
Department of Computer Science

Series of Publications A

Report A-2008-1

Modeling Efficient Classification

as a Process of Confidence Assessment

and Delegation

Ilkka Autio

Academic Dissertation

To be presented, with the permission of the Faculty of

Science of the University of Helsinki, for public criti-

cism in Auditorium XIII, University Main Building, on

February 1st, 2008, at 12 o’clock noon.

University of Helsinki

Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 2008 Ilkka Autio

ISSN 1238-8645

ISBN 978-952-10-4462-5 (paperback)

ISBN 978-952-10-4463-2 (PDF)

http://ethesis.helsinki.fi/

Computing Reviews (1998) Classification: I.5, I.5.1, I.5.2, I.4,

I.4.7, I.2.6

Helsinki University Printing House

Helsinki, Jan 2008 (212 pages)

Modeling Efficient Classification as a Process of

Confidence Assessment and Delegation

Ilkka Autio

Department of Computer Science

P.O. Box 68, FI-00014 University of Helsinki, Finland

ilkka.autio@cs.helsinki.fi

Abstract

In visual object detection and recognition, classifiers have two inter-

esting characteristics: accuracy and speed. Accuracy depends on

the sophistication and complexity of the image features and clas-

sifier decision surfaces. Speed depends on both the hardware and

the computational effort required to use the features and decision

surfaces. When attempts to increase accuracy lead to increases in

complexity and effort, it is necessary to ask how much are we willing

to pay for increased accuracy. For example, if increased computa-

tional effort implies quickly diminishing returns in accuracy, then

those attempting to design inexpensive or embedded surveillance

applications cannot aim for maximum accuracy at any cost. It

becomes necessary to find satisfactory trade-offs between accuracy

and effort.

We study efficient classification of images depicting real-world

objects and scenes. Classification is efficient when a classifier can

be controlled so that the desired trade-off between accuracy and ef-

fort (speed) is achieved and unnecessary computations are avoided

on a per input basis. In studying efficient classification, it is desir-

able to have a framework in which similar classification problems

can be understood and handled with relative ease. In this disser-

tation, a framework is proposed for understanding and modeling

efficient classification of images. In the framework, classification is

modeled as a tree-like process. In designing the framework, it is im-

portant to recognize what is essential for many problems and to try

to avoid structures and techniques that are narrow in applicability.

Earlier frameworks are lacking in this regard, e.g., in one particu-

lar framework, efficient classifiers have a cascade (degenerate tree)

structure in which all nodes use the same kind of features.

iii

iv

The overall contribution of this dissertation is two-fold. First,

the framework is presented, subjected to experiments, and shown

to be satisfactory for the intended purpose. Second, certain uncon-

ventional approaches are experimented with. This allows the sep-

aration of the essential from the conventional, i.e., for the purpose

of detecting what does not have to be and should not be required

in the framework. For example, it is conventional to assume that

the desired trade-off must be specified prior to training. It will be

shown that this is unnecessary. To determine if the framework is

satisfactory, and to determine its limitations, three categories of

questions are identified: trade-off optimization, classifier tree orga-

nization, and rules for delegation and confidence modeling.

Related to trade-off optimization, we first address the problem

of selecting suitable root node features. A hypothesis is proposed

for feature selection. Using the hypothesis, it is possible to avoid

computational bottlenecks that limit the available range of trade-

offs. Two different experiments are contributed, both of which agree

with the hypothesis. Second, it is claimed that if the framework

is implemented properly, then accuracy versus effort (speed) trade-

offs can be controlled after training, i.e., the desired trade-off can be

changed without training the classifiers again. Empirical evidence

is contributed and the evidence supports the claim.

Regarding classifier tree organization, we first consider the task

of organizing a classifier tree in a problem-specific manner. An orga-

nization of the nodes is problem-specific if the classification problem

at hand determines which node is connected to which. For finding

the organization, an unconventional approach is designed and ex-

perimented with. In the approach, tree-like hierarchies of classes are

created by using visual queries posed to human observers. The ex-

perimental results support the use of the approach, and it is demon-

strated that the approach is compatible with the framework, i.e.,

with the goal of trade-off optimization. Second, we ask if problem-

specific organization is strictly necessary. The experimental results

support the claim that, at least sometimes, the framework does not

require problem-specific organization. The key idea is that nodes

can be formed from simpler modules when required.

Related to delegation and confidence modeling, we first ask if

predictions can be combined efficiently over multiple views of ob-

jects under motion. The experimental results support an answer

v

in the positive, and it is demonstrated that the proposed delega-

tion rules are not limited to classifying single views. Second, a

different kind of multi-class delegation rules are subjected to theo-

retical analysis. These rules are the ones that are used for avoiding

problem-specific organization. The analysis shows that the rules,

which are based on monotonic confidence modeling, can exceed the

accuracy of a simple baseline approach, and that excess accuracy

can be traded for speed. Third, a non-monotonic confidence mod-

eling approach is contributed and subjected to analysis. The ap-

proach is based on adaptive combination of large-margin classifiers.

In the analysis, it seems that the combination operation is not es-

pecially dangerous because the risk of overfitting is not necessarily

increased. Further, the non-monotonic approach is experimented

with, and the results are compared to results from monotonic mod-

eling.

Finally, we address one question that is not covered by the three

categories. In contrast to the efficiency of classifying inputs, we

examine the efficiency of feature selection and training, and ask if

the framework is useful in improving the latter in addition to the

former. The results support an answer in the positive. The key idea

is to use a certain kind of modules in the root node to constrain

the sampling of candidate features in other nodes.

Computing Reviews (1998) Categories and Subject Descriptors:

I.5 Pattern Recognition

I.5.1 Models

I.5.2 Design Methodology

I.4 Image Processing and Computer Vision

I.4.7 Feature Measurement

I.2.6 Learning

General Terms: Computer Vision, Experimentation

Additional Key Words and Phrases: Computer Vision, Pattern

Recognition, Machine Learning, Efficient Methods for Visual

Pattern Recognition

vi

Acknowledgements

I am grateful to my team of supervisors and mentors Esko Ukkonen,

Tapio Elomaa, and Jyrki Kivinen. I would like to thank Esko for the

guidance, encouragement, and the facilities and resources necessary

for finishing this manuscript and the related works. I am grateful

to Tapio for participating in my earliest works and for remaining

interested in my progress even after circumstances led to his move

to Tampere. I would like to thank Jyrki for his expertise and advice

on all things related to machine learning. I am especially grateful to

Juha Röning and Jorma Laaksonen for reviewing this manuscript

and providing helpful insight and criticism.

I would like to thank the Helsinki Graduate School in Com-

puter Science and Engineering (HeCSE) and the From Data To

Knowledge (FDK) research unit for funding and the opportunity

to conduct my research. The former organized many stimulating

summer courses that opened my eyes to interesting topics of study

that I would not have encountered otherwise. I am also grateful to

the Department of Computer Science at the University of Helsinki

for providing many essential services and for offering interesting

courses.

I am very grateful to my co-workers, especially Jussi T. Lind-

gren whose enthusiasm for experimental work was admirable, and

whose critical eye was often valuable in drawing the line between

the feasible and the hopeless.

Last but not least, I am most grateful to my parents Sirkka and

Kalevi, and my beloved girlfriend Natalia, without whom I would

not have had the strength to keep going.

vii

viii

Contents

1 Introduction 1

1.1 Organization and contributions 4

1.2 Related Publications 7

1.3 Summary of the datasets used in the experiments . . 8

2 The delegation framework for efficient classification 11

2.1 Efficient tree models 12

2.1.1 Classifiers and loss functions 13

2.1.2 Efficiency-sensitive loss functions 16

2.1.3 The preferred model 18

2.2 Related hierarchical models 24

2.2.1 Cascades . 24

2.2.2 Trees . 26

2.3 Designing classifiers for nodes 28

2.3.1 General issues 28

2.3.2 Basic support vector machines 30

2.3.3 Monotonic confidence models for hyperplane

classifiers . 35

2.3.4 Beyond monotonic and probabilistic models

of confidence 37

2.3.5 A simple 0/1 loss bound for a voting margin

machine . 41

2.4 Summary . 43

3 Finding the root of the problem 47

3.1 The root feature selection hypothesis 48

3.1.1 Efficiency bottlenecks 48

ix

x Contents

3.1.2 Statement of the root feature selection hy-

pothesis . 49

3.2 Overview of the experiments 55

3.3 The main experiment 56

3.3.1 Extracting global features 56

3.3.2 The input feature space and classification . . 58

3.3.3 Empirical evaluation 66

3.4 The additional experiments 82

3.4.1 Simple segmentation for specialists 83

3.4.2 Experiments with landmarks 84

3.5 Summary . 89

4 Organizing delegation 91

4.1 The main questions 91

4.1.1 The first question 91

4.1.2 The second question 97

4.2 Overview of the experiments 98

4.3 Extracting hierarchic class relationships using visual

queries . 101

4.3.1 Class similarities and hierarchies 101

4.3.2 A procedure for discovering a class hierarchy 104

4.4 Classification . 108

4.4.1 Assigning classifiers to nodes 109

4.4.2 Prediction and delegation 111

4.4.3 Multiple views of objects under motion . . . 113

4.5 Experiments . 115

4.5.1 The data . 116

4.5.2 The hierarchy 119

4.5.3 The classifier nodes 120

4.5.4 Classification results 126

4.6 Summary . 133

5 Questions of modularity 137

5.1 The main questions 137

5.1.1 The first question 137

5.1.2 The second question 138

5.1.3 The third question 139

5.2 Overview of the experiments 140

5.3 Attention-driven object detection 142

Contents xi

5.3.1 Test system design 142

5.3.2 Experimental design 163

5.3.3 Results . 167

5.3.4 Summary . 171

5.4 Adaptive voting margin combiners 174

5.4.1 Test system design 174

5.4.2 The application domain and related details . 175

5.4.3 The first stage (root) 176

5.4.4 Second-stage feature spaces 179

5.4.5 Classification in the second stage 181

5.4.6 Experimental results 184

5.4.7 Summary . 186

6 Conclusions 189

References 197

xii Contents

CHAPTER 1

Introduction

In visual object detection and recognition, we have classifiers that

have two characteristics of interest: accuracy and speed. Accuracy

depends on the suitability and sophistication of the extracted image

features and the capability of the classifier to use accurate decision

surfaces in the space of the features. Speed depends on both the

hardware and the computational effort required to calculate the

feature values and to use the decision surfaces.

To discuss the relationship between accuracy and speed, and the

importance of both, it is best to begin with something that many

readers can agree with: given a classification problem and many

classifiers of equal accuracy, the fastest one is the best. We can

now ask what it takes to increase the accuracy of the best solution

to some desired level. One possibility is that the solution has to

become more complex, increasing the computational effort of clas-

sifying inputs. For example, consider a perceptron or a support

vector machine that takes raw pixel vectors as inputs that are clas-

sified effortlessly and with an accuracy that is significantly above

chance level. The classifier, however, cannot approximate the cor-

rect decision surface(s) arbitrarily well. To increase the accuracy

to the desired level, it may be necessary to allow more complex

decision surfaces in the classifier, or to allow more sophisticated

input features in the space of which the correct decision surface is

easier to approximate. Both improvements increase the computa-

tional effort. The other possibility, that any desired accuracy can

be achieved without increasing the complexity or effort inherent

in the solution, is not universally realistic. Above, we already fo-

1

2 1 Introduction

cused on the best solution of those with equal accuracy, i.e., badly

programmed solutions were ruled out.

Based on the above, we suppose that for some classification prob-

lems there are thresholds at which increases in accuracy must lead

to increases in complexity and computational effort. It now be-

comes necessary to ask how much we are willing to pay for in-

creased accuracy. For example, if increased computational effort

leads to quickly diminishing returns, then those who would seek to

embed face recognition programs in inexpensive surveillance cam-

eras should admit that they need a trade-off between accuracy and

effort – not maximum accuracy at any cost.

In this dissertation, we study efficient classification, i.e., how to

make trade-offs when accuracy and effort (speed) are in conflict.

Related to the above motivation, it will be shown that in the pa-

rameter spaces of efficient classifiers there are clearly identifiable

points of diminishing returns. The conflict arises when we con-

sider real-world image classification problems that require speed

and are associated with the use of complex features, multiple kinds

of features, or complex preprocessing (possibly segmentation) to

achieve good accuracy. Examples of such problems can be found in

the literature [VJ01, UVNS02, VNU03, CDV03, BBFS00, OPS+97,

MKS00, GJLAMBGM05] relevant to surveillance applications and

vehicle mounted applications, e.g., detection and recognition of

faces, cars, pedestrians, and traffic signs. We examine problems

in the context of supervised batch learning, and make one basic as-

sumption in the methodology. We assume that efficient classifiers

use conditional exclusion of computations on a per input basis, e.g.,

as assumed also in [VJ01]. If computations are not excluded on

this basis, both easy and hard inputs take the same effort, which is

hardly efficient.

Given that there are many classification problems in which the

basic conflict appears to be present and the need for controlled

trade-offs emerges, it seems wasteful to consider each problem in

isolation from the others. It would be useful to have a framework

for understanding and modeling efficient classification of images de-

picting real-world objects and scenes. In this dissertation, such a

framework will be presented. Informally, a framework is a support-

ing structure within which similar problems can be handled with

relative ease. A framework may include theory, structures for or-

3

ganizing information, and software. In designing a framework, it

is necessary to recognize what is essential for a family of problems

and avoid structures or techniques that are too narrow in applica-

bility. For example, in designing the desired framework, it would be

a mistake to assume that all efficient classifiers can use the cascade

structure of Viola and Jones [VJ01] to achieve conditional exclu-

sion, or that each node of the structure can use the same kind of

features. Yet, Viola and Jones claim that they present a framework

and not just a solution to one specific problem. In addition, de-

signing a framework enables one to separate the essential from the

conventional, i.e., to see what is widely accepted, but does not have

to be.

The overall contribution of this dissertation is two-fold. First,

the framework is presented, subjected to experiments (e.g., related

to trade-offs), and shown to be satisfactory. In brief, the frame-

work models the classification process as a tree, enables the com-

bination of many kinds of image features in a manner that isolates

incompatible features from each other, and allows freedom of choice

when there is no unique solution to a subproblem, e.g., choosing

the organization and placement of the nodes in the tree. Second,

there are subproblems that allow the use of some unconventional

approaches. These approaches are experimented with. It will be

shown that certain conventional approaches have attractive alterna-

tives, and hence, the conventions should be considered unnecessary.

For example, it will be shown that trade-offs can be controlled after

training by the use of simple parameters. In contrast, decision trees

and typical cascades that allow trade-offs require that one specific

trade-off is chosen prior to training.

4 1 Introduction

1.1 Organization and contributions

The framework, along with some initial analysis, is presented in

Chapter 2. To determine if the framework is satisfactory, and to

determine its limitations, it is necessary to present answers related

to three categories of questions.

1. Trade-off optimization. The framework must allow predictable

control over trade-offs. The available range of trade-offs should

be wide, e.g., high accuracy should be available to those who

desire it and high speed (low classification effort) should be

available to others. It is necessary to ask if and how sufficient

control is achievable in practice.

2. Classifier tree organization. The framework has certain re-

quirements related to the organization and structure of classi-

fier trees. For example, computationally lighter nodes should

precede heavier nodes and every node must be able to termi-

nate classification. It is necessary to ask if there are practical

means to satisfy the requirements. A priori, this is not obvi-

ous. For example, knowledge of ordinary decision trees does

not provide the answers because the requirements are differ-

ent. In decision trees, only leaf nodes can terminate and there

is no concept of computational effort associated with nodes.

Knowledge of cascades (degenerate trees) does not provide

the answers either.

3. Delegation and confidence. The framework requires delega-

tion rules and confidence modeling schemes. Prior to Chap-

ter 2, it suffices to say that delegation rules decide the paths

taken by inputs and confidence models decide if nodes pre-

dict or abstain. It is necessary to determine what kind of

rules and models are available and what capabilities and lim-

itations they have.

Related to trade-off optimization, the following is presented.

First, in Chapter 3, we address the problem of selecting suitable

root node features. A hypothesis for feature selection is contributed.

The hypothesis makes claims about what kind of features should be

used in root nodes. Basically, if certain preconditions are met, there

is a good chance that global summations or other coarse statistics of

1.1 Organization and contributions 5

local features are suitable. Root nodes deserve special attention be-

cause these nodes can limit the available range of trade-offs so that

the limitations cannot be overcome by delegation rules. In other

words, unsuitable root nodes lead to insufficient control over trade-

offs. The main experiment of Chapter 3 satisfies the preconditions

and claims of the hypothesis. In Chapter 4, a related experiment is

presented. The second experiment complements the first and also

satisfies the preconditions and claims. Thus, two different experi-

ments are contributed and both agree with the hypothesis.

Second, in Chapter 4 and in the first half of Chapter 5, we address

the problem of controlled trade-offs. Experimental evidence related

to the problem is contributed. The evidence supports the claim

that if the framework is implemented properly, then speed versus

accuracy trade-offs can be controlled (optimized) after training, i.e.,

the desired trade-off can be changed without training the classifiers

again. This unconventional control is sufficient and is achieved by

the use of simple parameters. Proper implementation involves de-

tails related to the root node, confidence modeling, and delegation

rules. It is important to avoid the kind of input filtering that is

done by cascades of Viola and Jones and decision trees. Such filter-

ing is not compatible with the idea of changing the desired trade-off

without training again.

Related to classifier tree organization, the following is presented.

First, in Chapter 4, we ask where the organization of the base clas-

sifier nodes comes from. It is supposed that there are broad classes

and narrow classes, and that confusing broad classes is relatively

serious compared to confusing narrow classes. For finding the or-

ganization, an unconventional approach is presented and experi-

mented with. An experimental procedure is designed for creating

tree-like hierarchies of classes by using visual queries posed to hu-

man observers. One hierarchy is then used as the organization of

the nodes. The contributed experimental evidence supports the use

of the approach. The results show that the approach is compatible

with the requirements of the framework and efficient classification

in general, i.e., trade-off optimization works well.

Second, in the first half of Chapter 5, we ask if the framework

requires problem-specific organization of the classifier nodes. An

organization of the nodes is problem-specific if the classification

problem at hand determines which node is connected to which. For

6 1 Introduction

example, decision trees are problem-specific and it is conventional to

assume problem-specificity. The contributed experimental evidence

supports the claim that, at least sometimes, the framework does not

require problem-specific organization. The evidence is based on the

use of the multi-class delegation rules proposed in the first half of

Chapter 5. The unconventional idea is that nodes are formed from

simpler modules.

Related to delegation and confidence, the following is presented.

First, in Chapter 4, we ask whether predictions can be combined

efficiently over multiple views of objects under motion. In this

task, efficiency is inversely proportional to the sum of total clas-

sifier losses over motion sequences. The contributed experimental

evidence supports the positive answer, e.g., the delegation rules are

not limited to classifying single views. Each prediction is repre-

sented as a ranked list of class labels. Simple voting-based com-

bination of these lists is found sufficiently efficient, given that the

classifier tree can do simple motion segmentation.

Second, in the first half of Chapter 5, the proposed multi-class

delegation rules are subjected to theoretical analysis. These are

the rules that are used for avoiding problem-specific organization.

It is assumed that monotonic confidence modeling is appropriate.

The analysis shows that the rules can exceed the accuracy of an

alternative approach. The excess accuracy can then be traded for

speed.

Third, in Chapter 2, a non-monotonic confidence modeling ap-

proach is contributed and subjected to analysis. The approach is

based on adaptive combination of classifiers. In the analysis, it

seems that combination by using this approach is not especially

dangerous because increasing the number of classifiers does not

necessarily increase the risk of overfitting. In the second half of

Chapter 5, we ask if pre-made classifier modules can be combined

adaptively to work together in (non-root) nodes. A module is pre-

made if it has been made or trained prior to combining, i.e., it is

not made during combining. As a counterexample, boosting does

not allow pre-made modules. The contributed experimental evi-

dence supports the claim that adaptive combination of pre-made

modules works in practice. The proposed non-monotonic approach

from Chapter 2 is compared to a non-adaptive monotonic alterna-

tive. The non-monotonic approach is found slightly better.

1.2 Related Publications 7

Finally, we address one question that is not covered by the three

categories of questions that were explained above. We examine

the efficiency of feature selection and training (in contrast to the

efficiency of classifying inputs). In the first half of Chapter 5, we

ask whether the framework is useful in improving the efficiency

of feature selection and training. The contributed experimental

evidence supports the positive answer. The efficiency of feature

selection is improved by using modules in the root to constrain the

sampling of candidate features in other nodes.

To summarize, using the contributed experimental results and

analysis it will be shown that the proposed framework is satisfac-

tory for understanding and modeling efficient classification and that

there are common conventions that seem to be unnecessary or even

counterproductive for efficient classification.

1.2 Related Publications

The chapters of this dissertation are based on peer-reviewed works

that were published prior to this dissertation. Chapter 2 is excep-

tional in the sense that it has the least direct relationship with any

single publication. It integrates information from all of the pub-

lications. Chapter 3 is based on early works that were originally

presented in [AE03], [AEK01a], and [AEK01b]. Chapter 4 is based

on [Aut06]. The first half of Chapter 5 is based on [AL04], and the

second half is based on [ABI+05]. Not all of the related published

works are included in this dissertation. An excluded work [AL06],

examines the selection of computationally demanding features in

the context of online-learning, and may be of related interest.

The chapters also extend the publications. For example, Chap-

ters 4 and 5 extend the empirical results of [Aut06] and [AL04]

by presenting many parameterized trade-offs whereas the original

publications did not.

8 1 Introduction

1.3 Summary of the datasets used in the

experiments

A short summary of the datasets used in the experiments is pre-

sented below. To understand why an experiment requires a partic-

ular kind of dataset, it is necessary to understand the experiment

in some detail. The chapters have separate introductions in which

the empirical questions, the experiments, and the datasets are ex-

plained in sufficient detail. Below, the datasets are summarized to

the extent that is possible here.

In the main experiment of Chapter 3, the data was collected by

using a mobile robot. The data consisted of grayscale images de-

picting a typical office environment and people found there. The

images were divided into four classes: doorways, signs, (close-up

views of) people, and miscellaneous. The overall idea of the collec-

tion procedure was that the targets were perceived in their correct

contexts, viewed from reasonable viewpoints. As required by the

hypothesis that is examined in Chapter 3, the classes are human-

recognizable in low resolution and seem to belong to distinct su-

perordinate categories. The complete control of the data collection

process also allowed experimentation with sampling bias. Sampling

bias is given special attention in Chapter 3.

In Chapter 4, data from the set ETH80 1 was used. The dataset

has 80 objects from 8 basic level categories (ordinary classes) that

are labeled as apple, car, cow, cup, dog, horse, pear and tomato.

The plain backgrounds were replaced by images depicting real-world

environments. From the data, it is possible to discover superor-

dinate categories (broad classes). The discovery of superordinate

categories is essential to the proposed approach of finding the or-

ganization of the base classifier nodes. Also, the dataset allows the

controlled rotation of objects. This is required when the problem

of combining predictions over multiple views (motion) is examined.

In the first half of Chapter 5, the car dataset of Agarwal and

Roth [AR02], the face dataset of Martinez and Benavente [MB98],

and the BioID data of Jesorsky, Kirchberg and Frischholz [JKF01]

1http://www.vision.ethz.ch/projects/categorization/

eth80-cropped256.tgz

1.3 Summary of the datasets used in the experiments 9

were used. There were three classes: cars, faces, and non-objects

(miscellaneous backgrounds). Experiments related to improving the

efficiency of feature selection and training were performed. Hence,

it was reasonable to use fragment features resembling those of Ull-

man, Vidal-Naquet, and Sali [UVNS02, VNU03] that can be charac-

terized as inefficient but useful. Fragment features are suitable for

rigid and semi-rigid objects. Faces and cars were thus appropriate.

In the second half of Chapter 5, images from the repository of the

Diabetes Control and Complications Trial (DCCT) [The90] were

used. The images depicted retinal fundus of patients with retinal

microaneurysms. The microaneurysms were the class of interest.

The data was suitable for investigating the adaptive combination

of classifiers because a problem was required in which it is difficult

to find suitably accurate feature spaces (efficient or not). This was

required because if there exists a superior feature space (a set of

compatible features), then there is less motivation for combination

(although delegation is a different matter). There is less motivation

because given the superior feature space, one can likely train a

sufficiently good individual classifier.

As can be seen from the above, datasets depicting everyday ob-

jects and scenes were favored. In the data mentioned above, the

object backgrounds were never trivial. As apparent, the datasets

vary a lot in the sense that they are associated with different clas-

sification problems. This is appropriate because the current frame-

work is of general interest, e.g., it is not a face detection framework

nor a microaneurysm detection framework.

10 1 Introduction

CHAPTER 2

The delegation framework for
efficient classification

In this chapter, the framework and some initial analysis are pre-

sented. The viewpoint here is entirely theoretical in contrast to

the following chapters that are dedicated to practical questions and

experiments. In short, the framework models the process of clas-

sification as a tree. Each node of the tree can be activated due

to an input image. All input images activate the root node of the

tree. When a node is activated, it gets a chance to do useful work.

Depending on the current input, the node may fail, i.e., the work

done by the node may turn out to be rather useless. Whether the

node succeeds or fails, the activation results in a cost related to the

use of computational resources (effort, time). The costs may vary

significantly from node to node. The usefulness of the work done

by an activated node is decided by a confidence model. The tree

operates by the use of delegation rules that, for each input, choose

the path to be taken by the input. Good delegation rules direct in-

puts to those nodes that can do useful work in predicting the class

labels of the inputs. For example, if the confidence model does not

trust in the prediction of the root node, the input is delegated to

some other node.

The design of the framework is such that incompatible features

are isolated from each other. In many classification problems, it

is advantageous and efficient to use multiple kinds of features, but

using one feature space to contain all the features may cause diffi-

culties. For example, it may be difficult to handle a support vec-

11

12 2 The delegation framework for efficient classification

tor machine that sees raw pixel values, Gabor filter responses, and

binary template matching indicators at the same time. More im-

portantly to us, features may be incompatible due to differences

in the computational effort required to use them. For this reason,

we encapsulate feature spaces within the nodes. Different nodes

use different kinds of features. The system level, i.e., the level of

the delegation rules, cannot access encapsulated features and, in

turn, cannot transmit the values of encapsulated features between

the nodes. For example, a node may contain a base classifier that

uses its own feature space (say, template matching indicators only)

and that space is not accessed outside the node. The use of en-

capsulation makes it simple to characterize the cost of activating a

node.

We proceed as follows. We begin by discussing typical loss

functions that are used in supervised learning of classifiers, and

then proceed to efficiency-sensitive losses that are used to make re-

source (time, effort) consumption explicit in optimization criteria

and analysis. We will then be able to analyze the tree model with

respect to so-called zones of confidence and other related quantities,

and can gain some insight into the behavior of the model. We then

proceed to the topic of base classifier (node) design, which is closely

related to the topic of confidence modeling. We note that the clas-

sification margins of large-margin classifiers seem to be suitable for

modeling confidence. We examine monotonic and non-monotonic

confidence models for large-margin classifiers, and develop one non-

monotonic modeling approach that allows the combination of clas-

sifiers.

2.1 Efficient tree models

The tree-like model of classification, as presented in this chapter,

does not describe a complete implementation of a classification sys-

tem. The model, however, is an essential part of the framework

that is used in the experiments. Before examining the model, we

examine an overview of the necessary fundamentals.

2.1 Efficient tree models 13

2.1.1 Classifiers and loss functions

A classifier is a program that measures properties of objects, based

on which it attempts to predict the class memberships of the ob-

jects. Let f : R
d → Classes denote a classifier function map-

ping d-dimensional real-valued inputs (e.g., image rasters such that

width× height = d) to a finite set of class labels. If the class labels

are not mutually exclusive, we may allow f to predict multiple la-

bels at once. In that case, the range of f is the power set of Classes,

i.e., 2Classes using common notation. The outputs f(x) of f are

called predictions from inputs x.

In addition to the predictions, we have y ∈ Classes denoting the

correct class of the input x ∈ R
d. Note that in the general case

x may contain insufficient information for determining y reliably –

even if f is optimal. If x may belong to multiple classes at once,

then y is a set that is an element of the power set, i.e., y ∈ 2Classes.

It is given that the designer has some preferences related to the

relationship between the predictions and the true classes. The goal

of classifier optimization is to create the preferred relationship. The

optimization process is usually at least loosely grounded in utility

theory [Fis70], probability and statistics [DS01].

Utility theory enforces consistency in encoding preferences. If

a hypothetical designer creates a search procedure without precise

preferences in mind (e.g., the designer wants to see what “emerges”)

and the procedure is not completely random, then there are implicit

preferences for certain states over others even if the designer fails

to appreciate these.

Probability theory and statistics provide well-established tools

for dealing with the uncertainty over the interpretation of measure-

ments and the weighting of the preferences. The classifiers we are

interested in are connected to the physical world, and thus require

tools for coping with the uncertainty resulting from our incomplete

understanding of the world.

We assume cardinal utilities for encoding preferences, i.e., we

have loss functions for mapping predictions f(x), the input vectors

x and the correct answers y to numbers indicating how bad the

predictions are, given the answers. Another, perhaps interesting,

choice could be ordinal utilities. When using ordinal utilities, the

prediction outcomes are ranked by preference instead of having ab-

14 2 The delegation framework for efficient classification

solute numeric values. If there is uncertainty over preferences, then

it may sometimes be easier to work with ordinal utilities.

Definition Let

L(1,1) : Classes× Classes × R
d → R, (2.1)

L(0+,1) : 2Classes × Classes × R
d → R, (2.2)

L(1,0+) : Classes× 2Classes × R
d → R, (2.3)

L(0+,0+) : 2Classes × 2Classes × R
d → R. (2.4)

Functions with the forms L(1,1), L(0+,1), L(1,0+) and L(0+,0+) are

syntactically valid real-valued loss functions. The shorthand 0+

means “zero or more labels”, and R
d is included to allow the pos-

sibility of the inputs x ∈ R
d affecting the losses more directly than

just through the predicted labels.

If we suppose that the inputs x ∈ R
d have no direct effects on

the losses, e.g., L(1,1)(f(x), y,x) ≡ L(1,1)(f(x), y), then losses of the

form L(1,1) from above include the 0/1 loss and similar losses that

assign different constant penalties for different types of prediction

mistakes, possibly weighting some mistakes over others. These con-

stant losses are simple to understand as encoding preferences and

not tied to any particular classifier architectures or optimization al-

gorithms. On the other hand, they provide limited guidance for the

optimization process. For example, the 0/1 loss does not recognize

if x is such that a large perturbation of x would be necessary to

change f(x) to the correct value, thus hinting that f needs large

adjustments to accommodate x.

Losses based on the other L-forms are seen less often in machine

learning applications, although they are quite appropriate for prob-

lems involving multiple non-exclusive classes. For instance, class la-

bels may be hierarchical, e.g., an object may be both an animal and

a dog. In such a problem, a classifier may predict just the most spe-

cific label wrong, or it may omit the most specific label altogether.

We will have hierarchic classes for visual classification in Chapter 4

(see Figure 2.1). In general, class hierarchies seem to be popular in

document classification [KS97, MRMN98, WWP99, DC00, RS02],

but less so in classification of images.

2.1 Efficient tree models 15

Alternative 1

Alternative 2

PearTomatoApple Cow Horse Dog Car Cup

Root

Root

Apple Tomato Pear Cow Horse Dog Car Cup

Figure 2.1: Two alternative class hierarchies extracted from query

data. The unnamed parent node of Dog represents the superclass

of animals.

It is often necessary to be flexible with the encoded preferences

and choose surrogate loss functions such that the classifier becomes

easier to optimize. For example, loss functions that are differ-

entiable with respect to classifier parameters often allow the use

of error-gradient-based optimization (e.g., classic neural network

backpropagation [Hay99]).

When choosing surrogates, one important practical property is

the convexity of the surrogate loss function. Convex optimization

problems (problems based on convex loss) are, in general, easier to

solve than non-convex ones [BV04]. For instance, the intuitive 0/1

loss is not convex, which often makes optimization difficult. Be-

cause the hinge loss [CBL06] is convex and also an upper bound on

16 2 The delegation framework for efficient classification

the 0/1 loss, the hinge loss is often a promising surrogate for mini-

mization. For a real-world example, the soft-margin SVM uses the

hinge loss internally [CST00, SS01] even if the actual performance

after optimization (learning) is typically measured using the 0/1

loss, i.e., counting mistakes.

To summarize, in what follows we will usually choose the form

L(1,1) and treat the class labels as being mutually exclusive. When

we examine the tree-like model, we view losses as encoding pure

preferences, and do not discuss surrogates even if such are inevitable

in practical implementations. To minimize expected losses, which

is the risk-neutral choice, we also make certain typical assumptions

about the distribution of the data.

2.1.2 Efficiency-sensitive loss functions

We will now consider losses of the form

L(1,1) : Classes× Classes× R
d → R

from Definition (2.1). Let f : R
d → Classes denote a classifier

function predicting f(x) ∈ Classes based on the input images x ∈
R

d. We denote the correct label by y ∈ Classes. Let progf denote

a program implementing f for some reference computer. Clearly,

multiple programs exist for most f and some programs may be

preferable over others. We extend the definition of loss by allowing

progf to appear in loss functions and define an additive loss

Loss(f(x), y,x, progf) = ML(f(x), y) + RL(x, progf), (2.5)

where ML denotes mistake loss determined by the predicted and

correct labels, and RL denotes resource consumption-based losses.

We make the common assumption that ML(y, y) = 0. The mistake

losses do not have to be symmetric, i.e., we may have ML(y, y′) 6=
ML(y′, y) given y 6= y′. In what follows, we suppose RL is deter-

mined by how much time progf spends on x.

The time spent by the program progf on x is not necessarily

proportional to the length of the program, and we are not interested

in the difficult problem of discovering short programs implementing

f (see [LV93] for related issues). Finding the fastest program for

f is also a difficult problem. In principle, it is possible that for

2.1 Efficient tree models 17

Figure 2.2: Partial image templates.

some f there is no fastest program. For example, Blum’s Speed-Up

Theorem [Blu67] states that there exists a computable predicate

f(x) such that for any progf with running time t(x) there is another

(larger) program for f the running time of which is proportional to

the logarithm of t(x).

In the proposed model, progf is constructed from base classifier

nodes progf,k, k ∈ {1, . . . ,M}, that are activated using suitable

rules. Efficiency-related optimization is limited to tuning the rules

of how input images are delegated along the connections between

the nodes. The programs progf,k may be complex classifiers. The

running times of the individual progf,k are constants, γk, for each

input image x.

To understand why the running times of different progf,k may

vary significantly, consider two simple linear classifiers. The first

classifier observes low resolution images x directly in terms of pixel

values. The second classifier is not allowed to see pixels directly.

It has a feature detector that detects the presence or absence of

previously learned partial image templates (see Figure 2.2) using

normalized cross-correlation to achieve limited position invariance.

After feature detection, classification itself is computationally triv-

ial. The differences in the running times of the classifiers are es-

sentially determined by the features used, i.e., the size and the

number of the partial templates used by the second classifier ver-

sus the number of pixels used by the first classifier. Based on the

work in Chapter 5 it is reasonable to estimate that the number and

sizes of the partial templates are such that the second classifier is

significantly slower than the first one.

In principle, we seek to minimize the expected loss of the com-

plete classifier program. The expected loss can be written as

min
progf∈P

E[ML(f(x), y) + RL(x, progf)], (2.6)

18 2 The delegation framework for efficient classification

where P is the rather limited set of programs reachable by tuning

the parameters of the delegation rules and the free parameters of the

base classifiers. The above formula (2.6) defines the Bayes strategy

or the optimal Bayes classifier [Mit97] for the problem.

2.1.3 The preferred model

To examine classifiers based on (2.6), we must have some constraints

related to the underlying probability models and classifier struc-

ture. Here, we choose a tree-like structure for organizing the base

classifier nodes.

We associate a random vector X with the observed image vectors

x ∈ R
d, and when necessary, use subscripts Xi = xi to index the

observations. Similarly, we associate a random variable Y with the

observed values y ∈ Classes, and use subscripts Yi = yi to index

the observations. We assume that the pairs (Xi, Yi), (Xj , Yj), given

i 6= j, are independent and identically distributed (i.i.d.) according

to some unknown probability distribution. The i.i.d. assumption

is commonplace in statistics and machine learning. For brevity, we

denote P (Y = y) by P (y) when there is no risk of confusion. In

addition, we abbreviate
∑

y∈Classes\{c} by
∑

y 6=c.

Each base classifier, progf,k (k ∈ {1, . . . ,M}), is associated with

two non-overlapping regions of the input space, Bk and Bk such

that

Bk ⊂ R
d and (2.7)

Bk = R
d \Bk, (2.8)

where both regions consist of a finite number of continuous subre-

gions each having non-zero volume, i.e., there are no isolated points.

In practical use of the model, the regions could be specified using a

few hyperplanes, for example. The region Bk is interpreted as the

set of inputs with which the kth base classifier is confident. The

meaning of confidence is discussed later, but for now it suffices to

know that the tree classifier makes decisions as if it trusted the pre-

dictions made by confident base classifiers. The confidence of a base

classifier, however, does not necessarily mean that there is a valid

reason to expect that the base classifier predictions are probably

correct. Naturally, the base classifiers should be designed such that

2.1 Efficient tree models 19

this kind of confidence also indicates confidence in the well-defined

statistical sense.

If a base classifier progf,k is activated by an input x, and x ∈ Bk,

then the base classifier is confident and outputs a proper class label

(or labels, if the model is extended appropriately). Correspond-

ingly, if a base classifier is activated and x ∈ Bk, then the base

classifier abstains and may output a special label to indicate the

fact. For convenience, we denote by NaN the index of a special

overflow classifier that is confident for all inputs, but always pre-

dicts wrong labels, if given the chance. Thus, BNaN is the empty

set.

Depending on the rules and connections by which the complete

progf operates, an individual base classifier is not necessarily acti-

vated for each input x. Denoting the parameters of the ruleset by

π, we define the subregions

Aπ,k ⊆ Bk and (2.9)

Aπ,k ⊆ Bk, (2.10)

such that x ∈ Aπ,k means that the kth base classifier is activated,

confident, and outputs a proper class label c ∈ Classes. Corre-

spondingly, x ∈ Aπ,k means that the kth base classifier is activated

and abstains. Abstaining base classifiers do not make mistakes.

The above subregions also consist of a finite number of continu-

ous (sub)subregions each having non-zero volume. If x ∈ Aπ,k and

progf,k predicts c ∈ Classes, we denote the event by x ∈ Aπ,k,c. The

overflow event, x ∈ Aπ,NaN , is undesirable and it should be made

unlikely.

The program progf is organized like a tree or a cascade (a degen-

erate tree), and the inputs x propagate from a root node downward,

following an input-specific unique path until x ∈ Aπ,k,c for some k or

until there are no more nodes further down, resulting in the over-

flow classifier being activated. The propagation process is called

delegation because the responsibility for handling the inputs prop-

agates along with the inputs. For brevity, we denote by crl(π,x)

the cumulative resource losses of the path taken by x. The overall

arrangement is such that for each x there is exactly one k (possibly

NaN) such that x ∈ Aπ,k. Furthermore, crl(π,x) is constant inside

Aπ,k.

20 2 The delegation framework for efficient classification

The construct may be interpreted as a kind of decision tree (see

[Qui93, Mit97]) such that each internal node is directly connected

to at least one leaf node and a variable number of other internal

nodes further down. In practice, the number of connections may

be large. In Figure 2.1, we did not show all the connections used

by the tree to be detailed in Chapter 4.

Our base classifier nodes are more complex than typical decision

tree nodes, i.e., we have no simple splits to rectangular subregions

based on individual components of x. Further, optimization based

on (2.6) may lead to solutions not considered by typical decision

tree learners that only seek to maximize accuracy (i.e., 0/1 loss by

surrogate). Based on (2.6), a fast node of mediocre accuracy may

be preferable over an extremely slow node that has near perfect

accuracy.

Beginning from (2.6), we examine the connections between the

expected loss, the parameters π of progf , and the regions (2.9, 2.10).

We abbreviate minprogf∈P
by minprogf

and maxy,c{ML(c, y)} by

MML. We write

min
progf

E[ML(f(x), y) + RL(x, progf)] (2.11)

= min
progf

∫

x

p(x)
∑

y

P (y | x)
{

ML(f(x), y) + RL(x, progf)
}

dx

(2.12)

= min
progf

{

∫

x

∑

y

p(x)P (y | x)ML(f(x), y)dx

+

∫

x

p(x)RL(x, progf)[
∑

y

P (y | x)]dx
}

(2.13)

= min
progf

{

∑

y

P (y)

∫

x

p(x | y)ML(f(x), y)dx

+
∑

k

P (x ∈ Aπ,k)crl(π,x)
}

(2.14)

= min
progf

{

∑

y

P (y)
∑

k,c

P (x ∈ Aπ,k,c | y)ML(c, y)

+
∑

k

P (x ∈ Aπ,k)crl(π,x)
}

(2.15)

2.1 Efficient tree models 21

≤ min
progf

{

∑

k 6=NaN,c

P (x ∈ Aπ,k,c)
∑

y

P (y | x ∈ Aπ,k,c)ML(c, y)

+P (x ∈ Aπ,NaN)MML

+
∑

k

P (x ∈ Aπ,k)crl(π,x)
}

(2.16)

≤ min
progf

{

max
k,c
{P (Y 6= c | x ∈ Aπ,k,c)}MML

∑

k 6=NaN,c

P (x ∈ Aπ,k,c)

+P (x ∈ Aπ,NaN)MML

+
∑

k

P (x ∈ Aπ,k)crl(π,x)
}

(2.17)

= min
progf

{

max
k,c
{P (error | x ∈ Aπ,k,c)}(1 − P (x ∈ Aπ,NaN))MML

+P (x ∈ Aπ,NaN)MML

+
∑

k

P (x ∈ Aπ,k)crl(π,x)
}

. (2.18)

Above, (2.14) follows from cumulative resource losses being the

same for all inputs with the same path. Step (2.15) follows from

piecewise integration using pieces in each of which ML(f(x), y) is

constant. Step (2.16) results from separating the special overflow

classifier from the first sum and then estimating the losses of the

overflow classifier upward. In (2.17), we take advantage of the fact

that we may assume ML(y, y) = 0. If this was not true initially, we

could normalize the losses to make it so.

For simplicity, abbreviate P (x ∈ Aπ,NaN) = ρ(π). Now, exam-

ining the upper bound (2.18) allows some insight into the trade-offs

inherent in the model. If it is possible to train the base classifiers

so that the individual error probabilities are bounded,

P (error | x ∈ Aπ,k,c) ≤ ε(π)

for some 0 < ε(π) < 1 and for all k, c, i.e., the zones of confidence

22 2 The delegation framework for efficient classification

(Aπ,k,c, Aπ,k and Bk) have reasonable interpretations, then we have

min
progf

E[ML(f(x), y) + RL(x, progf)] (2.19)

≤ min
progf

{

ε(π)(1− ρ(π))MML + ρ(π)MML

+
∑

k

P (x ∈ Aπ,k)crl(π,x)
}

(2.20)

= min
progf

{

MML[ε(π)− ε(π)ρ(π) + ρ(π)]

+
∑

k

P (x ∈ Aπ,k)crl(π,x)
}

. (2.21)

With typical base classifiers, it is reasonable to expect that when

ε(π) is made smaller, the zones of confidence shrink, and thus the

probability of overflow, ρ(π), increases. Correspondingly, if we try

to make overflows unlikely, then the zones of confidence should ex-

pand to cover more inputs, and tight bounds ε(π) on base classifier

errors could become unachievable.

Examining mistake losses only, a classifier could in principle be a

chain or a cascade of base classifiers activated in any arbitrary order

with disjoint sets Bk. In this case, we would have ∀k : Bk = Aπ,k

and the overflow probability would be

ρ(π) = P (x ∈ Aπ,NaN) = 1−
∑

k 6=NaN

P (x ∈ Bk),

i.e., independent of any specific propagation rules π. This arrange-

ment could result in a simple training process with some slight

resemblance to boosting [MR03, Sch02]. The first base classifier

would be trained on all the training data available, after which B1

would become defined. The second base classifier would be trained

on data from B1, B2 would become defined, and the third base

classifier would then be trained on data from B1 ∩ B2 and so on.

Quite attractively, this training process could make the overflow

probability inversely proportional to the number of base classifiers

trained.

Due to the arbitrary activation order of the base classifiers, the

above cascade would likely be inefficient as measured by resource

losses. While most inputs x could have exactly one base classifier

confident in handling x, the arbitrary rules π could result in x going

2.1 Efficient tree models 23

through many unnecessary base classifiers not capable of confidence.

Hence, it seems clear that not all rules π are equal in efficiency, and

it then becomes necessary to characterize what makes rules suitable.

In face detection cascades (e.g., [VJ04, VJ01]), it is possible to

take advantage of class imbalances in designing efficient and fixed

activation orderings that are input-independent except in that dif-

ferent inputs may need a different number of steps along the fixed

path of activations. For these cascades, ordering the base classifiers

by increasing resource losses is sensible. In general, there may be

more than two classes and efficiency may require that the rules π

describe a proper tree such that each x has a delegation path that

depends on the attributes of x.

Now, if the zones Bk were trustworthy and disjoint, then ideal

efficiency-optimal delegation rules π would immediately deliver each

x to the single base classifier confident with respect to x. Thus,

with efficiency-optimal delegation rules, disjoint zones of confidence

would be very desirable. In reality, we should expect the rules π

to be quite mistake-prone relative to the base classifier zones of

confidence because the computations required for evaluating the

rules should be quite simple. With flawed rules, we either have

overflows or we append a suitable cascade to the end of each path.

Hence, instead of disjoint zones it could be preferable that the base

classifiers down the tree would subsume the classifiers above, i.e.,

Babove ⊂ Bbelow. The subsumption arrangement, in turn, makes

sense only if the classifiers down the tree have larger resource losses

than those above. Naturally, subsumption arrangements make little

sense without the concept of resource losses because the subsumed

classifiers are worthless otherwise.

Now consider subsumption. Down the tree some Bk have to be

large. As we said earlier, expanding zones of confidence could make

tight ε(π) unachievable. To work around this problem, it is possible

to try to use more computational resources down the tree. The use

of sophisticated image features could result in base classifiers that

are accurate within large zones of confidence.

24 2 The delegation framework for efficient classification

2.2 Related hierarchical models

Based on the details presented in Section 2.1.3, we may now dis-

cuss related hierarchical models. We begin with degenerate trees

(cascades) and then proceed to more generic models.

2.2.1 Cascades

When a tree of base classifiers is degenerate, i.e., simply a sequence

of base classifiers, such that the rules π of progf do not allow the

inputs x to skip nodes along the only available path, we may call

progf a cascade or a pipeline. Cascades are potentially simpler

to build if there is a good efficient ordering of the nodes (base

classifiers) available. The rules π do not have to consider path-

finding problems, as an input image may only propagate one step

forward or not.

Cascades have become common in visual pattern recognition.

Since Viola and Jones [VJ01, VJ04] presented their now famous

method for face detection, methods based on similar principles have

been appearing in the literature. In the Viola-Jones approach, the

base classifiers of a cascade are learned using the Adaboost algorithm

[SFBL97]. In the language of boosting, the base classifiers of the

cascade are strong classifiers produced by Adaboost, and in turn

consist of several weak classifiers, the number of which is related

to the computational complexity of the strong classifier produced.

The weak classifiers are essentially individual features selected from

a large set. The Viola-Jones cascade does not use multiple kinds

of features: all the features used by the weak classifiers are based

on contrasts between rectangular subimages, somewhat resembling

Haar wavelets [Chu92].

The Viola-Jones approach has been extended in several ways. In

[FNSH04], the authors use a Viola-Jones-style boosted cascade for

classifying laser scanner inputs common in robotics. Each cascade

node uses weak classifiers based on edge, line, or center/surround

features. The authors succeed in showing that the cascade approach

works for inputs that are not produced by cameras in the traditional

sense. In [ZLQH04], it is shown that boosted cascades based on Ga-

bor filters [KB01, JP87] are feasible in face recognition. The authors

use two kinds of Gabor-based features, thus having a greater va-

2.2 Related hierarchical models 25

riety of features in an efficiency-sensitive cascade than what Viola

and Jones had. In [LZ04], the authors show that suitably enhanced

boosted cascades work with more complex object classes as well.

The authors address multi-view face detection, meaning that the

faces may be viewed from different directions (in [VJ01, VJ04] the

views were frontal). Allowing multiple viewpoints increases the dif-

ficulty of the face detection problem due to increased within-class

variation of the positive class.

More generally, cascades do not necessarily require boosting in

building the (strong) base classifiers. In [EHOK02] the authors

present a maximal rejection classifier that consists of a collection

of hyperplanes. If the projection of an input vector is on the wrong

side of a plane, the input is immediately rejected as a non-face.

Otherwise the input is tested against the next hyperplane. Finally,

if an input survives all the tests, it is classified as a face.

Both boosted and other cascades are, explicitly or implicitly,

based on the notion that there is some acceptable misclassification

risk, and that minimizing misclassification risk cannot be the only

goal of a practical system. Assuming that losses are purely mistake-

based and overfitting [GBD92, DHS00, Mit97, Bre01] is controlled,

initially there seems to be no reason not to use all available tests

or features for each input image. In principle, the class-related

information provided by additional tests may never be negative

(see [CT91] for basic properties of entropy). Thus, limiting the

number of tests may seem like deliberately ignoring information

based on which the misclassification risk could be decreased. In

practice, both computational costs and mistakes resulting from the

use of point estimates of information gain [Hut01, Hut02] imply

that arbitrarily increasing the number of tests may be harmful.

Suppose we define the acceptable misclassification risk. Once the

actual risk is reduced below this limit, further tests may be omitted.

For Viola-Jones cascades involving asymmetric class distributions,

i.e., the number of negatives is vastly larger than the number of

positives, further tests are omitted if an input fails to pass a test.

The tests are designed to be such that almost 100% of positives

pass, and thus if an input does not pass a test, then the risk of the

input being positive is very small.

The notion of acceptable misclassification risk is a basic concept

in sequential analysis [Wal47, Sch92], which is a subtopic of statis-

26 2 The delegation framework for efficient classification

tics dealing with costs of measurements. Sequential analysis has

been applied to the design of medical experiments, e.g., [BBC94].

In the typical example, a patient may have to be classified as hav-

ing a particular condition or not, and the number of tests should

be limited due to discomfort or monetary costs.

The connections between classic sequential analysis and cascades

have been appreciated only recently [SM05]. In [SM05] Sochman

and Matas acknowledge that the quality of a classifier is deter-

mined by both the error costs and the time required for making

predictions. In principle, the tree model from Section 2.1.3 allows

for maximum acceptable misclassification risk if there is a training

procedure ensuring that the term

MML[ε(π)− ε(π)ρ(π) + ρ(π)] (2.22)

from step (2.21) is bounded from above. Such bounds seem difficult

to guarantee because of the ρ term. The possibility of overflow

problems (with probability ρ(π)) is not addressed by Wald’s classic

sequential probability ratio test (SPRT), which forms the basis of

the approach of Sochman and Matas. Wald’s test seems to assume

that the supply of base classifiers is unlimited in the sense that for

each input there is always some sequence of tests such that the risk

can be reduced to an acceptable level.

2.2.2 Trees

Non-degenerate trees enable better control over the conditional ex-

clusion of unnecessary computations. This enhanced level of con-

trol is desirable when there are more than two classes. For in-

stance, the path that an input image follows through a tree may

reflect narrowing down the set of candidate labels (see [BG05] for

related, more general discussion). While traditional axis-parallel

decision trees [Qui93, Mit97] and more general perceptron trees

[Utg89, MKS94, BM92, BM94a, BM94b, BFOS84] tend to use fairly

simple features and are somewhat brittle and prone to overfitting,

these characteristics reflect the algorithms employed and not any

fundamental problems with modeling the computational process of

classification as a tree. Recently, the overfitting problems of percep-

tron trees have been examined in the light of margin maximization

theory [BCSTW00].

2.2 Related hierarchical models 27

Computational efficiency issues have been considered explicitly

in the context of decision trees. Geman and Jedynak [GJ01] discuss

a penalty term for expected evaluation depth that is added to a

more traditional term related to misclassification loss. Expected

depth is, of course, not a completely appropriate criterion if different

tests consume different amounts of time (resources).

The difference between cascades and proper trees may be some-

what unclear because these types of structures may be combined

and mixed in many ways. For example, a cascade node might con-

tain another cascade (or a tree) responsible for the predictions the

node makes. Alternatively, a tree might contain subtrees that are

degenerate (cascades). For simplicity, we defined the base classi-

fier nodes as units that require constant time (resources) per input

(Section 2.1.2).

Viola and Jones [JV03] address the problem of multi-view face

detection by dividing the class of faces into pose-specific subclasses.

In the first stage, there is a simple decision tree which determines

the pose of an input, i.e., “the pose class”. The decision tree then

activates a pose-specific cascade that makes the final prediction.

The empirical results suggest that (boosted) cascades may be made

subtrees of more traditional (entropy-based) decision trees, as long

as the basic features are suitable.

More generally, tree-like classifiers were studied widely in vi-

sual pattern recognition before cascades began to attract atten-

tion. Amit, Geman and Wilder [AGW97] utilize decision trees for

handwritten digit recognition. The system learns the trees and

the features together, implementing embedded feature extraction.

Multiple trees are evaluated for each input, leading to increased

accuracy at least partly due to random choices in creating the trees

(see random forests, e.g., [Bre01] for discussion of overfitting de-

cision trees). Huang, Gutta and Wechsler [HGW96] managed to

do rudimentary frontal face detection with a single decision tree

utilizing very simple features.

In addition to decision trees in which an input always takes an

unique path down, there are other tree-like hierarchical classifica-

tion systems. Basic examples include mixtures of experts [JJNH91],

and hierarchical mixtures of experts [JJ94]. These mixtures are not

necessarily well-suited for efficiency optimization, as they resemble

weighting schemes more than delegation schemes. In other words,

28 2 The delegation framework for efficient classification

different paths do not represent mutually exclusive alternative com-

putations.

Hierarchical classification systems do not often follow a class

hierarchy, e.g., the subtrees of a decision tree do not necessarily

correspond to meaningful groupings of classes. To name some ex-

ceptions, there are the pose classes of Viola and Jones [JV03] and

the superclasses in Chapter 4.

Some visual classification systems have successfully used a class

hierarchy in directing inputs toward the most specific classifier ap-

plicable [RMN+98, SKB+99]. Some others [LS03, NS98] recognize

the existence of perceptual similarity-based class hierarchies in vi-

sual multi-class problems, but are not focused on cost-efficient clas-

sification. Still others [SK04, LZ04] use lower-level hierarchies for

basically two-class problems, e.g., training separate classifiers for

different poses in face detection.

The use of meaningful class hierarchies is interesting. For exam-

ple, a path through a tree could represent a sequence of predictions

beginning with the most generic superclass labels (e.g., “an ani-

mal”) and ending with the most specific labels (e.g., “Whiskers the

cat”). If such a sequence contained mistakes toward the end, e.g., a

wrong subtree was chosen after some point, the more generic labels

could still be correct and useful.

2.3 Designing classifiers for nodes

2.3.1 General issues

A classifier progf that is organized like a tree should use base classi-

fier nodes that satisfy certain criteria. As stated earlier, the running

time of each base classifier progf,k should be constant, γk, for every

input image x. The other, more complex criteria are related to con-

trolling the mistake losses. Recalling steps (2.11) – (2.18), we have

the term P (error | x ∈ Aπ,k,c) that is associated with the upper

bound on the mistake loss component. The set Aπ,k,c was defined

as the subset of Bk, the set of inputs with which the kth base clas-

sifier is confident (for valid reasons or not). The tree progf trusts

confident base classifiers and the first activated and confident base

classifier is responsible for producing the output of progf . Hence, if

2.3 Designing classifiers for nodes 29

the base classifiers use some ill-founded heuristic determining con-

fidence, the end result may be that the error probability of the tree

classifier, P (error | x ∈ Aπ,k,c), becomes high.

Ultimately, we judge confidence determination mechanisms by

the empirical results, whether the mechanisms are rigorous or heuris-

tic. A mechanism is useful if it leads to some desired ε(π) such that

P (error | x ∈ Aπ,k,c) ≤ ε(π)

and hence

P (Y = c | x ∈ Aπ,k,c) > 1− ε(π).

A confidence determination mechanism is immediately available

for base classifiers that use explicit statistical modeling of class

probabilities. We assume that a statistical classifier always pre-

dicts the class that appears the most probable based on a (possibly

imperfect) model and the input. The kth statistical base classifier

has probability estimates P̂ (y | Sk(x)), where Sk(x) denotes the

set of features that are extracted from inputs x. Alternatively, we

denote it Sk(x) when it is appropriate to assume that we have a

feature vector. The implied confidence determination mechanism

has the form

if P̂ (y | Sk(x)) > 1− ε̂ then confident, (2.23)

where ε̂ ∈ [0, 1] may even be class-specific. Note that the relation

between ε̂ and ε(π) is not trivial because the former is a threshold

for a possibly incorrect implemented model while the latter is a

bound on the true error. The bound on the true error is affected by

the organization of the tree, e.g., ε(π) may be small because certain

inputs that would exceed 1− ε̂ do not reach the base classifier.

For example, if we wanted to imitate Wald’s classic SPRT proce-

dure from sequential analysis [Wal47, SM05], we would have to build

a degenerate tree (cascade) of pre-ordered classifiers (f1, f2, . . . , fM)

such that S1(x) ⊂ S2(x) ⊂ . . . ⊂ SM(x). Wald’s model would be

incorrect in practice if the individual features were not conditionally

independent given the class.

Otherwise, it is easy to see that Wald’s ratio test may be ex-

pressed in the form (2.23), i.e., the class-specific ε̂ is a simple func-

tion of Wald’s thresholds and the class priors. The tree (encoded

in progf and π) would simply output the prediction of the first

30 2 The delegation framework for efficient classification

confident base classifier, which would be the first passing the ratio

test.

The models responsible for the estimates usually require some

similarity metrics applied to the features because the number of

different feature combinations Sk(x) is large and class probability

estimates must be available for inputs not seen during training.

If a base classifier does not use explicit statistical modeling of

probability distributions, finding suitable confidence determination

mechanisms may be non-trivial. A non-statistical classifier may

sometimes be extended so that the extensions produce class prob-

ability estimates that may then be thresholded as in (2.23). Some-

times the extensions for determining the level of confidence may

be non-probabilistic, in which case the thresholding of probability

estimates is replaced by some other decision rule.

In the later chapters, we examine non-statistical classifiers with

various extensions for determining confidence. In the rest of this

section, we explore some classifier architectures and extensions.

2.3.2 Basic support vector machines

Support vector machines (SVMs) are a well-established class of ma-

chine learning algorithms [CV95, Vap98]. They fall under the cate-

gory of kernel-based methods [CST00, Her01, SS01]. Characteristic

properties of SVMs are that they lack local minima, have a sparse

solution, and are dimension-independent. Taken together all this

makes SVMs an attractive approach to use in applications such as

machine vision.

Basic SVMs are designed for two-class problems only and the

input features S(x) must be vectors of reals with some fixed dimen-

sionality d′ that may differ from the dimensionality of the images

x ∈ R
d. The labels should be encoded such that yi ∈ {+1,−1}.

For brevity, we denote the input features z ∈ R
d′ , z = S(x).

Correspondingly, Z is the random vector S(X), i.e., the input X is

random and the function S is known and deterministic. The ma-

chine input space is the space containing the vectors z. Sometimes

it is useful to let the SVM kernel perform the feature mapping com-

pletely, in which case z is the flattened pixel raster, z = x, and the

machine input space is the original input space.

Given a training set of N samples of the form (zi, yi) that are

2.3 Designing classifiers for nodes 31

assumed independent and identically distributed (i.i.d.), the task of

the SVM learning algorithm is to formulate a hypothesis on the ba-

sis of the samples for classifying further instances from the machine

input space. The hypotheses are linear separators, i.e., hyperplanes

in some space. In other words, these hypotheses must be interpreted

as class membership indicator functions without immediately ap-

parent mechanisms for determining classification confidence.

The classic algorithm for learning linear separators is the per-

ceptron [Ros58], which is guaranteed to converge in a finite number

of iterations provided that the input samples are linearly separable

[Nov62]. The perceptron outputs a linear function of z,

f(z) = wTz + b, (2.24)

where w is a weight vector determining the orientation of the plane

and b is a scalar determining the displacement of the plane from

the origin of the machine input space. The hypothesis is the sign of

(2.24). The same plane may be specified in several ways of which

the above (2.24) is called the primal form.

The plane w is learned from the N samples and may be written

as a linear combination of them,

w =
N
∑

i=1

αiyizi. (2.25)

The number of iterations required to learn the hypothesis depends

on the geometric margin of the training set, which is the maximum

Euclidean distance of the samples from any hyperplane.

Rosenblatt’s [Ros58] on-line, mistake-driven procedure for train-

ing a perceptron works by adding misclassified positive training

samples to or subtracting misclassified negative ones from an ini-

tial zero weight vector. Hence, once a sample has been fixed, the

vector α can be thought of as an alternative encoding of the hy-

pothesis. When (2.25) is substituted for w in (2.24) we get the dual

form of f .

An alternative learning scheme projects the data through a fixed

non-linear mapping φ to a machine feature space, instead of oper-

ating on the machine input space. The mapping φ allows the use of

non-linear separating surfaces. Although the hypothesis is a plane

in the machine feature space, it does not have to be a plane in the

32 2 The delegation framework for efficient classification

machine input space or the original input space. The mapping also

typically increases the dimensionality of the samples. The corre-

sponding primal form is:

f(z) = wT φ(z) + b. (2.26)

Handling w in a very high-dimensional space may become inefficient

as the number of required multiplications leads to high costs in time.

Expressed in dual form, (2.26) becomes

f(z) =
N
∑

i=1

αiyiφ(zi)
T φ(z) + b. (2.27)

Computing φ(zi)
T φ(z) may often be made efficient by using suit-

able kernel functions. For our purposes, a kernel K is a function

such that

K(z, z′) = φ(z)T φ(z′), (2.28)

for all z, z′ in the machine input space. For the detailed require-

ments of kernel functions we refer the reader to the SVM literature

[CST00, Her01, SS01, Vap98]. A kernel may be efficient in our

terms, if it has a program that evaluates φ(z)T φ(z′) without hav-

ing to evaluate φ(z)T and φ(z′) separately (e.g., the polynomial

kernel).

Vapnik and Chervonenkis’ [Vap98] theory of learning bounds the

generalization error of linear machines in terms of the margin of the

hypothesis with respect to the samples. This result does not depend

on the dimensionality of the machine feature space. By enforcing

conditions from optimization theory, the dual representation of the

hypothesis is sparse and, hence, may produce efficient classifiers if

the kernel itself is efficient. It is, however, entirely possible that the

primal representation is sometimes more efficient.

Taken all together, the basis of the maximal margin classifier is

in the following result from optimization theory. Given i.i.d sam-

ples {(zi, yi)}Ni=1 that are linearly separable in the machine feature

space implicitly defined by kernel K, suppose that the vector of

2.3 Designing classifiers for nodes 33

parameters α∗ solves the quadratic optimization problem

max
α

N
∑

i=1

αi −
1

2

N
∑

i,j=1

yiyjαiαjK(zi, zj)

 (2.29)

with constraints

{
∑N

i=1 yiαi = 0,

∀i ∈ {1, . . . , N} : αi ≥ 0.

Based on (2.25), the optimal w is

w∗ =

N
∑

i=1

α∗
i yiφ(zi). (2.30)

Only for inputs zi which lie closest to the hyperplane are the cor-

responding α∗
i non-zero. They are called support vectors. Let SV

denote the set of support vectors in the training set. Take one sup-

port vector z(SV) ∈ SV such that the support vector belongs to the

positive class (+1). The positive support vector z(SV) satisfies

w∗T φ(z(SV)) + b∗ = 1, (2.31)

where b∗ is the optimal b. When (2.30) is substituted for w∗ in

(2.31) we can use the kernel to solve b∗. The decision rule given by

the sign of the function

f(z) =
N
∑

i=1

yiα
∗
i K(zi, z) + b∗ (2.32)

is then equivalent to the maximal margin hyperplane implicitly de-

fined by the kernel K. The maximal margin hyperplane has geo-

metric margin (
∑

i∈SV α∗
i)

−1/2. In terms of view-based classifica-

tion, (2.32) defines a prototype-based classifier in which the support

vectors are the selected prototypes and the kernel is the similarity

measure on the inputs.

Technical properties of kernels ensure that the optimization prob-

lem is convex, which in turn means that the maximal margin opti-

mization problem has a unique solution that can be found efficiently

[BV04]. On the other hand, maximal margin classification requires

the data to be linearly separable, which is not usually the case in

the real world. Therefore, the strict requirement of linear separa-

bility has to be relaxed. The theory behind such machines has also

been worked out [CST00, Her01, SS01, Vap98].

34 2 The delegation framework for efficient classification

Finally, we note that while basic support vector machines are

strictly for two-class problems, there are methods for combining

several machines so that the resulting combination is fit for multi-

class problems. Practical combination schemes may use either one-

vs-rest or one-vs-one training with voting for combining predictions

[DK05, HL02, HT98]. In addition, multi-class problems may be de-

composed into multiple binary problems by using error correcting

output codes (ECOC) [ASS00, DB95, PW72]. In principle, SVMs

can also be formulated for multi-class problems directly without

having to combine binary machines [CS01], and there are formula-

tions suitable for class taxonomies as well [THJA04]. In practice,

training SVMs on large datasets may be difficult (see [Joa98]). Be-

cause datasets involving multiple classes tend to be large, i.e., one

should have a reasonable amount of data from each class, the train-

ing problem is especially relevant in the multi-class setting. Hence,

decomposition schemes such as one-vs-one training have their ad-

vantages.

In the one-vs-rest scheme, there is one dedicated machine per

class. The dedicated machine of a class is trained so that inputs

from the class are labeled +1 while inputs from the other classes

are labeled −1. The scheme implies some difficulties. First, the

number of machines evaluated per test input equals the number of

classes. Second, because soft-margin SVMs minimize the hinge loss

as a surrogate for the 0/1 loss, class priors have an effect on the

results (see Section 2.1.1 for discussion on losses). For example, if

we had 20 classes each with the prior probability of 0.05, then all

the machines would be biased against predicting +1. The winner

takes all strategy is popular in overcoming the second problem: the

combined machinery predicts the class c the dedicated machine of

which has the largest raw output fc(z) from (2.32).

In the one-vs-one scheme, there is one dedicated machine per

class pair, and thus M(M − 1)/2 machines overall. A dedicated

machine is trained using inputs from its pair of classes only. If a

machine dedicated to the class pair (ci, cj) predicts +1 then class

ci gets one additional vote. Otherwise class cj gets the vote. When

all machines have predicted, the combined prediction is the class

that gained the most votes. The one-vs-one scheme has the advan-

tage that the machines are not inappropriately biased if the class

priors are approximately equal. The computational requirements,

2.3 Designing classifiers for nodes 35

however, are even worse than with the one-vs-rest scheme. A 20-

class problem would require 190 machines, which may be rather

inefficient computationally.

2.3.3 Monotonic confidence models for hyperplane classifiers

The basic SVM is evaluated by taking the sign of (2.32), which

means there are no confidence determination mechanisms imme-

diately available. If we choose to get the confidence information

through probabilistic modeling and the SVM hypothesis, then we

may build a class probability model, P̂ (Y = y | Features(x)), on

top of the SVM hypothesis with Features being measurable from

the SVM and possibly the data.

One possible probability model may be found by Platt’s pro-

cedure [Pla00] of fitting a sigmoid to the raw SVM outputs f(z).

Platt’s procedure produces the probability estimator

P̂ (Y = +1 | f(z)) =
1

1 + exp(AP lattf(z) + BP latt)
, (2.33)

where the SVM-specific constants AP latt and BP latt are estimated

by a model trust minimization algorithm [Pla00]. For estimating

the constants, the algorithm should use a portion of the training

set that is kept separate from the portion that is used for training

the underlying SVM (i.e., f). This recommendation is based on

the empirical work that will be presented later in Chapter 5. It

was found that without separation the classification results were

inferior.

Explained another way, Platt’s procedure creates a very simple

distinct classifier on top of the SVM. This simple classifier is prob-

abilistic and based on exactly one scalar feature: the raw SVM

output describing how far z is from the hyperplane and which side

it is on. Platt’s model assumes a particular simple monotonic re-

lationship between the class probabilities and f(z). The function

(2.33) is strictly monotonically increasing and continuous. Platt

argues that there is a strong prior in favor of monotonicity in the

case of raw SVM outputs [Pla00].

In the context of the classification trees or cascades that we

have been discussing, it is possible to ask if it is necessary to have a

complete model such as (2.33) available. Recalling (2.23) and using

36 2 The delegation framework for efficient classification

Platt’s model as an example, we simply need the ability to evaluate

whether

P̂ (Y = +1 | f(z)) > 1− ε̂

holds for two suitable values ε̂. The two values define two threshold

probabilities: a lower threshold such that when P̂ is below the

threshold, then the model is confident that the class is −1, and a

higher threshold above which the model is confident that the class is

+1. Assuming that the probabilities are monotonic, two threshold

probabilities suffice.

Given that two threshold probabilities are enough, we may then

ask if these thresholds indeed have to be probabilities, 1− ε̂ ∈ [0, 1].

The answer is no because strictly monotone continuous functions

are bijections, and thus there must be some unique value of f for

each threshold. There is at least one zε̂ such that

P̂ (Y = +1 | f(z)) > 1− ε̂⇔ f(z) > f(zε̂). (2.34)

Hence, if the class probabilities are monotonic and continuous in

the range of f , there is an equivalent non-probabilistic confidence

determination rule that is also simple in the sense of requiring just

two inputs as parameters. Further, the non-probabilistic rule may

be compatible with multiple monotonic probability models: these

different models may produce the same probabilities around the im-

portant thresholds while having different shapes at the tails (over-

or underestimating the probabilities of extreme events).

The non-probabilistic rule may be more convenient to use if the

tree is built using heuristic search, e.g., we select threshold inputs

iteratively from the training data, train the classifiers and the tree,

finally stopping when an evaluation set of data indicates that the

loss (2.6) is sufficiently small.

Using a model like (2.33) in multi-class problems would require

some considerations, the nature of which depends on the combina-

tion scheme and how many hyperplanes are involved. For instance,

Duan and Keerthi [DK05] show how Platt’s rule may help in model-

ing class probabilities in the context of one-vs-one training through

pairwise coupling (see also [HT98]).

2.3 Designing classifiers for nodes 37

2.3.4 Beyond monotonic and probabilistic models of

confidence

Instead of assuming a continuous monotonic relationship between

the raw output of a hyperplane classifier f and class probabilities

P (y | f(z)), it is possible to explore more complex non-monotonic

relationships. We discuss one possible approach to this kind of

exploration. In the current chapter, we focus on the theoretical

aspects of the approach. The approach will be examined empirically

in the second half of Chapter 5. In that chapter, there is also a

characterization of the practical circumstances in which it makes

sense to use this particular approach. In what follows, we assume

that the outputs (predictions) of individual hyperplane classifiers

are initially encoded in the usual manner, i.e., the set Classes is

{+1,−1}.
In the approach, hyperplane classifiers are given post-processors

that are programs capable of transforming the outputs of the clas-

sifiers. The outputs of a classifier are transformed so that the clas-

sifier becomes able to indicate lack of confidence. The classifier

indicates lack of confidence by using the special output of 0. If the

classifier is confident, the positive class is indicated by a positive

output and the negative class is indicated by a negative output.

Although the positive and negative outputs are numbers, they are

not necessarily +1 and −1. A post-processor essentially replaces

the sign function normally applied to the raw output f(z) of a hy-

perplane classifier f such as (2.32).

Define g : R
d → O, where O is an output set that contains

zero, one positive real number, and one negative real number. Let

g describe one complete chain of processing from input pixels to

post-processor output,

g(x) = (r ◦ f ◦ S)(x), (2.35)

where r is a post-processor, f is a hyperplane classifier (not taking

the sign), and S is a feature extractor.

As a special case, the above definition (2.35) allows r to use

Platt’s estimator (2.33) internally. In that case the estimated prob-

ability of the event Y = +1 is compared to two suitable threshold

values. The comparisons then determine which value from the out-

put set O is chosen by r. More precisely, suppose the threshold

38 2 The delegation framework for efficient classification

values are the probabilities 0.5 − alow and 0.5 + ahigh, where alow

and ahigh are positive real-valued constants smaller than 0.5. The

post-processor r maps the probability interval [0.5−alow, 0.5+ahigh]

to the output value of zero in the output set O. The interval

]0.5 + ahigh, 1] is mapped to the positive value in the output set.

Likewise, the interval [0, 0.5−alow [is mapped to the negative value

in the output set. Also note that the threshold values do not have

to be probabilities. Based on (2.34), it is possible to use some

equivalent threshold values that can be compared directly to the

raw values f(z).

Let us assume a fixed output set O that has a subset that can

be mapped to class labels without ambiguity. For example, let

O = {−0.33, 0,+1.2} and let the classes be apples and oranges so

that a negative value indicates apples and a positive value indicates

oranges. In the general case, the definition (2.35) allows all inter-

esting models of confidence that take values of f(z) as input and

choose output from O. In the scope of this work, interesting models

are computable models that work according to the i.i.d. assump-

tion of the inputs, e.g., the output depends on current f(z), but

not on the previous one. Both probabilistic and non-probabilistic

models are allowed. Likewise, the models can be either monotonic

or non-monotonic.

The proposed approach is non-monotonic and non-probabilistic.

Non-monotonicity is chosen because we abandon the assumption

that values of f(z) should be directly proportional to confidence.

For example, abnormally high absolute values of f(z) may be a

characteristic of outliers, inputs dissimilar to all inputs in the train-

ing set. We use several hyperplane classifiers within a node of a

tree. More precisely, a node has a combiner that takes the post-

processed outputs of the chosen hyperplane classifiers as inputs.

The combined hyperplane classifiers operate in parallel and their

post-processed outputs are interpreted as votes. The combiner

then produces output based on the votes. The post-processors are

trained to optimize the outputs of the combiner.

Suppose that a node has Mcombiner > 0 hyperplane classifiers

that are to be combined, i.e., we have fk and Sk for each k such

that 1 ≤ k ≤Mcombiner. Note that in this context k does not index

base classifier nodes, but more elementary hyperplane classifiers (we

do not want to use secondary subscripts). The functions fk and Sk

2.3 Designing classifiers for nodes 39

are fixed, but their inputs are random. The vector Z = Sk(X) is

a random vector. Obviously, each Sk is associated with a distinct

random vector Z, but plain Z without subscripts or superscripts is

now abused to abbreviate notation. The variable fk(Z) is a con-

tinuous random variable. Classification confidence is established

through the discretization of the values of fk. Based on the ordered

set of the N observed values

Vk = (fk(z1), fk(z2), . . . , fk(zN)) (2.36)

from a training set, we generate I + 2 non-overlapping value in-

tervals, or bins, the union of which equals] − ∞,∞[. We require

that I ≥ 1 and N ≥ 2I. A suitable number of intervals can be

found experimentally, e.g., using cross-validation. In Chapter 5, we

use a modest number of intervals (42, i.e., I = 40). The theoreti-

cal analysis, which will be presented in the next section, suggests

that the larger the number I is, the greater the risk of overfitting

becomes. Perhaps surprisingly, the same analysis suggests that in-

creasing Mcombiner does not necessarily increase the risk of overfit-

ting.

Suppose that the ordered set Vk from (2.36) has been sorted

into ascending order and let vk,j denote the jth element of Vk.

Hence, min{fk(zi)}Ni=1 = fk(z1) = vk,1. The first interval is intk,1 =

] −∞, vk,1[. The second interval is intk,2 = [vk,1, vk,bN
I
c[. The ith

(2 < i < I + 2) interval is

intk,i = [vk,bN
I

(i−2)c, vk,bN
I

(i−1)c[. (2.37)

Finally, the last interval is intk,I+2 = [vk,N ,∞[. Intuitively, each of

the middle intervals contains 100/I% of the observed values.

The intervals intk,i will be marked as either standard or abstain

intervals as decided by the optimization procedure of the combiner.

Inputs falling into abstain intervals map to the value 0 in the output

set O. Inputs falling into standard intervals map to the nonzero

values in O. More formally,

rk(v) =

{

0 if v ∈ intk,i∧ abstain(k, i) = 1

signmapk(v) if v ∈ intk,i∧ abstain(k, i) = 0,
(2.38)

where signmapk maps values v to the nonzero values in O.

40 2 The delegation framework for efficient classification

The optimization procedure responsible for choosing the abstain

intervals of the post-processor rk requires an optimization criterion.

We use the criterion of maximal voting margins. Here, voting refers

to us interpreting the post-processed outputs of the combined clas-

sifiers as votes. Margin maximization in general is associated with

certain generic upper bounds on classifier error [BM02] such that

the larger the margin, the smaller the bound (assuming empirical

error does not increase). The concept of margins has been use-

ful in explaining the generalization ability of boosting algorithms

[SFBL97].

The empirical voting margin of a combiner is defined as

vmargin({(xi, yi)}Ni=1) =
N
∑

i=1

yi

Mcombiner
∑

k=1

gk(xi), (2.39)

where N is the number of training inputs and Mcombiner is the

number of combined hyperplane classifiers. The approach requires

that the empirical voting margin (2.39) is maximized.

Abbreviating

fcombiner(x) =

Mcombiner
∑

k=1

gk(x), (2.40)

the output of the combiner is

gcombiner(x) =

0 if fcombiner(x) = 0

+1 if fcombiner(x) > 0

−1 if fcombiner(x) < 0.

(2.41)

The above Equation (2.41) allows the combiner to declare lack of

confidence when gcombiner(x) = 0. This may happen if the votes

of the combined gk cancel each other out. It is, of course, also

possible to define two thresholds so that small absolute values of

fcombiner(x) result in gcombiner(x) = 0. Moreover, if the combiner

is in a node from which delegation is not possible, then the case

fcombiner(x) = 0 may be mapped to +1 or −1.

In Chapter 5, we use Mcombiner = 15, but it is possible to use

Mcombiner = 1 as well. Using a single hyperplane classifier may

make sense when margins are increased through abstains, e.g., when

high absolute values of fk(z) indicate outliers whose true labels are

random.

2.3 Designing classifiers for nodes 41

If the classification problem is not binary, then it is possible to

use multiple combiners. For example, combiners can themselves

be combined using the one-vs-one training scheme. Each combiner

is dedicated to some pair of classes and obviously the combined

classifiers of the combiner have to be dedicated to the same pair.

Given an input, each combiner then casts a vote for one of two

classes or simply abstains from voting (gcombiner(x) = 0).

2.3.5 A simple 0/1 loss bound for a voting margin machine

We derive a simple loss bound that illustrates how the margins

of fcombiner are related to the true accuracy of gcombiner. In the

derivation we need certain mathematical machinery and concepts.

The concept of Rademacher complexity is necessary.

The Rademacher complexity of a family of functions F w.r.t. N

independently drawn samples is defined as (see [BM02])

RN (F) = E

[

sup
f∈F
| 2
N

N
∑

i=1

σif(zi)|
]

, (2.42)

where the expectation E is taken over the N samples {zi}Ni=1 and

the N independent uniformly distributed {+1,−1}-valued random

variables {σi}Ni=1. Intuitively, the Rademacher complexity is related

to how well the family F can adapt to random label noise.

To proceed, note that each post-processing (abstain-capable)

component machine gk of fcombiner in Equations (2.40) and (2.41)

can be expressed in a different form. We write

gk(x) =
1

2

Λk
∑

i=1

(ηi,ksign(wT
k Sk(x) + bk + κi,k) +

νi,ksign(wT
k Sk(x) + bk + ιi,k)), (2.43)

where i indexes the Λk non-abstaining intervals, (wk, bk) is the

underlying basic SVM fk (i.e., z = Sk(x)) and the parameters

ηi,k, νi,k ∈ {+1,−1} and κi,k, ιi,k ∈ R are artifacts of the construc-

tion. The parameters are set so that each non-abstaining interval

i is covered using the basic SVM hyperplane twice: separate in-

stances of the plane of wk are placed to the opposite ends of the

interval using parameters κi,k and ιi,k to control the placement. The

42 2 The delegation framework for efficient classification

orientations of the instances are then controlled by ηi,k and νi,k. If

the interval is for positive predictions, then the instances are ori-

ented toward the center of the interval. For negative predictions,

the instances are oriented away from the center. The net result

is that the sum of each pair predicts +2 (positive intervals) or −2

(negative intervals) for each input within the interval. Outside the

interval, the predictions of each pair sum to zero. By construction,

the intervals do not overlap and the multiplier 1/2 normalizes the

final output to {+1,−1}. In other words, this analysis assumes the

very basic output set O = {+1,−1, 0}.
Next, note that ηi,ksign(wT

k z + bk + κi,k) is a support vector

machine regardless of the extra parameters. Denote the family of

support vector machines by Fk and the family of post-processing

(abstain-capable) support vector machines of Equation (2.43) by

Gk. Suppose that Λk is maximal, i.e., all available intervals are non-

abstaining intervals. Observing that the Rademacher complexity of

Gk cannot be greater than the complexity of the superset of Gk that

allows the 2Λk “machines” (i.e., artifacts of the analysis) within

each gk to have independent weight vectors, we apply Theorem 12

from [BM02] to write

RN (Gk) ≤ RN (
1

2

Λk
∑

i=1

(Fk + Fk)) = ΛkRN (Fk). (2.44)

We can now bound the Rademacher complexity of

fcombiner(x) =

Mcombiner
∑

k=1

gk(x)

from Equation (2.40). Earlier, we assumed the worst case that Λk

is maximal, i.e., all available intervals are non-abstaining intervals.

By construction, all our component machines have the same number

of available intervals (I + 2). Hence, we can abbreviate Λk = Λ.

We apply Theorem 12 from [BM02] and Equation (2.44) to write

RN (
1

Mcombiner

Mcombiner
∑

k=1

Gk) ≤
1

Mcombiner

Mcombiner
∑

k=1

RN (Gk)

≤ Λ

Mcombiner

Mcombiner
∑

k=1

RN (Fk).

(2.45)

2.4 Summary 43

Above, the complexity of the combiner is bounded by the average

complexity of the component SVMs times the number of the dis-

crete intervals available per machine. The complexity RN (F) of

SVMs is a known quantity. The bound is loose because the deriva-

tion assumes many more degrees of freedom than what the post-

processors actually have. On the other hand, the actual degrees

of freedom are tied to the number of intervals available. Averag-

ing implies that the overall complexity bound does not necessarily

increase as more component machines are included.

Denote the true expected mistake-based risk, e.g., the 0/1 loss,

of fcombiner(x) by Lcombiner, and define the empirically measured

0/1 margin error as

L̃θ
combiner =

1

N

N
∑

i=1

Ind(yifcombiner(xi) ≤ θ), (2.46)

where Ind is the indicator function and θ > 0 is the required clas-

sification margin. Based on Theorem 3 from [MR03] and the upper

bound of (2.45), every fcombiner satisfies with probability 1− δ that

Lcombiner ≤ L̃θ
combiner +

4Λ

θMcombiner

Mcombiner
∑

k=1

RN (Fk) +

√

log(2/δ)

2N
.

(2.47)

If yifcombiner(xi) tends to be large when fcombiner is correct, then

it may be possible to increase θ without increasing the empirical

error (2.46) at all. Large θ is desirable because it makes the com-

plexity term smaller. This is why the approach requires that the

empirical voting margin of fcombiner is maximized over the training

set. Although the bound is loose, the possible trade-offs should be

considered in practical applications. For example, using too many

intervals probably results in large Lcombiner even if the measured

L̃θ
combiner is small. In other words, overfitting occurs.

2.4 Summary

In this chapter, the framework was presented and examined from

a theoretical point of view. The framework has two essential char-

acteristics. First, there is the tree-like organization of base clas-

sifier nodes that handles the conditional exclusion of unnecessary

44 2 The delegation framework for efficient classification

computations on a per input basis. Second, there are rules for de-

termining how inputs and responsibility are delegated between the

nodes. The rules require that the nodes can assess their classifica-

tion confidence.

The chapter began with a discussion of typical loss functions in

classifier learning. Within the proper context, the discussion then

proceeded to efficiency-sensitive losses. Through efficiency-sensitive

losses, resource (time) consumption was made explicit in optimiza-

tion criteria and subsequent analysis. Without explicit resource

consumption, it is hard to analyze the behavior of efficient classi-

fiers and some interesting things just cannot be seen properly. For

example, organization resembling subsumption makes sense in cer-

tain circumstances if resource consumption is explicit. If resource

consumption is not explicit, subsumption makes no sense on the

formal level. An additive loss model was chosen, i.e., mistake losses

and resource losses are added together (using desired coefficients).

The chosen model allows straightforward analysis and is also quite

intuitive. For example, one can specify that one mistake is worth

two seconds of time. In discussing related research, it was noted

that decision tree evaluation depth is not a good measure of resource

consumption. Practical nodes are not equal in resource consump-

tion, e.g., some image features may be trivial while others require

extensive computation.

The tree-like model of classification was analyzed with respect to

base classifier zones of confidence, overflow probabilities and bounds

on base classifier errors. It was shown how the above three are re-

lated and how changing one affects the others. It was explained

that so-called subsumption arrangements are useful in specific cir-

cumstances. In the subsequent survey of related research, it was

noted that hard system-level error bounds, i.e., the maximum ac-

ceptable misclassification risk of sequential analysis, are difficult

because of overflow problems. The SPRT of sequential analysis

does not consider (non-zero) overflow probabilities. To summarize,

the framework is viewed as a tool for examining resource versus

mistake trade-offs instead of hard constraints.

The discussion proceeded to the topic of base classifier design,

which was closely related to the topic of confidence models. Support

vector machines (SVMs) were overviewed because they are practi-

cal large-margin classifiers and because they are used in the later

2.4 Summary 45

chapters. The classification margins of inputs appear to be related

to classification confidence. After two-class SVMs, SVM combi-

nation methods were discussed. These methods allow multi-class

classification. For reasons of efficiency, there is a tendency towards

using variants of one-vs-rest training in the later chapters.

We examined monotonic and non-monotonic confidence mod-

els for large-margin classifiers (e.g., SVMs). It was explained how

monotonic models (e.g., Platt) reduce to two thresholds for the

purpose of making decisions. The thresholds may be represented

using the f -values of suitable training inputs. The point was that a

suitable pair of thresholds is always compatible with multiple prob-

ability models and that the choice between those models does not

matter. More intuitively, nothing is gained by identifying the pre-

cisely correct probability model. The discussion then proceeded

to non-monotonic modeling. One particular approach was con-

tributed. The approach allows the combination of multiple clas-

sifiers. It was based on the use of voting margins and intervals of

f -values. In the subsequent analysis, it seemed that increasing the

number of intervals increases the risk of overfitting, but increasing

the number of combined classifiers does not necessarily increase the

risk. Hence, combining classifiers using the approach is worth an

empirical study (to be presented in Chapter 5).

There are several important questions that were not addressed in

this chapter. It was not discussed what kind of image features are

required in the base classifier nodes. This is a practical question and

the requirements vary from node to node. For example, the require-

ments of the root node are addressed in Chapter 3. Furthermore,

it was not discussed how the organization of the tree is found. It

was simply supposed that some organization exists. This question

is addressed in Chapter 4. Moreover, there is the related question

of the problem-specificity of organization, i.e., does each classifica-

tion problem require a customized organization of the nodes. With

ordinary decision trees, this is required. In Chapter 5 it is shown

how problem-specific organizations may be avoided.

46 2 The delegation framework for efficient classification

CHAPTER 3

Finding the root of the problem

This chapter begins the empirical part of the dissertation. In the

previous chapter the delegation framework was presented as a theo-

retical construct without much regard to practice. In practice there

are design choices that have measurable consequences affecting del-

egation probabilities, node accuracies, and efficiency. The most

open-ended choices are related to the feature spaces, i.e., what kind

of features should be used in each node.

In this chapter we focus on the question of what kind of features

can be used in the root node. The root node is special in that wrong

choices may lead to efficiency bottlenecks that cannot be removed

by changing or tuning any kind of delegation rules. In contrast,

efficiency bottlenecks caused by other nodes can be affected by del-

egation rules, which is the intended purpose of these rules in the

first place.

In this chapter, a hypothesis is contributed according to which

certain kind of global image features enable the construction of root

nodes that are likely to avoid delegation-rule-independent efficiency

bottlenecks that would prevent rapid classification. For brevity, we

will refer to this hypothesis as the root feature selection hypothesis.

Alternatively, the hypothesis may be seen as a design heuristic that

is specified as a hypothesis to encourage falsification attempts.

47

48 3 Finding the root of the problem

3.1 The root feature selection hypothesis

Before the root feature selection hypothesis can be described ade-

quately, the nature of efficiency bottlenecks must be explained. For

this purpose, the generic model and terminology from the previous

chapter will be used.

3.1.1 Efficiency bottlenecks

Certain design choices may become obstacles to efficient classifica-

tion. By obstacles we mean computational bottlenecks that pre-

vent the use of the framework for the purpose of making desired

trade-offs between accuracy and speed, as characterized by the mis-

take loss (ML) and resource loss (RL) in the minimization problem

(2.6).

The obstacles may be expressed as lower bounds on the solution

of the minimization problem (2.6),

min
progf∈P

E[ML(f(x), y)] + LB(P)

≤ min
progf∈P

E[ML(f(x), y) + RL(x, progf)], (3.1)

where the parameter P of the resource loss lower bound LB means

that LB depends on the set of programs considered. The set has

to be severely constrained by design choices because otherwise the

search for the minimum becomes impractical.

A lower bound LB(P) can be simple to interpret. It may be

assumed that the weighting between ML and RL is handled by a

constant multiplier within the term ML. The term RL(x, progf) can

be directly proportional to the number of seconds it takes to run

the program progf given x on a benchmark computer. A particular

LB(P) can then be interpreted as (proportional to) the number of

seconds that all programs in the constrained set P require.

For example, the instance-independent RL of the root node is a

lower bound on E[RL(x, progf)] of all trees which have, or are grown

from that root. The RL of the root is also the largest delegation-

rule-independent lower bound on E[RL(x, progf)] of trees with that

root. A bound of this sort may be an obstacle to efficient classifica-

tion such that no tuning of the delegation rules can enable desired

trade-offs between speed and accuracy.

3.1 The root feature selection hypothesis 49

Here, we care about bounds LB that are caused by root nodes

and are rule-independent. Ensuring that there are no large root

bounds should be a precondition for examining practical delegation

rules (in the next chapter). Inserting a state-of-the-art classification

algorithm in the root is almost certainly the wrong choice. If the

algorithm is accurate but too slow, inserting it in the root guaran-

tees that the tree of nodes is no faster. If the algorithm is accurate

and fast enough, then the current framework is unnecessary.

Instead of imitating state-of-the-art classifiers, root nodes can

use naive features and modeling. Non-trivial segmentation and

large collections of prototypes may be too expensive.

3.1.2 Statement of the root feature selection hypothesis

Because the hypothesis attempts to make claims of efficiency that

are relevant to practice, the claims need to be connected to a certain

level of hardware. As the empirical reference point, we take the

typical general purpose computer circa 2006.

The root feature selection hypothesis: Assume that the

input images belong to distinct non-overlapping classes of everyday

scenes and objects, each class considered belongs to a distinct su-

perordinate category, and the input images are downsampled (using

low-pass filtering) so that they are represented in a very low res-

olution. Finally, assume that a typical human observer can solve

the classification problem accurately when shown the downsampled

images. For a significant number of problems satisfying the assump-

tions, there exists (can be found) a root node program that satisfies

the following three claims.

1. The root node operates in (close to) real time for standard

video frame rates, i.e., it can make predictions multiple times

per second.

2. The root node uses only global features that are statistics of

local feature responses over the low-resolution images such

that spatial relations between local features are discarded.

3. The root node discriminates between the classes above chance

level.

50 3 Finding the root of the problem

We will now examine the hypothesis in detail, e.g., why do we

use a human observer as a reference and what is accurate human

performance, what is very low resolution, what are superordinate

categories, what do the claims mean and imply, how does prior

research justify the hypothesis, and how could we approach falsifi-

cation.

First note that we use an average human observer as a reference.

The point is not to do cognitive science in a computer science dis-

sertation. We have to ensure that the classification task is fair. If

the classification task was arbitrary, then there would be no reason

to assume that the images convey any information at all about the

class labels. The human observer is used as a tool for checking

that claims are not made for problems that are unsolvable in low

resolution.

We say that a human observer is accurate if the observer can

make predictions with at least 95% accuracy. This requirement is

quite permissive for many tasks. For example, according to Ren-

ninger and Malik [RM04], human beings can identify basic level

categories of everyday scenes with 90% to 95% accuracy given just

70 milliseconds per image. Renninger and Malik note that super-

ordinate categories can be identified even quicker.

For determining if the resolution can be considered very low,

the limit of 150 × 150 pixels seems roughly appropriate. This is

somewhat ad hoc, but the magnitude is suitable considering both

computing power and the intuitive notion of very low resolution.

The threshold of 150 × 150 does not constrain the aspect ratio of

the images. For example, the resolutions of 64 × 48 and 200 × 100

are acceptable because the total number of pixels is smaller than

150 × 150.

The concept of superordinate categories is borrowed from proto-

type theory and vision science (see [LS03] for related discussion).

The concept is best described by comparison to basic level cate-

gories. Basic level categories are classes whose labels have interme-

diate generality in categorical hierarchies and represent the level at

which most of our knowledge is organized. Note that if our knowl-

edge is organized around basic level categories, then we may expect

that in many supervised learning tasks, the target classes have the

generality of basic level categories.

3.1 The root feature selection hypothesis 51

According to Rosch [Ros78] human subjects can easily associate

a single visual representation (shape) with a single basic category,

while superordinate categories have no such cognitive visual rep-

resentations. For example, the labels ”beach” and ”dog” are ba-

sic, while ”outdoors environment” and ”animal” are superordinate.

Lower level subordinate categories are more specific, and possibly

require attention to subtle detail, e.g., ”Mykonos Island Beach”,

”Bayrischer Gebirgsschweisshund”. In the hypothesis, the intent is

to pay attention to differences between classification problems and

avoid making claims about problems the solution of which requires

attention to subtle details. Note that not all subtle details can

be associated with high-frequency content of images. For example,

different dog breeds may have different ratios of body length to

height, and this may be clearly visible in images from which the

high-frequency content has been removed.

When we say that each class belongs to a distinct superordinate

category, we mean that a class either is a superordinate-level cate-

gory, or is a subcategory of such. In the latter case, no other class

may be a subcategory of the same superordinate category.

In the scope of this chapter, it is suggested that the target classes

should satisfy the following heuristic criterion for the lack of class

groups: if there is a pair of classes such that the classes have clear

similarities in terms of shape and there is some (other) pair of classes

that lacks these similarities, then there are class groups. If there

are no apparent class groups, then the classes belong to distinct

superordinate categories. The somewhat imprecise nature of this

heuristic is apparent. A more disciplined method for the extraction

of human-perceived categorical hierarchies (hierarchical groupings)

will be suggested in the next chapter. The use of human-perceived

hierarchies and groupings is not in itself a problem. Using these, we

get to draw on existing research investigating what kind of features

humans use for rapid recognition.

Having examined the assumptions, we can now examine what

was claimed. There were three claims, and it was postulated that

there is a significant number of classification problems for which

there is a root node such that the claims hold given the assump-

tions. For reasonable falsification, a representative set of interesting

problems should be chosen, the criteria for interestingness should

be explained, and large failure rates should be considered decisive

52 3 Finding the root of the problem

evidence against the hypothesis. For example, failure rates larger

than 80% can be considered decisive. The experimental results in

this dissertation satisfy the claims when the assumptions are satis-

fied, but it is not argued that the set of problems is large enough.

Regarding falsification, it is suggested that the assertion that a

suitable root exists is interpreted to mean that a competent prac-

titioner can design it without much effort, e.g., in a week or so.

Existence disproofs are hard, and therefore it is suggested that per-

sistent lack of positive evidence is, for practical reasons, interpreted

as evidence against the hypothesis. It is not interesting to consider

toy domains in which exhaustive search allows conclusive disproofs.

In the first claim, it was stated that the root node must be able

to make several predictions each second, i.e., the root must operate

at least at 2 Hertz. As stated earlier, a typical general purpose

computer circa 2006 is used as the empirical reference point in the

measurements that are reported in this dissertation. The first claim

is connected to the theory (Section 3.1.1) in the following way:

when RL in (3.1) is a linear function of the seconds used by the

program, then it is trivial to express the equivalent optimization

problem where RL equals the seconds used by the program. In

other words, RL bounds become tangible quantities and we can

say which root-induced RL bounds are small enough for a specific

application and which are not. The hypothesis gives a chance that

root-induced RL bounds do not prevent the desired trade-offs if

the root uses the suggested kind of low-resolution global features,

the application requires at most 2 Hertz, resource losses are linear

in seconds used, and there is evidence that there is class-related

information in the low-resolution images.

The second claim states that the root uses global features that

are statistics of local feature responses over the low-resolution im-

ages, and that the global features ignore spatial relations between

local features. The claim can be justified a priori on the basis of

vision science research that shows the proposed kind of features

are sufficient for rapid recognition of everyday scenes by humans,

especially when superordinate categories are involved.

It is known that humans are very quick at understanding and

identifying scenes, even after minimal exposure on the order of 20

milliseconds [TFM96]. Human accuracy at identifying scenes also

improves considerably when the exposure times are increased. So, it

3.1 The root feature selection hypothesis 53

appears that human observers do not always have the time to utilize

their resources fully, but classification is still possible at a reduced

accuracy. The question of which kind of feature representations

suffice to explain this fast performance in humans has attracted

interest.

Oliva and Torralba [OT06] define the gist of a scene as the

amount of perceptual and semantic information that human ob-

servers can comprehend at a ”glance”, which is defined as about

200ms exposure to an image. According to Oliva and Torralba,

and Rensink [Ren00], the gist usually includes the semantic label

of a scene, i.e., the class label of an image in our terms.

Oliva and Torralba explore formal (computational) models that

could explain the efficiency of this quick comprehension given its

accuracy and extent. In particular, they ask what kind of repre-

sentation would be sufficient for explaining the efficiency. Their

conclusion is that it is sufficient to use low-dimensional vectors of

global features, which themselves are summations of local feature

values. The local features are weighted combinations of oriented

filters, i.e., Gabor-like filters similar to those thought to exist in

the V1 of the primate (including human) cortex. The weights are

derived from principal components analysis [Hay99]. In particular,

the global features are noticeably coarse and ”imperfect” to ensure

efficiency. Taking into account the earlier work of Torralba and

Oliva [TO03], the overall result seems to be that at least superor-

dinate categories of scenes can be discriminated using coarse global

statistics of local oriented features.

Although discrimination on the basic category level is also (of-

ten) possible using oriented feature approaches of the above sort,

one can note two things in [TO03]. First, on the superordinate

category level, the feature signatures of Torralba and Oliva seem

sufficient for discrimination. Second, when the feature signatures

seem sufficient for discriminating between two basic categories, it

appears that the basic categories belong to different superordinate

categories, and the basic category signatures resemble their respec-

tive superordinate signatures. In other words, when the basic sig-

natures seem clearly different, the explanation may well be on the

superordinate level. For this reason, and after a scrutiny of the

classes involved in our experiments, we tie the claims (especially

the second) of our hypothesis to the requirement of the classes be-

54 3 Finding the root of the problem

ing associated with distinct superordinate categories.

For further justification of the connection between coarse global

image features and the requirement that the classes belong to dis-

tinct superordinate categories, we examine the work of Renninger

and Malik [RM04]. Renninger and Malik conduct human experi-

ments in which the subjects are asked to identify scenes within 70ms

exposure. There are ten basic categories of scenes, namely ”beach”,

”mountain”, ”forest”, ”city”, ”farm”, ”street”, ”bathroom”, ”bed-

room”, ”kitchen”, and ”living room”. The basic categories can

be placed into three superordinate categories: ”natural/outdoor”,

”man-made/outdoor”, and ”man-made/indoor”. Renninger and

Malik observe that the subjects can get the gist with one fixa-

tion, accuracy is always above chance, and improves with exposure

duration. They build a computational texture model using V1-like

(Gabor-like) features and use histograms of these features to classify

images. They then observe that the computational model leads to

similar identifications and confusions that the human subjects make

with limited processing time. More precisely, human performance

is similar to their model at 37 milliseconds (of human exposure),

but the subjects outperform the model when they are given more

than 37ms.

Importantly, both humans and the model can identify the super-

ordinate categories before the basic-level categories are identified.

Basic-level categories within the same superordinate category are

confused by both humans and the model. For example, cities are

heavily confused with streets (both are outdoors city scenes) and

farms are confused with beaches (both are largely natural scenes).

To conclude the review of the claims, we can note some dif-

ferences between the assumptions of the hypothesis and what was

assumed in the vision science literature that was surveyed. First,

in the hypothesis we do not distinguish between scene recognition

and object recognition. In the literature that was surveyed, this

distinction is made. It can be argued that the distinction between

scene images and images where a single object dominates is a bit

fuzzy. For example, Torralba and Oliva [TO03] consider portraits

of people and images of large buildings as scenes. Hence, we do not

make sharp distinctions between scenes and objects.

Second, objects in the real world are not independent of their

context. For example, if a root node determines that an image be-

3.2 Overview of the experiments 55

longs to the superordinate category of animals, and delegates to a

specialist classifier capable of segmenting animals and discriminat-

ing between different species, then it hardly matters if the super-

ordinate category was recognized because an animal was perceived

directly or because a faintly animal-like blob was perceived in a

strongly predictive context, e.g., on a farm-like background. On

the other hand, the next chapter contains empirical evidence that

shows that a texture-based root does not need contextual features

to succeed in object recognition at the superordinate level.

3.2 Overview of the experiments

Here, we present an overview of our early experiments that are re-

lated to the root feature selection hypothesis. Related experiments

are also found in the next chapter. These experiments predate the

current formalization of the hypothesis. In general, so-called post-

hoc hypotheses are allowed and often necessary in science, but their

nature should be acknowledged.

For the main experiment of this chapter, a mobile robot was

used to collect grayscale images that were categorized into four

classes: doorways, signs, people (close-up views), and miscellaneous

indoor scenes. The overall idea of the collection procedure was

that the relevant objects were perceived in their correct contexts,

viewed from reasonable viewpoints, and at appropriate scales. As

by the hypothesis, the four classes are human-recognizable in low

resolution and seem to belong to distinct superordinate categories.

We pay special attention to the effects of sampling bias. When

a root node is trained with a limited set of data and the classes

are rather broad, i.e., each class contains a large number of dif-

ferent object instances, different deformations, and varying lighting

conditions, then the training samples may not be properly represen-

tative of the classes. We examine what effects this kind of sampling

bias has on the classification results. In practical applications, it

would be useful if root nodes could tolerate this bias. Then it could

be possible to add new (sub)classes without having to retrain the

root completely.

After the main experiment, additional experiments are exam-

ined. We examine the recognition of various characters and symbols

56 3 Finding the root of the problem

that may be printed on signs, thus becoming subclasses of signs.

These experiments are based on a specialized segmentation method

that can work within the broad class of signs only. The results with

the characters and symbols are then contrasted with results from

the recognition of more complex objects that are visible to the same

segmentation method. Contrasting the results allows us to predict

if specialist classifiers are able to correct potential delegation errors

without having to pay the full resource loss.

In the next chapter, we will see more advanced experiments in-

volving confidence assessment and delegation mechanisms. There,

the setting allows investigating the hypothesis again, although the

focus of that chapter is elsewhere. The interesting difference is that

object contexts (image backgrounds) are made statistically inde-

pendent of the objects.

3.3 The main experiment

3.3.1 Extracting global features

The lowest level of the recognition process is based on a set of Gabor

filters, which are designed to extract useful structural information

from the views. The basic principles that we use are close to those

in [TS01]. Gabor filters are also known to be useful in texture seg-

mentation [WHD96]. We take advantage of the fact that a filter can

be tuned to respond to a specific texture-like property of an image.

The underlying assumption of our approach is that indoor scenes

can often be recognized by considering the relative quantities of dif-

ferent textures in an image. If the scenes contain difficult objects,

the objects tend to contain non-homogeneous subregions within the

object boundaries, and such regions might have distinctive combi-

nations of textures. In the latter case, if an object occupies a large

portion of the scene, it may be possible to detect the presence of an

object without having to search for it within the scene (e.g., search

by using a sliding window, the contents of which are classified).

After the initial filtering, we calculate certain statistics of the

filter responses and then classify the derived feature vectors with a

set of SVMs (see Section 2.3.2). SVMs are particularly suitable for

this task mainly because of two reasons. First, it is bothersome to

3.3 The main experiment 57

Figure 3.1: (a) A person and (b) the corresponding filter response.

add class labels to large sets of data and SVMs are known to cope

well with small training sets. Second, we can use high-dimensional

feature vectors without having to compute and store them explic-

itly.

In the SVMs, we use a second degree polynomial kernel to de-

rive the final image features that are pairwise products of the in-

put feature components. Consider the following toy example: we

have several images of a forest clearing where there is a large pond.

Imagine that we have a marker (a Gabor filter) that attaches to

the particular texture of the pond. We also have a corresponding

marker for the texture of the trees. Measuring the amount of both

markers we have some information about the images. Measuring

the products of the marker amounts gives us additional information

related to the correlation of the amounts. In realistic applications,

we could have dozens of interesting textures and their relationships.

In that case, it becomes relevant to consider the representations of

the product features as there are a lot of combinations to choose

from. Note that with this representational choice, we do not have to

decompose scenes into named and located objects. Figure 3.1 illus-

trates a rare case in which the filter response directly corresponds

to a real-world entity.

58 3 Finding the root of the problem

3.3.2 The input feature space and classification

Gabor filters

The basic idea of the classifier we are building is that it is possible

to select a set of Gabor filters whose combined responses carry

a lot of information about the structure of image contents. This

principle has been demonstrated in the past both experimentally

and theoretically. For a short overview of the theory see [KB01],

for its biological justification [JP87], for a texture segmentation

viewpoint [WHD96], for hardware implementation issues [Shi99],

and for related applications in scene recognition [CJR+98, SCB00].

For image plane coordinates (x, y), the complex-valued impulse

response of a Gabor filter centered at the origin of the plane is

H(x, y;σ,U, V) = Gσ(x, y) exp(−i2π(Ux + V y)), (3.2)

where i denotes the imaginary unit and G is a Gaussian such as

Gσ(x, y) =
1

2πσ2
exp

(

−x2 + y2

2σ2

)

. (3.3)

Thus, the filter has three external parameters: U , V , and σ. The

complex sinusoid described by H is centered at frequency (U, V)

and σ determines the spatial extent of the Gaussian envelope G.

Conceptually, one can find it convenient to replace U and V with

the angle θ and spatial frequency f so that U = f cos(θ) and V =

f sin(θ). Hence,

H(x, y;σ, f, θ) = Gσ(x, y) exp(−i2πf(x cos(θ) + y sin(θ))). (3.4)

From the above we see that (x, y) is projected on the axis specified

by the unit vector (cos(θ), sin(θ)), which identifies the direction

toward which the complex sine wave of the spatial frequency f

evolves.

A source image I is convolved with H to produce a filtered image

m(x, y;σ, f, θ) = |I(x, y) ∗H(x, y;σ, f, θ)|. (3.5)

Taking the pixel-wise absolute values transforms the complex con-

volved image into a real-valued image. The convolution itself is a

3.3 The main experiment 59

discrete approximation of

I(x, y)∗H(x, y;σ, f, θ) =

∫ ∞

−∞

∫ ∞

−∞
I(a, b)H(x−a, y−b;σ, f, θ) dadb,

(3.6)

which can be calculated faster in the frequency domain with the

help of the discrete Fourier transform F and its inverse F−1:

m = |F−1{F{I} ⊗ F{H}}|, (3.7)

where ⊗ denotes element-wise multiplication in the frequency do-

main.

Let mi,j(x, y) = |Ii(x, y) ∗Hj(x, y)| denote the absolute value of

the convolved image Ii when using the jth filter of the chosen set

of filters. The parameters σ, f , and θ are determined by j and the

chosen set. As the jth component of the feature vector zi we select

zi,j =
si,j − µj

σj
, (3.8)

where

si,j =
∑

x

∑

y

mi,j(x, y), (3.9)

µj =
1

M

M
∑

i=1

si,j, (3.10)

σj =

√

√

√

√

1

M − 1

M
∑

i

(si,j − µj). (3.11)

Above, µj and σj are the mean and bias-corrected standard devia-

tion of the sums s·,j, and M is the number of images Ii in a training

sequence of images. The use of µj and σj in the above manner is

called variance normalization in elementary statistics. Because our

filters Hj can vary a lot in terms of response magnitude, it is rea-

sonable to use variance normalization in order to make the feature

components stand on equal ground. The normalization step is es-

pecially important in filter selection because principal component

analysis is performed for sets of candidate features.

The sums s·,j describe the amount of the jth kind of texture-like

structure present in the image. For example, in Figure 3.2 we have

60 3 Finding the root of the problem

Figure 3.2: Three convolutions. The first column shows the real

parts of three 19 × 19 Gabor filter masks with σ =
√

6, f = 0.4,

and θ ∈ {0, π/4, π/2}. These specific filter masks were used in the

actual experiment as well. The filter masks are shown scaled so that

the minimum of each mask is shown in black and the maximum is

shown in white. The second column shows a 64 × 64 image that

is convolved with each of the masks. The third column shows the

pixel-wise absolute values of the convolution results. For illustrative

purposes, the result images are scaled relative to each other so that

the maximum value over all the results is shown in white.

convolved a low resolution image of a cameraman with three Gabor

filters. Because the three filters differ only in θ, normalization is

not strictly necessary. Supposing that our set of filters consisted

of the three filters shown, in the order from top to bottom, then

we would have s·,1 > s·,3 > s·,2. Roughly, the first filter responds

strongly to vertical bars such as that protruding from the bottom

of the camera. The third filter responds to horizontal bars visible

on the ground. The second filter has the weakest response due to

the lack of diagonal bars in the image.

Filter selection

The question remains how to select a suitable set of filters. Obvi-

ously, the feature vectors z = [z1, . . . , zN]T should be useful in clas-

3.3 The main experiment 61

sification, i.e., they should convey information about the classes.

Furthermore, the size of the filter masks and the number of filters

N should be small to ensure fast computation of features. From

the viewpoint of the root feature selection hypothesis, z should be

computable several times a second with enough margin left for pre-

processing and classification steps.

Because a root node should not care about subtle details, it

is reasonable to use low-pass filtering on the images, as far as

the images remain recognizable by human observers. The high-

frequency content (including high-frequency noise) is attenuated

in the process while the low-frequency content can be represented

well using small low-resolution image matrices. The low-resolution

images and small filter masks are both necessary because fast (dis-

crete) convolutions are essential for the fast computation of features.

The low-resolution images also allow small masks to represent filters

that respond to structures that were relatively large in the original

images.

Prior to preprocessing, the inputs are 640 × 480 or 320 × 240

grayscale images with 256 levels of intensity. The former input

resolution is used most of the time, and in all offline experiments.

The latter resolution is used only in online tests performed with

a robot that is given fully-trained classifiers. In those tests, the

robot initially captures 640 × 480 images, but it can access (focus

on) 320 × 240 subimages of the captured images. At all times,

however, the inputs (whole images or subimages) are downsampled

to the resolution of 64 × 48 pixels prior to the use of Gabors and

the computation of features. Downsampling to 64× 48 is achieved

by convolving the input images (or subimages) with a 11× 11 low-

pass filter with subsequent bilinear interpolation, i.e., exactly as

the Matlab image processing function imresize does. In case of

the robot experiments (without Matlab), the Matlab function was

imitated exactly. The specific target resolution of 64×48 was chosen

because it retains the aspect ratio of the original images and is close

to the limit below which human recognizability of the images is not

obvious.

The filter selection problem was resolved by the iterative visual-

ization of data, where the data was projected in three dimensions

with the help of principal component analysis [Hay99] that we now

abbreviate PCA. The application of PCA creates an orthogonal ba-

62 3 Finding the root of the problem

sis of vectors that are linear combinations of the components of z.

The basis vectors (eigenvectors) have the useful characteristic that

they indicate the directions in which the data varies the most and

the least. By choosing the most important basis vectors (i.e., those

with the largest eigenvalues) and projecting the data on the result-

ing basis, the projected data retains the significant variations of the

data.

In the selection process, two distinct sets of data were used: a

PCA training set and a visualization set. The PCA training set

consisted of a video sequence captured with a robot moving in a

room and a corridor. The visualization set consisted of labeled im-

ages from all the four target classes, i.e., doorways, signs, people,

and miscellaneous indoor images (recall the overview of the exper-

iments in Section 3.2). Both sets were collected with a robot using

the collection procedure to be described in Section 3.3.3. These

particular sets were used only in the filter selection stage.

Given these two sets of data, the following steps were done.

First, a reasonable initial set of 24 Gabor filters Hj was chosen.

The ranges of the parameters (f, θ, σ) were reasonable given that

the images (in both sets) were 64 × 48. For example, it was con-

firmed that the filters could be represented using small masks and

that all orientations θ could be approximated. Second, the training

images Ii were convolved with the filters Hj, thus producing the

intermediate results mi,j(x, y) for all training image pixels Ii(x, y).

Using the intermediate results, the unnormalized sums si,j were

computed. Third, the unnormalized sums were used to estimate µj

and σj for all j, after which the 24 feature values zi,j were computed

for each of the training images Ii. Fourth, PCA was performed on

the normalized feature vectors zi of the PCA training set and the

first three principal component axes were chosen as a basis. Fifth,

the visualization set was projected on the basis and the distribu-

tion of the points was examined. After determining the apparent

merits of a distribution, the ranges of the parameters (f, θ, σ) were

tuned and the process was repeated from the second step to the

fifth several dozen times. Finally, the set of ranges that produced

the best set of filters was chosen.

In examining the distribution of the points from the visualiza-

tion set, attention was paid to the emergence of clusters resembling

the classes. For example, the visualization set contained images of

3.3 The main experiment 63

Figure 3.3: The real parts of the chosen filters. The 19 × 19 and

37× 37 masks have been scaled to a larger size and are illustrated

so that the minimum value of each mask is shown in black and the

maximum in white. The columns show variations in θ while the

rows show variations in f . The topmost 12 masks have σ =
√

6

while the rest have σ = 6.

people, and if the PCA projected feature vectors of such images

were grouped together but separate from the transformed feature

vectors of images without people, then the set of filters specified by

the current ranges of parameters was given merit.

The end result was the set of 24 filters, the real parts of which

are shown in Figure 3.3. The filter parameters had the ranges

θ ∈ { 0, π/4, π/2, 3π/4 }, f ∈ { 0.1, 0.4, 0.8 }, and σ ∈
{√

6, 6
}

.

All 24 combinations of the values were used in the classification

experiments and all can be represented using either 19×19 (σ =
√

6)

or 37 × 37 (σ = 6) complex-valued masks. Note that some of the

parameter combinations result in filters whose usefulness may be

questionable.

Roughly put, our overall approach in filter selection was that

of exploratory data analysis, in which we tried to gain insight into

64 3 Finding the root of the problem

how the filter parameters affected the distribution of features and if

any class-like clusterings could be found. The emphasis was not on

discovering an optimally accurate set of filters or on creating auto-

mated processes and algorithms for feature extraction. We wanted

to find out if a small and very crude set of filters operating on

low-resolution images could potentially accomplish the classifica-

tion task.

On one hand, we discovered that it was not possible to find

a set of crude filters such that the resulting feature space would

have made the classification step trivial. In the best of cases, the

clusters were somewhat poor and overlapping. Using an obsolete

233MHz Pentium computer, the feature vectors z could be com-

puted in about 2 seconds per image. Our more recent measure-

ments showed that the same calculations took less than 0.4 seconds

per image using a computer equipped with an AMD 3500 processor

(and somewhat suboptimal code). We took into account all stages

of preprocessing in these estimates, including the initial downsam-

pling. The principal component projections were excluded from

these estimates because they were used only in visualization. Using

the projections in classification appeared to degrade the results.

In other approaches pruning a set of filters using PCA has been

claimed beneficial [TS01].

Finally, we note that the proposed kind of features are appro-

priate for examining the root feature selection hypothesis (Section

3.1.2). The features z are holistic texture descriptors and represent

fairly basic global statistics of the responses of oriented features

over individual images. Spatial relationships of feature responses

are discarded when we compute the sums si,j in (3.9).

Comparing our features to the features used by Renninger and

Malik in their computational model for investigating the rapid scene

recognition ability of human observers [RM04] (see also Section

3.1.2), we may note some similarities and differences. Renninger

and Malik use histograms of oriented filter responses, which is sim-

ilar to our approach in the sense the spatial relationships are dis-

carded and that the relative amounts of different filter responses

matter. The technical details, however, are quite different. We do

not assign individual pixels to specific texton channels (e.g., based

on which filter dominates) because we do not need descriptors that

are normalized like histograms, and we are not interested in repro-

3.3 The main experiment 65

ducing biologically plausible or universal sets of filters or textons.

The hypothesis does not require that the root nodes for different

problems use the same set of filters. Our emphasis is on the speed

of the computable model itself, and the distinguishing characteristic

of our experiments here is that we work with very low-resolution

images and small filter masks.

Classification

On the basis of the image preprocessing step, we now have feature

vectors of the type z = [z1, . . . , z24]
T . Each feature component zj

roughly measures the normalized amount of structure or texture

type j within an image.

The exploratory principal component analysis step showed that

the classification problem was non-trivial. To some extent, filter

selection and parameter modification could be used to adjust the

feature space in order to get the desirable kind of nearest neighbor

relationships. However, the results seemed clearly insufficient for

enabling the reliable use of simple linear classifiers (hyperplanes) in

the feature space of the vectors z.

Instead of a direct correspondence between the feature compo-

nents and filters, we perform classification on the basis of pairwise

relationships of the components of z. The space of vectors z be-

comes the input space of an SVM kernel (recall Section 2.3.2). The

pairwise relationships of the components are captured implicitly by

the second degree polynomial kernel,

K(z, z′) = (zT z′)2, (3.12)

the values of which are simply dot products φ(z)T φ(z′) in a high-

dimensional space. The high-dimensional vector φ(z) has one com-

ponent for each product of two components z has. Hence, given our

24 filters, the vector φ(z) has more than five hundred components

that are fortunately never computed explicitly.

66 3 Finding the root of the problem

3.3.3 Empirical evaluation

In the experiments, we had four broad categories that have uses in

some robot navigation tasks. We had doorways, signs, people, and

miscellaneous (corridor and room scenes) classes. Examples of the

classes are shown in Figure 3.5. The classification problem of these

classes is trivially solvable in low-resolution (64 × 48) by human

observers. The small number of the target classes of course helps in

keeping the number of filters small and also helps in avoiding the

emergence of class groups. The target classes can be characterized

as follows:

• Doorways are precisely what the label indicates, i.e., rectan-

gular door frames with the door itself completely open and

not necessarily visible. The other side of the doorway, e.g.,

the adjoining room can be seen through the doorway. The im-

ages we used were close-up frontal views. In indoor navigation

tasks, recognizing doorways may be useful because the naviga-

tion control program may “think” in terms of conduits that

separate traversable open areas. In our experience, purely

sonar-based approaches can have difficulties in discriminating

miscellaneous environmental bottlenecks from real doorways.

• People are represented by frontal views of the head and upper

torso of human participants. The frontal view requirement

is not very precise, so people do not have to waste time in

carefully positioning themselves in front of the robot. The

size of faces ranges from 4% to 15% of total image area. It

should not be assumed that people are detected based on faces

and heads alone. The upper torso, including clothing, may be

crucial.

• Signs are sheets of paper that have a word on them in very

large font. As opposed to doorways and people, we do not

assume that signs occur “naturally” in indoors environments.

Instead, they may be artificial landmarks in robot navigation,

marking special places or circumstances. Because the words

are on otherwise empty sheets of paper, the individual letters

are relatively easy to segment and classify. Hence, the class

of signs allows intuitive examples of what may be expected of

ideal delegation. After recognizing a sign, the root node of a

3.3 The main experiment 67

system may delegate the responsibility for finer distinctions

to a node that uses specialized segmentation algorithms, i.e.,

segmentation algorithms that are useless in the general case,

but useful in segmenting these landmarks.

• Miscellaneous images are views of rooms and corridors that

do not belong to the other three classes. The class of miscel-

laneous images is a natural superordinate category containing

many unnamed basic categories, e.g., walls.

As required by the preconditions (assumptions) of the root fea-

ture selection hypothesis, each of the four classes either belongs to

a distinct superordinate category or is one (i.e., miscellaneous). Us-

ing the heuristic criterion for the lack of class groups (as in Section

3.1.2) we saw that one apparent similarity between the classes is

that images of doorways and signs always contain prominent rec-

tangles (or prominent vertical and horizontal lines). This similarity,

however, is shared by all classes, because unsegmented indoor views

tend to contain rectangles. Also, the class of miscellaneous corridor

and room scenes has more variability than the other classes. There

is a small subset of images in which structures resembling doorways

are seen. Hence, this subset combined with the class of doorways

could form a class group. Because the subset is small, doorways and

miscellaneous scenes are not grouped together. Images from all the

classes also tend to have walls and portions of the floor visible.

Prior to training any classifiers or selecting any filters (Section

3.3.2), we collected images from the four categories (or classes) using

a mobile robot. The overall idea was that the relevant objects

were perceived in their correct contexts, viewed from reasonable

viewpoints, and at appropriate scales. The robot was a Nomad

Super Scout II with vision (see Figure 3.4). The color video camera

of the robot captures 640 × 480 pixel images at five Hertz. In the

current experiment, we discarded the colors and downsampled the

images to 64× 48 pixels prior to computing features.

To capture miscellaneous images of rooms and corridors, the ro-

bot was placed in random initial locations after which random turns

and movements were simulated. The camera on top of the robot

was kept pointing to the front so that the x-axis of the captured

640× 480 images was aligned with the horizon at all times. In ad-

dition to the camera, the robot had a ring of sonar range-finders

68 3 Finding the root of the problem

Figure 3.4: Nomad Super Scout II, a mobile robot equipped with a

video camera.

providing information about the proximity of walls and other ob-

stacles. To simulate reasonable viewpoints, extreme close-up views

of obstacles were avoided. During these simulations, the robot had

no image recognition abilities. The captured images were labeled

afterwards. In capturing images of doorways, people, and signs, we

simply placed the robot to random locations near an appropriate

target and made the robot turn approximately towards the target.

In some tests that are described below, we deviated from the above

procedure. These deviations are always noted explicitly, and un-

less it is said otherwise, the reader should assume that the above

description holds.

After initial data collection and feature selection, we performed

three tests. The first two of the tests were done entirely offline

on a desktop computer. In these, we measured different kinds of

generalization ability (narrow vs. broad). As a result, we have

numeric performance statistics that can be used for comparisons.

The third test was not as formal as the preceding two. In it, we

downloaded trained classifiers to the robot and let the robot make

predictions when executing some simple navigation-related behav-

iors. We also measured the running times of the classifiers and were

ready to note if the observed performance differed significantly from

the offline experiments.

In this dissertation, the role of these tests is that we may show

that the claims of the root feature selection hypothesis are satisfied

when the assumptions are. Although the particular system that

we build here likely does not allow state-of-the-art applications, it

allows the study of the hypothesis. We can focus on speed issues

3.3 The main experiment 69

Table 3.1: Set sizes in basic holdout validation.
Class Train Validation Total

Doorways 30 10 40

People 18 6 24

Signs 12 3 15

Miscellaneous 30 10 40

Overall 90 29 119

using a small and very crude set of features computed in very low

resolution, which is not possible if one aims for maximal accuracy.

By controlling and varying the data collection process (as detailed

in the tests below), we can also investigate the effects of sampling

bias in training classifiers for broad target classes. It is important

that root nodes can tolerate this kind of bias.

Basic Holdout Validation Test

In the first test we performed repeated holdout validation with ran-

domized train and validation sets. The test is the least interesting

of the tests, but it allows us to assess if the chosen features and

filters are any good at all.

Holdout validation falls under the broad umbrella term of cross-

validation, although strictly speaking the train and validation sets

are chosen randomly and not crossed over. We repeat the holdout

validation process several times and then examine the average and

worst case results. The sizes of the randomized train and validation

sets are shown in Table 3.1. For example, each random training set

has 90 images, 30 of which are doorways, and each validation set

has 29 images, 10 of which are doorways.

Some examples of the 64× 48 pixel images are shown in Figure

3.5. In sampling the images for the first test we made some inter-

esting restrictions. The images from the class of people represented

only one particular subcategory (subclass) that was Person A (Fig-

ure 3.5 c) viewed from different angles and against different back-

grounds. Likewise, the images from the class of signs represented

the subcategory of signs with the text WAIT on them (Figure 3.5

d).

70 3 Finding the root of the problem

Figure 3.5: (a) A doorway, (b) a miscellaneous scene, (c) person A,

and (d) a sign.

In the first test, the above restrictions imply that the two classes

are simplified, classification may become easier or harder, and this

may be reflected on the holdout validation results. In the second

test, however, we lift these restrictions from the validation sets while

keeping them for the training sets. Hence, we get to see how well

training on subcategories generalizes to performance on the broader

category level. Training on subcategories can be called biased sam-

pling, and it is interesting to see if this can be allowed in training

root nodes, as it could save human effort. A priori, it is not un-

reasonable to expect that the chosen kind of features allow this.

If subcategories differ by somewhat subtle details, then the chosen

kind of crude features may be blind to those details.

In the first test the validation procedure was as follows. First,

from the set of images collected using the robot we randomly sam-

3.3 The main experiment 71

Table 3.2: Basic holdout validation results.
Doorways People Signs

Class prior 1/3 1/5 2/15

Minimum correctness (%) 69 93 93

Average correctness (%) 88 99 99

Correct/29 25.395 28.83 28.755

Doorways/10 1.53 0.025 0.045

Miscellaneous/10 1.66 0 0.005

Humans/6 0.035 0.075 0

Signs/3 0.38 0.075 0.195

pled 40 images of doorways, 24 images of Person A, 15 images of

WAIT signs, and 40 miscellaneous images of rooms and corridors.

Second, the holdout validation procedure was repeated 200 times

as follows.

1. Choose the validation set by sampling from each class with-

out replacement. Sample 10 images of doorways, 6 images

of Person A, 3 signs, and 10 miscellaneous. The training set

consists of the remaining 90 images.

2. For each target class, except the class of miscellaneous images,

train a support vector machine using the one-vs-rest training

scheme (Section 2.3.2). Hence, each of the three machines

has 90 training images, the minority of which are labeled pos-

itives. For example, the machine for recognizing doorways

has 30 positive inputs and 60 negative inputs.

3. Process the validation set of 29 images using the three ma-

chines and record the results for analysis.

Table 3.2 shows the results of the repeated holdout validation

procedure. All rows, except the first and second, show average

values over the 200 trials. The first row shows the prior probabilities

of each class. The second row shows the minimum correctness of

each of the class-specific machines over the 200 trials. Each of the

minimum values is larger than what could be expected of baseline

predictors that predicted according to class priors as estimated from

the training sets. The baseline predictors could be expected to have

72 3 Finding the root of the problem

correctness rates of 2/3 (betting against doorways), 4/5 (betting

against people), and 13/15 (betting against signs). The averaged

correctness estimates on the third row are significantly larger than

what could be expected of the baseline predictors. The fourth row

shows how many inputs each machine classified correctly out of the

29 in each validation set. The remaining rows show the class-specific

numbers of misclassified inputs for each machine (column).

From these results, we can see that the features based on the

24 chosen filters clearly convey class-related information and that

class-specific machines can be trained using small training sets.

Hence, it is reasonable to proceed to the more labor-intensive sec-

ond test.

Validation with altered sampling bias

In the first test, there are a few problems. The problems result from

the idealized validation setting, limited data, and the simplified

circumstances.

The first problem, from the viewpoint of the root feature selec-

tion hypothesis, is that we did not construct full classifiers capable

of four output labels. We simply tested separate binary SVMs, each

trained to discriminate one class from the rest. The separate ma-

chines were appropriate for testing the feasibility of the features,

but are not appropriate for much else.

To overcome the problem, we now use a simple rule for combining

the predictions of the binary SVMs. The rule is a simplified variant

of the rule we use for combining SVMs in the root node of the

experimental system to be presented in Chapter 5 (Section 5.3.1).

Denoting the SVM trained with the class c as the positive class by

SVMc, the simple rule is as follows:

1. Activate all class-specific binary SVMs.

2. If all three SVMs predict −1, then choose

prediction ← miscellaneous.

3. Else, if a single SVMc predicts +1, then choose

prediction ← c.

4. Else, if more than one SVM predicts +1, then choose

prediction ← miscellaneous.

3.3 The main experiment 73

The above rule suffices here, but it should be noted that the full

rule is necessary for delegation and the full rule in turn requires

(modified) SVMs with three output values. One way to construct

that kind of SVMs is to use Platt’s procedure (see Section 2.3.3)

and then discretize the resulting monotonic confidence model.

The second problem is that the data was partitioned randomly

into training and validation sets. Hence, we cannot really see how

the features and machines generalize when there are sampling biases

in imaging conditions. For example, if the training set of images is

captured during daylight hours, then how well do the trained ma-

chines classify images captured under artificial lighting conditions.

If the shadows cast by objects are altered, then the edges and bars

contained in images are altered as well. Given that we use Gabor

filters, these kinds of alterations may affect the feature values. Be-

cause root nodes are expected to handle broad classes, the ability to

tolerate various sampling biases in imaging conditions is certainly

important. Sampling biases cannot be investigated using random

partitions because subsets of the captured data get mixed. For ex-

ample, if we have images captured both during daylight hours and

under artificial lighting, then the training and validation sets will

each have both types of images.

The third problem is similar to the second. Our sets of images

may contain multiple views of some individual object instances,

i.e., some individuals are overrepresented considering the number

of individuals a broad class contains. Hence, due to random mixing

the validation results may reflect generalization performance over

different views of particular individuals instead of generalization

over different individuals of the same class. Because root nodes are

intended for broad classes that may contain a very large number

of different individuals, or object instances, it is important to test

that generalization over individuals occurs. To some extent, it is

reasonable to expect that the use of crude features promotes the

right kind of generalization, as subtle (e.g., fine-scale) individual

differences may be lost in the feature extraction stage.

To alleviate the second and third problems of the first test, we

altered the sampling bias of the validation sets. We sampled new

validation data while keeping the data from the first test as training

data. Naturally, the i.i.d. assumption of the SVMs was violated,

but testing the effects of altered sampling bias on generalization

74 3 Finding the root of the problem

ability became possible. In real world applications, classifiers are

used for decision making, and decisions (e.g., related to movement)

affect the distribution of the inputs. Hence, classifiers should not

be fragile w.r.t. the sampling bias.

In the new validation set of doorways, we used artificial light-

ing exclusively, resulting in somewhat darker images with different

shading compared to the portion of the training set captured in day-

light. In addition, the training and validation sets had no overlap

in the sense of common object instances. The new set was acquired

from different sections of the building. An example is shown in

Figure 3.6(a).

In the new validation set of miscellaneous images, we discarded

the simulation of random movements. Random movements make it

practically difficult to sample images from large spaces so that cer-

tain locales are not overrepresented (e.g., near the initial locations)

and others underrepresented. In the new set we changed the sam-

pling bias so that larger spaces could be covered with no accidental

duplicate images. In the new set we sampled systematically along a

corridor. The images were captured from 10 different locations and

we took 8 images from each. The distance between two consecutive

locations was roughly 1.5 meters plus a small random factor (from 0

to about 30 centimeters forward or backward). The locations were

roughly on the centerline of the corridor, as the robot was not al-

lowed to drift far off the line. The eight images from each location

were taken with a 45-degree rotation between each. An example

is shown in Figure 3.6(b). Two of the systematically taken images

happened to be doorways and were not counted as miscellaneous.

In the new validation set of people, we expanded the generality

(breadth) of the class compared to the training set (recall that the

training data inherited from the holdout test had images of a single

person only), and also introduced a few deliberately distracting

non-class images. The new set was as follows:

• 3 images of person A (the training person) wearing a lightly

colored shirt as opposed to the dark shirt worn in the training

instances,

• 3 images of person B in a lab and 3 images of him in his office,

• 3 images of person C in the lab and 3 images of him in his

3.3 The main experiment 75

Figure 3.6: (a) A doorway and (b) a miscellaneous corridor scene.

Figure 3.7: Persons C and D.

office,

• 3 images of person D in her office,

• 3 images of person E leaning on a corridor wall, and

• 6 control images of some of the situations above —the test

person was replaced with an object (e.g., a chair) while the

circumstances were otherwise unaltered.

Two examples from the new set are shown in Figure 3.7.

In the new validation set of signs, we expanded the generality

of the class by introducing a new type of sign not present in the

training data (recall that the inherited training data had WAIT

76 3 Finding the root of the problem

Figure 3.8: The pair of signs.

Table 3.3: Set sizes in validation with altered sampling bias.
Type Size Characteristics

Doorways 19 no natural light sources,

completely separate physical

instances

Mostly Miscellaneous 78+2 systematic sampling

Mostly People 21+6 different people,

more varying backgrounds

Signs 15+15 another type of sign involved

signs only). The new type of signs had the text HALT on them. The

new set had 15 pairs of the signs WAIT and HALT placed against

various backgrounds. Circumstances were otherwise controlled so

that the letters on both types were of equal size, thickness, spacing,

and relative coverage of the background. A pair is shown in Figure

3.8.

The new validation sets are summarized in Table 3.3. The rows

correspond to class-specific validation sets. The second column

shows the size of each set, and the third summarizes the set-specific

details explained above.

From the viewpoint of training the classifiers, the SVMs respon-

sible for recognizing people and signs were trained with subcate-

gories of positive inputs. The SVM for people was trained with

images of one person while the validation set had images of five

3.3 The main experiment 77

people. Similarly, the SVM for signs was trained with one kind of

sign while the validation set had two kinds of signs. In addition,

we limited the availability of negative training inputs so that the

machines were trained with subcategories of negatives. The avail-

ability of negatives was limited as follows:

• From the training set of the SVM for doorways, we removed

all images of people. The remaining negative inputs were

signs and miscellaneous.

• From the training set of the SVM for people, we removed

doorways and signs, but added 10 more miscellaneous images

for balance. The negative inputs were all miscellaneous.

• From the training set of the SVM for signs, we removed door-

ways. The remaining negatives were people and miscella-

neous.

As can be seen in the above, the removals were not symmetric, i.e.,

there are no two machines such that their training sets would be

identical if the signs of the labels were reversed. In the case of the

SVM for doorways, we found out that we could not remove signs

from the negative inputs without noticeable effects on accuracy.

Based on the fact that these reduced training sets worked (as

apparent from the results further below), it can be speculated that

if the classes form clusters in the high-dimensional feature space,

then the class of miscellaneous images could be in the “middle” of

the other clusters. For example, a hyperplane that separates people

from miscellaneous also separates people from all clusters that are

on the opposing side of the hypothetical cluster of miscellaneous

images. Hence, it can be speculated that it may be possible to

add new classes without having to retrain the existing machines.

The whole set of new and old classes would have to “surround” the

miscellaneous class, distant from each other but close to the nearest

representatives of miscellaneous.

With the new validation sets, we got the results shown in Tables

3.4, 3.5, 3.6, and 3.7. The last row in each table represents the

worst result that could be possible using the proposed combination

rule for combining the outputs of the binary SVMs. We use these

worst-case estimates, because we did not use the rule when the

original experiments were made, and it is not possible to find out

78 3 Finding the root of the problem

Table 3.4: 19 doorway images.

SVM Mistakes Description

Doorways 3 false negatives, 84.21% correct

People 0 no false positives

Signs 0 no false positives

Combiner 3 84.21% correct

Table 3.5: 78 systematically photographed miscellaneous scenes and

2 doorways.

SVM Mistakes Description

Doorways 29 false positives, 63.75% correct

People 0 no false positives

Signs 4 false positives, 95% correct

Combiner ≤ 33 at least 58.75% correct

Table 3.6: 21 images of people and 6 control images.

SVM Mistakes Description

Doorways 2 false positives from 2 control images,

92.59% correct

People 4 1 false positive, 3 false negatives,

85.19% correct

Signs 0 no false positives

Combiner ≤ 6 at least 77.78% correct

Table 3.7: 30 images of signs in 15 pairs.

SVM Mistakes Description

Doorways 1 a false positive, 96.67% correctness

People 0 no false positives

Signs 3 false negatives, 90% correctness

Combiner ≤ 4 at least 86.67% correct

3.3 The main experiment 79

Figure 3.9: Two false doorways.

which individual SVM errors were actually simultaneous. The worst

of these worst-case estimates shows 58.75% correctness. Hence,

the average correctness of the combiner over the sets is higher.

Note that the average can be taken because the SVMs (and thus

the combiner) were the same in each test. In the new validation

sets the most probable class is miscellaneous, the probability of

which is 53.85%. Hence, the combiner appears to be better than

a fixed (chance-based) classifier that predicts the class with the

largest prior (in the validation set).

We analyzed the mistakes the doorway SVM made on miscel-

laneous images (Table 3.5). We found out that 4 of the mistakes

resulted from a situation that might be difficult to handle without

sophisticated (expensive) features and large training sets. These

four mistakes resulted from images that had a tall window on a

wall (for an example, see Figure 3.9 a).

Another 7 of the mistakes had the camera pointed toward an end

of the corridor (there being 20 such images in the set). The cause

of these mistakes might be that there are doorway-like frames on

the walls (for an example, see Figure 3.9 b).

Some of the remaining mistakes resulted from images that had a

closed door depicted in them. This is understandable because it is

likely that doorways are recognized by emphasizing the filters that

respond to door frames. The scenes that are visible through open

doorways do not have much in common, except that they are not

empty.

80 3 Finding the root of the problem

Figure 3.10: A falsely detected person.

The four mistakes made by the SVM detecting people (Table

3.6) are revealing. The false positive resulted from a control image

that had an overcoat resting on top of a chair (see Figure 3.10).

This might result from the SVM learning to emphasize filters that

respond to textures of clothing, i.e., there is no reason to assume

that detecting people works by detecting heads or faces exclusively.

Two of the false negatives occurred with person E. It is possible

that the problem could be corrected by expanding the training set

(recall that to investigate sampling bias we trained the SVM using

images of a single person only). The remaining false negative had

person C in the image, but quite far away from the camera —much

further away than the single person in the images of the training

set ever was.

The false negatives of signs (Table 3.7) all had the text HALT

on them. This is not surprising because the SVM was trained with

just WAIT signs as positive inputs. It is possible that the mistakes

are a consequence of the changes of sampling bias.

Validation with the robot

Encouraged by the results of the second test that indicated the

SVMs were tolerant of changes of the sampling bias, we performed

the third test with the robot. Tests with a robot would be some-

what uninteresting, if the classifiers could not affect decisions re-

3.3 The main experiment 81

lated to movement. If, however, the predictions of the classifiers

affect movement, then it is likely that the distribution of the im-

ages and labels changes. The pairs are no longer independent and

identically distributed over time as assumed by the SVMs. Equiva-

lently, we could say that we are still sampling from some universal

distribution, but the sampling bias is affected by the movements.

For example, if a navigation program ran the robot against a wall

and kept the robot there, then the distribution of the inputs would

be changed drastically compared to the distribution the training

set was drawn from.

We downloaded the trained SVMs of the second test to the robot

and experimented with some simple behaviors. Since Matlab was

no longer involved, it made sense to begin with efficiency measure-

ments. Using the now outdated computer (Pentium 233MHz) on

board the robot, each image took about 2 seconds to classify (in-

cluding all stages, such as the initial downsampling of the images).

Of the required time per image, the portion required by the

SVMs was negligible. Hence, as long as the set of SVMs uses the

same feature space and the number of classes is not huge, scalability

would not seem to be a problem from the viewpoint of efficiency. Of

course, having one SVM per class in a node results in the resource

losses of the node being roughly linear in the number of classes.

Because the constant part of the loss (preprocessing and features)

is relatively large, however, the effect of adding or subtracting half a

dozen classes is insignificant, unless the number of support vectors

per machine changes significantly.

One of the simple behaviors we tested was approaching a seen

target. As we mentioned in Section 3.3.2, the original inputs can be

either 640× 480 or 320× 240 pixels prior to downsampling them to

64×48 pixels. Because the SVMs were trained to recognize targets

of a certain size, e.g., people whose presence dominates the 64× 48

pixel images, it is necessary to process subimages of the 640 × 480

pixel images to detect targets that are far away.

To detect a target that is far away, the robot may sample subim-

ages of the images it sees. The subimages are transformed to 64×48

pixels and then classified. If a subimage seems to contain a tar-

get, the target can be approached. To avoid some false positives,

several overlapping subimages may be classified and subjected to

voting. When approaching a target, the presence of the target may

82 3 Finding the root of the problem

be checked again.

We noted that additional sonar inputs could make behaviors

such as approaching, or moving through doorways more efficient.

Because each SVM was trained to recognize images in which the

target dominates, it is useless to classify images in which there can

be no dominating targets. For example, if the sonars indicate that

there is nothing in front of the camera, then the robot cannot be

close to a doorway and it is useless to have the SVM responsible

for detecting doorways to process the whole input image.

Overall, the third test demonstrated that the accuracy of the

classifiers was not radically different from what was seen in the

second test, even if the sampling bias was different, more unpre-

dictable, and harder to characterize.

3.4 The additional experiments

In this section, we present additional experiments that complement

the main experiment of this chapter. In the main experiment we

showed that broad classes could be discriminated from each other

efficiently even if the classification machinery was trained with a

wrong sampling bias. One interesting form of bias was that ma-

chines were trained with subcategories of inputs. For example, at

the training stage the machines were exposed to one kind of sign

(WAIT signs) while testing involved two kinds of signs (WAIT and

HALT).

In the additional experiments presented here, we examine what

can be done after an image has been given a broad kind of a class

label by the root, e.g., it has been labeled as a sign. After the broad

category has been identified, subcategory level classification can

be attempted. This subcategory level classification can be either

harder or easier than classification on the broad level. Here we

focus on the easier kind of classification. Examples of the harder

kind follow in the next chapter.

Certain kinds of clear similarities between subcategories may

enable easier discrimination between these subcategories. For ex-

ample, if the objects of the subcategories are of similar color, this

similarity may enable adequate and fast segmentation, which in

turn may enable fast shape-based discrimination between the sub-

3.4 The additional experiments 83

categories. In other words, similarities of one kind may enable easier

perception of dissimilarities of another kind.

In the experiments below, we use SVMs to recognize artificial

landmarks that are essentially like the signs from the main exper-

iment of this chapter. The blank backgrounds and the uniform

foreground colors of these landmarks enable fast segmentation that

has sufficient quality for recognition. Further below, we increase the

difficulty of the landmarks by removing the requirement of blank

backgrounds and by relaxing the requirement of uniform object

colors. Thus, we can examine the accuracy of the SVMs when the

segmentation method is pushed to the breaking point.

3.4.1 Simple segmentation for specialists

Above, we noted that some similarities between subcategories may

enable fast segmentation with sufficient quality for discriminating

between the subcategories. Sufficient quality, of course, depends on

the classifiers used.

Given objects like the signs (artificial landmarks) that have uni-

formly colored foregrounds and backgrounds, it is reasonable to

make the tentative assumption that adjacent pixels of the same

color can be joined into segments that correspond quite directly to

whole projections of whole objects. In other words, segmentation

may be based on simple and well-known region-growing methods

[SHB99] such as that of Bruce, Balch and Veloso [BBV00].

In contrast, segmentation of various kinds of objects originating

from dissimilar higher-level categories may be expected to require

much more generic segmentation algorithms. Achieving generic,

reasonably fast segmentation of adequate quality is difficult be-

cause, in general, the segmentation problem cannot be reduced to

any simple criteria that could be evaluated separately for every dis-

joint part of the input image [SM00, Pal99]. The decisions related

to each pixel, i.e., whether it is a background or object pixel, may

be intertwined with the corresponding decisions of all the other pix-

els. As a result, somewhat generic segmentation algorithms tend to

be slow. For example, the famous normalized cuts approach of Shi

and Malik [SM00] takes segmentation as a graph-cutting problem

in which every pixel is considered in parallel. Solving the cutting

problem is then reduced to solving a generalized eigensystem, which

84 3 Finding the root of the problem

is slow if the input image is not very small. Even if there is enough

time to run a supposedly generic segmentation algorithm, there

seems to be no guarantees that individual segments correspond to

projections of whole objects.

In a sense, the framework of efficient classification discussed in

this dissertation is opposed to the classic view of segmentation al-

ways preceding recognition. Segmentation stages can be interleaved

with classification stages, and there is no reason why segmentation

algorithms should reside in the root node.

We use a trivial color-based segmentation method in which neigh-

boring pixels of similar color are joined into segments. The method

takes 640 × 480-pixel RGB images as input. The pixels that ap-

proximately match the known object foreground color are marked.

Using the marked images, adjacent marked pixels are joined into

segments. The initial segments are not refined in any manner – if

two segments do not touch, they remain separate segments. From

the list of segments, all segments consisting of fewer than 100 pix-

els are discarded. Finally, the method takes the largest segment

found, fits a bounding box around the segment and then resizes

the contents of the bounding box to a 32 × 32 matrix of bits. A

bit gets the value of one if the corresponding position is within the

segment and zero otherwise. Hence, pixel intensities and colors are

discarded and only the coarse shape of the largest segment remains

to represent the input image. Before classification, the 32 × 32 bi-

nary matrices are flattened into 1024-dimensional binary vectors

that become SVM inputs.

The segmentation method is certainly not sophisticated, but it

is fast and the coarseness of the selected segments allows us to see

how well SVMs perform when given less than perfect inputs.

3.4.2 Experiments with landmarks

In the first part of these experiments we collected images of differ-

ent flat landmarks which had simple uniform foregrounds and back-

grounds. The landmarks were created by cutting different letters

from red paper and then attaching them on sheets of blank white

paper. The sheets were attached to walls, doors, chairs, and miscel-

laneous indoor surfaces. Images of these landmarks were captured

under varying lighting conditions and from several viewing angles.

3.4 The additional experiments 85

Figure 3.11: Representative segments from the classes 8 and A

For capturing the images, we used the robot mentioned in the de-

scription of the main experiment of this chapter. We divided the

landmarks into nine classes.

In the preprocessing stage, all images were segmented as de-

scribed in the previous subsection. We gave each image a class

label, and the largest segment of each image inherited the label.

After preprocessing, we got labeled binary matrices each represent-

ing one segment of one input image. Some examples of typical

segments are shown in Figure 3.11. As illustrated, the largest seg-

ments could often represent the whole foreground.

Each of the nine classes was given a dedicated SVM that used the

second-degree polynomial kernel given in Equation (3.12). Hence,

the features subjected to linear classification correspond to products

of all pairs of the 1024 bits. In the kernel-induced feature space, the

feature vectors have approximately one million bits with a specific

bit getting the value of one if and only if the bit corresponds to a

pair of ones in the original bit matrix of the segment.

As in the main experiment of this chapter, each dedicated SVM

was trained and tested using one class as the source of positive

inputs and the rest of the classes as sources of negatives. As an

additional source of negatives, we used binary matrices of miscella-

neous segments originating from images that did not belong to any

of the proper classes. Below, these negatives are referred to as no

class inputs.

The classification and generalization ability of the SVMs was

measured using repeated five-fold cross-validation. Each SVM was

validated separately. Overall, we had about 20 to 40 images from

each class. The images from each class were randomly partitioned

into five folds, each containing equal numbers of images from the

class. During each of the five iterations (per machine) of the valida-

tion process, four folds were used for training and one for validation.

86 3 Finding the root of the problem

Table 3.8: Cross-validation results for single letter landmarks.
A B C D O P R S 8 –

A 97 0 0 0 0 0 0 0 0 2

B 0 94 0 0 0 0 0 0 1 0

C 0 0 100 0 0 0 0 0 0 0

D 0 0 0 98 0 0 0 0 0 0

O 0 0 0 0 99 0 0 0 0 0

P 0 0 0 0 0 95 0 0 0 0

R 0 0 0 0 0 0 99 0 0 8

S 0 0 0 0 0 0 0 97 0 0

8 0 0 0 0 0 0 0 0 92 0

Hence, each training set had about 16 to 32 training inputs per class

and each validation set had about 4 to 8 inputs per class. There-

fore, for each machine the positive inputs were always in the minor-

ity. The process of five-fold cross-validation was then repeated 20

times and the results were averaged over repetitions and folds. The

SVMs were built using the publicly available SvmFu implementa-

tion (http://fpn.mit.edu/SvmFu/#getting-download).

The averaged validation results are shown in Table 3.8. The rows

correspond to the class-specific SVMs and the columns correspond

to classes. The symbol − denotes the no class class, i.e., the set of

miscellaneous negative inputs. Each number indicates the averaged

percentage of inputs from a particular class getting a positive (+1)

response from a machine. For example, the first row shows that,

on the average, the machine trained to recognize A recognizes 97%

of inputs of class A and falsely recognizes 2% of non-class inputs as

A. In contrast, inputs of class B are not mistaken for inputs of class

A. As can be seen in the table, the results were very good. On the

other hand, the objects were quite easy.

In the second set of experiments, we increased the difficulty of the

landmarks. We used three-dimensional objects that were pictured

on non-uniform backgrounds (e.g., backgrounds such as that shown

in Figure 3.5 (b), the miscellaneous scene). The new objects had

large regions of uniform color, but because the objects were not flat

(except one), shading and different viewpoints had a larger impact

on the apparent colors and shapes of the segments. The new objects

3.4 The additional experiments 87

Figure 3.12: Segmentations of a) coffee cup, b) large can (side view),

c) small can (side view), d) football, and e) christmas elf (flat).

Figure 3.13: Segmentations of the football.

were harder for the simple segmentation method, resulting in more

spurious segments, i.e., the results looked more random.

In the new data, we had images of five objects: a dotted coffee

cup, a football, two different beverage cans of different sizes, and

one red christmas elf (flat). Some of the largest segments associ-

ated with these objects are shown in Figures 3.12 and 3.13. The

randomness of the segmentation results is apparent in Figure 3.13,

where we show the largest segments of different images of the same

football.

The cross-validation results with the new objects are shown in

Table 3.9. The validation process was identical to the one above,

Table 3.9: Cross-validation results for more difficult landmarks.
cup football large can small can elf –

cup 95 2 0 1 0 8

football 4 74 0 2 0 7

large can 0 0 95 0 0 8

small can 0 2 0 95 0 0

elf 0 0 0 0 97 0

88 3 Finding the root of the problem

i.e., we had 20 repetitions, 5 folds, and about 20 to 40 images from

each class per fold. The table is interpreted like Table 3.8 above.

For example, 8% of the no class inputs caused the cup SVM to

predict a false positive.

The latter results (Table 3.9) are clearly worse than the earlier

ones (Table 3.8). Together, the results illustrate that the segmen-

tation method starts to break down when the objects are no longer

flat. In Table 3.9, it can be seen that the SVMs dedicated to the

christmas elf (a flat object) outperform the others. The SVMs ded-

icated to side-views of cylindrical objects (cup, cans) seem moder-

ately successful, while the SVMs dedicated to the spherical object

(football) perform the worst.

From the viewpoint of the overall framework, we can discuss

what these results imply regarding the delegation process. When a

root node delegates an input image to a specialist, it is reasonable to

ask if the specialist classifier can reject the input as inappropriate,

i.e., outside the specialty of the specialist. In other words, it is

reasonable to ask what happens after an error in delegation.

The simple segmentation method seems to lead to good results

when the objects are flat signs, but the property of flatness does not

seem to be efficiently and reliably detectable from the appearance

of the segments. Although the average number of segments per

image was larger for some non-flat objects, using the number of

segments as a threshold to determine rejection seemed implausible.

When the number of (large) segments was larger than one, the

object could well be flat or not. With a threshold of one segment,

unnecessary rejections would result. Moreover, other superficial

(efficiently recognizable) characteristics of the segments, such as

size, did not seem to yield any better criteria for rejection.

Hence, at least in the current case, it seems that characteristics

of the segments cannot efficiently predict the reliability of segment-

based classification prior to executing the classification code. In

the general case it should not be assumed that rejection is possible

with anything less than the full resource loss of the node.

3.5 Summary 89

3.5 Summary

In this chapter we began to bridge the gap between theory and prac-

tice. The classification framework that we discuss involves many

design choices not covered by the theory from the previous chapter.

For example, given a classification problem, what kind of features

should be used in each node. In this chapter, we began to consider

what kind of features should be used in the root node.

A hypothesis was proposed, called the root feature selection hy-

pothesis. The hypothesis makes claims about what kind of features

should be used in a root node to avoid efficiency bottlenecks. The

claims have certain preconditions (assumptions), the purpose of

which is to limit the claims to a particular sort of classification

problems.

The most complex of these preconditions is that the target classes

have to be broad categories of everyday scenes or objects such that

no classes can be grouped together based on similarities of shape.

The most intuitive interpretation of that precondition is that the

classes simply have to look very different even in low resolution,

i.e., the classification problem must not be about subtle differences

of shape.

If the preconditions are met and the problem requires that the

root can process several images each second, the hypothesis claims

that there is a good chance of a solution based on global features

that are summations or other coarse statistics of local, possibly

oriented features. For example, a subtype of solutions may use

features resembling texture descriptors.

The hypothesis was inspired in part by recent research on the

ability of humans to recognize everyday scenes very rapidly. Some

of the research suggested that this ability could be explained by

models using global statistics (e.g., histograms) of local oriented

features (e.g., Gabor-filter responses). The evidence seemed to in-

dicate that at least broad (superordinate) categories of scenes could

be discriminated well.

The main experiment of this chapter satisfied the assumptions

and claims of the hypothesis. The root could classify about 2.5

images per second given inexpensive hardware. A small collection

of crude Gabor filters was used to compute global statistics (nor-

malized sums of local filter responses) of images. Feature vectors

90 3 Finding the root of the problem

containing these statistics were then classified with SVMs and the

results were measured.

Our training sets were small, but the classes were quite broad in

the sense of having large variability of content. In hierarchic classi-

fication, root nodes are expected to see this kind of broad classes.

Due to this, we paid special attention to the ability of the SVMs

to tolerate changes of sampling bias after training. This kind of

tolerance is also important when the classifiers can make decisions

(movement) affecting the sampling bias. We changed the sampling

bias in various ways, e.g., by changing lighting conditions, by train-

ing SVMs with subclass data only, and by omitting whole classes of

negative inputs in training. The results were still good and satis-

fied the assumptions and claims of the hypothesis, suggesting that

root nodes may not have to be trained with perfectly represen-

tative training sets given the current kind of crude features. In

other words, the crude features may be incapable of noticing cer-

tain changes of sampling bias. Yet they work on the broad-class

level because the classes are very distinct.

In the additional experiments we took a preliminary look at what

can be done after a root node determines that a target belongs to

a broad class. We examined the recognition of flat targets that can

be seen as subclasses of signs that consist of lone letters glued on

blank sheets of paper. The use of a rather elementary segmentation

method, able to work within the broad class of these targets, allowed

the targets to be recognized well.

We then examined a more difficult set of targets that were not

flat. This time the classification results were not good. We con-

trasted the different results gained from the two sets of targets. The

contrasted results and the characteristics of the extracted segments

suggested that it would be hard to undo delegation errors without

paying the full resource loss of a mistakenly selected specialist node.

CHAPTER 4

Organizing delegation

In the previous chapter, root nodes were examined in isolation.

The main question was how to prevent root nodes from becoming

computational bottlenecks that could prevent a delegation system

from achieving interesting trade-offs between accuracy and speed,

i.e., trade-offs enabling several images to be classified per second.

From now on, we take the system-level view, and do not examine

nodes in isolation.

4.1 The main questions

In this chapter we ask two questions, the first of which is essential

to determining how useful the delegation framework is in practice.

The second question is less essential, but interesting for those who

are willing to postpone classification until several images of an ob-

ject are acquired. Answers to both questions are contributed. In

addition, it will be shown that a particular test system satisfies

the assumptions and claims of the root feature selection hypothesis

(3.1.2).

4.1.1 The first question

The first question is that if one intends to build a classifier according

to the framework, then where the organization of the base classifier

nodes comes from. The organization of the nodes is the result of

choices such as how many base classifiers are involved, whether

91

92 4 Organizing delegation

some classes are grouped together, and which classifier delegates to

which. The organization was simply assumed to exist in Chapter

2. In Chapter 3 we examined what kind of features should be

used in the root of the organization, and the additional experiments

(Section 3.4) suggested that correcting delegation errors is hard.

Background

It can be supposed that the difficulty of the question is proportional

to the number of classes involved. With two-class problems, prior

research justifies the assumption that cascades (see Chapter 2) are

adequate. The assumption works for interesting efficiency-sensitive

problems such as face detection, as seen by Viola and Jones [VJ01]

and Elad, Hel-Or and Keshet [EHOK02]. In cascades, delegation

may occur in the order determined by the complexities of the nodes.

When there are more than two classes, cascades are not ade-

quate. Cascades do not readily allow the use of specialist nodes that

are good at discriminating between classes only within some lim-

ited group or subset of classes. We use the terms subset and group

somewhat interchangeably, because while the former term is correct

technically, the latter conveys the idea that a subset is created ac-

cording to some grouping criterion. The existence of specialists may

result from the use of fairly specialized features or segmentation al-

gorithms, such as those seen in the end of the previous chapter. In

a cascade, a specialist would be positioned in the head (root), in

the tail, or in the middle. The head may be excluded immediately,

and the tail may be excluded if we consider the possibility of at

least two distinct specialists. In the middle, specialists would be

given inputs outside their specialty. Recalling that rejection seems

unlikely to be cheap (Section 3.4), it seems that in the best of cases

these inputs would be forwarded after the full resource loss of the

specialist was paid.

When the number of classes increases, it may be expected that

the difficulty of organization increases as well because the number

of potential hierarchic class groups and trees is larger. For now,

we take the approach that a tree reflects both a hierarchy of class

groups and the runtime process of gradual exclusion of classes until

predictions can be made confidently.

Based on the above, it seems that the question of organizing a

4.1 The main questions 93

tree of classifier nodes in the context of the current framework is

not simple, but is essential and worthy of study. Previous research

has established that cascades work efficiently for problems involving

two classes, but the results do not generalize to problems involving

more classes.

Two approaches to organization

Given that the question of organization is worthy of study, it is

natural to ask when an organization of nodes should be designed,

created, or learned from training data. More precisely, which comes

first: the overall set of allowed features and image processing prim-

itives, or the organization of the nodes?

If the features and image processing primitives are known first,

then the requirement of encapsulation dictates that the features

are divided into groups that become distinct feature spaces. These

feature spaces may then be roughly ordered by complexity, i.e.,

how much time it takes to map an input image to a point in a

feature space. This ordering should clearly offer some constraints

for organizing a tree of nodes, each of which has to use at least

one feature space. It seems possible in principle that the remaining

unknowns of the organization could be learned from data using a

multi-cue decision tree learning algorithm resembling that of Leibe

and Schiele [LS03]. The algorithm would have to be modified, how-

ever, because their version optimizes accuracy only, and thus has

no apparent means to avoid generating inefficient delegation paths

that do not make sense in the current framework.

For brevity, we say that the process of Leibe and Schiele char-

acterizes the feature-centered approach, in which an algorithm is

given a set of features and image processing primitives plus a set

of labeled images. The algorithm then generates the full classifier,

including the nodes and their organization, without any additional

input or human assistance. All mistakes are assumed equal.

Here in this chapter we take the approach that the organization

of the nodes comes first, i.e., we attempt to build a tree-like hierar-

chy of nodes prior to determining what feature spaces and classifi-

cation algorithms the nodes are allowed to use. For brevity, we call

this the organization-centered approach. The term is not intended

to mean that an optimal organization of the nodes somehow trivial-

94 4 Organizing delegation

izes the feature selection and node classifier learning problems. The

approach, however, leads to constraints that are imposed on classi-

fier learning, and these constraints are stricter than the constraints

imposed by the feature-centered approach. In the learning of clas-

sifiers, constraints that limit the capacity of the learning algorithm

to adapt to inputs may lead to a smaller risk of overfitting, and

generally lead to smaller complexity terms in theoretical mistake

loss bounds (see Equation (2.47) in Section 2.3.5 for an example of

simple loss bounds).

Organization and hierarchic mistake losses

The organization-centered approach may allow the organization of

the nodes to reflect hierarchic mistake losses inherent to a classi-

fication problem. For example, it may be preferable to confuse a

horse with a cow rather than with an apple because horses and cows

are animals and have similar shapes from the point of view of the

user, i.e., the point of view that should define the losses. Hierarchic

mistake losses have been used in document classification problems,

in which the number of classes is often large. For example, Dekel,

Keshet and Singer [DKS04] use a tree of classes and path lengths

within the tree to encode mistake losses and derive loss bounds.

Recall that in the delegation framework all inputs have a path

through the tree of nodes. The possibility of backtracking is ex-

cluded because we do not expect benefits from that, e.g., the re-

sults in Section 3.4 suggested that efficient backtracking is difficult.

Each non-leaf node is the root of a subtree, which is in turn associ-

ated with the subset of labels that the subtree can predict. When

we follow a path, we essentially take subsets of these subsets until

a single label remains and that label determines the most precise

prediction. If hierarchic mistake losses are modeled, then the whole

path should be considered to be the prediction. From the path we

can take the smallest subset that contains the correct label, and the

loss can be proportional to the size and content of that subset. In

terms of the background theory, the subset is evaluated using a loss

function that has the form L(0+,1) from Definition (2.2). For ex-

ample, if the correct answer is horse, then the subset {horse, cow}
could be preferred over {horse, cow, dog} and {horse, apple}. The

subsets may, of course, be given descriptive names, e.g., animals.

4.1 The main questions 95

With the organization-centered approach we have freedom to en-

code hierarchic losses in the organization of the tree prior to learn-

ing classifiers and choosing features. With the feature-centered ap-

proach, the learning algorithm responsible for creating the tree must

be able to use the desired kind of hierarchic mistake loss from the

onset. Otherwise, there is little reason to expect that the learned

tree is good in terms of the loss. Typical algorithms for learning

trees assume that all mistakes are equal, e.g., like the algorithm

used by Leibe and Schiele, and are thus unable to use hierarchic

losses.

It can also be claimed that if the learning algorithm begins to

take hierarchic losses into account, the resulting approach is not

purely feature-centered or organization-centered. A hierarchic loss

essentially encodes a tree-like structure that can be made explicit

by iteratively grouping together classes the confusion of which costs

the least. Hence there is an organization that exists prior to and

independent of feature selection, and that organization must deter-

mine the organization of the nodes to a large degree.

Coarse-to-fine organization of classification

When one takes the approach that organization of the nodes is

determined prior to feature selection, there are multiple ways to

proceed. For example, if hierarchic mistake losses are known by

numeric value, then one might create internal nodes by grouping

together classes according to how much confusions cost within a

group. The desired result would be that the internal nodes closest

to the root distinguish between class groups the confusion of which

costs the most, and that the nodes furthest from the root distinguish

between smaller class groups the confusion of which costs the least.

In other words, the desired result could be called coarse-to-fine

classification.

The desirability of this result, in the current framework, is based

on one assumption, which is that the mistake loss for confusing two

classes is inversely proportional to the computational cost of a node

that can distinguish them reliably. If the assumption holds, then

the coarse-to-fine strategy of classification coincides with delegation

proceeding from computationally lighter nodes to heavier nodes.

Recall that this order of proceeding is desirable because heavy nodes

96 4 Organizing delegation

close to the root increase the classification times of many inputs.

The assumption is reasonable when the purpose of the system

is to imitate human vision in everyday circumstances, i.e., mini-

mize the number of errors that human users would find extremely

stupid. In other words, the mistake losses would be smaller for

“understandable” errors a normal person could make and larger for

errors that tend to ruin the user experience. For example, if an im-

age retrieval application retrieves an image of a parrot when asked

to retrieve images of cars, then the user may abandon the applica-

tion. The assumption is reasonable because it seems that classes

that look “obviously” and utterly different to human observers can

be distinguished with computationally cheap features. For example,

in Chapter 3 we discussed research according to which the human

ability to recognize broad classes of scenes could be explained with

models that use coarse and quickly computable global features. On

the other hand, if the differences between classes within some subset

look subtle even to a human observer, then algorithmic discrimi-

nation may require careful segmentation for shape extraction and

a large collection of prototype inputs for classification. It is inef-

ficient to apply this careful segmentation if it is unlikely that the

target belongs to such a subset. Segmentation may also fail without

the appearance constraints implied by the subset membership (see

Section 3.4).

In the experiments of this chapter we do not assume that the

numeric values of hierarchic mistake losses are known a priori or

that the classifiers we employ are capable of handling arbitrary

loss functions. Rather, a hierarchy (tree) of classes is extracted

using visual queries posed to human observers. The replies are

subjected to statistical analysis that results in a tree being built.

The tree represents a coarse-to-fine organization of classes, and the

distance of two nodes in the tree is intended to be proportional to

the perceived dissimilarity of the classes that the nodes represent.

Hence, if we assume that confusing highly dissimilar classes implies

larger loss, i.e., the error seems especially stupid to a human user,

then the tree also represents a loss function that was not known a

priori.

With the tree of classes organized in a coarse-to-fine manner, it

can then be tested whether features can be selected and computa-

tional nodes can be placed on the tree so that delegation works.

4.1 The main questions 97

Delegation is considered to work if the delegation mechanism en-

ables reasonable trade-offs between accuracy and speed and there

are no significant bottlenecks. Regarding root node bottlenecks, we

also get to see that the results satisfy the assumptions and claims

of the root feature selection hypothesis from Chapter 3.

The experimental results provide an answer to the first question

of this chapter, i.e., where the organization of the nodes comes from.

The results allow one to argue in favor of the organization-centered

approach, i.e., organization is extracted prior to features. More

precisely, it is demonstrated that the coarse-to-fine organization of

classes works efficiently with the delegation framework, and such an

organization can be extracted using elementary similarity queries

that capture the insight of human observers.

4.1.2 The second question

The second question investigated in this chapter is whether pre-

dictions can be combined efficiently over multiple views of objects

under motion. By combination over multiple views we mean that

the classifier is shown a sequence of at least two different images

of the same object, and the classifier then outputs a single predic-

tion for the whole sequence. The classifier has to know, or deduce,

whether the images in a sequence represent the same object, and it

should be required that the sequence-specific predictions are bet-

ter than individual predictions. The sequence-specific prediction is

considered better than a sequence of individual predictions if the

total loss over the sequence is smaller when the individually pre-

dicted labels are replaced with the predicted label of the sequence.

The total loss includes both mistakes and resource losses.

It is necessary to emphasize that when multiple views are com-

bined the resource losses cannot be directly proportional to real

time measured from the instant the first image in the sequence is

acquired to the instant the last image in the sequence has been

processed. We cannot speed up the motion of objects and it would

be pointless to acquire a sequence of nearly identical images at

high frame rates. The resource losses can, however, be directly pro-

portional to the time spent on the classification task. We assume

that the time spent on classifying a sequence is distributed evenly

over the time intervals between consecutive images of the sequence.

98 4 Organizing delegation

Hence, the less time is spent, the more time there is for the CPU to

do something else between images. What else the CPU does is, of

course, application dependent. For example, in robotic applications

the CPU could concentrate on collision avoidance using sonar data.

The reason why the combination problem is interesting is that

some individual views may be unrecognizable, or corrupted by noise.

Because there are views of different quality, it is reasonable to in-

vestigate if there are combination strategies that reduce the total

loss. In terms of efficiency, it seems best to prefer combination

strategies that distribute the computational effort evenly over the

time intervals between images. This minimizes the wait between

acquiring the last image of the sequence and getting the prediction.

We investigate simple heuristic voting strategies for combining

individual predictions. An individual prediction is represented as

a ranked list of class labels. Each image is at first classified sep-

arately, and the resulting sequence of ranked lists is mapped to

a single class label. This approach ensures that the classification

effort is distributed evenly over time, but that each individual pre-

diction provides more information than just a single label. Because

the voting heuristics are computationally trivial compared to the

classification of the individual images, the resource loss of voting

may be considered zero. In addition, because individual predictions

exist as lists of class labels, nothing prevents the classification of

subsequences.

The empirical investigation provides an answer to the second

question posed in this chapter, i.e., can predictions be combined

efficiently over multiple views. The results allow one to argue that

individual predictions can be combined efficiently using simple vot-

ing heuristics, the input of which comes from classifiers that use

coarse-to-fine organization of classes and produce ranked lists of

labels.

4.2 Overview of the experiments

The questions posed in this chapter should be answered empirically.

The reason is that satisfactory theoretical answers are not apparent.

To get empirical results, a test system is required.

We proceed in two stages. First we extract the organization, i.e.,

4.2 Overview of the experiments 99

the tree of nodes. The tree is the basis of our delegation rules π

in terms of Section 2.1. Second, after the organization of the tree

is extracted, the nodes are assigned features and classifiers. After

training, the system and nodes behave as the generic tree model of

Chapter 2, Section 2.1.3. Classification proceeds in a coarse-to-fine

manner, narrowing down the subset of classes the target object is

likely to belong to. Any node may, if confident enough, narrow the

subset down to the size of one and terminate the delegation process.

Hence, both internal nodes and leaves can terminate in contrast to

decision trees.

The subsets of classes that the internal nodes represent are called

superclasses and are given their own descriptive labels. These su-

perclasses are analogous to superordinate categories that were dis-

cussed in Chapter 3 in the context of the root feature selection

hypothesis. The reason is that the organization of the tree is ex-

tracted from queries measuring human similarity judgments. It is

also demonstrated that the root node of the test system satisfies

the assumptions and claims of the hypothesis, and the system has

negligible bottlenecks.

In terms of Chapter 2, the fully trained test system gives a heuris-

tic solution to many problems that are formulated as in Equations

(2.6) and (2.11). The test system can do this because the realized

trade-off between mistake losses (ML) and resource losses (RL) is

controlled by a simple parameter that can be changed after train-

ing the system. Hence, if we change the problem by changing the

desired weighting of ML versus RL, we can change the solution

accordingly without training again. The parameter affects the ten-

dency of the node classifiers to overestimate their confidence, e.g.,

deliberate overconfidence may be chosen to decrease the consump-

tion of time in exchange for an increased risk of mistakes.

Because the test system fits the generic tree model, for which

related research was already overviewed in Section 2.2.2 of Chap-

ter 2, we do not repeat that overview here. For example, axis-

parallel decision trees [Qui93, Mit97, LS03] and perceptron trees

[Utg89, MKS94, BM92, BM94a, BM94b, BFOS84] resemble the

test system because they use delegation, but hierarchical mixtures

of experts models [JJ94] do not because they do not use delega-

tion. It was mentioned that Viola and Jones [JV03] have addressed

the problem of multi-view face detection by dividing the class of

100 4 Organizing delegation

faces into pose-specific subclasses, which amounts to taking the

organization-centered approach in terms of the current chapter, but

their approach does not reach superordinate categories.

The test system requires a classification problem and data for

learning and performance measurements. The first question re-

quires a multi-class problem, and the larger the number of classes

the better. The second question requires that object-specific se-

quences of views are available. In this study, a classification prob-

lem of eight (basic) classes was chosen, which seems to be large

enough a number for non-trivial organizations to appear.

The publicly available dataset ETH80 1 was chosen. The dataset

was used by Leibe and Schiele in their multi-cue decision tree ex-

periments presented in [LS03]. The dataset allows the controlled

rotation of objects, which means that sequences of views are avail-

able as required. By choosing this dataset we also allow accuracy

comparisons between our results and those of Leibe and Schiele.

Because they do not measure classification speed and because we

did not duplicate their system, we cannot compare speeds. It is not

clear if and how that system can be modified to make parameterized

trade-offs between accuracy and speed.

Although the dataset is mostly satisfactory, it has one problem

worth correcting. In the original dataset the problem of segmenta-

tion is abstracted away by the object images having almost feature-

less backgrounds and having perfect segmentation masks available

a priori. The assumption that segmentation and recognition can be

treated as independent subtasks is questionable. In Section 3.4.1

of Chapter 3 we touched on the subject of generic versus specialist

segmentation and noted that the latter kind should be faster and

more reliable. Even if we assumed that treating segmentation and

recognition as independent problems was acceptable in the context

of research focused on classification accuracy only, it is unaccept-

able in the context of efficient classification. Good segmentation

costs time.

To correct the problem, a modified version of the dataset was

created. In the modified version, the plain backgrounds were re-

placed by images depicting real-world environments. The a priori

1http://www.vision.ethz.ch/projects/categorization/

eth80-cropped256.tgz

4.3 Extracting hierarchic class relationships using visual queries101

segmentation masks were then made unavailable to the algorithms.

The classification results are reported for both the modified and

the original datasets. In the case of the original dataset, we still

refuse to consider the use of the segmentation masks in classifica-

tion, fully aware that this could put us at a disadvantage when our

results (accuracy) are compared to those of Leibe and Schiele.

The modifications also have a beneficial effect from the point

of view of the root feature selection hypothesis. The replacement

background of each object image is independent of the object class

and object appearance. Hence, it is clear that the root node is

recognizing objects in spite of the distracting backgrounds – not

with the help of the backgrounds. In the previous chapter the

hypothesis was examined using data in which the backgrounds may

have helped. Therefore, the experiments in the current chapter

complement those of the previous one. It can be demonstrated

that helpful backgrounds are not necessary, i.e., the root does not

need contextual features to succeed in object recognition at the

superordinate level. In the real world, of course, objects are not

independent of their backgrounds. The characteristic backgrounds

may sometimes provide strong contextual cues for recognizing an

object, or at least for excluding improbable objects.

4.3 Extracting hierarchic class relationships

using visual queries

4.3.1 Class similarities and hierarchies

When there are more than two classes, some classes may appear to

be more similar than others. More precisely, we may take an image

(view) from class A and note that a very similar image can be found

in class B. If this happens with many images taken from class A,

it can be argued that A overall seems to be similar to some subset

of B. If the relationship is symmetric, then the classes may be

considered similar. Classes A and B are assumed mutually exclusive

by definition, e.g., we may be comparing apples to oranges. These

perceived similarities depend on the measure used. On one hand,

while the measures used by human observers are unknown, they

should not be assumed arbitrary, random or constantly changing.

102 4 Organizing delegation

On the other hand, it is unreasonable to assume that human beings

use some unique and fixed measure [Pal99]. Here, we try to see what

kind of similarity judgments can be extracted from typical human

observers and we try to see if those judgments are consistent.

Because some pairs of classes may be more similar than other

pairs, it is possible to construct groups and hierarchies based on

similarity. For the sake of usefulness, some care should be taken

regarding what kind of perceived similarities should be allowed.

Perceived similarity is a blend of physically based visual similarity

of the objects and other factors, such as associating the objects

by semantics [Pal99, MR01]. By semantics we mean things that

depend on the context, the known function of the objects, and

details that are known but not visible in the images.

For example, suppose that a human observer is shown a few

coarse but recognizable images of a bus, a sports car, and a train.

Next, suppose that after the images are withdrawn from sight, we

ask which pair was more similar – the bus and the sports car or the

bus and the train. The observer may answer that the bus and the

sports car were more similar, even if they had few visible features

in common and the bus and the train shared an almost identical

box-like profile. Potential reasons may include that the observer is

comparing the objects (not necessarily the image instances) in mem-

ory, cars and buses are commonly seen traveling on roads (context

and function), and both vehicles stand on rubber wheels (known

detail, but not distinguishable in the images).

Trying to limit the impact of semantics seems reasonable when

the primary purpose of the constructed hierarchy is to make classifi-

cation efficient on a computer. Visually similar classes are grouped

together because they may be assumed hard to tell apart using

generic and fast features, i.e., the coarse shapes, colors, and tex-

tures may be the same. Hence, discriminating between visually

similar classes may require specialist procedures, features, and more

time. The specialist procedures may take advantage of the common

within-group characteristics, i.e., specialized segmentation methods

may be used for more precise segmentation that allows subtle as-

pects of shape to be used for discrimination. If the hierarchy is

based on semantics, we may end up grouping together classes that

are not at all difficult to tell apart using generic and fast features,

and the resulting hierarchy cannot serve in efficient classification.

4.3 Extracting hierarchic class relationships using visual queries103

For the sake of intuitiveness, we assign labels to the class groups,

i.e., subsets of classes that are extracted. These labels are like class

labels with the difference that the group labels are not present in

the original dataset. Given the labels the groups can be considered

new classes that are not mutually exclusive with the original classes.

The new classes are called superclasses.

A class is directly associated with at most one superclass, and

superclasses may themselves have other superclasses. If a class is

associated (linked) with a superclass, we say that the superclass

covers the class. Covering is considered transitive. Covered classes

may also be called subclasses. In a complete hierarchy (tree) su-

perclasses become internal nodes. When the internal nodes are

assigned classifiers, the superclasses are assigned possibly special-

ized procedures and features that are responsible for discriminat-

ing between the covered alternatives. Classification proceeds, in a

coarse-to-fine manner, from predicting superclass labels to predict-

ing precise labels.

When the basic classes, which are present in the original dataset,

correspond to basic level categories of objects or scenes (recall Chap-

ter 3), the superclasses correspond to superordinate-level categories.

These terms are appropriate and the correspondences hold as long

as the hierarchy is based on human similarity judgments. If a hi-

erarchy is not based on human similarity judgments, classes and

superclasses should be kept separate from basic and superordinate

categories in order to avoid confusion with cognitive science.

The basic idea of our approach may be contrasted with previous

research. Because the hierarchies are tree-like, there is a certain

resemblance to decision trees [Qui93, Mit97]. The hierarchy of de-

cision trees, however, is learned entirely from labeled multi-class

data based on (surrogates of) 0/1 loss. The learning process as-

sumes that a finite set of features is available a priori. The image

pixels cannot serve as (trivial) features, because typical top-down

learning of decision trees greedily assigns a single feature to a node,

i.e., the resulting tree would simply test as many pixels as there

are nodes on a path. With pixel features, the tree would have to

be enormously complex to learn any image transformation invari-

ances. Our tree, in contrast, is intended to be extracted from query

responses prior to there being a set of non-trivial features avail-

able. The tree then represents domain knowledge that is used to

104 4 Organizing delegation

limit the degrees of freedom in classifier learning. Using the terms

from the introduction of this chapter, we can say that decision trees

take the feature-centered approach while our experiments take the

organization-centered approach. In other words, a decision tree de-

fines a solution to a classification problem, while our tree defines the

structure of the problem which is the first step towards a solution.

4.3.2 A procedure for discovering a class hierarchy

At first, it could seem straightforward to simply dictate the super-

classes and their labels based on the labels known to be present

in the dataset. This amounts to abstract introspection, i.e., asking

the question “What would I see in the data?” instead of “What

do I see in the data?”. On second thought, the classifiers will be

trained using one portion of a specific dataset and evaluated using

separate but similar data. It seems better to create superclasses

that depend on the data, because these superclasses will have the

potential to significantly affect the data-dependent learning process

and subsequent evaluation. Our intent is to see if human similarity

judgments can be used to form a hierarchy useful in classification

– not to see if self-predicted similarity judgments coincide with the

actual given a specific dataset.

Given the above, actual data has to be shown to test subjects.

Because there are different views of different individual objects in

different poses, showing a lot of data to several subjects seems

preferable. Again, it could seem straightforward to simply ask the

subjects to narrate what kind of similarities they remember seeing,

or even ask them to draw a class hierarchy on paper. As noted

earlier, this would amount to the subjects comparing the objects

in memory, i.e., comparisons would not necessarily be limited to

the views seen. We would also be unable to see details, such as the

consistency of the judgments over different object instances and

views of the same class. Further, we would not see if the judgments

changed in the course of the experiment.

A specific procedure was designed for constructing class hierar-

chies. In executing the procedure, the test subjects are given visual

similarity queries, each of which involves simple multiple choice.

First, the procedure is designed to limit the influence of seman-

tics. Each choice is made based on the views visible on a computer

4.3 Extracting hierarchic class relationships using visual queries105

screen, which should minimize the need to compare objects in mem-

ory. Second, the procedure is capable of revealing inconsistencies

and changes in judgment. Each choice, from the first to the last,

is recorded for analysis. Third, if mistake losses are inversely pro-

portional to visual similarity, then the procedure may be seen as a

means for extracting a reasonable (mistake) loss function from the

test subjects, i.e., the relative severity of different errors.

In each query, the subject is presented with two pairs of images

representing objects of interest from a dataset. The object instances

are drawn randomly from three distinct random classes present in

the original dataset. We denote a random triplet of classes by the

labels of the classes, i.e., (ci, cj , ck) where i 6= j, j 6= k and i 6= k.

Using a random triplet of classes, we take one random object in-

stance and view from each class of the triplet. We get a triplet of

images, denoted (Ici,m, Icj ,n, Ick ,l), where Ici,m denotes the mth im-

age from class ci and the subscripts of the two other images I are in-

terpreted correspondingly. Two pairs, (Ici,m, Icj ,n) and (Icj ,n, Ick,l)

are shown to the test subject. The two pairs have one image, Icj ,n,

in common to make visual comparisons meaningful.

When shown two pairs of images, the subject is queried and then

rapidly chooses which one of the pairs is more similar. If uncertain,

the subject can abstain. More precisely, a query has three pos-

sible outcomes, sim(ci, cj) > sim(cj , ck), sim(ci, cj) < sim(cj , ck),

and uncertain, where sim(ci, cj) > sim(cj , ck) denotes that an

image of cj is more similar to an image of ci than to an image

of ck. We assume that sim(ci, cj) = sim(cj , ci) for all i and j.

When the query process is repeated using different random triplets

(Ici,m, Icj ,n, Ick,l), we eventually get a frequency distribution of the

three possible outcomes for each unordered pair of unordered class

pairs {{ci, cj}, {cj , ck}}.
For each pair {{ci, cj}, {cj , ck}}, the distribution of the three

outcomes is evaluated against the null hypothesis that the subject

did not consistently favor any choice over the others. We use the

χ2-score:

χ2 =
3
∑

p=1

(fp − ep)
2

ep
, (4.1)

where fp are the observed frequencies and ep are the expected fre-

quencies of the outcomes. The expected frequencies are calculated

106 4 Organizing delegation

by assuming that the null hypothesis is true, i.e., the values ep are

all equal because the uniform distribution is assumed. Note that the

frequency distributions contain the unnormalized frequency counts.

Sample size affects the significance of the score.

If the score (4.1) is significant at the 95% level of confidence, the

null hypothesis is rejected, and the pair {{ci, cj}, {cj , ck}} along

with its distribution of outcomes are eligible for further processing.

If a pair is eligible, we first check which one of the three outcomes

dominates. If the outcome uncertain dominates, i.e., the frequency

of this outcome is the largest of the three, then the pair is elimi-

nated.

After elimination we have pairs of the type {{ci, cj}, {cj , ck}}
such that the null hypothesis was rejected for each pair and either

sim(ci, cj) > sim(cj , ck) or sim(ci, cj) < sim(cj , ck) dominated the

distribution of each pair. Each remaining distribution is then sub-

jected to a binomial test of confidence, the purpose of which is to

see if the dominating outcome is significant at the 95% level. The

inequality relations of the dominating and significant outcomes are

collected and used to create a set S. If sim(ci, cj) > sim(cj , ck) is

dominating and significant, we put the ordered pair ({ci, cj}, {cj , ck})
in S. If sim(ci, cj) < sim(cj , ck) is dominating and significant, we

put the ordered pair ({ck, cj}, {cj , ci}) in S.

Having the set S, we use the ordered pairs to build a directed

graph G = (V, E). The vertices in V are the unordered pairs of

classes, e.g., {ci, cj}, from S. Each of the directed edges in E points

from a more similar pair of classes towards a less similar pair of

classes. More precisely,

V = {{ci, cj} ∈ left(S) ∪ right(S)}, (4.2)

E = {({ci, cj}, {cj , ck}) ∈ S}, (4.3)

where the sets left(S), right(S) denote the sets of unordered pairs

appearing on the left- and right-hand sides of the ordered pairs in

S. For example, if ({ci, cj}, {cj , ck}) ∈ S, then {ci, cj} ∈ left(S) and

{cj , ck} ∈ right(S). Note that an edge always connects two pairs of

classes such that the pairs have one class in common.

Using G as a constraint, we estimate a simple similarity mapping,

sim : V → R ∪ {NaN},

4.3 Extracting hierarchic class relationships using visual queries107

such that sim indicates class similarity in a manner that is consis-

tent with the significant outcomes of the queries. Here, the term

NaN (Not a Number) is included to indicate the possibility that

a proper numeric value has not yet been assigned to some pair

v = {ci, cj} ∈ V. The mapping sim is constructed by an iterative

algorithm. In the algorithm, we use the shorthand Parents(v),

which is defined as Parents(v) = {w ∈ V|(w, v) ∈ E}. Initially, we

assign sim(v) = NaN for every v ∈ V. The algorithm is as follows:

1. Select one vertex v ∈ V such that currently sim(v) = NaN

and all w ∈ Parents(v) have already been assigned a value,

i.e., sim(w) 6= NaN . If no such v exists, then stop.

2. If Parents(v) is not empty, assign

sim(v)← min{sim(w)|w ∈ Parents(v)} − 1.

Else, assign sim(v)← |V| − 1.

3. Repeat from step 1.

It is easy to see that the above algorithm stops if G has no

directed cycles. The key observation is that every finite directed

acyclic graph has at least one source, i.e., a vertex that does not have

incoming edges. If the algorithm could stop before assigning each

vertex a value, then G would have a proper non-empty subgraph

such that each vertex in the subgraph would have sim(v) = NaN

and at least one parent in the same subgraph. When cut off from

G, the subgraph would be a directed acyclic graph without any

sources – a contradiction. If G is acyclic, the algorithm stops after

each v ∈ V has been assigned a number. If directed cycles are

detected in G, then the algorithm should not be run in the first

place, because the queried subjects clearly have non-random but

inconsistent views of similarity. Possible causes may include that

the subjects have revised their perceptions of similarity in the course

of the experiment.

After stopping, the values of sim(v) are normalized to the inter-

val [0, 1]. Finally, an undirected graph G2 = (V2, E2) is constructed

so that

V2 = {ci ∈ Classes}, (4.4)

E2 = {{ci, cj}|sim(ci, cj) > Th}, (4.5)

108 4 Organizing delegation

where Classes denotes the original classes and the connected com-

ponents of the graph define the superclasses for the given threshold

value of Th. Two vertices are in the same connected component if

and only if there is a path of edges between them.

By increasing the threshold Th, the connected components be-

come smaller and fewer original classes are covered by the super-

classes. Hence, a tree-like hierarchy is discovered by starting from

a small Th and then increasing Th until the connected components

have just one vertex each, at which point the leaves of the tree are

discovered. Examples related to the discovery process can be found

in Section 4.5.2 and Figure 4.6.

4.4 Classification

After a hierarchy has been extracted and encoded as a tree, we

attach a classification system to the tree. The nodes of the tree

must be assigned features and classifiers, and the delegation rules

must be specified.

In terms of Chapter 2, the classification system progf implement-

ing the classification function f consists of base classifiers progf,k,

k ∈ {1, . . . ,M}, delegation rules π, and regions Bk of the image

space. From (2.7), recall that the kth base classifier declares it is

confident in classifying the input image x if and only if x ∈ Bk.

Internally, a base classifier may use any suitable feature mappings

and similarity metrics.

Each input image x goes first to the root base classifier (progf,1)

of the system. If x 6∈ B1, the input is delegated down the tree to

specialist base classifiers. Each specialist progf,k (non-root, k 6= 1)

activated by the input x may in turn declare lack of confidence

(if x 6∈ Bk), in which case x is delegated further down the tree

to sub-specialists. In principle, inputs may be delegated to any

sub-specialist that is further down – not just those that are imme-

diately below the currently activated base classifier. Delegation is

irreversible, i.e., inputs are never delegated up towards the root,

because delegation errors are considered hard to detect and correct

(recall Section 3.4).

4.4 Classification 109

4.4.1 Assigning classifiers to nodes

The root and each internal node of the tree are assigned base classi-

fiers, each of which includes a feature space and a classifier. Recall

(Chapter 2) that a base classifier does its own preprocessing and

the computational cost, i.e., the resource loss, of a base classifier in-

cludes the cost of computing the feature values as well as classifica-

tion. Each such node also corresponds directly to a superclass that

covers at least two distinct classes present in the unmodified prob-

lem data, i.e., classes that correspond to leaf nodes. Base classifiers

are not assigned to leaf nodes because the classes that correspond

to leaf nodes have no subclasses.

For brevity, we call the internal nodes near the root the top nodes.

Correspondingly, the internal nodes near the leaves are called the

bottom nodes. In general, delegation proceeds from the computa-

tionally lighter top nodes towards the heavier bottom nodes. This

order of proceeding is desirable because heavy top nodes would

increase the classification times of many inputs. Because classifi-

cation proceeds in a coarse-to-fine manner, excluding classes that

are not covered by the superclass that corresponds to the activated

node, the bottom nodes discriminate between fewer classes than the

top nodes. In other words, the bottom nodes specialize on narrow

subproblems.

Because the bottom nodes are allowed to consume more time and

they solve subproblems, it is reasonable to expect that the bottom

nodes should make fewer mistakes than the top nodes. In addition,

if the organization of the tree reflects hierarchic mistake losses in

the manner of [DKS04], the mistakes of bottom nodes may be less

serious.

In our model, each base classifier is trained separately using a

sufficient subset of the training set. The sufficient subset is deter-

mined by the superclass to which the node of the base classifier

corresponds to. An input in the training set is in the sufficient sub-

set if and only if the class of the input is covered by the superclass.

For example, the root node superclass covers every class transitively

and the sufficient subset of the root is the whole training set. Each

input in a sufficient subset is augmented so that the labels of the

covered superclasses of the input are explicitly present in training

and may be predicted after training. For example, an input (x, dog)

110 4 Organizing delegation

in the sufficient subset of the root becomes (x, {dog, animal}) if

animal is the only superclass of dog covered by the root. For later

use, we say that the labels in the sufficient subset are visible to the

base classifier.

Let the kth base classifier progf,k compute the function

sign(fk(Sk(x), l)), (4.6)

where Sk(x) is a node-specific feature extraction function of possi-

bly high computational complexity, and l denotes a class label. If

the sign is positive, then x is predicted to have the label l. Be-

cause explicit superclass predictions are used in guiding delegation,

x may be predicted to have multiple labels that are not mutually

exclusive.

Abbreviating z = Sk(x), note that fk(z, l) is slightly more gen-

eral than the form fk(z) that was common in Chapter 2. Because

not all labels are mutually exclusive, each base classifier must return

a set of labels instead of a single label. The values of sign(fk(z, l))

are interpreted as label indicators, i.e., the set of predicted labels

consists of the labels l for which sign(fk(z, l)) = +1. Our approach

also requires that the predicted labels in the set can be ordered by

confidence.

It is interesting to consider whether a collection of binary (two-

class) classifiers can be combined into a base classifier that can

return a set of labels as a prediction. Recall that the classifier com-

bination methods from Section 2.3.2 can combine binary classifiers

into a single multi-class classifier, i.e., fk(z, l) over different l can be

combined. Using the winner-takes-all scheme or the voting scheme

over one-vs-one tournaments does not, however, lead to the desired

kind of multi-class classifier. These schemes are designed for mutu-

ally exclusive classes only, i.e., in the winner-takes-all scheme there

is a single winning label. The schemes would require non-trivial

modifications.

When the classes cannot be considered mutually exclusive, it is

possible to use one-vs-rest training to produce one classifier for each

l such that the classifier calculates the lth indicator sign(fk(z, l))

as if it was independent of other indicators. Because our approach

requires that the predicted labels can be ordered by confidence, the

values fk(z, l) over different l would have to be mapped to values

the comparison of which would be meaningful. Mappings can be

4.4 Classification 111

created using confidence models. Earlier, we have discussed both

monotonic and non-monotonic confidence models.

Some binary classifier combination methods can be used to pro-

duce two-class classifiers that have confidence models, i.e., differ-

ent fk(z, l) with fixed l can be combined. For example, if non-

monotonic confidence models are desired, the maximum voting mar-

gin classifier from Section 2.3.4 can be tried. Each of the combined

component classifiers could be trained using one-vs-rest training,

i.e., the class l should be pitted against the incompatible classes.

Different maximum voting margin classifiers could then be com-

bined over l.

For simplicity, we assume monotonic confidence models (Section

2.3.3) in the current chapter. More precisely, we assume that confi-

dence is proportional to the value of |fk(z, l)|. Also note that both

monotonic and non-monotonic models discussed here are compati-

ble with large-margin classifiers that are simpler than SVMs. For

additional simplicity, boosted stumps [Sch02] are used in the root.

A large-margin interpretation of boosting can be found in [SFBL97].

4.4.2 Prediction and delegation

After the nodes have been assigned base classifiers capable of pre-

dicting ordered sets of labels, system-level prediction and delegation

follows simple rules. Here, we present how the kth base classifier

node operates in relation to the system.

Assume L(k) = (l1, . . . , lnk
) is the confidence-ordered list of the

nk labels visible to the kth node such that

fk(z, lj) ≥ fk(z, lj+1) > 0.

Now, beginning with k = 1 (the root), the system makes predictions

and delegates inputs using Algorithm 1.

First, note that Algorithm 1 takes a fixed threshold value T as

a parameter. The parameter T is a system-level parameter that is

not seen by the base classifiers during their training, i.e., changing

the value of T does not affect training results. In practical applica-

tions a fixed value of T could be problematic as finding the optimal

value could require trial and error. We, however, are interested in

examining how efficiently and accurately the extracted coarse-to-

fine organization of classes works with varying values of T . For

112 4 Organizing delegation

Algorithm 1 Node k

Require: list L(k), positive threshold T (e.g., 0.8)

take l1, the head of L(k) (l1 = null, if the list is empty);

if l1 = null then

choice← none;

else if l1 has no subclasses then

choice← l1;

else

l1 has subclasses; let L′ be the sublist of L(k) such that we take

from L(k) only the classes covered (directly or indirectly) by l1
in the same order they appear in L(k);

let l′1 denote the head of L′ (l′1 = null, if the list is empty);

if l′1 = null then

choice← l1;

else

let R = fk(z, l
′
1)/fk(z, l1);

if R > T then

choice← l′1;

else

choice← l1;

end if

end if

end if

if choice has no subclasses then

predict choice;

else

direct the current input to the specialist node of choice, i.e., fk′ ,

and delegate responsibility for the prediction to that specialist;

restart this algorithm with the list L(k′);

end if

4.4 Classification 113

example, we want to know if changing T allows satisfactory con-

trol of speed versus accuracy trade-offs. If it does not, asking for

optimal T is premature. Finding an optimal T , given some specific

user preferences, is not our primary concern here. Still, it should

be noted that changing the value of T does not require much effort.

Because the value does not affect the training of base classifiers, the

value can be changed without retraining the classifiers.

To understand Algorithm 1, first suppose that T = 1, which is

the maximally conservative threshold with respect to classification

accuracy. Because l′1, if it exists, is not the head of the list L(k) (l1
is), it follows that R ≤ 1, and we choose l1, unless L(k) is empty. The

above process reduces to the node always choosing the label with

the largest positive magnitude. Such labels tend to be superclass

labels, because the whole purpose of the visible superclasses is to

group together alternatives that are hard to distinguish from each

other by this node. Hence, the end result is that we must activate

a specialist unless a particular input is so easy that confidence of a

superclass does not exceed the confidence of the subclasses.

Now consider what happens when 0 < T < 1. The node becomes

optimistic in the sense that the specialists further down are assumed

increasingly unnecessary the lower threshold T is. Suppose that L′

is not empty and l′1 is the head. Being careful, we choose l1 and

delegate to the specialist k′ of l1 immediately, like we did in the

case T = 1, and examine list L(k′) of the specialist node. If this

specialist k′ is completely unnecessary, it does not disagree with

L′ and we observe that L′ = L(k′). Supposing that the specialist

is conservative (T = 1), it chooses the head of list L(k′), which is

l′1. Hence, delegation to the specialist was unnecessary. Supposing

the node takes the superclass l1 for granted, accepting a low R

amounts to “jumping to conclusions” about the subclass. Even if

the subclass turns out to be wrong, the correctness of the superclass

is not affected.

4.4.3 Multiple views of objects under motion

Object motion is in many ways an important source of information.

Studies of human perception in infants indicate that motion cues

have a crucial role in perceiving object unity in early stages of

development [JCMJ03].

114 4 Organizing delegation

In the tests we have in mind, we have complex objects on com-

plex backgrounds, and segmentation seems a formidable challenge.

Further, from certain viewpoints, objects belonging to different mu-

tually exclusive classes may seem indistinguishable. For example,

viewing an apple and a pear from below, both have similar shape

as the elongated form of the pear is not visible. To address these

issues, we extend our approach to the case in which a moving object

can be tracked to provide a sequence of views.

Let tr = (x1, . . . ,xN) be a visual trace of an object under appar-

ent motion. For simplicity, we assume that the individual images xi

are known to depict the same individual object. To enable simple

motion segmentation (e.g., difference imaging [SHB99]), it is prefer-

able to have fairly rigid objects and short time intervals between

the consecutive images. This is the approach we take.

First, each still image xi is classified by the tree of nodes as in

Section 4.4.2. However, this time we pay special attention to the

ordered lists L(k) calculated by the activated nodes k. Let L
(1)
i

denote the ordered list of the root computed for the view xi. The

list is re-ordered using Algorithm 2.

Algorithm 2 Re-order

Require: i and lists L
(k)
i of the nodes k activated by xi

move the choice of the root node to the head of L
(1)
i

(if T < 1, the choice may not be there initially)

if specialist nodes below the root were activated then

for all activated nodes k in the order of activation do

let L
(k)
i be the ordered list of activated node k;

move the choice of the kth node to the head of L
(k)
i ;

move the labels of L
(k)
i to the head of L

(1)
i in the order speci-

fied by L
(k)
i (labels already present in L

(1)
i lose their original

places in L
(1)
i);

end for

remove superclass labels from L
(1)
i , leaving only labels of classes

that have no subclasses;

end if

Algorithm 2 may be used to enable rank-order voting over xi in a

visual trace (see [Arr70] for a treatise on voting schemes). The final

4.5 Experiments 115

re-ordered list L
(1)
i at the root has the following desirable properties:

1. The final prediction of the tree for xi is at the head of the

list.

2. The alternatives ranked by a specialist are preferred over

others originally ranked below the specialist superclass label.

Specialist preferences overrule more general preferences in a

consistent manner.

The visual trace tr of an object can now be classified as a whole

if the lists L
(1)
i for different values of i are transformed to votes,

which are then subjected to a voting system. The choice of a voting

system is best settled experimentally.

In our experiments (detailed later), we examined two simple al-

ternative voting systems. In plurality voting, each view xi casts a

single vote in favor of the head of list L
(1)
i . The trace tr gets the

label with the most votes over i. In rank-order voting, each view

xi casts several votes. Given a fixed number of alternatives A, the

label at the jth position in list L
(1)
i gets A− j + 1 votes (not nega-

tive) from xi. Finally, votes are counted over i and tr gets the label

with the most votes.

4.5 Experiments

Having presented the overall design, we now present specific exper-

iments using a particular set of data and a test system. First, we

discuss the details of the data used in the experiments. Second,

we show what kind of a class tree or trees could be extracted from

the data and visual queries using the procedure from Section 4.3.2.

Third, we show what kind of base classifiers could be assigned to

the nodes so that the test system works as designed in Sections

4.4.1 and 4.4.2. Fourth, we present the results of the experiment.

116 4 Organizing delegation

4.5.1 The data

For the experiments we chose the publicly available dataset ETH80
2. The dataset was used previously by Leibe and Schiele [LS03] in

their experiments related to multi-cue decision tree learning.

The dataset contains color images of 80 objects from 8 basic level

categories. The categories are apple, car, cow, cup, dog, horse, pear

and tomato. From each basic level category there are 10 different

objects. Each object is represented by 41 different views. The views

of an object are distributed uniformly over all viewing angles such

that the observer is not below the object. Hence, the views allow the

controlled rotation of the objects. Figure 4.1 shows the 41 views

of one particular object instance from the category labeled dog.

On the average the categories had high within-category variation

of content. Figure 4.2 shows ten different horses viewed from one

viewing angle. As can be seen, the surface colors, textures, and

body poses (shape) vary within the category of horses.

Although the dataset is mostly satisfactory, e.g., there are many

categories (classes) and the variation between categories and within

categories is high, there is one problem worth correcting. In the

data the problem of segmentation is abstracted away by the images

having pre-made segmentation masks available. The segmentation

masks are accurate and flawless. Even if the segmentation masks

were not available, the simple and rather uniform backgrounds (Fig-

ures 4.1 and 4.2) could make efficient segmentation relatively easy.

If we used the pre-made masks or other simplifying assumptions in

classification, we would likely get efficient solutions to toy problems.

We replaced the image backgrounds. After replacing the im-

age backgrounds, we discarded the pre-made segmentation masks.

As replacement backgrounds we used random patches cropped from

images in the Benchathlon 2001 set 3. The Benchathlon set is meant

for benchmarking content-based image retrieval programs and con-

tains realistic images depicting everyday environments. For each

object, we randomized one background image, i.e., the 41 views

of an object each got the same background, but different objects

2http://www.vision.ethz.ch/projects/categorization/

eth80-cropped256.tgz
3http://www.benchathlon.net/img/todo/index.html

4.5 Experiments 117

Figure 4.1: A dog viewed from 41 different angles. The backgrounds

are from the original data. In this image, the colors have been

discarded and the individual views have been downsampled to 64×
64 pixels to allow them to be printed here.

got different backgrounds. The results of this replacement were

examined to ensure that no artificial contours were created. Fig-

ure 4.3 shows the ten horses from Figure 4.2 on their replacement

backgrounds. Figure 4.4 shows additional examples of the modified

data we used.

The replacement process had the interesting characteristic that

it made the objects statistically independent of their new back-

grounds. The leave-one-object-out cross-validation process that we

used (detailed later) ensured that the test sets did not contain

backgrounds present in the training sets. In testing, the image

backgrounds were both novel and independent of the object class.

118 4 Organizing delegation

Figure 4.2: Ten different horses viewed from one viewing angle.

The individual views have been downsampled to 128 × 128 pixels.

Figure 4.3: Ten different horses against replacement backgrounds.

Hence, the classifiers cannot successfully use image backgrounds

to predict object class. It follows that the success of a particu-

lar classifier demonstrates that the classifier does not need helpful

backgrounds to work. This is especially interesting in the context

of the root feature selection hypothesis.

Because the views of an object can be ordered as if the camera

was circling the object, we can extract visual traces, i.e., sequences

of views, that look like the object was rotating on top of a real-world

environment.

4.5 Experiments 119

Figure 4.4: Examples of the modified data. In the rightmost subim-

age it is easy to see why segmentation is hard.

4.5.2 The hierarchy

We applied the discovery procedure (Section 4.3.2) combining the

answers of two subjects. Figure 4.5 shows an example of a visual

similarity query. The queries were done with the original data, i.e.,

the object backgrounds were simple.

The results indicated that there were two class pairs of maximal

similarity: (apple, tomato) and (cow, horse). Only three other class

pairs had large similarity ratings: (apple, pear), (cow, dog) and

(horse, dog). The similarity between car and cup was minimal,

suggesting that their shared non-organic look and the property of

being man-made items did not matter.

The results were mostly compatible with the idea that similar-

ity judgments are as if determined by the basic shape of the ob-

jects. For example, when viewed from similar angles, cows, horses

and dogs all have roughly the same shape although precise bod-

ily proportions vary. The results were not completely compatible,

however. Apples and pears had high similarity although from most

viewing angles the former are round and the latter are conical.

Somewhat surprisingly, tomatoes and pears were not similar, even

if tomatoes and apples were. One possible explanation is that the

similarity between apples and pears was of semantic origin, e.g.,

both are fruits. Yet another possible explanation is that perceived

visual similarity relations do not have to be transitive, e.g., if ap-

ples and pears are similar and apples and tomatoes are similar, then

tomatoes and pears do not have to be similar.

Figure 4.6 shows two alternative hierarchies from using the dis-

covery process explained in Section 4.3.2. Favoring simplicity, we

120 4 Organizing delegation

Figure 4.5: A similarity query between two pairs (simple back-

grounds).

chose Alternative 1 that was found by increasing the parameter

Th in Equation (4.5) in large steps. Alternative 2 was found by

taking smaller steps. We named the superclasses of Alternative 1

fruits and vegetables and animals. If we had more different types of

fruits and animals, then these superclasses could possibly become

too abstract. In that case we would have to use a deeper hierarchy

possibly resembling Alternative 2.

4.5.3 The classifier nodes

The root classifier node

The results of the hierarchy discovery process were compatible with

the idea that similarity was mostly determined by the basic shape

of the objects. In this, the results could be interpreted to suggest

that the root node should measure and classify the coarse overall

shape of the objects. If the coarse shape was consistent with a

particular superclass, then a specialist classifier could be activated

to do precise classification.

The above scheme has the problem that classifying the overall

shape, however coarse, in the root node seems to require something

resembling segmentation at a stage when nothing is known about

the class of the input, e.g., inefficient generic segmentation could

be required. We took the pragmatic approach and avoided shape

extraction in the root node.

Our root node uses global features that are statistics of local

feature responses over low-resolution input images. The spatial

relations between local features are discarded. More precisely, the

root uses rotation-invariant uniform local binary patterns (LBP)

4.5 Experiments 121

Alternative 1

Alternative 2

PearTomatoApple Cow Horse Dog Car Cup

Root

Root

Apple Tomato Pear Cow Horse Dog Car Cup

Figure 4.6: Two alternative class relationship hierarchies.

and color histograms.

Local binary patterns [OPM02, OPM01] are a computationally

efficient family of features designed for fast extraction. Each pat-

tern measures the local brightness differences between a center pixel

and the surrounding pixels at the radius R from the center. The

patterns are binary, because only the sign of the differences is re-

tained. Rotation invariance is achieved by rotating each observed

pattern to an orientation determined by the contents of the pattern,

but not affected by the original orientation. Uniform patterns are

fundamental patterns of special significance that function as tem-

plates for structures such as bright spots, flat areas, dark spots, and

edges of varying curvature.

The root uses the operator LBP riu2
8,1 , meaning the 8 neighbors

at the radius R = 1 are used for computing the differences for every

122 4 Organizing delegation

center pixel. The operator produces 8 + 2 distinct output values

as explained in [OPM02]. A histogram of the 10 output values is

calculated over the focus region of attention. The root computes

separate histograms for three image resolutions: 128×128, 64×64,

and 32 × 32 pixels. We also limit the focus to regions of apparent

motion, as detected by difference imaging. Difference imaging is

applied to the visual traces of the objects we have available. This

allows much of the image background to be excluded without us-

ing real segmentation, i.e., object boundaries do not resemble the

border of the excluded background.

Figure 4.7 shows the LBP histograms of three objects from dif-

ferent superclasses. The three histograms of each object (input)

have been concatenated, i.e., bins 1 to 10 correspond to the resolu-

tion of 128× 128 pixels, bins 11 to 20 correspond to the resolution

of 64× 64 pixels, and bins 21 to 30 correspond to the resolution of

32 × 32 pixels. In each case we used side-views of the objects as

inputs. One particular pattern, visible at three scales (bars 9,19,

and 29), was often prominent. This was not caused by the replace-

ment of image backgrounds or the use of focus regions of attention.

We observed that the same pattern was equally prominent if the

backgrounds were not replaced and the focus regions were not used.

In the figure, the apple (from the superclass of fruits and vegeta-

bles) is clearly distinguishable from the car (root superclass) and

the horse (from the superclass of animals). Given the histograms

of the specific side-views, the car and the horse do not seem to be

that clearly distinguishable. Later, we show that the features do

well statistically.

In addition to the LBP histograms, the root computes coarse

color histograms of the inputs. There are 10 bins for each color

channel (red, green, and blue). The resolution of the inputs for

this operation is 128 × 128 pixels. Pixels outside the focus region

of attention are ignored. The focus region is the same that is used

with LBPs.

The local binary patterns may be seen as sensible substitutes

for Gabor filters. Recalling Section 3.3.2, suppose that an image is

convolved with a Gabor filter. The value of a pixel in the convolved

image is the weighted sum of a neighborhood of pixels from the

original image. Because pixel values are bounded and the filters use

Gaussian envelopes, the weights of pixels beyond a certain radius

4.5 Experiments 123

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
apple1, LBPriu81*3

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
car1, LBPriu81*3

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
horse1, LBPriu81*3

Figure 4.7: Examples of LBP histograms. Here, each visible his-

togram is the concatenation of three histograms that are computed

at different scales.

approach zero. Where the weights are significant, the positive and

negative weights form a wave-like pattern in some orientation. The

output value of a filter is high when the image matches the pattern

locally. The filter measures local intensity contrasts and the outputs

may be thresholded if we prefer binary pattern matching. The

LBPs also measure contrasts in local neighborhoods, but there is

less freedom because the contrasts are taken with respect to the

center and the local neighborhoods must be small (or the image

resolution must be decreased). The restrictions lead to ease of use

because the small number of possible patterns allows the exhaustive

enumeration of the patterns that make sense as templates, i.e., the

uniform patterns mentioned above.

The root classifier is given the concatenated histograms as 60-

dimensional feature vectors, i.e., the three LBP histograms and the

color histogram are not kept separate. The root classifier satisfies

the assumptions of the root feature selection hypothesis (Section

3.1.2). The inputs are in low resolution, i.e., less than 150 × 150

pixels, when the features are computed. The classification problem,

with or without superclasses, is trivially solvable by ordinary hu-

124 4 Organizing delegation

man observers. The root can make multiple predictions per second

(detailed later), uses the right kind of global features, and discrimi-

nates between classes (from different superclasses) at above change

level (detailed later).

The 60-dimensional feature vectors are used in boosting decision

stumps. To do this we use real AdaboostMH, which is a multi-label

boosting variant invented by Schapire and Singer [SS00, SS99]. It

satisfies the confidence-estimation requirements elaborated earlier,

i.e., the classifier output magnitudes are related to confidence.

The boosted hypothesis has the form

f(x, l) =

Tmax
∑

t=1

αtht(S(x), l), (4.7)

where ht are the decision stumps that take the input x and the

label l and produce real-valued outputs. The choice of the weights

αt is related to minimizing the empirical Hamming loss of f (see

[SS00, SS99] for details). The function S is the feature extraction

function that maps the input x into the 60-dimensional feature

vector. We used Tmax = 200 as the number of stumps, although

a smaller number of stumps could possibly suffice. Taking the sign

of f , we get the proper form compatible with definition (4.6) in

Section 4.4.1.

The specialist nodes

Assigning a base classifier to the node specializing in the classifica-

tion of different animals was a difficult subproblem. The different

animals had roughly the same body shape. Details of the body

surface, e.g., colors and textures, did not seem promising for the

kind of accurate classification that specialist nodes do. For exam-

ple, Figure 4.2 shows that the within-class variation of the details

is high. Of the features considered, reasonably detailed measures

of body shape seemed the most promising.

In the implementation, the specialist classifier of animals first

uses the focus regions of apparent motion to extract the outer con-

tours of the objects. The contours are then matched to known

prototypes that are collected from training data.

The focus regions of apparent motion are used as follows. First,

edges are detected in the focus region, after which morphological

4.5 Experiments 125

Figure 4.8: The contours of a horse, as seen by the classifier spe-

cializing in discriminating animals.

closing [SHB99] is used to gap the discontinuities of the outer con-

tour. In essence, we do segmentation within the focus regions. Sec-

ond, having the refined shape of the object at hand, the specialist

uses Hausdorff-fraction-based nearest-neighbor search to find the

closest matching animal shape from the training data prototypes

(see [AM02] for the definition of the fractions and modern refine-

ments). Because sub-specialists were not needed, the specialist sim-

ply selects the single best class. If sub-specialists were involved, a

ranked list of preferences could be formed by ordering the alterna-

tives by match-value.

Figure 4.8 shows the contours of an animal as seen by the spe-

cialist. The middle image shows the basic contour, which is of

relatively good quality. The outline is not broken, and the shape

and bodily proportions are recognizable. Many imperfections are

visible as well. In the contour, the concave (inward curving) parts

have been partially lost. For example, the neck of the animal has

thickened, the stomach has grown downwards, and the middle of

the back has become straight. The rightmost image shows the di-

lated version of the middle image. When Hausdorff-fractions are

used to match shapes, the basic contour (middle) of one input is

matched against the dilated contour (right) of some other input.

The distance between inputs is inversely proportional to the frac-

tion of contour pixels of one input falling within the dilated region

of the other input. For symmetry, the measurement can be repeated

after the roles of the inputs have been switched. For each pair of

inputs we take the maximum of the two distance measurements.

126 4 Organizing delegation

Designing a specialist for fruits and vegetables was rather simple.

Simple color-based segmentation yielded the shapes and dominant

colors, based on which simple heuristic rules provided near-perfect

results. For example, only tomatoes have an orange hue, and only

pears have elongated shapes.

4.5.4 Classification results

The test system was evaluated using leave-one-object-out cross-

validation. As noted by Leibe and Schiele [LS03], this type of

cross-validation is preferable when we have to evaluate how well

the system generalizes to new object instances – not just new views

of objects in the training data.

The node classifiers were trained using views of 79 of the 80

objects after which we tested classification performance using the

41 views of the one object that was left out. This process was

repeated 80 times, using each object in turn as the test object. The

statistics shown in Table 4.1 are the averages over the 80 repetitions.

The process makes sure that the test object is novel for the classi-

fiers that have seen only the training data. Further, the replacement

backgrounds of the test objects were novel and independent of the

objects. The common background of the 41 test views was not used

in the training views. Therefore, any learner trying to exploit the

backgrounds should be worse off than learners that do not.

In addition to the statistics from the use of the modified data, we

provide comparable statistics that were calculated using the orig-

inal data (i.e., using the original image backgrounds). The latter

statistics are shown in Table 4.2. With the original data, the dif-

ference imaging technique for getting the focus regions of attention

was a bit excessive and somewhat inappropriate (e.g., the objects

do not rotate on top of the backgrounds). Hence, we enabled a

trivial alternative for getting focus regions. We simply filter out of

focus homogeneous parts of the image periphery. The alternative

filtering technique is like difference imaging in the sense that it is

not intended as an estimator of object boundaries.

In the Tables 4.1 and 4.2, the first two rows show the relative

usage frequencies of the specialists. We use fv to denote the fruits

and vegetables specialist, and ani to denote animals specialist. The

relative usage frequency of a specialist is the relative frequency of

4.5 Experiments 127

activating the correct specialist given that the true class is covered

by the superclass that the specialist corresponds to. For example,

if fv use is 0.0496, then about five percent of the different fruits

and vegetables were classified using the corresponding specialist,

while the rest were classified directly by the root or misclassified by

another specialist.

From the third row down, the rows of the tables summarize

classification accuracies at the level of the most specific labels. For

example, the row ani acc shows the average accuracy of recogniz-

ing cows, dogs, and horses correctly using these specific labels. All

columns, except the last two, show averages over views. The first

column shows the case of disabled specialists – the root node clas-

sifies everything and delegates nothing. The middle columns show

the results from the specialists enabled with varying values of T

(Section 4.4.2). Recall that T controls the tendency of avoiding

specialist use in favor of speed, and that the value of T can be

changed without retraining the classifiers (e.g., specialists). The

last two columns show the averaged results from the use of voting

procedures in classifying visual traces instead of single views. In

testing voting procedures, we set T = 0.8. In rank-order voting,

a small constant bias was added to Equation (4.7) to allow some

votes to be given even to unlikely alternatives.

Having explained how Tables 4.1 and 4.2 should be read, we will

now interpret the numbers. This is mostly about the accuracy of

the classifiers. After dealing with classifier accuracy, we will present

measured results related to speed and then interpret those results

as well.

Examining the first two columns of Table 4.1, we see that using

the specialists increases the overall mean accuracy even if T has

a small value. Increasing T increases the mean accuracy simulta-

neously increasing the usage frequencies of the specialists, which

in turn increases the expected classification time (resource loss).

Comparing the mean accuracy at T = 0.8 to the best multi-cue re-

sults of Leibe and Schiele [LS03], we observe that when classifying

single views, our results are within two percent of the cited results

(0.9302). This is satisfactory, given that we did not use the per-

fect segmentation masks that Leibe and Schiele used. The lack of

pre-made segmentation masks, and the use of complex replacement

backgrounds, made the efficient use of contours rather difficult for

128 4 Organizing delegation

Table 4.1: Classification results.

dis T=.05 T=0.1 T=0.2 T=0.4 T=0.8 plur rank

fv 0 0.0496 0.0553 0.0748 0.1398 0.4390 – –

use

ani 0 0.3455 0.3902 0.4854 0.6439 0.8098 – –

use

fv 0.9724 0.9886 0.9886 0.9886 0.9846 0.9846 – –

acc

ani 0.5659 0.7431 0.7626 0.8008 0.8358 0.8610 – –

acc

rest 0.8963 0.8768 0.8768 0.8768 0.8768 0.8768 – –

acc

mean 0.8009 0.8686 0.8759 0.8902 0.9018 0.9113 0.9375 0.9750

acc

Table 4.2: Classification results (original data).

dis T=.05 T=0.1 T=0.2 T=0.4 T=0.8 plur rank

fv 0 0.0423 0.0528 0.0748 0.1618 0.5553 – –

use

ani 0 0.3000 0.3724 0.5089 0.7228 0.8943 – –

use

fv 0.9748 0.9927 0.9935 0.9943 0.9935 0.9894 – –

acc

ani 0.6512 0.7854 0.7967 0.8301 0.8423 0.8374 – –

acc

rest 0.9146 0.8988 0.8988 0.8988 0.8988 0.8988 – –

acc

mean 0.8384 0.8915 0.8960 0.9088 0.9131 0.9098 0.9375 0.9500

acc

4.5 Experiments 129

us. As noted by Leibe and Schiele, the best multi-cue results they

got were largely due to the use of contours. Hence, they succeeded

in exploiting the masks they made available.

Enabling the voting procedures lets us exceed the cited results by

a reasonable margin. The main reason seems to be that multi-view

integration of predictions is necessary in avoiding mistakes resulting

from bad viewing angles. For example, discriminating between the

rear ends of a horse and a cow may be rather difficult even to a

discerning observer.

Looking at Table 4.2, observe that when classifying single views,

we are again within two percent of the best results of Leibe and

Schiele (column T = 0.4). It might be possible to close the two-

percent gap by fine-tuning our test system or by starting to use the

segmentation masks instead of extracting contours the hard way.

Neither of the alternatives to closing the gap is interesting.

Comparing Table 4.2 to Table 4.1, it can be seen that the accu-

racy statistics change less when T is varied within the given range.

From the first column, it is still apparent that disabling the spe-

cialists results in significant loss of accuracy. Comparing the tables

it also seems that when the specialists are disabled, the root node

benefits from improved focus region quality that the simple back-

grounds allow. Although accuracy with animals is still poor, it is

better than earlier.

Having dealt with classifier accuracy, we now present measured

results related to speed. In Figure 4.9 we show the usage frequency

of the animal specialist versus the average time spent classifying

images of animals. The x-axis shows the frequency in the range

[0.0, 1.0] and the y-axis shows the time spent in seconds. For exam-

ple, when the frequency was 0.3, classification took 0.5 seconds on

the average. The circles denote the sample points of the plot, i.e.,

the number of sample points equals the number of observed animal

specialist usage frequencies in Table 4.1 plus Table 4.2. Two of the

sample points coincide when the frequency is zero. The averages

represented by the sample points were calculated using images of

animals that were classified either directly by the root or by the

animal specialist. In other words, images of animals that were del-

egated to the wrong specialist are not factored in the averages. The

times were measured using a fairly average AMD 3500 computer.

According to the measurements, the root node required about

130 4 Organizing delegation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

probability of use

tim
e

(s
)

Figure 4.9: Animal specialist usage frequency versus average clas-

sification time.

0.08 seconds per input image, and could therefore process and clas-

sify images at 12.5 Hertz. This seems considerably faster than what

we could achieve with the small set of Gabor filters in the previous

chapter, even if we take the different downsampling requirements

into account. Compared to the root and the other specialist, the

animal specialist operated on a different timescale, i.e., the time

consumption of the animal specialist made the other nodes seem

insignificant. The animal specialist required about 1.36 seconds

per activation. Average classification times were in practice mostly

determined by how frequently the animal specialist is activated. If

we assume (for simplicity) that the probability of being delegated

to a wrong specialist is (close to) zero, then the empirical mean

classification time tanimal of animals is

tanimal = troot + P (specialist)tspecialist ≈ P (specialist)× 1.5s,

(4.8)

where troot denotes the time used by the root, P (specialist) denotes

the probability of delegating to the animal specialist, and tspecialist

denotes the time used by the animal specialist.

Above, we presented results related to accuracy and speed sep-

4.5 Experiments 131

arately. We can now tie the results together. In Figure 4.10 we

show mean accuracy (from Table 4.1) as the function of mean clas-

sification time. The marked points denote different values of T .

Mean classification times were measured separately for each value

of T . To do this we followed each test input and recorded which

specialists the input activated and how much time this took. We

then calculated the mean time over the inputs. It can be seen that

speed can be traded for accuracy. At about 0.35 seconds there is

a point of diminishing returns. The curve shows no indication of

undesirable behavior, e.g., there are no points at which increasing

time would result in decreasing accuracy.

In Figure 4.11 we show both the mean time and mean accuracy

as functions of the parameter T . Both time and accuracy seem

to be roughly logarithmic in T . Comparing Figures 4.10 and 4.11

it can be seen that to get approximately linear trade-offs we must

resort to doubling T . In other words, we can define a more intuitive

control parameter T ′ such that

T = 2T ′

/5. (4.9)

In any case, the consequences of changing T (or T ′) are quite pre-

dictable. Hence, using T to control delegation allows reasonable

control of speed versus accuracy trade-offs. Furthermore, there are

no significant bottlenecks. Setting T = 0 (column dis in 4.1) pre-

vents delegation. At T = 0 the test system has non-trivial accuracy

and classifies inputs at 12.5 Hertz.

The results also indicate that predictions can be combined effi-

ciently over multiple views. First note that Tables 4.1 and 4.2 show

that rank-order voting is accurate. When the mistake losses are di-

vided over views, rank-order voting results in smaller loss per image

compared to classifying individual views. The time (resource) loss

per view, however, is exactly the same as when classifying individ-

ual views. Hence, the sum of total losses is smaller. Of course, if

inputs arrive fast and have to be processed quickly, e.g., at 3 Hertz,

then spending over 0.5 seconds per view (T = 0.8) results in huge

resource losses even if combining views is still more efficient. When

necessary, the additional accuracy from voting should be traded for

speed.

Last, we can examine what can be seen if mistakes are not con-

sidered equal. Table 4.1 shows that when delegation is disabled

132 4 Organizing delegation

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.8

0.82

0.84

0.86

0.88

0.9

0.92

time (s)

ac
cu

ra
cy

Figure 4.10: Mean time versus mean accuracy.

(T = 0), mean accuracy is 0.8009. Using the confusion matrices

generated during the tests, we calculated that the mean accuracy

of the root node was 0.9445 when within-superclass mistakes were

ignored completely. For example, confusing a cow with a dog was

ignored, but confusing a cow with a pear was not. Similarly, we

calculated that the mean accuracy of the root was 0.8727 when

within-superclass mistakes were discounted by 50%. If we used any

hierarchic mistake loss such that within-superclass mistakes would

cost less, then the test system would appear to be better than Table

4.1 indicates. Most of the mistakes were within-superclass mistakes.

Ignoring the within-superclass mistakes showed that the root

can discriminate well between classes that belong to different su-

perclasses. Given that the root can also process multiple inputs per

second, the results satisfy the claims of the root feature selection

hypothesis. Earlier, we explained that the assumptions were also

satisfied.

4.6 Summary 133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

value of T

tim
e

(s
, d

as
he

d)
 a

nd
 a

cc
ur

ac
y

(s
ol

id
)

Figure 4.11: Parameter T versus mean time and mean accuracy.

4.6 Summary

In this chapter we investigated two questions. The first question

asked where the organization of the base classifier nodes comes

from. The second question asked whether predictions can be com-

bined efficiently over multiple views of objects under motion. The

questions were investigated empirically using a test system.

In the task of finding the organization of the base classifiers, the

organization-centered approach was tried. This approach could be

contrasted with the alternative that we called feature-centered. In

the organization-centered approach, the organization (tree) of clas-

sifiers is determined prior to feature selection and classifier learn-

ing. In contrast, in the feature-centered approach the features are

defined first and the organization is learned using the computed

feature values from labeled training data.

On a more detailed level, the approach that we called coarse-to-

fine organization of classes was tried, with explicit superclasses and

subclasses of objects. In coarse-to-fine classification, it is assumed

that confusing broad (super) classes is inherently more harmful than

confusing narrow (sub) classes. Further, classification and delega-

tion proceed from the root towards the leaves so that the nodes

134 4 Organizing delegation

closest to the root distinguish between broad classes and nodes

closest to the leaves distinguish between narrow classes.

An experimental procedure was designed. The procedure could

produce coarse-to-fine trees of classes using visual queries posed to

human observers. The idea was that by the controlled measurement

of what classes the observers find similar, we can construct a tree in

which the distance of (any) two nodes is proportional to perceived

dissimilarity, which in turn can be assumed proportional to the cost

of mistakes. Users are not likely to tolerate the confusion of objects

that seem to be very dissimilar to them.

For the test system, delegation rules were designed. The dele-

gation rules were designed so that a specific parameter T controls

the tendency to terminate delegation early. In contrast to typical

decision trees, any node may terminate and make the final predic-

tion. In addition, rules were devised for combining predictions. The

purpose of these rules was to enable the investigation of the second

question that was posed, i.e., can predictions be combined efficiently

over multiple views resulting from motion? The procedure of visual

queries was used, the nodes of the resulting tree were assigned fea-

tures and base classifiers, and measurements of performance were

taken.

The results imply that the organization-centered approach, and

more precisely, the coarse-to-fine approach led to efficient classifi-

cation of single views and multiple views.

First, in classifying single views the results indicated that avoid-

ing early termination of delegation increased prediction accuracy as

measured on the level of narrow classes, i.e., the specialists behaved

as specialists should. In contrast, favoring early termination in-

creased speed. Increasing accuracy decreased speed and vice versa.

Although there was a point of diminishing returns, spending more

time always resulted in better accuracy. No efficiency bottlenecks

were found and the delegation parameter T allowed reasonable con-

trol of speed versus accuracy trade-offs. Using T , the test system

was made to go to different extremes. Given a high value, the sys-

tem became accurate. The best accuracies were close to the pub-

lished results of Leibe and Schiele [LS03]. That result was found

satisfactory given that the perfect segmentation masks of Leibe and

Schiele were not used by the test system in classification. Given a

low value of T , the system became quite fast. Twelve images could

4.6 Summary 135

be classified each second. This range of allowed trade-offs cannot

be considered restrictive. Because the value of T can be changed

without retraining the classifiers, very different preferences could

be satisfied without much effort.

Second, in classifying multiple views the results indicated that

predictions could be combined efficiently. Voting rules resulted in

increased accuracy with no adverse effects on time spent in com-

puting. Hence, voting was efficient in the sense of making the sum

of total losses over sequences smaller.

Third, the results indicated that the test system would have

been competent with hierarchic mistake losses. Most mistakes were

within-superclass mistakes. If it is accepted that the procedure of

visual queries extracts a tree such that membership in a superclass

implies high similarity and high similarity implies that confusing

the precise class label is tolerated, then most mistakes would have

been tolerated.

Fourth, the results indicated that the root node, which satisfied

the assumptions of the root feature selection hypothesis, also satis-

fied the claims of the hypothesis. This was interesting because the

object backgrounds were unhelpful in contrast to the data used in

the previous chapter. Hence, the results complemented those from

the previous chapter.

Overall, the success of the test system can be counted as evidence

in favor of using the organization-centered coarse-to-fine approach

for finding the organization of the base classifiers and for combining

predictions efficiently via voting. Because very different speed ver-

sus accuracy preferences could be satisfied by changing the value of

T , it cannot be claimed that the evidence is trivial, i.e., specific to

few preferences. Also, the data was non-trivial and one cannot just

take an arbitrary approach and expect to succeed.

Finally, we note potentially interesting topics that we did not

address. First, there is the topic of scaling. In the test problem, a

shallow hierarchy of classes was sufficient. It would require larger

problems with considerably more classes to test how well the chosen

delegation and voting subsystems scale up. Some datasets, such as

COIL100, advertise a high number of classes, but these classes are

too narrow, e.g., each object instance is considered a separate class.

Second, there is the topic of comparing the organization-centered

and feature-centered approaches. This should be considered to-

136 4 Organizing delegation

gether with the topic of scaling. Because Leibe and Schiele did not

measure speeds and we did not implement their program, we could

not compare speeds. It is not clear how their program could be

modified to allow the control of trade-offs with or without retrain-

ing. Hence, using their design to represent the feature-centered

approach in systematic comparisons could be difficult. If scaling

is considered, the feature-centered approach may also become diffi-

cult. Difficulties arise if the learning procedure has to do exhaustive

search over the possible features (or sets of features) when a node is

created. It would be interesting to see if this search could be made

less exhaustive by using speed-related constraints, i.e., requiring

that computationally light nodes delegate to heavier nodes.

CHAPTER 5

Questions of modularity

In this chapter we ask three questions related to the delegation

framework. The questions address some of the assumptions that

were present in the introduction of the previous chapter. Answers

to all the questions are contributed.

In the introduction of the previous chapter, we contrasted two

alternative approaches to organizing base classifiers so that a tree

is formed. The two alternatives were called the feature-centered

approach and the organization-centered approach. The alternatives

had the common characteristic that the end result, i.e., the hier-

archy expressed as a tree, was problem-specific. In other words, a

hierarchy created for one classification problem is expected to be

useless given some other problem. This problem-specificity is an

assumption that may be accepted without much thought. After

all, delegation trees are reminiscent of decision trees, which are in

general constructed so that the hierarchy and connections of the

nodes are problem-specific.

5.1 The main questions

5.1.1 The first question

As the first question we ask if the delegation framework requires

problem-specific organization of the nodes. The question is clearly

worthy of study because if organization does not have to be cus-

tomized for each problem, then using the framework becomes sim-

137

138 5 Questions of modularity

pler. Recall that in the previous chapter we had specialist nodes

each of which specialized in discriminating between classes in some

subset of all classes. Some subsets were privileged in the sense that

they were given specialists while other subsets were ignored. The

approach of Leibe and Schiele [LS03] was similar to ours in that

each node was responsible for a specific subset of classes and most

subsets were ignored. If an approach to organization is such that

some minority of subsets becomes privileged, then it is reasonable

to expect that the selection of the minority, and thus organization,

depends on the problem.

To answer the first question, we design, analyze, implement, and

test an alternative approach to organization in which all non-empty

subsets of object classes are privileged and given specialists. In this

approach all problems that have m object classes get the same orga-

nization, i.e., one root node and 2m−1 specialists. Each specialist is

directly connected to the root and there are no connections between

specialists. In what follows, the approach is called A2 multi-class

delegation rules. Obviously, we want to keep some of the interesting

characteristics seen in the previous chapter, e.g., the possibility of

adjusting speed versus accuracy trade-offs without retraining clas-

sifiers.

Recalling that in the previous chapter each specialist was cus-

tomized and trained individually, the idea of using 2m−1 specialists

may seem impractical. The A2 multi-class delegation rules bypass

this problem by forming the specialists dynamically at runtime.

When an input requires delegation to a specialist, the specialist is

formed from a set of simpler modules. After the input has been

processed, the specialist is discarded. Given m object classes, there

are m modules capable of participating. The modules are called

robust detection modules. A set of modules that defines a specialist

has from 1 to m modules. The m modules are trained individually,

but the specialists are not.

5.1.2 The second question

As the second question we ask if the framework is limited to control-

ling the efficiency of classification, or if it is also useful in improving

the efficiency of feature selection and training. More precisely, we

ask if the root can improve the efficiency of feature selection and

5.1 The main questions 139

training of specialists. As usual, efficiency means less computation

and saving time.

The question is not as narrow as it may first seem. The appar-

ently obvious way to increase the efficiency of the training process

would be to filter the training inputs. Because feature selection

and machine learning algorithms tend to require an amount of time

proportional to the number of training inputs, it may seem that

filtering out the inessential inputs is the appropriate solution. Ba-

sically, the root node could perhaps filter the training inputs of

the modules that form the specialists. This process would resem-

ble what decision trees and the cascades of Viola and Jones [VJ01]

do, i.e, subsequent nodes are trained using those inputs that pass

through earlier nodes. The idea of filtering, however, is not fully

compatible with one goal that we have already stated. The goal was

that we should be able to adjust speed versus accuracy trade-offs

without retraining classifiers. The adjustments determine which in-

puts pass through which nodes. Hence, during training we cannot

really decide that a particular input will never pass through the

root.

Given the above problem with filtering, it seems that alterna-

tive means for increasing the efficiency of training are worthy of

study. We focus on the use of spatial constraints in feature se-

lection. This is relevant when the features measure local image

properties. The idea is that spatial constraints improve efficiency

by predicting where a feature selector should not look for candi-

date features. For example, input images may contain background

in addition to objects, and it may make sense to avoid consider-

ing features characteristic of the background. More precisely, the

root node contains modules that produce constraints for the feature

selectors of the modules that form the specialists.

5.1.3 The third question

As the third question we ask if pre-made and weak classifier modules

can be combined adaptively to work together in specialist nodes. By

a weak classifier, we mean a classifier that is not sufficiently accu-

rate when used alone. The lack of sufficient accuracy justifies com-

bination to improve accuracy. By adaptive combination, we mean

that classifiers in some set are combined to form a better classifier

140 5 Questions of modularity

in a manner that involves learning or task-specific optimization as

opposed to using some fixed rules. Fixed rules, e.g., the A2 multi-

class delegation rules examined in the first section of this chapter,

may be simpler to analyze, but lack the ability to detect poorly

functioning modules and adjust the influence of such modules on

decisions. In contrast to the commonly used boosting approach, we

focus on the use of pre-made modules.

In boosting [SFBL97], there is a central algorithm that builds

a set of base classifiers to be combined. The algorithm builds the

base classifiers sequentially, so that the nth base classifier is built

to complement the abilities of the n−1 base classifiers built earlier.

In boosting, it is not trivially possible to use pre-made classifiers

that are not built by the central algorithm. In reality, however,

one may have pre-made classifiers that should not be discarded

as irrelevant or worthless. For example, several researchers may

work independently and generate a set of insufficiently accurate

classifiers. Hence, the problem of combining pre-made classifiers is

worthy of study.

To answer the third question, we design, implement, and test a

method with which pre-made classifier modules are combined adap-

tively to create specialist nodes. The adaptive mechanism uses a

non-monotonic model of confidence. Non-monotonic models were

discussed earlier in Section 2.3.4 of Chapter 2. Because such mod-

els are not in common use, they may raise some doubt. Hence,

we perform experiments with both monotonic and non-monotonic

models to compare the results.

5.2 Overview of the experiments

The three questions above basically ask whether certain specific

things can be done in the context of the framework. Because our

intention is to show that these things can be done, we must show

how and measure the degree of success, i.e., experiments and test

data are required.

In the context of the first and second questions, we use a certain

kind of local features, called image fragments. This kind of features

are known to lead to accurate classification results, as shown by

Ullman, Vidal-Naquet, and Sali [UVNS02, VNU03]. Unfortunately,

5.2 Overview of the experiments 141

fragment features are also very inefficient to use – both during clas-

sification and feature selection. Therefore, it is interesting to see if

the use of fragments can be made more efficient by using the del-

egation framework. Because fragments are learned from training

data and the number of potential candidates is enormous, the use

of fragments allows that different specialist nodes use different sets

of features as is characteristic of the delegation framework.

Although fragments are interesting, they are not, at least in

their current form, suitable for all classification problems. In short,

they are suitable for detecting or recognizing semi-rigid objects.

Fortunately, there are interesting problems and datasets that have

such objects. In our experiments related to the first and second

questions, we measure performance on tasks related to the detection

of cars and faces versus miscellaneous backgrounds. In the case of

multi-class detection, we have two object classes, i.e., the cars and

faces, and one non-object class for representing the miscellaneous

backgrounds. The details and the reasons for choosing particular

datasets are presented later.

In the context of the third question, we use an entirely different

kind of data. To understand why, it is important to understand the

question. The question emerges when there are several pre-made

classifiers available and they are found to be too weak individually.

For example, one may build several tentative solutions to a prob-

lem and find none of the solutions especially promising. Because

current classifier algorithms tend to be quite capable, the reason for

the weakness is likely the insufficient quality of the input features.

The features are of insufficient quality when the designer, given a

classification problem, is unable to come up with more suitable fea-

tures (computationally efficient or not). Hence, the car and face

detection problems and datasets mentioned above are incompatible

with the third question.

To present a compelling case, it is necessary to present a classi-

fication problem and an associated dataset such that the problem

is important and finding sufficiently good features is known to be

hard. We attack the problem of detecting retinal microaneurysms

from retinal fundus images. Because microaneurysms are indica-

tors of a disease that is both common and causes blindness, the

problem cannot be dismissed as contrived or unimportant. The de-

tails of the chosen dataset and the relevant background literature

142 5 Questions of modularity

(e.g., the nature of microaneurysms and the disease) are examined

in the latter half of the current chapter that is dedicated to the

third question.

5.3 Attention-driven object detection

5.3.1 Test system design

In this study we examine the first two questions raised in the in-

troduction of the current chapter. In the context of the questions,

we analyze and test two kinds of delegation rules. We begin with

rules for two-class problems and then proceed to rules for multi-

class problems. Both require the implementation of test systems

for measuring performance. In the two-class case the systems are

plain two-stage cascades. In the multi-class case we have a two-

level tree, the structure of which resembles the tree that was used

in Chapter 4, i.e., we have a root node and specialist nodes to

which inputs can be delegated. If the root cannot classify an input

directly, it selects a subset of classes and activates a specialist to

perform finer discrimination. As earlier, there are threshold para-

meters that may be used to control speed versus accuracy trade-offs

without re-training the classifiers.

In the multi-class case, there are also some noteworthy differ-

ences compared to the earlier test system. Because demonstrating

the basic technique does not require a large number of classes, we

use just three – two object classes and one no object class. There

is one specialist for each non-empty subset of object classes. Hence,

in our experiments there are three specialists. Each specialist spe-

cializes in one or two object classes plus the no object class. In

contrast to earlier design, the specialists are not created a priori,

but are formed dynamically by combining simpler modules when

the root sees an input that requires delegation.

The nodes of each cascade and tree are formed from linear two-

class SVM modules that are, when necessary, given monotonic con-

fidence models (recall Section 2.3.3 in Chapter 2). Each module

encapsulates a feature space in addition to the SVM. We use two

kinds of modules, attention controller modules (ACMs) and robust

detection modules (RDMs). The division is essentially based on the

5.3 Attention-driven object detection 143

type of features used. As may be guessed from the name, RDMs

use quite strong (robust) features to compensate the limitations of

linear SVMs with respect to accuracy. In contrast, the ACMs use

very weak features as inputs to linear SVMs, which would obviously

result in poor accuracy if the ACMs were used in isolation. The

ACMs, however, are faster than RDMs by orders of magnitude.

Their purpose is to control the attention of RDMs.

When we say that ACMs control attention, we mean that they

are involved in two tasks. First, they are used for determining

which RDMs participate in forming a specialist when an input re-

quires delegation to a specialist, i.e., the ACMs choose which RDMs

pay attention to the input. The root node consists of ACMs only.

Second, each ACM is paired with one RDM for the purpose of se-

lecting the features which the RDM uses. The ACM limits the

attention of the RDM feature selector to specific image locations.

Because there are plenty of potential RDM features and evaluating

the suitability of each is expensive, such limitations are useful.

In addition to the above, we examine the role of low-frequency

(LF) information in classifying images. In the current study, we

were inspired by the recent work of Bar [Bar03] that examines the

question of how biological vision systems can classify familiar scenes

and objects very fast. Bar argues that it is possible for a higher-level

visual component to receive a low-frequency (LF) representation of

the image (i.e. a blurred image) to use in fast decision making.

We blur the input images using different filters and then test the

effects on prediction accuracy. In this dissertation, these limited LF

experiments are superseded by the root feature selection hypothesis

(Section 3.1.2). The reason is that the limited LF experiments

are quite problem-specific because they depend on the presence of

rather inflexible spatial relations between local features.

144 5 Questions of modularity

Robust detection modules (RDM)

The RDMs use grayscale templates of image parts as features.

These features are called image fragments or simply fragments.

Given an input image, a feature takes the value of one if a matching

operation finds the image part from the input. If the image part

is not found, the feature takes the value of zero. The matching

operation allows limited shift-invariance, i.e., the image part does

not have to be found in some precise location of an input. The

image part is found if the highest match value, in some neighbor-

hood of locations, exceeds a threshold value. The neighborhoods

and thresholds are feature-specific. The matching operation (pro-

gram) is shared. Hence, each feature is fully defined by a triplet

that specifies the template, the neighborhood, and the threshold.

The templates depict somewhat complex structures, e.g., structures

that cannot be represented by one Gabor-mask or PCA basis im-

age. In feature selection, the templates are cropped from labeled

image data.

Our feature selector is a modification of the mechanism first

proposed by Ullman, Vidal-Naquet, and Sali [UVNS02, VNU03].

There, the mechanism is primarily intended to demonstrate, as a

proof of concept, that intermediate complexity features are bet-

ter suited to visual discrimination than very simple features (e.g.,

simple wavelets) and very complex features (e.g., whole object tem-

plates).

By complexity, Ullman, Vidal-Naquet, and Sali refer to the com-

plexity of the structures that the templates match. Simple tem-

plates such as center-surround filters, Gabor filters (Section 3.3.2),

and LBPs (Section 4.5.3) match, and thus detect, the presence of

simple structures such as blobs, oriented lines, and very simple local

configurations of pixel intensities. Complex templates, on the other

hand, match visually complex structures such as the printed image

of this sentence or the face of a person. Intermediate complexity

templates fall in between the above.

If simple templates are used, then individual features are not

very informative and complex models or classifier functions may

have to be used to capture the essential relationships between fea-

tures. If, on the other hand, the target objects are not completely

rigid, or if we have a class of non-identical target objects, then the

5.3 Attention-driven object detection 145

use of too complex (and specific) templates leads to generalization

difficulties. We either have many false negatives (missed detections)

or a huge dictionary of templates. Because template-matching op-

erations are computationally expensive, matching huge dictionaries

is not efficient. In our experiments we use 16 × 16 pixel templates

cropped from 100 × 40 and 200 × 40 pixel images. Given the scale

of the objects, the templates can represent object parts such as car

tires, noses, eyes, and other structures that are detailed enough to

be recognizable by human observers. Some examples are shown in

Figure 5.5.

From the viewpoint of computationally efficient classification,

fragments and the selection mechanism of Ullman and Vidal-Naquet

have two deficiencies. First, fragment features are expensive to

use in classification regardless of the selection mechanism. At the

classification stage, it is necessary to perform dozens of template

matching operations per each input to get the feature vectors that

can be classified. Hence, it is reasonable to ask if all inputs require

fragment-based classification or if delegation techniques can make

classification more efficient. Second, it is expensive to select or

learn features of sufficient quality. The choice of suitable fragment

features is quite problem-specific. In the basic approach, fragments

are chosen sequentially from a large pool of candidates so that each

candidate is tested against training data. It makes sense to ask if

unsuitable candidates can be eliminated with small computational

effort.

Our RDM feature selector finds Nfrag ∈ N raster templates of

object parts from a subset Tp of class-labeled training data T . The

subscript p of Tp indicates that there is one object class, called the

positive class, that is the source of all the inputs in Tp. We assume

that there exists a special no object class that represents miscel-

laneous scenery. This special class is never the source of positive

inputs. The inputs from the special class are denoted by Tn ⊆ T \Tp.
If T contains inputs from several object classes (in addition to the

no object class), then exactly one of the object classes is the source

of positive inputs for one RDM feature selector. In multi-class prob-

lems we have one RDM for each object class and each object class

is the source for one RDM.

During the selection each template is given a threshold value

that is used in template matching. For matching we use normal-

146 5 Questions of modularity

ized cross-correlation. The image neighborhoods, in which cross-

correlation is applied, are rectangles that are approximately 2.6

times the size of a fragment. For example, a 16× 16 pixel fragment

is still found if it shifts 5 pixels left and 5 down from the source

location, i.e., the location from which the fragment is originally

cropped.

Fragments are selected for informativeness, as measured by class-

conditional entropy. The first fragment Fr(1) is selected to maxi-

mize

H(C)−H(C | Fr), (5.1)

where H(C) denotes the Shannon entropy of the class variable and

H(C | Fr) is the class entropy conditioned on that the status of

the fragment feature Fr is known, i.e., present or absent. The

fragments Fr(t), t > 1, are selected to maximize the additional

information

min
j<t

(H(C | Fr(j))−H(C | Fr(j), F r(t))). (5.2)

In the context of fragment selection, the class variable C is al-

ways binary regardless of the actual number of object classes. One

of the object classes, the positive class, is the source of all the inputs

in Tp for a particular RDM. In principle, the negative class lumps

together all inputs in T \ Tp. In practice, we use just Tp and Tn
in training each RDM, including the calculation of entropies. This

allows us to experiment with learning from limited data in which

inputs from some classes are not visible to the RDM at the training

stage.

To determine whether a fragment is present or absent, suitable

match thresholds have to be discovered so that the feature Fr be-

comes a binary variable. Given a template sampled from Tp, we

cross-correlate the template with visible training inputs. The cross-

correlation scores are then sorted from lowest to highest. In the

sorted array, we mark the intervals where a negative input is fol-

lowed by a positive input (that has a higher cross-correlation score

due to sorting). The midpoints of the marked intervals become split

candidates. Given a split candidate sc, a template FrT, an input

x, and a matching operator match, the value of the binary variable

Fr is 1 iff

match(FrT,x) ≥ sc.

5.3 Attention-driven object detection 147

Otherwise, Fr = 0. As discussed earlier, match takes the maximum

value found in a specific neighborhood within x. For each FrT we

choose sc that minimizes H(C | Fr) as measured from the visible

training data.

Suppose that the ACM has been trained to choose a set Iset of

promising image locations, called seed locations, from which candi-

date fragments are sampled (the procedure is detailed later). The

locations in Iset and the inputs in the subset Tp of training data

determine the pixel templates FrT that are available for selection.

For example, we may take image x ∈ Tp and location l ∈ Iset, and

then crop an image part FrT from x centered at the coordinates l.

After cropping enough patches, we determine the binary variables

Fr, including the best split sc for each, and use Equations (5.1)

and (5.2) for feature selection. More precisely, we use Algorithm 3

for greedy feature learning.

In the algorithm, the set FTset denotes the set of templates

FrT prior to split discovery and binarization. The set Fset denotes

the set of binary variables that are fully formed fragment feature

candidates. The occurrence table OT and the class labels from the

visible training data contain all the information that is available

for evaluating Equations (5.1) and (5.2). The gain table GT stores

gain values,

GT (i, j) = H(C | Fri)−H(C | Frj , F ri), (5.3)

for feature pairs (Frj , F ri). The stored gain values are used to

avoid re-evaluations of Equation (5.2) for known pairs.

Comparing Algorithm 3 to the approach of Ullman, Vidal-Naquet,

and Sali [UVNS02, VNU03], some differences are apparent: first,

we have replaced the brute-force search with the use of an attention

mechanism (ACM) that provides the set Iset of good seed locations

applied to Tp. Second, we introduced GT that is used as a cache

for speeding up the selection loop. The attention mechanism lets

us concentrate on fewer candidate fragments than would otherwise

be possible. Hence, a simple dense matrix may serve as GT . Oth-

erwise, it would be best to store just the column minima of GT :

in terms of Equation (5.2), we would then keep track of the “worst

opponent” of each candidate, making the algorithm a bit more com-

plex.

148 5 Questions of modularity

Algorithm 3 Select Features

Iset← image locations chosen by the ACM;

FTset← image parts sampled from various x ∈ Tp and l ∈ Iset;

Fset← ∅;
for all FrTi ∈ FTset do

Fri ← the binary feature determined by the best split sc of

the match scores of FrTi over the visible training data;

Fset← Fset ∪ {Fri};
end for

build binary occurrence table OT s.t. OT (i, j) = 1 iff Fri = 1 in

the jth image of the visible training data;

allocate empty information gain table GT ;

for all t ∈ {1, . . . , Nfrag} do

choose Fr(t) using GT and Equations (5.1) and (5.2)

if new gains were computed for some pairs (Frj , F ri) then

let GT (i, j) ← H(C | Fri) −H(C | Frj , F ri) for each such

pair;

end if

end for

Our experimental results (presented later) indicate that we can

sample fewer fragments if sampling is concentrated on certain lo-

cations using Iset, e.g., subregions of the object foreground. If

sampling is not concentrated, e.g., all image locations have the

same probability of being chosen, then many of the fragments rep-

resent object backgrounds that may not be predictive of object

class. Therefore, more fragments have to be sampled to match the

classification accuracy that results from the concentrated sampling.

Evaluating Equation (5.2) is expensive, having a computational

cost proportional to the number of inputs in the visible training set.

Hence, it is intuitively simple to understand that caching is useful.

Because the use of the cache GT cannot affect the outcomes of

decisions, the benefits can be estimated analytically.

Let |Fset| be the initial number of candidate features seen by Al-

gorithm 3 and let Nfrag be the number of features desired (|Fset| �
Nfrag). After the first iteration (t > 1), features are selected based

on Equation (5.2), which requires that the remaining (|Fset|−(t−1))

candidates are tested against each of the t − 1 previously selected

5.3 Attention-driven object detection 149

ones. The overall number of pairwise evaluations is

k1 =

Nfrag
∑

t=2

(|Fset| − (t− 1))(t − 1) (5.4)

= |Fset|Nfrag − 1

2
Nfrag −

Nfrag−1
∑

i=1

i2 (5.5)

≈ |Fset|Nfrag − 1

2
Nfrag −

∫ Nfrag−1

1
t2dt. (5.6)

Using a reasonable caching scheme, such as our table GT , no pair

has to be evaluated twice, and the number of such evaluations be-

comes

k2 =

Nfrag
∑

t=2

(|Fset| − (t− 1)) (5.7)

= |Fset|(Nfrag − 1)− Nfrag − 1

2
Nfrag. (5.8)

It is easy to see that typically k1 � k2,

k1 − k2 ≈ (|Fset|+ 1)
Nfrag − 1

2
Nfrag

−(Nfrag − 1)3

3
− |Fset|(Nfrag − 1) +

1

3
(5.9)

> |Fset|Nfrag − 1

2
Nfrag

−Nfrag − 1

2
N2

frag − |Fset|(Nfrag − 1) (5.10)

=
|Fset|Nfrag

2
(Nfrag − 1)

−
N2

frag

2
(Nfrag − 1)− |Fset|(Nfrag − 1), (5.11)

which is much larger than zero given reasonable values for |Fset|
and Nfrag. For example, if we select Nfrag = 50 features out of

|Fset| = 300, as in our experiments, we get k1 − k2 > 291550 while

k1 ≈ 328284. In relative terms, k2 is no more than about 11% of

k1.

After the Nfrag features have been selected, our classification

model assumes that the characteristic spatial arrangements of the

150 5 Questions of modularity

fragments found in an input determine the class. Clearly, the model

is best suited for semi-rigid objects (e.g., faces) that have some fairly

rigid characteristic parts (e.g., eyes). The current matching method

does not allow the compact representation of rotating parts. If such

exist, each would have to be represented by several fragments. We

also note that the matching method is not suitable for objects, the

parts of which have large variation in surface textures, e.g., the

spotted cows from the previous chapter.

The classification model is implemented using a linear SVM. The

inputs to the SVM are encoded as binary vectors that have Nfrag

bits – one per fragment feature. For training, the SVM is given the

visible subset of T . After training, the SVMs participate in forming

specialists when test inputs require delegation to specialists.

Attention controller module (ACM)

An attention controller module (ACM) serves two purposes: it as-

sists in training the corresponding RDM by providing the seed lo-

cations, Iset of Algorithm 3, and controls the selective activation

of RDMs via the delegation rules. An ACM and the corresponding

RDM are trained using the same training set but different features.

The ACMs use whole images instead of fragments. They are

linear SVMs such that the input features, z = SACM(x) = x, are

simply pixel intensities from the flattened image x. For the ACMs

we chose a monotonic model of confidence. From Section 2.3.3,

recall that such a model may be encoded with two threshold values

(per SVM) that do not have to be probabilities, even if we assume

that the correct model is probabilistic.

Also recall (Section 2.3.2) that a linear SVM has the dual form

f(x) = sign(wT x + b) = sign(
∑

i

yiαix
T
i x + b). (5.12)

Here, the dual form illustrates that the ACM takes example views

as prototypes that are then matched to new object views x using the

simple dot product of images as the similarity measure. As seen in

Equation (5.12), the prototypes are not equal in importance: they

have individual weights, yiαi. The important point is that in the

equivalent primal form, a single weight vector w ∈ R
d and b incor-

porate the same information from possibly all the given prototypes

5.3 Attention-driven object detection 151

Figure 5.1: A side view car image and the highlighted regions

around the pixel locations in Iset, as given by the most significant

coefficients of w.

xi and their relative weights, but the primal form requires just a

single dot product to be evaluated per prediction. Thus, while the

linear kernel is obviously limited [MP88], the linear machine may be

evaluated very quickly unlike machines based on some other kernels.

Denoting the primal form of an ACM by (wACM , bACM), the

set Iset required by Algorithm 3 contains the pixel locations of the

most significant coefficients of wACM . Empirically, these locations

work well and seem to make sense as illustrated in Figure 5.1.

Further, the distance of each input from the separating hyper-

plane can be calculated efficiently and compared against the thresh-

olds of the monotonic confidence model given that the latter are also

encoded directly as distances. As illustrated in Figure 5.2, which

shows the distribution of input distances from the learned hyper-

plane in a car detection problem, the monotonic model appears to

be close enough to being correct for that particular dataset. Similar

behavior was observed in a face detection problem.

We chose to use the medians of the distances of the positive and

negative inputs in each SVM training set as the ACM threshold

values. Note that the ACM threshold values have nothing to do

with the fragment feature threshold values of the RDMs. The for-

mer control speed versus accuracy trade-offs while the latter have

no influence on such trade-offs.

152 5 Questions of modularity

−4 −3 −2 −1 0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

0.12
non−cars
cars

Figure 5.2: Distribution of distances from the discriminating view-

based hyperplane (w, b) in the car detection problem.

Delegation rules for two-class problems

The ACM and RDM modules should be used in a disciplined way

that allows controlled trade-offs between accuracy and speed. As

earlier, the delegation rules determine which base classifiers are

activated on a per input basis. In the current chapter, a single base

classifier may consist of several ACMs or RDMs, but may not have

both types of modules.

First, we propose a simple delegation rule for two-class prob-

lems. The base classifiers have one-to-one correspondence with the

modules. There is one ACM and one RDM. Like the rules in Chap-

ter 4, the simple rule can, in principle, be tuned after training, i.e.,

making different trade-offs should not require re-training the ACM

and RDM modules. After analyzing the rule, we will proceed to

multi-class problems that require more complex rules and analysis.

The classifier program progf with the proposed rule for two-class

5.3 Attention-driven object detection 153

problems is the following:

1. The ACM (root base classifier) sees an input image and makes

a prediction.

2. If the ACM is not confident (the input is too close to the

hyperplane), it abstains and the input is delegated to the

RDM, which chooses the final prediction. Else, the ACM is

confident and makes the prediction.

Let X denote the random vector of pixels that is the original

input and let Y denote the random variable that is the class of

the input. Because we now have two classes, we say that Y is

either +1 or −1. The classifier program progf that implements the

classification function f , including the ACM and RDM modules, is

fixed and deterministic, i.e., we analyze the situation after feature

selection and training the modules.

The ACM is a linear classifier denoted as

d(x) = wT
ACMx + bACM . (5.13)

The learned parameters wACM and bACM in Equation (5.13) are

as w and b in Equation (2.24), Section 2.3.2. For notational sim-

plicity, we assume that the confidence regions of the ACM can be

represented by a single threshold value T ∈ R
+, i.e., the ACM is

confident iff |d(x)| > T .

Correspondingly, the RDM is

D(x) = wT
RDMS(x) + bRDM , (5.14)

where S maps the original input x to the binary vector S(x) in

which each bit indicates the presence (1) or absence (0) of a selected

fragment feature. Hence, the dimensionality of wRDM and S(x) in

Equation (5.14) is the number of fragments Nfrag in Algorithm 3.

The RDM is always confident.

154 5 Questions of modularity

We use the shorthand P (ok) to denote the probability of correct

classification, P (f(X) = Y), and write

P (ok)

=
∑

y∈{+1,−1}

P (Y = y)P (f(X) = y | Y = y) (5.15)

= P (Y = +1)
[

P (d(X) > T | Y = +1) +

P (|d(X)| ≤ T | Y = +1)P (D(X) > 0 | Y = +1, |d(X)| ≤ T)
]

+

P (Y = −1)
[

P (d(X) < −T | Y = −1) +

P (|d(X)| ≤ T | Y = −1)P (D(X) < 0 | Y = −1, |d(X)| ≤ T)
]

(5.16)

=
∑

y

P (Y = y)
[

P (yd(X) > T | Y = y) +

P (|d(X)| ≤ T | Y = y)P (yD(X) > 0 | Y = y, |d(X)| ≤ T)
]

(5.17)

= P (Y d(X) > T) +

P (|d(X)| ≤ T)P (Y D(X) > 0 | |d(X)| ≤ T) (5.18)

= P (|d(X)| > T)P (Y d(X) > T | |d(X)| > T) +

P (|d(X)| ≤ T)P (Y D(X) > 0 | |d(X)| ≤ T). (5.19)

Above, (5.16) follows when we eliminate terms that are equal to

zero. Step (5.19) follows because the event yd(x) > T means that

an input is classified both correctly and by the ACM.

It is reasonable to assume that the event |d(x)| ≤ T conveys very

little information about the event yD(x) > 0. Hence, we assume

that

P (Y D(X) > 0 | |d(X)| ≤ T) = P (Y D(X) > 0). (5.20)

The assumption may, of course, be checked empirically given data

to be sampled, d, D, and a range of values for T . Given the as-

sumption, we define

βd(T) = P (|d(X)| > T), (5.21)

γd(T) = P (Y d(X) > T | |d(X)| > T) and (5.22)

δD = P (Y D(X) > 0). (5.23)

5.3 Attention-driven object detection 155

Note that because the mapping D is fixed after training, the prob-

ability P (Y D(X) > 0) in (5.23) is constant. Using (5.19 – 5.23) we

write P (ok) as a function of T ,

P (ok) = accd,D(T) = βd(T)γd(T) + (1− βd(T))δD. (5.24)

Note that when each mistake causes the mistake loss of one,

ML(+1,−1) = ML(−1,+1) = 1, we have E[ML(f(X), Y)] = 1 −
accd,D(T).

The expected resource loss of the hybrid is

E[RL(X, progf)] = βd(T)RLACM +(1−βd(T))(RLACM +RLRDM),

(5.25)

where RLACM and RLRDM denote the resource losses of the ACM

and RDM. Note that E[RL(X, progf)] < RLRDM if and only if

RLACM

RLRDM
< βd(T). (5.26)

For example, if the ACM is a hundred times faster than the RDM,

then the ACM has to be confident with slightly more than one

percent of the data.

When T grows in Equation (5.24), the event |d(x)| > T becomes

less likely and βd(T) diminishes. Furthermore, if monotonic con-

fidence models are appropriate (recall Section 2.3.3), then γd(T)

grows with T . Figure 5.2 shows that monotonic confidence models

are appropriate for the current data. We observe that:

1. If there exists T such that γd(T) > δDγd(0), and βd(T) > 0,

then the hybrid accuracy exceeds both the RDM and ACM,

i.e., accd,D(T) > δD and accd,D(T) > γd(0). The ACM be-

comes an expert of a subset of inputs. Hence, if RLACM �
RLRDM , then βd(T) does not have to be much larger than

zero to satisfy Equation (5.26) and thus allow the hybrid to

be both more accurate and faster than the RDM in isolation.

In other words, the delegation framework does not always

force accuracy and speed to be conflicting goals.

2. With smaller T , we may have γd(T) = δD, and a larger βd(T),

thus gaining speed without losing accuracy.

3. With even smaller T such that δD > γd(T) > γd(0), we can

trade accuracy for speed.

156 5 Questions of modularity

Delegation rules for multi-class problems

In the multi-class setting we have m ≥ 2 mutually exclusive object

classes and a single no object class. Each of the m object classes

has an ACM and an RDM trained to discriminate the object class

from the no object class. Being two-class classifiers, the ACMs

and the RDMs do not have one-to-one correspondence with the

base classifiers of the classifier tree. For example, the root node of

the classifier tree must discriminate between at least three classes

(m + 1) and no single ACM or RDM can do that.

We examine a set of rules the purpose of which is to combine

ACMs and RDMs so that a delegating classifier tree exists, i.e.,

specialists are formed from modules when necessary. In addition,

the rules have parameters such that accuracy versus speed trade-

offs can be controlled without re-training the individual ACMs and

RDMs.

In terms of the tree model from Chapter 2, the root node of the

tree consists of all of the ACMs. For the root node to work effi-

ciently, the object classes have to be distinct enough to allow coarse

discrimination on the basis of low-frequency information. This re-

quirement is similar to the requirement of distinct superordinate

categories that was stated in the root feature selection hypothesis

(Section 3.1.2, Chapter 3). The current experimental setting is eas-

ier and less generic than the settings the hypothesis is meant for.

In the current setting, the objects are quite rigid in shape and the

viewing angles are severely restricted, e.g, we have frontal upright

views of faces. Hence, efficiency is not pursued as in the hypothesis,

i.e., by ignoring the spatial relations between local features. The

weight vector of an ACM is a template of where the local features

(pixel intensities) have to be. Such templates obviously do not work

when the data is as complex as it was in Chapter 4. With complex

data, efficiency may have to be pursued by ignoring spatial rela-

tions. Note, however, that our theoretical analysis further below

does not require or imply the specific kind of features or templates

that we use in the current study.

A typical RDM in the current study behaves like a subprogram

of a specialist base classifier that searches for highly class-specific

object parts, such as car tires. The tree implements gradual exclu-

sion of classes. The root delegates to base classifiers each of which

5.3 Attention-driven object detection 157

is a set of 1 to m RDMs. If the set defining a base classifier has

m′ < m RDMs, then m −m′ > 0 classes are excluded and m′ + 1

remain before the base classifier is activated. This can be seen in

the delegation rules presented below. Further, in the current study

the use of highly class-specific object parts allows us to skip class-

vs-class training. With more generic features, such as wavelets or

Gabor filter responses, we might have to use some class-competitive

training scheme.

Each of the m ACMs selects an answer from {yes, abstain,no}.
Each activated RDM selects from {yes,no}. The delegation rules

are the following:

1. Activate the root base classifier that consists of m ACMs.

2. If all m ACMs of the root say no, then choose

prediction← no object.

3. Else, if a single ACMj says yes, then choose

prediction← j.

4. Else, if more than one ACM says yes, then choose the predic-

tion randomly from the positive matches.

5. Else, the root is not confident and delegates. Direct the input

to the base classifier that consists of the RDMs of the classes

whose ACMs abstained. Denote the set of such RDMs by A.

6. For each RDMi ∈ A, activate RDMi. This results in |A|
predictions, each of which is yes or no. Choose as follows:

(a) If all |A| predictions are no, then choose

prediction← no object.

(b) Else, if exactly one prediction, by RDMi, is yes, then

choose prediction ← i.

(c) Else, more than one prediction is yes. Choose the pre-

diction randomly from the positive matches.

First, note that if RDMs could abstain and the tree was made

deeper, containing even more specialized base classifiers, the above

rules could easily be formulated as a recursive program much like

158 5 Questions of modularity

the rules in Chapter 4 were formulated. The latter steps for han-

dling the |A| predictions of the activated RDMs essentially repeat

the earlier steps for ACMs. The single exception is that the set of

|A| RDM predictions cannot contain a mixture of no and abstain

responses, and hence the delegation step is omitted.

Second, note that the root can predict any class immediately

without activating additional base classifiers (RDM sets). This abil-

ity was also used in the delegation rules in Chapter 4. If the rules

here were formulated as a recursive program, then any activated

base classifier would have the same ability.

Third, the above rules are somewhat more careful than the rules

in Chapter 4. At the end of Chapter 3 we argued that it is difficult

for a base classifier to detect if it has been activated to process an

inappropriate input outside its specialization. If gradual exclusion

of classes is implemented, it is also pointless to detect inappropri-

ate activation because delegation is irreversible and the activated

base classifier cannot predict the labels of excluded classes. What

can be done, however, is that greater care may be taken in grad-

ual exclusion. In Chapter 4 exclusion was not very fine-grained.

For example, activating the animal specialist caused all non-animal

classes to be excluded immediately. In contrast, the above rules

are fine-grained and delegation does not necessarily exclude any

classes, i.e, the root may delegate to a base classifier that consists

of all RDMs. Delegation results in an irrecoverable error only if the

ACM of the correct class says no.

The multi-class delegation rules can be analyzed much like the

two-class rules. Denote the object classes by 1, . . . ,m, and no object

by −1. The class priors are P (Y = i) > 0 for all classes i. The

priors are abbreviated as P(i). The event di(X) > Ti means ACMi

predicts yes, and di(X) < −Ti means no. Else, ACMi abstains. The

events Di(X) ≥ 0 and Di(X) < 0 for the RDMs are interpreted the

same way.

It is assumed that events describing classifier output inequalities

are mutually independent if the class is known. For example,

P (dj(X) > Tj | Y = i, dk(X) < −Tk) = P (dj(X) > Tj | Y = i).

(5.27)

First, note that typical thresholds satisfy Tj 6= 0 and less than full

5.3 Attention-driven object detection 159

conditional independence, e.g.,

P (dj(X) > Tj | Y = i, dk(X) = v) = P (dj(X) > Tj | Y = i),

(5.28)

is assumed. For example, the precise value v of dk(X) may eas-

ily convey more information about X than the inequality dk(X) <

−Tk. Given v, x must occupy one specific hyperplane while the in-

equality allows an infinite number of parallel hyperplanes. Second,

note that the current assumption is more general than (5.20) and

implies (5.20). We have

P (Y D(X) > 0 | |d(X)| ≤ T)

=
∑

y

P (y | |d(X)| ≤ T)P (yD(X) > 0 | y, |d(X)| ≤ T)

(5.29)

=
∑

y

P (y)P (yD(X) > 0 | y) (5.30)

= P (Y D(X) > 0). (5.31)

Above, in step (5.30) P (y) results from |d(X)| ≤ T conveying no

information about the class and both P (D(X) > 0 | Y = +1) and

P (−D(X) > 0 | Y = −1) result from the current assumption that

inequality events are independent if the class is known. Third, note

that inequality events must be assumed dependent if the class is

not known.

To simplify the analysis, we assume that when a randomized pre-

diction is made, it is always wrong. An input is classified correctly

iff one of the following conditions is true.

1. An object of class i is detected fast, if

di(X) > Ti

and

∀j 6= i : dj(X) ≤ Tj.

2. An object of class i is detected slowly, if first

|di(X)| ≤ Ti,

and then

Di(X) ≥ 0

160 5 Questions of modularity

and

∀j 6= i : dj(X) ≤ Tj

and

∀j 6= i : RDMjactivated⇒ Dj(X) < 0.

3. A non-object (class −1) is dismissed, i.e., no ACM or RDM

says yes.

Abbreviating probabilities P (·|condition) as Pcondition(·), we get

P (ok) =
∑

i>0 P (Y = i)PY =i(ok) + P (Y = −1)PY =−1(ok)

(5.32)

PY =i(ok) = PY =i(di(X) > Ti)Ri +

PY =i(|di(X)| ≤ Ti)PY =i(Di(X) ≥ 0)Disi (5.33)

PY =−1(ok) =
∏

j>0 PY =−1(disj) (5.34)

Ri =
∏

j>0:j 6=i PY =i(dj(X) ≤ Tj) (5.35)

Disi =
∏

j>0:j 6=i PY =i(disj) (5.36)

PY =i(disj) = 1− PY =i(dj(X) > Tj)−
PY =i(|dj(X)| ≤ Tj)PY =i(Dj(X) ≥ 0), (5.37)

where disj (dismissal) means there is no positive response (detec-

tion) from the jth ACM or RDM.

Next, we prove that the hybrid system may, in principle, exceed

the accuracy of a pure RDM committee. This hybrid accuracy may

then be traded for speed. In a pure RDM committee all RDMs

are activated once per input. If exactly one RDMi predicts yes and

other RDMs predict no, then the committee predicts class i. Else, if

all RDMs predict no, then the committee predicts no object. Else,

the committee predicts a random class.

We make some reasonable assumptions about the thresholds.

When i 6= j, well-behaved ACMs have

PY =i(dj(X) > Tj)� PY =i(dj(X) < −Tj), (5.38)

and

PY =i(dj(X) < −Tj) > 0. (5.39)

The former assumption states that fast false positives are much less

likely than fast and correct rejections. The latter assumption states

5.3 Attention-driven object detection 161

that fast and correct rejections are possible. In addition, we assume

that the value of Tj is sufficiently large so that

i 6= j ⇒ PY =i(dj(X) > Tj) < PY =i(Dj(X) ≥ 0). (5.40)

Note that if the monotonic model of confidence is true, then such

Tj must exist.

Let ε > 0 be a very small constant and let j 6= i. For later

convenience, choose ε < PY =i(dj(X) < −Tj). If the accuracies of

the RDMs are limited by

PY =i(Di(X) ≥ 0) <
PY =i(di(X) > Ti)

PY =i(di(X) < −Ti) + PY =i(di(X) > Ti)

(5.41)

PY =i(Dj(X) ≥ 0) >
PY =i(dj(X) > Tj)

PY =i(dj(X) < −Tj)− ε
, (5.42)

then the hybrid exceeds the accuracy of the committee of RDMs.

The inequalities do not contradict each other, i.e., there are prob-

ability assignments that satisfy both. The first inequality (5.41)

essentially means that if the RDMs are very good at detecting the

classes they are dedicated to, then the corresponding ACMs must

be very good at avoiding confident (fast) false negatives. The sec-

ond inequality (5.42) essentially means that if the RDMs are very

good at avoiding false positives, then the corresponding ACMs must

be very good at avoiding confident (fast) false positives and making

confident (fast) rejections.

To prove the claim, we first take the trivially true inequality

(again i 6= j)

PY =i(Dj(X) ≥ 0)

>
[

PY =i(|dj(X)| ≤ Tj) + PY =i(dj(X) < −Tj)− ε
]

PY =i(Dj(X) ≥ 0). (5.43)

Multiplying (5.43) by −1, adding 1 to both sides, substituting

bound (5.42), and using the fact that we chose

ε < PY =i(dj(X) < −Tj)

yields

PY =i(disj) > PY =i(Dj(X) < 0). (5.44)

162 5 Questions of modularity

It immediately follows from (5.44) that

Disi =
∏

j>0:j 6=i

PY =i(disj)

>
∏

j>0:j 6=i

PY =i(Dj(X) < 0) = Dis∗i . (5.45)

The new term Dis∗i is the probability that the individual machines

of a pure RDM committee do not make false detections.

Next, performing simple algebraic manipulation of the assump-

tion (5.40) yields

PY =i(dj(X) ≤ Tj) > PY =i(Dj(X) < 0). (5.46)

Using (5.46), we immediately see that

Ri =
∏

j>0:j 6=i

PY =i(dj(X) ≤ Tj)

>
∏

j>0:j 6=i

PY =i(Dj(X) < 0) = Dis∗i . (5.47)

Substituting the inequalities (5.45) and (5.47) into (5.33) yields

PY =i(ok) >
[

PY =i(di(X) > Ti) +

PY =i(|di(X)| ≤ Ti)PY =i(Di(X) ≥ 0)
]

Dis∗i

(5.48)

>
[

PY =i(|di(X)| > Ti) +

PY =i(|di(X)| ≤ Ti)
]

PY =i(Di(X) ≥ 0)Dis∗i

(5.49)

= PY =i(Di(X) ≥ 0)Dis∗i (5.50)

= P ∗
Y =i(ok), (5.51)

where (5.49) resulted from substituting the bound (5.41) into (5.48).

The new term P ∗
i (ok) is the probability that a pure RDM committee

predicts correctly if the true class is i > 0. Similarly, substituting

(5.44) into (5.34) gives the corresponding result for the no object

class

PY =−1(ok) > P ∗
Y =−1(ok). (5.52)

5.3 Attention-driven object detection 163

Finally, substituting (5.51) and (5.52) into (5.32) shows that if

the bounds (5.41) and (5.42) hold, then the hybrid is more accurate

than a pure RDM committee. If the bounds are relaxed, we can

trade accuracy for speed. If randomized choices (i.e., provoked by

multiple yes answers) are taken into account, the pure committee

still has no advantage.

5.3.2 Experimental design

We designed experiments to evaluate the performance of the del-

egation rules for two-class and multi-class problems. In these ex-

periments we used detection problems in which one or two classes

represented objects and the additional no object class represented

miscellaneous scenery with no objects of interest to be seen. The

two-class rules were applied when the detection problem was such

that there was one object class plus the no object class. The multi-

class rules were applied when there were two classes plus the no

object class. The object classes were cars and faces.

We used the car dataset from Agarwal and Roth [AR02]. The

data had gray-scale side views of various cars depicted in mostly ur-

ban environments, e.g., parked on streets. The negative data (non-

cars) consisted of mostly urban scenery without cars, but tended

to depict places where one could drive a car. This ensured that

trained detectors did not detect by context, e.g., detected streets

(common contexts) instead of cars. The dataset had about 1000

gray-scale images in 100 × 40 resolution. Some examples of cars

and non-cars are shown in Figure 5.3.

The generation of our face dataset was more complicated. We

sampled random frontal face images from the AR dataset of Mar-

tinez and Benavente [MB98]. Because the AR image backgrounds

were small and completely trivial, we embedded the faces on larger

backgrounds sampled from the BioID database of Jesorsky, Kirch-

berg and Frischholz [JKF01]. We made the backgrounds very large

compared to the size of the faces to increase the number of un-

suitable image fragments, i.e., to see how image fragment selection

copes. Backgrounds sampled from the same source were also used

as negative data (non-faces). Our face dataset had about 1900

gray-scale images in 200 × 40 resolution. Some examples of faces

and non-faces are shown in Figure 5.4. We note that we did not use

164 5 Questions of modularity

Figure 5.3: Five cars (left) and non-cars (right).

the BioId database as a source of faces because the AR set has more

individuals and greater variation in skin colors, facial expressions,

and facial hair.

To evaluate how well the classifiers cope with even coarser infor-

mation than what is available in the 100 × 40 and 200 × 40 pixel

inputs, we performed two experiments in which we convolved the

input images of the ACMs with Gaussian filters. In the first exper-

iment, we used a 7× 7 mask with standard deviation σ = 1. In the

second experiment, we used a 9 × 9 mask with σ = 2 for heavier

blurring. The blurring operations discard higher frequencies of im-

age content. Unlike the ACMs, the RDMs were allowed to use the

original data.

In the following, we use some abbreviations. A1 stands for the

variant of the hybrid approach where the ACMs are used only for

the selection of fragments in the learning phase. A2 stands for

the main variant where the ACMs are used for both the selection

of fragments and delegation. It is A2 that was the focus of the

introductory Section 5.3.1. RP stands for pure RDM classifiers each

of which selects fragments from a random set of candidates sampled

from random locations in object data. When RP is compared to

a variant of the hybrid (A1 or A2), the random set size equals the

size of the Fset used by the hybrid. SVM1 and SVM2 are linear

and second-order polynomial soft-margin SVMs, respectively. RF80

5.3 Attention-driven object detection 165

Figure 5.4: Five faces (left) and non-faces (right).

denotes Random Forests [Bre01] using 80 full-grown decision trees.

The SVMs and random forests can be considered state-of-the-art

machine learning algorithms that, in the current experiments, see

the raw image data directly.

For all RDMs, the candidate fragment size was fixed to 16× 16

pixels. The image neighborhoods, in which cross-correlation was

applied, were 26× 26 pixels in size. Each fragment had a neighbor-

hood the center of which was the source location of the fragment,

i.e., the location from which the fragment was originally cropped.

The number of selected fragments, Nfrag, was set to 50 in Algo-

rithm 3. Each wACM had either 100 × 40 or 200 × 40 coefficients

depending on the inputs. For each RDM-specific set of seed loca-

tions Iset, we chose the locations of the 60 most significant coef-

ficients of wACM of the corresponding ACM. Each RDM sampled

5 fragment candidates from each of its 60 seed locations, i.e., each

RDM chose 5 positive input images randomly, and from each image

chosen, selected one fragment centered on a seed location. Hence,

the number of candidate fragments was |Fset| = 300.

For the ACM thresholds T+
j and T−

j , we initially chose the me-

dians of the sets {dj(xk) : yk = +1} and {dj(xk) : yk = −1} calcu-

lated from the visible training inputs xk. Note that in the analysis

of the delegation rules the superscripts + and − of Tj were omitted

for simplicity. In practice we got values such as T+
j = 1.0003 and

166 5 Questions of modularity

T−
j = −1.0002. Hence, Tj = T+

j and −Tj = −T+
j ≈ T−

j .

The reported results describe performance on inverted 10-fold

cross-validation. Instead of using (n− 1)/n of the data for training

(including feature selection) and 1/n for testing as per iteration in

the ordinary kind of n-fold cross-validation, we inverted the roles

of the training and testing sets to investigate learning from small

training samples.

In the two-class car detection problem the balanced dataset had

490 images of cars and 490 images of non-cars. Each fold con-

tained 49 positives (cars) and 49 negatives (non-cars). During the

ith iteration of inverted cross-validation, the ith fold became the

training set for feature selection and classifiers. After training, the

inputs outside the training fold were used for testing. Hence, during

each iteration 441 positives and 441 negatives were used for testing.

In the two-class face detection problem the balanced dataset had

460 + 460 images, 46 + 46 in each training set, and 414 + 414 in

each test set.

In the multi-class detection problem we had three classes: the car

class, the face class, and the no object class. The previous datasets

were merged after the data from the face detection problem was

cropped to the same resolution as the car data, i.e., 50 × 40 pixels

were removed from the left and right borders of the face detection

data. Each fold contained 49 cars, 46 faces, and 49 + 46 non-

objects. The non-objects were the 49 non-cars and 46 non-faces

from the two-class experiments. For the A2 multi-class delegation

rules, training was done as in the two-class problems above, i.e.,

object-class-specific ACMs and RDMs saw only objects and non-

objects from the corresponding two-class problem. For example,

the Tp of a car-specific RDM consisted of images of cars and the

Tn of the RDM consisted of images of non-cars from the two-class

car detection problem. After training, the 441 cars, 414 faces, and

441 + 414 non-objects outside the fold became test data for the

rules. Hence, class-specific ACMs and RDMs were exposed to novel

kinds of negatives. For example, the car ACM was exposed to faces

and non-objects that did not resemble the original non-cars. The

approach is similar to the tests in Section 3.3.3 of Chapter 3. Those

tests indicated that at least some SVMs were tolerant of changes

of sampling bias, e.g., training with subcategories of inputs and

testing with full categories (supposing simplified variant of the A2

5.3 Attention-driven object detection 167

multi-class rules).

Exposing the ACMs and RDMs to novel kinds of negatives al-

lowed us to see if classifiers trained for two-class problems could be-

come reusable modules in A2 multi-class delegation rules of Section

5.3.1. The multi-class results of the other methods were obtained

using multiple binary classifiers and a one-vs-rest wrapper. Hence,

the binary classifiers of the other methods did not have to see novel

kinds of negatives during testing. Also recall that in Section 2.3.2

of Chapter 2 we already discussed the disadvantages of one-vs-rest

multi-class training, e.g., what kind of trouble is caused by the class

priors when participating binary classifiers minimize (surrogates of)

the 0/1 loss.

5.3.3 Results

The accuracies of the various methods are summarized in Table 5.1.

The numbers denote averages over cross-validation folds. The first

two rows correspond to the two-class detection problems, i.e., car

detection and face detection. The third row (multi) corresponds

to the three-class detection problem involving cars, faces, and non-

objects.

In the car problem, A1 using the attentive mechanism has similar

accuracy to RP, the pure parts-based method. In the face problem,

A1 seems to have an advantage over RP. Because both A1 and RP

used 300 candidate fragments to select 50, it is reasonable to in-

fer that A1 had better candidate fragments. It seems likely that

the candidates of A1 were better because A1 used the significant

coefficients of the ACM to select the seed locations while RP used

random seed locations. In other words, RP would have to sam-

ple more candidates from various locations to compete with A1.

Because the faces were small compared to the backgrounds (Fig-

ure 5.4), it is understandable why this advantage was apparent in

the face detection problem, but not necessarily in the car detection

problem (Figure 5.3). The precise framing of the selected parts does

not seem to matter much (see Figure 5.5), e.g., RP was reasonably

good because even random seed locations inevitably produce some

fragments that overlap with important facial parts. If precise fram-

ing mattered, RP could be severely disadvantaged. Overall, A1

seems to demonstrate that the delegation framework is not limited

168 5 Questions of modularity

Figure 5.5: Some example fragments A2 extracted from faces and

cars.

Table 5.1: Inverted 10-fold cross-validation accuracies.
A1 A2 RP SVM1 SVM2 RF80

Cars 0.9681 0.9702 0.9506 0.9263 0.9378 0.9247

Faces 0.9679 0.9691 0.9303 0.9019 0.8787 0.9224

Multi – 0.9483 – 0.9030 0.9009 0.9190

Cσ=1 – 0.9664 – 0.9194 0.9349 0.9239

Cσ=2 – 0.9605 – 0.9090 0.9272 0.9167

Fσ=1 – 0.9616 – 0.8912 0.8710 0.9161

Fσ=2 – 0.9545 – 0.8738 0.8568 0.9066

to improving the efficiency of classification after training. Learning

may be made more efficient as well, because better candidate frag-

ments mean that fewer have to be given to the selection algorithm.

Comparing A1 to A2, the variant that increases classification

speed, shows that using the simple linear machine in preliminary

classification did not degrade the accuracies. In the car problem,

the ACM of A2 was about 770 times faster than the RDM, and in

the face problem, about 340 times faster. We denote the constant

evaluation times of the modules by tACM and tRDM . Supposing

that resource losses are linearly proportional to time, i.e., ∃l >

0 : RLACM = ltACM and RLRDM = ltRDM , we may approximate

Equation (5.25) as

E[RL(X, progf)] = βd(T)ltACM + (1 − βd(T))l(tACM + tRDM)

≈ (1− βd(T))ltRDM , (5.53)

because RLRDM is orders of magnitude larger than RLACM . In

car detection βd(T) was about 0.44 and in face detection it was

about 0.42. Hence, Equation (5.53) shows that car detection using

A2 costs just 56% of the pure RDM cost in resources because 44%

5.3 Attention-driven object detection 169

of the cars are classified instantly using the ACM only. Further,

Inequality (5.26) shows that given the values of βd(T), A2 would

have had a resource loss advantage even if the ACM had been just

about 2.5 times faster than the RDM.

In the first and second rows of Table 5.1 it can be seen that

the black-box methods, SVM1, SVM2, and RF80, were less accu-

rate than A1 and A2. The differences were larger in face detec-

tion, which was likely due to the large backgrounds confusing the

black-box methods. The second-order polynomial machine, SVM2,

seemed to be affected the most. SVM2 also has larger resource

losses than SVM1 because SVM2 cannot be evaluated in primal

form. Given little training data and non-trivial backgrounds, sim-

ple ACMs based on linear machines (such as SVM1) may thus be

better for the hybrid delegation approach than more complex non-

linear machines.

In the third row of Table 5.1 it can be seen that the A2 multi-

class delegation rules predicted more accurately than the wrapped

black-box methods. Recall that this is in spite of the wrappers using

one-vs-rest training, which ensures that the binary machines see all

kinds of inputs during training, e.g., cars, faces, and two kinds of

non-objects (non-cars and non-faces). In contrast, the ACMs and

RDMs of A2 were trained using subsets of training data, and were

thus exposed to novel kinds of inputs during the testing.

The runtime behavior of A2 multi-class delegation rules is shown

in Figures 5.6 and 5.7. In Figure 5.6 we show mean accuracy as the

function of mean classification time (in seconds). In Figure 5.7 we

show mean time and accuracy as functions of Tj . The circles denote

different values of Tj . As explained earlier, during the training the

values of Tj were set to medians over the training sets. To create

the figures, we simply changed the values after the training and no

retraining was necessary. Both ACMs were always given the same

value, e.g., T1 = T2 = 1.0 when the mean time was 0.164 seconds.

The measurements were taken with a computer equipped with an

AMD 3500 processor. A pure RDM committee required about 0.41

seconds per input, i.e., two RDMs were always activated for each

test input.

Figures 5.6 and 5.7 show that when Tj were low, the accuracy

of A2 multi-class delegation rules was worse than the accuracies

of SVM1, SVM2 and RF80 (third row of Table 5.1). As noted

170 5 Questions of modularity

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

time (s)

ac
cu

ra
cy

Figure 5.6: Mean time versus mean accuracy.

earlier, the multi-class results of the latter three were obtained using

multiple binary classifiers and a one-vs-rest wrapper. Thus, unlike

A2 the binary classifiers of the latter three methods did not have

to see novel kinds of inputs during the testing. When Tj were set

to 0.01, A2 essentially became a committee of linear SVMs and the

measured accuracy was 0.8629. SVM1, an another committee of

linear SVMs, had the accuracy of 0.9030. Since both committees

used raw pixels as features, the likely explanation for the accuracy

gap is the presence of novel inputs in A2.

The figures show that speed can be traded for accuracy. As in

Figure 4.10 of the previous chapter, there is clearly a point of di-

minishing returns. In Figure 5.6 the point is at about 0.08 seconds.

The consequences of changing Tj seem to be predictable and well-

behaved. Increases always lead to better accuracy and worse speed.

In addition there are no bottlenecks, i.e., extreme trade-offs can be

made if desired. Hence, we can say that the parameters Tj allow

reasonable control over trade-offs.

Finally, we note the results of the blurring experiments. The

results are shown in the lower half of Table 5.1. The fourth and

fifth rows correspond to the two-class car detection problem, and

the sixth and seventh rows correspond to the two-class face detec-

5.3 Attention-driven object detection 171

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

value of every Tj

tim
e

(s
, d

as
he

d)
 a

nd
 a

cc
ur

ac
y

(s
ol

id
)

Figure 5.7: Tj versus mean time and mean accuracy.

tion problem. It can be seen that blurring the data caused only

graceful degradation of accuracy for all of the methods. Hence, the

results show that basic categories of objects may be recognizable

using only very low frequencies of image content. Of course, com-

pared to normal high-resolution photographs the raw 100× 40 and

200 × 40 pixel inputs had already lost the highest frequencies, i.e.,

downsampling had involved low-pass filtering to avoid aliasing.

5.3.4 Summary

In the above first half of the chapter, we examined two questions.

The first question asked if the framework requires problem-specific

organization of the classifier nodes. The second question asked if the

framework is limited to controlling the efficiency of classification,

or if it is also useful in controlling the efficiency of feature selection

and training. Answers to these questions were sought empirically.

Based on the empirical results, especially from the use of A2

multi-class delegation rules, we can answer the first question and

say that the framework does not require that a problem-specific

organization of the classifier nodes is used.

We demonstrated that all non-empty subsets of object classes

172 5 Questions of modularity

can be given specialists, each of which is formed from a set of simpler

modules (RDMs) at runtime. The number of these modules was

smaller than the number of specialists. In the general case the

difference can be very large.

To make the demonstration interesting, the test systems and

modules had certain capabilities and properties. First, the thresh-

old parameters Tj could be used to control speed versus accuracy

trade-offs without retraining the classifiers (RDM and ACM mod-

ules). This capability is clearly useful and was also present in

Chapter 4. Here and in Chapter 4 we showed that the parame-

ters allowed reasonable control over these trade-offs, i.e., changing

parameter values resulted in predictable changes of behavior and

there were no bottlenecks preventing extreme trade-offs. Second,

the individual modules were trained as if they were meant for two-

class detection problems. Hence, the modules were exposed to novel

kinds of inputs after training. While this may seem demanding, it

is desirable because of modularity and reusability. In other words, a

module used in multi-class detection is not very modular if retrain-

ing is necessary when the number of object classes m is increased

to m + 1.

We complemented the demonstration with a theoretical analysis

of the delegation rules. In the simplified case, we derived inequali-

ties that describe which conditions and threshold parameter values

lead to speed versus accuracy trade-offs and which lead to increased

speed without loss of accuracy. In the case of A2 multi-class delega-

tion rules, we proved that the rules could, in principle, exceed the

accuracy of a pure RDM committee. We noted that this accuracy

could then be traded for speed. The basic point of the proof was,

quite simply, that the rules are not arbitrary or inherently limited

to poor performance.

Based on the empirical results, we can also answer the second

question and say that the framework can be useful in improving

the efficiency of feature selection and training. For the demonstra-

tion we used fragment features that were selected from training

data. The fragment features were a good choice for the demon-

stration because they are known to produce accurate classifiers,

but their selection is computationally expensive. We made the se-

lection process more efficient. The more interesting efficiency im-

provements resulted from the use of ACMs (in the root node) to

5.3 Attention-driven object detection 173

constrain the sampling of candidate features in RDMs (in the spe-

cialist nodes). More precisely, each ACM focused the attention of

the corresponding RDM to a set Iset of image locations from which

the ACM predicted that promising features could be found.

The experimental results showed that when the image back-

grounds were large compared to the objects, the ACM-focused

attention led to more accurate classifiers than randomly focused

attention, given that both were used to select |Fset| candidate frag-

ments. Hence, ACM-focused attention is more efficient as it allows

a smaller |Fset| to be used. A smaller |Fset| is preferable because

selecting the features from the set Fset is quite expensive even with

caching – every feature template in the set must be cross-correlated

with every input image in the training set.

In addition to the main results above, there were a few additional

results worthy of summarization. In the experiments, we used in-

verted cross-validation. The immediate consequence was that the

training sets were somewhat small, e.g., we had just 49 images of

cars in a training fold. The advantage of small training sets was

that the cost of evaluating the candidate fragments was reduced.

As stated above, every fragment template in Fset must be cross-

correlated with every training image. The disadvantage of small

training sets is that some classifiers may be prone to overfitting if

the inputs are high-dimensional. In addition, overfitting could be

made worse if the training sets are not representative of the whole

problem, e.g., certain kinds of inputs are deliberately omitted, as

we did with A2 multi-class rules.

The variants of A2 and A1 did not seem to suffer from overfitting.

The other methods that were trained with wrappers did not have

to deal with omitted inputs, but they had high-dimensional inputs.

The other methods seemed to be somewhat confused by the large

backgrounds in face detection, e.g., they may have overfitted to

model the background pixels.

Fragment features have the attractive property that if they are

suitable for a problem, then the classifier on top of the fragments

can be simpler than a classifier of similar accuracy built on top of

simpler features. In other words, suitable image patches are much

more informative than simpler measured properties of images. For

example, we got accurate results with linear support vector ma-

chines on top of fragment features. Linear support vector machines

174 5 Questions of modularity

(perceptrons) are known to be too simple for the recognition of

non-trivial image classes when the input features are trivial (e.g.,

pixels).

Fragments also have their disadvantages. In their current form,

i.e., using cross-correlation, they are not well-suited for non-rigid

objects, scenes, or even rigid objects that have highly variable sur-

face textures. If objects may be viewed from any arbitrary angle

and there is no preprocessor for recovering rotations, then the lack

of efficient means for achieving rotation invariance hurts the per-

formance of fragment models.

Finally, we summarize the results of the blurring experiments.

We saw that blurring the input images with Gaussian filters caused

only graceful degradation of accuracy for all of the methods. Hence,

it seems that basic categories of objects may be recognizable using

only very low frequencies of image content.

5.4 Adaptive voting margin combiners

5.4.1 Test system design

In this study we examine the third question raised in the introduc-

tion of the current chapter. As explained in the introduction, the

question emerges when there are several pre-made weak classifier

modules available. As earlier, a module consists of features and a

classifier that takes the features as input. In contrast to the ear-

lier, we call the modules component classifiers to emphasize their

incomplete nature.

We take a set of component classifiers and use an adaptive, i.e.,

learning, combination method to create a specialist node. The

method that we designed is based on optimizing voting margins and

uses non-monotonic modeling of component classifier confidence.

The related theory was presented earlier in Sections 2.3.4 and 2.3.5

of Chapter 2. In what follows, the non-monotonic model that we

use is called M2. Basically, each component classifier is associated

with one of several feature spaces and the components are given

post-processors that are optimized to maximize the voting margins

of a combiner in a specialist node.

The test system in our experiments is minimalistic. Nothing

5.4 Adaptive voting margin combiners 175

inessential is included. The test system is a cascade of two stages

(nodes). The first stage, i.e., the root base classifier node, handles

the subset of inputs that is considered easy to classify. It is based on

a fairly traditional approach to the classification problem at hand.

The second stage, i.e., the specialist node, handles the subset of

inputs the first stage is unable to handle. The combination experi-

ments are focused on the second stage specialist only. Because the

question of interest is about combining classifiers within nodes, we

consider it sufficient to use one suitable node.

The classification problem is a two-class detection problem from

the medical image processing domain. The objects of interest are

called microaneurysms. The non-objects consist of miscellaneous

and varying background as found on images of human retina. Be-

cause the problem is unlike those examined earlier in this disserta-

tion, we present a detailed overview below.

5.4.2 The application domain and related details

To explain the classification problem, we begin with background

information related to the application domain. Diabetic retinopa-

thy (DR) is the most common cause of blindness in individuals

between the ages of 20 and 65. DR appears because the small

capillary vessels of the retina are damaged by poor blood glucose

control [KOA+04]. The presence of microaneurysms (MAs), small

dilations in the retinal capillary vessels, is the earliest indicator

of DR. Microaneurysm detection cannot be achieved without spe-

cialized equipment and labor-intensive methods, and requires the

participation of the diabetic population in life-long screening pro-

grams. The standard procedure involves the examination of retinal

fundus photographs for MAs by a medical professional – a tedious

task that we seek to automate.

The microaneurysm detection problem has, of course, attracted

considerable attention. A significant portion of the previous work

[LBK83, SPSF92, SOM+96, COM+98] is based on the use of an-

giograms, retinal images enhanced by introducing fluorescent sub-

stances to the bloodstream before photography. However allergic

responses to contrast-enhancing substances are not uncommon in

patients and protocols avoiding angiographic techniques are sim-

pler.

176 5 Questions of modularity

Previous proposals to solve this problem use matched filters

[SPSF92, WK02b] or morphological constructs [WK02a] because

typical MAs appear as roundish blobs whether one uses regular

photographs or angiograms. In the first stage of our system (the

root), we use an approach similar to [WK02a] to decide which test

inputs will be delegated to the second stage (the specialist).

The two-staged cascade we present next may be contrasted with

the two-class delegation rules from Section 5.3. In the cascade we

are about to present, the root may only predict negatives directly

(it is never confident that an input belongs to the positive class),

and the features are different. The fragment features from the first

half of this chapter were found almost useless in the MA detection

problem. MAs clearly do not have the necessary rigidity of form

for fragments to work well.

5.4.3 The first stage (root)

The primary purpose of the first stage (root) is to detect and ex-

clude image regions that clearly contain no microaneurysms. The

secondary purpose is preprocessing the remaining image regions:

the input images, each of which depicts a large portion of the retina,

are cut into smaller image patches suitable for the second stage.

The first-stage data consists of regular images of the retinas of

patients. In training, there is also annotation that pinpoints the

locations of the MAs. Each regular image may have many MAs in

many locations. The first stage takes each regular retinal image and

transforms it into a sequence of image patches. The image patches

are then delegated to the second stage to be classified individually.

The length of a sequence depends on the regular image that is being

processed. For example, the first stage may determine that there

are no potential MAs present in an image and produce an empty

sequence.

The images used in the first stage are digitalizations from the

photographic repository of the Diabetes Control and Complica-

tions Trial (DCCT) [The90], a comprehensive study spanning over

a decade of diabetes research. In particular, our experiments use

71 images taken from 11 different patients. Image acquisition was

done by using a Nikon Coolscan 4000 color film scanner at max-

imal resolution (4000 dpi) on the original slides produced at the

5.4 Adaptive voting margin combiners 177

DCCT and obtaining 24-bit color samples. Image annotation was

performed by qualified ophthalmologists, Dr. Ilkka Immonen and

Dr. Petri Jalli.

The root stage has several sub-stages or preprocessing steps.

First, in the RGB color model, the red and blue channels of the

raw image are discarded (typically, the former is saturated while

the latter is underexposed). Taking the green channel as a grayscale

image, a Gaussian lowpass filter is applied for noise removal.

Then, after downsampling the image by a factor of three, local

histogram normalization is performed by applying a linear mapping

(as in the local contrast enhancement operator proposed by Wal-

ter and Klein [WK02a]). The extreme values of the output range

interval are chosen so that the resulting histogram has 66% of the

histogram width of the original retinal image. We denote the result

of this initial preprocessing as InitImg.

The root then proceeds to segment the regions of interest in

InitImg. A list of the coordinates of local intensity minima in all

neighborhoods of 11 pixels is constructed. All minima under a cer-

tain threshold are taken. The threshold is 0.8 times the maximum

intensity of InitImg. Then, a binary image is constructed by set-

ting to one all the pixels corresponding to the locations in the list.

The resulting binary image is called MinImg.

Next, we proceed by applying the morphological MA detection

technique of Walter, Klein, Massin, and Zana [WKMZ00]. We con-

struct a set of bottom hat image transforms using a sequence of

straight structuring elements whose length is slightly larger than

the diameter of the microaneurysms, and whose orientation spans

from 0 to 170 degrees in steps of 10 degrees. Each of the 18 struc-

turing elements is used to process the image InitImg once. The

resulting 18 images are then thresholded using an empirical estimate

of the average response of microaneurysms. After thresholding, the

set of the 18 binary images is denoted {BImg1, . . . , BImg18}.
By applying the logical AND over the whole set of images

{MinImg,BImg1, . . . , BImg18},

we get a binary image Bselected that indicates the center points

of the round and dark objects that are potential MAs. The bits

that have the value of one in Bselected become the centers of the

square image patches that are delegated to the second stage of the

178 5 Questions of modularity

Figure 5.8: Retinal images. An original green channel subimage

is shown on the top with the superimposed white dots indicating

microaneurysm annotation. The results of the first stage of the

cascade are shown on the bottom with the squares indicating the

image patches that are selected for delegation.

cascade. The bits that have the value of zero in Bselected become

the centers of the patches that are classified as negatives by the

first stage and not delegated. In Figure 5.8, we show the delegated

image patches of one particular retinal image.

Once the centers have been determined, the image patches to

be delegated are cropped from the original green channel retinal

image. The size of the cropped patches is large enough to allow the

modeling of the immediate environment (context) of the potential

microaneurysms.

5.4 Adaptive voting margin combiners 179

5.4.4 Second-stage feature spaces

In the first stage, varying the values of the different parameters

affects the quality of the results. The parameter settings that allow

the capture of all of the positive patches (MAs) necessarily result in

the capture of many negatives as well. Because MAs are uncommon

and tiny compared to the size of the retinal images, the number of

captured negatives is actually larger than the number of captured

true positives. The class distribution of the delegated image patches

is biased towards the negative class, i.e., the number of negatives is

roughly ten times the number of true positives.

The second stage is given image patches each of which is classified

individually. In what follows, image patches are called inputs. The

inputs are scaled to the resolution of 60×60 pixels with the typical

MA fitting within the central area of 20 × 20 pixels which we call

the focus area (see Figure 5.9).

The grayscale inputs, interpreted as vectors x ∈ R
d (with d =

3600), could, in principle, be used directly as in the ACMs in Section

5.3. In the current application domain, however, ordinary SVM

kernels (linear, polynomial) with direct access to pixels did not

work well. We can choose better sets of features for which simple

dot products are useful measures of similarity. Each distinct subset

of features with similar types and scales is associated with a distinct

feature space within which dot products are calculated.

We use five distinct feature spaces. Let

Sk : R
d → Ik, k ∈ {1, . . . , 5},

such that Ik is an inner product space of features. For our purposes,

Ik ⊆ R
d suffices if equipped with the ordinary dot product. Similar-

ity in the kth space is measured by sim(xi,xj) = (Sk(xi))
T Sk(xj).

In practice, the microaneurysm detection problem is compatible

with shape-based measures of similarity invariant to small transla-

tions and rotations. Intuitively, the perception of shapes is easier

if object borders can be distinguished. We extract the shapes and

borders by using naive graylevel thresholding segmentation similar

to the rudimentary algorithms in Chapter 5.1 of [SHB99]. In that

way, fewer assumptions are made than by the specialized meth-

ods in the first stage of the cascade. For increased robustness and

representational power, we vary the threshold computing several

segmentations per image.

180 5 Questions of modularity

R4 R5

R1 R2

R3

BU

BD

BL BR

Figure 5.9: A microaneurysm (focus area, enhanced). One of the

segmentations is shown on the right superimposed with an outline

of the five regions of interest and the borders.

The feature spaces and the corresponding extractors are defined

as follows:

1. Raw segments. The 20×20 gray values of pixels in the central

focus area of an image patch are sorted into ascending order.

We take the 3.125th, 6.25th, and 12.5th percentiles of the in-

tensities as thresholds and segment the focus into foreground

and background using each threshold. The segmentation ma-

trices are then reshaped into a 1200-dimensional binary vec-

tor.

2. Contrasts. Segmenting as above, we compute the proportion

of the foreground pixels in each of the five regions shown in

Figure 5.9. Of the four peripheral regions, we mark by ones

those with at least ten times the number of foreground pixels

that the central region has (after normalizing for region size).

For example, if 90% of the pixels of a peripheral region are

foreground pixels and 9% of the pixels of the central region are

foreground pixels, then the peripheral region is marked. The

results of the four comparisons per segmentation are written

into a 12-dimensional binary vector.

3. Region counts. Segmenting as above and using the same re-

gions, the number of distinct connected components of fore-

5.4 Adaptive voting margin combiners 181

ground pixels is computed within each region, and the results

are written into a 15-dimensional vector. In the example of

Figure 5.9, the shown segmentation produces the component

counts of 2, 2, 1, 2, and 0 for the regions.

4. Intensity. For each of the five regions, we compute the mean

and standard deviation of the intensity of the pixels within the

region. The results are written into a 10-dimensional feature

vector.

5. Connections. For each of the three segmentations, we take the

segment closest to the focus center and measure its reach. The

focus area borders (BL, BU, BD, and BR) touched by the cen-

ter segment are marked. The results go to a 12-dimensional

binary vector.

5.4.5 Classification in the second stage

The second stage of the cascade uses linear SVMs equipped with the

non-monotonic model of confidence from Section 2.3.4. Each SVM

receives input from exactly one of the extractors Sk specified above.

Denote z = Sk(x). Let Train = {(z1, y1), (z2, y2), . . . , (zN , yN)}
denote the training set, where yi ∈ {+1,−1} denote class member-

ships (MA or not). The linear SVM learns a separating hyperplane

in the space Ik specified by the extractor Sk. Recall that linear

SVMs in primal form are extremely fast to evaluate after the fea-

ture values are known.

Recall that according to Equation (2.35) in Section 2.3.4, the kth

SVM equipped with the non-monotonic model has three distinct

parts: the feature extractor Sk, the hyperplane classifier fk (with-

out taking the sign), and the post-processor rk mapping values of fk

to a discrete output set. If rk is the sign function, we have a stan-

dard SVM. In this study, the output set is Ok = O = {+1, 0,−1}
for all k, where 0 indicates that the SVM abstains from voting.

For empirical comparisons between monotonic and non-monotonic

models of confidence, we examine one of each type.

The monotonic model, M1, is based on Platt’s rule [Pla00]:

the probability estimates from Equation (2.33) are mapped to O

by mapping fk(z) ∈ [0.5 − alow, 0.5 + ahigh] to 0 ∈ O using suit-

able thresholds alow and ahigh. The values outside the interval are

182 5 Questions of modularity

mapped to the label of the most probable class. Note that Platt’s

rule was derived for a single SVM and it is not intended for opti-

mizing how multiple component SVMs perform as a group.

The non-monotonic model, M2, is exactly as in Section 2.3.4.

We use 42 intervals for each SVM. The middle intervals are as

defined in Equation (2.37).

Initially, there is a set of pre-made component SVMs available.

The components (Sk, fk) are then given the post-processors rk.

Each post-processor needs the locations of 42 intervals and the map-

ping of each interval to the output set O = {+1, 0,−1}. The loca-

tions and mappings are estimated by running training data through

the SVMs to get the values fk(zi) for each zi in the training data.

These values are required for the estimates. The locations are es-

timated as in Equation (2.37). Each of the 40 middle intervals

contains 2.5% of the data. The mappings are estimated using an

optimization procedure that is described further below in the con-

text of the combiner rule. We use the sign function as the signmap

function that is required in Equation (2.38), i.e., positive values are

mapped to +1 and negative values are mapped to −1. As the result

of the above process, the SVMs are adapted to work together in a

problem-specific manner.

The second stage combiner

Our combiner is a majority voting rule on top of a collection of

SVMs equipped with a model of confidence (M1 or M2). The rule

is shown in Equation (2.41), but for convenience we repeat it here

in an appropriate form. Given M SVMs, the rule is

Comb(x) = sign(
M
∑

k=1

gk(x)), (5.54)

where gk(x) = (rk ◦ fk ◦ Sk)(x). Comparing Equation (5.54) to

Equation (2.41), note that the former is incapable of zero output.

The reason is that there is no need to let Comb indicate lack of

confidence. In the current application, the combiner is in the tail

of the cascade and inputs cannot be delegated further.

The second model of confidence (M2) requires the optimization

of the post-processors rk, where the degrees of freedom are limited

5.4 Adaptive voting margin combiners 183

to the tagging of certain intervals as abstain intervals (2.38). Having

defined the rule Comb (5.54), we can now describe the optimization

procedure. The optimization criterion is based on voting margins.

The empirical voting margin over a training set is given in Equation

(2.39).

Denote the parameters of the optimization problem by the ma-

trix τ = [τ 1, τ 2, . . . , τM], where each τ k is a vector of bits tagging

the abstain intervals of the kth post-processor. The optimization

problem is defined as

τ ∗ = arg max
τ

M
∑

k=1

(

N
∑

i=1

yigk(xi; τ k)

)

. (5.55)

From (5.55), two properties of this simple solution are seen: the

votes of relatively poor classifiers can be censored, and new compo-

nent classifiers can be added afterwards without retraining of the

existing component classifiers or post-processors.

In practice the class priors and the misclassification costs are

unbalanced, and we must control classifier sensitivity versus speci-

ficity. Sensitivity is the fraction of positives detected as such, and

specificity is the corresponding fraction of negatives detected as

such. Let Id+ and Id− denote the indices of the positive and neg-

ative inputs in the training set. We modify the optimization prob-

lem (5.55) by including weights w+, w− ∈ R for tuning sensitivity

against specificity. The modified problem is

max
τ

w+

|Id+|
∑

i∈Id+

yi

M
∑

k=1

gk(xi; τ k) +
w−

|Id−|
∑

i∈Id−

yi

M
∑

k=1

gk(xi; τ k)

 .

(5.56)

The solution is again denoted by τ ∗. In the current application, we

used the values w+ = 1 and w− = 1.2 to emphasize the margins of

the negatives.

Optimization is easy because the parameters of the intervals can

be optimized independently of each other. An interval intk,j can be

set to abstain if the choice improves the portion of the score (5.56)

that depends on the kth component classifier and the training data

falling in the jth interval of that classifier.

Our tests using 15 SVMs indicated that empirical voting mar-

gins correlated positively with the generalization accuracy of the

184 5 Questions of modularity

combiner. In Section 2.3.5 we also presented a simple bound that

demonstrated how the relationship between empirical voting mar-

gins and true accuracy may be examined theoretically. It may be

assumed that the basic design of the combiner is sound.

Based on the tests, the abstain intervals of the non-monotonic

model M2 were concentrated close to the hyperplanes of the com-

ponent SVMs. For example, one machine had four consecutive non-

empty abstain intervals near the hyperplane of the machine. Yet

some of the more unreliable SVMs had abstain intervals associated

with high absolute values of fk(z), i.e., far from the hyperplanes.

These abstain intervals that are associated with high absolute val-

ues can be called outlier intervals. We noticed that there were

non-abstaining intervals in between abstain intervals containing the

hyperplanes and outlier intervals. Thus, genuinely non-monotonic

models were found for the unreliable SVMs.

5.4.6 Experimental results

To estimate the generalization ability of the cascade, we used stan-

dard 10-fold cross-validation [RH95]. Our dataset consisted of 710

positive and 6930 negative inputs (image patches) which we ran-

domly partitioned into 10 folds each having the same relative class

frequencies as before partitioning.

The inputs were sampled from the original retinal images with

the help of the first stage that discarded most of the obviously

negative patches from consideration (e.g., featureless, or “blank”

patches) without discarding any of the positive patches.

During each of the 10 iterations, 9 folds were used for training

and 1 for testing. The training process constructed the second stage

of the cascade that consisted of the following:

1. A set of 15 component SVMs, each with the simple output set

{+1, 0,−1}. Using the 5 feature spaces described in Section

5.4.4, we trained 3 SVMs per space.

2. A combiner. Both of the models M1 and M2 were tested with

the combiner. For M2 we used the optimization procedure

described in the previous subsection.

Each SVM was trained with the full set of positive inputs avail-

able in the current training folds. Because the relative class fre-

5.4 Adaptive voting margin combiners 185

Table 5.2: The averaged results of cross-validation for models M1,

M2 and the best individuals.
2nd stage 2nd stage system system

sensitivity specificity sensitivity specificity

M1 88% 78% 88% 96%

M2 88% 81% 88% 96%

individual 87% 74% 87% 95%

quencies were quite unbalanced (639 to 6237), we did not train with

all the available negative inputs. Given n positive training inputs,

we sampled n random negative training inputs from the available

ones. This sampling was repeated for each SVM. Hence, the 15

component SVMs within the combiner were trained with different

but overlapping training data. In this sense, the setting had some

resemblance to bagging of classifiers [Bre96].

We estimated (and tested) that the above process could help in

reducing the effects of mislabeled negative inputs. Sampling re-

duces the ratio of mislabeled negatives to true positives in each

SVM-specific training set. Although the data was labeled by med-

ical professionals, the task of labeling is tedious, and it is possible

that sometimes genuine positives are missed. In our case, examin-

ing the evolution of microaneurysms in patient-specific time series

of retinal images revealed that mislabeled negatives existed. Some-

times microaneurysms had the correct label at times t and t + 2

while lacking the label at the time t + 1.

With model M1 we used the abstain interval of [0.475, 0.525],

which was a fairly conservative choice downplaying the overall role

of abstains. The parameters AP latt and BP latt required by M1 (see

Section 2.3.3) were estimated by withholding 30% of the available

training data for this purpose only.

The averaged cross-validation results of models M1, M2 and

the best individual classifiers are shown in Table 5.2. The best

individual classifier was found on a per fold basis, e.g., during the

first iteration of cross-validation the best could be a machine using

the second feature space and during the second iteration it could

be a machine using the fifth feature space. No machine or feature

space won the majority of the folds, and thus there is no overall

186 5 Questions of modularity

best feature space.

The first and second columns show the second stage (combiner)

mean sensitivity and specificity statistics from cross-validation. The

remaining columns show the estimated statistics of the whole sys-

tem including both stages of the cascade. The estimates are based

on 80% of the negatives getting caught by the first stage, while

100% of the positives pass.

Clearly, the better the first stage is at removing image regions

that contain no positives, the smaller the number of inputs reaching

the second stage and the smaller the average classification times are

for negatives. For correctly detected positives, classification times

are never reduced. Because positives are in the minority (in the test

data), the classification times of positives have little impact overall.

From the viewpoint of the third question posed in the introduc-

tion of this chapter, i.e., can pre-made components be combined

adaptively, only the first two columns of Table 5.2 matter. The

second stage sees the difficult inputs while the first stage (i.e., the

traditional MA detector) classifies large amounts of easy inputs.

The first two columns suffice to show that, given the input dis-

tribution that the second stage sees, the adaptive combiner works

better than the best individual classifiers. Both the non-adaptive

monotonic combiner M1 and the adaptive non-monotonic combiner

M2 beat the individual classifiers. Especially M2 is noteworthy. It

is considerably better than the individuals and slightly better than

M1.

If the estimated effects of the first stage are taken into account,

i.e., as in the third and fourth columns, the differences between M1

and M2 are not visible given the numeric precision of the table.

5.4.7 Summary

In this section we examined the third question raised in the intro-

duction of the current chapter. The question asked whether pre-

made classifier modules or components, which are too weak indi-

vidually, can be combined adaptively to work together in specialist

nodes. As explained in the introduction, adaptive combination in-

volves learning in contrast to using fixed rules. We presented the

combiner M2 that uses non-monotonic confidence modeling and

learns at the level of SVM post-processors. The approach differs

5.4 Adaptive voting margin combiners 187

from boosting in the sense that boosting algorithms do not combine

pre-made classifiers.

Based on the empirical results, we can answer the question and

say that adaptive combination of pre-made components does work

when M2 is used. In addition, our earlier analysis in Section 2.3.5

led to a simple bound that demonstrated how the relationship be-

tween empirical voting margins and true accuracy may be examined

theoretically in the context of M2. The basic design of the combiner

M2 is sound.

In the experiments, we compared M2 to M1, the non-adaptive

monotonic combiner, and to best individual classifiers. Including

M1 was illustrative because monotonic modeling of SVM outputs

has been established in the literature (e.g., by Platt [Pla00]). The

experimental results indicated that using any combiner (M2 or M1)

led to an accuracy advantage over using any one component classi-

fier (or feature space) individually. The combiner M2 was consid-

erably better than any individual classifier and slightly better than

M1.

To see why M2 should be more accurate than M1, it is useful

to consider some of the experimental observations that we made

earlier. First note that abnormally high absolute values of SVM

responses (before taking the sign or using a post-processor) may

indicate outliers, i.e., inputs that are dissimilar to any in the train-

ing set. In M1 such outliers would be classified with great con-

fidence. Examining the results of voting margin maximization of

M2, we noticed that there were outlier intervals, i.e., intervals that

were earlier defined as abstain intervals associated with high ab-

solute values. We noticed that there were non-abstaining intervals

in between abstain intervals containing the hyperplanes and outlier

intervals. Hence, genuinely non-monotonic modeling was supported

by the data.

In contrast to some of the other studies in this dissertation, we

did not provide speed versus accuracy plots in this study. In our

opinion, such plots were unnecessary given the question that we

sought to answer here.

188 5 Questions of modularity

CHAPTER 6

Conclusions

The proposed framework uses tree-like organization of base classi-

fiers to achieve conditional exclusion of computations on a per input

basis. This conditional exclusion leads to efficient classification of

inputs. Efficiency means the ability to make controlled trade-offs

between accuracy and computational effort (speed). An input im-

age is delegated down the tree along a unique path until it reaches

a base classifier node that is confident and predicts. In contrast to

decision trees, any node may terminate delegation. The primary

function of the proposed trees is to exclude the computations asso-

ciated with the paths that are not taken by the input. Delegation

involves the subproblems of determining node confidence and where

the input goes next. The general idea of organizing the classifica-

tion process as a tree was, of course, not novel. For example, in

decision trees the path of an input reflects maximum information

gain about the class. In [BG05] the path of an input reflects the

narrowing down of the set of classes.

In Chapter 2, resource consumption (loss) was made explicit in

the notation and analysis. Without explicit resource consumption,

there are properties of organization that cannot be seen properly

(e.g., subsumption). Resource consumption is measured precisely,

e.g., in seconds. Imprecise and more indirect measures, e.g., the

expected evaluation depth penalty of Geman and Jedynak [GJ01],

are not realistic because base classifiers are not equal in resource

consumption. When multiple kinds of features are used, the re-

source consumption of activated base classifiers may vary signifi-

cantly. Like Geman and Jedynak, we chose additive losses. Addi-

189

190 6 Conclusions

tive losses are easy to understand intuitively, e.g., one may state

preferences such as that one classification mistake is worth two sec-

onds of time.

In base classifier design, we require classifiers that offer some-

thing beyond the predicted class labels as output – something that

can be interpreted as related to prediction confidence. Large-margin

classifiers, e.g., support vector machines and the boosted root of

Chapter 4, can offer the classification margins. The classification

margins can be interpreted by confidence models. In Chapter 2, we

examined monotonic and non-monotonic models. Platt’s monotonic

model was a well-known example of the former, while a contributed

model served as an example of the latter. It was explained that,

in the current framework, each monotonic model reduces to two

threshold values. Correspondingly, any two thresholds are compat-

ible with multiple probabilistic models of confidence, and we gain

nothing by identifying the precisely correct probabilistic model. We

choose and use thresholds directly without mapping to probability

values. For example, the ACMs of Chapter 5 have directly cho-

sen thresholds. Related to large-margin classifiers (SVMs), it was

also noted that two-class classifiers can be combined in several ways

to yield multi-class capable classifiers. Some combination schemes

(e.g., one-vs-rest) are more efficient than others (e.g., one-vs-one).

In the preceding chapters, there was a tendency towards the use of

schemes that resembled one-vs-rest.

In the introduction, it was stated that the first goal of this dis-

sertation was to show that the proposed framework is satisfactory

for the purpose of understanding and modeling efficient classifica-

tion of images depicting real-world objects and scenes. The second

goal was to detect unnecessary conventions related to certain sub-

problems of efficient classification. Three categories of questions

were identified, each of which includes vital questions related to

how satisfactory the framework is. The categories were trade-off

optimization, classifier tree organization, and delegation and confi-

dence.

Regarding trade-off optimization, the following was presented.

First, the problem of selecting root node features was addressed.

From Chapter 3, recall that the available range of trade-offs is eas-

ily limited by root node bottlenecks. The root is special in that the

limitations of the root cannot be overcome by any delegation rules.

191

In other words, unsuitable root nodes lead to insufficient control

over trade-offs. In Chapter 3, a hypothesis was contributed. The

hypothesis makes claims about what kind of features should be

used in root nodes to avoid root bottlenecks. The hypothesis was

inspired by recent research on the ability of humans to recognize

scenes very rapidly. Some preconditions were stated. The precondi-

tions limit the claims to a particular sort of classification problems.

The preconditions are compatible with coarse-to-fine organization

of classes, e.g., the use of superclasses. If the preconditions are met,

the hypothesis claims that there is a good chance of a solution based

on global features that are summations or other coarse statistics of

local, possibly oriented features. The main experiment of Chapter 3

satisfied the preconditions and claims of the hypothesis. A small set

of crude Gabor filters was used to compute global statistics of im-

ages. The statistics were normalized sums of local filter responses.

A related experiment was done in Chapter 4. That experiment also

satisfied the preconditions and claims of the hypothesis. In that

case, local binary pattern (LBP) features were used. Local binary

pattern features are impressively efficient. In contrast to the first

experiment, the image backgrounds were not capable of helping in

the classification task. Hence, two different experiments were con-

tributed and the results agreed with the hypothesis.

Second, in Chapter 4 and in the first half of Chapter 5, more ex-

perimental evidence was contributed. The evidence supported the

claim that if the framework is implemented properly, then speed

versus accuracy trade-offs can be controlled after training by the

use of simple parameters (T and Tj). Proper implementation means

that there are no root bottlenecks, confidence modeling works, and

that the delegation rules allow any node to terminate. It is espe-

cially important to avoid the kind of input filtering that is done by

the cascades of Viola and Jones and decision trees, i.e., nodes are

trained using inputs that pass through earlier nodes. That kind

of filtering is not compatible with the idea of controlling trade-offs

after training. In the experiments, the available range of trade-offs

was large and the chosen trade-off could be changed at will. Based

on the evidence, it seems that it is unnecessary to target a specific

trade-off in the classifier training stage.

Related to classifier tree organization, the following was discov-

ered. First, in Chapter 4, we asked where the organization of

192 6 Conclusions

the base classifier nodes comes from (supposing the organization

is problem-specific). Experiments related to the problem were con-

ducted. In the experiments, the organization-centered approach was

used. On a more detailed level, coarse-to-fine organization with ex-

plicit superclasses was used. It was assumed that confusing broad

(super)classes is more serious than confusing narrow classes. An

experimental procedure was designed. The procedure could pro-

duce coarse-to-fine trees of classes by using visual queries posed to

human observers. The idea was that by measuring which classes

the observers find similar, the result of the procedure is a tree in

which the distance between nodes (classes) is proportional to (hi-

erarchic) mistake loss. The contributed experimental evidence sup-

ported the use of the coarse-to-fine organization-centered approach.

The results showed that the approach was compatible with the re-

quirements of the framework and led to efficient classification (see

trade-off optimization above). The classifier tree would have been

competent with formal hierarchic mistake losses because most mis-

takes were within-superclass mistakes.

Second, in the first half of Chapter 5, we asked whether the

framework requires problem-specific organization of the classifier

nodes. Related experimental evidence was contributed. The evi-

dence supported the claim that, at least sometimes, the framework

does not require problem-specific organization. This evidence was

based on the use of the proposed A2 multi-class delegation rules.

All non-empty subsets of object classes were given specialist nodes.

Each specialist node was formed from a set of simpler modules

(RDMs) at runtime when an input required that particular special-

ist node. The nodes did not exist as individual memory-consuming

units. It was also demonstrated that the modules were able to

handle novel kinds of negative inputs. If this ability was missing,

then there would be certain dependencies between the modules at

the training stage. These dependencies could be as undesirable as

allowing each node to exist individually in memory. In general,

non-modular specialist node implementations, such as those from

Chapter 4, are not compatible with the idea of problem-independent

organization.

Further, the following results related to delegation and confidence

were presented. First, in Chapter 4, we asked whether predictions

can be combined efficiently over multiple views of objects under

193

motion. Efficiency in this task was defined as being inversely pro-

portional to the sum of total losses over motion sequences (since

motion itself cannot be made faster). Experimental evidence was

contributed. The evidence supported the affirmative answer, e.g.,

the proposed delegation rules were not limited to classifying sin-

gle views. Each individual prediction was a ranked list of class

labels. Simple voting-based combination of ranked lists was suffi-

cient, given that the underlying classifier tree was capable of simple

motion segmentation.

Second, in the first half of Chapter 5, a theoretical analysis of

the proposed A2 multi-class delegation rules was contributed. In

the analysis, it was assumed that monotonic models of confidence

are appropriate. It was proved that the rules can, in principle,

exceed the accuracy of pure RDM committees. This accuracy can

then be traded for speed. Intuitively, the point was that although

the rules might seem ad hoc at first sight, they can be understood

in detail and that they are not inherently flawed or limited to poor

performance.

Third, in Chapter 2, a non-monotonic confidence modeling ap-

proach was contributed and analyzed. The approach was based on

adaptive combination of classifiers and maximization of empirical

voting margins. In the analysis, it seemed that combining classifiers

by using the approach is not especially dangerous because increas-

ing the number of combined classifiers does not necessarily increase

the risk of overfitting. The approach was later called M2. In the sec-

ond half of Chapter 5, we asked whether pre-made classifier modules

can be combined adaptively to work together in specialist nodes.

Recall that in the first half of the chapter combination was not

adaptive. It was explained why boosting does not allow pre-made

modules. Related experimental evidence was contributed. The ev-

idence supported the claim that adaptive combination of pre-made

modules works in practice. The approach M2 was compared to

M1, the non-adaptive monotonic combiner. Comparisons were ap-

propriate because monotonic modeling is well-established, e.g., by

Platt [Pla00]. It was found that M2 was slightly better than M1.

Based on the data, non-monotonic modeling was appropriate.

Finally, we addressed one question that was not covered by the

three categories above. In the first half of Chapter 5, we asked if

the framework is useful in improving the efficiency of feature selec-

194 6 Conclusions

tion and training. Related experimental evidence was contributed.

The evidence supported the positive answer. The efficiency of fea-

ture selection and training was improved when ACMs (in the root

node) were used to constrain the sampling of candidate features

in RDMs (in the specialist nodes). For the demonstration of im-

proved efficiency, Ullman’s image fragments were used as RDM fea-

tures. Fragments were a practical choice because they are known to

produce accurate classifiers, but their selection is computationally

expensive.

Based on the above results, the proposed framework seems to

be satisfactory. Related to trade-off optimization, the framework

allows control over trade-offs, the available range of trade-offs is

wide, and there are ways to avoid root node bottlenecks. Related

to classifier tree organization, the requirements (e.g., lighter nodes

precede heavier nodes, every node can terminate) can be satisfied

in practice. Organization can be problem-specific or not. In addi-

tion, the idea of hierarchic mistake losses seems to be compatible

with the framework. Related to delegation and confidence, it was

demonstrated that compatible and simple delegation rules and con-

fidence models are readily available – even when it is necessary to

predict from multiple views (under motion). The rules and models

can be analyzed and understood in detail. In addition to being sat-

isfactory for the intended purpose, the framework seems to allow

improving the efficiency of feature selection and training.

In the process of experimentation, it was found that some com-

mon conventions appear to be unnecessary, or even counterproduc-

tive. First, it was found that speed versus accuracy trade-offs can

be controlled after training, i.e., changed without further training.

In this, it is vital to avoid the conventional input filtering done by

cascades and decision trees. Second, coarse-to-fine trees of classes

were produced by using visual queries posed to human observers.

Through this, it seems possible to get a tree in which the distances

between nodes encode information about the cost of confusing pairs

of class labels. For conventional feature-centered approaches, this

is not possible. Hence, one should not consider feature-centered

approaches as the obvious choice. Third, it was demonstrated that

the convention assumption of problem-specific tree classifier orga-

nization is not always justified.

Regarding future directions, a few interesting topics were noted

195

in the earlier chapter summaries. For an example related to classi-

fier tree organization, no experiments involving a very large number

of classes were contributed. It would certainly be interesting to see

if scaling issues emerge. However, instead of rather specific top-

ics related to particular methods, it is more interesting to consider

broader and more urgent lines of development.

While delegation operates in a sequential manner, there is room

for parallel processing within the activated nodes. Hence, paral-

lelized combiners that operate within nodes are likely important

in allowing more computational effort to be spent per second. It

should be investigated if the framework could offer expanded sup-

port for understanding and creating this kind of combiners. Fur-

thermore, it would be interesting to see if delegation could be re-

placed by some other mechanism that has better potential for paral-

lelization. However, the idea of conditional exclusion of unnecessary

computations implies that some sequential processing is necessary

for obtaining savings in the resource losses.

196 6 Conclusions

References

[ABI+05] I. Autio, J. Borras, I. Immonen, P. Jalli and

E. Ukkonen. A Voting Margin Approach for

the Detection of Retinal Microaneurysms. In

Proceedings of the IASTED International Con-

ference on Visualization, Imaging, and Image

Processing, pages 511–517. Benidorm, Spain,

2005.

[AE03] I. Autio and T. Elomaa. Flexible view recogni-

tion for indoor navigation based on Gabor filters

and support vector machines. Pattern Recogni-

tion, 36(12):2769–2779, 2003.

[AEK01a] I. Autio, T. Elomaa and T. Kurppa. Robot land-

mark learning with SVMs. In Proceedings of

the 7th Scandinavian Conference on Artificial In-

telligence (SCAI01), pages 157–158. IOS Press,

2001.

[AEK01b] I. Autio, T. Elomaa and T. Kurppa. Support

vector learning of landmarks for a mobile robot.

In Proceedings of the 2001 International Confer-

ence on Artificial Intelligence (IC-AI01), pages

151–157. CSREA Press, 2001.

[AGW97] Y. Amit, D. Geman and K. Wilder. Joint Induc-

tion of Shape Features and Tree Classifiers. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 19(11):1300–1305, 1997.

197

198 References

[AL04] I. Autio and J. Lindgren. Attention-driven parts-

based object detection. In Proceedings of the

16th European Conference on Artificial Intelli-

gence (ECAI), pages 917–921. Valencia, Spain,

2004.

[AL06] I. Autio and J. Lindgren. Online learning of Dis-

criminative Patterns from Unlimited Sequences

of Candidates. In Proceedings of the 18th In-

ternational Conference on Pattern Recognition

(ICPR06), pages 437–440. Hong Kong, China,

2006.

[AM02] H. Alhichri and M.Kamel. Multi-resolution im-

age registration using multi-class Hausdorff frac-

tion. Pattern Recognition Letters, 23(1):279–286,

2002.

[AR02] S. Agarwal and D. Roth. Learning a sparse repre-

sentation for object detection. In Proceedings of

the 7th European Conference on Computer Vi-

sion (ECCV), pages 113–130. Springer-Verlag,

Copenhagen, Denmark, 2002.

[Arr70] K. Arrow. Social Choice and Individual Values

(2nd edition). Yale University Press, New Haven,

CT, USA, 1970.

[ASS00] E. Allwein, R. Schapire and Y. Singer. Reducing

Multiclass to Binary: A Unifying Approach for

Margin Classifiers. Journal of Machine Learning

Research, 1:113–141, 2000.

[Aut06] I. Autio. Using natural class hierarchies in multi-

class visual classification. Pattern Recognition,

39(7):1290–1299, 2006.

[Bar03] M. Bar. A cortical mechanism for triggering top-

down facilitation in visual object recognition.

Journal of Cognitive Neuroscience, 15(4):600–

609, 2003.

References 199

[BBC94] E. Bellissant, J. Benichou and C. Chastang.

A Microcomputer Program for the Design and

Analysis of Phase 11 Cancer Clinical Trials with

Two Group Sequential Methods, the Sequential

Probability Ratio Test, and the Triangular Test.

Computers and Biomedical Research, 27(1):13–

26, 1994.

[BBFS00] A. Broggi, M. Bertozzi, A. Fascioli and M. Sechi.

Shape-based Pedestrian Detection. In Proceed-

ings of the IEEE Intelligent Vehicles Symposium,

pages 215–220. Detroit, MI, USA, 2000.

[BBV00] J. Bruce, T. Balch and M. Veloso. Fast and inex-

pensive color image segmentation for interactive

robots. In Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Sys-

tems, pages 2061–2066. Takamatsu, Japan, 2000.

[BCSTW00] K. Bennett, N. Cristianini, J. Shawe-Taylor and

D. Wu. Enlarging the Margins in Perceptron De-

cision Trees. Machine Learning, 41(3):295–313,

2000.

[BFOS84] L. Breiman, J. Friedman, R. Olshen and

C. Stone. Classification and Regression Trees.

Chapman and Hall, New York, NY, USA, 1984.

[BG05] G. Blanchard and D. Geman. Hierarchical Test-

ing Designs for Pattern Recognition. The Annals

of Statistics, 33(3):1155–1202, 2005.

[Blu67] M. Blum. A Machine-Independent Theory of the

Complexity of Recursive Functions. Journal of

ACM, 14(2):322–336, 1967.

[BM92] K. Bennett and O. Mangasarian. Robust Lin-

ear Programming discrimination of two linearly

inseparable sets. Optimization Methods and Soft-

ware, 1:23–34, 1992.

200 References

[BM94a] K. Bennett and O. Mangasarian. Multicategory

discrimination via linear programming. Opti-

mization Methods and Software, 3:29–39, 1994.

[BM94b] K. Bennett and O. Mangasarian. Serial and par-

allel multicategory discrimination. SIAM Jour-

nal on Optimization, 4(4):722–734, 1994.

[BM02] P. Bartlett and S. Mendelson. Rademacher and

Gaussian Complexities: Risk Bounds and Struc-

tural Results. Journal of Machine Learning Re-

search, 3:463–482, 2002.

[Bre96] L. Breiman. Bagging Predictors. Machine Learn-

ing, 24(2):123–140, 1996.

[Bre01] L. Breiman. Random Forests. Machine Learning,

45(1):5–32, 2001.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimiza-

tion. Cambridge University Press, Cambridge,

UK, 2004.

[CBL06] N. Cesa-Bianchi and G. Lugosi. Prediction,

Learning, and Games. Cambridge University

Press, Cambridge, UK, 2006.

[CDV03] M. Coimbra, M. Davies and S. Velastin. Pedes-

trian detection using MPEG-2 motion vectors.

In Proceedings of the International Workshop on

Image Analysis for Multimedia Interactive Ser-

vices, pages 164–169. London, UK, 2003.

[Chu92] C. Chui. An Introduction to Wavelets. Academic

Press, London, UK, 1992.

[CJR+98] M. Carreira, J.Orwell, R.Turnes et al. Percep-

tual grouping from Gabor filter responses. In

Proceedings of the Ninth British Machine Vision

Conference. Southampton, UK, 1998.

[COM+98] M. Cree, J. Olson, K. McHardy, P. Sharp and

J. Forrester. A fully automated comparative

References 201

microaneurysm digital detection system. Eye,

11:622–628, 1998.

[CS01] K. Crammer and Y. Singer. On the Algorithmic

Implementation of Multi-class SVMs. Journal of

Machine Learning Research, 2:265–292, 2001.

[CST00] N. Cristianini and J. Shawe-Taylor. An Intro-

duction to Support Vector Machines and Other

Kernel-Based Methods. Cambridge University

Press, Cambridge, UK, 2000.

[CT91] T. Cover and J. Thomas. Elements of Informa-

tion Theory. John Wiley & Sons, West Sussex,

UK, 1991.

[CV95] C. Cortes and V. Vapnik. Support vector net-

works. Machine Learning, 20(3):273–297, 1995.

[DB95] T. G. Dietterich and G. Bakiri. Solving Mul-

ticlass Learning Problems via Error-Correcting

Output Codes. Journal of Artificial Intelligence

Research, 2:263–286, 1995.

[DC00] S. Dumais and H. Chen. Hierarchical clas-

sification of Web content. In Proceedings of

SIGIR-00, 23rd ACM International Conference

on Research and Development in Information

Retrieval, pages 256–263. ACM Press, New York,

US, Athens, GR, 2000.

[DHS00] R. Duda, P. Hart and D. Stork. Pattern Classi-

fication. John Wiley & Sons, West Sussex, UK,

2000.

[DK05] K. Duan and S. Keerthi. Which Is the Best

Multiclass SVM Method? An Empirical Study.

In 6th International Workshop on Multiple Clas-

sifier Systems (MCS2005), pages 278–285. Sea-

side, CA, USA, 2005.

[DKS04] O. Dekel, J. Keshet and Y. Singer. Large mar-

gin hierarchical classification. In Proceedings

202 References

of the Twenty-first International Conference on

Machine Learning (ICML2004), pages 209–216.

Banff, Alberta, Canada, 2004.

[DS01] M. DeGroot and M. Schervish. Probability

and Statistics (3rd Edition). Addison-Wesley,

Boston, MA, USA, 2001.

[EHOK02] M. Elad, Y. Hel-Or and R. Keshet. Rejection

based classifier for face detection. Pattern Recog-

nition Letters, 23(12):1459–1471, 2002.

[Fis70] P. Fishburn. Utility Theory for Decision-Making.

John Wiley & Sons, West Sussex, UK, 1970.

[FNSH04] S. Frintrop, A. Nüchter, H. Surmann and

J. Hertzberg. Saliency-based Object Recognition

in 3D Data. In Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and

Systems (IROS’04), pages 2167–2172. Sendai,

Japan, 2004.

[GBD92] S. Geman, E. Bienenstock and R. Dour-

sat. Neural Networks and the Bias/Variance

Dilemma. Neural Computation, 4(1):1–58, 1992.

[GJ01] D. Geman and B. Jedynak. Model-based classifi-

cation trees. IEEE Transactions of Information

Theory, 47(3), 2001.

[GJLAMBGM05] P. Gil-Jimenez, S. Lafuente-Arroyo,

S. Maldonado-Bascon and H. Gomez-Moreno.

Shape Classification Algorithm Using Support

Vector Machines for Traffic Sign Recognition,

vol. 3512 of Lecture Notes in Computer Science,

pages 873–880. Springer-Verlag, New York, NY,

USA, 2005.

[Hay99] S. Haykin. Neural Networks: A Comprehensive

Foundation. Prentice Hall, New Jersey, USA,

1999.

References 203

[Her01] R. Herbrich. Learning Kernel Classifiers: Theory

and Algorithms. MIT Press, Cambridge, MA,

USA, 2001.

[HGW96] J. Huang, S. Gutta and H. Wechsler. Detection

of human faces using decision trees. In Proceed-

ings of the Second International Conference on

Automatic Face and Gesture Recognition, pages

248–252, 1996.

[HL02] C. Hsu and C. Lin. A comparison of methods

for multi-class support vector machines. IEEE

Transactions on Neural Networks, 13:415–425,

2002.

[HT98] T. Hastie and R. Tibshirani. Classification by

Pairwise Coupling. In Advances in Neural Infor-

mation Processing Systems, vol. 10. MIT Press,

Cambridge, MA, USA, 1998.

[Hut01] M. Hutter. Distribution of Mutual Informa-

tion. In Advances in Neural Information Process-

ing Systems, vol. 14, pages 399–406. MIT Press,

Cambridge, MA, USA, 2001.

[Hut02] M. Hutter. Robust Feature Selection using Dis-

tributions of Mutual Information. In Proceed-

ings of the 18th International Conference on Un-

certainty in Artificial Intelligence (UAI-2002),

pages 577–584. Morgan Kaufmann, San Fran-

cisco, CA., 2002.

[JCMJ03] S. Johnson, L. Cohen, K. Marks and K. John-

son. Young infants’ perception of object unity in

rotation displays. Infancy 4, 4:285–295, 2003.

[JJ94] M. Jordan and R. Jacobs. Hierarchical mixtures

of experts and the EM algorithm. Neural Com-

putation, 6(2):181–214, 1994.

[JJNH91] R. Jacobs, M. Jordan, S. Nowlan and G. Hin-

ton. Adaptive mixtures of local experts. Neural

Computation, 3(1):79–87, 1991.

204 References

[JKF01] O. Jesorsky, K. Kirchberg and R. Frischholz. Ro-

bust Face Detection Using the Hausdorff Dis-

tance. In Proceedings of the 3rd International

Conference on Audio and Video based Person

Authentication, pages 90–95. Halmstad, Sweden,

2001.

[Joa98] T. Joachims. Making large-scale support vec-

tor machine learning practical. In B. Schölkopf,

C. Burges and A. Smola, eds., Advances in Ker-

nel Methods: Support Vector Machines, pages

169–184. MIT Press, Cambridge, MA, USA,

1998.

[JP87] J. Jones and L. Palmer. An evaluation of the

two-dimensional Gabor filter model of simple re-

ceptive fields in cat striate cortex. J. Neurophys-

iology, 58(6):1233–1258, 1987.

[JV03] M. Jones and P. Viola. Fast Multi-view Face

Detection. Tech. Rep. TR2003-096, Mitsubishi

Electric Research Laboratories, 2003.

[KB01] W. Kropatsch and H. Bischof. Digital Image

Analysis: Selected Techniques and Applications.

Springer-Verlag, New York, NY, USA, 2001.

[KOA+04] T. Kawasaki, N. Ogata, H. Akanuma et al. Post-

prandial plasma fructose level is associated with

retinopathy in patients with type 2 diabetes.

Metabolism, 5(53):583–588, 2004.

[KS97] D. Koller and M. Sahami. Hierarchically classify-

ing documents using very few words. In Proceed-

ings of the Fourteenth International Conference

on Machine Learning (ICML-97)., pages 171–

178. Nashville, Tennessee, USA, 1997.

[LBK83] B. Lay, C. Baudoin and J. Klein. Automatic de-

tection of microaneurysms in retinopathy fluoro-

angiogram. In Proceedings of SPIE, vol. 432,

pages 165–173, 1983.

References 205

[LS03] B. Leibe and B. Schiele. Analyzing Appearance

and Contour Based Methods for Object Catego-

rization. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR’03), pages

409–415. Madison, WI, USA, 2003.

[LV93] M. Li and P. Vitanyi. An Introduction to

Kolmogorov Complexity and Its Applications.

Springer-Verlag, New York, NY, USA, 1993.

[LZ04] S. Li and Z. Zhang. FloatBoost Learning and

Statistical Face Detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence,

26(9):1112–1123, 2004.

[MB98] A. Martinez and R. Benavente. The AR Face

Database. Tech. rep., CVC Technical Report 24,

1998.

[Mit97] T. Mitchell. Machine Learning. McGraw-Hill,

New York, NY, USA, 1997.

[MKS94] S. Murthy, S. Kasif and S. Salzberg. A System

for Induction of Oblique Decision Trees. Journal

of Artificial Intelligence Research, 2:1–32, 1994.

[MKS00] J. Miura, T. Kanda and Y. Shirai. An active vi-

sion system for real-time traffic sign recognition.

In Proceedings of the IEEE Intelligent Trans-

portation Systems, pages 52–57. Dearborn, MI,

USA, 2000.

[MP88] M. Minsky and S. Papert. Perceptrons: An in-

troduction to Computational Geometry (2nd edi-

tion). MIT Press, Cambridge, MA, USA, 1988.

[MR01] A. Mojsilovic and B. Rogowitz. Capturing im-

age semantics with low-level descriptors. In Pro-

ceedings of the IEEE International Conference

on Image Processing (ICIP), pages 18–21. Thes-

saloniki, Greece, 2001.

206 References

[MR03] R. Meir and G. Rätsch. An Introduction to

Boosting and Leveraging, pages 119–184. No.

2600 in Lecture Notes in Artificial Intelligence.

Springer-Verlag, New York, NY, USA, January

2003.

[MRMN98] A. McCallum, R. Rosenfeld, T. Mitchell and

A. Ng. Improving text classification by shrinkage

in a hierarchy of classes. In Proceedings of the

Fifteenth International Conference on Machine

Learning (ICML-98)., pages 359–367. Madison,

Wisconsin, USA, 1998.

[Nov62] A. Novikoff. On convergence proofs on percep-

trons. In Symposium on Mathematical Theory of

Automata, vol. 12, pages 615–622. Polytechnical

Institute of Brooklyn, 1962.

[NS98] R. Nelson and A. Selinger. Large-Scale Tests of

a Keyed, Appearance-Based 3D Object Recogni-

tion System. Vision Research, special issue on

computational vision, 38(15-16), August 1998.

[OPM01] T. Ojala, M. Pietikäinen and T. Mäenpää. A

generalized Local Binary Pattern operator for

multiresolution gray scale and rotation invariant

texture classification. In International Confer-

ence on Advances in Pattern Recognition, pages

397–406. Rio de Janeiro, Brazil, 2001.

[OPM02] T. Ojala, M. Pietikäinen and T. Mäenpää. Mul-

tiresolution gray-scale and rotation invariant tex-

ture classification with Local Binary Patterns.

IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 24(7):971–987, 2002.

[OPS+97] M. Oren, C. Papageorgiou, P. Sinha, E. Os-

una and T. Poggio. Pedestrian detection us-

ing wavelet templates. In Proceedings of the

IEEE International Conference on Computer Vi-

sion and Pattern Recognition, pages 193–199.

San Juan, PR, USA, 1997.

References 207

[OT06] A. Oliva and A. Torralba. Building the Gist of

a Scene: The Role of Global Image Features in

Recognition, vol. 155 of Progress in Brain Re-

search, pages 23–36. Elsevier, Oxford, UK, UK,

2006.

[Pal99] S. Palmer. Vision Science. MIT Press, Cam-

bridge, MA, USA, 1999.

[Pla00] J. Platt. Probabilistic outputs for support vec-

tor machines and comparison to regularized like-

lihood methods. In A. Smola, P. Bartlett,

B. Schölkopf and D. Schuurmans, eds., Advances

in Large Margin Classifiers, pages 61–74. MIT

Press, Cambridge, MA, USA, 2000.

[PW72] W. Peterson and E. Weldon. Error Correcting

Codes. MIT Press, Cambridge, MA, USA, 1972.

[Qui93] J. Quinlan. C4.5: Programs for Machine Learn-

ing. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1993.

[Ren00] R. Rensink. The Dynamic Representation of

Scenes. Visual Cognition, 7(1–3):17–42, 2000.

[RH95] B. Ripley and N. Hjort. Pattern Recognition and

Neural Networks. Cambridge University Press,

Cambridge, UK, 1995.

[RM04] L. Renninger and J. Malik. When is scene iden-

tification just texture recognition? Vision Re-

search, 44(19):2301–2311, 2004.

[RMN+98] C. Rodriquez, J. Muguerza, M. Navarro et al. A

two-stage classifier for broken and blurred dig-

its in forms. In Proceedings of the 14th In-

ternational Conference on Pattern Recognition

(ICPR), pages 1101–1105. Los Alamitos, USA,

1998.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic

model for information storage and organization

208 References

in the brain. Psychological Review, 65(6):386–

408, 1958.

[Ros78] E. Rosch. Principles of Categorization, pages 27–

48. John Wiley & Sons, 1978.

[RS02] M. Ruiz and P. Srinivasan. Hierarchical Text

Categorization Using Neural Networks. Infor-

mation Retrieval, 5(1):87–118, 2002.

[SCB00] F. Smeraldi, O. Carmona and J. Bigün. Sac-

cadic search with Gabor features applied to eye

detection and real-time head tracking. Image and

Vision Computing, 18(4):323–329, 2000.

[Sch92] N. Schmitz. Optimal Sequentially Planned De-

cision Procedures. Springer-Verlag, New York,

NY, USA, 1992.

[Sch02] R. Schapire. The boosting approach to machine

learning: An overview. In MSRI Workshop on

Nonlinear Estimation and Classification. Berke-

ley, CA, USA, 2002.

[SFBL97] R. Schapire, Y. Freund, P. Bartlett and W. Lee.

Boosting the margin: A new explanation for

the effectiveness of voting methods. In Proceed-

ings of the 14th International Conference on Ma-

chine Learning, pages 322–330. Morgan Kauf-

mann, 1997.

[SHB99] M. Sonka, V. Hlavac and R. Boyle. Im-

age Processing, Analysis, and Machine Vi-

sion. Brooks/Cole Publishing Company, Pacific

Grove, CA, 1999.

[Shi99] B. Shi. A one-dimensional CMOS focal plane ar-

ray for Gabor-type image filtering. IEEE Trans-

actions on Circuits and Systems I: Fundamental

Theory and Applications, 46(2):323–326, 1999.

References 209

[SK04] H. Schneiderman and T. Kanade. Object De-

tection Using the Statistics of Parts. Interna-

tional Journal of Computer Vision, 56(3):151–

177, 2004.

[SKB+99] S. Simon, H. Kestler, A. Baune, F. Schwenker

and G. Palm. Object classification with simple

visual attention and hierarchical neural network

for subsymbolic-symbolic coupling. In Proceed-

ings of the IEEE International Symposium on

Computational Intelligence in Robotics and Au-

tomation, pages 244–249. Monterey, CA, USA,

1999.

[SM00] J. Shi and J. Malik. Normalized cuts and image

segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(8):888–

905, 2000.

[SM05] J. Sochman and J. Matas. WaldBoost - Learn-

ing for Time Constrained Sequential Detection.

In 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition

(CVPR 2005), pages 150–156. San Diego, CA,

USA, 2005.

[SOM+96] T. Spencer, J. Olson, K. McHardy, P. Sharp and

J. Forrester. An image processing strategy for

the segmentation and quantification of microa-

neurysms in fluorescein angiograms of the ocu-

larfundus. Computers in Biomedical Research,

29:284–302, 1996.

[SPSF92] T. Spencer, R. Phillips, P. Sharp and J. For-

rester. Automated detection and quantification

of microaneurysms in fluorescein angiograms.

Grafe’s Archive of Clinical and Experimental

Ophthalmology, 230:36–41, 1992.

[SS99] R. Schapire and Y. Singer. Improved Boosting

Algorithms Using Confidence-rated Predictions.

Machine Learning, 37(3):297–336, 1999.

210 References

[SS00] R. Schapire and Y. Singer. BoosTexter: A

boosting-based system for text categorization.

Machine Learning, 39(2):135–168, 2000.

[SS01] B. Schölkopf and A. Smola. Learning with Ker-

nels: Support Vector Machines, Regularization,

Optimization and Beyond. MIT Press, Cam-

bridge, MA, USA, 2001.

[TFM96] S. Thorpe, D. Fize and C. Marlot. Speed of

processing in the human visual system. Nature,

381(6582):520–522, 1996.

[The90] The DCCT Research Group. The Diabetes Con-

trol and Complications Trial (DCCT): Update.

Diabetes Care, pages 427–433, 1990.

[THJA04] I. Tsochantaridis, T. Hofmann, T. Joachims

and Y. Altun. Support Vector Learning for

Interdependent and Structured Output Spaces.

In Proceedings of the Twenty-first International

Conference on Machine Learning (ICML2004).

Banff, Alberta, Canada, 2004.

[TO03] A. Torralba and A. Oliva. Statistics of Nat-

ural Image Categories. Network: Computation

in Neural Systems, 14(3):391–412, 2003.

[TS01] A. Torralba and P. Sinha. Recognizing indoor

scenes. Tech. Rep. AI Memo 2001-015, Artificial

Intelligence Laboratory, Massachusetts Institute

of Technology, July 2001.

[Utg89] P. Utgoff. Perceptron Trees: A Case Study in

Hybrid Concept Representations. Connection

Science, 1:377–391, 1989.

[UVNS02] S. Ullman, M. Vidal-Naquet and E. Sali. Visual

features of intermediate complexity and their use

in classification. Nature Neuroscience, 5(7):682–

687, 2002.

References 211

[Vap98] V. Vapnik. Statistical Learning Theory. John

Wiley & Sons, West Sussex, UK, 1998.

[VJ01] P. Viola and M. Jones. Rapid object detection

using a boosted cascade of simple features. In

Proceedings of the 2001 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern

Recognition (CVPR01), pages 511–518. Hawaii,

USA, 2001.

[VJ04] P. Viola and M. Jones. Robust Real-Time Face

Detection. International Journal of Computer

Vision, 57(2):137 – 154, 2004.

[VNU03] M. Vidal-Naquet and S. Ullman. Object Recog-

nition with Informative Features and Linear

Classifcation. In Proceedings of the 9th Interna-

tional Conference on Computer Vision (ICCV),

pages 281–288. Nice, France, 2003.

[Wal47] A. Wald. Sequential Analysis. Dover, NY, USA,

1947.

[WHD96] T. Weldon, W. Higgins and D. Dunn. Effi-

cient Gabor filter design for texture segmen-

tation. Pattern Recognition, 29(12):2005–2015,

1996.

[WK02a] T. Walter and J.-C. Klein. Automatic Detection

of Microaneyrysms in Color fundus Images of the

Human Retina by Means of the Bounding Box

Closing. In Third International Symposium on

Medical Data Analysis (ISMDA), pages 210–220.

Rome, Italy, 2002.

[WK02b] T. Walter and J.-C. Klein. A Computational Ap-

proach to Diagnosis of Diabetic Retinopathy. In

Proceedings of the 6th Conference on Systemics,

Cybernetics and Informatics (SCI), pages 521–

526. Orlando, Florida, July 2002.

212 References

[WKMZ00] T. Walter, J.-C. Klein, P. Massin and F. Zana.

Automatic segmentation and registration of reti-

nal fluorescein angiographies – Application to di-

abetic retinopathy. In First International Work-

shop on Computer Assisted Fundus Image Analy-

sis (CAFIA). Copenhagen, Denmark, 2000.

[WWP99] A. Weigend, E. Wiener and J. Pedersen. Exploit-

ing hierarchy in text categorization. Information

Retrieval, 1(3):193–216, 1999.

[ZLQH04] L. Zhang, S. Li, Z. Qu and X. Huang. Boosting

Local Feature Based Classifiers for Face Recog-

nition. In Proceedings of the 2004 Conference

on Computer Vision and Pattern Recognition

Workshop (CVPRW’04), page 87. Washington,

DC, USA, 2004.

TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Gustaf Hällströmin katu 2 b) P.O. Box 68 (Gustaf Hällströmin katu 2 b)
00014 Helsingin yliopisto FIN-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Kumpula Science Library, P.O. Box 64, FIN-00014 Uni-
versity of Helsinki, Finland.

A-1998-3 E. Sutinen: Approximate pattern matching with the q-gram family. 116 pp.
(Ph.D. thesis).

A-1999-1 M. Klemettinen: A knowledge discovery methodology for telecommunica-
tion network alarm databases. 137 pp. (Ph.D. thesis).

A-1999-2 J. Puustjärvi: Transactional workflows. 104 pp. (Ph.D. thesis).

A-1999-3 G. Lindén & E. Ukkonen (eds.): Department of Computer Science: annual
report 1998. 55 pp.

A-1999-4 J. Kärkkäinen: Repetition-based text indexes. 106 pp. (Ph.D. thesis).

A-2000-1 P. Moen: Attribute, event sequence, and event type similarity notions for
data mining. 190+9 pp. (Ph.D. thesis).

A-2000-2 B. Heikkinen: Generalization of document structures and document assem-
bly. 179 pp. (Ph.D. thesis).

A-2000-3 P. Kähkipuro: Performance modeling framework for CORBA based distrib-
uted systems. 151+15 pp. (Ph.D. thesis).

A-2000-4 K. Lemström: String matching techniques for music retrieval. 56+56 pp.
(Ph.D.Thesis).

A-2000-5 T. Karvi: Partially defined Lotos specifications and their refinement rela-
tions. 157 pp. (Ph.D.Thesis).

A-2001-1 J. Rousu: Efficient range partitioning in classification learning. 68+74 pp.
(Ph.D. thesis)

A-2001-2 M. Salmenkivi: Computational methods for intensity models. 145 pp.
(Ph.D. thesis)

A-2001-3 K. Fredriksson: Rotation invariant template matching. 138 pp. (Ph.D.
thesis)

A-2002-1 A.-P. Tuovinen: Object-oriented engineering of visual languages. 185 pp.
(Ph.D. thesis)

A-2002-2 V. Ollikainen: Simulation techniques for disease gene localization in isolated
populations. 149+5 pp. (Ph.D. thesis)

A-2002-3 J. Vilo: Discovery from biosequences. 149 pp. (Ph.D. thesis)

A-2003-1 J. Lindström: Optimistic concurrency control methods for real-time data-
base systems. 111 pp. (Ph.D. thesis)

A-2003-2 H. Helin: Supporting nomadic agent-based applications in the FIPA agent
architecture. 200+17 pp. (Ph.D. thesis)

A-2003-3 S. Campadello: Middleware infrastructure for distributed mobile applica-
tions. 164 pp. (Ph.D. thesis)

A-2003-4 J. Taina: Design and analysis of a distributed database architecture for
IN/GSM data. 130 pp. (Ph.D. thesis)

A-2003-5 J. Kurhila: Considering individual differences in computer-supported special
and elementary education. 135 pp. (Ph.D. thesis)

A-2003-6 V. Mäkinen: Parameterized approximate string matching and local-similarity-
based point-pattern matching. 144 pp. (Ph.D. thesis)

A-2003-7 M. Luukkainen: A process algebraic reduction strategy for automata theo-
retic verification of untimed and timed concurrent systems. 141 pp. (Ph.D.
thesis)

A-2003-8 J. Manner: Provision of quality of service in IP-based mobile access net-
works. 191 pp. (Ph.D. thesis)

A-2004-1 M. Koivisto: Sum-product algorithms for the analysis of genetic risks. 155
pp. (Ph.D. thesis)

A-2004-2 A. Gurtov: Efficient data transport in wireless overlay networks. [B 141 pp.
(Ph.D. thesis)

A-2004-3 K. Vasko: Computational methods and models for paleoecology. 176 pp.
(Ph.D. thesis)

A-2004-4 P. Sevon: Algorithms for Association-Based Gene Mapping. 101 pp. (Ph.D.
thesis)

A-2004-5 J. Viljamaa: Applying Formal Concept Analysis to Extract Framework
Reuse Interface Specifications from Source Code. 206 pp. (Ph.D. thesis)

A-2004-6 J. Ravantti: Computational Methods for Reconstructing Macromolecular
Complexes from Cryo-Electron Microscopy Images. 100 pp. (Ph.D. thesis)

A-2004-7 M. Kääriäinen: Learning Small Trees and Graphs that Generalize. 45+49
pp. (Ph.D. thesis)

A-2004-8 T. Kivioja: Computational Tools for a Novel Transcriptional Profiling Method.
98 pp. (Ph.D. thesis)

A-2004-9 H. Tamm: On Minimality and Size Reduction of One-Tape and Multitape
Finite Automata. 80 pp. (Ph.D. thesis)

A-2005-1 T. Mielikäinen: Summarization Techniques for Pattern Collections in Data
Mining. 201 pp. (Ph.D. thesis)

A-2005-2 A. Doucet: Advanced Document Description, a Sequential Approach. 161
pp. (Ph.D. thesis)

A-2006-1 A. Viljamaa: Specifying Reuse Interfaces for Task-Oriented Framework Spe-
cialization. 285 pp. (Ph.D. thesis)

A-2006-2 S. Tarkoma: Efficient Content-based Routing, Mobility-aware Topologies,
and Temporal Subspace Matching. 198 pp. (Ph.D. thesis)

A-2006-3 M. Lehtonen: Indexing Heterogeneous XML for Full-Text Search. 185+3
pp.(Ph.D. thesis).

A-2006-4 A. Rantanen: Algorithms for 13C Metabolic Flux Analysis. 92+73 pp.(Ph.D.
thesis).

A-2006-5 E. Terzi: Problems and Algorithms for Sequence Segmentations. 141 pp.
(Ph.D. Thesis).

A-2007-1 P. Sarolahti: TCP Performance in Heterogeneous Wireless Networks.(Ph.D.
Thesis).

A-2007-2 M. Raento: TCP Exploring privacy for ubiquitous computing: Tools, meth-
ods and experiments. (Ph.D. thesis).

A-2007-3 L. Aunimo: Methods for Answer Extraction in Textual Question Answering
127+18 pp. (Ph.D. Thesis).

A-2007-4 T. Roos: Statistical and Information-Theoretic Methods for Data Analysis.
82+75pp. (Ph.D. Thesis).

A-2007-5 S. Leggio: A Decentralized Session Management Framework for Heteroge-
neous Ad-Hoc and Fixed Networks. 230 pp. (Ph.D. Thesis).

A-2007-6 O. Riva: Middleware for Mobile Sensing Applications in Urban Environ-
ments. 195 pp. (Ph.D. thesis).

A-2007-7 K. Palin: Computational Methods for Locating and Analyzing Conserved
Gene Regulatory DNA Elements. 130 pp. (Ph.D. Thesis).

A-2008-1 I. Autio: Modeling Efficient Classification as a Process of Confidence As-
sessment and Delegation. 212 pp. (Ph.D. Thesis).

