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Abstract

The capability to perform inference with uncertain and incomplete inform-
ation is characteristic to intelligent systems. Many of the research issues in
artificial intelligence and computational intelligence can actually be viewed
as topics in the “science of uncertainty,” which addresses the problem of
plausible inference, i.e., optimal processing of incomplete information. The
various different approaches to model and implement intelligent behavior
such as neural networks, fuzzy logic, non-monotonic (default) logics and
Bayesian networks all address the same problem of finding an appropriate
language and inference mechanism to perform plausible inference, needed to
implement such activities as prediction, decision making, and planning.

In this work we study the problem of plausible prediction, i.e., the problem
of building predictive models from data in the presence of uncertainty. Our
approach to this problem is based on the language of Bayesian probability
theory both in its traditional and information theoretic form. We study
Bayesian prediction theoretically and empirically with finite mixture models.
Such models are interesting due to their ability to accurately model complex
distributions with few parameters. In addition, finite mixture models can
be viewed as a probabilistic formulation of many model families commonly
used in machine learning and computational intelligence.

We first address the question of how an intelligent system should predict
given the available information. We present three alternatives for probabil-
istic prediction: single model based prediction, evidence based prediction,
and minimum encoding based prediction. We then compare the empirical



performance of these alternatives by using a class of finite mixture mod-
els. The empirical results demonstrate that, especially for small data sets,
both the evidence and the minimum encoding approaches outperform the
traditionally used single model approach.

We then focus on the problem of constructing finite mixture models from
the given data and a priori information. We give the Bayesian solution for
inferring both the most probable finite mixture model structure, i.e., the
proper number of mixture components, and the most probable model within
the class. For general mixture models the exact solution in both problems is
computationally infeasible. Thus we also evaluate the quality of approximate
approaches.

The Bayesian predictive approach presented can be applied to a wide class of
prediction problems appearing in various application domains, e.g., medical
and fault diagnostic problems, design problems and sales support systems.
Using publicly available data sets, we demonstrate empirically that Bayesian
prediction with finite mixtures is highly competitive when compared to the
results achieved with other popular non-Bayesian approaches using, for ex-
ample, neural network and decision tree models. The Bayesian prediction
method presented constitutes the kernel of the D-SIDE/C-SIDE software cur-
rently used in industrial applications.
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Chapter 1

Introduction

“I'am HAT Nine Thousand computer Production
Number 3. I became operational at the HATL
Plant in Urbana, Illinois, on January 12, 1997.7

Arthur C. Clarke and Stanley Kubrick in 2001: A Space Odyssey

Throughout the history of the science of computing, building intelligent sys-
tems has been one of the fundamental objectives, this desire being so great
that it has given birth to such multidisciplinary research fields as artificial
intelligence [121] and computational intelligence [10]. Tn addition to appeal-
ing to computer scientists, these areas have attracted researchers from many
areas including linguistics, mathematics, physics, neurosciences, psychology,
cognitive science and philosophy. Unfortunately, the informal objective of
building an intelligent artifact seems to be the only issue that is commonly
agreed upon. The notion of “intelligence,” and even the possibility of ar-
tificial entities exhibiting intelligent behavior, has been a subject of heated
debate among computer scientists and philosophers since the beginning of
the computing era (see the discussions in [27, 41, 42, 62, 125, 126], e.g.).
One of the early landmarks of this debate, the Turing Test [141], is already
approaching its 50th anniversary.

On machine intelligence and plausible inference. For the convenience
of presenting the ideas, let us focus our interest on a hypothetical computing
system which we will call HAL. The purpose of introducing HAL is not only
notational; it allows us to avoid some of the verbal confusions of philosoph-
ical discussions and perhaps to make some of the points clearer. We will start
by inspecting two recent definitions for HAL to exhibit intelligence one from
computational intelligence and the other from artificial intelligence. Accord-
ing to Bezdek [10], HAL exhibits computational intelligence when it



2 1 INTRODUCTION

“...deals only with numerical (low-level) data, has a pattern
recognition component, and does not use knowledge in the Al
sense; and additionally when it (begins to) exhibit (i) computa-
tional adaptivity; (ii) computational fault tolerance; (iii) speed
approaching humanlike turnaround, and (iv) error rates that ap-
proximate human performance.”

The other definition comes from the recent unified framework for artificial
intelligence, which adopts the view that intelligence is concerned mainly with
rational action. In this approach HAL is considered intelligent if it takes the
best possible action in a situation, i.e., it approximates well the behavior of
an ideal rational agent defined by Russel and Norvig as follows [121]:

“For each possible percept sequence, an ideal rational agent
should do whatever action is expected to maximize its perform-
ance measure, on the basis of the evidence provided by the per-
cept sequence and whatever built-in knowledge the agent has.”

These definitions reflect the two prevailing philosophical approaches to
machine intelligence: the descriptive approach and the normative approach.
The descriptive approach is interested in modeling the intelligent behavior
of biological organisms and then reproducing this behavior in computers.
The normative approach aims at a prescription for “correct” behavior whose
value is judged purely on performance grounds. Neither of these approaches
is central to the work at hand, however; if forced to take sides, we tend to
adopt the normative approach. In spite of their apparent differences, both
of the definitions implicitly imply the existence of a common component of
machine intelligence: HAL should be capable of making use of the available
information to perform inferences, which help it to work towards a goal of
maximizing some given performance measure. Vague as it is, let us for a
moment study the implications of this observation.

In an idealized situation, HAL would have complete information relevant
to its performance maximization task and should perform logical inference
(with predicate calculus). An example of this type of a task is automated
theorem proving, where HAL uses its information about the axioms and syl-
logisms to infer theorems of interest. Even in this complete information case
there are theoretical and practical limits to HAL’s capabilities, as demon-
strated by the well-known results of Gdodel [57] and Turing [140].

Now let us assume that we want HAL to play “Five- Card Stud Poker,”
and we define the performance measure to be the amount of money won from
its opponents (whether or not playing poker exhibits intelligent behavior is of
course debatable). HAL definitely does not have all the necessary information



available to perform logical inference. On one hand, it meets with a great
amount of uncertainty: it is uncertain which card will be dealt in the next
round, it is uncertain about the values of the cards dealt face down, it is
uncertain of the betting strategy of its opponents, it is uncertain whether a
meteorite will hit the clubhouse and end the game abruptly before the next
round (in which case maximizing the performance would require HAL to quit
immediately), etc.

On the other hand, it has information available in the cards dealt face
up, general information about the composition of the card deck, information
about the betting behavior of the opponents from the earlier games, informa-
tion about celestial mechanics and statistics of a meteorite hitting a particular
place, etc. Since in this context not doing anything is also an act, HAL has to
perform inference regardless of the fact that all the necessary information to
do logical inference is not available. This type of inference, which HAL does
with incomplete information, is called plausible inference [109]. The obser-
vation that real problems encountered in practice almost invariably require
plausible inference, serves as a starting point of this work.

From this perspective, many of the research issues in artificial and com-
putational intelligence can actually be viewed as topics in the “science of

"1 which addresses the problem of optimal processing of incom-

uncertainty,
plete information. The various different approaches to model and implement
intelligent behavior such as neural networks [63, 80], fuzzy logic [92, 148, 149],
non-monotonic (default) logics [97] and Bayesian networks [64, 107] all ad-
dress the same fundamental question: what is the appropriate language and
inference mechanism for HAL to perform plausible inference, which is needed
to implement such activities as prediction, decision making, and planning?
Naturally, the answer varies depending on the approach adopted. Many of
these answers are quite involved and intertwine procedural components, e.g.,
“learning algorithms”, and representational mechanisms such as graphical
models.

In this work our purpose is to gradually introduce into the reader’s mind
a perhaps less familiar, Bayesian approach to plausible inference. This
Bayesian language of inference is based on Bayesian probability theory [9, 8]
which, instead of a long-run frequency, views probability as a degree of be-
lief in an event. Rational, i.e., well-performing, decisions typically rely on
good predictions of unknown information. Therefore we will be interested
in a specific capability of HAL’s: prediction of unknown quantities based on
the information available to it. During this process we end up developing
the technical contributions of this work: computational machinery offering a

'"Term introduced by Peter Cheeseman.
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viable solution to a wide class of prediction problems appearing in various
application domains. When this process is finished, however, we will hope
that we have also provided the reader a demonstration of the usability of
having a firm theoretical basis for handling inference under uncertainty as
well as and given a flavor of what the Bayesian inference approach can offer
to a practitioner in machine learning and computational intelligence.

HAL’s specification and Bayesian inference. let us now return to the
design of HAL and give some intuitively sensible specifications for HAL’s rep-
resentation of uncertainty.

First of all, HAL should be able to express its “view of the world” as well-
defined propositions (possibly quantified) together with associated plausib-
ility values, which describe HAL’s belief that the corresponding proposition
is true. Furthermore, its plausibility values should be representable as real
numbers in HAL’s memory. We would like HAL’s beliefs to be context depend-
ent: the plausibility of a proposition can depend explicitly on plausibilities
of other propositions. In addition, HAL should also be capable of hypothet-
ical inference, i.e., it should be able to assign plausibilities to conjunctions
of propositions conditioned on the truth of other propositions. In its beliefs
HAL should show consistency it should have equal plausibilities for propos-
itions that are believed to have the same logical truth value. Finally, HAL
should have a notion of complementarity; its plausibility in the negation of a
proposition should be a monotonically decreasing function of the plausibility
of the proposition itself.

Interestingly, after this rather informal specification, HAL can be given the
rules telling how it should calculate the plausibilities of new compound pro-
positions from the plausibilities of the original propositions, i.e., the “gram-
mar” of its plausible inference. In Chapter 2 we will see that these rules
are the axioms of probability theory, now as a formalization of the notion
of “belief” rather than a frequency. Therefore, in this work we will equate
plausibility (“belief in a proposition”) with the notion of conditional prob-
ability, and plausible inference with Bayesian inference [9, 70, 71]2. The
rewriting of one of the axioms in a form known as the Bayes’ theorem then
gives HAL an “update rule,” which it can apply when new information is
available: the new probability of a proposition can be calculated by com-
bining the current probability of a proposition and the probability of new
evidence given the proposition. This, of course, raises the question of the

2Tt should be observed that with the specification given above, HAL’s inference cannot
be based on some alternative approaches such as fuzzy logic [149] or the Dempster-Shafer
theory [127] since they violate one or more of the requirements [68].



initial state of this process, i.e., how does HAL assign the initial probabilities
so that this update process can be started? In the Bayesian terminology
these initial probabilities are called priors. Chapter 2 concludes with a brief
discussion on principles for assigning both non-informative and informative
priors.

HAL’s inferences are based on conditional probabilities. Therefore, in
order to perform inferences HAL has to be able to determine what is the
relevant information to condition on its probabilistic conclusions in other
words, HAL needs models. Without any loss of generality we can assume that
HAL can model anything of interest with probabilistic models. Thus HAL’s
models describe what the relevant information is and what independence
assumptions it makes. For prediction purposes, it is useful to assume that
HAL’s models come from a specified set of models. We will call such a set
a model family; it will describe the general structure (e.g., the number of
parameters and their types) of HAL’s models. Naturally, HAL can use many
different model families. Bayesian probabilistic modeling has the interesting
property that it can also be cast in an information theoretic form, where
the models can be viewed as codes, in which case HAL is interested in short
encodings of the model and the (observed) data together [116, 145]. All these
modeling issues are discussed in Chapter 3.

The main emphasis of Chapter 3, however, is on how HAL implements pre-
diction as deductive Bayesian inference, i.e., how HAL uses the model family
and the available data to compute the probability of an unknown quantity.
We will describe three alternative methods: a single model based prediction,
evidence (model averaging) based prediction, and prediction based on the
minimum encoding approach by Rissanen [117].

To avoid confusion, one final comment on Bayesian modeling is in order.
All inference HAL performs is conditioned on a model or a set of models. The
fact that HAL uses a specific probabilistic model or a model family for its
inference does not mean that HAL (or we) believe that probabilistic models are
somehow an inherent property of the reality from which the data observed by
HAL are generated. A model family is only a language which HAL can use to
express constraints for the data of interest. For any given model family and
the results HAL exhibits, there is no way of knowing that there is not another
model family which HAL could use, and still show similar performance in its
predictions. In fact, in most cases such an alternative model family exists.
Reality, of course, is neither way.

Up to this point we have discussed very generic aspects of HAL’s design
relative to a non-identified model family. In Chapter 4 we fix HAL’s model
family to be the set of finite mixture models [138], with the restriction that
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the observed data are discrete. The choice of this particular model family is
not an arbitrary one using finite mixture models corresponds to providing
HAL with a set of probabilistic concepts [47] from which the attributes (or
features) of data are the part HAL is able to observe. In addition, many model
families commonly used in machine learning and computational intelligence
can be given a probabilistic interpretation as mixture models. Chapter 4
discusses how HAL’s three predictive methods can be implemented in the case
of finite mixtures. The chapter is concluded by giving a comparison of the
empirical prediction performance of all the methods for a particular subclass
of finite mixtures called the Naive Bayes family, where all the methods can
be implemented without the approximations needed for the general mixture
models. As far as we know, the comparison performed is the first of its
kind in fact, we are not even aware of any other application of Rissanen’s
new encoding approach.

Chapters 3 and 4 discuss the use of Bayesian inference for deductive
purposes, i.e., how HAL's predictions should be performed given a model (or
a set of models). Still, HAL has to somehow establish these models. There
is nothing in the Bayesian inference formalism that restricts its applicabil-
ity to probabilistic deduction. Tt is also possible to do Bayesian induction
and let HAL use the update rule to infer probabilistic models from its data.
Consequently, Chapter 5 applies the general Bayesian modeling framework
of Chapter 3 for the construction of finite mixture models from the data.
This construction is essentially a search process for high probability mod-
els from the model family. As opposed to the more restricted Naive Bayes
model family discussed in Chapter 4, we will demonstrate that for the gen-
eral mixtures this search can only find approximations of the most probable
models.

After the theoretical introduction to HAL’s Bayesian predictive framework
with finite mixture models, one can question how the developed machinery
performs in practice. HAL’s design was motivated by the need to give it the
capability to predict well. ITn many practical applications, HAL has to resort
to building predictive models using only domain data with very little or no
prior information. The advantage of discussing predictive modeling is that
the methods can be validated, at least to a degree, by inspecting HAL’S ac-
tual predictive performance, either with benchmark data sets or with real
applications. The Bayesian predictive framework described in this work has
been tested in both respects. Tt constitutes the kernel of the D-SIDE/C-SIDE
software currently applied for industrial applications. In Chapter 6 we re-
port empirical results with publicly available common classification bench-
marks and evaluate HAL’s Bayesian predictive framework against the results



achieved with other popular model families such as neural networks and
decision trees using non-Bayesian approaches.

From the discussion above, it should not be concluded that Bayesian
inference is simple and understood in all its details. On the contrary, the
Bayesian approach is open-ended, and new Bayesian analysis methods are
constantly being developed, as witnessed by the various conference series on
topics such as “Bayesian Statistics” and “Maximum Entropy and Bayesian
Methods”. Bayesian inference applied to real problems requires instantiation
of the general principles in the case of a particular model family, which can be
a complex (and sometimes even controversial) task involving computational
issues (see, e.g., [56]). In Chapter 7 we discuss how HAL’s design could be
improved with several extensions of the work described here.

Contributions and research history. For building predictive models,
numerous alternatives to the approach discussed in this work are avail-
able, including non-probabilistic and probabilistic neural networks, decision
trees, rule-based systems, statistical discrimination techniques, and general
Bayesian network modeling. Recently other multiple-model approaches such
as boosting [50] and bagging [16] have also been introduced. Although the
Bayesian prediction described in this work provides a consistent and the-
oretically justified formal framework for prediction, one can ask what our
work has to offer to the practitioner developing predictive models. There are
several answers to this question:

e Principled approach to avoid overfitting of data when the model is con-
structed. Bayesian methods with any model family have an “in-built”
mechanism for the appropriate tradeoff between the model complexity
and fit to the data. Thus the ad hoc approaches to selection of the
model structure, or extra regularization and penalization terms used
in many machine learning and neural network approaches, are not ne-
cessary.

o Time-efficient prediction. Although general Bayesian networks use
conditional independence to simplify Bayesian prediction, even ap-
proximate prediction using an arbitrary Bayesian network for discrete
variablesis NP-hard [34]. By restricting our approach to finite mixture
models (corresponding to a one-level Bayesian tree), exact Bayesian
prediction can be performed efficiently.

o (Controlled model construction time. For the general mixture models
learning time, i.e., the time to search for the best model, is relative to
the number of local maximum models explored by stochastic search.
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Thus the more time one has, the better the resulting models are. For
fast results, one can limit the number of searches and use the best
model found up to that point. If one restricts the search to models
from the Naive Bayes model family, the model construction requires
only one pass through the data and consequently is very efficient.

e (GGood prediction performance with small data sets. As opposed to tra-
ditional single-model based approaches such as feed-forward neural
networks with backpropagation learning or decision trees, the possib-
ility to use multiple-model prediction allows construction of models
that predict well even with small data sets. This is important in many
practical applications, where gathering of observational data is expens-
ive. Both the evidence based prediction and the stochastic complexity
based prediction with the Naive Bayes model family exhibit this be-
havior.

e Natural handling of incomplete data. Many traditional model con-
struction approaches produce inaccurate models in the presence of
missing data, and typically omit data if part of the values are miss-
ing. The Bayesian approach described in this work models the full
joint probability distribution of the domain; thus it can handle miss-
ing values in inputs for both model construction and the prediction
phases.

o Very few “technical” parameters to be provided by the user. Many
methods to construct predictive models require the user to specify
a substantial number of technical parameters that control the model
search process, feed-forward backpropagation neural networks being
perhaps the most notorious example. In our approach the user needs
to provide very few parameters if non-informative priors are used and
the prediction method is fixed. For the general mixture models only the
convergence criteria for the search algorithm, the maximum number of
mixture components and the number of individual searches for each
mixture size are required. The Naive Bayes prediction exhibits the
extreme case by requiring only the information about which one of the
variables is the class variable.

Many of the ideas and results in this monograph have been published in
preliminary form as joint works with various members in the Complex Sys-
tems Computation Group. This monograph aims to be more approachable
than those research papers by containing some introductory material as well
and by presenting the Bayesian inference especially to the computer science



audience. Furthermore, in some cases the published ideas and results appear
here in an improved and polished form.

The main contribution of Chapters 3 and 4, the formulation and com-
parison of the three alternative methods for predicting with the Naive Bayes
model family, is joint work with Peter Griinwald from CWI and was pub-
lished in [86]. To our knowledge, this comparison is the first of its nature, in
particular concerning the formulation and application of the predictive form
of Rissanen’s recent version of stochastic complexity.

The empirical comparisons of the evidence approximations discussed in
Chapter 5 for the complete data evidence case appeared in [88], and those
for the incomplete data evidence case in [91]. The latter is unique in the
respect that it evaluates the Cheeseman-Stutz approximation against cross-
validation, an empirical technique commonly used for model class selection
in machine learning, neural network community and statistics. In addition,
both of these studies use natural data sets instead of synthetic data sets such
as the ones used in [65].

Many of the empirical prediction results presented in Chapter 6 were
published in [90, 136]. Some of the results have been improved since then,
and we have added here the results achieved with the Naive Bayes model
family. The latter paper also discusses the novel idea of viewing lazy learn-
ing from Bayesian perspective (the related discussion on Bayesian Case-
Based Reasoning appeared in [135]). The details of the EM algorithm for
the specific Bayesian finite mixture case for multinomial distributions were
presented in [89]. The updated results reported in Chapter 6 also indicate
that our C-SIDE/D-SIDE implementation of the Bayesian finite mixture ap-
proach outperforms any Naive Bayes classifier and general Bayesian network
learning algorithm of which we are currently aware.
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Chapter 2

Bayesian language for inference

“Inside every nonBayesian there is a Bayesian struggling to get out.”

Dennis V. Lindley

In any realistic application, HAL cannot have perfect information on which it
could base its inference. Therefore, to be able to perform as well as possible,
HAL has to be provided with a plausible inference framework, which allows
it to evaluate the plausibility of unknown facts given its incomplete “view
of the world.” Tn particular it needs a procedure to change its beliefs when
new observable data arrive. This chapter discusses the Bayesian alternative
among such frameworks.

We start by defining a set of simple desirable properties HAL should
exhibit when performing plausible inference. For our purposes it is sufficient
to assume that HAL reasons about two-valued logic propositions. From the
properties defined in Section 2.1 the “grammar of Bayesian inference” arises
as a natural consequence (Section 2.2). Therefore the rules that tell HAL
how to calculate the plausibilities of new compound propositions from the
plausibilities of the original propositions are the product and sum rules in
the Bayesian probability theory, on which all the work here is based.

The grammar, however, is only half of of the required theory. HAL still
faces the problem of initial plausibility assignments, i.e., how to assign nu-
merical values for the propositions in the first place. This topic is briefly
addressed in Section 2.3. We conclude the chapter by discussing Bayes’ the-
orem, which gives HAL an update rule to adjust its plausibility assessments
when the state of knowledge regarding the proposition of interest changes
through the acquisition of new data (Section 2.4). This central viewpoint
of Bayesian inference that belief is fundamentally an update process is
quite natural one for computer science; however, historically it has been the

11



12 2 BAYESIAN LANGUAGE FOR INFERENCE

main reason for the rejection of the Bayesian approach because the starting
point of this process, the use of priors, is controversial.

Many different sets of desirable properties for plausible inference, akin
to the ones used here for HAL, have been proposed in the literature [36, H8,
113, 122]. Perhaps the most famous of these is the widely cited work by
Cox [32, 33] (for a recent refined version of the original formal derivation
by Cox see [106] and for the counterexample to the original proof see [61]),
the properties used here follow the ones introduced by Jaynes in [69, 70]
(see also the discussion in [22, 68, 94]). Interestingly, each of these sets of
properties leads to the same set of rules the rules of Bayesian probability
theory. In the presence of alternative frameworks for plausible inference,
such as fuzzy logic [148] or Dempster-Shafer theory [127], in our view this
insensitivity to the choice of properties provides a particularly compelling
argument for using Bayesian probability as a measure for plausibility. Tt is
also notable that a rigorous mathematical framework can be erected upon a
such an apparently vague notion of a measure of degree of plausibility.

2.1 The desiderata for plausible inference

et us now define the qualitative properties to be satisfied by HAL’s plausible
inference.

Desideratum 2.1 Degrees of plausibility are represented by real numbers.

This representation property is essentially motivated by the requirement
that, to be able to manipulate plausibilities, HAL has to be able to store
and modify them, and thus they must be associated with some physical
quantity. Therefore there has to be some kind of association between degrees
of plausibility and real numbers. More theoretical justifications for using real
numbers as plausibilities can be found in [70, 107]. We take it as a convention
that propositions with the same truth value must have equal plausibility, and
that a greater plausibility will correspond to a greater number. In addition
we assume also a continuity property, a very small increase in plausibility
ought to correspond only to a slightly greater number.

In general HAL assigns the plausibility to some proposition H given the
truth of proposition ). Following the common notation we indicate this by
the symbol H|D which can be called the (conditional) plausibility that H is
true, given that I is true'. Tt should be noticed that plausibilities are always
conditional, i.e., they are always relative to HAL’s state of knowledge. We
frequently need several conditioning propositions, thus logical conjunction is

YIf H|1) appears in the running text, for clarity of expression we often add parentheses.
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denoted by H D and logical disjunction by H + . In addition, the logical
negation of H is denoted by H. Finally (H|DT) is not defined when D and
I are mutually contradictory.

Desideratum 2.2 Direction of inference has a qualitative correspondence
with common sense.

This second desideratum is related to HAL being able to perform inference
that does not contradict common sense. It should be noticed that for us this
does not mean an attempt to model human common sense, we just want to
include a property which we argue “rational” inference should have after
all, our approach to HAL’s design is normative. Accordingly if HAL has old
information T which gets updated to I’ in such a way that the plausibility of
H is increased, i.e.,

(HII') > (HI|T),
and the plausibility of 1D given H is not changed, i.e.,
(DIHT) = (DIHT),

this can produce only an increase in the plausibility that both H and D are
true. In other words for such a situation

(HD|T"y > (HD|I),
and the plausibility that H is false has to be decreased
(HIT') < (H[T).

This qualitative property of inference simply gives HAL a sense of direction
in its inference. It should be observed that the property says nothing about
how much the plausibilities change, except that our continuity assumption
now requires that if the change in (H|D) is small, it can induce only a small
change in (HDI|I) and (H|T).

The last set of desiderata is related to consistency of inference. This
consistency requirement can be described with three different properties.

Desideratum 2.3 (Internal consistency.) If a conclusion can be inferred
in more than one way, every possible way must lead to the same result.

Desideratum 2.4 (Propriety.) HAL always takes into account all of the
information that is relevant to a question.

Desideratum 2.5 (Jaynes consistency.) Fquivalent states of knowledge
must be represented by equivalent plausibility assignments.
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Of these desiderata the last two properties can be seen as input/output
requirements for HAL ’s inference. The “Propriety” desideratum requires that
in plausible inference all the relevant evidence has to be used, in particular
that all the relevant input data has to be taken into account. From the
“Jaynes consistency” property (introduced by Jaynesin [69]) it follows that if
in two problems HAL ’s state of knowledge is the same (excluding proposition
labeling), then the same plausibilities must be assigned in both cases.

Perhaps somewhat surprisingly, the set of properties listed above, to-
gether with some technical properties of monotonic functions, uniquely de-
termines how HAL must perform inference, i.e., there is only one set of math-
ematical operations for manipulating plausibilities which has all these prop-
erties.

2.2 The probability axioms: the grammar of
Bayesian inference

Having now formulated the requirements for plausible inference it is a matter
of straightforward mathematics to work out the consequences of our desid-
erata. (ziven two or more propositions, other more complicated propositions
can be built by considering them together. Thus we need rules to tell us
how the plausibilities of the new compound propositions can be calculated
from the the plausibilities of the original propositions, i.e., we would like to
find out the “grammar” for our theory. Here we assume that the original
plausibilities are given. How such initial assignments are done is the topic
of Section 2.3.

In order to be useful, the plausibility calculus has to be powerful enough
to enable HAL to calculate the plausibility of any proposition built from other
propositions using Boolean algebra. Since it is well known that only a subset
of the common logical operations is needed to generate all possible proposi-
tions, we can restrict our discussion on only two of them: conjunction and
negation. The properties listed in Section 2.1 are sufficient to specify the
rules for calculating the plausibility of a negated proposition and of the con-
junction of two propositions leading to the sum rule and the product rule,
correspondingly. Full detailed derivation of these rules is quite involved
and lengthy and thus omitted, as our interest here is to focus on develop-
ing Bayesian inference for a particular domain, i.e., for the finite mixture
model family. The argumentation in the proofs, however, is interesting for
the intuitive justification of Bayesian inference, and since the details of the
original proofs by Cox [32, 33], Aczél [1] and Jaynes [69, 70] are not widely
known, we will outline the intuitive idea in the derivation of the product
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rule, and present results of the analogous derivation of the sum rule. For
further details the references mentioned in the beginning of this chapter may
be consulted.

2.2.1 The product rule

We first seek a consistent rule relating the plausibility of the logical product
(H D) to the plausibilities of H and D separately. In particular, let us find
(H DIT). The separate plausibilities of H and D that may be known to us
include the four quantities

w=(H|I), 2 = (D|I), y=(H|DI), v= (D|HTI).

By the “Propriety” Desideratum, we should use all of these assuming they
are relevant.

Now Desideratum 2.2 can be used to determine if only a subset of these
four quantities is actually relevant. For example, common sense indicates
that (H D|T) cannot depend on only one of x, y, u, or v. This leaves eleven
combinations of two or more of these plausibilities. A little deeper thought
reveals that most of these combinations violate common sense. For example,
if (HD|I) depended only on u and 2 we would have no way of expressing
the possibility that H and DD are exclusive. Carrying out this somewhat
tedious analysis, Tribus [139] shows that all but two of the possibilities can
exhibit qualitative violations of common sense in some extreme case. The
only possible relevant combinations are 2 and y, or v and v. Intuitively this
follows from the fact that there are two ways a decision about the truth of
(HD) can be broken down into decisions about H and D. We can either
decide that H is true, and then, accepting the truth of H decide that D
is true. Or, vice versa, we first decide that 1D is true and then make our
decision about H given the truth of ). By the commutativity of logical
conjunction, we can exchange H and I in all the quantities. Consequently,
since the different pairs x,y and u, v merely reflect the ordering of H and
D, we may focus on one pair.

Let us now denote z = (H D|I). Thus we seek for a function F' such that

z=F(x,y). (2.1)

At this point the “Internal consistency” (Desideratum 2.3) can be used by
setting up a problem that can be solved two different ways, and by requiring
the solutions to be identical. Suppose we try to find the plausibility that three
propositions H, D, I would be true simultaneously. The joint proposition
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(HDI) can be built in two different ways: (HDI) = H(DI) = (HD)I.
From the former of these equations and (2.1) we know that

(HDILT) = F((DI|7), (H|DLI)),

where (D7) is treated as a single proposition. Similarly from the second
equality we get
(HDILI) = F((I1), (HDILI)).

Repeated application of (2.1) and the “Internal consistency” now requires
that the function F’ obeys the equation

F(F(z,y),z) = F(x, F(y, 2)),

for all real values of z, y, and z, i.e., “the associativity equation” of Aczél [1]
who derives the general solution in Equation (2.2). The better known shorter
proof presented by Cox [33] assumes differentiability. The general solution
to this functional equation is

F(z,y) =w "(w(x)w(y)), (2.2)

where w(z) is any positive, continuous, monotonic function of plausibility.
Thus we have not uniquely specified F, but constrained its form. Using this
solution with (2.1), the consistency requirement tells us that

w(HD|T)=w(H|DNw(D|T) (2.3)

Equation (2.3) is called henceforth the product rule. The result has been
derived as a necessary condition for the Internal consistency property. Con-
versely, it is evident that (2.3) is also sufficient to ensure this consistency
for any number of joint propositions.

The requirements of qualitative correspondence with common sense im-
pose further conditions on the function w(x). For example, suppose that
in Equation (2.3) H is certain, given I. Then in the context produced by
knowledge of I, the propositions (H D) and ) are the same, in the sense that
one is true if and only if the other is true. By the most primitive property
of all, propositions with the same truth value must have equal plausibility,
hence

(HD|T) = (D]T)

and also we will have

(HIDI) = (H[T)



2.2 The probability axioms: the grammar of Bayesian inference 17

because if H is already certain given I, then given any other information D
which does not contradict T, it is still certain. In this case, (2.3) reduces to

w(D|T) = w(H|w(D|T)

and this must hold no matter how plausible or implausible I is to HAL. Thus
the function w(2) must have the property that certainty is represented by
w(H|T)=1.

Similarly we can suppose that H is impossible, given 1. It follows that
the proposition (H D) is also impossible given [I:

(HD|T) = (H1)

and if H is already impossible given I, then given any further information
D which does not contradict T, H would still be impossible:

(HIDT)= (HI|T).
In this case, (2.3) reduces to
w(H|T)=w(H|Nw(D|T) (2.4)

and again this equation must hold no matter what plausibility /) might
have. There are only two possible values of w(H|I) that could satisfy this
condition; it could be 0 or 400 (the choice —oo is ruled out because then
by continuity w(D|I') would have to be capable of negative values and (2.4)
would then be a contradiction).

In summary, qualitative correspondence with common sense requires that
w(x) be a positive continuous monotonic function. It may be either increas-
ing or decreasing. If increasing, the function must range from zero for im-
possibility up to one for certainty, if decreasing, it must range from oo for
impossibility down to one for certainty. Thus far, our conditions say nothing
at all about how it varies between these limits. However, these two possibil-
ities of representation are not different in content. Given any function wy ()
which is acceptable by the above criteria and represents impossibility by oo,
we can define a new function we(2) = 1/wq (), which will be equally accept-
able and represents impossibility by zero. Therefore, there will be no loss
of generality in adopting the familiar choice 0 < w(z) < 1, but one should
observe that it is chosen here as a convention.

2.2.2 The sum rule

The propositions being considered are of the Aristotelian logical type which
must be either true or false, hence we know that the logical product (H H)
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is always false, and the logical sum (H + H) always true. The plausibility
that H is false must depend in some way on the plausibility that it is true.
In other words, if we define r = w(H|D) and s = w(H|D), there must exist
some functional relation s = S(r). Similar to the derivation in the previous
section Desiderata 2.2 and 2.3 lead to a functional equation whose solution
implies that for some positive m (see [69, 70])

w™(H|D)+w™(H|D)=1. (2.5)

From the discussion above we know that associativity of the logical product
requires that some monotonic function w(x) of the plausibility 2 = (H|D)
must obey the product rule 2.3. Now this same function must also obey the
sum rule in (2.5). We can write the product rule equally well as

w™(HD|I)=w™(H|Nw™(D|HT)=w™(D|Iw™(H|DI)

which shows that the value of m is actually irrelevant; for whatever value is
chosen, we are free to make a simple change of variables from w(2) to the

different monotonic function p(2) = w™ (2), so that we may always write
p(HDIT) = p(H|Np(DIHT) = p(D|)p(H|DI) (2.6)
and
p(HID) + p(HID) = 1. (2.1)

It should be observed that this entails no loss of generality, for the only
requirement imposed on the function w(x) is that it is a continuous mono-
tonic increasing function ranging from w = 0 for impossibility to w = 1
for certainty. But if w(2) satisfies this, then so does w™ (2), 0 < m < oo.
Consequently allowing different values of m does not give us any freedom
that did not exist already in the arbitrariness of w(x). All possibilities al-
lowed by our desiderata are contained in (2.6) and (2.7) in which p(2) is any
continuous monotonic increasing function with the range 0 < p(x) < 1.

2.2.3 Relation to logical inference

We have seen that the equations (2.6) and (2.7) follow as natural con-
sequences from the properties assumed for HAL’s plausible inference. Just
as conjunction and negation are an adequate set for logical inference, HAL is
able to derive all legitimate relationships between plausibilities from these
product and sum rules.

Plausible inference allows HAL to reason in the presence of uncertainty.
In the extreme case where all the necessary information is available, however,
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HAL’s inference should not contradict logical inference. Let us now briefly ex-
amine how the plausible inference based on equations (2.6) and (2.7) relates
to logical inference.

From (2.7) it is obvious that in the limit as p(H|D) approaches 0 or
p(H|D) approaches 1, if H is true, then H must be false. Logical inference
is based on the two syllogisms

H=1D H=1D
H true D false 58
D true H false (2:8)
and their consequences. From (2.6) we get
p(HD|I p(HD|T
poirry = PP gy ppy = 2T (2.9
p(HIT) p(DIT)

Now if we define I = (H = D), from (2.8) it follows that p(H D|I) = p(H|T)
and p(H D|T) = 0 and thus (2.9) becomes

p(DIHT) =1 p(H|DI) =0 (2.10)

as stated in the original syllogisms. Therefore HAL will perform logical in-
ference “in the limit”, i.e., when it becomes more and more certain on its
conclusions.

After this exercise the connection between plausible inference and the
Bayesian probability theory becomes evident. Equations (2.6) and (2.7) are
the familiar “axioms” of probability theory, and thus we can identify the
quantity p(H|D) as the probability (i.e., belief) of H given . That is,
probability in this study is taken to be a technical term referring to a mono-
tonic function of plausibility obeying the equations (2.6) and (2.7). One
should not be deceived by the intuitive simplicity of this result it shows
that assuming the desiderata presented in Section 2.1 together with some
technicalities required during the derivation every allowed extension of Ar-
istotelian logic to plausibility theory is isomorphic to Bayesian probability
theory?. The different choices of the monotonic function p(z) correspond

20ne should observe that one of the underlying assumptions is that we extend two-
valued logic to plausible inference. A proposition H can only be true or false, but the
Bayesian probability theory tells us how plausible the truth of H is. Therefore our dis-
cussion does not directly address approaches to plausible inference which violate the “law
of excluded middle”, in particular it does not address the fuzzy approaches [92]. Tn fact,
some of the fuzzy approaches violate already our desiderata by assuming independence in
the product rule [21, 68].
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only to different ways HAL stores plausibility values internally; HAL’S ex-
ternally observable behavior would be just the same. In fact, since p(z) is
a monotonic function of x, the plausibility = is a monotonic function of p
defined in 0 < p(z) < 1. Of all the possible functions z(p) one can then
choose the one specified by 2(p) = p, since this leads to the simplest rules
of combination, equations (2.6) and (2.7).

Hereinafter we will move from talking about plausibilities to using prob-
abilities, and state the product rule and sum rule as axioms. In the following
let H, D, T be propositions.

Axiom 2.1 (Product rule) The probability of the logical product (H D|T)
is the (arithmetic) product of the probabilities (H|I) and (D|HT), i.e.,

p(HD|I) = p(H|[D)p(DIHT).

Axiom 2.2 (Sum rule) The sum of the probability of a proposition (H|T)
and the probability of its logical negation (H|T) is 1, i.e.,

p(H|T) +p(H|T) = 1.

As noted already earlier, this isomorphism of allowed plausibility theories
to probability theory can be derived for similar sets of properties other than
the one used here for HAL. Tt should be observed, however, that alternative
choices for implementing HAL’s plausible inference exist, the most notable
ones being the various fuzzy logic approaches [92, 149], and the Dempster-
Shafer theory [127]. There is an ongoing debate about the advantages and
disadvantages of these approaches with respect to Bayesian inference, but
reviewing this discussion is beyond the scope of our work (for more details
an interested reader is referred to the recent monograph by Paris [106] and
the articles by Cheeseman [21, 22]).

We are interested in building intelligent systems capable of inference with
incomplete information. From this perspective, the logical approach for the
Bayesian inference presented is the most natural one. We should point out,
however, that the foundations of Bayesian probability theory can also be
based on other than logical aspects, such as the operational considerations
presented in [9].

2.3 Assigning probabilities: the vocabulary of in-
ference

We have discussed the rules by which HAL can manipulate plausibilities,
and observed that the equations derived are in fact the axioms of Bayesian
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probability theory. We have left open, however, the problem how HAL assigns
actual numerical values to propositions. The situation is analogous to logical
inference, where the truth of certain propositions can be inferred given the
truth or falseness of other assumed propositions, which are provided as input
to the theory. Similarly, for plausible inference we need to assume that
some “input” probabilities are assigned directly, as opposed to being derived
from other probabilities using Axioms 2.1 and 2.2. Thus we seek rules
for converting information about propositions into numerical assignments of
probabilities. In Bayesian probability theory all probabilities are conditioned
by propositions that indicate exactly what was assumed in the assignment
of a probability, i.e., the probabilities are not properties of the propositions
themselves. Tn this sense they are “subjective” and describe HAL’s state
of knowledge, not states of nature. But they are “objective” in that all
conditioning information has to be taken into account (Desideratum 2.4) and
that equivalent states of knowledge are represented by equal probabilities
(Desideratum 2.5).

Finding general rules for converting information ) into a probability
assignment p(H|D) is an important part of the Bayesian probability theory
and present in the choice of prior distributions (see discussion in Section 2.4).
Development of such rules for different types of information is still a topic
of ongoing research. Here we will only briefly outline some of the most
elementary approaches (for more detailed discussion see e.g., [8, 55, 70]).

2.3.1 Non-informative probabilities

The simplest type of information we can have about some proposition Hy is a
specification of the alternatives { Hy,Hs, ...} to it. Probability assignments
that use only this information are referred to as non-informative probabilities.

For example assume Problem I where we have two propositions Hy and
H; and we only know that these propositions form an exhaustive set of
exclusive alternatives. For notational reasons let us define I = Hy + H, to
indicate the conditioning information. The propositions are exclusive, thus
p(HyH2|T) = 0 and Equation (2.7) implies that p(Hy|l) =1 — p(Hq|T). et
us now consider Problem 1T which differs from Problem T only in relabeling
of the propositions in such a way that H; is replaced by H{ and Hy by HJ.
The “new” conditioning information is then

I'=H+ H,=H, +Hy,= 1.

Evidently p(H{|T) = p(Hs|T), and p(H5|T) = p(H4|T). Now, if information
[ is indifferent to Hy and Hs, the state of knowledge in Problem 11 regarding
My and H) (including their labeling), is the same as that in Problem T. By
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Desideratum 2.5 we have assumed that HAL represents equivalent states of
knowledge by equivalent probability assignments, hence

p(Hi|T) = p(H4|T). (2.11)

But from this observation it follows that p(Hq|I) = p(H,|I) which by Ax-
iom (2.2) implies
p(HL[T) = p(Ha|T) = 1/2,

i.e., we can assign a numerical value for the probabilities. Tt is easy to
see that the above line of reasoning with symmetry equations (as equations
similar to (2.11) are called [70]) can be generalized to a set {Hy,..., H,} of
n exclusive, exhaustive propositions, leading to the assignments

p(FT) =1/n,  (1<i<n), (2.12)

better known as the Principle of Indifference. As noted by Jaynes [70], this
intuitive result has important consequences for HAL’s behavior; if it were to
assign any values different from (2.12), by mere permutation of labels there
would exist another problem where HAL’s state of knowledge is the same, but
it would assign different probabilities. In the experimental part of the work
described here this Principle of Indifference is present in the use of uniform
prior densities for model parameters.

Principle of Indifference is useful to HAL when the set of possibilities is
finite, but the analysis becomes much more difficult when the set of altern-
atives is infinite, e.g., when we want to assign probabilities to the possible
values of continuous parameters. For such an infinite case the “transforma-
tion trick” of transforming the original problem to an equivalent one may be
very hard. For the finite case above, the only transformation that preserves
the identity of the alternativesis permutation. In the continuous case, there is
an infinite number of possible re-parameterizations. Obvious generalization
of Laplace’s Principle of Indifference is problematic as it lacks invariance
under transformation (see [9, 118] for discussion). In one of the continu-
ations of the work reported here [87] we illustrate the differences when more
sophisticated non-informative probability assignments, such as Jeffreys’ in-
variance principle [72], are used instead of uniform densities. For a more
detailed discussion on rules for assigning non-informative probabilities in
continuous cases the reader is encouraged to consult the excellent book by
Berger (Chapter 3) [8] and the references therein.
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2.3.2 Informative probabilities and the Principle of Max-
imum Entropy

In addition to the specification of alternatives {Hy,Hs, ...}, we may have
some additional information which leads us to probability assignments differ-
ent, from the non-informative ones discussed above. It is obvious that some
types of prior information are too vague to be translatable into mathemat-
ical terms usable by HAL. Therefore in practice the minimum requirement of
testability of information is needed before HAL can assign prior probabilit-
ies. The information Iy is testable with respect to H; if, given any prior
probability assignment over the H;, there exists a procedure that determines
unambiguously whether the assignment is consistent with the information
Ir. Tn general there may exist several distributions consistent with test-
able information I'g. A classical example of testable information is the case
where the prior mean is specified (e.g., the mean value of many rolls of
dice being 2.5) and among the prior distributions with this mean the most
non-informative distribution is sought. If we denote by F the operation of
altering a non-informative distribution to reflect testable information I'y, we
can write

p(H|ITg) = F(p(HI|T); Ig).

Interestingly it can be shown [70, 128] that the desiderata presented in Sec-
tion 2.1 are sufficient to uniquely specify the operation F. Thus for such case
HAL will select among all the possible normalized distributions (py, ..., pn)
satisfying the constraints imposed by I, the one with maximum information
entropy as defined (in the finite case) by

Hpr,--pn) = — Y _pilgpi (2.13)
=1

This Mazimum FEntropy Principle assignment represents the most objective
description of what HAL knows about the propositions { Hy,H,, ... }. Like the
Principle of Indifference, also Equation (2.13) can be generalized to the infin-
ite case, but its use comes more complicated due to the lack of a completely
natural definition of entropy for continuous spaces. For illustrative worked
examples of the maximum entropy assignments see [118, pp. 210 314].
Above we have discussed the justification of the Principle of Indiffer-
ence based on the desiderata we assumed for HAL’s inference. When HAL
assigns uniform prior probabilities, it is in fact applying maximum entropy
(albeit in such a simple case that the formalization and derivation in [128]
are unnecessarily complex). In practice, however, much more information is
commonly used in prior probability assignments by assuming that the distri-
bution has a specific (parametric) form, which in fact expresses independence
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assumptions. The motivation for such assumptions is often computational
and mathematical convenience, which is one of the main advantages of the
use of the so called conjugate priors discussed later on.

2.4 Bayes’ theorem

HAL can derive all legitimate relationships between probabilities from the
product and sum rules in Axioms 2.1 and 2.2. There is, however, one
straightforward consequence of Axiom 2.1 which has proven to be so useful
that it is usually stated as a theorem.

Theorem 2.1 (Bayes’ theorem, Bayes 1763, Laplace 1774) Tet us
assume that {Hy,..., H,} is a set of n exclusive, exhaustive propositions,
and 1 < j <n. Then

p(H; | N)p(DIH;T)
> j=1 p(DIH;T)p(H,|T)

Proof 2.1 let us first derive a generalized sum rule from Axioms 2.1
and 2.2.

p(H;|DI) =

p(H +DII) = 1—p(HD|I)
= 1= p(H|N)p(DIHT)
= 1T=p(HIH( = p(DIHT))
= p(H[I)+ p(HDIT))
= p(H[I)+p(DINp(H|DT))
= p(HI)+p(DIT) = p(HD|T)).

The equation
p(H + DII) = p(H|I) + p(D|I) — p(H D|I)) (2.14)

is clearly a generalization of the sum rule in Axiom 2.2.
Now to the actual derivation. Propositions (H D) and (DH) are obvi-
ously identical as the ordering is irrelevant. Axiom 2.1 implies that

p(H:DIT) = p(Hi| D) p(DIT) = p(D|H;I)p(Hi|T)

from which we can solve

p(H:D|T) _ p(DIH:I)p(Hi|T

p(DIT) p(DIT)
The theorem now follows from the generalized sum rule (2.14) when it is
applied to proposition D = DHy + DHy+ ... DH,. ]
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The four elements, p(H;|I),p(D|H;I), p(H;|DI) and p(D|I) present in
Bayes’ theorem appear throughout Bayesian statistics with different names.
In order to have a standard terminology we define them as follows.

Definition 2.1 T.et {Hy,..., H,} be a set of n exclusive, exhaustive pro-
positions, and D, I propositions. Then (1 <i < n)

e p(H;|T) are called the prior probabilities of the H;,

e p(D|H;I) are called the likelihoods of the H; given D,

e p(H;|DI) are called the posterior probabilities of the H; given D,
e p(D|I) are called the evidence of the .

The likelihood term is also known as the sampling distribution, and the evid-
ence is sometimes called the marginal likelihood or predictive probability [9].
This last term such not be confused with the predictive distribution as used
in this work.

Theorem 2.1 has proven to be so important in the Bayesian probability
theory that the whole field is so-called due to its wide use of Bayes’ theorem
to assess hypotheses. This becomes obvious by giving proper interpretations
to the propositions H, 1D and I. Typically H; is a hypothesis HAL wants to
assess, ) some relevant data (to the hypothesis) that HAL has, and [ some
background information indicating the way in which H; and D) are related,
also specifying any alternatives that may exist for H;. Here we can see the
intimate relationship between Bayes’ theorem and HAL’s learning. Bayes’
theorem is an “update rule” that indicates how HAL adjusts its plausibility
assessments when the state of knowledge regarding the hypothesis changes
through the acquisition of new data.

One should be careful not to misinterpret the terms “prior probability”
and “posterior probability” necessarily to mean “earlier in time” and “later
in time”. Their semantics is only with respect to the particular chain of
inference being made. The distinction is only conventional, not fundamental.
Similarly the separation of the information available to prior information and
data is a choice made by the modeler, and used only to organize a chain of
inferences. Thus there is only one kind of probability; the different names
refer only to a particular way of organizing HAL’s calculation in a particular
case.

Up to this point HAL’s inference framework has only been used with a
finite set of hypotheses {Hy,..., H,}. In addition the arguments of the
formal probability symbol p(-) have been propositions such as
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H = “Class CS101 has N students, of which M are blue-eyed.
We pick one student randomly and observe.”

D = “The student selected is blue-eyed.”

From next chapter on, we will be continuously interested in hypotheses with
real-valued parameters, and thus follow the custom of most contemporary
works and relax our notation to allow also real-valued variables such as 6, or
numerical values such as z; as arguments, i.e., we allow for example notation

])(.7,‘1 725+ oy Tm—1 |0)

In addition, when using variables, values and sets as arguments of the prob-
ability p, to avoid ambiguity in denoting the conjunctions, we will move from
using catenation to using “,” instead, i.e., p(2;/6", M) means the conditional
probability of X; = 2; given both # = #* and M = M},. Finally, HAL's infer-
ence can be extended to allow continuous variables (values) 6 as arguments
(see the discussion in [70, p. 419]), in which case we in fact use probability
density functions. For simplicity we will use the same notation for continu-
ous density functions and discrete probability mass functions, in addition
different distributions in the same expression will each be denoted by p(-).
This slight abuse of strict mathematical accuracy will result in a compact

standard notation used in much of the Bayesian literature (see e.g., [9, 55]).



Chapter 3

Models and plausible predictions

“All models are false, but some are useful.”

José Bernardo and Adrian Smith in Bayesian Theory

Chapter 2 established the general Bayesian framework for the study of plaus-
ibilities and their evolution in the light of new information. We will now
turn to the detailed development of these ideas, and return to our original
motivation of giving HAL a means for predicting yet unobserved quantities
conditional on having observed some other quantities (data). Naturally HAL's
predictions should be based on logical inference whenever enough informa-
tion is at hand to allow it. Tn the case of real problems, however, almost
invariably the necessary information is not available and HAL’s “intelligence”
is dependent on how optimal its processing of incomplete information is.
From this chapter on we will move our focus from general plausible infer-
ence to prediction using probabilistic theories, with the criterion that the
best theory is the one with the greatest predictive power (Section 3.1).

The predictive Bayesian inference discussed in this work is deeply re-
lated to the minimum encoding approaches of Wallace [144, 145], Ris-
sanen [116, 117] and Solomonoff [130]. In Section 3.3 we briefly discuss
this information theoretic formulation, which in many cases provides an in-
teresting complementary view of the Bayesian approach, and demonstrates
some advantages over the traditional approach.

3.1 Predictive models

3.1.1 The prediction problem

HAL’s predictions are based on conditional probabilities. This conditioning,
however, needs information about on which propositions (variables) the con-

27
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ditionings are made. This information is expressed as a model. Obviously
this is not particular only to Bayesian modeling, any predictive system such
as HAL has to use a model of the quantities to be predicted. Tn very broad
sense a set of models, defined for example by structural equations, can be un-
derstood as the language used to describe the constraints that the observed
quantities satisfy. In our case this language is the language of computable
probability mass functions or density functions, thus all HAL’s models are
probabilistic.

et us now consider that HAL’s events of interest are defined explicitly in
terms of quantities d - .,(ip. These quantities are typically vector-valued
with continuous or discrete component values, and will be hereinafter called
(observable) data. Furthermore, let us assume that HAL wants to predict the
as yet unobserved data 1D, = dN+1, .. (][ on the basis of its background
information and the observed data 1D = dh cody, (1 < N < L). Following
the discussion in Chapter 2, HAL’s pla,usibﬂitles for data are derived from the
specification of a joint probability density function p((ﬂ7 .. .,(]_,‘71|Z/[)7 where U
is a “universal” model family, i.e., a model space containing all the models
that are available to HAL to express conditioning information. The explicit
conditioning with model space U is usually dropped for notational simplicity;
consequently, unless there is a possibility for confusion, this joint probability
density will be denoted by p((ﬂ7 .. .7(i[1). In our Bayesian framework HAL’s
prediction problem can be expressed as the problem of identifying the joint

conditional density p(JN+1, .. .7(i)fl|d_;7 .. .,JN). From Axiom 2.1 we have
) s
p(dngr, - dpldy, ... dy) = g (3.1)
pldy, .- dn)

i.e., HAL’s (posterior) predictive density for new data I, can be reduced to
calculating the ratio of the joint densities p(D,, D) and p(D). Following the
convention adopted in the computational intelligence and machine learning
communities, we call the data sets 1D, and D test data and training data,
respectively.

Intuitively the Bayesian ideal to calculate the predictive density p(-)
would require HAL to use all the models in the universal model family i,
which clearly is not feasible in practice. In Sections 3.2 and 3.3 we will give
three alternative definitions of a predictive density for HAL to use for pre-
diction, all of which approximate the ideal predictive density p(-) by using
different sets of models from the model space U/. However, first we proceed
by introducing some concepts and notation used in Bayesian modeling.
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3.1.2 Model families, model classes and models

Prediction and learning, whether Bayesian or not, are always relative to a set
of possible models. There seems to be sometimes confusion in the machine
learning literature about this issue, as for example the pure instance-based
methods only store the training data 1D, and do not form an explicit model
during learning. In such approaches the model is, however, formed for each
prediction dynamically, as indicated by the more appropriate recent term
“lazy learning” [3].

l.et us now introduce some general notation, used subsequently in our
context of predictive modeling. The training data D denotes a (random)
sample of N independent and identically distributed (i.i.d.) data vectors
(ﬂ,...,(i;\r. For simplicity, we assume here that the data is coded by us-
ing only finite-valued attributes Xy,..., X,,,. More precisely, we regard
each attribute X; as a random variable with possible values from the set
{#i1,... 2, }. Consequently, each data vector d is represented as a value
assignment of the form (Xy = zy,..., X, = x,,,), where a; € {251, ., 240, }-
The approach described here extends naturally to continuous attributes as
well, the only exceptions being the predicted attributes for certain types of
definitions of the predictive density.

In the following, let M C U denote a model family, a set of models
each determining some probability distribution on the problem domain. Ex-
amples of model families include the set of feed-forward neural network
models [12, 95], the set of Bayesian networks [66], and the set of decision
trees [74], which all can be viewed as sets of models representing probab-
ility distributions. For notational convenience, it is often useful to parti-
tion the models within a model family M to some finite number of subsets,
model classes M;, where all the models within a model class share the same
parametric form, i.e., the same number of parameters. Consequently, the
model classes usually correspond to some specific model structure. FEx-
amples of such structures are the topology of a feed-forward neural network
or a Bayesian network. A model 8 is here defined as a parameter instanti-
ation within some parametric model class M;, fully determining a probability
distribution in the data vector space'. Tt should be noted that in some of the
literature what we call a “model class”, is called a “model”, and our “model
selection” (see the next section) is called “parameter estimation”.

et us now reflect all this modeling discussion to the general Bayesian
framework discussed in Chapter 2. A model can be seen as a hypothesis H;

"We will also sometimes use the notation A(D’) to indicate the data set. D’ from which
the model is constructed. Usually 1)’ = I, and in such cases for notational simplicity we
drop 12 and use simply 8 instead of §(12).
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from a continuous range of hypotheses, the data D is the “problem-specific”
information given to HAL, and the choice of the set of models to be considered
(M and partitioning {M;}) is the background information I.

One of the advantages of the Bayesian approach is that the assumptions
of the model family are made explicit. This helps us to avoid the confu-
sion often present in the computational intelligence and machine learning
literature, where in many cases it is difficult to see which set of models is
searched during the learning process, and what models are preferred in the
first place. The latter point corresponds to the Bayesian priors, where the
preferences, or the lack of them, are also made explicit. In addition the
Bayesian framework also allows clear conceptual separation between the cri-
teria of the quality of a model and the algorithm searching for good models,
instead of coding the quality measure into the search algorithms itself. This
separation of the search mechanism and the model quality measure offers
HAL more flexibility it can use different search algorithms for the same cri-
teria. Although all the work reported here is based on a particular search
algorithm and its variants, various competitive alternatives exist [84].

3.1.3 Prediction and the posterior density for models

l.et us assume that we have programmed HAL by defining a model family M
with models # partitioned into model classes {M;}, where each model class
has the same parametric form 8ps,. Furthermore, we provide HAL with the
prior information p(#|M). We now give HAL some additional information in
the form of training data I, and ask it to give a predictive distribution for
a new data vector d, i.e., to give p((ﬂD) (since we have fixed HAL’S model
family, all the discussion is relative to M and for notational simplicity we
drop it from the conditioning part). How should HAL predict?

The answer is somewhat surprising, especially for those used to think-
ing learning in terms of building non-probabilistic models. HAL’s predictive
distribution for a new data vector is given by

pdn) = [ pldoiyas
JM
= [ pidip.oyp(e1D)as
JM
= [ pidiopiin)ds (3.2)
JM
The second equation follows from Axiom 2.1 and the third one from the

conditional independence of d and D given . The integrand in (3.2) re-
quires HAL to calculate the posterior density p(f| D). Since we provided HAL
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with the prior p(8| M), it can apply Bayes’ theorem. Thus the Bayesian
predictive distribution is achieved by model averaging, i.e., by combining
the predictions of all the models in M weighted by their posterior density.
This weighted averaging over models reflects HAL’s uncertainty about the
model, i.e., this predictive distribution is the expected distribution of d over
all possible parameter settings (models). Notice that if the training data
D severely restricts the set of possible distributions, the posterior density
will be highly peaked, and the effect is approximately the same as if only
a single model 8 were used. Intuitively this is the reason for the observa-
tion that with large training data sets, HAL usually can predict well already
with a single model the additional data reduces the uncertainty about the
parameters thus making the posterior more peaked, in which case the single
model approximation is more viable.

In most practical situations averaging over all the models in a model
family is not feasible, and HAL should try to approximate this average. One
general approach to approximate the integral in Equation (3.2) is to find
a good model structure, and then use all the models with that structure.
In our framework this corresponds to the case, where HAL uses model class
posterior to find a highly probable model class M indicated by the training
data I, and then averages over all the models in M, i.e.,

p(dD) = [ p(da)p(ol D)as. (3.3)

Notice that Equation (3.3) still allows HAL to use an infinite number of mod-
els.

Equation (3.3) requires an integral over all models 6 of fixed structure.
If this integral is hard to compute, HAL can make a further approximation
by using model posterior (within a model class) to select a single good
model é, and then perform the predictions with that one model. Tt should
be noticed that the prevailing approaches in the traditional machine learning
and computational intelligence achieve usually even less, since instead of
using the posterior, they typically resort to assigning ad hoc selection scores
to models. Tn the light of this hierarchy of approximations it is easy to
see why the traditional, single model based approaches in machine learning
have only been moderately successful, in particular with small data sets
D. Tt also explains why the new averaging approaches such as bagging [16]
or boosting [50] have produced improved results over the use of individual
models.

In both of the approximation steps above, HAL faces the problem of select-
ing the best representative of a posterior distribution. et us now investigate
whether the Bayesian framework introduced in Chapter 2 offers HAL any help
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for solving also this selection problem.

Summarizing the posterior density by using an estimate is a nontrivial
problem, since its solution is outside the pure inference framework and re-
quires Bayesian decision theory [8]. Bayesian probability theory alone can
only solve the inference problem, i.e., can provide only a probability density
representing HAL’s state of knowledge. The criteria for selecting a single
model to represent this density is dependent on how the model will be used.
Thus the task of selecting a single model # summarizing the posterior is
dependent, on a loss function (8, 8), which describes the “loss” occurring if
#" is used instead of the model . The Bayesian approach to finding the best
representative model #” requires then the minimization of the expected loss
[9, pp. 255 258]:

" = argmin / 10, 0)p(0) D)d6.
8 I

Tn many cases the loss function 1(#, #) is hard to define or not known. There-
fore it is common practice to use the mode of the posterior 0 as 6" to sum-
marize the posterior distribution?. If the posterior is very strongly peaked,
the predictive distribution of (3.2) can be replaced by the prediction made
using the mode 9, with a negligible loss of accuracy. Therefore HAL will use
the posterior mode at each level of selection:

i. Model family selection
In the extreme case we could imagine that HAL could also choose
between alternative model families. Tn such cases the model family
could be chosen by maximizing the posterior probability p(M|D,U),

M =arg mj\z/llxp(./\/ﬂl?,l/{),

where { is the set of all possible models of any form®. This extreme
case of computing the model family posterior density for all the pos-
sible model families is a hopelessly intractable task. Therefore any
HAL 44 is designed to work with some model family M fixed in ad-
vance, based on designer’s prior knowledge or personal preferences.

ii. Model class selection
As opposed to model family selection, model class selection is com-
monly encountered in practice. The model class to be selected is the

2Tt should be noted that the most commonly used choices for 8, the mode and the
mean of the posterior, have no fundamental status in Bayesian inference as they both
change under nonlinear re-parameterizations.

3For this case the model families M; become model classes of the “universal” model
family U.
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class with the maximal posterior probability,

M = a,rgm]\?fxp(/\/ﬂn,./\/l).

From Bayes’ theorem we know that

p(DIM, M)p(M| M)
p(D|M) '

p(M|D,./\/l):

The denominator p(D| M) is a constant, and can be ignored. In many
cases we can assume that all the model classes are equally probable a
priori (according to the Principle of Indifference). Then it is sufficient
to maximize p( | M, M), i.e., the evidence (see Definition 2.1) of the
data,

p(DIM, M) = / (D6, M, M)p(6] M, M)df. (3.4)

iii. Model selection
Finally, selecting a single model within a model class M corresponds to
choosing the mazimum a posteriori (MAP) values # of the parameters,

g — argmax p(0|D, M, M).
Again from Bayes’ theorem we have
p(BD, M, M) o p(DIB, M, M)p(6] M, M), (3.5)
analogously to the model class selection case.

Due to the update nature of Bayes’ theorem in posterior calculation, it has
also proven to be useful to introduce the notion of conjugacy, and use so
called natural conjugate priors [55]. For a given likelihood p(D|€) all dens-
ities p/(-) having a functional form such that the posterior p(8| D) will follow
the same form as p/(+), are called conjugate priors of p(D|f). Tn addition to
computational convenience, conjugate priors have the practical advantage of
being interpretable as additional data. In this work we will always be using
conjugate priors, which in our case will be Dirichlet densities [55].

Before concluding the discussion on posterior densities, one common
source of confusion should be pointed out. The assumption of uniform
priors for model classes does not mean that HAL would consider complex
structures equally plausible to simple structures. The data-dependent term
p(D|M, M) in Bayes’ theorem, i.e., the likelihood, embodies preference for
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simpler models automatically?, which can intuitively explained as follows.
Complex model classes, by their nature, are capable of making a greater
variety of predictions than simple ones. Therefore, if model class M, has
more complex structure than My, the likelihood p(D| M., M) is spread more
thinly over the data space than p(D| M, M). In the case where the data are
compatible with both model classes, the simpler model class M, will turn
out to be more probable than M., without the need to assign an additional
“penalizing” prior for complex structures.

3.2 Bayesian predictive inference

et us now return to HAL’s general prediction problem as described by Equa-
tion (3.1). Here we formulate a restricted version of the problem, where HAL
needs to predict the value of a single attribute of a new partially observed
data vector. This restricted version corresponds to a typical attribute-
based classification problem in machine learning and computational intel-
ligence [75].

As discussed in Section 3.1.1, given the training data I, HAL should base
its predictions on the conditional distribution of a new test vector dj that is
on p(dj[l?)7 where

p(d, D)

pldl) = PG5, (3.6)

We now focus on the following prediction problem: Given the values of the
variables Xq,..., X,,,_1, and the training data /), HAL needs to predict the
value of variable X,,. For notational simplicity, in the sequel we drop the
variable names, and denote a value assignment

(X1 - .7717)(2 - .7,‘27...,)(7”1,1 - mm,f1)
by writing (21, 22, ..., 2,_1). Now for each possible value z,,;,

Tms € {mm,h ) mm,nm}

we wish to compute the probabilities

P( X = @il (21, - ooy 2m—1), D).

*This preference for simplicity is usually know as the “Ockham’s Razor” and credited
to William of Ockham (c. 1285-1349).
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T.et (]—[Tﬂ”] denote the vector (X1 = z1,..., Xt = T, Xow = Tni).
From Axiom 2.1 we know that

Tlyee s 1)y Xon = iy DD
p(Xm:.77m7§|(.7717.__7mm,1),]7):p(( 1 1) )’
P((mh---vmm*”v D)

from which by writing explicitly the marginalization we get

p((mh .. '7'777)7,71)7 Xm = Tmi, D)
2221 p((mh - -7'777)7,71)7 Xm = Tk, D)

p(Xm = mm,i|(m17 - '7'777)7,71)7 D) =

Now using the (]—[Tﬂ”] notation we have

—

(s, 1)
SSi Pl D)
p(dlr,]11)

- . BT
Sy pldlr il D) 7

Consequently, the conditional distribution for variable X, can be computed

p(Xm,:mm,i|(m17"'7mm,f1)7r)) =

by using the complete data vector conditional distributions (3.6) for each
of the possible complete vectors (]—[Tﬂ”] The resulting distribution is called
the predictive distribution of X,,. This approach can be straightforwardly
extended to cases with more than one uninstantiated variable, but it should
be noted that in the general case the number of comparisons needed grows
exponentially with respect to the number of free variables. In Chapter 4 we
will see that for certain model families HAL can in fact address this general
problem more efficiently.

HAL’s ability to express constraints for the data was restricted to the lan-
guage of some parametric family of models M, where each instantiation of
parameters # corresponds to a single distribution. We now turn to the prob-
lem that given this language, how should HAL define p(-). In the following we
consider two alternative definitions for p(-), and in Section 3.3.1 we will add
a third, minimum encoding based approach introduced by Rissanen [117].

3.2.1 The MAP predictive distribution

The first definition for the distribution p(-) is the most elementary one, i.e.,
the one based on the best model in a fixed model class M. Since here our
discussion will always be relative to a fixed model family M, to simplify
notation we drop M from the conditioning part. GGiven a prior distribution
p(0| M) over the space of parameters, we can arrive at a posterior distribution
p(0| D, M) by using Bayes’ theorem:

p(81D, M) o< p(D]6, M)p(0|M). (3-8)
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In the maximum a posteriori (MAP) probability approach, distribution p(-)
is replaced by the distribution conditioned by the single model

4(D) = argmax p(8] D, M),

i.e., the mode of the posterior distribution p(8|D, M):
Pmap(d, D) = p(d, D|6, M).

In orthodox statistical approach, the MAP model is replaced by the max-
imum likelihood (M1.) model 0, i.e., by the model maximizing the data likeli-
hood p(D|#, M). Since throughout this work we use non-informative priors
(see Section 2.3.1), and assume the prior distribution p(8| M) to be uniform,
the MAP model is equal to the MI. model, as can clearly be seen from (3.8).
Now the corresponding predictive distribution (3.7) is in this case

Prap (] mil, D)
SR Pap (il D)
p(df.i), DIf, M)
Sy pldlni], DIO, M)

Since the data are i.i.d., (]—[Tﬂ”] and D are independent, given 6, thus

pmap(xm,:mm,i|(m17"'7mm,f1)7r)) -

P( Tﬁm“év M)p(n|év A/{)
Ry p( 418, M)p(D|6, M)
Ry 119( dla,1]160, M)

pmap(xm,:mm,i|(m17"'7mm,f1)7r)) -

3.2.2 The evidence predictive distribution

A more sophisticated definition for the distribution p(-) is based on the
observation that instead of using a single model from a fixed model class
M, HAL could use all the models in that class. This can be achieved by
integrating over the model class M, i.e., by averaging over all the models
(here we again drop M from our notation):

peuld D) = [ ol DI, M) p(6] 1) . (3.10)

The integral in Equation (3.10) is in fact the normalization factor of Bayes’
theorem, i.e., the evidence. The resulting predictive distribution can now be
given as

—

el D)
Zk:ﬁ pev((][ ] D)

pev(xm, = mm,i|(m17 - '7'777)7,71)7 D) =
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From (3.10) we get

pev(xm, = mm,i|(m17 - '7'777)7,71)7 D) =

[ p(dleni] DIB M)p(8]M)d6
only [ pld

(dL,i]. D16, M) p(6] M) 6
(3.11)

Computing the MAP predictive distribution (3.9), or at least a good ap-
proximation of it, is often feasible in practice. In particular it is feasible
for the model family of finite mixtures discussed in Chapter 4. Calculating
the evidence predictive distribution (3.11)  or even good approximations
to it is very hard for most model families. We will show, however, that
the evidence predictive distribution can be computed efficiently for a special
class of discrete finite mixture models, which corresponds to the Naive Bayes
classifier in the machine learning literature (see e.g., [82]).

3.3 Information theoretic view

The Bayesian predictive inference framework we have discussed has an inter-
esting information theoretical formulation prediction of data with minimal
descriptions. From elementary information theory [31] we know that for any
complete code (', there is a corresponding probability distribution po such
that for all sets D, —logpa(D) is the length of the encoding of 1) when
the encoding is done using (. Similarly, for all probability distributions
p over data sets I there is a code C'p such that for any data set D the
code-length of D when encoded with Cp is equal to [~ log p(D)]. Thus we
can equate HAL’s probabilities of data with the lengths (in bits) of messages
which communicate data without loss to a receiver.

The intuition behind the inference in the information theoretic approach
is that the most probable model has the shortest encoding of the model
and data combined. We have learned that the most probable model in the
Bayesian approach is defined by the mode of the posterior, which is calcu-
lated by Bayes’ theorem (here we again drop the model family M from the
notation)

p(D]8)p(6)
p(D)

Taking the negative logarithm of this expression turns the products into

p(8]D) = (3.12)

sums, and gives us

— logp(8]D) = —log p(D|f) — log p(#) + constant. (3.13)
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Since HAL is only interested in the relative probability of the different models
6, the last term in Equation (3.12) can be ignored. Now the connection
between Bayesian probability theory and the coding approach becomes clear:
from information theory we know that — log p(dj) is the minimum message
length to encode a particular data vector a7,

The minimum message length in (3.13) is the sum of two terms. The
first term is the information required to encode the data, given the model 4,
and decreases for suitably selected more complex models. The second term
is the information to describe the model 8, which is larger for more complex,
and thus less probable, models. This type of codes are called two-part codes.

Theoretically this idea of predicting sequences using minimal effective
descriptions dates back to the formulation by Solomonoff [130]. In various
forms aiming at practical applications, the idea of data modeling in statistical
prediction by encodings was proposed by Wallace et al. [144, 145] and Ris-
sanen [114, 115, 116] leading to related two-part code formulations known as
Minimum Message Length (MMI.) and Minimum Description Length (MDI.)
principles. These two principles, MMTI, and MDI., are very seldom distin-
guished in the literature, which is understandable as both involve coding the
parameters of models and then selecting the model with the shortest two-part
message length.

Although both MMT. and MDI. involve a process of “coding the paramet-
ers,” the codes used differ in many important respects. MMI. is a Bayesian
approach as it requires an explicit prior distribution on parameters. MDI,
rejects the use of priors and uses distribution independent universal codes.
A universal code tries to assign every possible value of the parameter the
same prior probability (for discussion on universal codes see [116]). By not
including a prior, MDI. codes differ from MMTL. codes by at least a constant,
and can affect the model chosen if the data set is small. Asymptotically
there is no difference, the model chosen will be the same. Predictive infer-
ence in this coding framework now involves a minimization problem, where
HAL should select the model 6, which minimizes the code length — log p(8| D).

Given the existing “traditional” Bayesian probabilistic formulation, a
natural question is what added value can be gained by this coding frame-
work? First of all, the description length concept is useful for motivating
prior probability distributions, in fact in many cases it is easier to express a
structural prior as a coding of the model rather than an explicit distribution
over the possible model structures. Second, the coding approach hasinterest-
ing advantages over the traditional Bayesian maximum a posteriori model

5We will always assume that the base of the log is 2, and thus the message length is
in bits.
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selection. As pointed out earlier, the mode of the posterior is not invari-
ant under nonlinear transformations of the parameter space, whereas MMT,
is known to be invariant under one-to-one transformations [145]. Third,
MMT./MDI. has its uses as pedagogical tool many of the Bayesian con-
cepts can be elegantly introduced, at least for computer scientists, with the
coding analogies.

Without going deeply into technical details which lay outside the scope of
this work, it is not possible to discuss the existing fine distinctions between
the two approaches. For our present purposes it is enough to restate that the
use of either of these two-part code approaches for prediction corresponds
to HAL’s maximum a posteriori prediction with a single (most probable)
model. From the Bayesian framework we know, however, that for predictive
purposes we can do better when we average predictions over a set of models.
The corresponding information theoretic notion for model averaging is the
stochastic complexity (SC) [114, 116].

There seems to be even more confusion about the relationship between
the notion of stochastic complexity and MMT.,/MDI. encodings. MMT.,/MDI,
methods use a single model to encode the data, and thus encode also the
parameters, stochastic complexity uses a set of models M to encode the
data. Let L (D) be the code-length for data 1D when coded by the code C'.
It is always true that

Lsc(D) < Inovir vt (D)

although if the data set D is large, it is quite likely that the single best
model will do nearly as well as predicting with the full model class (which
we of course know already from the Bayesian interpretation). Due to the
correspondence of complete codes and probability distributions we know
that the stochastic complexity code can be written as — log ps. where py. is a
probability distribution that, in a sense to be explained later, gives as much
probability as possible to all 7). Therefore HAL can use pg. for prediction.
et us now discuss this third, and final one, of HAL’s alternative definitions
for the predictive distribution.

3.3.1 The stochastic complexity predictive distribution

The original definition of the stochastic complexity, as given in [115], is
the minus logarithm of the evidence, i.e., —log pey(1)). Recently, however,
Rissanen [117] has shown that there exists an improved code that is itself not
dependent on any prior distributions of parameters, and which in general
yields even shorter code-lengths than the code with lengths — log pey (D).
Here by shorter we mean that for some data sets the code-length will be
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considerably shorter, while for most data sets it will be only negligible longer.
Hence py. will give a much higher probability than pe, to some data sets and
approximately equal probability to all other ones. Tn the case of discrete
data, the new stochastic complexity for data ((]q7 D) with respect to model
class M can be written as — log psc((f7 D) with

- P(d, D
psc(dvr)): ( —*|

: (3.14)

where the sum in the denominator goes over all the possible instantiations of
the data set DU(f7 and é(dq7 D) € M denotes the maximum likelihood model
for this data ((]q7 D).

In [117] it is shown that under some regularity conditions on the class of
models, which hold for the finite mixture models studied here, p. is asymp-
totically equivalent to pe, when pe, is used with Jeffrey’s prior. Therefore
the “old” and “new” definition of stochastic complexity are asymptotically
the same, but this does not necessarily hold for small data sets.

We can now obtain the stochastic complexity predictive distribution as
follows:

—

pldlr.] D)
SR P D)

psc(xm, = mm,i|(m17 - '7'777)7,71)7 D) =

From (3.14) we get

(Al mi] D|§ JTT,,,, M)
Zd, o ol (47, D\6(d7, D7), M
12

Zﬂm p ka] Dlg( [ka]

psc(xm, = mm,i|(m17 .- '7'777)7,71)7 D)

(3.15)

At first sight, this probability may seem hard to compute as we have to
sum over all the exponentially many possible instantiations of the data set
DU d. But a closer inspection reveals that the two exponential sums in the
rightmost part of (3.15) cancel out and thus we obtain:

ch(xm :ﬂ?m7'|(.771 mmq) D) p(d—[rm’] DW( [ Tif] D)vM) .
o T Sorry pldla i), DIO(dlz 1), D), M)
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Since data are i.i.d., (]—[Tm,] and D are independent, given g, thus

Psc( X = Zmil(z1,.. 0 2m 1), D)
p(dl2mill0(dlzmil, D), M)p(DIO(d[2mil, D), M) _
Sy p(dlx ] |0(d]w i), D), MYp(DI0(dlz1], D), M)
(3.16)

This formula looks similar to that of the maximum likelihood predictor (3.9).
However, it should be noted that the probabilities

p(Dm((]—[kaL D, M)

do not cancel out here since the maximum likelihood estimator appearing
in the denominator of (3.16) depends on 2, and hence is not a constant.
Moreover, the maximum likelihood estimator 8(d[z,,], D)) is now computed
by using the augmented data set DU (T, not, just .



492

3 MODELS AND PLAUSIBLE PREDICTIONS



Chapter 4

Predicting with finite mixtures

“In the back of his book,” Norman remembered, “Thorp
announces in a cryptic sentence or two that he devised,
but failed to implement, a system to beat roulette. T
thought on reading this that it was utter hogwash.
Roulette 1s a random game. You can’t devise any betting
scheme that will win. But on rereading Thorp, we realized
that you might be able to develop a predictive scheme,
and that’s what he was talking about.”

Thomas A. Bass in The Newtonian Casino

In the previous chapter we discussed HAL’s plausible predictions by predict-
ive Bayesian inference relative to an arbitrary model family M. We will
now proceed by fixing a particular set of models, which will give HAL a con-
crete instance of the general predictive framework. In Section 4.1 we first
present the family of finite mixtures of multinomials, and briefly discuss its
advantages with respect to some commonly used model families in machine
learning (Section 4.2). We then proceed to describing in detail, how HAL
performs Bayesian predictive inference with finite mixtures (Section 4.3).

In Chapter 3 we presented three alternative schemes to perform predic-
tions. If HAL’s model family M is restricted to a subset of the general finite
mixture model; all these three prediction methods (together with Bayesian
induction of the required models) can be implemented without the approx-
imations needed in the general case. This makes it possible for us to perform
an empirical study of the prediction performance and learning rate of these
three methods a comparison which to our knowledge is first of its kind
(Section 4.4).

43
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4.1 Finite mixture models

Previously we have already committed HAL to model its problem domain by
m discrete variables Xy,..., X,,, (we can assume that continuous values, if
needed, are discretized), and that a data vector d; € Dis sampled from the
joint distribution of the variables Xy,..., X,,. We now make an additional
modeling assumption that the data 1) can be viewed as if it were generated
by K different mechanisms, which all can have a distribution of their own.
Furthermore, it is assumed that each data vector originates from exactly
one of these mechanisms. Whether or not this actually is the case, is not
of importance here. As we have already pointed out, model family is only
a language in which HAL can express the constraints in data. From these
assumptions it follows that the data vector space is divided into K local
regions usually called clusters or classes, each of which consists of the data
vectors generated by the corresponding mechanism.

The underlying intuitive idea is that a set of data vectors can be modeled
by describing a set of clusters, and then describing the data vectors using
these cluster descriptions. Fach description gives the distribution of the
variables Xy, ..., X,,, conditioned that the data vector belongs to the cluster.
The cluster descriptions should be chosen in such a way that the information
required to describe data vectors in the cluster can be significantly reduced
because they are similar to the “prototype” described by the cluster. In such
“cluster language” a data set D can be described by first giving the cluster
index for each data vector, and then by describing the differences between
the observed and expected values.

An appropriate model family for this type of modeling is the set of dis-
crete finite mixtures ([46], [138]), where the joint domain probability distri-
bution is approximated as a weighted sum of mixture distributions.

Definition 4.1 Tet Xy,..., X, be a set of m (m > 1) discrete (random)
variables, and de Disa sample from the joint distribution of the variables
Xy,..., X,,. Then the finite mixture distribution for d can be written as
(K>1)

= Z[p(Y:yk)p()G =21, X =20 |Y = )],

where Y denotes a latent clustering random variable, the values of which are
not given in the data 1), and K is the number of possible values of Y.
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Thus in finite mixture models the problem domain probability distribu-
tion is approximated by a weighted sum of component distributions, where
each mixture component p(Xy = 2, ..., X;, = 2|V = yr) models one data
producing mechanism. The finite mixture model family is universal in the
sense that it can approximate any distribution arbitrarily close as long as a
sufficient number of components is used [138].

If the variables X, ..., X, are independent given the value of the clus-
tering variable Y, (4.1) becomes

K m
p(d) =" (P(Y_yk)Hp(Xi_mi|Y_yk)) : (4.1)

k=1

=1

In this work we will always make this independence assumption and con-
sequently use (4.1).

Finite mixtures as defined in Equation (4.1) is a generic model family,
since we still have to fix the cluster distribution p(Y) and the intra-class
conditional distributions p(X;|Y = y;)'. Most commonly used compon-
ent functions in the literature are the univariate normal distributions (see
e.g., [138]). HAL models its problem domains by discrete variables X, thus
it is not necessary to make an assumption of the form of the distribution.
Consequently a natural choice for the intra-class conditional distribution is
the multivariate generalization of the binomial distribution called the multi-
nomial distribution [55], i.e, the likelihood function is given by

p(Xi=m;l0) =6;,5=1,....2,,

where parameter 6, represents the probability of the value 2;. Analogously
we assume that the cluster distribution p(Y) is multinomial. Thus in order
to get a model, HAL needs to fix the number of the mixing distributions (K),
i.e., the model class M, and determine the values of the model parameters.
For technical reasons it will be convenient to make a notational distinction
between the mixture weight parameters and the parameters of the intra-
class conditional distributions. Therefore let us denote the mixture weight
probabilities by

O — p(Y — .Uk)7
and the conditional distributions by

Grit = p(Xi = xulY = yr).

Here we consider only mixtures in which all the component distributions come from

the same parametric class.
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Now if we denote

¢k1f = (¢kﬂ 1t Cbkin,j)v
we can express HAL's model as 8 = (o, ¢),0 € M, where

(]/,:((]/,17...7(]/,[() and Qb: (¢117---7¢1Tn7---7¢f\"17---7¢f\"m,)

Finally, HAL needs to fix the prior distributions for the parameters. As
discussed earlier (see Section 3.1.3), in order to allow HAL to use posteriors
as new priors in further applications, the functional form of parameter distri-
bution should remain invariant in the prior-to-posterior transformation. The
family of Dirichlet (multivariate Beta) densities is conjugate to the family of
multinomials [37, 55], therefore we assume that HAL’s prior distributions of
the parameters are from the Dirichlet family.

et k index the mixture components, ¢ the variables, and [ the values of
a variable, i.e.,

1<kE<K: 1< <m;1 <] <my.

Then the prior distributions for the parameters in 6 are

(0, osar) ~Di(pr, ..o o) and (Grirs -« oy Pring) ~ Di(Trit, - ooy Ohing) -

Here pg and op; are called the hyper-parameters of the corresponding dis-
tributions. The general form of the Dirichlet density used above is (see
e.g., [h5, p. 477],)

p(f) = Di(0|p, ..., 1K)

_ M) ﬂegk*‘. (4.2)

1?:1 ? (,uk) k=1

The density (4.2) is subject to constraints Zi‘:] O, =1, up > 0 and 6, > 0.
Assuming that the parameter vectors o and ¢y; are independent, the joint
prior distribution of all the parameters can be expressed as a product of
Dirichlet densities

Di (g, i) HH (Okity -+ s Tkin,) -

We have pointed out earlier that the finite mixture model family is
universal in the sense that it can approximate any distribution arbitrarily
close. Unfortunately such generality of a model family typically implies also
that certain types of prediction methods, in particular calculating the evid-
ence predictive distribution, become computationally very costly. There is,
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however, a simple class of discrete finite mixtures for which HAL can compute
all the predictive distributions discussed in Section 3.2 efficiently without ap-
proximations. This class follows from Equation (4.1) when we remove the
latency of Y and assume that one of the variables Xy,..., X, gives us the
partitioning of the data (for notational simplicity we will assume that it is
always X,,). This new model family Mg corresponds to a specific model
class M, of the more general case, thus the joint probability distribution
for a data vector d can be expressed as

p((f) = p(X1:T177Xm:Tm)
-1
= p(Xpm=2zm) H p(Xi = 2| Xy = 24). (4.3)
=1

The connection to the general mixture formulation of Equation (4.1) can be
seen if we write (4.3) in the form

p((]—j = p(X1:m17---7Xm,71:mm,f1yxm,:k)

Pn m—1
= > (P(Xm =) [ p(Xi =i X,, = k)) .
=1 i=1

This model family Mg is known in the machine learning community as the
Naive Bayes or Simple Bayes classifier [43, 82]. Despite of its simplicity and
apparent strict conditional independence assumptions, it has shown compet-
itive performance when compared to the results achieved by more complex
model families [39, 99]. Naive Bayes model family illustrates also nicely
the fact that in classification tasks for the general mixture models the parti-
tioning of the data to clusters is not necessarily based on the class variable
value assignments. In some cases the latent variable Y based clustering can
coincide with the class value based clustering, but in the general case even
the number of clusters differs from the number of classes n,,. Naive Bayes
model family Mng results if we assume these clusterings to be equal.

4.2 Finite mixtures in perspective

Due to the contrast caused by the generality of the generic Bayesian ap-
proach, which is “parameterized” by using the notion of model family, one
might underestimate the flexibility of the finite mixtures modeling language.
It is well known that the finite mixtures of multinomials correspond to a
special subclass of Bayesian networks. On the other hand such model famil-
ies as Specht’s probabilistic neural networks [131], kernel estimators [124]

and consequently also Radial Basis functions [100]) together with instance-
based (memory-based) models [2, 4], are instantiations of finite mixture
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models, if viewed in the probabilistic framework (albeit some of them mix-
tures of Gaussians instead of mixtures of multinomials). Below we will also
discuss the interesting interpretation of the lazy learning approach from the
Bayesian perspective.

4.2.1 Related work

Neural approaches. Finite mixture models are an ideal model family for
massively parallel hardware [103], and thus can be realized by neural archi-
tectures [98, 102]. Tn continuous domains mixture models have proven to be a
viable family for supervised learning tasks as demonstrated by the “mixtures
of experts” architecture of Jordan et al. [74, 146]. Tn supervised learning one
assumes that the attribute to be predicted is known at model construction
time, and this information is used in the model construction process. In
HAL’s case, instead of the supervised learning framework, we explore the un-
supervised case where we do not fix in advance the predictive distributions
to be estimated, and build a full probability model of the problem domain.
Therefore the most related work to ours in the neural network community is
the work by Bishop et al. on “mixture density networks”, which, however,
are mixtures of Gaussians (see [11, 13]). In addition the Bayesian approach
can also be used for constructing Self-Organizing Maps [80], which brings
the method close to HAL’s model construction again with the difference that
mixtures of Gaussians are used [14, 142].

AutoClass. AutoClass system [23, 24] is a Bayesian classification? pro-
gram, which uses Bayesian mixture modeling for discovering “natural”
classes in data. In our terminology it performs Bayesian induction to find
cluster descriptions, i.e., mixture components for explorative purposes. Con-
sequently, AutoClass work is interested in finding the most probable mixture
model given the data and the priors, and then use these descriptions in a
knowledge discovery process, e.g., LandSat data clustering [24]. Tn HAL’s
design we are only interested in the predictive capability of our models, not
their semantic interpretation. The work for HAL presented here combines
both Bayesian deductive inference and Bayesian induction with mixtures
and is unique in this respect.

Bayesian networks. Perhaps the most common model family used with
Bayesian inference is the family of Bayesian networks [64, 66, 107], which

2Term “classification” in statistics means usually umsupervised discovery of clusterings
of data, not prediction of a discrete value as it is understood in machine learning or
computational intelligence communities.
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describe the independence assumptions as directed acyclic graphs. In the
framework of the theory of Bayesian networks, HAL’s finite mixture models
can be seen as “one-level Bayesian trees”, where the root of the tree repres-
ents a latent (hidden) variable, corresponding to the mixing distributions,
and the leaves represent the actual random variables of the problem do-
main (see the discussion in [104]). The theoretical framework in Chapter 2
and 3 can be developed for general Bayesian networks [64], why then does
our design for HAL prefer mixture models over the more general Bayesian
network family?

Although Bayesian networks are an intuitively appealing model family,
in practice the Bayesian approach leads to some serious computational prob-
lems when working with general Bayesian network structures. Constructing
Bayesian networks from data is computationally a very difficult problem,
since the search space, i.e., the number of possible network structures, grows
exponentially with respect to the number of variables. In addition, Bayesian
deductive inference used for prediction in multi-connected Bayesian net-
works is an NP-hard problem [30, 34, 120], and hence very probably not
computationally feasible. By restricting HAL to finite mixture models we
gain the benefit of efficient Bayesian deduction phase, and just have to con-
cern ourselves with the complexity of the Bayesian induction problem. Even
in the induction phase HAL does not need to search over the exponentially
many Bayesian network structures, since for mixture models we have a fixed
model structure. In order to find good models, however, HAL has to search
over the missing values of the unobserved latent variable in the dataset. In
theory there is an exponential number of possible value combinations for this
latent variable, but in HAL’S case efficient algorithms for estimating this type
of missing data exist.

One of the often advocated advantages of Bayesian networks is the fact
that the independence structures can be fixed by human experts, and the
Bayesian induction is not necessary. Although admittedly HAL’s finite mix-
tures are semantically not quite as intuitive as Bayesian networks, in many
cases the domain experts seem to be able to express their expert knowledge
very easily by using prototypical examples or distributions. These examples
could then be coded as mixing distributions in HAL’s finite mixture frame-
work. In this work we are interested in combination of both Bayesian deduct-
ive inference and Bayesian induction, thus this knowledge acquisition aspect
is not of importance here. One important related observation is in order.
When constructing finite mixture models from data, it should be noticed
that neither in the Bayesian nor in any other framework, are finite mixture
models always identifiable, i.e., there is not necessarily a unique characteriz-
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ation for a distribution [59, 138]. HAL’s focus is in prediction, therefore this
non-identifiability is not of any concern for it: if HAL wants to select a single
model 8 for prediction, it can pick any of these characterizations as they will
perform equally well.

Single parametric and non-parametric methods. When compared to
single parametric distribution methods and non-parametric methods (such as
kernel density estimators [124]), HAL’s finite mixture models have many ap-
pealing properties. Firstly, in natural domains the distribution to be modeled
is often so complicated that probabilistic modeling through single paramet-
ric distribution (e.g., normal, multinomial, Poisson [55]) does not lead to
good prediction performance. Tt seems that in real life domain distribution
multimodality is more a rule than an exception, at least with small data sets.
Finite mixtures have a natural means to model multimodality by placing a
component distribution around each mode. Secondly, finite mixtures can
model quite complex distributions with few parameters and a high degree
of accuracy. Thirdly, many non-parametric approaches depend directly on
the sample size. Consequently, if the training sample is large, deductive in-
ference with non-parametric techniques becomes very inefficient in terms of
computation time and space. Finite mixture models compress the inform-
ation present in the data set at two levels: first by grouping similar data
vectors to a same cluster, and second by modeling a set of clusters by a
single mixing distribution.

4.2.2 Bayesian lazy learning

From Section 3.1.3 we know that the standard approach to machine learning
can be viewed as a three phase modeling process. Initially, the models to
be considered are restricted to some limited set of models, the model family.
In the second phase, some specific model class, i.e., a skeleton or a template
structure for a model, without any parameters, is selected from the chosen
model family. Tn the third phase, the parameter values for the selected model
class are estimated from the sample data. The resulting full model (model
structure 4+ parameter values) is then used for making predictions.

In contrast to the traditional approach described above, in the instance-
based (also known as the memory-based or the case-based) approach [2, 6,
78, 101, 132], the learning algorithms base their predictions directly on the
sample data, without producing any explicit (stored) models. This type of
machine learning is often referred to as lazy learning, since the algorithms
defer all the essential computation until the prediction phase [3]. In [143],
the lazy learning prediction type of a process is called transductive inference.
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For making predictions, lazy learning algorithms typically use a distance
function (e.g., Euclidean distance) for determining the most relevant data
items for the prediction task in question. Some simple function, such as
majority voting in classification problems, is then used for determining the
prediction from the most relevant data items. Tt has been shown in vari-
ous studies (see e.g., [99] for references) that this type of an approach in
some cases produces quite accurate predictions, when compared to altern-
ative machine learning methods. The method suffers, however, from several
drawbacks when applied in practice (see, e.g., the discussion in [136]). Most
importantly, the performance of lazy learning algorithms seems to be highly
sensitive to the selection of distance function to be used, as demonstrated
in recent work reported in [7, 51].

One possible Bayesian framework for lazy learning using the finite mix-
ture model family has been discussed in [102, 103, 135, 136]. The approach
suggested in those studies can be seen as a partially lazy approach [3], i.e.,
a hybrid between the traditional machine learning and the lazy learning
approach, which is based solely on the given data. In this probabilistic ap-
proach the given data vectors are transformed into local distributions, which
can be seen as sample points in a distribution space. Thus the predictive
distributions required for making predictions could then be computed by us-
ing the lazy learning approach in the distribution space, i.e., by introducing
a probabilistic “distance metric”. Somewhat similar frameworks have been
suggested in [48, 49, 76].

From the design of HAL we can see that there is a new, improved prob-
abilistic formalization of the purely lazy learning approach, which extends
the earlier results by presenting a Bayesian approach for making (discrete)
predictions directly from data, without the transformation step between the
original sample space and the distribution space. Intuitively this new ap-
proach is based on the central idea in Bayesian inference: if we wish to
make predictions by using only the data given, avoiding the notion of in-
dividual models, from the Bayesian point of view we can take this as a
requirement for marginalizing, i.e., integrating, out the models. This means
that the predictions will be made by using all the (infinitely many) models,
corresponding to different parameter settings. From this point of view, pre-
diction can be viewed as a missing data problem, where the criterion for
filling in the missing data (for making the predictions) is the integral over
all the possible models. Therefore using the evidence predictive distribu-
tion (4.8) that will be introduced in the next section will actually perform
optimal (with respect to the model family Mng) lazy learning. To avoid ter-
minological confusion it should be observed that even lazy learning is with
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respect to some model family. The illusion of not having any model family
in traditional lazy learning approaches is due to the fact that the model fam-
ily is implicitly induced by the combination of the distance function and the
domain of the data, also in the cases where the distance function is allowed
to vary locally.

4.3 Predictive inference with finite mixtures

Inference with general finite mixtures

From (3.2) in Section 3.1.3 we know that the correct Bayesian procedure
for HAL to make predictions would be to use all possible mixture models by
weighting them by their posterior density. Unfortunately this is not feasible
for the finite mixture model family, so HAL needs to resort to approximations
with fewer models. Tn Section 3.1.2 we argued that in many cases it is natural
to partition the model family M to a finite number of model classes, where
each model class M consisted of models sharing the same parametric form.
In the finite mixture case, a natural choice for determining the model classes
is to distinguish different models by the number of the mixing distributions
used. In practice the number of model classes, i.e., the maximal number of
mixing distributions, can be assumed to be bounded by the size of the data
set, ). Since HAL cannot use all mixture models in M for prediction, let us
now turn to the question whether it can predict with a single model class
M. Since we are now in a fixed model family, we will again drop M from
our notation.

Following the discussion in Section 3.1.3 if HAL were to use a single model
class, it should use the class M with the maximal posterior probability, i.e.,

v p(DIM)p(M)
M = arg max W

Assuming equal priors for the model classes, the posterior probability
P(Myg|D) is proportional to the evidence P(D|M}) (or alternatively viewed,
the likelihood of the model class M), hence HAL should find the model class
with the highest evidence. Assuming maximum a posteriori model class M
has been found, HAL can then use the evidence predictive distribution in
Equation (3.11)

pev(xm, - mm,i|(m17 .- '7'777)7,71)7 D) x /p(d_[TﬂM]v D|07 M)p(0|M)d0

Consequently, if we wish to select the most likely data vector from a small
set of alternatives, they can be compared by using the equation (3.11). An
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example of such task would be a standard classification problem in machine
learning.

Unfortunately we will demonstrate in Chapter 5 that this model class
based prediction suffers from the problem that calculating the evidences
p(D|M) for the general finite mixture family requires computing a sum ex-
ponential in the size of the data set ). This exponential sum follows from
HAL’s incomplete information about the assignments to the clusters (compon-
ents), which forces HAL to sum over all the possible assignments. Thus in
practice HAL has two choices: approximate the actual evidence or use a single
model  from M for prediction. Since the notion of evidence is also central
for model class selection in Bayesian induction, we defer the derivation of
the exact closed form solution in the finite mixture case to Section 5.3, and
discuss here the use of a single MAP model for prediction.

In many practical situations HAL may face with a more complex predic-
tion problem, where it wishes to compute the conditional predictive distribu-
tion for a set of uninstantiated variables X, given that some other variables
are instantiated. In the special case of the finite mixture family solving this
slightly more general problem is as easy as solving the prediction problem
for single X, discussed in Section 3.2.%

Therefore we will discuss HAL’s single model prediction in this multiple
prediction framework. Tet 7 = {iy,...,4;} be the indices of the instantiated
variables, and X = {X,;. = x;;.,1 < s < t} denote the corresponding
assignments. Now we want HAL to determine

p(dlzi]| D, X, M) = /p((f[mil]|n, X0, M)p(8|D, X, M)df,  (4.4)

for each value x;; of each uninstantiated variable X, i ¢ 7. As observed
above, using the evidence predictive distribution for this purpose is infeasible
as it requires HAL to sum over all the possible clusterings of the data. On the
other hand, if HAL instead of integrating over all the model class parameter
settings # uses a single, maximum a posteriori model é, we can calculate the
predictive distribution of X; directly. For notational convenience, let us first

define A
py (-) = p(Y = yxl0)

and

px; (1) =p(Xi, =20, |Y = yp, 0).

Since X; is conditionally independent of M and D), given the maximum a

n fact this result is true also for the general Bayesian network model family, see [66].
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posteriori model 8, we have

. . X, = 2;, X0
P(Xi:ﬂ?iz|D797X7M):P(Xi:mﬂ|97)():p(' ni |)

p(X]9)
Using the notation introduced above, we have
p(X; = X16) St (v (Op(X: = 2l = 4. ) TTocy px,, ()

p(X|0) 1 (o (O Tz px, ()

_ 21521 (@kékﬂ H2:1 (blwl) . (45)
i (@k [ (blmﬁsls)

Here the model class M is assumed to be a class of finite mixtures with K
components. Fxpressing the probabilities &y and (51{7;1 as sufficient statist-
ics of DD will be discussed in Section 5.1, when we address the problem of
Bayesian induction, i.e., constructing finite mixture models from the data
D. The Equation (4.5) offers HAL an alternative to (3.9) for calculating
the MAP predictive distribution pmap, when HAL is only interested in the
predictive distribution of X,.

As opposed to general Bayesian networks, Bayesian deductive inference
with finite mixtures is efficient, since the conditional predictive distribution
of X; can be calculated in time O(Ktn;), where K is the number of clusters,
t the number of instantiated variables and n; the number of values of Xj;.
K is usually small compared to the sample size N, and thus the prediction
computation can be performed very efficiently*.

Inference with Naive Bayes model family

We have already indicated earlier that there exists a trade-off between the
complexity of the model family and the degree of model averaging approx-
imations needed. If we restrict HAL’s set of possible models enough, we are
also able to integrate (marginalize) over models. Consequently, if we restrict
HAL’s language to be the Naive Bayes model family Myg, in addition to
MAP predictive distributions HAL can also compute the more sophisticated
evidence (3.11) and stochastic complexity (3.15) predictive distributions ex-
actly without having to resort to any approzimations. Following the Principle
of Indifference we will set all hyperparameters p, and o;; to 1, i.e., HAL uses
uniform Dirichlet priors for both MAP and evidence prediction. Once the

*Tf massively parallel hardware is available, the computations can be made even faster
as the algorithms are easily parallelizable [102, 103].
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priors are fixed the predictive distributions (3.9),(3.11), and (3.16) can be
written in an explicit form. For notational simplicity, in the following dis-
cussion we leave out the the normalizing constant, i.e., the denominator. In
addition, to conform to the notation we have adopted for the general finite
mixture model family where Y is latent, for the Naive Bayes case we will use
index k instead of the actual value z,,; for the variable X, that gives the

=

partitioning of the data (for example d[z,,k], &, , and n,, will be denoted

simply by (f[k], ap and K| respectively).

We will express the predictive distributions using the sufficient statist-
ics [8], which are functions of data which summarize all the available data
sample information concerning the model §. These sufficient statistics of the
training data D are hy and fy;;, where by, is the number of data vectors in
class k, and fr; is the number of data vectors in class k with variable X;
having value ;.

The MAP predictive distribution is proportional to the likelihood of the

—

test vector d[k]:

—1
Pran( X = k(21,0 2m1), D) o p(dk]|0) = éx [] Srire-  (4.6)
=1

The mode parameters 6, of a Dirichlet distribution Di(u1, ..., ux) are given
by (see e.g., [55])
K

where g = Z -
k=1

py— 1
o — K’
Now we can express the right hand side of (4.6) with sufficient statistics as
hetpe =1 " frins + Ohiny 1
NSy — Ko e 4500 opa — mi

(4.7)

The evidence predictive distribution (3.11) is defined as an integral,
which in our case can be solved analytically. The derivation is somewhat
technical, and uses the results in [29, 66]. The predictive probabilities for
Pev can be expressed with sufficient statistics as follows:

o he+ur Y Frins + Okin,
N+ Z,ﬁ‘}ﬂ e hi 4+ 3205 okin
(4.8)

pev(xm, = k|(T17 - '7'777)7,71)7 D)

The stochastic complexity predictive distribution pg. is proportional to
the likelihood of the combined data set D+ = D U d[k]. Therefore it will be
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expressed with the sufficient statistics of Dt h;: and f,j;,, which are defined
analogously to hy and fi;;. The derivation is similar to the MAP predictive
distribution, thus the have

psc(xm,:k|(m17---7m7n71)7]—)) X P([] DW( [k],D))

K m—1 n;
=TT (0% T L)

k=1 =1 [=1

where -
ar = (AN /(N+1) and ¢y = i, /b

The final expressions for calculating the MAP predictive distribution
Pmap, the evidence predictive distribution pey, and the stochastic complexity
predictive distribution p,, are worthy of a closer inspection. First impression
is that they look very similar in form, with only slight differences in the
sufficient statistics expressions &y, and lemj]. In fact for many model families
of this type, and for the general Bayesian networks in particular,

— — N

pev(dlk], D) = p(d[k]|6(d[k], D)) (4.10)

e., the evidence predictive distribution is the same as the map predictive
distribution calculated from the combined data set Dt = D U (f[k] From
the small difference in the sufficient statistics one could then deduce that
even for very small data sets there would not be any significant difference.
In the empirical comparison of Section 4.4, however, we will see that this is
not the case, and that the above reasoning has overlooked two things. First,
the parameters & and (ﬁkﬂ are multiplied with each other, which amplifies
the effect for even small additive changes. However, more importantly, for a
fixed k', 1 < k' < K the probability

— — ~ =

Pev(d[K'], D) = p(d[K)|0(d[K"], D)),

, the maximum a posterior model (d[k’], D) is different for each &’ as
oppoqed tO Pmap, Where all the predictions p(d [ ]|9( }) use the same é(D)
From the observation (4.10) and the Equation (3.16) we can also see the
connection between pe, and pg. for uniform priors: ps. is pey “corrected” by
the factor 7)(l7|§(l7+))7 i.e., how likely the training data are assuming the
MT. model of the combined data DT.
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4.4 Comparing predictive inference methods

We have discussed the three alternative predictive distributions pmap, Pev,
and pg. that HAL could use for approximating the predictive distribution p(-)
presented in Section 3.1.1. FEach of them exploits a different joint probability
distribution for the variables, but they are all defined with respect to the
same parametric model family M. Prediction with pnap is the traditional
approach based on the single most probable model. Using the evidence
predictive distribution p., is the Bayes optimal approach with respect to a
given model class M, and pg. is optimal in the shortest possible code-length
sense [117]. An interesting question then is, given a choice, which predictive
distribution should HAL use, or is there any difference at all in practice?

Computing the pmap or pee predictive distribution, or at least a good ap-
proximation of them, is often feasible in practice, but the evidence approach
requires integrating over M, which is infeasible for many commonly used
model families. With the Naive Bayes model family we have an exceptional
situation, where all three predictive distributions can be represented in a
form allowing a computationally efficient implementation, as demonstrated
in Section 4.3. We will now proceed by evaluating and comparing the pre-
dictive accuracy of the three predictive inference methods empirically by
using publicly available natural classification data sets. We are not aware
of any earlier comparisons of this nature, where all these prediction meth-
ods are compared together (in fact we are not aware of any studies, where
the recent new version of stochastic complexity has been applied in natural
domains).

Our interest here is to get, information on the general behavior of the
prediction methods. However, we would like to point out that, despite the
simplicity of the parametric form, the family of Naive Bayes models is widely
used in practice [43, 39, 82, 99], and thus the results have relevance also from
a practitioner’s point of view.

In our experiments five public domain classification data sets from the
UCT data. repository” were used: Australian, Hepatitis, Glass, Primary Tu-
mor and Heart Disease (for the description of the data sets see Appendix A).
These data sets were chosen to represent samples with different attribute
number and size combinations. The same data sets, among others, are later
on also used for the classification experiments in Chapter 6.

For each data set two separate sets of experiments were performed. In
the first set of experiments we explored HAL’s learning rate with the altern-

The data sets can be obtained from the UCT data repository at URT
“http://www.ics.uci.edu/~mlearn/”.
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ative approaches, i.e., how the prediction quality of the different predictive
distributions depends on the size of the training set 1. In the second set
of experiments we make a more detailed investigation on the differences in
prediction quality between the three approaches for a fixed training set size.

Prediction performance and the training set size

In this set of experiments we randomly partitioned each data set in a training
reservoir D, containing 70% of the data instantiations and a test set D,
containing the remaining 30%.

One data instantiation d; was then randomly taken out of the training
reservoir and used as HAL's training set )y = {(ﬂ} This initial training set,
D¢ was used to generate the predictive distributions

pmap(xm, = k|(T17 .. '7'777)7,71)7 D)7
pev(xm, = k|(T17 - '7'777)7,71)7 D)7
psc(xm,:k|(m17"'7m7n71)7 )

and the predictions thus obtained for each d were compared

J

for all dﬁ7 € Dy,
to the actual outcomes k in a manner to be described below.

Next the training set 1) was extended by another data instantiation d,;,
unequal to the element already in Iy but otherwise randomly picked from
the training reservoir .. This new training set is denoted by /5. For all
dﬁ7 € D, the three predictive distributions were determined and again, the
predictions thus obtained were compared to the actual outcomes k. This
procedure of adding one training element to I); to form D;,q, determining
all predictive distributions using ;11 and predicting the value of X, for
each entry in the test set was repeated until D; 1 = D,, i.e., contained the
full training reservoir.

The 0/1-score results lose quite a lot of information about the predicted
distributions, as we can only see whether or not the mode of the predicted
probability distribution coincides with the correct class &k, but not what
the predicted probability was. In order to be able to get more detailed
information about the predictive distributions each prediction was evaluated
by both log-score and 0/1-score. The log-score of a predictive distribution
P(Xml|(®1s. ooy xmo1), D) is defined as

7]0?;2)()(7” = k|(T17 .. '7'777)7,71)7 Di)v

where k is the actual outcome of X,,,.% For 0/1-score we simply determine
the k for which p(X,, = k|(x1,...,2m_1), D) is the maximum, and then

% As we used logarithm of base two, the log-score has also a coding interpretation: Tf
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predict X, to take the value k. Tf the actual outcome is indeed k, then the
0/1-score is defined to be 1; if it is not equal to &, the 0/1-score is defined
to be 0.

This whole procedure of partitioning the data set and successively pre-
dicting using larger and larger subsets of the training reservoir as our training
data was repeated 100 times. In Figure 4.1 the performance of the three pre-
dictive distributions on the Glass data set is shown for both log-score and
0/1-score. The vertical axis indicates the average score where the average is
taken over the predictions of all class values in the test set and all the 100
training sets of the size indicated on the horizontal axis.

We can see that both scores rapidly increase as the size of the training
set, increases in all three approaches. For these experiments the final level
of accuracy achieved (when full training reservoir is used) is quite similar,
no meaningful differences can be seen. Let us now focus on the interesting
question, what happens in HAL’s learning with small training set sizes.

For the log-score, pey performs already well with training set sizes of
20 (i.e., 10 % of the full data set), while both the pmap, and the py. predic-
tions show weak performance. For the 0/1-score, the stochastic complexity
predictive distribution shows the same behavior, while the pn,,, predictions
tend to behave in a manner more similar to the p.,. These results with the
(lass data set are quite representative analogous, though sometimes less
extreme, behavior was found for all of the five data sets used. Additional
examples are shown in Figure 4.2, where the graphs for the Australian and
Hepatitis data sets are presented (for the log-score). Hepatitis presents an
extreme case for p.y, where on the average three data vectors is enough to
achieve essentially as good performance as if the full training reservoir were
used. Corresponding figures for all the data sets appear in Figures B.3 B.2
in Appendix B.

Figures 4.1 and 4.2 describe average behavior over many training sets;
this raises the question of how well the methods perform for individual train-
ing sets. In Figure 4.3 the log-score performance averages for po, and pe. are
shown together with the maximum and the minimum prediction performance
for the Glass data set. For each training set size N, the maximum (min-
imum) performance is defined to be the prediction performance of the one
training set out of the 100 training sets of size N that had the best (worst)
performance on the test set. We see that after HAL has seen about 20 data

one encodes the data using the code corresponding to p(Xm|(#1,...,Zm—1), 1), then
—logp(Xm =k[(w1,...,2m—1), D)

is equal to the number of bits one needs to describe the actual outcome k.
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Figure 4.1: Average performance of the methods by log-score (up) and 0/1-
score (below) on the Glass data set.
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by log-score on the Glass data set.
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vectors (about 10% of the data), the worst case pey prediction suddenly goes
up. This “phase transition” behavior also occurs for the stochastic com-
plexity predictive distribution pg., but only after about 80 data items. The
corresponding graphs for the other data sets used and for the 0/1-score show
similar tendencies (Figures B.12 B.11 in Appendix B). This observation
is, however, more a property of the particular sample than the “learning
behavior” the “phase transition” moves to larger training set sizes if the
number of training sets is increased.

From this set of experiments one can conclude two things. First, some
of these commonly used data sets are quite redundant, and when properly
used, only a very small sample of these data sets is needed to construct good
models. Second, at least for the Naive Bayes model family, pey with uniform
priors can be an extremely “safe” choice for HAL’s predictive distribution:
even for small sample sizes it predicts well in most cases.

If HAL uses evidence predictive distribution pey, in the extreme cases it
would need only few data items to predict well, and for almost every case less
than 20% of the training data would be enough to achieve good predictive
performance. If HAL used pmap prediction for the same data, it would require
much more data vectors to “catch up” the po, performance. The predictions
with stochastic complexity predictive distribution pg. for the log-score are in
most cases in between these two extremes. How can this be explained?

If one looks at the actual predictions made, the p., prediction is much
more “conservative” than the pn,, prediction. The latter is in our case equal
to using the maximum likelihood predictive distribution, and it is a well-
known fact that, for small sample sizes, the MT. predictor is too dependent on
the observed data and does not take into account that future data may turn
out to be different. A very simple example illustrates this point. Suppose
our data consists of a string of ones and zeros generated by some Bernoulli-
process. If we have seen an initial string consisting of just one ‘17, then
the pmap prediction will determine that the probability of the second symbol
being a 1 is unity. Using the pe, prediction with uniform priors, however,
this probability is % If the next data item turns out to be a 0, then the log-
score of the pmap, prediction will be —oo while that of the evidence predictive
distribution pey will be log2 — log 3.

The behavior of the stochastic complexity predictive distribution pg. lies
somewhere in between that of pmap, and that of the poy. In our example, the
probability of the second symbol being a 1 will be %: the stochastic complex-
ity predictive distribution is less conservative than the evidence predictive
distribution, but still more conservative than the pu,,, which explains part
of the small sample size behavior for the log-score.
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Data set, MAP-01 EV-01 SC-01 MAP-I.S EV-I.S SC-IS
Australian 0.851 (.848 0.848 -0.456 -0.457  -0.458
Primary Tumor  0.460 0.490 0.434  -3.247 -1.930 -2.112
Heart Disease 0.830 0.837 0.837 -0.476 -0.439 -0.444
Glass 0.701 0.668 0.636  -1.216 -0.981 -1.015
Hepatitis 0.847 0.820 0.827  -0.853 -0.666 -0.692

Table 4.1: T.eave-one-out cross-validation results on the five data sets used.

Predictive performance with fixed training set size

In our second set of experiments, we tested HAL’s three prediction methods
using leave-one-out cross-validation [133], both for the log-score and the 0/1-
score. As the training sets in leave-one-out cross-validation are almost as
large as the full data sets, Figures 4.1-4.3 already suggest that the methods
will show quite similar performance. Our results on the five data sets are
summarized in Table 4.1. The middle columns show the cross-validated
results for the 0/1-score, the three rightmost columns show the results for
the log-score. Though the differences in performances are all quite small,
we see that for the log-score, the evidence predictive distribution prediction
Pev performs consistently better than the stochastic complexity predictive
distribution, which itself outperforms the use of pnap, predictions. For the
0/1-score, the picture is not as clear-cut, but it seems that the pp,a, prediction
performs slightly better than both the evidence and stochastic complexity
distribution predictions. This is not particularly surprising since 0/1-score
is very coarse, and it is not important what actual probability HAL attaches
to a class value being k; all probability distributions over the class values
for which &k gets the maximum probability will lead to the same prediction.
Thus it can very well happen that, while the pna, captures less well the
regularities underlying the data (and hence performs worse with respect to
log-score), it still captures them well enough to give maximum probability
to the class value that should indeed receive maximum probability.

This comparison was performed using Muymg, i.e., in the complete data
case. For the general finite mixture models the class variable X, is assumed
to be a latent variable, thus the three predictive distributions described here
can only be solved analytically by summing over all the possible instanti-
ations of the missing data, which are exponential in number. Analogously to
the comparison performed here we could also compare the methods for gen-
eral finite mixtures, but in such a case one would have to consider also the
effect of the approximations (see Chapter 5). Many of these approximations
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are asymptotic, and thus would render the type of study about learning rate
performed here meaningless.
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Chapter 5

Constructing finite mixtures

“Too many machine learning programs suffer from an ertreme case of this
deficiency [requirement for parameter tuning], which is named the

“China Syndrome” because sometimes the only person who is able to make
a program run is in China.”

Buchanan, 1987 talk paraphrased in

Megainduction: machine learning on very large databases

We have now completed the construction of HAL’s machinery for predict-
ing with Bayesian deductive inference in the case of finite mixture model
family. Tn order to be able to use its prediction formulae, however, HAL
needs either the maximum a posteriori model class M, or the maximum a
posterior model in M. Unfortunately, for the finite mixture family both
calculating the maximum of the posterior p(f| M) for models in a fixed model
class, and the posterior p(M|D) for the model classes involves computation
exponential in the amount of data. Consequently for any realistic data set
HAL has to use approximations to the actual maximum a posteriori model or
model class.

This chapter is concerned with Bayesian inductive inference, which in
HAL’s case reduces to finding high posterior finite mixture models or model
classes, to be used for its predictions. At this point we will see the advant-
age of being able to separate the criterion for good models (model classes)
and the search process: we can discuss the problem of computing the pos-
terior probability of different models 4, given a model class M (Section 5.1),
without being forced to fix any particular search algorithm. Section 5.2
then discusses how to use a variant of the Expectation-Maximization (EM)
algorithm to search over the model class for models with high posterior
probability, but as shown in [84], other alternatives exist.

It has become apparent that the model class evidence p(D|M) has a

67
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very central role in HAL’s prediction process. We thus discuss first the exact
form of the model class evidence for finite mixtures (Section 5.3), and then
study the performance of some efficient approximations to it (Section 5.4).
We conclude the chapter by summarizing the Bayesian model construction
procedure (Section 5.5).

5.1 Selecting finite mixture models

l.et us now turn to the problem of computing the posterior of the models
# in a given model class M. Use of Bayes” theorem gives us the posterior
probability of a model 6 as (Equation (3.5))

p(B11D, M) oc p(DI[6, M)p(6] M). (5.1)

From the discussion in Chapter 4 we know that a finite mixture model 6
in model class Mg assumes that the data is sampled from K distributions,
i.e., the finite mixture model # imposes a partitioning of the data into K
clusters. This partitioning can be modeled by introducing an unobserved
latent variable 7, for each data vector d:, the value of which gives the cluster

index of the cluster vector d: belongs to. We can now think a vector
7 =(z1,...,2N)

consisting of the values of the latent variables 7q,..., Zn, as a random
sample from the distribution of Y like D is a random sample from the
joint distribution of Xy, ..., X,,. However, for technical reasons it is more
convenient, to consider each value z; as a vector of cluster indicator variable
values, z; = (zj1,..., 2K ), where

{], if d: is sampled from p(-|Y = y),
Zik = '

(0, otherwise.

The vector 7 is unknown, thus in order to calculate the incomplete data
likelihood p(D1]6) in (5.1), we need to marginalize it out. Therefore

p(DI0) = (D, 716),
A

where the summation is over all the possible KV values of the vector 7.
The joint likelihood terms p(D, 7|6) in the sum are called complete data
likelihoods. T.et us introduce an indicator variable v;; to simplify the form
of the complete data likelihood definition:

], if dﬁ = T,
Ujil = .
(0, otherwise.
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Here we have adopted the notation that d;; is the value of the variable X; of
data vector d:

We have assumed that the data are i.i.d., thus the complete data likeli-
hood p(D, 7]6) can be written as a product

p(D, 7|6) = H H (WHH@;;’) B (5.2)

=1 k=1 i=11=1

The incomplete data likelihood can be expressed as marginalized complete

data likelihood

me}ynﬂoE:HImwnnwﬁ'.wm
7 7=1 k=1

7 i=11=1

This sum has exponential number of terms, where each term represents one
of the possible clusterings of the data. This is the reason for the difficulty of
finding the MAP finite mixture model: no computationally feasible solution
for maximizing the incomplete data posterior (5.1) is known.

On the other hand we saw already above that maximizing the complete
data likelihood does not involve any exponential sum anymore, as the cluster
assignments 7 are given. Since this indicates that calculating the complete
data posterior is feasible, we can approach the incomplete posterior maxim-
ization indirectly as follows.

Here we again choose Dirichlet prior distribution for the parameters (see
the discussion in Section 4.1), i.e

((]/,,(b)NDi (,uh...,,uh HH 0‘]{7;1,...,(7']{7;77,1:). (54)

Consequently the joint density p(#) can be written as

K K m i o1
= (S T (5 ) T (2 (S T2 ).
k=1 k=1 k=1 =1 7 (owit) (5.5)

We will use use the sufficient statistics introduced already in Chapter 4:

hi, which is the number of instantiations in cluster &, and fz;; denoting the
number of instantiationsin cluster k with variable X; having value x;. These
sufficient, statistics can now be expressed using the indicator variables z;;
and v

N N
hy = Z zig and  frg = Z 2RVl
= =
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Since we have chosen a conjugate prior, it follows that the posterior
distribution is also a product of Dirichlet distributions and is given by

K m
Di (1 + bay - ooopie +hie) TT T D1 (0kin 4 frits - - - Oking + Frin) -
k=1i=1

Therefore the complete data posterior density p(f|D, 7) can be expressed

K K O/Mk‘l'hk*]
61D, 7) = (Z(w« +’“«>) 11 (W)

k=1 k=1

K m n; n; i+ fri—1
_ o , kil _
H H (? (Z( it flml)) H ? (”Imﬁl + flmfl)) (5.6)

k=1:=1 I=1 I=1"

The parameters ay and ¢g;; appear disjointly in (5.6), and hence can be
maximized separately. We can again use the information about the mode of
the Dirichlet density (see Section 4.3) to find the MAP values of the complete
data posterior:

B hyp +pp — 1 it = Trit + g — 1
N+ Spo e — K7 hg 500 ogr — 5

(073 (57)

By the solution given in (5.7) we have actually solved HAL’s problem of
finding the MAP model for the Naive Bayes model family Mg, since the
cluster assignments 7 are already given by the class variable X,,. Thus
the MAP parameter values &j and (ﬁkﬂ in (4.7) are the maximums of the
complete data posterior p(f| D). Consequently, for the model family Mnp
HAL can calculate the MAP model directly from the training data without
any search process.

Here we can make an important observation: all HAL’s computational
difficulties in predicting with the finite mixture model family result from
the uncertainty about the clustering of the data. On the other hand, the
complete cases of the posterior and evidence can be solved efficiently. Many
of the approximations for the incomplete cases try to make use of this fact.
In particular, we will next discuss a method of finding the local maximum of
the incomplete data posterior by maximizing the expectation of the complete
data posterior.

5.2 Searching models with EM

We have seen that finding the MAP parameter values 6 for the incomplete
data posterior is not feasible in practice. The problem could, however,
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be solved by augmenting the observed data ) with the missing cluster
assignments 7. This is a typical missing data problem [93], which has
been addressed in several different ways. One of the most commonly used
generic missing data algorithms is the Fapectation-Mazimization (EM) al-
gorithm [38]. Tn the following, we will apply EM in our case to find good
approximations to the MAP parameters of the incomplete data posterior
p(D]).

The EM algorithm is an iterative procedure consisting of two steps: Fx-
pectation (E)-step and Maximization (M)-step. In the E-step, the expected
complete data posterior given the incomplete data and the current estimated
parameter values is determined. In the M-step, the parameter values are
updated in such a way that the obtained expected posterior is maximized.
The underlying intuition is that we would like to maximize the incomplete
data posterior but since it cannot be done, we maximize the expectation of
the complete data posterior instead.

The E-step in Algorithm 5.2.1 requires the evaluation of the function @,
which is an expectation over missing data. In our case the missing data is
the cluster assignment vector 7, which has KN possible values. It follows
that the exact determination of () is again computationally infeasible. For-
tunately, in our case there is a standard way to overcome this problem. We
can apply the Bayes’ theorem sequentially considering only one data vector
at a time, and then approximating the resulting posterior in a suitable way.
This procedure is called the Quasi-Bayes algorithm [138] or fractional updat-
ing [137]. Tn the Quasi-Bayes algorithm, instead of taking the expectation of
the whole posterior, the missing data is simply replaced by its expectation.
This gives us an approximation to the function Q).

In order to define the expectations of the sufficient, statistics hy and fr;
we need the expectations of the cluster indicators z;;:

wir = Flzp|D,69] = p(zjx = 1|d;,61),
since the data are i.i.d. From Bayes’ theorem we now have
p(zin = 110D)p(dj 250 = 1,67
p(d;01)
o T T (0) ™

) vy - 5.8
o (P T T (o)) o

Wiy =
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Algorithm 5.2.1
General Expectation-Mazimization algorithm (EM)

i. Initialize parameters randomly. Set ¢ = ().
ii. ITTERATE until selected convergence criteria are satisfied:
(a) E-step: Determine Q(8, H(t)) = Fllogp(8|D, 7)| D, o).
(b) M-step: Set 9+ = argmax{Q(8, ") | 6 € M},
a

where 8(*) are the parameter estimates in time step ¢.

(c) Set t =t+1.

iii. Return (1),

Using (5.8) the expectations of the sufficient statistics can be expressed as

N
hk = F][hk“—), 0(*)] = Zwﬂ“’
7=1
N
frr = E[fsa|D, 0] = Z Wil
7=1

Now the approximation to the function Q is given by

Q0,601 =Di (1 + by, ..., ur + hy)

K m
TT TIDi (owin + frits - - - Oking + frins) - (5.9)

k=1i=1

This approximation can be intuitively explained as follows. By replacing
unknown z;;’s by their expectations, each data vector is divided between
the clusters based on the probabilities that it originates from these clusters.
Summing of these probabilities is justified by the incremental nature of the
Dirichlet distribution’. An analysis of the convergence of the Quasi-Bayes
procedure and a comparison to other similar methods is given in [138].

In the M-step, we can now make use of the fact that computing the com-
plete data posterior is feasible. The functional form of (5.9) is the same as

"By incrementality we mean here the property that when a new data vector arrives,
the parameters of Dirichlet distribution are updated by adding the contribution of the
new data vector to the old value of each parameter.
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Algorithm 5.2.2
Frxpectation-Maximization algorithm for incomplete data posterior

i. Initialize parameters randomly. Set t = 0.
ii. ITTERATE until selected convergence criteria are satisfied:
(a) E-step: for each j, k compute
t 3 i )\ Vil
ol I T (o)
K P — DN\
b= (0/(/) iz T2, ((bg')ﬂ) )

(b) M-step: Update parameters as

wik = FElzj| D, 0] =

N

NCI > im Wik + gy — 1
N - K
(t+1) Z;\; W55+ O — |

kil - N g :
Dim1 Wik + DL Okl — N

(c) Sett =t+1.

iii. Return 0/5:) and ¢§<7;)I

the complete data posterior (5.6), therefore the same maximization formulas
(5.7) apply. Thus #() that maximizes the Equation (5.9) can be found effi-
ciently. Algorithm 5.2.2 presents the (Quasi-Bayes) EM algorithm for our
finite mixture case.  In principle the EM algorithm can be shown to have
linear convergence [38], i.e., near the mode # = 9 of the posterior,

160 b jI= 289 4],

where A € R, A < 1 is the convergence rate of EM. The convergence of
EM is monotonic and the algorithm is assured to converge to a local op-
timum. Although the two main competitors of EM, the Method of Scoring
and Newton-Raphson (see e.g., [138]), have a quadratic convergence rate,
the methods lack the nice monotonic convergence property (and may not
converge at all), and are also usually more difficult to apply than EM. In
practice, at least in all the experiments related to the work here, a relatively
small number of iterations is sufficient for finding good models € in terms
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| cl weight small big | red green blue
Random | 1 0.754348 | 0.236773  0.763227 | 0.203462 0.278712 0.517826
2 (0.245652 | 0.484881 0.515119 | 0.468076 (.358158 0.173766
Round 1 | 1 0.727074 | 0.181035 0.818965 | 0.180993 0.178833 0.640174
2 0.272926 | 0.739309  0.260691 | 0.738858 0.134891  0.126251
Round 2 | 1 0.687241 | 0.067032 0.932968 | 0.067016 0.222526 0.710458
2 0.312759 | 0.918675 0.081325 | 0.918186 0.044528 0.037286
Round 3 | 1 0.668115 | 0.006017 0.993983 | 0.006015 0.247537 0.746448
2 0.331885 | 0.992419  0.007581 | 0.991921 0.004451  0.003627

Table 5.1: The values of the parameters (probabilities) initially and after
each iteration of the Algorithm 5.2.2.

of the prediction error (see also the discussion in [84]). This allows HAL to
search for good approximations of the global optimum 0 by iteratively run-
ning algorithm 5.2.2 with randomly chosen initializations of the parameters
as many times as possible within a given time limit.

We conclude our discussion on model selection by illustrating the be-
havior of Algorithm 5.2.2 with a small example. Tlet us assume that
HAL’s observable domain consists of balls with two attributes: color =
{red,green,blue} and size = {big,small}. We thus have two variables
Xecotor and Xgize. Furthermore assume that we want to find a model 8 € M,
i.e., a two-cluster model. Tn this case the model is

0= (0/170/27@117@127---7¢222)-

The data set 1D used for model construction is

D = {(small, red), (small, red), (big, blue),
(big, blue), (big blue), (big green)).

The convergence criteria for the KM is set to 3 iterations. Table 5.1 gives
the model parameter values, i.e., the probability estimates 8;, in the initial
random state and after each iteration of the algorithm. The same distribution
information is presented graphically in Figure 5.1. As we can see, starting
from a random initial assignment, EM converges towards a model #* with
clusters “big and blue” (Cluster 1) and “small and red” (Cluster 2). HAL
can now represent, the queries “If T observe that the ball is green, what is its
size?” and “If T observe that the ball is big, what is its color?” as new data
vectors dy and dy with missing values, i.e.,

(x,green)? and (big, x)?
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Figure 5.1: The parameter distributions initially and after each iteration of

the Algorithm 5.2.2.

Then the predictions with the model #” using the MAP prediction are

p(small|green,
p(big|green,
p(redfbig,

p(greanlbig,
p(blue|big,

6 —
6 —

0)
6) =
0)

0.015,
0.985,
0.010,
0.247,
0.743.
(5.10)

The same predictive distributions are presented graphically in Figure 5.2.

5.3 Selecting finite mixture model classes

We have seen that in the Bayesian framework one of the terms in the Bayes’

theorem, the evidence p(D|M), has a very central role: the posterior prob-

ability for each fixed model class p(M|D) is directly proportional to the
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evidence, with uniform priors p(M) it gives HAL the optimal number of mix-
ing distributions (clusters), and by using (3.11) HAL can use the evidence
directly for predictions. We now turn to the problem of computing the evid-
ence

p(DIM) = [ p(DIp, M)p(8]01) o (5.11)

for a fixed model class M, and consequently drop M from the conditioning
parts of our expressions.

As discussed earlier, each instantiation of 7/ represents a cluster assign-
ment of all the N data vectors to the K possible classes. The incomplete
data evidence (5.11) can now be computed by marginalizing, i.e., summing
over the KN complete data evidences, i.e.,

p(D) =3 p(D,7), (5.12)

A

where the summing goes over all the possible clusterings.
et us now consider the complete data evidence P(D, 7),

(D, 7) = / p(D, Z|6)p(8)d6. (5.13)

Let us now recall from (5.2) that

N K ) 7k
p(D, 710) = T1 (wHquZ:;’) (5.14)

=1 k=1 i=1]=1

—_
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and from (5.5) that

() R B (S,

k=1 : (Mk) k=1 i=1 - ((T]ml)

Then we see that the integrand p(D, 7]0)p(f) can be written as

C - (ﬁ hptug— 1) HﬁH ]l:k;l‘l‘”kﬂ 1 (5.16)
k=14i=11=1

k=1 1

where (' is the normalizing constant,

(Zk 1MI<) Kom 9 ("1 oka)

C=———- 5.17
het 7 () E=1i=1 Mz 7 (ona) | !

Now we can make use of the fact that the parameters o and ¢p; appear
disjointly in (5.16), and decompose the integral (5.14) into a product of
integrals:

" (/ [T ™ ‘da)Hﬁ/ Lol o

k=1:=1 (5]8)

These integral forms are called Dirichlet integrals with a known solution (see
[147, p. 178]), consequently (5.18) becomes

K m

p(D,7)=C - k1‘(hk+“’< H [T, ? (frit + owa)
? ( k:1 (hk +,ul<)) k=1 i=1 ? ZIH(}CMI + (Tkﬂ)) (5]())

From (5.19) and (5.17) we then have

(Zk 1 :uk) K ? (hk + ,uk)
(N+ZI< 1,UI<) k=1 7 ()

K m N4
(>, %/) = 2 (frit + okil)
1;[ 1;[ ( (hi + 302 Okat) ,1_[ ? (oki1) ) - (5:20)

The complete data evidence formula (5.20) for the discrete finite mixture

p(D,7) =

family can be seen as a generalization of the work in [60], where a similar
result was derived for finite mixtures with only binary variables and uniform
prior distributions for the parameters (we used discrete variables with Di-
richlet priors). The result was derived independently of [66], where a similar
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result is given for the general family of Bayesian networks. Consequently, as
finite mixture models can be regarded as a special case of Bayesian networks,
the formula for computing the evidence can also be obtained by adapting the
corresponding general result for Bayesian networks.

From this derivation it now follows that we can in principle compute
the incomplete data evidence (5.11) by using Equation (5.12) together with
(5.20). Analogously to computing the incomplete data posterior, the incom-
plete data evidence also requires summing over all the possible clusterings,
i.e., computing an exponential sum. Thus in practical situations HAL has two
choices:

i. Use Naive Bayes model family Mnp
HAL can restrict the model family from the general discrete finite mix-
tures to the Naive Bayes model family, for which the complete data
evidence (5.20) can be computed efficiently. With Mg HAL can pre-
dict using pey with no approximations.

ii. Use an approximation to p(D)
HAL can use a computationally feasible approximation of the evidence.

The choice between these two alternatives is dependent on the fact, whether
the stronger independence assumptions of Myg can be justified (even ap-
proximately) in the problem in question. The experimental work Chapter 6
indicates that in general the alternatives produce comparable predictions.

Most approximations to p(D) are based on Laplace’s method of integra-
tion (see the discussion in e.g., [9, 77]), where the logarithm of the integrand
of the evidence (5.11) is expanded at the posterior mode 9. lLaplace’s ap-
proximation is based on the assumption that when the amount of data N
grows, the posterior

(8] D) o p(1|0)p(6)

can be approximated as a multivariate (Gaussian distribution. In order to
approximate log(p(D|0)p(#)) one can use a second degree Taylor polynomial
about é, and thus obtain

log (p(D18)p(8)) ~ log(»( DIB)p(6)) —

(0 6)756 - 6),
2 (5.21)

where Y is the negative Hessian of log(p(D|6)p(8)) evaluated at f. Substi-
tuting (5.21) to (5.11), integrating and taking the logarithm we now have
lLaplace’s approximation:

- - dim 1 -
log p(12) = log p(D|8) + log p(f) + 5" log(2r) — 5 log S,
2 2 (5.22)
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where dim is the dimension of the model, i.e., the number of parameters.

In practice for computing efficiency Laplace’s approximation is applied
in alternative forms by retaining only those terms in (5.22) that depend on
N: log p(Dm) and log [S]. An example of this type of an approximation is
the Bayesian Information Criterion (BIC) [123], also known as the Schwarz
criterion, which is based on the observation that for large N the determinant

|i| o N(Mm

and that @ can be approximated by 6, thus leading to an approximation
without any need for prior terms given by

~ 1
logp(D) = log p(D|f) — §d7ﬁmlog N, (5.23)

where dim is the number of parameters. This approximation can also be
given an information theoretic interpretation in the Minimum Description
Length (MDI.) setting, as demonstrated in [116].

The BIC approximation can also be used as a motivation for another
approximation method. From (5.23) we know that with increasing N the
evidence p(D) = p(D|§) -, where (U is a term depending only on N, and
on the dimensionality of 8. Similarly, we get

Now solving ' in both cases gives

p(D|)

p(D) =~ p(D, 7) - oD 2N

(5.24)

If we now replace 6 by é, take the logarithm of the right-side of (5.24) and
replace the unobserved data 7 with its conditional expectation given the
data I and the parameters é, we get the Cheeseman-Stutz (C-S) approxim-
ation, which is used in the AutoClass system [24]?.

5.4 Approximating the evidence

In the literature several methods for computing the evidence P(D) approx-
imately, including the ones discussed (BIC and Cheeseman-Stutz), have been
suggested (see e.g., [h, 15, 24, 77, 116, 123, 134]). The quality of most of

2An alternative way of deriving the C-S approximation is given by Chickering and
Heckerman in [25].
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these approximations is not well known, except for some asymptotic results.
As can be seen from the experiments in Chapter 6, typical data sets that
HAL encounters in real life are small in the asymptotic sense. Therefore we
will now investigate empirically the performance of the most common in-
complete evidence p()) approximations in an attempt to understand their
small sample behavior in the finite mixture framework. Tn many earlier sim-
ilar studies (see e.g., [112, 119]), the model family used has either been too
restricted for extending the results to real-world domains, or too general to
allow an exact solution to be used for the comparisons.

The evaluation of the quality of the approximations faces the obvious
problem that for any reasonable sized data set calculating the exact incom-
plete data evidence (5.11) is not feasible. In a recent continuation of the
work discussed here [85], some of the incomplete evidence approximations
are compared to p(D), which is computed by the “brute force method,” i.e.,
by actually computing complete data evidence for all the clusterings of the
data vectors. The study supported our empirical observation of the viabil-
ity of the Cheeseman-Stutz approximation, but also revealed the sensitivity
of the approximation to the selection of approximate #’ ~ é, if the exact 6
cannot be found.

In [25], the problem of not knowing the actual incomplete evidence is
circumvented by using synthetic data, in which case the correct value is
“implicitly known,” and the number of mixing distributions used for gen-
erating data can be controlled. Unfortunately such an empirical study can
face a serious validity problem, as one does not know whether the results
could be generalized to real-world problem domains, or whether they are
simply caused by some anomaly in the artificial data generating method. It
should be pointed out that when validating approximative evidence meas-
ures against generated data, one should be extremely careful in providing
samples that are representative to the intended mixing distributions. Negat-
ive results, i.e., approximations suggesting model classes differing from the
“true number” of mixture components My can also be caused by the fact
that the data in the sample can indeed be described best with a different
model clagss My, since no finite sample can capture all the information of the
generating process. The amounts of data needed to represent the underlying
distribution are substantial (thousands of data vectors for parameter spaces
of only moderate dimensionality), which defies the whole purpose of finding
out the approximation quality for small sample sizes encountered in real life.
The results reported in [25] clearly reflect this difficulty.

In order to investigate this issue of incomplete evidence approximation
we performed two sets of experiments with three approximations from the
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lLaplace’s approximation family. We first study the behavior of Akaike In-
formation Criteria ATC [5] and BIC [123] with respect to complete evidence
p(D, 7). As Cheeseman-Stutz [24] offers an approximation for the incom-
plete evidence using the complete evidence, we could not include it in this
set, of experiments. In the second set of experiments, however, we compare
Cheeseman-Stutz against cross-validation [133] for a typical use of the in-
complete evidence: model class selection. The first set of experiments used
real data sets and the second both synthetic (generated) and real data sets.
The data sets used here are among those discussed in Chapter 6.

AIC and BIC approximations vs. complete evidence

From Section 5.3 (Equations (5.11) and (5.13)) we know that each term in
the exponential sum required for computing the incomplete evidence is itself
an integral of the same form. This in fact is one of the intuitions behind
the Cheeseman-Stutz approximation. Therefore it might be reasonable to
assume that any method capable of approximating such integrals well in
general is also a good approximator for computing the incomplete evidence.
Hence in the first set of experiments we use the complete data integral which
is closest to the incomplete data integral, corresponding to the 7/ assignment
with the highest probability. We compute the complete data evidence for
different model classes by using (5.20), and compare the results to the results
obtained by Bayesian Information Criterion (BIC), and Akaike Information
Criterion (AIC), to be defined below. Tt should be observed that we do
not suggest here that one complete data evidence term should be used for
practical model selection tasks it is used only as a tool for evaluating the
quality of the BIC and AIC approximations.

et us recall that the Bayesian Information Criterion [123] approximates
the incomplete data evidence by

~ 1
log p(D) = log p(D|6) — §d7ﬁmlog N, (5.25)

where dim is the number of parameters (dim= K (145 2, n;) — (Km+1)).
The Akaike Information Criteria approximation [5] is a T.aplace’s approxim-
ation which is even simpler:

log p(D) = log p(D|6) — dim.

Both of these approximations are interesting in the sense that they are quite
intuitive and do not require assessing any prior. Namely, they contain a
likelihood term measuring how well the Maximum Likelihood (or MAP if
uniform priors are used) model in the model class predicts the data, and a
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Figure 5.3: Results with the Primary Tumor dataset.

“regularization term” that penalizes the complexity of the model. For more
technical justifications of these approximations, see e.g., [5, 77, 123].

In order to be able to compute the complete data evidence, we need the
cluster assignment /. Here we have chosen to use the clustering corres-
ponding to the approximate MAP parameters, and use the EM-algorithm
described earlier to find a good approximation of 8. Finding the cluster as-
signments 7 for a fixed model 8 is trivial: each data vector is assigned to
the most probable cluster by setting

1, for k = argmax{op [172, Cbk’id,,:}
Zip = B=1,.. K ' (5.26)

(0, otherwise.

In our experiments, we used five public domain classification datasets
from the same collection as before. The datasets were of varying size, and
contained natural data from various problem domains. We chose these five
data sets from the larger set to reflect various different features in the do-
mains HAL could encounter in practice: very small training data set (Iris),
large data set with many attributes (DNA), a binary classification case (Dia-
betes), a multi-class classification (Primary Tumor) and a“difficult” case
where the results with various alternative prediction methods have a high
variance (Glass).
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For each dataset, and for each model class My, K = 1,2,..., we es-
timated the optimal clustering 7/ by the EM-algorithm. In each case, the
algorithm was repeated 500 (with the DNA dataset 50) times by starting
with randomly chosen initial states. In each trial, the algorithm was run un-
til converged, which took typically 10 20 iterations. Like for all the empirical
tests in this work, uniform priors were used (i.e., we set pup = 1,005 = 1,
for all k, 4, and [). Consequently the clusterings could be ranked according
to their likelihoods P(sz)7 where 6 denotes the MAP parameter values
corresponding to a clustering 7. The best of the 500 locally optimal clus-
terings found was then chosen to be the clustering used in our experiments,
and the complete data evidence was then computed by using (5.20). The
result was then compared to the approximations given by the BIC and the
ATC methods.

The results for each of the five datasets are presented in Figures C.1 C.5
given in the Appendix C. Here we show only one illustrative example in Fig-
ure 5.3, which depicts the results from the experiments with the Primary Tu-
mor data set (EBC denotes here the exact evidence formula given by (5.20)).
In the Appendix, where the complete results are given, the graphs are sorted
in ascending order by the size of the corresponding dataset. From the results
we can see that the approximations give estimates which are consistently too
large (A1C) or too small (BIC), when compared to the exact solution. This
is not important, however, if we are interested in using the criterion for com-
paring different model classes, in which case the relative shape of the curves,
and the location of the maxima are more interesting. As we can see, the
approximation curves follow quite accurately the shape of the exact solution
curve, especially with the larger datasets. An interesting observation is that
the approximative model class estimators perform very well already with a
sample size of about 300 data vectors for an 18-dimensional problem (i.e., 18
domain attributes), and extremely well for a 181-dimensional problem with
a sample size of 3000.

Cheeseman-Stutz approximation vs. cross-validation

In Chickering and Heckerman’s study [25] the Cheeseman-Stutz approxima-
tion was found to outperform ATC and BIC for synthetic data, which seems
to indicate that C-S is a good approximation of p(D) for the specific pur-
pose of selecting the “true” model class M. Their approach corresponds to
an exploratory data mining setting were one wants to examine whether the
Bayesian model class selection scheme can be used for determining the “cor-
rect” model class for the problem domain in question. As pointed out earlier,
in this exploratory type of an analysis one has to be careful in generating the



84 5 CONSTRUCTING FINITE MIXTURES

sample to be representative enough, otherwise the evidence measure tends
to suggest overly simple structures. We will illustrate this by evaluating C-S
in an experiment with also synthetic data sets, which clearly demonstrate
this problem when the dimensionality of the model is increased.

Even putting the philosophical issues aside, since we know that in the
general case the non-identifiability of finite mixtures [138] prevents HAL from
uniquely determining the components from data, this exploratory view point
is only of marginal interest to us. For HAL the “correct” model class of the
datais M which produces the best predictions. Hence an interesting question
is, what is the quality of the Cheeseman-Stutz approximation when evaluated
by the predictive performance of the model class it selects. To evaluate the
feasibility of C-S approximation for predictive modeling, i.e., for determining
the optimal model class for predictive purposes, we use natural data sets and
compare the results to those suggested by cross-validation.

The data sets used in these experiments are again from the same col-
lection of data sets used also in Chapter 6. The Australian, Heart Disease
and Lymphography domains are illustrative of the behavior of the C-S ap-
proximation for all the data sets. DG10 and DG20 are synthetic datasets
with 2000 data vectors generated by sampling random mixture models with
a variable number of clusters, the number of domain attributes being 10 and
20, respectively. The number of possible attribute values varied between
2 and 4.

The Cheeseman-Stutz measure requires the calculation of the MAP es-
timate #. Since we know that the KM algorithm produces only locally optimal
approximations of 8, for each test case 50 repetitions of EM with random
initialization were performed, of which the highest posterior #” was chosen
to represent the maximum a posteriori model 9. Convergence of the EM
algorithm proved to be very fast, in the order of 100 or less iterations for
each individual run.

Figures D.1, D.2 and D.3 in Appendix D illustrate the behavior of the
Cheeseman-Stutz approximation and the cross-validation results for model
classes with K = 1,...,10. We will show here only the results for the
Lymphography data set (Figure 5.4). For all three datasets the Cheeseman-
Stutz model class suggestions coincide with the cross-validation results with
a relatively high accuracy. It should be pointed out, however, that the cross-
validated results themselves are an approximation, and therefore not decisive
for both theoretical and pragmatic reasons. For efficiency reasons only 10-
fold cross-validation was used, which can have high variance depending on
the partitioning to folders (see the discussion in Chapter 6). This factor
could be removed if computationally more demanding leave-one-out cross-
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Figure 5.5: The C-S measure for cluster counts 8 with the DG20 dataset.

validation were used. Even if we had used leave-one-out cross-validation,
we cannot expect a perfect match for two theoretical reasons, which again
illustrate the problem of validating evidence approximations.

First of all, one should keep in mind that the cross-validation error is
computed by measuring the accuracy of one single classification variable,
whereas the evidence criterion is a measure of the overall accuracy of the
underlying probability distribution for all the variables. Second, we know
that the cross-validation measure is in fact an average value of one of the
terms in the sequential decomposition of the evidence [26]. That is the log
evidence can be decomposed as a sum of “online” predictive performances:

log p(D|M) =log p(di| M) + log p(daldy, M) +
log p(daldy, dy, M) +log p(dnl|dy, . ... dy 1, M).

Cross-validation examines the average value of just the last term
]ng(dN|d17 .. '7(17\7717 M)

under random re-orderings of the data.

Thus we are in fact judging the quality of an approximation against
another approximation, albeit a pragmatic one. The relationship between the
evidence (called “scientific criterion”) and cross-validation measure (called
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Algorithm 5.4.1
Bayesian model construction for finite mixtures with

Cheeseman-Stutz approximation

Input: D, data set
Kt mazximum number of components
in the model class
FEMppie,  number of EM runs per model class

FM.,nw, FEM convergence criteria

Qutput: locally optimal MAP approxzimation '
from M’ that approzimates M.

i. ITERATE K from 1 until Kjjmit:

(a) ITTERATE R from 1 until EMy;mpie:
i. Run Algorithm 5.2.2 until EM gny.
(b) Tet 67 = arg rera,X{p(f)R|D7 M)}
9 3

ii. Tet K’ = argmax{Cheeseman-Stutz(K)|K =1, ..., Kiimit}-
K

iii. Return the model 8., from model class M.

“engineering criterion”) together with some additional experimental results
in model class selection tasks are discussed in [65].

As with the natural data, in the synthetic data experiments the
Cheeseman-Stutz approximation was determined for model classes K =
1,...,10. The synthetic data was generated by varying the number of gener-
ating clusters () from 2 to 8, and the Cheeseman-Stutz behavior was com-
pared to the so called “gold standard”, i.e., the number of components used
in the data generation. Asseen from the Figures D.4 D.7in Appendix D, the
Cheeseman-Stutz approximation coincides well with the underlying cluster
structure with both datasets when the number of clusters is less than 8.
For the 8 cluster case shown here (Figure 5.5) the datasets are clearly too
small to be able to represent the problem domain probability distribution
well enough, and we see that the data “justifies” a simpler structure than we
have used in the data generation process.
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5.5 Model construction in a “nutshell”

We conclude the discussion on HAL’s model construction by summarizing the
discussion of this chapter as Algorithm 5.4.1. Naturally HAL could replace
the Cheeseman-Stutz incomplete evidence approximation by other Laplace’s
approximations (see Section 5.3). From pragmatic point of view it should be
observed that HAL needs to decide only on very few input parameters: the
maximum size of the model class Kj;mit, the number of EM runs performed
for each model class KMy, and the convergence criteria KM 4,y for an
individual EM run.



Chapter 6

Bayesian classification with finite
mixtures

“The word “valid” would be better dropped from the statistical vocabulary.
The only real validation of statistical analysis, or of any scientific enquiry, s
confirmation by independent observations.”

Anscombe in Topics in the investigation of linear

relations fitted by the method of least squares

In the preceding chapters we have discussed HAL’s predictive framework,
starting from the general principles of using probabilities as plausibilities,
and ending in Bayesian methods for using a specific model family of finite
mixtures of multinomial components for plausible predictions in the presence
of uncertainty. It is now time to put these ideas to test, and see how the
developed machinery for predictive inference can be applied. HAL’s design
was motivated by the need to infer predictive models from data, i.e., find-
ing data constraints (expressed with the language of models) that help it
to predict properties of unknown quantities. The advantage of predictive
models is that they can be validated at least to a degree by inspecting the
actual predictive performance, either with benchmark data sets or with real
applications. The Bayesian predictive framework described here has been
tested in both respects. In this chapter we report empirical results with com-
mon benchmarks, and evaluate the Bayesian predictions with finite mixtures
against the results achieved with other popular model families such as neural
networks and decision trees. Some of the results described in this chapter
have appeared in preliminary form in [136].

89
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Figure 6.1: A snapshot of the interface of the D-SIDE prediction engine.

6.1 Data sets and experimental setting

The general Bayesian approach for performing plausible predictions offers a
theoretically justifiable and consistent framework for HAL to predict unknown
properties of new arriving data. We have “instantiated” the Bayesian frame-
work in the case where HAL’s models are finite mixtures of multinomial dis-
tributions. The approach described forms the kernel of the D-SIDE/C-SIDE
software programmed in Java/C. The Bayesian prediction engine D-SIDE
also provides a flexible graphical user interface for displaying predictive dis-
tributions and the mixture structure (see Figure 6.1), and can be used with
any Java compatible World Wide Web-browser!.

From the discussion in Chapters 4 and 5 we know that for a restric-
ted sub-family of finite mixtures, the Naive Bayes family Myg, HAL can be
“fully Bayesian” and integrate out all the models, but for the general finite
mixture case it has to use approximations in its predictions. These approx-
imations are theoretically justified, but the quality of the approximations is

' A running demonstration of the D-SIDE software can be accessed through the CoSCo
homepage att URT, “http://www.cs.Helsinki.FT/research /cosco/”.
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only known asymptotically, i.e., when the data set D is large. Unfortunately
in many application domains, especially industrial, we know that this is not
the case. We have already pointed out that using synthetic data for empirical
tests requires substantial amounts of data to allow any reliable conclusions
(see the discussion in Section 5.4 and below), which defies the whole purpose
of finding out the performance behavior with small data sets. Therefore the
only true test of the approaches we have presented is to perform empirical
testing with real data sets. In addition such tests have to be comparative in
nature, otherwise we would not have any idea how well HAL is doing. This
latter requirement makes it very difficult to use real industrial application
data sets, as usually for such data sets no previous results with alternative
methods exist.

A thorough comparison would use synthetic data or real application data
sets, and compare several different methods by an extensive set of exper-
iments. This is a very time-consuming task, but would allow us also to
calculate for example the standard statistical significance values for the dif-
ferences found. In such a comparative study, however, a serious validity
problem would exist. Almost all of the learning/prediction algorithms pro-
posed in the literature are parameterized (model size, parameter estimation
convergence speed, post-processing parameters etc.). This is natural, since
any model construction procedure has to somehow decide the set of models
explored and the search algorithm that it uses, both of which require fixing
some parameters. Consequently, the results of a particular method are also
sensitive to the parameter selection. Setting the proper parameters usually
requires good understanding of the method itself, and affects drastically the
results achieved (see e.g., the improvements achieved by an automated para-
meter selection process reported in [79]). Since it is not feasible to assume
that we are experts in all the possible different types of algorithms, the com-
parison results would be severely hampered by our (in)competence in the
method used?. Therefore, instead of using artificial or real industrial data
we decided to test HAL’s prediction performance for publicly available real
data sets.

We are well aware of the inherent problems in using such data sets,
especially for comparison purposes: it is very difficult to identify underlying
causes for performance differences, there is a high variance in the observed
performance differences etc. The main advantage of using natural datasets is
that they are produced without any knowledge of the particular procedures

2See the discussion on an attempt to a fair comparison of several machine learning
and computational intelligence approaches in the StatT.og-project [99], and the difficulties
encountered.
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that they are tested on. In addition, although there is no way of telling how
the results for a real data set generalizes to other problems, we at least know
that there are some domains where the results have practical relevance.

Below we report results from extensive experimentation with the
Bayesian finite mixture framework using publicly available data sets for
classification problems, which conform to the general prediction problem as
defined in Section 3.2. To be able to compare the predictive performance, we
have collected from the literature performance results for alternative meth-
ods using the same data sets. While we make no claims that the list of
the results of alternative algorithms is exhaustive, for each data set we have
included the best results we have found in the literature. The selection of
data sets in the comparison was done on the basis of their reported use, i.e.,
we have preferred data sets that have been used for testing many different
methods over data sets with only isolated results. Therefore many of the
results are from the Statlog project [99], but we have also included more
recent, results. The descriptions of the data sets and the testing procedures
used for each data set are given in Appendix A. A more detailed description
of these data sets can be found in [99] and in the documentation in the UCT
data repository.

It should be observed that with the exception of the DNA dataset, all our
results are cross-validated. Tn fact, to evaluate HAL’s predictive performance
there is no technical reason not to cross-validate DNA results also, the choice
of a “train and test” result was purely for comparative reasons. When
possible (for the Statl.og datasets) we have used the same cross-validation
scheme as described in [99]. Tt should be observed that the same does not
hold for many of the results for the other methods. Tn many cases the testing
procedure either was not reported, or the best result with a single test set
was given. In the comparisons we have adopted the conservative viewpoint
that all the results are comparable to our cross-validated results. Even more,
as demonstrated below, any cross-validation procedure departing from the
leave-one-out scheme used in Section 4.4 suffers from the variance caused by
the selection of the folds.

Final remark concerns the preprocessing of the data sets. Most of the
data sets were already discrete from the beginning. Those that were not
could have been discretized by using a discretization scheme based on the
Bayesian approach itself [83]. Here we have used a simpler method, where
the attributes were discretized by using k-means clustering (a special case of
the EM algorithm with “hard” clusters) starting from a uniform initial state.
As demonstrated in the experiments reported in [45], in general the predic-
tion results are not very sensitive to the discretization scheme, assuming that
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a reasonable standard scheme such as ours is used.

6.2 Empirical results

Two sets of experiments were performed with these data sets. The first set
of experiments used the Naive Bayes model family Myg with all the three
predictive distributions pmap (4.7), pev (4.8) and ps. (4.9). The second set
of experiments used the general mixture family with MAP prediction (4.5).
Both sets of experiments used 0/1 score as the performance measure, i.e.,
the percentage of correct classifications.

6.2.1 Naive Bayes results

For the Naive Bayes model family we tested all the three prediction methods
with the ten data sets. We partitioned each data set (except DNA) to random
cross-validation folds 100 times using the number of folds reported in the
literature, and evaluated the results for each partitioning. The minimum,
mean, maximum and the variance of the results for each data set for each
method are summarized in Table 6.1.

Before entering the discussion on the results themselves, we want to
point out the problem of the comparative methodology when k-fold cross
validated results from different sources are compared, a practice common
in the machine learning and computational intelligence communities. As the
Naive Bayes results demonstrate, there is a considerable difference in the
results depending on which partitioning to folds was used. Obviously, this
problem ceases to exist if one moves to leave-one-out cross-validation, but
unfortunately it is very seldom used in the literature. As the results reported
in the literature are not cross-validation means (and in some cases not even
cross-validated results), in the bar-charts in Figures 6.2 6.6 we have used
the maximums. We want to stress that this is done for comparative purposes
only in order to put our results in perspective with alternative approaches.
HAL’s true prediction performance is closer to the means of the results.

The results are consistent with the leave-one-out cross-validated experi-
ments in Chapter 4 when the differences between the predictive distributions
were considered. Both the pnap, and pey show consistent good performance,
and we can see that the larger the data set, the smaller is the performance dif-
ference. This is of course only an empirical confirmation of the observation
already mentioned in Section 3.1.3; if the training set size ) is increased the
posterior becomes more peaked and therefore the single MAP model tends
to represent the posterior well. Similarly, as expected, the variance of pmap
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Data set: NB-MAP NB-EV NB-SC
DNA train & test  0.945 0.944 0.885
Diabetes minimum 0.746 0.746 0.745
mean 0.756 0.757 0.755
maximum 0.766 0.767 0.765
variance 0.000074 0.000037  0.000067
Australian minimum 0.843 0.843 0.843
mean 0.850 0.850 0.849
maximum 0.857 0.857 0.855
variance 0.000007 0.000006  0.000006
Primary Tumor  minimum 0.428 0.467 0.280
mean 0.456 0.487 0.339
maximum 0.478 0.507 0.395
variance 0.000106 0.000080  0.000533
Breast, Cancer minimum 0.700 0.710 0.703
mean 0.720 0.722 0.722
maximum 0.745 0.741 0.749
variance 0.000074 0.000037  0.000067
Heart, Disease minimum 0.819 0.826 0.826
mean 0.835 0.840 0.840
maximum 0.856 0.852 0.856
variance 0.000039 0.000031 0.000037
Glass minimum 0.621 0.631 0.612
mean 0.687 0.666 0.649
maximum 0.729 0.696 0.673
variance 0.000204 0.000146  0.000176
Hepatitis minimum 0.827 0.793 0.800
mean 0.845 0.817 0.822
maximum 0.873 0.847 0.847
variance 0.000095 0.000101 0.000073
Iris minimum 0.927 0.933 0.933
mean 0.939 0.944 0.947
maximum 0.953 0.953 0.960
variance 0.000259 0.000122  0.000034
T.ymphography minimum 0.777 0.811 0.635
mean 0.811 0.844 0.772
maximum 0.845 0.872 0.838
variance 0.000259 0.001214  0.002865

Table 6.1: Naive Bayes model family cross-validation results on the ten data
sets and for MAP (NB-MAP), evidence (NB-EV) and stochastic complexity
(NB-SC) predictive distributions. The results are for 0/1-score. For each
data set (except DNA) the minimum, mean, maximum and variance of the
100 partitionings to folds is reported.
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performance is higher than that of pey, for which we know the small sample
behavior to be the most robust from the earlier results.

The performance of py. is comparable, but slightly worse than pna, or
Pev ON the average. One has to remember, however, that p,. was designed to
be a good predictor in the coding sense, i.e., it is designed to minimize the
log-score, not the 0/1 score. And that it indeed does. Although not repor-
ted here, for the log-score results pe. shows as good or only slightly worse
performance than pey, which itself outperforms clearly the pna, predictions
in all the ten data sets. This warns us to be careful not to draw too general
conclusions about the predictive methods based on results for a single loss
function, especially as coarse one as 0/1. The log-score results indicate that
for other types of loss functions, where a more precise estimate of the pre-
dictive distribution than the mode is needed, both the py. and p., will very
likely outperform pmap.

Finally, when compared to the results in the literature, the Naive Bayes
results are very competitive and actually in some cases outperform the
results with finite mixtures (Figures 6.2 6.6). In the bar-charts the res-
ults with the Naive Bayes family have been denoted by D-SIDE NB (MAP),
D-SIDE NB (EV), and D-SIDE NB (SC) corresponding to Pmap, Pev, and psc,
respectively. Tt should be observed that with the exception of the Heart Dis-
ease data set, when the Naive Bayes result outperforms the finite mixture
result, either the evidence or stochastic complexity predictive distribution
has been used for predictions. In general HAL is able to find a better single
model in the finite mixture family than from the Naive Bayes family.

6.2.2 Finite mixture results

Using the Naive Bayes family has the advantage that no approximations are
needed, thus the prediction performance is mainly restricted by the simpli-
city of the language to express the constraintsin the data. For finite mixtures
the situation is completely different. Choosing the optimal model class M
with incomplete evidence requires an approximation like Cheeseman-Stutz
or BIC, and even for finding the MAP parameters within a model class HAL
has to submit to the local maxima found by the EM algorithm. Therefore
let us now explore the trade-off between a more expressive model language
and the need to approximate the Bayesian ideal in the prediction.

For the finite mixture model family we repeated the procedure described
above, but for comparison we report only the achieved maximums. The
selection of the model class was performed by using the Cheeseman-Stutz
approximation, and from the chosen model class M among the 50 models
produced by EM the model 8 with the highest posterior was used for pre-
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Data set, Model class FM-MAP NB-MAP NB-EV NB-SC
DNA 13 0.970 0.945 0.944 0.885
Diabetes 20 0.773 0.766 0.767 0.765
Australian 17 0.872 0.857 0.857 0.855
Primary Tumor 21 0.504 0.478 0.507 0.395
Breast, Cancer 21 0.766 0.745 0.741 0.749
Heart, Disease 8 0.848 0.856 0.852 0.856
Glass 30 0.874 0.729 0.696 0.673
Hepatitis 9 0.880 0.873 0.847 0.847
Iris 4 0.980 0.953 0.953 0.960
T.ymphography 19 0.866 0.845 0.872 0.838

Table 6.2: Cross-validation results on the ten data sets for finite mixture
MAP predictive distribution (FM-MAP) and Naive Bayes model family
MAP (NB-MAP), evidence (NB-EV) and stochastic complexity (NB-SC)
predictive distributions. The results are for 0/1-score, and we have reported
also the best model class M.

diction.

The results for the finite mixture family (denoted by D-SIDE ) for the
individual datasets together with the corresponding Naive Bayes results are
presented in Table 6.2. The comparison of both the Naive Bayes and finite
mixture results to the ones in the literature are presented as bar-charts in
Figures 6.2 6.6. As can be expected, from the results we see that for 7 out
of the 10 data sets the finite mixture MAP prediction outperforms predic-
tions with the Naive Bayes family. However, in most cases the performance
differences are small in particular considering the variance caused by the
fold selection.

6.2.3 The results in perspective

If we compare the results to the results of the alternative approaches repor-
ted in the literature, the Bayesian predictive approach offers consistently
competitive performance over the various data sets. The observation that
the finite mixture based prediction outperforms the memory based methods
such as K-NN, K™, IB3, or ALLOCS0 is not especially surprising in the light
of the given discussion about the probabilistic interpretation of the instance-
based methods (Section 4.2, see also [136]). A more interesting observation
is that our Bayesian approach with the finite mixture model family outper-
forms also all other Bayesian approaches including CASTLE and Bayes tree
in the Statl.og comparison, recent variants of the Naive Bayes algorithm
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such as Tree Augmented Naive-Bayes (TAN) and Bayesian networks with
MDT, score functions [40, 53]>.

We would like to point out that in the comparison the important issue is
not so much to focus on the actual performance percentages for individual
data sets, since in most cases the differences between the well-performing
methods are very small. A more interesting aspect is the consistent high
rankings of the Bayesian finite mixture approaches regardless of the data
set a property which is not shared by the alternative approaches (see the
discussion in [99]). The results above can also be interpreted as support for
the common hypothesis that many real data distributions can be naturally
modeled as mixtures of multinomial distributions.

6.2.4 On implementation performance

Our focus has been HAL’s predictive performance, and we have not yet dis-
cussed any aspects of the implementation performance. Tt is well-known
that for many model families the “training time,” i.e., model construction
time in our terminology, can be substantial both in theory and practice. On
the other hand for many model families the actual prediction can be per-
formed fast, typically in linear time in the number of inputs. An illustrative
example for this type of an implementation performance behavior is the fam-
ily of feed-forward neural networks accompanied with the back-propagation
algorithm [19], which tends to be notoriously slow in finding locally op-
timal models, but once a model is found, the prediction can be performed
efficiently. At the opposite end of spectrum are the lazy approaches dis-
cussed in Section 4.2, where almost all computation is deferred until the the
prediction phase. The commonly used model family of decision trees falls
in between these two extremes at least for the sub-families of bounded
rank [44]. Where then do the Bayesian finite mixture approaches stand?
For the Naive Bayes model family Mg the situation is very straightfor-
ward: the model construction does not require any search, only calculation
of the sufficient statistics, and the prediction is based on calculating a simple
product in the number of variables. For the finite mixtures the situation is
more complex as HAL has to search for the optimal model class by an evidence
approximation (e.g., Cheeseman-Stutz), and after fixing the model class, HAL
has to search for a good model A. Since the evidence approximations also
need a good model, most of the time in the model construction phase is

*Tt should be noticed that the Naive (and Successive) Bayes results for the Breast
Cancer and Primary Tumor data set. by Kononenko are averages over 10 random 70/30%
splits of the data, where the variance of the results is even higher than for 10-fold cross-
validation.
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consumed by the EM algorithm. We have pointed out earlier in Section 5.2
that in practice already a relatively small number of EM iterations (< 100)
is sufficient for finding good models 8. This makes it possible for HAL to
approximate the global optimum 0 by several repeated trials with randomly
chosen initializations of the parameters. Therefore the model construction
time is adjustable depending on the application requirements in principle
one should use all the available time for searching better and better (in the
posterior probability) models. This type of stochastic search parallelizes ex-
tremely well without any need to special hardware, and allows very efficient
use of the available computing resources. The prediction phase using finite
mixture models is similar to that of Naive Bayes models except for a sum-
mation over the probabilities in each mixture. Since the number of mixture
components K is typically much smaller than the size of the training data
set. ¥V, the prediction is also very efficient.

Sufficient efficiency is a relative concept: an embedded real-time applic-
ation for telecommunications sets very different performance criteria than
a medical diagnostic expert system. To give an idea of the implementation
performance of our C-SIDE/D-SIDE software for finite mixture based predic-
tion, let us consider an experiment we performed with a data set of 2 million
data vectors, each consisting of 17 discrete attributes having 2-4 values and
a class variable with 21 different values the largest class containing 24.8%
of the data.

The construction of a 100 cluster finite mixture model by running the
EM-algorithm for 10 iterations took 9 hours 27 minutes and 34 seconds
elapsed time on a 200MHz Pentium machine running Linux/C-SIDE. Testing
the model with 0/1 pmap prediction for the same 2 million data vectors
took 26 minutes 33.71 seconds i.e., about 1255 classifications per second,
or 0.8 milliseconds per classification. The resulting model achieved 70.5%
prediction accuracy.

Naive Bayes model construction with the same data set took 17.02
seconds. The “learning” handled 117509 data vectors per second, i.e., 8.5
microseconds per one data vector. Testing with 0/1 pey prediction the model
with same 2 million training vectors took 29 minutes 13.57 seconds. That
is 1141 vectors were classified in one second, i.e., classification of one data
vector took 0.9 milliseconds. The prediction accuracy was 61.7%. The size
of this data set serves also as an example of the scalability of our approach.
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Figure 6.2: Experimental results on the DNA and the Diabetes data sets.
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Figure 6.3: Experimental results on the Australian and the Primary Tumor

data sets.
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Figure 6.4: Experimental results on the Breast cancer and Heart Disease

data sets.
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Figure 6.5: Experimental results on the (Glass and Hepatitis data sets.
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Figure 6.6: Experimental results on the Iris and Lymphography data sets.



Chapter 7

Conclusion

“Good ...morning ... Doctor ... Chandra ... This
oaas . HAL .. T .. .am .. .ready ... for
..my ... first lesson .. today ..."

Arthur C. Clarke and Stanley Kubrick in 2001: A Space Odyssey

We have now completed HAL’s design, and demonstrated its performance
with empirical experiments. Tt’s time to reflect on what we have achieved,
and what issues remain open.

HAL in perspective. The first interesting question is, would HAL’s
Bayesian plausible predictions be considered “intelligent” in the sense of the
two definitions given in Chapter 17 Let us look at the descriptive definition
of computational intelligence [10].

A more careful ingpection at Bezdek’s definition reveals that it has ac-
tually two different types of requirements. The definition begins with very
general statements and then gives a list of qualitative and quantitative re-
quirements HAL should satisfy in a nontrivial task. Tt is quite debatable,
whether HAL, or any similar predictive system, really can conform to the
general requirements given. Does HAL “deal only with numerical (low-level)
data” when it manipulates plausibilities represented as real numbers (De-
sideratum 2.1), or does it have “a pattern recognition component” if it is
capable of classifying a given data vector with respect to a set of predefined
classes? 1In fact our choice for HAL’s model family allowed HAL to perform
also clustering, i.e., constructing predictive concepts for the problem domain
from the data available. In this sense HAL can be said to recognize patterns.
The meaning of the final point “does not use knowledge in the AT sense”
is even more unclear. HAL’s design requires fixing the model family, which
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is structural information about the variables of interest and their independ-

ence relations represented e.g., as a graph structure. In this sense HAL uses

knowledge typical to symbolic Al programs and thus violates the require-

ment. Interestingly this same argumentation holds for any neural network

or fuzzy system.

Addressing HAL’s compatibility with the more explicit list of functional

requirements for computationally intelligent system is easier:

i.

iii.

Computational adaptivity. As discussed in Chapters 3 and 5
Bayes’ theorem allows HAL to learn, i.e., update its model when new
data arrives.

. Computational fault tolerance. This is an issue we have not ex-

plicitly addressed in this work. Related to fault tolerance, two things
should be observed. HAL’s mixture models are inherently robust in
the sense that if one or more of the mixture components in the model
are not available, the prediction performance degrades gracefully, since
the predictions are based on a weighted average of the components.
But we should point out an even more general observation: the model
averaging philosophy (Equation (3.2)) inherent in Bayesian inference
for any model family is also robust in this sense. From the imple-
mentation point of view (which is probably the fault tolerance meant
in the definition), we know that HAL’s deductive and inductive in-
ference can be implemented as a neural network at least for some
model families. Such families include mixtures of multinomial distri-
butions and (Gaussians, and layered feed-forward networks with sig-
moidal units [12, 74, 96, 102].

Speed approaching human-like turnaround. For the discrete pre-
diction tasks HAL is programmed for, both deductive (prediction) and
inductive inference (learning) surpass human performance. Notice that
in some cases with the Naive Bayes model family we saw HAL demon-
strating extremely fast learning rate reaching good prediction perform-
ance level with 2-3 examples from the data.

. Error rates that approximate human performance. In the Stat-

Log project [99] some of the data set results included also human ex-
perts, which usually did not perform well when compared to the top
ranking algorithms. Human performance given only the raw data can
usually be outperformed easily by most approaches. This type of com-
parison is in most cases quite meaningless, as from HAL’s point of view
the important issue is whether or not we can provide HAL with the same
information that is available to a human expert.
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In Chapter 1 we discussed also a second, normative definition of intel-
ligence, which is concerned mainly with rational action. At this point it
should be quite evident that the motivation for HAL’s Bayesian approach to
plausible reasoning HAL coincides perfectly with the definition of Russel and
Norvig. In HAL’s case the performance measure to be maximized is the pre-
diction performance (with respect to 0/1-score), and HAL’s principled design
forces it to choose the best prediction given “the percept sequence” (data)
and “built-in knowledge” (the model family and priors).

Extending HAL’s design. [l.et us now turn to different ways of improving
HAL’s design. Extending HAL can be discussed at various levels of abstraction
from minor “version improvements” to total “redesign”.

Starting from the minor technical improvements one should observe that
HAL’s design is given for discrete data sets (but continuous model spaces).
The Bayesian predictive framework with finite mixture model family extends
naturally to continuous attributes also (see e.g., the work by Bishop [11, 12]).
However, moving from discrete to continuous values does not always im-
prove HAL’s prediction performance, as additional assumptions of the form
of the density have to be made (e.g., independent Gaussian distributions
with appropriate conjugate priors), which can cancel out the possible im-
provements. Although the extension to mixtures of (Gaussians is in principle
straightforward, the technical details together with implementation issues
are quite involved. Another technical improvement would be to allow HAL to
use more sophisticated non-informative priors, such as Jeffrey’s prior. This
type of an extension to HAL’s inference is given in [87], where prediction
with pey using Jeffrey’s prior is discussed in the context of the more general
model family of Bayesian networks.

We have discussed HAL’s Bayesian prediction in the standard classific-
ation context, where HAL’s model used for classifying is first constructed
by using the training data available, and each classification problem is then
solved independently by using the model produced. The framework formu-
lated in Section 3.2 could be extended by allowing multiple predictions to
be made at the same time. In this batch classification case, all the classifica-
tion problems are given simultaneously, and instead of dealing with a single
query vector to be classified, HAL’s task is to find a correct classification for
a set of query vectors.

The batch classification problem can be viewed as a missing data prob-
lem, where the missing data consists of the correct classifications of query
vectors. One could expect that HAL, when using batch classification mode,
would produce better results than when it classifies the queries independ-
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ently. This assumption follows from the fact that in the batch case the data
available for making predictions consists not only of the original training
data, but also of the set of all the query vectors, and HAL would have more
data for constructing its model. There is a downside, however. In batch
classification case the amount of missing data will also increase, making the
missing data estimation problem more difficult than in the traditional case.
Therefore it would be interesting to investigate the trade-off between the
advantage of using the increased information available in the query batch,
and the disadvantage of increased complexity in the search process.

One of the elegant features of the Bayesian language for inference is
that it is “parameterized” by the model family all the general principles
and formulas in Chapters 2 and 3 apply when HAL’s in-built mixture model
family assumptions are replaced with some other assumptions. As discussed
before, the general Bayesian network based design of HAL is a topic of much
current research. One important motivation for this research is the need
to build decision support systems, where Bayesian inference is not enough,
since the systems are required to suggest actions rather than output just
predictive distributions. All the work presented here with HAL is concerned
with Bayesian inference, but for this decision support framework one needs
to address also Bayesian decision-theoretical issues: the effect of different
loss functions, the selection of proper estimators from the posterior etc. HAL’s
classification with 0/1-loss function is a very elementary example of this
general framework.

Finally, there is still lot to be said about the intriguing relationship
between the information theoretic and Bayesian data modeling approaches,
which was only briefly discussed in Section 3.3. The conversion from the
minimum encoding inference formulation to Bayesian inference formulation
or vice versa is a nontrivial task. In contrast to the old definition that cor-
responded to the evidence term p(D|M), the new version of stochastic com-
plexity does not have a simple “Bayesian interpretation”. A straightforward
reverse transformation from the Bayesian inference to minimum encoding
approach is also problematic, since the continuous parameter values have to
be carefully quantized, otherwise the code-lengths obtained will lead to mis-
leading results (see the discussion e.g., in [145]). On the other hand, the use
of discrete hypothesis spaces in MMT,/MDI, inference has it advantages in
cases, where the Bayesian inference encounters infinite probability densities,
circumventing which in the Bayesian framework requires multi-step decision
procedures.

Regardless of any individual work (including the work at hand) in the
machine learning, computational intelligence or artificial intelligence com-
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munities, the debate on the proper foundations for building intelligent sys-
tems will continue, as it should. Whether a truly “intelligent” HAL will be
built on Bayesian, minimum encoding or some other principles, or built at
all, remains to be seen  meanwhile we feel privileged to pursue the Bayesian
perspective.
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Appendix A

Data sets used in the experiments

This Appendix presents the description of all the public domain data sets
used in the experiments. The selection of datasets in the comparison was
done on the basis of their reported use, i.e., we have preferred datasets that
have been used for testing many different methods over datasets with only
isolated results. Consequently many of the data sets have been used in the
StatT.og project [99], but we have also included other frequently used data
sets. The descriptions of the data sets and the testing procedures used for
each data set are given in Table A.1'. The last column, the default value,
denotes the success rate of a simple classifier, which classifies all the instances
to the most common class. A more detailed description of these data sets
can be found in [99] and in the documentation in the UCT data repository.

'"The data sets can be obtained from the UCT data repository at URI,
“http://www.ics.uci.edu/~mlearn/”.
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Data set Size #Attrs #Classes Test method Default
DNA 3186 181 3 train&test 50.8
Diabetes 768 9 2 12-fold CV 65.0
Australian 690 15 2 10-fold CV 56.0
Primary Tumor 339 18 21 10-fold CV 24.8
Breast Cancer 286 10 2 11-fold CV 70.3
Heart Disease 270 14 2 9-fold CV 79.4
(Glass 214 10 6 7-fold CV 40.7
Hepatitis 150 20 2 H-fold CV 55.6
Iris 150 5 3 H-fold CV 33.3
I.ymphography 148 19 4 H-fold CV 54.7

Table A.1: The public domain data sets and the number of cross-validation
folds used in our experiments.



Appendix B

Performance of the different
predictive distributions

This Appendix presents the results of the comparison of HAL’s three altern-
ative prediction methods discussed in Section 4.4. The results for all the five
data sets (Australian, Hepatitis, Glass, Primary Tumor and Heart disease)
are presented in Figures B.3 B.11. For a brief description of the data sets
see Appendix A.

Figures B.3 B.2 give the mean prediction performance of pmap, pev, and
Pse in the test set calculated by averaging the results from 100 partitions of
the data (maximum training set size 70 % and test set size 30 %). Each figure
shows the performance of the methods for both log-score and 0/1-score.

Figures B.12 B.11 give the maximum and the minimum prediction per-
formance of Pmap, Pev, and pec in the 100 partitions described above. FEach
figure shows both the log-score and 0/1-score performance.

125



126 B PERFORMANCE OF THE DIFFERENT PREDICTIVE DISTRIBUTIONS

IS
Q
g sf |
D
o
8} o
-10 MAP — ]|
EV -
SC -
-12 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
training set size
0.9
0.85 B
0.8 B
0.75 -/ 4
{
o !
8 !
b 0.7 b
i |
3
0.65 |f i
0.6 | R
MAP —
0.55 EV - A
SC -
0.5 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

training set size

Figure B.1: Average performance of methods by log-score (up) and 0/1-score
(below) for the Australian data set.
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Figure B.2: Average performance of methods by log-score (up) and 0/1-score

(below) for the Primary Tumor data set.
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(below) for the Heart Disease data set.
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Figure B.4: Average performance of methods by log-score (up) and 0/1-score

(below) for the Glass data set.
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(zlass data set.
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Figure B.17: The maximum and minimum performance of the stochastic

complexity predictive distribution method by log-score (up) and 0/1-score
(below) for the Glass data set.
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Figure B.19: The maximum and minimum performance of the evidence pre-
dictive distribution method by log-score (up) and 0/1-score (below) for the
Hepatitis data set.
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Appendix C

AIC and BIC approximations vs.
complete evidence

This Appendix presents the results of the comparison of the evidence ap-
proximations in the complete data case, as discussed in Section 5.4. The
results for each of the five datasets (Iris, Glass, Primary Tumor, Diabetes,
DNA) are presented in Figures C.1 C.5. Here “EBC” denotes the exact
evidence formula given by (5.20). Tt should be observed that the graphs are
sorted in ascending order by the size of the corresponding dataset.
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Figure C.1: Results with the Iris dataset.
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Appendix D

Cheeseman-Stutz approximation vs.
cross-validation

This Appendix presents both the results of comparing the Cheeseman-Stutz
evidence approximation and cross-validation in the incomplete data case with
real data sets, and the performance of C-S approximation with synthetic data
(see the discussion in Section 5.4). The Cheeseman-Stutz measure requires
the calculation of the MAP estimate . Tn these experiments for each test
case b0 repetitions of EM with random initialization were performed, of
which the highest posterior #° was chosen to represent 9. EM convergence
proved to be very fast, in the order of 100 or less iterations for each individual
run.

Figures D.1, D.2, and D.3 illustrate the behavior of the Cheeseman-
Stutz approximation and the cross-validation results for model classes with
K =1,...,10. Similarly in the synthetic data experiments the Cheeseman-
Stutz approximation was determined for model classes K = 1,...,10.
The synthetic data was generated by varying the number of generating
clusters () from 2 to 8, and the Cheeseman-Stutz behavior was compared
to the so called “gold standard”, i.e., the number of components used in the
generation of data. The property of interest in both set of experiments is
the model class selected, i.e., the number of clusters for which the measures
give the maximum value. The results are shown in Figures D.4 D.7.
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Figure D.1: The C-S measure (up) and the cross-validation results (below)
with the Australian dataset.



153

-2880 T T T T T T T T

-2900 - 1

-2920 i

-2940 |- R

-2960 - 1

-2980 i

Cheeseman - Stutz

-3000 - S

-3020 1

-3040 H i

3060 1 1 1 1 1 1 1 1
1

0.85 T T T T T T T T

Success rate (%)

0.55 1 1 1 1 1 1 1 1

5 6
Number of clusters (K)
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with the Heart, disease dataset.
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Figure D.3: The C-S measure (up) and the cross-validation results (below)
with the Lymphography dataset.
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Figure D.4: The C-S measure for cluster counts 2 (up) and 4 (below) with
the DG10 dataset.
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Figure D.5: The C-S measure for cluster counts 6 (up) and 8 (below) with
the DG10 dataset.
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Figure D.6: The C-S measure for cluster counts 2 (up) and 4 (below) with
the DG20 dataset.
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Figure D.7: The C-S measure for cluster counts 6 (up) and 8 (below) with
the DG20 dataset.
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