentFigure 1.3: Structure of a Boltzmann machine MAP solver.tions, and then using some gradient-based greedy algorithm for changing theweights until the behavior of the network seems to be consistent with a sampleof training data [58, 35, 36]. There are, however, several serious pitfalls withthis approach, which relate to the "black box" nature of the functioning ofthe resulting models: normally there is no way of �nding out what kind ofknowledge a neural network contains after the learning, nor is it possible toexplain the behavior of the model. In particular, as the learning algorithmsstart with a randomly chosen initial state, \tabula rasa", they are unableto use any prior knowledge of the problem environment, although in manycases this kind of information would be readily available. This results in avery slow and unreliable learning process. Besides, as most of the learningalgorithms are \steepest-descent" type greedy algorithms, they are very likelyto get stuck in local maximum points. It follows that even if the chosen net-work happens to be structurally suitable for representing the problem domainprobability distribution, the global maximum will not be reached, unless theinitial starting point is chosen near the global maximum point. Even moredisturbingly, even in this case the resulting network may be a poor model forthe problem domain, as the machine learning algorithms tend to over�t themodel with the sample data.It follows that although Boltzmann machines provide us with an e�cientcomputational mechanism for processing MAP queries, �nding a Boltzmannmachine structure with a suitable consensus function can be very di�cultin practice, so this approach does not o�er a satisfactory solution for themodel construction problem. Bayesian networks, on the other hand, can beused for constructing models e�ciently and reliably from high-level a priori

8 Introduction
Sampledata ExpertknowledgeBayesiannetworktheory BayesiannetworkBoltzmannmachineConsensusfunctionBMupdatingprocessPartial valueassignment Complete MAP value assignmentFigure 1.4: Structure of a hybrid Bayesian-neural MAP solver.information, and moreover, they o�er also a very promising framework forconstructing models from low-level data, but they fail to provide a computa-tionally attractive solution for the query processing module. We argue that wecan achieve \the best of both worlds" by building a hybrid Bayesian-neuralMAP solver, where the model construction module uses Bayesian networktechniques, while the query processing module is implemented as a neuralnetwork.For constructing a hybrid Bayesian-neural system as suggested above, weneed a way to map a given Bayesian network to a Boltzmann machine archi-tecture, so that the consensus function of the resulting Boltzmann machinehas the same maximum points as the probability measure corresponding tothe original Bayesian network (see Figure 1.4). Although in some restric-ted domains this kind of a transformation is fairly straightforward to con-struct [57, 39, 75, 62, 90], the methods presented do not apply to generalBayesian network structures. In Chapter 5 we present three mappings froma given Bayesian network to a stochastic neural network architecture, in thesense that the updating process of the resulting neural network provably con-verges to a state which can be projected to a MAP solution on the variablestate space. Consequently, a Bayesian network can �rst be used for con-

9structing a model of the problem domain probability distribution, and themappings provide a method for constructing a neural network architecture,which can then be used for processing MAP queries e�ciently. In Section 5.1we present a mapping to a harmony network structure with two layers ofheterogeneous units, and show in Section 5.2 how a similar mapping can beconstructed using a more standard Boltzmann machine architecture, with twolayers of homogeneous units. As both of these mappings require the givenBayesian network to consist of only binary variables, we discuss in Section 5.3possible ways to cope with Bayesian networks with multi-valued variables. Inparticular, we show a simple extension of the binary-variable case mappingwhich makes no assumptions about the number of values of the variables.The three constructions presented in these sections are published earlier inreports [84, 81], [82], and [83], respectively.From the neural network point of view, the mapping from a Bayesiannetwork to a Boltzmann machine can also be seen as a method for incor-porating high-level, probabilistic a priori information directly into neuralnetworks, without recourse to the time-consuming and unreliable learningprocess. Naturally, the resulting neural network could also be regarded as acleverly chosen starting point to some learning algorithm, but this interestingidea is not studied here further.Compared to other neural-symbolic hybrid systems (see e.g. [9, 56, 41,116]), the Bayesian-neural hybrid system suggested here has two clear ad-vantages. First of all, the mathematical model behind the system is the the-oretically sound framework of Bayesian reasoning, compared to the more orless heuristic models of most other hybrid systems (for our earlier, heuristicattempts towards a hybrid system, see [33, 89, 34]). Secondly, although somehybrid models provide theoretical justi�cations for the computations (see e.g.Shastri's system for evidential reasoning [109]), they may require fairly com-plicated and heterogeneous computing elements and control regimes, whereasthe neural network model behind our Bayesian-neural system is structurallyvery simple and uniform, and con�rms to an already existing family of neuralarchitectures, the Boltzmann machines. In addition, as the mappings presen-ted here create a bridge between the symbolic and neural representations,they can be used to create a \real" modular hybrid system, where two (ormore) separate (neural or symbolic) inference modules work together. Anattempt towards this kind of a hybrid system, consisting of a symbolic Prologinterpreter and a neural network, is described in [85].In a sense, the updating processes of the NN component of our Bayesian-neural system correspond to simulated annealing processes on the Bayesiannetwork, where all the variables can be updated at the same time. Con-sequently, with suitable massively parallel hardware, processing time becomes

10 Introductionindependent of the size of the Bayesian network. On the other hand, the NNupdating process works in a state space much larger than the state spaceof the original Bayesian network, and in terms of accuracy in sampling theprobability distribution, the NN process is only an approximation of the sim-ulated annealing process on the Bayesian network. In Chapter 6 we compareempirically the performance of the Bayesian MAP solver in Figure 1.2 withthe performance of the hybrid MAP solver in Figure 1.4. Our simulationresults indicate that the speedup gained from parallelization compensateseasily for the loss of accuracy in the stochastic process. This means thatthe massively parallel SA scheme outperforms the traditional sequential SAscheme, provided that suitable massively parallel hardware is available.

Chapter 2The MAP problemLet U denote a set of N discrete1 random variables, U = fU1; : : : ; UNg. Wecall this set our variable base. In the sequel, we use capital letters for denotingthe actual variables, and small letters u1; : : : ; uN for denoting their values.The number of possible values for variable Ui is denoted by jUij. The valuesof all the variables in the variable base form a con�guration vector or a statevector ~u = (u1; : : : ; uN), and all theM = Qi jUij possible con�guration vectorsform our con�guration space
,
 = f~u1; : : : ; ~uMg. Hence our variable baseU can also be regarded as a random variable ~U , the values of which arethe con�guration vectors. Generally, if X � U is a set of variables, X =fX1; : : : ;Xng, by h ~X = ~xi we mean that ~x is a vector (x1; : : : ; xn), andXi = xi, for all i = 1; : : : ; n.The set of all the possible subsets of
, the set of events, is denoted by F.Let X � U be a set of variables, X = fX1; : : : ;Xng. By an event f ~X = ~xgwe mean a subset of F which includes all the con�gurations ~u 2
 that areconsistent with the assignment h ~X = ~xi. This event can also be expressedusing the logical `and'-operator:f ~X = ~xg = f ^i=1;:::;nXi = xig:If there is no possibility of confusion, we drop the variable namesXi, and referto an event simply as fx1; : : : ; xng, or even more brie
y as f~xg. Furthermore,let UX denote the set fYi : Yi 2 U �Xg, and ~UX denote the correspondingrandom variable. If we want to emphasize that in the set f ~X = ~xg there areno restrictions on the variables Yi 2 UX, we can writef ~X = ~xg = f ^Xi2UX Xi; ^Xi2XXi = xig;1We shall henceforth restrict ourselves to discrete variables, although this restriction isnot necessary for the simulated annealing method in general [43].

12 The MAP problemor more brie
y as f~UX; ~xg.Let P denote a probability measure de�ned on
. The triple (
;F;P)now de�nes a joint probability distribution on our variable base U . Having�xed the con�guration space
 (and the set of events F), any probabilitydistribution can be fully determined by giving its probability measure P, andhence we will in the sequel refer to a probability distribution by simply saying\the probability distribution is P".The general problem we are trying to solve is the following: given a partialvalue assignment h ~E = ~ei on a set E � U of variables as an input, we wishto determine the values for the variables Ui 62 E. In the Bayesian reasoningframework we can distinguish two di�erent approaches to this problem: themaximum a posteriori probability assignment approach (MAP), and the ex-pected value estimation (EVE) approach. As in [1], the former can be de�nedformally as follows:De�nition 2.1 (The MAP problem) Let Pmax denote the maximal prob-ability in the set
E = f ~E = ~eg consisting of all the con�gurations consistentwith the given value assignment,Pmax = max~u2
E Pf~ug:Furthermore, let
opt denote the set of all the con�gurations ~ui in the set
E with the property Pf~uig = Pmax. We say that a probabilistic algorithmsolves the MAP problem if it gives as the solution a con�guration ~ui with theprobability Pf~uig = (1=j
optj , if ~ui 2
opt,0 , otherwise,where j
optj denotes the number of elements in
opt.Hence the purpose in the MAP task is to choose one of the maximalprobability solutions using a uniform probability distribution on the set
opt,or if j
optj = 1 (as often is the case), give as the solution the single MAPcon�guration ~uopt. As in diagnostic applications this kind of a system wouldprovide the user the best explanation for a given set of symptoms, the solutionis sometimes called the most probable explanation [96], and the process ofobtaining the MAP solution is referred to as abductive inference [92].In the other, expected value estimation (EVE) approach, the goal is tocompute (estimates of) the probabilities of the form PfX = x j ~E = ~eg forvariablesX =2 E. It is easy to see that these two approaches may produce verydi�erent kind of solutions to a given problem. For example, let our variablebase consist of only three binary variables, U = fU1; U2; U3g, and let the

13probability measure P be de�ned on all the eight possible con�gurations asfollows: 1: PfU1 = 0; U2 = 1; U3 = 1g = 0:252: PfU1 = 0; U2 = 1; U3 = 0g = 0:03: PfU1 = 0; U2 = 0; U3 = 1g = 0:254: PfU1 = 0; U2 = 0; U3 = 0g = 0:05: PfU1 = 1; U2 = 1; U3 = 1g = 0:06: PfU1 = 1; U2 = 1; U3 = 0g = 0:257: PfU1 = 1; U2 = 0; U3 = 1g = 0:08: PfU1 = 1; U2 = 0; U3 = 0g = 0:25Let us assume that the input assignment setE is empty, and the particularEVE task we are interested in is to compute probabilities PfUi = 1 j ;g, foreach of the variables U1; U2 and U3. A MAP task solver should now, accordingto the apriori probabilities listed above, give one of the con�gurations 1, 3, 6or 8 as the answer, whereas an EVE task solver would give us the followingprobabilities:PfU1 = 1 j ;g = PfU1 = 1g = 0:25 + 0:25 = 0:5PfU2 = 1 j ;g = PfU2 = 1g = 0:25 + 0:25 = 0:5PfU3 = 1 j ;g = PfU3 = 1g = 0:25 + 0:25 = 0:5Clearly both of the approaches have their disadvantages: in the MAPapproach, we get one and only one con�guration as the answer, and maynever be aware of other, equally possible answers (unless we repeat the MAPsolving process several times). On the other hand, in the EVE approach theuser may not get any information of how the variables depend on each other(for instance, in our example U1 = 1 and U3 = 1 never occur at the sametime). Naturally, the suitability of the methods for a speci�c problem dependson the application domain: is it more important to get one de�nite answer, oris it more important to get a likelihood estimation for a certain variable? It isalso important to notice that there is no direct way of mapping the results ofone approach to the other, and hence methods developed for one of these tasksdo not necessarily apply for the other. In this study, we are only concernedwith the MAP approach.Let us assume for a moment that we are able to store all the M con�g-urations ~u1; : : : ; ~uM with the corresponding probabilities Pf~u1g; : : : ;Pf~uMgin a huge (imaginary) table structure. To solve the MAP task we need nowto search for a table item consistent with the input assignment, and with amaximal marginal probability Pf~uig. Let t = 0; 1; : : : be a discrete time scaleand let our iterative search algorithm examine one table item in each time

14 The MAP problemstep t. The solution found by the search algorithm after t iterations, denotedby S(t), is called the state of our iterative process. A \brute force" solutionto the search problem is given in Algorithm 2.1.Algorithm 2.1Brute force solution to the MAP problem. Pmax := 0;. for t := 1 to M do. if (~ut =2
E) then Pf~utg := 0;. if (Pf~utg � Pmax) then. Pmax := Pf~utg;. S(t) := t;else S(t) := S(t� 1);Obviously, there are two main problems with the brute force approachpresented above: �rst of all, the algorithm needs an exponential size storagespace for storing all the M probabilities Pf~uig,M = NYi=1 jUij � 2N ;and secondly it uses an exponential time going through all the M con�g-urations. In many practical situations, the �rst problem can be solved byusing the theory of Bayesian belief networks, as can be seen in the next sec-tion. The time complexity of the MAP problem (within the Bayesian networkframework) is discussed in more detail in Section 3.2.

Chapter 3Solving the MAP problem byBayesian networks3.1 Bayesian networksThe problem with the brute force approach to the MAP problem (Alg. 2.1) isnot only that the number of parameters needed to be stored is exponential,but also that in practice they may be very di�cult to obtain. If the probabilitydistribution model of the problem domain is constructed by interviewing do-main experts, then estimating probabilities of the form PfU1; : : : ; UNg goesvery quickly beyond human capacity as the number of variables increases.On the other hand, estimating simple conditional probabilities of the formPfX j Y;Zg seems to be relatively easy, especially if there are direct causalrelationships between the variables. To show how to formally utilize thisintuitive argument, let us start by proving the following lemma:Lemma 3.1 Given an ordering of the random variables U1; : : : ; UN , the jointprobability of a variable assignment can be represented as a product of con-ditional probabilities PfUi j FUig, where FUi denotes the predecessors ofvariable Ui:PfU1 = u1; U2 = u2; : : : ; UN = uNg =PfU1 = u1gPfU2 = u2 j U1 = u1g � � � PfUN = uN j UN�1 = uN�1; : : : ; U1 = u1g:Proof: According to Bayes' theorem,PfU1 = u1; U2 = u2; : : : ; UN = uNg =PfUN = uN j UN�1 = uN�1; : : : ; U1 = u1gPfUN�1 = uN�1; : : : ; U1 = u1g:The lemma is now proved by applying Bayes' theorem to the second term,and repeating this procedure recursively N times. �

16 Solving the MAP problem by Bayesian networksIn many natural domains, each variable Ui may in fact depend, or depend\directly", only on a small subset of variables in FUi , and not on all thepreceding variables. For example, to be able to determinewhether the variablecorresponding to the fact \can
y" is true or not, it seems to be useful toknow whether the object in question is a bird or not, and moreover, knowingthis fact, the values of other variables representing the shape, color, size etc.of the object seem to be more or less irrelevant. This kind of relationshipsbetween the variables can be expressed formally as follows:De�nition 3.1 LetX;Y , and Z be sets of variables. ThenX is condition-ally independent of Y , given Z, ifPf ~X = ~xj~Y = ~y; ~Z = ~zg = Pf ~X = ~xj~Z = ~zgholds for all vectors ~x; ~y; ~z such that Pf~Y = ~y; ~Z = ~zg > 0.Intuitively, the variables in Z intercept any dependencies between thevariables in X and the variables in Y : knowing the values of Z rendersinformation about the values of Y irrelevant to determining the distributionof X. Using the concept of conditional independence we can now give thede�nition of Bayesian network models:De�nition 3.2 A Bayesian (belief) network (BN) representation for a prob-ability distribution P on a set of discrete variables U = fU1; : : : ; UNg is apair (BS;BP), where BS is a directed acyclic graph whose nodes correspondto the variables in U , and whose topology satis�es the following: each vari-able X 2 U is conditionally independent of all its non-descendants in BS,given its set of parents FX , and no proper subset of FX satis�es this con-dition. The second component BP is a set consisting of the correspondingconditional probabilities of the form PfX j FXg.For simplicity, we shall henceforth forget about the nodes, and treat therandom variables Ui as if they were actually nodes of a graph. An exampleof a simple Bayesian network is given in Figure 3.1.As the parents of a node X can often be interpreted as direct causes ofX, Bayesian networks are also sometimes referred to as causal networks, oras the purpose is Bayesian reasoning, they are also called inference networks.In the �eld of decision theory, a model similar to Bayesian networks is knownas in
uence diagrams [60]. Thorough introductions to the Bayesian networktheory can be found in [96, 92].The importance of a Bayesian network structure lies in the way the net-work facilitates computing conditional probabilities. To make this precise, let

3.1 Bayesian networks 17
U6Pfu6 j u4gPfu6 j �u4gPf�u6 j u4gPf�u6 j �u4g U7 Pfu7 j u4 ; u5gPfu7 j �u4 ; u5gPfu7 j u4 ; �u5gPfu7 j �u4 ; �u5gPf�u7 j u4 ; u5gPf�u7 j �u4 ; u5gPf�u7 j u4 ; �u5gPf�u7 j �u4 ; �u5g

U4Pfu4 j u3gPfu4 j �u3gPf�u4 j u3gPf�u4 j �u3g U5 Pfu5 j u3gPfu5 j �u3gPf�u5 j u3gPf�u5 j �u3gU3Pfu3 j u1; u2gPfu3 j �u1; u2gPfu3 j u1; �u2gPfu3 j �u1; �u2gPf�u3 j u1; u2gPf�u3 j �u1; u2gPf�u3 j u1; �u2gPf�u3 j �u1; �u2gU1Pfu1gPf�u1g U2 Pfu2gPf�u2g
Figure 3.1: A simple Bayesian network structure BS with 7 binary variablesU1; : : : ; U7, and the corresponding conditional probabilities that form the setBP. By \ui" we mean here the value assignment hUi = 1i, and by \�ui" thevalue assignment hUi = 0i.us use the following notations: given a variable X in a Bayesian network BS,let FX denote the set of parents (predecessors) of X, SX the set of children(successors) of X, and UX the set of all variables except X. The followingresult is then an immediate consequence of De�nition 3.2:Theorem 3.2 Given a variable X in a Bayesian network B, de�neBX = FX [SX [[Y 2SX FY :Then X is conditionally independent of UX �BX , given BX .Proof: See [96, p. 121]. �

18 Solving the MAP problem by Bayesian networks
XF1F2F3 S1S2S3Y1

Y2
FX SXBX

Figure 3.2: Markov blanket BX of a variable X.Thus, to determine the distribution of a variable X, given the values ofall the other variables, it su�ces to consider only the values of the variablesin BX . A set of variables covering X in this sense is called a Markov blanketof X [96, p. 97].Even an explicit formula for computing the distribution of X from itsMarkov blanket can be given as follows:Theorem 3.3 Let B be a Bayesian network over a variable set fU1; : : : ; UNg.Given any con�guration vector ~u = (u1; : : : ; uN), the probability distributionof each variable Ui in the network, conditioned on the values of all the othervariables, may then be expressed as:PfUi = ui j ^Uj2UX Uj = ujg =cPfUi = ui j ^Uj2FX Uj = ujg YUj2SX PfUj = uj j ^Uk2FUj Uk = ukg; (3.1)where c is a constant independent of ui.Proof: See [96, p. 218]. �In [95], this formula was used for �nding an approximate solution to theEVE task, and in principle the same method could be used for the MAP taskas well. In this study, however, we use another approach which exploits thefollowing theorem:

3.1 Bayesian networks 19Theorem 3.4 Let B=(BS;BP) be a Bayesian network over a variable setU = fU1; : : : ; UNg. The probability for any variable value con�gurationvector ~u = (u1; : : : ; uN), can be expressed asPf~ug = NYi=1PfUi = ui j ^Uj2FUi Uj = ujg;where the conditional probabilities PfUi = ui j VUj2FUi Uj = ujg can befound in the set BP, and are de�ned as the apriori probability PfUi = uig, ifFUi = ;.Proof: Follows directly from Lemma 3.1 and De�nition 3.2. �Consequently, having de�ned a set of conditional independencies in agraphical form as a Bayesian network structure BS, we can use the con-ditional probabilities BP to fully determine the underlying joint probabilitydistribution. The number of parameters needed, jBPj, depends on the densityof the Bayesian network structure:jBPj = NXi=1(jUij YUj2FUi jUjj):In many natural situations, this number is much smaller than the size ofthe full con�guration space, M . Consider for instance the simple exampleshown in Figure 3.1: the size of the con�guration space is 27 = 128, but theBayesian network representation of the same probability distribution usesonly 32 (structurally simple) conditional probabilities.

20 Solving the MAP problem by Bayesian networks3.2 Complexity of the MAP problemThe nodes of a Bayesian network are usually considered to have a statewhich represents the value of the corresponding random variable. As thenodes represent all the random variables of the problem domain, a vectorof the states of the nodes of the network, an instantiation of the network,corresponds to one possible con�guration vector of the con�guration space
. An evidence value assignment h ~E = ~ei is represented by \clamping"(permanently setting) nodes corresponding to variables Ei 2 E to a statecorresponding to the value ei, respectively. Consequently, in the Bayesiannetwork domain the MAP problem can be formulated as a problem of �ndinga maximum probability instantiation of a given network, while keeping thestates of the clamped nodes unchanged.It has been shown that if the probability distribution is represented as aBayesian network, both the EVE task [19] and the MAP problem [112] belongto the class of NP-hard problems with respect to the size of the correspondingnetwork. These results mean that it is very unlikely that a polynomial-timealgorithm for solving the MAP problem for Bayesian networks could exist.1.Even �nding an approximation of the EVE solution (in any constant degree ofaccuracy) is an NP-hard problem [23, 102]. As the answer to a MAP problemis a con�guration vector, and not a probability, it is not obvious what anapproximative solution in this case means. If we de�ne the approximativeMAP solution (with an accuracy of �) to be any vector ~u with the propertyPmax �Pf~ugPf~ug � �;it is easy to see that (in the worst case) this problem is not easier than �ndingthe exact solution: let us imagine a solution space where there is one MAPsolution vector having probability one, and other solutions have probabilityzero. Now the problem of �nding a solution which approximates the MAPsolution within any accuracy of � < 1 is identical to the problem of �ndingthe actual maximum probability solution.Although the MAP problem seems to be intractable (in the worst casesense) for Bayesian networks in general, for singly-connected Bayesian net-work structures (networks with at most one path between any two vari-ables, disregarding the directions of the connecting arcs), Bayesian reas-1Strictly speaking, the NP-hardness results show that it is an NP-complete problem todecide whether there are any con�gurations ~u with the probability Pf~ug higher than somegiven value p. As �nding an MAP con�guration gives directly the answer to this decisionproblem, the MAP problem is said to be NP-hard. (For a good introduction to the theoryof complexity classes, see [38].)

3.2 Complexity of the MAP problem 21oning (meaning here both the EVE and MAP tasks) can be done in poly-nomial time [96, 92]. Consequently, most existing systems for Bayesianreasoning �rst transform a given multi-connected BN structure to a singly-connected network, and then use the existing polynomial-time algorithms(see e.g. [4, 13]). This transformation can be done either explicitly by clus-tering several nodes together as in [76, 106] or [96, Ch.4.4.1], or implicitlyby blocking multiply connected paths by conditioning a set of variables asin [96, Ch.4.4.2] (for a discussion of di�erent transformation techniques, see[107]). Alternatively, clustering can also be done by introducing new latentvariables which represent separate clusters of original variables [17, 88]. Thelatent variable model o�ers also an interesting opportunity for construct-ing Bayesian networks from data using unsupervised learning algorithms.However, it is clear that as the problem is NP-hard, any conditioning methodmay in the worst case take exponential time (assuming P 6= NP), and sim-ilarly, any clustering method may result in exponentially large conditionalprobability tables BP, which causes exponential execution times with respectto the size of the original network. Nevertheless, it should be also noted thatBayesian reasoning process on a singly connected network can be realized ona massively parallel neural network structure [86, 87], which allows e�cientimplementations of Bayesian reasoning even for large networks, provided thatsuitable hardware is available.In another approach to Bayesian reasoning the structure of the networkis not changed, but the quantitative conditional probabilities are replacedby a �nite set of qualitative measures of uncertainty [117]. It seems thatBayesian reasoning can in this case be done in polynomial time [29], butit is not yet clear what is the expressive power of this kind of qualitativeBayesian networks. For networks with less restricted conditional probabilities| networks with probabilities bounded by their dependence value, which is,intuitively speaking, a measure of how much the probabilities di�er fromuniform probabilities | the Bayesian reasoning tasks stay NP-hard [24].As the worst-case analysis of the MAP problem has indicated that thereis not much hope of �nding a polynomial time solution (for unrestricted BNstructures), there has been a growing interest to develop algorithms whichcould be shown to be able to produce good solutions in the probably ap-proximately correct (PAC) sense (error is small with high probability). InMonte Carlo methods the goal is to �nd a stochastic random process whichwill converge to a good solution with high probability. For a special class ofstochastic processes, Markov chains, this kind of behavior can be shown tooccur in the limit. The hope is that this kind of a process would also degradegracefully and give with high probability a good approximation of the correctsolution in feasible time. However, very little is known about the quality of

22 Solving the MAP problem by Bayesian networksthe solutions produced by the Markov chain models, if a limited amount oftime is available, but some analyses of the convergence speed can be foundin [32, 1, 113, 101, 98, 22]. In particular, for Bayesian networks restricted bytheir dependence value (see above), there exists a stochastic polynomial-timealgorithm which solves the EVE problem in the PAC sense [24]. Unfortu-nately, as the above mentioned convergence results deal mainly with the EVEproblem, the analysis of the probabilistic solution for the MAP task is stillvery much an open problem. In Section 3.3, we go brie
y through the basiccharacteristics of Markov chains and the corresponding Monte Carlo meth-ods, and show how they can be used for constructing a simulated annealingprocess which solves the MAP problem approximately.

3.3 Simulated annealing 233.3 Simulated annealing3.3.1 Markov chainsLet us consider a stochastic process S(0); S(1); : : : in our con�guration space
, S(t) 2
. In Markov chains the probability of choosing the next stateS(t + 1) depends only on the current state S(t), and not (directly) on theprevious states S(t� 1); S(t� 2); : : : ; S(0):De�nition 3.3 (Markov chain)A Markov chain is a sequence fS(t) j t = 0; 1; : : :g, whereP (S(t+ 1) = s j S(t) = st; S(t� 1) = st�1; : : : ; S(0) = s0)= P (S(t+ 1) = s j S(t) = st):A Markov chain is �nite if it is de�ned on a �nite set. In our model, thisis clearly the case, as our con�guration space
 is �nite.Let i be the state after t time steps, S(t) = i. A transition probability pijis the probability that the value of the next state S(t+ 1) is j:S(t+ 1) = (j with probability pij .i with probability 1�Pj 6=i pij .We say that our stochastic process moves from state i to state j withprobability pij . In the sequel, we are mainly concerned with homogeneousMarkov chains, where the transition probabilities do not depend on time t,and consequently they can be written as a big transition probability matrixP : P = 266666664 P11 : : : P1j : : : P1M...Pi1 : : : Pij : : : PiM...PM1 : : : PMj : : : PMM 377777775 ;where M is the size of the con�guration space
. The transition probabilitymatrix is a stochastic matrix, i.e. the sum of all the probabilities on each rowis one.So far we have only been concerned with the one-step transition probabil-ities. The following theorem states how we can derive the multi-step transitionprobabilities from the one-step probabilities using a single matrix operation:

24 Solving the MAP problem by Bayesian networksTheorem 3.5 The probabilities of moving from state i to state j in n steps,denoted by P (n)ij , are the elements of the matrix P n:P (n)ij = (P n)ij:Proof: See [69, p. 58]. �De�nition 3.4 A Markov chain with transition matrix P is irreducible, if8i; j 9n � 1 : P (n)ij > 0:De�nition 3.5 The period of a state i is the greatest common divisor of allintegers n � 1 for which P (n)ii > 0. If the period is 1, then the state is said tobe aperiodic. A Markov chain is aperiodic, if all of its states are aperiodic.From the theory of Markov chains, it is known that under certain con-ditions, the probability of �nding the system in state j after n iterationsconvergences to a certain probability �j as n approaches in�nity:�j = limn!1 P (n)ij = limt!1P (S(t) = jjS(0) = i); for all i; j = 1; : : : ;M:The convergence is independent of the initial state S(0). The probabilit-ies �1; : : : ; �M form a limiting probability distribution � called the station-ary probability distribution. The following theorem shows how the stationaryprobability distribution can be calculated:Theorem 3.6 Let P be the transition matrix of a �nite, irreducible andaperiodic homogeneous Markov chain. Then there exists a stationary distri-bution � which is uniquely determined by the set of equations�j =Xi �iPij ; j = 1; : : : ;M;under the constraints �i � 0;Pi �i = 1.Proof: See [69, p. 85]. �

3.3 Simulated annealing 253.3.2 Markov chain Monte Carlo methodsMarkov chain Monte Carlo (MCMC) methods are stochastic algorithms thatare based on Markov chain processes (for a survey of using MCMCmethods inthe Bayesian reasoning framework, see [91]). As pointed out in the previoussection, under certain conditions, Markov chains will converge to a uniquestationary distribution. In the MCMC framework, this kind of a convergingMarkov chain process is usually produced by forming transition probabilitiesPij consisting of two parts: a generation probability Gij and an acceptanceprobability Aij. The generation probability Gij represents the probability thatwe consider moving from state i to state j, and the acceptance probabilityAij expresses the probability that we accept this move. Hence the transitionprobability is the product of these two probabilities:Pij = (GijAij ; if i 6= j;1�Pj 6=iGijAij ; if i = j:A generic MCMC algorithm is de�ned as follows:Algorithm 3.1Markov chain Monte Carlo (MCMC). S(0) := RandomState(~u1,: : : ,~uM);. for t := 1 to 1 do. ~ui := S(t� 1);. /* generate a candidate for the next state */Ŝ(t) := ~uj with probability Gij ;. if (RANDOM(0,1) < Aij)then S(t) :=Ŝ(t); /* accept */else S(t) :=S(t� 1); /* reject */Under certain conditions, the probability of �nding the MCMC process(Algorithm 3.1) in state ~ui converges to Pf~uig. Su�cient conditions forthis kind of behavior are usually given as the following requirements for thematrices G and A :Theorem 3.7 Let us de�ne a MCMC process with the generation and ac-

26 Solving the MAP problem by Bayesian networksceptance matrices ful�lling the following requirements:(G1) 8i; j 2 f1; : : : ;Mg : 9p � 1;9l0; l1; : : : ; lp 2 f1; : : : ;Mg(where l0 = i; lp = j)and Glklk+1 > 0; k = 0; 1; : : : ; p� 1:(G2) 8i; j 2 f1; : : : ;Mg : Gij = Gji(A1) 8i; j 2 f1; : : : ;Mg : Aij = 1; if Pf~ujg � Pf~uigAij 2 (0; 1); if Pf~ujg < Pf~uig(A2) 8i; j; k 2 f1; : : : ;Mg with Pf~uig � Pf~ujg � Pf~ukg : Aik = AijAjk:The limiting distribution of the resulting stochastic process is P.Proof: See [1, p.42]. �For the acceptance probability matrix A, the original choice suggested byMetropolis et al. in [80] was the following:Aij = 8<: 1 ; if Pf~ujgPf~uig � 1,Pf~ujgPf~uig ; if Pf~ujgPf~uig < 1. (3.2)This is still perhaps the most commonly used method in MCMC applications.The Metropolis method clearly ful�lls the conditions (A1) and (A2) inTheorem 3.7. In an alternative model, Barker's method [8], these require-ments are not met: Aij = Pf~ujgPf~ujg+ Pf~uig = 11 + Pf~uigPf~ujg : (3.3)Nevertheless, existence of a unique limiting distribution can still be proved:Theorem 3.8 Let � = fS(t); t = 0; 1; : : :g be a stochastic simulation processwith the generation probabilities ful�lling the conditions (G1) and (G2) ofTheorem 3.7, and let the acceptance probabilities be computed accordingto the formula (3.3), with all the state probabilities Pf~uig assumed to bepositive. Then the unique limiting distribution of � is P.Proof: As Pf~uig > 0 for all i (and assuming that condition (G1) is met), theresulting Markov chain is irreducible and aperiodic (see [1, p.39]). Moreover,

3.3 Simulated annealing 27using assumption (G2) we getXi Pf~uigPij = Xi Pf~uigGij Pf~ujgPf~ujg+ Pf~uig= Xi Pf~ujgGij Pf~uigPf~ujg+ Pf~uig= Xi Pf~ujgGji Pf~uigPf~ujg+ Pf~uig= Xi Pf~ujgPji= Pf~ujgXi Pji= Pf~ujg:According to Theorem 3.6, P is now the stationary distribution of the Markovchain behind the Barker's method. �In practice, the Metropolis algorithm is sometimes preferred over Barker'smethod, as in the case of equally probable states, Barker's method changes thestate with probability 1=2, whereas Metropolis' method changes the state withprobability 1, thus o�ering possibly a better sampling of the states. However,it should be noted that there is no theoretical preference for either of thesemodels, but they both lead to the same stationary distribution.3.3.3 Gibbs samplingThe simplest alternative for the generation probability matrix G ful�lling therequirements (G1) and (G2) of Theorem 3.7 is to use the uniform distribution,Gij = 1M ; for all i; j 2 f1; : : : ;Mg: (3.4)However, when the uniform generation distribution is used, all the variableshave equal probability of changing their value, which means that when a goodsolution is found, it can easily be lost during the simulation process2. In prac-tice, on the other hand, it has been empirically observed that updating onlyone variable or a small group of variables at a time gives better results, as the2What is more, it is easy to see that this kind of an MCMC sampling can never workbetter than simple uniform random sampling, regardless of the acceptance probabilitymatrix A.

28 Solving the MAP problem by Bayesian networksresulting stochastic process is then a kind of a local search algorithm, pre-serving (probably) most of the good solutions found. This type of a MCMCprocess is usually called Gibbs sampling.When only one randomly chosen variable is updated at a time, the gener-ation probabilities of the corresponding Gibbs sampler can be written asGij = (1j
(i)j ; if ~uj 2
(i),0 ; otherwise, (3.5)where
(i) �
 denotes the set of states that can be obtained from state~ui by changing the value of one variable, and j
(i)j denotes the number ofstates in
(i). This is the most usual form of Gibbs sampling. In the sequel,we are mainly concerned with the Gibbs sampling type of MCMC processes,and their variations.Let us consider a Gibbs sampler based on acceptance probabilities of theform (3.2) or (3.3), generation probabilities of the form (3.5), and let Uk bethe variable to be updated at some state S(t) = ~ui of the stochastic processby changing its value from uk to u0k. The actual decision of whether to moveto a new state S(t + 1) = ~uj or not is based on the ratio Pf~uig=Pf~ujg. Asthis ratio can also be represented asPf~uigPf~ujg = PfU1 = u1; : : : ; Uk = uk; : : : ; UN = uNgPfU1 = u1; : : : ; Uk = u0k; : : : ; UN = uNg= PfUk = uk;Vi6=k Ui = uigPfUk = u0k;Vi6=k Ui = uig= PfUk = uk j Vi6=k Ui = uigPfVi6=k Ui = uigPfUk = u0k j Vi6=k Ui = uigPfVi6=k Ui = uig= PfUk = uk j Vi6=k Ui = uigPfUk = u0k j Vi6=k Ui = uig;Gibbs sampling can also be regarded as a stochastic local search whichsamples from the \local distribution" PfUk = u j Vi6=k Ui = uig. In thisrespect, Gibbs sampling can be regarded as a stochastic version of a localsearch algorithm belonging to the very general family of expectation maxim-ization (EM) [26] (or, as they are also called, alternating minimization [21])algorithms.A Gibbs sampling process can be made much faster by parallelizing thestate generation-acceptance process. This can be done easily if some variablesare found to be independent of each other: independent variables can thenbe updated at the same time without losing the \local search"{property ofthe process. A certain class of neural net algorithms can be regarded as

3.3 Simulated annealing 29massively parallel implementations of Barker's method, as we shall later seein Chapter 4.It is easy to see that a Gibbs sampling generation probability matrix of theform (3.5) ful�lls the conditions (G1) and (G2) of theorem (3.7), and hencethe limiting distribution of a Gibbs sampler is P (P being the probabilitymeasure used for computing the acceptance probabilities). Consequently, thefrequency of a variable Ui being in state ui converges (in the limit) to theprobability PfUi = ui j ~E = ~eg, and hence the Gibbs sampler can be usedfor approximating the EVE solution. However, to be able to solve the MAPproblem, we need to change the Gibbs sampling process so that it convergesto a stable state, and what is more, we need to show that this stable state isthe desired MAP state. In the next section, we present a technique for thispurpose.3.3.4 Gibbs distributions and simulated annealingThe stochastic simulation algorithm presented in the previous section was�rst introduced by Metropolis et al. [80] in the context of condensed matterphysics. It can be shown that the probability of a heated solid being in state~u at a given temperature ~T obeys the following Gibbs distribution:De�nition 3.6 A Gibbs distribution on a con�guration space
 is a prob-ability measure of the formP ~Tf~ug = 1Z ~T e(�E(~u)=kB ~T);where Z ~T is a normalizing constant called the partition function,Z ~T = X~u2
 e(�E(~u)=kB ~T);E(~u) is the energy of the system, and kB is the Boltzmann constant.As kB is a constant, it is usually omitted from the formulas, and a single termT = kB ~T is used instead to denote the scaled temperature.As mentioned earlier, originally the acceptance probabilities were basedon the Metropolis formula (3.2), resulting in the following acceptance prob-abilities:Aij(T) = 8<: 1 ; if exp(�E(~uj)=T)exp(�E(~ui)=T) = exp(E(~ui)�E(~uj)T) � 1;exp(E(~ui)�E(~uj)T) ; otherwise.

30 Solving the MAP problem by Bayesian networkswhere E is the energy function of the Gibbs distribution, and T is the tem-perature. When applying Barker's method (3.3) with the Gibbs distribution,the resulting acceptance probabilities become of the formAij(T) = 11 + exp(�E(~ui)=T)exp(�E(~uj)=T)= 11 + exp((E(~uj)� E(~ui))=T) (3.6)As we shall see in Section 4, this latter form of Gibbs sampling is equivalentto the updating rule of certain neural network models. It is also importantto notice that Gibbs sampling uses only di�erences of state energies, not theactual probabilities. In particular, the method does not need the value of thepartition function ZT of the Gibbs distribution, which is usually not feasiblycomputable.The limiting distribution of a Gibbs sampling process is in the context ofphysics often called the thermal equilibrium. Annealing is a physical processwhere a solid is �rst heated up, and the temperature is then slowly decreasedto zero. Empirically it has been known for a long time that if the temperatureis decreased slowly enough, the particles of the matter are arranged in a highlystructured manner, producing a stable low-energy ground state of the matter.The following theorem proves that Gibbs sampling combined with annealingwill �nd one of the minimal energy states of the physical system:Theorem 3.9 Let
opt denote the set of maximal probability (minimal en-ergy) con�gurations with respect to the Gibbs distribution in De�nition 3.6,and let S(0); S(1); : : : be a stochastic sampling process ful�lling the require-ments in Theorem 3.7, with the additional temperature parameter added tothe acceptance probabilities as shown in (3.6) above. As the temperature ofthe Gibbs sampler converges to zero, the probability of �nding the annealingprocess in state ~ui converges to the uniform distribution in the set
opt:limT#0 limt!1PT (S(t) = ~ui) = (1=j
optj ; if ~ui 2
opt0 otherwise,Proof: See [1, p.18]. �The sampling/annealing procedure presented above applies naturally alsooutside the actual statistical physics environment, and hence it is usually re-ferred to as simulated annealing (SA). As SA in principle �nds the globalminimum of any energy function, the algorithm is applicable to combinator-ial optimization problems in general. This possibility was brought to general

3.3 Simulated annealing 31attention of the optimization theory community by Kirkpatrick et al. in [71],and SA has since been widely applied for many di�erent optimization prob-lems (see the references in [1]). Simulated annealing is also widely used inimage processing, in particular due to the pioneering theoretical work doneby Geman & Geman (see [40]). In Section 3.4 we show how to representa Bayesian network probability distribution in the Gibbs distribution form,which allows us to use simulated annealing for �nding MAP con�gurationson Bayesian networks.A generic simulated annealing algorithm can be de�ned as follows:Algorithm 3.2Simulated annealing (SA). S(0) := RandomState(~u1; : : : ; ~uM);. T := InitTemp();. Repeat until convergence criterion is satis�ed. Repeat until equilibrium criterion is satis�ed. i := S(t� 1);. /* generate a candidate for the next state */Ŝ(t) := j with probability Gij ;. if (Random(0,1) < Aij(T))then S(t) := Ŝ(t); /* accept */else S(t) := S(t� 1); /* reject */. T := NewTemperature();Theorem 3.9 states that the annealing process will, with probability one,�nd one of the MAP con�gurations of the given Gibbs distribution in thelimit: limT#0 limt!1PT (S(t) 2
opt) = 1:However, in practice we are not able to run the algorithm in�nitely long atin�nitely many temperatures, as the theorem assumes. We de�ne a coolingschedule as a set of rules that determine how the temperature is decreasedduring a �nite-time simulation:De�nition 3.7 A cooling schedule speci�es� the initial value of the temperature,

32 Solving the MAP problem by Bayesian networks� an equilibrium criterion, which de�nes the number of iterations to beperformed at each temperature,� a decrement function, which de�nes how fast the temperature decreases,and� a convergence criterion, which de�nes the �nal value of the temperature.The following theorem of Geman & Geman shows that if the temperatureis lowered su�ciently slowly, then the convergence of the simulated annealingis guaranteed in a �nite number of steps.Theorem 3.10 Let � denote the product N�, where� = max~u2
 E(~u)�min~u2
 E(~u);and N is the number of random variables. At time t, let a new state S(t)be generated by considering changing the value of only one variable, and letI(t) denote the index of the variable under consideration. Assume that thereexists an integer � � N such that for every t = 0; 1; : : : we havef1; : : : ; Ng � fI(t+ 1); : : : ; I(t+ �)g;and let T (t) be a decreasing sequence of temperatures for which1. T (t)! 0 as t!1.2. T (t) � �=log(t + 2), for all t = 0; 1; : : :Now the convergence result of Theorem 3.9 applies.Proof: See [40].From the implementational point of view, Theorem 3.10 has two majordrawbacks. First of all, although the number of steps required in the the-orem is not in�nite, it is still exponential with respect to time t and henceimpractical for most applications. Secondly, in many cases good estimatesfor the value of the parameter � are not available, making the determina-tion of a suitable initial temperature very di�cult. It is also important tonotice that this theorem states nothing about the convergence of simulatedannealing if the cooling schedule is faster than what is required in Theorem(3.10). However, with certain additional constraints to the problem it can beshown that exponential time is not only su�cient, but also necessary [44]. Inthe light of the complexity of the MAP problem (see Section 3.2), it seems

3.3 Simulated annealing 33probable that a similar kind of result could be proven for the general casealso, although this has not been done. In contrast to the negative theoreticalresults, it has been empirically observed that in many cases good qualitysolutions can be found quite reliably with polynomial time cooling schedules[1]. Nevertheless, the task of �nding a suitable cooling schedule seems to bea very di�cult problem.The condition concerning the constant � in Theorem 3.10 is used onlyto ensure that the Gibbs sampling process is fair, i.e. no variables are goingto be ignored during the sequential variable updating process. Actually, asnoted later by several researches (see the list of references in [1, Ch. 3.4.]),the assumption of changing only one variable at a time is not necessary atall. This fact is very important when considering parallel implementations ofsimulated annealing, as we shall see in Chapter 4.

34 Solving the MAP problem by Bayesian networks3.4 Simulated annealing for Bayesian networksGibbs sampling and simulated annealing are an appealing method for solvingMAP problems approximatively, o�ering a possibility to avoid the exponentialtime required for solving the problems exactly. To be able to use SA inour Bayesian network framework, we need a method for representing theBayesian network probability distribution P in the Gibbs distribution form(De�nition 3.6). In the following, we show how this can be done by exploitingthe equivalence between the graphical Markov Random Field models andGibbs distributions.3.4.1 Markov random �eldsAs before, let U denote a variable base of N variables U1; : : : ; UN , and let Gdenote a binary neighborhood relation on U , consisting of pairs (Ui; Uj). Aswith Bayesian networks, we can view this relation graphically by drawing anetwork where for each variable Ui there is a corresponding node Si in thenetwork, and two nodes Si and Sj are connected if and only if (Ui; Uj) 2 G. Inthis case the neighborhood relation G is symmetric, resulting in an undirectedgraph. As with Bayesian networks, we shall henceforth forget about the nodesSi, and treat the random variables Ui as if they were actually nodes of a graph.For each variable Ui, we de�ne a set of neighbors Gi:Gi = fUj j (Ui; Uj) 2 Gg:Using the concept of neighborhood we can now give the de�nition for aMarkov Random Field (MRF) [27, 11, 70, 40]:De�nition 3.8 (Markov Random Field) A family of random variablesU is a Markov Random Field with respect to a relation G and a probabilitydistribution P, if1. Pf~U = ~ug > 0 for all ~u 2
.2. PfUi = ui j ĵ 6=iUj = ujg = PfUi = ui j ^j2Gi Uj = ujg for all the variablesUi 2 U , and for all the con�gurations ~u 2
.A subset C � U is called a clique, if all the variables in C are neighborsto each other. Let C denote a set of cliques inU , and let VC denote a functionon
 that depends only on the values of the variables in clique C 2 C, andmaps each state vector to a real number, according to the value con�gurationon the clique C. The value of the function VC(~u) is called the clique potential

3.4 Simulated annealing for Bayesian networks 35
X4X1 X2 X3X5 X6 X7Figure 3.3: A simple Markov random �eld with three maximal cliques,fX1;X2;X3;X4g, fX4;X5;X6g and fX4;X7g.of a clique C. The following theorem proves an important relation betweenMarkov random �elds and Gibbs distributions:Theorem 3.11 Let G denote a neighborhood relation on U . Then U is aMRF with respect to G and a probability distribution P if and only if P canbe represented as a Gibbs distribution of the formPf~U = ~ug = 1Z eV (~u)=T ;where the potential function V is the sum of the values of all the cliquepotentials in the network: V (~u) =XC VC(~u);and ZT is a normalizing constant.Proof: See [40]. �Consequently, any Gibbs distribution can be de�ned by using a graph-ical Markov random �eld representation, and correspondingly, for each MRFthere exists a corresponding Gibbs distribution (and a corresponding Gibbssampler).In practice, the set of the cliques of a graph is usually taken to be the setof the the maximal cliques of the graph. However, sometimes it can be moreconvenient to de�ne a Gibbs distribution by using a slightly di�erent set ofcliques, as we shall see in the next section.For notational convenience, we prefer to use in the sequel the Gibbs dis-tribution formulation given above with a negative potential function function

36 Solving the MAP problem by Bayesian networks
X4X1 X2 X3X5 X6 X7 X4X1 X2 X3X5 X6 X7 X4X1 X2 X3X5 X6 X7Figure 3.4: Moralization of a Bayesian network.V , instead of the positive energy function E used in De�nition 3.6 (naturally,V (~u) = �E(~u), so the di�erence is only syntactical). In this case, Barker'sacceptance function (3.3) becomesAij(T) = 11 + exp(V (~ui)=T)exp(V (~uj)=T)= 11 + exp((V (~ui)� V (~uj))=T)= 11 + exp(�(V (~uj)� V (~ui))=T) (3.7)In Chapter 5 we see that this probability is equal to the node updating prob-ability of certain stochastic neural network models.3.4.2 Mapping Bayesian networks to Markov random�eldsLet B be a Bayesian network representing a probability distribution P. Asnoted earlier by several authors [61, 75, 76, 115], we can construct for anygiven Bayesian network a corresponding MRF having the same probabilitydistribution, by using a transformation called moralization of a Bayesiannetwork. In the moralizing process, a given Bayesian network is transformedto a MRF by �rst making all the existing arcs undirected, and then addingnew undirected arcs between any two variables that have a common child inthe Bayesian network (\moralizing" the relationship). For each variable Uiwithout any predecessors in the Bayesian network, there is a one node cliquefUig (see Figure 3.4).

3.4 Simulated annealing for Bayesian networks 37In the resulting MRF, we distinguish N cliques, one for each of the vari-ables U1; : : : ; UN , so the corresponding probability distribution is a Gibbsdistribution of the formPTf~U = ~ug = 1ZT ePNi=1 Vi(~u)=T : (3.8)The following theorem shows how to choose the clique potentials of the mor-alized MRF so that the corresponding probability distribution is equal to theoriginal Bayesian network distribution P:Theorem 3.12 Let B be a Bayesian network with a probability distributionP, and letM denote the corresponding MRF with a Gibbs probability distri-butionQ of the form (3.8). If we set the potential of a cliqueCi, correspondingto a variable Ui, toVi(~u) = lnPfUi = ui j ^Uj2FUi Uj = ujg+Ki; (3.9)where the constants Ki ful�ll the conditionYi eKi = ZT ; (3.10)ZT being the partition function of the Gibbs distribution Q, then, at temper-ature 1, Q = P.Proof: According to Theorem 3.4, the probability distribution P can be rep-resented as a product of conditional probabilities, one for each variable Ui:Pf~ug =Yi PfUi = ui j ^Uj2FUi Uj = ujg:On the other hand, from (3.9) and (3.10) it follows that, at temperature 1,Qf~ug = 1Z ePi Vi(~u) = 1Z Yi PfUi = ui j ^Uj2FUi Uj = ujgYi eKi = Pf~ug:�It should be noted, that as in Gibbs sampling we are only concerned withthe proportions Pf~uig=Pf~ujg = exp(V (~ui)� V (~uj)), the values of constantsKi are actually irrelevant.If we wish to sample a Bayesian network probability distribution P forEVE problem tasks, we can map the Bayesian network to a MRF and usethe corresponding Gibbs distribution for constructing a Gibbs sampling pro-cess at temperature 1. On the other hand, if we wish to solve a given MAP

38 Solving the MAP problem by Bayesian networksproblem, we need to run the Gibbs sampler at di�erent temperatures T , withT decreasing towards zero. In Section 6.1 we present one possible realiza-tion of this type of a simulated annealing process. In Chapter 5, we presenthow this type of a sequential process can be replaced by a massively parallelneural network updating process, in the sense that the neural network updat-ing process provably converges to the same �nal state as the sequential SAprocess.

Chapter 4Solving the MAP problem bystochastic neural networks\A neural network is a parallel, distributed information processingstructure consisting of processing elements (which can possess alocal memory and carry out localized information processing op-erations) interconnected via unidirectional signal channels calledconnections. Each processing element has a single output connec-tion that branches (\fans out") into as many collateral connec-tions as desired; each carries the same signal | the processingelement output signal. The processing element output signal canbe of any mathematical type desired. The information that goeson within each processing element can be de�ned arbitrarily withthe restriction that it must be completely local; that is, it mustdepend only on the current values of the input signals arrivingat the processing element via impinging connections and on val-ues stored in the processing element's local memory." { RobertHecht-Nielsen [47].The processing elements (units, nodes or \neurons") of a neural networkare usually based on a simple arti�cial neuron model, inspired originally [79]by the structure of a real biological neuron. In this model, the local memoryof a node Si consists of two real-valued parameters: a constant parameter �icalled the threshold or bias, and a variable parameter si, the activity value orthe state of the node. In addition, each connection (i; j) between two nodesSi and Sj is provided with a real-valued parameter wij called the weight ofthe connection.As the output signal, each node sends its state to other nodes through theconnecting arcs. The total net input to a node is the weighted sum of the

40 Solving the MAP problem by stochastic neural networks
Pwijsj �islsk sj wijwikwil si = f(Pj wijsj + �i)

Figure 4.1: An arti�cial neuron.incoming output signals of other nodes, plus the threshold. The new state ofa node is computed by using an activation function or transfer function f ,with the net input as the parameter (see Figure 4.1).The most commonly used form for an activation function is the sigmoidfunction, f(x) = 11 + e��x ;where � is some positive constant (see Figure 4.2). Note that the sigmoidfunction becomes in the limit a two-value threshold function as � approachesin�nity. One of the main reasons for using the sigmoid function is the factthat it has a very simple derivative, f 0(x) = f(x)(1 � f(x)), and besides,e�cient implementations of sigmoid function elements have been developedfor analogical and digital circuits [47, Ch. 8],[51, Ch. 3].The interconnected nodes form a network structure, a neural network.Neural network architectures can be divided into two main categories: feed-forward models and feedback models. In feedforward neural networks thenetwork can be partitioned into hierarchical layers of nodes, where each nodeon one layer is connected only to nodes on layers situated higher in the layerhierarchy. The computational model for feedforward neural networks is aone-pass feedforward propagation of signals, starting from the �rst layer, andending at the last layer. In feedback neural networks, on the other hand, theconnections between the nodes can form loops, and the computational mech-anism is an iterative relaxation process. For a good introduction to neural

41
00.5
1
-10 -5 0 5 10y x

y = 1=(1 + exp(��x))� = 1� = 2� = 10� = 0:5� = 0:1Figure 4.2: The sigmoid function.computing, see e.g. the collections [5, 6, 103, 78], or the books [46, 54, 47]. Inthe following, we are mainly concerned with one of the most common of thefeedback models, theBoltzmann machine [57, 58] neural network architecture,and its variants.

42 Solving the MAP problem by stochastic neural networks4.1 Boltzmann machinesA Boltzmann machine (BM) [57, 58] is a neural network consisting of a setof binary nodes fS1; : : : ; Sng, where state si of node Si is either 1 (\on"),or 0 (\o�"). Let C denote the set of all connections (i; j) in a network. InBM models, all the connections are symmetric, i.e. if (i; j) 2 C then also(j; i) 2 C, and wij = wji.Let ~s = (s1; : : : ; sn) 2 f0; 1gn denote a global state vector of the nodes inthe network. The consensus of state ~s is de�ned asC(~s) = nXj=1 nXi=j wijsisj ; (4.1)where wii denotes the bias �i of node Si, and the weight wij is de�ned to be0 if Si and Sj are not connected.The nodes of a BM network are updated stochastically according to thefollowing probabilistic rule:P (si = 1) = 11 + e�Pj wijsj=T ; (4.2)where T is a real-valued parameter called temperature, which decreases withtime towards zero. Consequently, each node is able to update its state locally,using the information arriving from the connecting neighbors as the inputfor a sigmoid function, thus o�ering a possibility for a massively parallelimplementation of this algorithm.Theorem 4.1 If the nodes of a Boltzmann machine are updated by changingone randomly chosen unit at a time, then the network will converge to amaximal consensus state almost surely.Proof: Let ~s denote the current state vector, and let Sk be the node to beupdated. The new state vector ~s0 is obtained by
ipping the state sk of nodeSk while the other nodes remain unchanged:s0i = (si , if i 6= k;1 � si , if i = k:

4.1 Boltzmann machines 43The di�erence in consensus between the states ~s0 and ~s is nowC(~s0)� C(~s) = (nXj=1 nXi=j wijs0is0j)� (nXj=1 nXi=j wijsisj)= (nXj=1 nXi=j;i6=kwijs0is0j + nXj=1wkjs0ks0j)� (nXj=1 nXi=j;i6=kwijsisj + nXj=1wkjsksj)= nXj=1wkjs0ksj � nXj=1wkjsksj= (s0k � sk) nXj=1wkjsjIn the BM updating scheme, if sk = 0 (and hence s0k = 1), then it follows thatC(~s0) � C(~s) = Pnj=1 wkjsj, and hence the probability of accepting the newstate ~s0 is P (~s0) = P (sk = 1) = 11 + e�Pnj=1 wkjsj=T= 11 + e�(C(~s0)�C(~s))=TOn the other hand, if sk = 1 (and hence s0k = 0), then it follows that C(~s0)�C(~s) = �Pnj=1wkjsj, and the probability of accepting the new state ~s0 isP (~s0) = 1 � P (sk = 1) = 1� 11 + e�Pnj=1 wkjsj=T= 1� 11 + e(C(~s0)�C(~s))=T= 11 + e�(C(~s0)�C(~s))=TConsequently, in both cases the updating probability is identical to that pro-posed by Barker (3.7), and hence the BM updating process can be regardedas a Gibbs sampling-simulated annealing process, which according to The-orem 3.9 converges almost surely to a state which maximizes the followingGibbs distribution: Pf~sg = 1ZeC(~s);where Z is a normalizing constant. As this distribution has the same max-imum points as the consensus function C, the BM updating process convergesto a maximal consensus state. �

44 Solving the MAP problem by stochastic neural networksIt follows that in principle any BM updating scheme could be seen as amassively parallel implementation of the general Gibbs sampling algorithmwith respect to the consensus function (4.1) and acceptance probability (4.2),provided that the generating probability matrix used ful�lls the requirements(G1) and (G2) of Theorem 3.7. However, the acceptance probability (4.2) setshere implicitly some additional requirements to the generation probabilities,since the di�erence in consensus is calculated by keeping all nodes except oneconstant. For this reason, if two or more adjacent nodes of the BM networkare to be updated at the same time, the corresponding transition probabilitymatrix is no more stochastic, and hence convergence of the algorithm can notbe guaranteed. On the other hand, if we allow only one node to be updatedat a time, we can apply Theorem 3.7, but then the parallel nature of thealgorithm is lost. To solve this dilemma, it has been suggested [25] that thenodes of a BM network should be divided into clusters, where no two nodesinside of a cluster are connected to each other. Using this kind of a clusteredBM we can maintain some parallelism and update all the nodes in one clusterat the same time, while a convergence theorem similar to 4.1 can be proved:Theorem 4.2 Let the nodes of a Boltzmann machine be divided into separ-ate clusters (independent sets), where no two nodes in the same cluster areconnected to each other. At time t, update simultaneously all the nodes ina randomly chosen cluster using the formula (4.2). Let S(0); S(1); : : : denotethe resulting states of the network and let Copt denote the set of states withglobally maximal consensus. Now it follows thatlimT#0 limt!1PT (S(t) 2 Copt) = 1:Proof: As Theorem 4.1, but instead of Theorem 3.7, apply Theorem 8.2 in [1].� Obviously, as all the nodes in a cluster can be updated simultaneously,the degree of parallelism depends on the number of clusters in the network.Unfortunately, the problem of �nding a minimal set of clusters in a givennetwork is identical to the graph coloring problem and is hence NP-complete.However, in the sequel we deal with a special class of two-layer BM architec-tures which have by de�nition only two clusters, being in this sense optimalBM architectures.

4.2 Harmony networks 454.2 Harmony networksA basic di�culty with understanding Smolensky's theory of harmony net-works [114] lies in the fact that Smolensky uses two disturbingly similar,structurally identical models on di�erent levels of abstraction. The �rstmodel, the conceptual harmony network can be used for de�ning a function(the harmony function) on a set of binary variables, conceptually in sameway as the MRF model is used for de�ning a Gibbs distribution. There aresome interesting cognitive questions related to harmony network representa-tions, but they are not to be addressed in this study. The second model, thecomputational harmony network, is a two-layer neural network which can beused for �nding the maximum of the harmony function, and it is function-ally very close to the Boltzmann machine model. We shall �rst introduce theconceptual model and the de�nition of the harmony function in Section 4.2.1,and the computational model is then presented in Section 4.2.2.4.2.1 The harmony functionLet our problem domain be de�ned on a set of N binary random variablesU1; : : : ; UN . For notational convenience, the variables Ui are here assumedto be bipolar, i.e. they have either value -1 or 1, instead of 0 and 1. Aharmony network consists of two layers of nodes: a set of N feature nodesX1; : : : ;XN corresponding to the variables U1; : : : ; UN , and a set of R pat-tern nodes fY1; : : : ; YRg (Smolensky's \knowledge" nodes). Each node in aharmony network has an activity level, which can have two values: the pos-sible activity values for the feature nodes are f�1;+1g, and the values forthe pattern nodes are f0; 1g. The activity values of the feature nodes forma feature vector ~x, and the activity values of the pattern nodes, denoted byy1; : : : ; yR, form a pattern activation vector ~y. These two vectors combinedform the global state of the harmony network.To each pattern node Yj , we attach a pattern potential �j , which is a realnumber assumed to be computed from a feature vector ~x 2 f�1;+1gN usinga potential function V : �j = V (~x). We express this in a graphical form bydrawing a positive arc between the pattern node Yj and a feature node Uiif the value of the variable Ui in the feature vector ~x is 1; a negative arc ifthe value is -1; and we make no connection between the nodes if the value ofthe variable is irrelevant for determining the value of the potential �j . Theincoming arcs to a pattern node Yj can be represented as a pattern vector~!j 2 f�1; 0;+1gN , where +1 denotes a positive connection, -1 a negativeconnection, and 0 stands for a missing connection (see Figure 4.3).For each state of the harmony network, we attach a global measure called

46 Solving the MAP problem by stochastic neural networks
ABCD

~!1 = (1; 1; 1; 0)~!2 = (1;�1; 1; 0)~!3 = (�1; 1; 1; 0)~!4 = (�1;�1; 1; 0)~!5 = (1; 1;�1; 0)~!6 = (1;�1;�1; 0)~!7 = (�1; 1;�1; 0)~!8 = (�1;�1;�1; 0)~!9 = (0; 0; 1; 1)~!10 = (0; 0; 1;�1)~!11 = (0; 0;�1; 1)~!12 = (0; 0;�1;�1)Figure 4.3: A simple harmony network with the corresponding pattern vec-tors. Nodes with activity level 1 are shown in black: the current fea-ture vector ~x is (1,-1,1,-1), and the current pattern activation vector ~y is(0; 1; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0) Solid lines represent positive arcs, negative arcsare printed with dashed lines.the harmony function. Given a feature vector ~x, we �rst de�ne the localharmony h for a pattern node Yi ash(~x; ~!i) = ~!i � ~xj~!ij � �; (4.3)where ~!i � ~x is the normal vector inner product, ~!i is the pattern vectorcorresponding to node Yi, j~!ij is the size of the pattern vector ~!i (the numberof nonzero connections at node Yi),j~!ij = NXj=1 j!ij j;denoting ~!i = (!i1; : : : ; !iN), and � < 1 is a constant ful�lling the condition~!i � ~xj~!ij > �, ~!i � ~xj~!ij = 1: (4.4)

4.2 Harmony networks 47It is easy to see, that if we, for instance, choose� = 1� 2maxi j~!ij ;condition (4.4) is always met: Let j~!+i j denote the number of consistent ele-ments between ~x and ~!i (number of vector components !ij with the prop-erty !ijxj = 1), and let j~!�i j denote the number of inconsistent elements,j~!�i j = j~!ij � j~!+i j. Now we can write~!i � ~xj~!ij = j~!+i jj~!ij � j~!�i jj~!ij= j~!+i j � (j~!ij � j~!+i j)j~!ij= 2j~!+i j � j~!ijj~!ij = (1; if j~!+i j = j~!ij;r; otherwise (�1 � r < 1):We wish to have 2(j~!ij�1)�j~!ijj~!ij � � < 1, which is guaranteed by1 > � � j~!ij � 2j~!ij = 1� 2j~!ij : (4.5)We now de�ne the harmony function H for a state (~x; ~y) asH(~x; ~y) =Xi �iyih(~x; ~!i); (4.6)where yi is the activation value of pattern node Yi in pattern activation vector~y, h(~x; ~!i) is the local harmony as de�ned in (4.3), and �i, the strength of apattern node Yi, is obtained by scaling the potential by a constant:�i = �i1� �: (4.7)Intuitively speaking, the harmony function is a measure of how consistentthe feature vector ~x and the pattern activation vector ~y are with each other,weighted by the strengths of the pattern nodes, which can be seen as somekind of a priori measures.4.2.2 Maximizing the harmony functionFor �nding the maximumof the harmony functionH, Smolensky proposed thefollowing Boltzmann machine type architecture. Consider a network consist-ing of two layers of stochastic binary-valued units, where the structure of the

48 Solving the MAP problem by stochastic neural networksnetwork and the activation levels of the nodes are identical to the conceptualharmony network structure presented in the previous section. The weight ofthe connection between pattern node Yi and feature node Xj is given bywij = !ij�i=j~!ij; (4.8)where !ij is the value (-1 or +1) of the arc in the corresponding harmonynetwork; j~!ij is the size of the pattern vector ~!i; �i is the strength of the nodeYi, as de�ned in (4.7), and � is a parameter that can be given any valuesatisfying condition (4.5). As the undirected arcs are symmetric, wji = wij.The nodes in the network are updated according to the following rules: ifthe node selected for updating is a pattern node Yi, and the current states ofthe feature nodes are given by ~x = (x1; : : : ; xN), then a net input value ofIi = NXj=1wijxj � �i�is computed, and the node obtains value 1 with probabilityP (yi = 1) = 1(1 + e�Ii=T) ; (4.9)where T denotes the value of a temperature parameter, which decreases to-wards zero as the temperature in simulated annealing. For a feature node Xithe net input is computed as Ii = 2 RXj=1wijyj;where ~y = (y1; : : : ; yR) are the current states of the pattern nodes; the nodethen obtains value 1 with probabilityP (xi = 1) = 1(1 + e�Ii=T) : (4.10)We use the term harmonium Boltzmann machine (HBM) to denote a neuralnetwork architecture corresponding to the de�nitions (4.8), (4.9), and (4.10).The following proposition shows that the HBM model provably maximizesthe harmony function with high probability:Proposition 4.3 Given a harmony network, let us construct a correspondingHBM model with weights de�ned as in (4.8). Assuming that the nodes areupdated as de�ned in (4.9) and (4.10), and assuming that all the nodes at

4.2 Harmony networks 49the same level are updated simultaneously and the two levels are updatedalternately, the HBM model will converge to a maximal harmony state withprobability one as T approaches zero.Proof: Let ~y denote an arbitrary activation vector of the pattern nodes withyi = 0, and ~x denote an arbitrary activation vector of the feature nodes. Wenow change the activation value of the node Yi of ~y to 1, and denote the newvector by ~y0. The di�erence in harmony between these two situations isH(~x; ~y0)�H(~x; ~y)= (1 � �ih(~x; ~!i) +Xj 6=i yj�jh(~x; ~!j))� (0 � �ih(~x; ~!i) +Xj 6=i yj�jh(~x; ~!j))= �ih(~x; ~!i) = �i(NXj=1 !ijujj~!ij � �)= NXj=1 !ij�iujj~!ij � �i� = NXj=1wijuj � �i� = Ii;which is the net input to pattern node Yi. Similarly, let ~x denote the activationvector for the feature nodes with the node Xi set to �1, and ~x0 the vectorwith the node set to 1. Now the di�erence in harmony between these twosituations isH(~x0; ~y)�H(~x; ~y)= RXj=1 �jyj(h(~x0; ~!j)� h(~x; ~!j))= RXj=1 �jyj [(Pk 6=i !jkuk + !ji � 1j~!j j � �)� (Pk 6=i !jkuk + !ji � �1j~!j j � �)]= RXj=1 �jyj 2!ijj~!jj = 2 RXj=1�jyj !ijj~!j j = 2 RXj=1wijyj = Ii:As in the case of Boltzmann machines, we can now regard the HBMmodelupdating scheme as a stochastic simulation process. Since the net input toa pattern node Yi is Ii = H(~x; ~y0) �H(~x; ~y), and the net input to a featurenode Xi is Ii = H(~x0; ~y)�H(~x; ~y), the updating probabilities (4.9) and (4.10)can be regarded as acceptance probabilities identical to those proposed byBarker (3.7), with respect to a Gibbs distributionPTf~xg = 1ZT eH(~x)=T : (4.11)

50 Solving the MAP problem by stochastic neural networksMoreover, as the net inputs to the feature nodes are independent of the featurevector ~x, and similarly, as the net inputs to the pattern nodes are independentof the pattern activation vector ~y, all the nodes on one layer can be updatedsimultaneously without a�ecting the convergence process. According to The-orem 4.2, the resulting HBM updating process will �nd a maximum of theGibbs distribution (4.11), which has the same maximum points as the har-mony function H. �In [114], Smolensky gives no formal method for determining the numberof harmony network pattern nodes, or for choosing the network structure. InSection 5.1, we show how Bayesian networks can used as a tool for construct-ing harmony networks from a priori knowledge: given a Bayesian networkrepresentation for a probability distribution P, we show how to construct anequivalent HBM representation, in the sense that the harmony function of theresulting HBM has the same maximum points as P.

Chapter 5Mapping Bayesian networks tostochastic neural networksAs noted in [86, 87], singly connected Bayesian networks o�er a possibility forimplementing Bayesian reasoning on massively parallel architectures. In thisstudy, however, we are concerned with general BN structures, and we wish toapply the stochastic simulated annealing method for solving the MAP task.Given a Bayesian network, our goal is to construct a massively parallel simu-lated annealing process for solving MAP problems by using a stochastic neuralnetwork which has the same maximum points as the probability distributioncorresponding to the given Bayesian network. To prevent theoretically valid,but practically unrealistic models, we restrict ourselves to standard neuralnetwork structures with structurally simple and homogeneous processing ele-ments. It should also be noted that the methods developed here apply only formassively parallel neural network implementations | parallelization of simu-lated annealing using more conventional computing architectures is discussedin [42].In Chapter 4 we saw how the two stochastic neural network models, BMand HBM, can be regarded as massively parallel implementations of simu-lated annealing, being capable of �nding the optimum of the given objectivefunction. On the other hand, in Section 3.4.2 it was shown how any Bayesiannetwork probability distribution can be expressed as a Gibbs distribution,utilizing the concept of Markov random �elds. Consequently, if we �nd away to represent a given Gibbs distribution as an objective function of astochastic neural network, we have accomplished our goal: massively parallelarchitecture for solving the the MAP task.Let B=(BS;BP) be a Bayesian network corresponding to a probabilitydistribution P. In Section 3.4.2 we showed how P can be expressed as aGibbs distribution of the form (3.8). For �nding the maximum of P, it is

52 Mapping Bayesian networks to stochastic neural networksnow su�cient to maximize the potential function V ,V (~u) = NXi Vi(~u); (5.1)where the clique potentials Vi are of the form (3.9). Let us now consider aclique Ci = fUig [fUj j Uj 2 FUig corresponding to a variable Ui, let thevectors ~!i1; : : : ; ~!imi denote the mi possible value combinations on the set Ci,mi = jUij YUj2FUi jUjj;and let �i1; : : : ; �imi denote all the possible values of the clique potential Vi,�ij = Vi(~!ij). We can now express the clique potential Vi as a sumVi(~u) = miXj=1 �ij�(~u; ~!ij);where the characteristic function � expresses whether two vectors ~!ij and ~uare consistent or not: �(~u; ~!ij) = (1; if ~u 2 f~!ijg;0; otherwise. (5.2)The potential function (5.1) now becomesV (~u) = NXi=1 miXj=1 �ij�(~u; ~!ij):What is more, by re-indexing all the m = jBPj = PNi=1mi possible clique as-signments f~!11; : : : ; ~!1m1; : : : ; ~!N1; : : : ; ~!NmNg as f~!1; : : : ; ~!mg, we can forgetabout the cliques Ci altogether, and write the potential function V asV (~u) = mXi=1 �i�(~u; ~!i): (5.3)To solve the MAP problem by neural networks, it is now su�cient to �nda neural network with an objective function which has the same maximumpoints as the potential function (5.3).Let us �rst consider an MRF with a maximal clique size of 2. As theconsensus function (4.1) of the basic BM model is de�ned by using a sum ofparameters depending on only two variables, a BM network with a consensusfunction equal to the potential function of a given MRF can be easily con-structed by assigning one node in the BM network to each random variable

53in the MRF [57, 39]. However, in this case the parallelism of the resultingBM is lost, as no two adjacent nodes (variables) can be updated at the sametime. Moreover, the Bayesian network structure corresponding to this kindof a simple MRF is a tree, which means that there is no need for approximatestochastic methods since polynomial time exact algorithms for solving theMAP problem exist in the �rst place [96, 92].Let us then consider Markov random �elds with an unrestricted cliquesize, corresponding to general BN structures. In the noisy-OR approximationmodel, only a linear number of simple two-member conditional probabilities(one for each incoming arc) are stored for each variable in the BN structure,and the missing parameters are approximated as a function of the combina-tion of the stored parameters (see e.g. [96, 92]). In this case, a BM structurecorresponding to a given MRF can be constructed in a similar way as inthe 2-variable clique MRF case [90]. However, using only basic two-memberconditional probabilities, it is generally not possible to �nd any function cap-able of approximating the missing probabilities accurately, or even to obtaininformative upper or lower bounds for the missing values [92, p.138]. Asa result, the noisy-OR model is usually not accurate enough for practicalapplications [50].For an accurate representation for general BN structures, it seems at a�rst glance that binary connections are not su�cient, but higher-order con-nections (arcs connecting three or more nodes to each other) are needed. As amatter of fact, this kind of a generalization of the basic BM model, containingalso higher-order hyper-arcs, has been suggested earlier [39]. However, as inthis study we do not allow such extensions of the basic neural network mod-els, this approach is not examined here. Nevertheless, in Section 5.1 we showhow to map a given Bayesian network B=(BS;BP) to a two-layer HBM net-work structure, in the sense that the resulting harmony function has the samemaximum points as the potential function of the MRF corresponding to theBayesian network (and hence has the same maximumpoints as the probabilitydistribution on B). The nodes in the �rst layer of the harmony network (\vis-ible" nodes) correspond to the nodes in the given Bayesian network structureBS , while the nodes in the second layer (\hidden" nodes) correspond to theconditional probabilities BP (in a sense, the hidden nodes can be regardedas a type of higher-order hyper-arcs suggested above). This means that theharmony network updating process provably converges to a state where theactivity levels of the visible nodes can be projected to a MAP solution onthe original BN structure. Consequently, any given MAP problem, given asa partial instantiation on B, can be solved by permanently �xing the activ-ity levels of the corresponding visible nodes in the HBM structure, and byletting the HBM run until converged. In Section 5.2 we present a similar

54 Mapping Bayesian networks to stochastic neural networkstwo-layer construction using the basic BM model. Of these two solutions,the BM model can be considered more preferable as it is more homogeneous,containing only one single type of processing elements, thus being easier toimplement in hardware. Moreover, as the BM model is more widely knownthan the harmony network model, it may be easier to �nd suitable hardware orsoftware for practical implementations of standard Boltzmann machines thanof harmony networks. Both of these constructions allow only binary variablesin the original Bayesian network, but in Section 5.3 we discuss di�erent waysof handling multi-valued variables, and show a straightforward extension inwhich the number of variable values does not have to be restricted.

5.1 Mapping Bayesian networks to harmony networks 555.1 Mapping Bayesian networks to harmonynetworksLet B=(BS;BP) be a Bayesian network withN binary variables fU1; : : : ; UNg,let fp1; : : : ; pmg denote the conditional probabilities forming the set BP , andlet the corresponding probability distribution P be of the form (3.8). Asnoted in the previous section, the potential function V can be represented inthe form (5.3), where the parameters �1; : : : ; �m are of the form (3.9),�j = lnPfUi = ui j ^Uk2FUi Uk = ukg+Ki = ln pj +Ki: (5.4)Corresponding to this Bayesian network, we construct a harmony networkwith N feature nodes X1; : : : ;XN , one for each variable Ui, and m patternnodes Y1; : : : ; Ym, one for each parameter �i. The pattern potential of a nodeYi is set to �i, and hence according to formula (4.6), the harmony function ofthe resulting harmony network is nowH(~x; ~y) = mXi=1 �iyih(~x; ~!i);where �i = �i=(1 � �), and � is a constant ful�lling the condition (4.4). Inthe sequel, we use HBM2 to denote this type of a two-layer HBM network.The bipolar feature units of an HBM2 network are associated with thecorresponding binary Bayesian network variables in the obvious way: anHBM2 state with Xi = 1 corresponds to a con�guration vector with Ui = 1,and a state with Xi = �1 to vector with Ui = 0. Consequently, each featurevector ~x = fx1; : : : ; xNg represents an instantiation of the correspondingBayesian network. Using this binding, we can now rede�ne the potentialfunction (5.3) as V (~u) = V (~x) = mXi=1 �i�(~x; ~!i); (5.5)where �(~x; ~!i) = (1; if ~!i � ~x=j~!ij = 1;0; otherwise. (5.6)Proposition 5.1 The HBM2 network updating process maximizes the po-tential function (5.3), provided that all the parameters �i are nonnegative.

56 Mapping Bayesian networks to stochastic neural networksProof: Using a clever trick presented by Smolensky in [114], we can expressthe function (5.6) as�(~x; ~!i) = maxyi2f0;1g[yi ~!i�~xj~!ij � �1� �] = 8<: 1; if ~!i �~xj~!ij > �;0; if ~!i �~xj~!ij � �:Now the potential function (5.5) can be expressed asV (~x) = Xi �i maxyi2f0;1g[yi(~!i�~xj~!ij � �1 � �)]= Xi �i1 � � maxyi2f0;1g[yi(~!i � ~xj~!ij � �)]= Xi �i maxyi2f0;1g[yih(~x; ~!i)]= max~y Xi �iyih(~x; ~!i)= max~y H(~x; ~y);provided that all the parameters �i are non-negative. Consequently, we can�nd the maximum of the potential function V by maximizing the harmonyfunction H, max~x V (~x) = max~x max~y H(~x; ~y):As the HBM updating process provably maximizes the harmony function H(see Proposition 4.3), it also maximizes the potential function (5.5), which isequal to the potential function (5.3). �The potential function (5.3) has the same maximum points as the originalBayesian network probability distribution P, so a given MAP instantiationproblem can be solved by mapping the BN to the corresponding HBM2 struc-ture, permanently �xing the activity levels of the feature nodes correspondingto the instantiated variables of the BN to the given values, and running theHBM2 network with decreasing temperature until converged. The �nal fea-ture vector, when mapped back to the Bayesian network, is the MAP solution.A simple example of the BN!MRF!HBM transformation is given in Fig-ure 5.1.If we set in (5.4) all the constants Ki; i = 1; : : : ; N to zero, the result-ing harmony function is equal to the potential function corresponding to theprobability distribution P. However, it is important to notice that Proposi-tion 5.1 applies only if all the parameters �j are nonnegative, so the constants

5.1 Mapping Bayesian networks to harmony networks 57
A BCD A BCD ABCD

�1 = lnPfag+Ka�1 = lnPf�ag+Ka�1 = lnPfbg+Kb�1 = lnPf�bg+Kb�1 = lnPfc j a; bg+Kc�2 = lnPfc j a;�bg+Kc�3 = lnPfc j �a; bg+Kc�4 = lnPfc j �a;�bg+Kc�5 = lnPf�c j a; bg+Kc�6 = lnPf�c j a;�bg+Kc�7 = lnPf�c j �a; bg+Kc�8 = lnPf�c j �a;�bg+Kc�9 = lnPfd j cg+Kd�10 = lnPfd j �cg+Kd�11 = lnPf �d j cg+Kd�12 = lnPf �d j �cg+KdFigure 5.1: A simple Bayesian network with four binary variables, the cor-responding MRF, and the resulting HBM network with the correspondingpattern node parameters �i.Ki have to be chosen appropriately.1 We suggest the following simple methodfor determining the parameters:�j = ln pjkp̂(C(j)) = ln pj � ln kp̂(C(j)); (5.7)where C(j) is the index of the clique corresponding to the parameter �j , p̂(i)denotes the minimal probability within clique i, and k � 1 is some constant.After this scaling all the parameters �j are nonnegative, and moreover, asnoted in Section 3.4.2, the scaling does not a�ect the convergence of thesampling process.1This means that we cannot construct a harmony network with a harmony functionexactly identical to the given potential function | we are only able to construct a harmonyfunction with the same maximum points as the potential function.

58 Mapping Bayesian networks to stochastic neural networksTo verify this fact in the harmony network framework, let us consider thebehavior of the network at temperature T with T decreasing towards zero. AsT approaches zero, the probability of exactly one pattern node for each of thecliques to be \on" approaches one, and at the �nal (ideal) zero temperature,the number of pattern nodes to be \on" becomes constant. Let H be aharmony function corresponding to the situation where all the constants Kiare set to zero (in which case �j = ln pj), and let H� denote a harmonyfunction with the parameters �j set as in formula (5.7). Assuming that thenumber of active pattern nodes is constant, the scaled harmony function H�can be expressed asH�(~x; ~y) = mXj=1 ln pj � ln kp̂(C(j))1� � ajh(~x; ~!j)= mXj=1 ln pj1 � �ajh(~x; ~!j)� mXj=1 ln kp̂(C(j))1 � � ajh(~x; ~!j)= mXj=1 ln pj1 � �ajh(~x; ~!j)� NXi=1 ln kp̂(i)1� � ;where N is the number cliques (the number of variables). This is the originalharmony function plus a constant, H�(~x; ~y) = H(~x; ~y) +K, whereK = � NXi=1 ln kp̂(i)1� � :This new function has the same maximumpoints as the original one, so (in thelimit) the scaling does not a�ect the convergence of the simulation process.In Chapter 6, we also verify this fact empirically.

5.2 Mapping Bayesian networks to two-layer Boltzmann machines 595.2 Mapping Bayesian networks to two-layerBoltzmann machinesAs in the previous section, let B=(BS;BP) be a Bayesian network with Nbinary variables, and V the corresponding potential function of the form (5.3).Let us now consider a two-layer Boltzmann machine network with a structureidentical to the HBM2 network presented in the previous section (with Nfeature units and m pattern units). It is easy to see that the consensus ofsuch a network can be written asC(~s) = mXj=1 sj NXi=1wjisi = mXj=1 sjIj; (5.8)where Ij = Piwjisi is the net input to pattern node Yj. The main idea hereis to choose the weights in the network in such a way that the net input Ijto a pattern node Yj is positive, and, what is more, exactly �j only when thecorresponding value assignment ~!j is consistent with the given feature vector~x. This ensures that the updating process converges to a state where only onepattern node for each clique is on, and thus the consensus of such a �nal stateis equal to potential V . In [82] we suggested one possible way of choosing theweights; here we present an alternative solution, which seems to work betterin practice.Let us consider a pattern node Yj corresponding to a parameter �j , andlet PfUi = ui j VUk2FUi Uk = ukg be the conditional probability used forcomputing �j , �j = lnPfUi = ui j ^Uk2FUi Uk = ukg+K: (5.9)We now set the weights of the arcs between the pattern node Yj and thefeatures nodes X1; : : : ;Xn in the following way:1. The weights of all the arcs connecting the node Yj to feature nodesrepresenting variables not in fUi;FUig are set to zero.2. The weight from the pattern node Yj to a feature node correspondingto a variable Uk 2 fUi;FUig is set to �j if uk = 1, and to ��j if uk = 03. The bias �j of the pattern node Yj is set to �(n+j � 1)�j , where n+j isthe number of positive arcs leaving from node Yj. However, if n+j = 0,we set �j = 0.Following this construction for each of the pattern nodes Yj, we get a structurewhich we call a two-layer Boltzmann machine (BM2).

60 Mapping Bayesian networks to stochastic neural networksLemma 5.2 Provided that all the parameters �j are nonnegative, the netinput Ij to a pattern node Yj of a BM2 network is positive only if the featurevector ~x is consistent with the value assignment ~!j. Moreover, in this caseIj = �j .Proof: Let n++j denote the number of incoming signals on positive arcs (arcswith a weight �j and let n�+j denote the number of incoming signals onnegative arcs (arcs with a weight ��j). As de�ned above, the bias �j is�(n+j � 1)�j , where n+j is the number of positive arcs coming to node Yj. Afeature vector ~x is consistent with the assignment ~!j if and only if n++j = n+and n�+j = 0. On the other hand, the net input Ij can be written asIj = n++j �j�n�+j �j+�j = n++j �j�n�+j �j�n+j �j+�j = �j(n++j �n+j �n�+j +1):As n++j � n+j and n�+j � 0, this can be made positive only by settingn++j = n+j and n�+j = 0, and in this case Ij = �j. �Now we can prove the following result:Proposition 5.3 The BM2 network updating process maximizes the poten-tial function V , provided that all the parameters �i are nonnegative.Proof: By exploiting Lemma 5.2, we can write the potential function (5.3) asV (~u) = V (~x) = mXj=1 maxyj2f0;1g(yjIj):Now it follows thatmax~u V (~u) = max~x mXj=1 maxyj2f0;1g(yjIj) = max~x max~y mXj=1 yjIj = max~s C(~s):� Consequently, the BM2 updating process converges (with high probabil-ity) to a state, where the feature vector represents a MAP state on the originalBayesian network. As with the HBM2 model, the nodes on one layer are notconnected to each other, and therefore do not a�ect the net input of eachother, so they can all be updated at the same time (see Theorem 4.2).

5.3 Coping with multi-valued variables 615.3 Coping with multi-valued variablesAs the neural networks models used in this study have binary processingelements, the BN-MRF-NN transformation scheme described in the previoussections applies directly only to Bayesian networks with binary variables.However, in many problem domains the probability distribution is represen-ted in the most natural way by using networks with multi-valued variables.There are now at least two alternative paths we might consider when extend-ing our mapping scheme to multi-valued variables. Firstly, we could workon the Bayesian network level, and modify the Bayesian network structure insuch a way that the mappings developed earlier can be applied. Alternatively,we could work on the neural network level, and construct mappings which arenot restricted to binary variables. In the following, we �rst discuss brie
ysome obvious drawbacks of the �rst approach, and present then a relativelystraightforward extension to the mappings presented in the previous sections,which allows also multivalued variables.In principle, a Bayesian network with multi-valued variables can be trans-formed to a binary-variable network as follows: each non-binary variable Xwith k values x1; : : : ; xk is replaced by k new binary variables X1; : : : ;Xk,and each of these new variables is connected to all the successors of X, andsimilarly all the predecessors of X are connected to all the new k binary vari-ables. In addition, each new binary variable Xi (for i < k) is connected tovariables Xi+1; : : : ;Xk (see Figure 5.2).In practice, however, there are some technical di�culties with the BNlevel transformation. First of all, as can be seen in Figure 5.2, many of theresulting conditional probabilities, corresponding to \impossible" combina-tions of values (for example the probability Pfb1ja; b2; b3g), are zero. Thisis unacceptable, as the con�guration space
 would in this case have zero-probability states, which violates the basic assumptions behind our transform-ation scheme (see for example De�nition 3.8). In particular, as the parameters�i are computed using logarithms of conditional probabilities (formula (3.9)),they become unde�ned if any of the probabilities are zero. A standard trickto overcome this di�culty is to replace all the zero-valued probabilities bya small constant � (and, correspondingly, replace all the probabilities equalto one by a probability 1 � �). As � approaches zero, the binary-variableBayesian network approximates the probability distribution of the originalnetwork more and more accurately. However, it has been suggested [18] thatBayesian networks containing this kind of extreme probabilities are the mostdi�cult ones to approach by stochastic simulation methods. On the otherhand, MAP problems with extreme probabilities cannot be made easier bychanging the extreme probabilities of the Bayesian network further from 1 or

62 Mapping Bayesian networks to stochastic neural networks
DCA B Pfa1g Pfc1 j b1gPfa2g Pfc1 j b2gPfb1g Pfc2 j b1gPfb1g Pfc2 j b2gPfc1 j a1gPfc3 j b1gPfc1 j a2gPfc3 j b2gPfc2 j a1gPfd1 j c1gPfc2 j a2gPfd1 j c2gPfc3 j a1gPfd1 j c3gPfc3 j a2gPfd1 j c1gPfd2 j c2gPfd2 j c3g(a)

(b) DC2A C2 C3BPfa1g Pfc21 j a; b2; c11g Pfc31 j a; b; c11; c21g Pfc31 j a; b2; c11; c21g Pfd1 j c11; c21; c31gPfa2g Pfc21 j a; b; c11g Pfc31 j a2; b; c11; c21gPfc31 j a2; b2; c11; c21gPfd1 j c12; c21; c31gPfb1g Pfc21 j a2; b; c11g Pfc31 j a; b; c12; c21g Pfc31 j a; b2; c12; c21g Pfd1 j c11; c22; c31gPfb2g Pfc21 j a; b; c12g Pfc31 j a2; b; c12; c21gPfc31 j a2; b2; c12; c21gPfd1 j c12; c22; c31gPfc11 j a1gPfc21 j a2; b; c12g Pfc31 j a; b; c11; c22g Pfc31 j a; b2; c11; c22g Pfd1 j c11; c21; c32gPfc11 j a2gPfc22 j a; b; c11g Pfc31 j a2; b; c11; c22gPfc31 j a2; b2; c11; c22gPfd1 j c12; c21; c32gPfc12 j a1gPfc22 j a2; b; c11g Pfc31 j a; b; c12; c22g Pfc31 j a; b2; c12; c22g Pfd1 j c11; c22; c32gPfc12 j a2gPfc22 j a; b; c12g Pfc31 j a2; b; c12; c22gPfc31 j a2; b2; c12; c22gPfd1 j c12; c22; c32gPfc11 j b1gPfc22 j a2; b; c12g Pfc32 j a; b; c11; c21g Pfc32 j a; b2; c11; c21g Pfd2 j c11; c21; c31gPfc11 j b2gPfc21 j a2; b2; c11gPfc32 j a2; b; c11; c21gPfc32 j a2; b2; c11; c21gPfd2 j c12; c21; c31gPfc12 j b1gPfc21 j a; b2; c12g Pfc32 j a; b; c12; c21g Pfc32 j a; b2; c12; c21g Pfd2 j c11; c22; c31gPfc12 j b2gPfc21 j a2; b2; c12gPfc32 j a2; b; c12; c21gPfc32 j a2; b2; c12; c21gPfd2 j c12; c22; c31gPfc22 j a; b2; c11g Pfc32 j a; b; c11; c22g Pfc32 j a; b2; c11; c22g Pfd2 j c11; c21; c32gPfc22 j a2; b2; c11gPfc32 j a2; b; c11; c22gPfc32 j a2; b2; c11; c22gPfd2 j c12; c21; c32gPfc22 j a; b2; c12g Pfc32 j a; b; c12; c22g Pfc32 j a; b2; c12; c22g Pfd2 j c11; c22; c32gPfc22 j a2; b2; c12gPfc32 j a2; b; c12; c22gPfc32 j a2; b2; c12; c22gPfd2 j c12; c22; c32gFigure 5.2: (a) A simple Bayesian network with three binary variables A;Band D, with possible values fa1; a2g,fb1; b2g and fd1; d2g, and one multival-ued variable C with three possible values fc1; c2; c3g. (b) The correspondingbinary-variable Bayesian network representation. The values of the binaryvariables Ci are denoted by ci1 and ci2, i = 1; 2; 3.

5.3 Coping with multi-valued variables 630, since in this case the resulting probability distribution may not approximatethe original distribution very well [31]. Nevertheless, in [81] we experimentedwith harmony networks using the transformation scheme suggested above,and got relatively good results even with extreme probabilities.Another problem with the Bayesian network level transformation is thelarge number of resulting conditional probabilities, as can be noted in Fig-ure 5.2. However, it is easy to see that there is a large number of conditionalprobabilities that are actually irrelevant for the functionality of the network.This fact was exploited in [81], where the size of the neural network structurewas decreased by pruning the irrelevant pattern nodes.In the neural network level approach for coping with multivalued attrib-utes, we might consider modifying our neural network models in such a waythat mappings from multivalued Bayesian networks become straightforward.Such modi�cations could include, for example, using winner-take-all subnet-works as modules of the network, or more complex, multi-state processingelements, such as the nodes in the generalized Boltzmann machine modelin [110]. However, as we restrict ourselves in this study to standard neuralnetwork processing elements and structures, we do not consider such modi-�cations. Instead, in the following we describe a relatively straightforwardextension to the mapping presented earlier, introduced in [83], which uses thesame simple neural network processing elements as the BM2 network in theprevious section.Let B=(BS;BP) be a Bayesian network with N (not necessarily binary)variables, and let V be the corresponding potential function of the form (5.3).The suggested Boltzmann machine has two layers, where the �rst layer con-sists of n = Pi jUij feature nodesX1; : : : ;Xn, one for each value for each of thevariables of the problem domain. The second layer has altogether m = jBPjpattern nodes Y1; : : : ; Ym, one node for each of the parameters �j used forde�ning the potential function V . Initially, let us assume that each patternnode is connected to all the feature nodes in the �rst layer, but no two nodesin the same layer can be connected to each other. Let Yj be the pattern nodecorresponding to a parameter �j , where �j is of the form (5.9). We now setthe weights of the arcs between pattern node Yj and feature nodes X1; : : : ;Xnin the following way:1. The weights of all the arcs connecting node Yj to feature nodes repres-enting values of variables not in the set fUi;FUig are set to zero.2. The weight from node Yj to a feature node corresponding to value uiis set to �j , and the weights of the arcs to feature nodes correspondingto other values of the variable Ui are set to ��j .

64 Mapping Bayesian networks to stochastic neural networks3. The weight from node Yj to feature nodes corresponding to the valuesuk appearing on the right hand side in (5.9) are set to �j , and arcsto feature nodes representing other values of the predecessors of thevariable Ui are set to ��j .4. The bias �j of node Yj is set to (n+j � 1)�j , where n+j is the number ofpositive arcs leaving from node Yj. However, if n+j = 0, we set �j = 0.Following this construction for each of the pattern nodes Yj, we get a structurewhich we call a general two-layer Boltzmann machine. In the sequel, we usethe notation BM2 for this kind of a general BM structure. An example of aBM2 structure in a case of a simple Bayesian network is shown in Figure 5.3.As arcs with a zero-valued weight are irrelevant to the computations, theyare excluded from the network.Let us now consider a Bayesian network B, and the corresponding BM2network N . We say that a feature vector of N is consistent (with B), if thereis exactly one feature node active for each of variables in B, representing onepossible value of that variable. Consequently, a consistent feature vector canbe mapped to an instantiation of B. As before, let Yj be a pattern nodecorresponding to a parameter �j, and let PfUi = ui j VUk2FUi Uk = ukgbe the conditional probability used for computing �j. We now say that thepattern node Yj is consistent with a feature vector ~x if ~x is consistent withthe assignment hUi = ui;VUk2FUi Uk = uki. Moreover, a pattern activationvector ~y is said to be consistent, if all the consistent pattern nodes are on,and all the inconsistent pattern nodes are o�. Finally, a state ~s = (~x; ~y) ofN is called consistent if both ~x and ~y are consistent. It is now easy to provethe following simple lemma:Lemma 5.4 A BM2 network converges to a consistent state.Proof: Let ~s = (~x; ~y) be the �nal state of a BM2 updating process. We knowthat ~s is a state which maximizes the consensus C(~s) = Pmj=1 yjIj. It is noweasy too see that if ~x is a consistent vector, ~y must also be consistent, sinceif there were inconsistent pattern nodes active on the second layer in thiscase, switching them o� would increase the consensus of the network, andcorrespondingly, switching any inactive consistent pattern node on wouldincrease the consensus. On the other hand, ~x cannot be inconsistent, since inthis case all the pattern nodes connected to inconsistent feature nodes wouldbe inactive, which means that removing inconsistencies would increase thenumber of active pattern nodes, thus increasing the consensus. It now followsthat ~s = (~x; ~y) must be a consistent state. �Using this lemma, we can now show that the BM2 structure can be usedfor solving the MAP problem:

5.3 Coping with multi-valued variables 65a1a2b1b2c1c2c3d1d2

�1 = lnPfa1g+K�2 = lnPfa2g+K�3 = lnPfb1g+K�4 = lnPfb2g+K�5 = lnPfc1ja1; b1g+K�6 = lnPfc1ja2; b1g+K�7 = lnPfc1ja1; b2g+K�8 = lnPfc1ja2; b2g+K�9 = lnPfc2ja1; b1g+K�10 = lnPfc2ja2; b1g+K�11 = lnPfc2ja1; b2g+K�12 = lnPfc2ja2; b2g+K�13 = lnPfc3ja1; b1g+K�14 = lnPfc3ja2; b1g+K�15 = lnPfc3ja1; b2g+K�16 = lnPfc3ja2; b2g+K�17 = lnPfd1jc1g+K�18 = lnPfd1jc2g+K�19 = lnPfd1jc3g+K�20 = lnPfd2jc1g+K�21 = lnPfd2jc2g+K�22 = lnPfd2jc3g+KFigure 5.3: The BM2 structure (with the parameters �j) corresponding tothe simple Bayesian network in Figure 5.2(a). Solid lines represent arcs withpositive weight, negative arcs are printed with dashed lines. Active nodesare shown in black, so the particular state in this �gure is a (consistent) statecorresponding to an instantiation hA = a1; B = b2; C = c3;D = d1i.

66 Mapping Bayesian networks to stochastic neural networksProposition 5.5 The updating process of the general BM2 network max-imizes the potential function V of the corresponding Bayesian network B,provided that all the parameters �j are nonnegative.Proof: According to Lemma 5.4 the network converges to a stable state,where all the active pattern nodes are consistent with the consistent featurevector, so each �nal feature vector ~x corresponds to an instantiation ~u. As inLemma 5.2, it is easy to see that the net input to a consistent pattern nodeYj is �j , and as in Proposition 5.3, it now follows thatmax~u V (~u) = max~x mXj=1 maxyj2f0;1g(yjIj) = max~x max~y mXj=1 yjIj = max~s C(~s):� If the parameters �j were not scaled to nonnegative numbers as sugges-ted earlier, the potential function would be strictly negative, and the BM2construction would be useless, since the network would then always have atrivial maximum point at zero, corresponding to a state where all the nodesare o�.

Chapter 6Empirical resultsTo evaluate the feasibility of the BM2 construction described in Chapter 5, weexperimented with arti�cial MAP problems created by generating Bayesiannetworks with a randomly chosen structure BS and randomly chosen con-ditional probabilities BP . Each MAP problem, corresponding to a randominitial assignment on a Bayesian network, was processed by using a versionof the general sequential SA algorithm (Algorithm 3.2), and by using themassively parallel updating process of the BM2 network corresponding to thegiven Bayesian network. As a reference measure, we used results of a realiza-tion of the exhaustive brute force algorithm (Algorithm 2.1). A more detaileddescription of the algorithms used is given in Section 6.1.Our primary objective was not to study the e�ciency of the sequential andmassively parallel algorithms per se, but to see whether the speedup gainedfrom parallelization would be enough to compensate for the loss of accuracy insampling | in other words, whether the BM2 construction would be compu-tationally practical to use, if suitable hardware was available. Unfortunatelywe did not have access to real neural hardware, so the results concerning theBM2 implementation are based on simulations on conventional Unix work-stations. Illustrative examples of the results of the simulations are shownin Section 6.3. In Section 6.2, we discuss the cooling schedule used in theexperiments.6.1 AlgorithmsLet us consider a Bayesian network (BS;BP), where the graph BS consistsof N variables and the set BP = fp1; : : : ; pmg contains m probabilities of theformPfUi = ui j VUj2FUi Uj = ujg, and let ~!1; : : : ; ~!m denote the correspond-ing value assignments of the form (ui;VUj2FUi uj). Recall from Chapter 2 that

68 Empirical resultsthe state space
 has altogether M con�guration vectors, and the number ofvectors in the set
E, consisting of all the vectors consistent with the givenevidence E, is denoted by j
Ej. As before, by ~u 2 f~!jg we mean that thevector ~u is consistent with the value assignment ~!j.A straightforward realization of the brute force algorithm 2.1 for �ndingthe MAP solution in
E can be given as follows:Algorithm 6.1Brute force algorithm (BF)Input: Bayesian network (BS ;BP), partial assignment E.. Pmax := 0;. For i:= 1 to M do. ~u := GenNextState(); P := 1;. If ~u 62
E, then continue;. for j := 1 to m do /* compute the state probability */. if ~u 2 f~!jg, then P := P � pj ;. If P > Pmax, then Pmax := P and I := i;Output: MAP state ~uI , and the corresponding probability Pmax.Function GenNextState() returns an unevaluated con�guration vector ~u.After running the BF algorithm, I contains the index of a MAP state, andPmax the corresponding probability (this actually does not solve the MAPproblem as formulated in Section 2, but for simplicity we assume here thatthere is only one MAP state). Considering the time requirements of the BFalgorithm, we make the following assumptions:1. Function GenNextState() requires O(1) time units.2. Determining whether the current state ~u is consistent with a given par-tial assignment or not (checking if ~u 62
E or if ~u 2 f~!jg) requires O(1)time units.It follows that the total running time of the BF algorithm is O(M) + j
Ej �O(m). In the sequel, we assume (somewhat unrealistically) to have an e�cientrealization of the algorithm, where the inconsistent states can be bypassedvery quickly, and approximate the time requirement for the BF algorithmsimply by j
Ej �m.

6.1 Algorithms 69For simulated annealing, we used in our tests the following simple al-gorithm:Algorithm 6.2Sequential Simulated Annealing (SSA)Input: Bayesian network (BS ;BP), partial assignment E.. ~u := RandomState(BS; E);. P := Pf~ug; T := InitTemp(); r := 0;. while not Converged() do. For i := 1 to L do. k := RandomFreeVarIdx(BS; E);. u := RandomValue(Uk);. Generate a new candidate state ~u0 by setting Uk := u;. P 0 := 1;. for j := 1 to m do /* compute the state probability */. if ~u0 2 f~!jg, then P 0 := P 0 � pj ;. Compute the acceptance probability A by using the for-mula (3.3) with probabilities P and P 0.. If RandomNumber()<A, then ~u := ~u0 and P := P 0;. T := F � T ; r := r+1;Output: MAP state ~u, and the corresponding probability P .Function RandomFreeVarIdx() returns the index of a randomly chosenvariable, which was not instantiated in E. Function Converged() determineswhether the simulated annealing process is converged or not. As in [71, 65],we consider a SA process converged when the last c generated states havethe same probability. In our tests, we used c = L, where L is the sweepsizeparameter, i.e. the number of iterations performed at each temperature.In the following, we use the term run for denoting one simulation process,where the SSA algorithm is completed once, with the temperature going fromits initial value to zero in r iteration steps. As with the BF algorithm, weassume that one iteration step of the SA algorithm can be completed in O(m)time units, i.e. in time proportional to the size of the set of probabilities BP.It now follows that the total number of time units required for one run is

70 Empirical resultsapproximately O(Lmr). Naturally, the number of iterations completed, r, isdetermined by the cooling schedule used, which is in this case determined bythe functions InitTemp() and Converged(), and by the two parameters F andL. The annealing factor F determines how much the temperature is decreasedafter processing L iterations at a constant temperature. Although simple,this type of cooling schedule is very common, and has proven successful inmany applications [1]. It is also empirically observed that more sophisticatedannealing methods do not necessarily produce any better results than thissimple method [65]. The cooling schedule used in our simulations is discussedin more detail in the next section.As a comparison to the SSA algorithm, we experimented with the follow-ing massively parallel algorithm, where the structure of the BM2 network usedis determined by using the given BN architecture, as described in Section 5.3.In these experiments, the parameters �j were determined by using the for-mula (5.7). As with the harmony network experiments in [81], we noted thatthe constant k is not very relevant for the results, as long as it stays relativelyclose to 1. In the sequel, the results are obtained with models constructed byusing k = 1 � 10�12.Algorithm 6.3Boltzmann Machine Simulated Annealing (BMSA)Input: BM2 network corresponding to the BN in question,partial assignment E.. Permanently �x the states of the feature units Xiwhose value is determined in E.. ~x := RandomState(BM2,E);. T := InitTemp(); r := 0;. while not Converged() do. For i := 1 to L do. ~y := UpdatePatternNodes(BM2);. ~x := UpdateFeatureNodes(BM2);. T := F � T ; r := r + 1;Output: MAP state ~x.

6.1 Algorithms 71The probability of the resulting MAP state can be computed by multiply-ing the conditional probabilities pi corresponding to active pattern units.The functions UpdatePatternNodes() and UpdateFeatureNodes() corres-pond to processes where all the nodes on a layer are allowed to update theirstate simultaneously. In our simulations, we assumed that all the nodes inone layer can be updated in parallel, and each node can update its state inO(1) time, and hence the (simulated) total running time for one run of theBMSA algorithm was assumed to be approximately O(Lr).

72 Empirical results6.2 Cooling scheduleWhen considering the performance of the SSA and BMSA algorithms, it isclear that the most critical issue is �nding a suitable cooling scheme. Un-fortunately, the theoretically correct cooling scheme of Theorem 3.10 can notbe used in practice, since the number of iterations required grows too higheven with relatively low starting temperatures: for instance, starting with theinitial temperature of 2, annealing down to 0.1 would require more than 485million iteration steps.The problem with heuristic annealing schemes is that if the annealing isdone too cautiously, an unnecessarily large amount of computing time maybe spent. On the other hand, if the annealing is done too quickly, the resultsare unreliable. In statistical mechanics it has been observed that during theannealing process there is a certain temperature at which the rate of change ofthe energy is exceptionally high [71]. This critical temperature can be seen asa phase transition point which starts the freezing process. It appears that forsuccessful annealing, the cooling should be done very slowly around the criticaltemperature. Therefore, knowing the critical temperature would be useful forspeeding up the convergence as the initial temperature could be chosen justabove this point, and the cooling could be done �rst slowly near this point, andlater faster with the temperature approaching zero. Some attempts towardsanalyzing the critical temperature of harmony networks can be found in [104].In our tests, we adopted the approach proposed in [71] and selected the initialtemperature by an iterative search process: we start with temperature 1,compute the acceptance probabilities, and double the temperature until allthe acceptance probabilities are within the range [0:5� �; 0:5 + �]. The �naltemperature of this \simulated heating" process is then used as the initialtemperature for a simulated annealing process. Following the suggestionsin [65], we typically set � = 0:1.The cooling schedule of our version of SA can be made slower by increas-ing the cooling factor F or by increasing the sweepsize L. In Figure 6.1, weplot the average relative error between the probability of the �nal state of theBMSA algorithm and the true MAP probability as a function of these twoparameters. Each data point corresponds to 1000 annealing runs on 100 dif-ferent MAP problems (10 runs/problem). The 100 problems were generatedby constructing 10 random Bayesian networks with 16 binary variables, andby generating 10 random assignments on each network by randomly clampinghalf of the variables to randomly chosen values.In Figure 6.1, the distance between two tickmarks on the F- or L-axiscorresponds to doubling the time used for SA. It appears that increasing Fto its square root or doubling the sweepsize L will produce an approximately

6.2 Cooling schedule 73
0.2

0.44
0.66

0.81
0.9

0.95

1
2

4
8

16
32

30
35
40
45
50
55
60
65
70
75
80

F

L

Error %

Figure 6.1: Relative error of a single BMSA run as a function of the coolingfactor F and sweepsize L.equal improvement in the results.It should be noted that the results in Figure 6.1 were obtained by comput-ing the error after each individual annealing run. In the stochastic simulationcommunity, it is generally assumed that one long simulation run producesbetter results than several short runs, since the shorter runs never quite reachthe equilibrium state of the stochastic process [118], [1, p. 94]. However, al-though this assumption may be true in the EVE problem framework, in ourMAP framework the situation is quite di�erent: as our intention is just to�nd the MAP state (or a good approximation of it), it is very probably moresensible in practice to run several shorter runs, and report the best of the�nal states of the completed runs, than to perform only one long run, andreport its �nal state. In Figure 6.2, we plot the average relative error as afunction of the number of runs allowed. The test set consisted of the same100 MAP problems as above. In these tests, the cooling factor F was set to0.66, and sweepsize L was 16.In the sequel, we use the BMSA and SSA algorithms for solving a givenMAP problem by starting new annealing runs (with a randomly chosen initialstate) until the relative error between the probability of the �nal state and theMAP probability is found to be less than 1 %. The time reported for solving

74 Empirical results
0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30

R
el

at
iv

e
er

ro
r

%

Number of allowed annealing runsFigure 6.2: BMSA error as a function of the number of annealing runs used.the problem, time before success, is the sum of the times used for completingeach separate annealing run. In Figure 6.3, we plot the time before successas a function of the parameters F and L. The test set consists here of thesame 100 MAP problems as before. These results suggest that with the MAPproblem the best technique is to use a relatively fast annealing schedule, andto repeat the convergence process for several times. What is also importantto notice is that this kind of a repetitive computation is parallelized quitenaturally even using conventional parallel platforms (for example, a networkof workstations), as each of the independent runs can be performed on adi�erent processor at the same time.As our intention in this study was not to study the e�ciency of the sim-ulated annealing algorithm per se, we did not spend a lot of time tuning theparameters of the algorithms, and hence the cooling schedules used here areby no means optimal. In the empirical tests of Section 6.3 for comparingthe performance of SSA and BMSA, we used the same cooling schedule withF = 0:66 and L = N for both of these methods. As the optimal coolingschedules for these two methods are probably di�erent, this type of compar-ison may not be quite fair for one or the other. However, tuning the coolingschedule to optimum is a tedious task, and moreover, the optimum is depend-ent on the complexity of the problem in question. Besides, as our intention

6.2 Cooling schedule 75
0.2

0.44
0.66

0.81
0.9

0.95

1
2

4
8

16
32

0
1000
2000
3000
4000
5000
6000
7000
8000

F

L

Time

Figure 6.3: The behavior of the BMSA time with di�erent cooling factors andsweepsizes.was only to examine the general tendency of the SSA and BMSA algorithmswith increasing problem complexity, we believe that using the same (moreor less arbitrarily chosen) cooling schedule for both of these methods givesus enough information for this purpose. For the same reason, we did notexperiment with the more complex cooling schedules listed in [73, 1], or withany of the elaborate techniques for speeding up the convergence speed of thesimulated annealing process [97, 12, 3, 7, 100, 63], but assumed that the pro-portional speedup gained from using any of these methods would be roughlyequal with both SSA and BMSA.

76 Empirical results6.3 ResultsAs noted earlier, the primary objective of the experiments was to study thebehavior of the SSA and BMSA algorithms with increasingly complex MAPproblems. The complexity of these problems can be increased in two ways:by changing the shape of the probability distribution on the con�gurationspace in question, or by changing the size of the con�guration space. We ex-perimented with three methods for changing the con�guration space probab-ility distribution: by restricting the conditional probabilities of the Bayesiannetworks to small regions near zero or one, by changing the density of theBayesian network structure, and by changing the size of the evidence set E,i.e. by changing the number of clamped variables. The size of the con�gura-tion space was increased by allowing more variables in the Bayesian networks,and allowing the variables to have more values.It has been noted [18] that solving the EVE problem can become very dif-�cult if the Bayesian network contains a lot of extreme probabilities (prob-abilities with values near zero or one). However, as already noted in [81],in our MAP problem framework this does not seem to be true. We experi-mented by restricting the randomly generated conditional probabilities BP inthe regions [0:0; �]; [1:0 � �; 1:0], and varied the value of � between 0:5 and0:0001, but observed no signi�cant e�ect on the results with either SSA orBMSA. It would be an interesting research problem to study (analyticallyor empirically) how the Bayesian network probability distribution P changeswith the parameter �, but this question is not to be addressed here.Increasing the density of Bayesian networks not only changes the shapeof the probability distribution on the con�guration space, but it also imposesa computational problem as it increases m, the number of the conditionalprobabilities in the set BP . Since the BMSA algorithm (or actually its ima-ginary massively parallel implementation) is independent of m, increasingthe density does not a�ect the BMSA solution time very much, whereas thesolution time of SSA increases signi�cantly (see Figure 6.4). Nevertheless, itshould be noted that we have here extended our experiments to very dense,and even fully connected networks. Naturally, this does not make any sensein practice, since the whole concept of Bayesian networks relies on the net-works being relatively sparse. For this reason, in the sequel we use in ourexperiments relatively sparse networks only (which does not, however, meanthat the networks were singly-connected or otherwise structurally simple).The test set corresponding to Figure 6.4 consisted of 100 MAP problemson 10 Bayesian networks with only 8 binary nodes. When considering theresults, it should be kept in mind that although the BF algorithm seemsto work relatively well with these small networks, it does not scale up with

6.3 Results 77
0

20000

40000

60000

80000

100000

120000

140000

160000

20 30 40 50 60 70 80 90 100 110

A
ve

ra
ge

 ti
m

e
be

fo
re

 s
uc

ce
ss

Number of BN arcs (% of fully connected network)

SSA

BMSA
BFFigure 6.4: The behavior of the BMSA and SSA algorithms as a function ofthe density of Bayesian network.increasing size of the networks (as we shall see in Figure 6.7). For the samereason, the exhaustive BF algorithm performs well with a small number ofunclamped variables (in which case the search space is small), but as thenumber of unclamped variables increases, the time required for running BFgrows rapidly (see Figure 6.5). Both SSA and BMSA appear to be quiteinsensitive to the number of instantiated variables. In these tests, we used100 MAP problems on 10 Bayesian networks with 16 binary variables.In Figure 6.6, we plot the behavior of the algorithms as a function of theincreasing con�guration space, when the maximum number of variable valuesis increased. The test set consisted of 100 MAP problems on 10 10-nodeBayesian networks with half of the variables clamped in advance. With net-works of this size, the SSA algorithm seems to perform only comparably tothe BF algorithm. However, when the size of the networks is increased, thegeneral tendency is clear: the exhaustive BF algorithm starts to su�er fromcombinatorial explosion, and fails to provide a computationally feasible solu-tion to the MAP problem (see Figure 6.7). The SSA and BMSA algorithms,on the other hand, seem to scale up very well. In Figure 6.7, each data pointcorresponds to a test set consisting of 100 MAP problems on 10 Bayesiannetworks with binary nodes, and as before, half of the variables were clamped

78 Empirical results
0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 ti
m

e
be

fo
re

 s
uc

ce
ss

Number of unclamped variables

BMSA
SSA

BF

Figure 6.5: The behavior of the algorithms as a function of the number of theunclamped variables.in advance.These results strongly suggest that the massively parallel BMSA algorithmoutperforms the SSA algorithm, provided that suitable hardware is available.As can be expected, the proportional speedup gained from parallelizationseems to increase with increasing problem complexity. However, it must beemphasized again that our SSA realization of the Gibbs sampling/annealingmethod is by no means an optimal one, but there exist several ways to makethe SA much more e�cient than in the experiments here, either on just astandard personal computer or workstation, on a network of computers, or onother conventional parallel platforms. Nevertheless, we believe that these res-ults show that if suitable neural hardware is available, the BMSA algorithmo�ers a promising basis for building an extremely e�cient MAP problemsolver.

6.3 Results 79
0

500000

1e+06

1.5e+06

2e+06

2 3 4 5 6 7 8

A
ve

ra
ge

 ti
m

e
be

fo
re

 s
uc

ce
ss

Max. number of values

BMSA

SSA

BF

Figure 6.6: The behavior of the algorithms as a function of the number of thevalues of the variables.
0

100000

200000

300000

400000

500000

600000

700000

5 10 15 20 25

A
ve

ra
ge

 ti
m

e
be

fo
re

 s
uc

ce
ss

Number of variables

BF

SSA

BMSAFigure 6.7: The behavior of the algorithms as a function of the number of thevariables.

Chapter 7ConclusionWe considered here two di�erent formalisms for approaching the problem of�nding MAP con�gurations of discrete random variables. The �rst of theseapproaches, Bayesian networks, provides us with an elegant method for con-structing probabilistic models from domain expert knowledge. Although theMAP problem can be shown to be NP-hard within this framework, we showedhow a stochastic simulated annealing method can be used for solving MAPproblems approximatively, in the sense that a MAP state can be found withhigh probability. However, the standard version of simulated annealing usesGibbs sampling for generating new candidate states, which means that onlyone of the variables is updated at a time. Consequently, this kind of a se-quential simulated annealing process becomes easily impractically slow asthe number of variables increases. To overcome this drawback, we presentedthree mappings from a given Bayesian network to a stochastic neural networkarchitecture, in the sense that the updating process of the resulting neural net-work provably converges to a state which can be projected to a MAP solutionon the original Bayesian network. The �rst of these mappings used as theneural network platform a harmony network, which can be seen as a specialcase of the Boltzmann machine architecture. The second mapping used amore standard two-layer Boltzmann machine structure, with homogeneousprocessing units. As both of these mappings assumed the Bayesian networkto be consisted of binary random variables, we showed in our third mappinghow to extend the suggested method to Bayesian networks with multi-valuedvariables.The BN{NN mappings presented here can be used for constructing a hy-brid BN{NN system, where the NN component provides a massively parallelsearch algorithm (BMSA) for �nding MAP con�gurations, corresponding (ina sense) to a simulated annealing process where all the variables can be up-dated at the same time. However, although the BMSA algorithm provably

81converges to the same �nal state as the normal sequential simulated annealing(SSA) would do, the two stochastic processes follow quite di�erent routes ontheir way to the same �nal destination. In particularly, the BMSA processworks in a state space much larger than the state space for SSA, and hencesome of the states during the BMSA process (the inconsistent NN states) can-not be mapped to a BN instantiation. This means that, �rst of all, the hybridscheme presented here can be used for solving MAP problems only | thescheme does not apply directly to the EVE problem framework1. Secondly,it should be noted that as the BMSA algorithm does not actually samplethe BN probability distribution, but another probability distribution on amuch larger state space with equal maximum points with the BN distribu-tion, on a conventional serial computer, SSA can probably always be mademore e�cient than (a simulation of) BMSA (although it should also be keptin mind that in some cases adding more parameters may make a problemactually easier to solve in practice). Nevertheless, our empirical results verystrongly suggest that the speedup gained from parallelization is su�cient tocompensate for the loss of accuracy in the stochastic process, provided thatsuitable massively parallel hardware is available. However, as we did not haveaccess to real neural network hardware, the results are based on relativelysmall-scale simulations performed on conventional workstations, not actualneural implementations.As noted above, without proper hardware, the hybrid scheme presentedhere is mainly of theoretical interest, as on a conventional serial computer,a sequential SA process can probably be made faster than a simulation ofthe corresponding neural network updating process. Nevertheless, severalmassively parallel platforms for neural computing already exists: a recent re-view [51, Ch. 3] lists 9 neural network accelerator boards, 13 neurocomputerswith general purpose processors, and 20 neurocomputers built from neuro-chips. Although not all of these are commercially available at the moment,it is already possible to buy hardware with quite an impressive performancefor NN applications. What is more, in the next few years the availability ofneural hardware is likely to improve drastically, as Japan started in 1992 anew 10-year programme under the name \Real World Computing (RWC)",which aims at \developing computational bases incorporating massively par-allel, neural and optical techniques" [67, 99].From the Bayesian network point of view, the mappings presented herecan be seen as providing an e�cient implementational platform for simu-1Nevertheless, it could be possible to obtain good estimates of the EVE probabilitiesby counting the occurrences of variable-value combinations in the �nal states during a longseries of BMSA runs. This idea, however, is not pursued here further.

82 Conclusionlated annealing. From the neural network point of view, on the other hand,the mappings provide a way to incorporate high-level, a priori informationdirectly into neural networks, without recourse to a time-consuming and un-reliable learning process. The resulting neural network could also be usedas a (cleverly chosen) initial starting point to some of the existing learn-ing algorithms [58, 35, 36, 55] for Boltzmann machines, in which case thelearning problem should become much easier than with a randomly choseninitial state. Moreover, the resulting \�ne-tuned" neural network could alsobe mapped back to a Bayesian network representation after the learning,which means the mappings can also be seen as a tool for extracting high-level knowledge from neural networks. From the Bayesian network point ofview, this kind of a \�ne-tuning" learning process could also be useful in de-tecting mutually inconsistent probabilities, or other inconsistencies with theunderlying Bayesian network representation.Finally, we would like to point out that as any function on a �nite, discretespace can be represented in the form (5.3), the hybrid scheme presented herecan in principle be used as a computationally e�cient, massively parallel toolfor solving optimization problems in general, and not only for solving MAPproblems as formulated here. Naturally, the e�ciency of such an approachwould largely depend on the degree to which the function to be maximizedcan be decomposed as a linear sum of functions, each depending only ona small subset of variables (corresponding to the cliques in the Bayesiannetwork formalism). Further studies on this subject are left as a goal forfuture research.

Bibliography[1] Aarts, E., and Korst, J. Simulated Annealing and BoltzmannMachines: A Stochastic Approach to Combinatorial Optimization andNeural Computing. John Wiley & Sons, Chichester, 1989.[2] Abbott, K. Robust operative diagnosis as problem solving in a hy-pothesis space. In Proceedings of the Sixth National Conference onArti�cial Intelligence (Saint Paul, Minnesota, August 1988), MorganKaufmann Publishers, San Mateo, CA, pp. 369{374.[3] Alspector, J., Zeppenfeld, T., and Luna, S. A volatility meas-ure for annealing in feedback neural networks. Neural Computation 4(1992), 191{195.[4] Andersen, S., Olesen, K., Jensen, F., and Jensen, F. Hugin { ashell for building belief universes for expert systems. In Proceedings ofthe International Joint Conference on Arti�cial Intelligence (Detroit,Michigan, August 1989), Morgan Kaufmann Publishers, San Mateo,CA, pp. 1080{1085.[5] Anderson, J., and Rosenfeld, E., Eds. Neurocomputing: Found-ations of Research. MIT Press, Cambridge, MA, 1988.[6] Anderson, J., and Rosenfeld, E., Eds. Neurocomputing 2: Direc-tions for Research. MIT Press, Cambridge, MA, 1991.[7] Ansari, N., S., R., and Wang, G. An e�cient annealing algorithmfor global optimization in Boltzmann machines. Journal of AppliedIntelligence 3, 3 (1993), 177{192.[8] Barker, A. Monte Carlo calculations of the radial distribution func-tions for a proton-electron plasma. Aust. J. Phys. 18 (1965), 119{133.[9] Barnden, J., and Pollack, J., Eds. Advances in Connectionist andNeural Computation Theory, Vol. I: High Level Connectionist Models.Ablex Publishing Company, Norwood, NJ, 1991.

84 BIBLIOGRAPHY[10] Baum, E. Towards practical 'neural' computation for combinatorial op-timization problems. In Proceedings of the AIP Conference 151: NeuralNetworks for Computing (Snowbird, UT, 1986), Denker, J., Ed., Amer-ican Institute of Physics, New York, NY, pp. 53{58.[11] Besag, J. Spatial interaction and the statistical analysis of latticesystems (with discussion). J. Royal Statist. Soc., series B 34 (1972),75{83.[12] Bilbro, G., Mann, R., and Miller, T. Optimization by mean�eld annealing. In Advances in Neural Information Processing SystemsI, D. Touretzky, Ed. Morgan Kaufmann Publishers, San Mateo, CA,1989, pp. 91{98.[13] Booker, L., Hota, N., and Ramsey, C. Bart: A Bayesian reason-ing tool for knowledge based systems. In Henrion et al. [53], pp. 271{282.[14] Brown, D., and Huntley, C. A practical application of simulatedannealing to clustering. Pattern Recognition 25, 4 (1992), 401{412.[15] Buchanan, B., and Shortliffe, E. Rule-Based Expert Systems.Addison-Wesley Publishing Company, Reading, MA, 1984.[16] Cheeseman, P. Probabilistic versus fuzzy reasoning. In Kanal andLemmer [68], pp. 85{102.[17] Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W.,and Freeman, D. Autoclass: A Bayesian classi�cation system. InProceedings of the Fifth International Conference on Machine Learning(Ann Arbor, June 1988), pp. 54{64.[18] Chin, H., and Cooper, G. Bayesian belief network inference us-ing simulation. In Uncertainty in Arti�cial Intelligence 3, L. Kanaland J. Lemmer, Eds. Elsevier Science Publishers B.V. (North-Holland),Amsterdam, 1989, pp. 129{147.[19] Cooper, G. The computational complexity of probabilistic inferenceusing Bayesian belief networks. Arti�cial Intelligence 42, 2{3 (March1990), 393{405.[20] Cox, R. Of inference and inquiry | an essay in inductive logic. InMaximum Entropy Formalism, Levine and Tribus, Eds. MIT Press,1979.

BIBLIOGRAPHY 85[21] Csiszar, I., and Tusnady, G. Information geometry and alternatingminimization procedures. Statistics & Decisions Supplement Issue No.1 (1984), 205{237.[22] Dagum, P., and Horvitz, E. A Bayesian analysis of simulationalgorithms for inference in belief networks. Networks 23 (1993), 499{516.[23] Dagum, P., and Luby, M. Approximating probabilistic inference inBayesian belief networks is NP-hard. Arti�cial Intelligence 60 (1993),141{153.[24] Dagum, P., and Shavez, M. Approximating probabilistic inferencein Bayesian networks. IEEE Transactions on Pattern Analysis andMachine Intelligence 15, 3 (March 1993), 246{255.[25] de Gloria, A., Faraboschi, P., and Olivieri, M. ClusteredBoltzmann machines: Massively parallel architectures for constrainedoptimization problems. Parallel Computing (1993), 163{175.[26] Dempster, A., Laird, N., and Rubin, D.Maximum likelihood fromincomplete data via the em algorithm. Journal of the Royal StatisticalSociety, Series B 39, 1 (1977), 1{38.[27] Dobrushin, R. The description of a random �eld by means of condi-tional probabilities and conditions of its regularity. Theory Prob. Appl.13 (1968), 197{224.[28] Doorenbos, R. Matching 100,000 learned rules. In Proceedings of theEleventh National Conference on Arti�cial Intelligence (Washington,DC, July 1993), AAAI Press/MIT, Menlo Park, CA, pp. 290{296.[29] Druzdzel, M., and Henrion, M. E�cient reasoning in qualitativeprobabilistic networks. In Proceedings of the Eleventh National Con-ference on Arti�cial Intelligence (Washington, DC, July 1993), AAAIPress/MIT, Menlo Park, CA, pp. 548{553.[30] Duda, R., Hart, P., and Nilsson, N. Subjective Bayesian methodsfor rule-based inference systems. Tech. Rep. TR 124, Stanford ResearchInstitute, Menlo Park, CA, 1976.[31] Eizirik, L., Barbosa, V., and Mendes, S. A Bayesian-networkapproach to lexical disambiguation. Cognitive Science 17, 2 (April-June 1993), 257{283.

86 BIBLIOGRAPHY[32] Faigle, U., and Schrader, R. On the convergence of stationary dis-tributions in simulated annealing algorithms. Information ProcessingLetters 27 (1988), 189{194.[33] Flor�een, P., Myllym�aki, P., Orponen, P., and Tirri, H.Neural representation of concepts for robust inference. In Proceedingsof the International Symposium Computational Intelligence II (Milano,Italy, September 1989), F. Gardin and G. Mauri, Eds., Elsevier SciencePublishers B.V. (North-Holland), pp. 89{98.[34] Flor�een, P., Myllym�aki, P., Orponen, P., and Tirri, H. Com-piling object declarations into connectionist networks. AI Communic-ations 3, 4 (December 1990), 172{183.[35] Freund, Y., and Haussler, D. Unsupervised learning of distribu-tions on binary vectors using two layer networks. In Neural InformationProcessing Systems 4, J. Moody, S. Hanson, and R. Lippmann, Eds.Morgan Kaufmann Publishers, San Mateo, CA, 1992, pp. 912{919.[36] Galland, C. Learning in Deterministic Boltzmann Machine Net-works. PhD thesis, Department of Physics, University of Toronto, 1992.[37] G�ardenfors, P., and Sahlin, N.-E., Eds. Decision, Probability,and Utility. Cambridge University Press, New York, 1988.[38] Garey, M., and Johnson, D. Computers and Intractability: AGuide to the Theory of NP-completeness. W.H.Freeman, New York,NY, 1979.[39] Geffner, H., and Pearl, J. On the probabilistic semantics of con-nectionist networks. Tech. Rep. R-84, UCLA Computer Science De-partment, Los Angeles, CA, 1987.[40] Geman, S., and Geman, D. Stochastic relaxation, Gibbs distribu-tions, and the Bayesian restoration of images. IEEE Transactions onPattern Analysis and Machine Intelligence 6 (1984), 721{741.[41] Goonatilake, S., and Khebbal, S., Eds. Intelligent Hybrid Sys-tems. John Wiley & Sons, Chichester, 1995.[42] Greening, D. Parallel simulated annealing techniques. Physica D 42(1990), 293{306.[43] Haario, H., and Saksman, E. Simulated annealing process in gen-eral state space. Adv. Appl. Prob. 23 (1991), 866{893.

BIBLIOGRAPHY 87[44] Hajek, B. Cooling schedules for optimal annealing. Mathematics ofOperations Research 13 (1988), 311{329.[45] Hastings, W. Monte Carlo sampling methods using Markov chainsand their applications. Biometrika 57 (1970), 97{109.[46] Haykin, S. Neural Networks: A Comprehensive Foundation. IEEEPress/Macmillan College Publishing Company, New York, 1994.[47] Hecht-Nielsen, R. Neurocomputing. Addison-Wesley PublishingCompany, Reading, MA, 1990.[48] Heckerman, D. Probabilistic interpretation for MYCIN's certaintyfactors. In Kanal and Lemmer [68], pp. 167{196.[49] Heckerman, D., Geiger, D., and Chickering, D. LearningBayesian networks: The combination of knowledge and statistical data.Machine Learning 20, 3 (September 1995), 197{243.[50] Heckerman, D., and Shwe, M. Diagnosis of multiple faults: A sens-itivity analysis. In Uncertainty in Arti�cial Intelligence 9, D. Hecker-man and A. Mamdani, Eds. Morgan Kaufmann Publishers, San Mateo,CA, 1993, pp. 80{87.[51] Heem, J. Neurocomputers for Brain-Style Processing. Design,Implementation and Application. PhD thesis, Leiden Uni-versity, Unit of Experimental and Theoretical Psychology, 1995.Updated version of Chapter 3 can be found in \ftp.mrc-apu.cam.ac.uk/pub/nn/neurhard.ps".[52] Henrion, M. An introduction to algorithms for inference in beliefnets. In Henrion et al. [53], pp. 129{138.[53] Henrion, M., Shachter, R., Kanal, L., and Lemmer, J., Eds.Uncertainty in Arti�cial Intelligence 5. Elsevier Science PublishersB.V. (North-Holland), Amsterdam, 1990.[54] Hertz, J., Krogh, A., and Palmer, R. Introduction to the Theoryof Neural Computation. Addison-Wesley Publishing Company, Red-wood City, CA, 1991.[55] Hinton, G. Connectionist learning procedures. Arti�cial Intelligence40, 1{3 (September 1989).

88 BIBLIOGRAPHY[56] Hinton, G. Special issue on connectionist symbol processing. Arti�-cial Intelligence 46, 1{2 (1990).[57] Hinton, G., and Sejnowski, T. Optimal perceptual inference. InProceedings of the IEEE Computer Society Conference on ComputerVision and Pattern Recognition (Washington DC, June 1983), IEEE,New York, NY, pp. 448{453.[58] Hinton, G., and Sejnowski, T. Learning and relearning inBoltzmann machines. In Rumelhart and McClelland [103], pp. 282{317.[59] Hopfield, J., and Tank, D. Neural computation of decisions inoptimization problems. Biological Cybernetics 52 (1985), 141{152.[60] Howard, R., and Matheson, J. In
uence diagrams. In Readingsin Decision Analysis, R.A.Howard and J.E.Matheson, Eds. StrategicDecisions Group, Menlo Park, CA, 1984, pp. 763{771.[61] Hrycej, T. Gibbs sampling in Bayesian networks. Arti�cial Intelli-gence 46 (1990), 351{363.[62] Hrycej, T. Common features of neural-network models of high andlow level human information processing. In Proceedings of the Inter-national Conference on Arti�cial Neural Networks (ICANN-91) (Es-poo, Finland, June 1991), T. Kohonen, K. M�akisara, O. Simula, ,and J. Kangas, Eds., Elsevier Science Publishers B.V. (North-Holland),pp. 861{866.[63] Ingber, L. Very fast simulated re-annealing. Mathematical and Com-puter Modelling 8, 12 (1989), 967{973.[64] Jeffreys, R. Probability and the Art of Judgement. Cambridge Uni-versity Press, New York, 1992.[65] Johnson, D., Aragon, C., McGeoch, L., and Schevon, C. Op-timization by simulated annealing: an experimental evaluation; PartI, graph partitioning. Operations Research 37, 6 (November-December1989), 865{892.[66] Johnson, D., Aragon, C., McGeoch, L., and Schevon, C. Op-timization by simulated annealing: an experimental evaluation; PartII, graph coloring and number partitioning. Operations Research 39, 3(May-June 1991), 378{406.

BIBLIOGRAPHY 89[67] Kahaner, D. Japan moves towards information society. IEEE Expert(April 1992), 54{58.[68] Kanal, L., and Lemmer, J., Eds. Uncertainty in Arti�cial Intelli-gence 1. Elsevier Science Publishers B.V. (North-Holland), Amsterdam,1986.[69] Karlin, S., and Taylor, H. A First Course in Stochastic Processes.Academic Press, San Diego, CA, 1975.[70] Kinderman, R., and Snell, J. Markov Random Fields and theirApplications. American Mathematical Society, Providence, RI, 1980.[71] Kirkpatrick, S., Gelatt, D., and Vecchi, M. Optimization bysimulated annealing. Science 220, 4598 (May 1983), 671{680.[72] Kosko, B., and Isaka, S. Fuzzy logic. Scienti�c American 269, 1(July 1993), 62{69.[73] Laarhoven, P., and Aarts, E. Simulated Annealing: Theory andApplications. Kluwer Academic Publishers, Dordrecht, The Nether-lands, 1987.[74] Lam, F., and Yeap, W. Bayesian updating: on the interpretation ofexhaustive and mutually exclusive assumptions. Arti�cial Intelligence53, 2{3 (February 1992), 245{254.[75] Laskey, K. Adapting connectionist learning to Bayesian networks.International Journal of Approximate Reasoning 4 (1990), 261{282.[76] Lauritzen, S., and Spiegelhalter, D. Local computations withprobabilities on graphical structures and their application to expertsystems. J. Royal Stat. Soc., Ser. B 50, 2 (1988), 157{224. Reprintedas pp. 415{448 in [108].[77] Lindley, D. Making Decisions, second ed. John Wiley & Sons, Lon-don, 1992.[78] McClelland, J., and Rumelhart, D., Eds. Parallel DistributedProcessing, vol. 2. MIT Press, Cambridge, MA, 1986.[79] McCulloch, W., and Pitts, W. A logical calculus of the ideasimmanent in nervous activity. Bulletin of Math. Bio. 5 (1943), 115{133. Reprinted as pp. 18{27 in [5].

90 BIBLIOGRAPHY[80] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller,M., and Teller, E. Equations of state calculations by fast computingmachines. Journal of Chem. Phys. 21 (1953), 1087{1092.[81] Myllym�aki, P. Bayesian Reasoning by Stochastic Neural Networks.Ph.Lic. Thesis, Tech. Rep. C-1993-67, Department of Computer Sci-ence, University of Helsinki, 1993.[82] Myllym�aki, P. Using Bayesian networks for incorporating probab-ilistic a priori knowledge into Boltzmann machines. In Proceedingsof SOUTHCON'94 (Orlando, March 1994), IEEE, Piscataway, NJ,pp. 97{102.[83] Myllym�aki, P. Mapping Bayesian networks to Boltzmann machines.In Proceedings of Applied Decision Technologies 1995 (London, April1995), A. Gammerman, Ed., Unicom Seminars, London, pp. 269{280.[84] Myllym�aki, P., and Orponen, P. Programming the Harmonium.In Proceedings of the International Joint Conference on Neural Net-works (Singapore, November 1991), vol. 1, IEEE, New York, NY,pp. 671{677.[85] Myllym�aki, P., Orponen, P., and Silander, T. Integratingsymbolic reasoning with neurally represented background knowledge.In Proceedings of STeP-92, the Finnish Arti�cial Intelligence Confer-ence (Otaniemi, Finland, June 1992), E.Hyv�onen, J.Sepp�anen, andM.Syrj�anen, Eds., vol. 2, Finnish Arti�cial Intelligence Society, Hel-sinki, pp. 231{240. Also pp. 168{172 in Workshop Notes of the AAAI-92 Workshop on Integrating Neural and Symbolic Processes.[86] Myllym�aki, P., and Tirri, H. Bayesian case-based reasoning withneural networks. In Proceedings of the IEEE International Conferenceon Neural Networks (San Francisco, March 1993), vol. 1, IEEE, Pis-cataway, NJ, pp. 422{427.[87] Myllym�aki, P., and Tirri, H. Massively parallel case-based reas-oning with probabilistic similarity metrics. In Topics in Case-BasedReasoning, S. Wess, K.-D. Altho�, and M. Richter, Eds., vol. 837 ofLecture Notes in Arti�cial Intelligence. Springer-Verlag, 1994, pp. 144{154.[88] Myllym�aki, P., and Tirri, H. Constructing computationally ef-�cient Bayesian models via unsupervised clustering. In Probabilistic

BIBLIOGRAPHY 91Reasoning and Bayesian Belief Networks, A.Gammerman, Ed. AlfredWaller Publishers, Su�olk, 1995, pp. 237{248.[89] Myllym�aki, P., Tirri, H., Flor�een, P., and Orponen, P. Com-piling high-level speci�cations into neural networks. In Proceedings ofthe International Joint Conference on Neural Networks (WashingtonD.C., January 1990), vol. 2, IEEE, New York, NY, pp. 475{478.[90] Neal, R. Connectionist learning of belief networks. Arti�cial Intelli-gence 56 (1992), 71{113.[91] Neal, R. Probabilistic inference using Markov chain Monte Carlomethods. Tech. Rep. CRG-TR-93-1, University of Toronto, September1993.[92] Neapolitan, R. Probabilistic Reasoning in Expert Systems. JohnWiley & Sons, New York, NY, 1990.[93] Newquist, H. Struggling to maintain. AI Expert 8, 3 (1988), 69{71.[94] Nishikawa, T. Fuzzy theory { the science of human intuition. JapanComputer Quarterly 79 (1989).[95] Orponen, P., Flor�een, P., Myllym�aki, P., and Tirri, H. Aneural implementation of conceptual hierarchies with Bayesian reason-ing. In Proceedings of the International Joint Conference on NeuralNetworks (San Diego, CA, June 1990), vol. 1, IEEE, New York, NY,pp. 297{303.[96] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networksof Plausible Inference. Morgan Kaufmann Publishers, San Mateo, CA,1988.[97] Peterson, C., and Anderson, J. A mean �eld theory learningalgorithm for neural networks. Complex Systems 1 (1987), 995{1019.[98] Pilarski, S., and Kameda, T. Simple bounds on the convergencerate of an ergodic Markov chain. Information Processing Letters 45(1993), 81{87.[99] Pollitzer, E. Engineering cognitive systems: Japan's real-world com-puting programme. AI Communications 5, 2 (June 1992), 56{61.

92 BIBLIOGRAPHY[100] Rajasekaran, S., and Reif, J. H. Nested annealing: A provableimprovement to simulated annealing. Theoretical Computer Science 99(1992), 157{176.[101] Rego, V. Naive asymptotics for hitting time bounds in Markov chains.Acta Informatica 29 (1992), 579{594.[102] Roth, D. On the hardness of approximate reasoning. In Proceedingsof the 13th International Joint Conference on Arti�cial Intelligence(1993), vol. 1, pp. 613{618.[103] Rumelhart, D., and McClelland, J., Eds. Parallel DistributedProcessing, vol. 1. MIT Press, Cambridge, MA, 1986.[104] Santos, S. Phase transitions in sparsely connected Boltzmann ma-chines. Tech. Rep. C-1994-15, University of Helsinki, Department ofComputer Science, 1994.[105] Selim, S., and Alsultan, K. A simulated annealing algorithm forthe clustering problem. Pattern Recognition 24, 10 (1991), 1003{1008.[106] Shachter, R. Probabilistic inference and in
uence diagrams. Opera-tions Research 36, 4 (July-August 1988), 589{604.[107] Shachter, R. Evidence absorption and propagation through evidencereversals. In Henrion et al. [53], pp. 173{190.[108] Shafer, G., and Pearl, J., Eds. Readings in Uncertain Reasoning.Morgan Kaufmann Publishers, San Mateo, CA, 1990.[109] Shastri, L. Semantic Networks: An Evidential Formalization and ItsConnectionist Realization. Pitman, London, 1988.[110] Shawe-taylor, J., and Zerovnik, J. Generalized Boltzmann ma-chines. Tech. Rep. CSD-TR-92-29, Department of Computer Science,Royal Holloway, University of London, 1992.[111] Shimony, S. Cost-based abduction and MAP explanation. Arti�cialIntelligence 66 (1994), 345{374.[112] Shimony, S. Finding MAPs for belief networks is NP-hard. Arti�cialIntelligence 68 (1994), 399{410.[113] Sinclair, A., and Jerrum, M. Approximate counting, uniform gen-eration and rapidly mixing Markov chains. Information and Computa-tion 82 (1989), 93{133.

BIBLIOGRAPHY 93[114] Smolensky, P. Information processing in dynamical systems: Found-ations of harmony theory. In Rumelhart and McClelland [103], pp. 194{281.[115] Spiegelhalter, D. Probabilistic reasoning in predictive expert sys-tems. In Kanal and Lemmer [68], pp. 47{67.[116] Sun, R. Integrating Rules and Connectionism for Robust Common-sense Reasoning. John Wiley & Sons, Chichester, 1994.[117] Wellman, M. Fundamental concepts of qualitative probabilistic net-works. Arti�cial Intelligence 44, 3 (August 1990), 257{304.[118] York, J. Use of Gibbs sampler in expert systems. Arti�cial Intel-ligence 56 (1992), 115{130. Addendum in pp. 397{398 of the samevolume.[119] Zadeh, L. Fuzzy logic and approximate reasoning. Synthese 30 (1975),407{425.

ISSN 1238-8645ISBN 951-45-7211-4Helsinki 1995Yliopistopaino

