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Plausible Prediction by Bayesian InferenceHenry TirriDepartment of Computer ScienceP.O. Box 26, FIN-00014 University of Helsinki, FinlandHenry.Tirri@cs.helsinki.�, http://www.cs.helsinki.�/�tirri/PhD Thesis, Series of Publications A, Report A-1997-1Helsinki, June 1997, 122+36 pagesISSN 1238-8645, ISBN 951-45-7746-9AbstractThe capability to perform inference with uncertain and incomplete inform-ation is characteristic to intelligent systems. Many of the research issues inarti�cial intelligence and computational intelligence can actually be viewedas topics in the \science of uncertainty," which addresses the problem ofplausible inference, i.e., optimal processing of incomplete information. Thevarious di�erent approaches to model and implement intelligent behaviorsuch as neural networks, fuzzy logic, non-monotonic (default) logics andBayesian networks all address the same problem of �nding an appropriatelanguage and inference mechanism to perform plausible inference, needed toimplement such activities as prediction, decision making, and planning.In this work we study the problem of plausible prediction, i.e., the problemof building predictive models from data in the presence of uncertainty. Ourapproach to this problem is based on the language of Bayesian probabilitytheory both in its traditional and information theoretic form. We studyBayesian prediction theoretically and empirically with �nite mixture models.Such models are interesting due to their ability to accurately model complexdistributions with few parameters. In addition, �nite mixture models canbe viewed as a probabilistic formulation of many model families commonlyused in machine learning and computational intelligence.We �rst address the question of how an intelligent system should predictgiven the available information. We present three alternatives for probabil-istic prediction: single model based prediction, evidence based prediction,and minimum encoding based prediction. We then compare the empiricali



performance of these alternatives by using a class of �nite mixture mod-els. The empirical results demonstrate that, especially for small data sets,both the evidence and the minimum encoding approaches outperform thetraditionally used single model approach.We then focus on the problem of constructing �nite mixture models fromthe given data and a priori information. We give the Bayesian solution forinferring both the most probable �nite mixture model structure, i.e., theproper number of mixture components, and the most probable model withinthe class. For general mixture models the exact solution in both problems iscomputationally infeasible. Thus we also evaluate the quality of approximateapproaches.The Bayesian predictive approach presented can be applied to a wide class ofprediction problems appearing in various application domains, e.g., medicaland fault diagnostic problems, design problems and sales support systems.Using publicly available data sets, we demonstrate empirically that Bayesianprediction with �nite mixtures is highly competitive when compared to theresults achieved with other popular non-Bayesian approaches using, for ex-ample, neural network and decision tree models. The Bayesian predictionmethod presented constitutes the kernel of the D-SIDE/C-SIDE software cur-rently used in industrial applications.Computing Reviews (1991) Categories and Subject Descriptors:G.3. [Probability and Statistics]: Probabilistic algorithmsI.2.3 Deduction and Theorem Proving [Artificial Intelligence]:Uncertainty, \fuzzy," and probabilistic reasoningI.2.6 Learning [Artificial Intelligence]: Concept learning, InductionGeneral Terms:Theory, AlgorithmsAdditional Key Words and Phrases:Bayesian inference, prediction, classi�cation, intelligent systemsii
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Chapter 1Introduction \I am HAL Nine Thousand computer ProductionNumber 3. I became operational at the HALPlant in Urbana, Illinois, on January 12, 1997."|Arthur C. Clarke and Stanley Kubrick in 2001: A Space OdysseyThroughout the history of the science of computing, building intelligent sys-tems has been one of the fundamental objectives, this desire being so greatthat it has given birth to such multidisciplinary research �elds as arti�cialintelligence [121] and computational intelligence [10]. In addition to appeal-ing to computer scientists, these areas have attracted researchers frommanyareas including linguistics, mathematics, physics, neurosciences, psychology,cognitive science and philosophy. Unfortunately, the informal objective ofbuilding an intelligent artifact seems to be the only issue that is commonlyagreed upon. The notion of \intelligence," and even the possibility of ar-ti�cial entities exhibiting intelligent behavior, has been a subject of heateddebate among computer scientists and philosophers since the beginning ofthe computing era (see the discussions in [27, 41, 42, 62, 125, 126], e.g.).One of the early landmarks of this debate, the Turing Test [141], is alreadyapproaching its 50th anniversary.On machine intelligence and plausible inference. For the convenienceof presenting the ideas, let us focus our interest on a hypothetical computingsystem which we will call HAL. The purpose of introducing HAL is not onlynotational; it allows us to avoid some of the verbal confusions of philosoph-ical discussions and perhaps to make some of the points clearer. We will startby inspecting two recent de�nitions for HAL to exhibit intelligence|one fromcomputational intelligence and the other from arti�cial intelligence. Accord-ing to Bezdek [10], HAL exhibits computational intelligence when it1



2 1 Introduction\: : :deals only with numerical (low-level) data, has a patternrecognition component, and does not use knowledge in the AIsense; and additionally when it (begins to) exhibit (i) computa-tional adaptivity; (ii) computational fault tolerance; (iii) speedapproaching humanlike turnaround, and (iv) error rates that ap-proximate human performance."The other de�nition comes from the recent uni�ed framework for arti�cialintelligence, which adopts the view that intelligence is concerned mainly withrational action. In this approach HAL is considered intelligent if it takes thebest possible action in a situation, i.e., it approximates well the behavior ofan ideal rational agent de�ned by Russel and Norvig as follows [121]:\For each possible percept sequence, an ideal rational agentshould do whatever action is expected to maximize its perform-ance measure, on the basis of the evidence provided by the per-cept sequence and whatever built-in knowledge the agent has."These de�nitions reect the two prevailing philosophical approaches tomachine intelligence: the descriptive approach and the normative approach.The descriptive approach is interested in modeling the intelligent behaviorof biological organisms and then reproducing this behavior in computers.The normative approach aims at a prescription for \correct" behavior whosevalue is judged purely on performance grounds. Neither of these approachesis central to the work at hand, however; if forced to take sides, we tend toadopt the normative approach. In spite of their apparent di�erences, bothof the de�nitions implicitly imply the existence of a common component ofmachine intelligence: HAL should be capable of making use of the availableinformation to perform inferences, which help it to work towards a goal ofmaximizing some given performance measure. Vague as it is, let us for amoment study the implications of this observation.In an idealized situation, HAL would have complete information relevantto its performance maximization task and should perform logical inference(with predicate calculus). An example of this type of a task is automatedtheorem proving, where HAL uses its information about the axioms and syl-logisms to infer theorems of interest. Even in this complete information casethere are theoretical and practical limits to HAL's capabilities, as demon-strated by the well-known results of G�odel [57] and Turing [140].Now let us assume that we want HAL to play \Five- Card Stud Poker,"and we de�ne the performance measure to be the amount of money won fromits opponents (whether or not playing poker exhibits intelligent behavior is ofcourse debatable). HAL de�nitely does not have all the necessary information



3available to perform logical inference. On one hand, it meets with a greatamount of uncertainty: it is uncertain which card will be dealt in the nextround, it is uncertain about the values of the cards dealt face down, it isuncertain of the betting strategy of its opponents, it is uncertain whether ameteorite will hit the clubhouse and end the game abruptly before the nextround (in which case maximizing the performance would require HAL to quitimmediately), etc.On the other hand, it has information available in the cards dealt faceup, general information about the composition of the card deck, informationabout the betting behavior of the opponents from the earlier games, informa-tion about celestial mechanics and statistics of a meteorite hitting a particularplace, etc. Since in this context not doing anything is also an act, HAL has toperform inference regardless of the fact that all the necessary information todo logical inference is not available. This type of inference, which HAL doeswith incomplete information, is called plausible inference [109]. The obser-vation that real problems encountered in practice almost invariably requireplausible inference, serves as a starting point of this work.From this perspective, many of the research issues in arti�cial and com-putational intelligence can actually be viewed as topics in the \science ofuncertainty,"1 which addresses the problem of optimal processing of incom-plete information. The various di�erent approaches to model and implementintelligent behavior such as neural networks [63, 80], fuzzy logic [92, 148, 149],non-monotonic (default) logics [97] and Bayesian networks [64, 107] all ad-dress the same fundamental question: what is the appropriate language andinference mechanism for HAL to perform plausible inference, which is neededto implement such activities as prediction, decision making, and planning?Naturally, the answer varies depending on the approach adopted. Many ofthese answers are quite involved and intertwine procedural components, e.g.,\learning algorithms", and representational mechanisms such as graphicalmodels.In this work our purpose is to gradually introduce into the reader's minda perhaps less familiar, Bayesian approach to plausible inference. ThisBayesian language of inference is based on Bayesian probability theory [9, 8]which, instead of a long-run frequency, views probability as a degree of be-lief in an event. Rational, i.e., well-performing, decisions typically rely ongood predictions of unknown information. Therefore we will be interestedin a speci�c capability of HAL's: prediction of unknown quantities based onthe information available to it. During this process we end up developingthe technical contributions of this work: computational machinery o�ering a1Term introduced by Peter Cheeseman.



4 1 Introductionviable solution to a wide class of prediction problems appearing in variousapplication domains. When this process is �nished, however, we will hopethat we have also provided the reader a demonstration of the usability ofhaving a �rm theoretical basis for handling inference under uncertainty aswell as and given a avor of what the Bayesian inference approach can o�erto a practitioner in machine learning and computational intelligence.HAL's speci�cation and Bayesian inference. Let us now return to thedesign of HAL and give some intuitively sensible speci�cations for HAL's rep-resentation of uncertainty.First of all, HAL should be able to express its \view of the world" as well-de�ned propositions (possibly quanti�ed) together with associated plausib-ility values, which describe HAL's belief that the corresponding propositionis true. Furthermore, its plausibility values should be representable as realnumbers in HAL's memory. We would like HAL's beliefs to be context depend-ent: the plausibility of a proposition can depend explicitly on plausibilitiesof other propositions. In addition, HAL should also be capable of hypothet-ical inference, i.e., it should be able to assign plausibilities to conjunctionsof propositions conditioned on the truth of other propositions. In its beliefsHAL should show consistency|it should have equal plausibilities for propos-itions that are believed to have the same logical truth value. Finally, HALshould have a notion of complementarity; its plausibility in the negation of aproposition should be a monotonically decreasing function of the plausibilityof the proposition itself.Interestingly, after this rather informal speci�cation, HAL can be given therules telling how it should calculate the plausibilities of new compound pro-positions from the plausibilities of the original propositions, i.e., the \gram-mar" of its plausible inference. In Chapter 2 we will see that these rulesare the axioms of probability theory, now as a formalization of the notionof \belief" rather than a frequency. Therefore, in this work we will equateplausibility (\belief in a proposition") with the notion of conditional prob-ability, and plausible inference with Bayesian inference [9, 70, 71]2. Therewriting of one of the axioms in a form known as the Bayes' theorem thengives HAL an \update rule," which it can apply when new information isavailable: the new probability of a proposition can be calculated by com-bining the current probability of a proposition and the probability of newevidence given the proposition. This, of course, raises the question of the2It should be observed that with the speci�cation given above, HAL's inference cannotbe based on some alternative approaches such as fuzzy logic [149] or the Dempster-Shafertheory [127] since they violate one or more of the requirements [68].



5initial state of this process, i.e., how does HAL assign the initial probabilitiesso that this update process can be started? In the Bayesian terminologythese initial probabilities are called priors. Chapter 2 concludes with a briefdiscussion on principles for assigning both non-informative and informativepriors.HAL's inferences are based on conditional probabilities. Therefore, inorder to perform inferences HAL has to be able to determine what is therelevant information to condition on its probabilistic conclusions|in otherwords, HAL needs models. Without any loss of generality we can assume thatHAL can model anything of interest with probabilistic models. Thus HAL'smodels describe what the relevant information is and what independenceassumptions it makes. For prediction purposes, it is useful to assume thatHAL's models come from a speci�ed set of models. We will call such a seta model family; it will describe the general structure (e.g., the number ofparameters and their types) of HAL's models. Naturally, HAL can use manydi�erent model families. Bayesian probabilistic modeling has the interestingproperty that it can also be cast in an information theoretic form, wherethe models can be viewed as codes, in which case HAL is interested in shortencodings of the model and the (observed) data together [116, 145]. All thesemodeling issues are discussed in Chapter 3.The main emphasis of Chapter 3, however, is on how HAL implements pre-diction as deductive Bayesian inference, i.e., how HAL uses the model familyand the available data to compute the probability of an unknown quantity.We will describe three alternative methods: a single model based prediction,evidence (model averaging) based prediction, and prediction based on theminimum encoding approach by Rissanen [117].To avoid confusion, one �nal comment on Bayesian modeling is in order.All inference HAL performs is conditioned on a model or a set of models. Thefact that HAL uses a speci�c probabilistic model or a model family for itsinference does not mean that HAL (or we) believe that probabilistic models aresomehow an inherent property of the reality fromwhich the data observed byHAL are generated. A model family is only a language which HAL can use toexpress constraints for the data of interest. For any given model family andthe results HAL exhibits, there is no way of knowing that there is not anothermodel family which HAL could use, and still show similar performance in itspredictions. In fact, in most cases such an alternative model family exists.Reality, of course, is neither way.Up to this point we have discussed very generic aspects of HAL's designrelative to a non-identi�ed model family. In Chapter 4 we �x HAL's modelfamily to be the set of �nite mixture models [138], with the restriction that



6 1 Introductionthe observed data are discrete. The choice of this particular model family isnot an arbitrary one|using �nite mixture models corresponds to providingHAL with a set of probabilistic concepts [47] from which the attributes (orfeatures) of data are the part HAL is able to observe. In addition, many modelfamilies commonly used in machine learning and computational intelligencecan be given a probabilistic interpretation as mixture models. Chapter 4discusses how HAL's three predictive methods can be implemented in the caseof �nite mixtures. The chapter is concluded by giving a comparison of theempirical prediction performance of all the methods for a particular subclassof �nite mixtures called the Naive Bayes family, where all the methods canbe implemented without the approximations needed for the general mixturemodels. As far as we know, the comparison performed is the �rst of itskind|in fact, we are not even aware of any other application of Rissanen'snew encoding approach.Chapters 3 and 4 discuss the use of Bayesian inference for deductivepurposes, i.e., how HAL's predictions should be performed given a model (ora set of models). Still, HAL has to somehow establish these models. Thereis nothing in the Bayesian inference formalism that restricts its applicabil-ity to probabilistic deduction. It is also possible to do Bayesian inductionand let HAL use the update rule to infer probabilistic models from its data.Consequently, Chapter 5 applies the general Bayesian modeling frameworkof Chapter 3 for the construction of �nite mixture models from the data.This construction is essentially a search process for high probability mod-els from the model family. As opposed to the more restricted Naive Bayesmodel family discussed in Chapter 4, we will demonstrate that for the gen-eral mixtures this search can only �nd approximations of the most probablemodels.After the theoretical introduction to HAL's Bayesian predictive frameworkwith �nite mixture models, one can question how the developed machineryperforms in practice. HAL's design was motivated by the need to give it thecapability to predict well. In many practical applications, HAL has to resortto building predictive models using only domain data with very little or noprior information. The advantage of discussing predictive modeling is thatthe methods can be validated, at least to a degree, by inspecting HAL's ac-tual predictive performance, either with benchmark data sets or with realapplications. The Bayesian predictive framework described in this work hasbeen tested in both respects. It constitutes the kernel of the D-SIDE/C-SIDEsoftware currently applied for industrial applications. In Chapter 6 we re-port empirical results with publicly available common classi�cation bench-marks and evaluate HAL's Bayesian predictive framework against the results



7achieved with other popular model families such as neural networks anddecision trees using non-Bayesian approaches.From the discussion above, it should not be concluded that Bayesianinference is simple and understood in all its details. On the contrary, theBayesian approach is open-ended, and new Bayesian analysis methods areconstantly being developed, as witnessed by the various conference series ontopics such as \Bayesian Statistics" and \Maximum Entropy and BayesianMethods". Bayesian inference applied to real problems requires instantiationof the general principles in the case of a particularmodel family, which can bea complex (and sometimes even controversial) task involving computationalissues (see, e.g., [56]). In Chapter 7 we discuss how HAL's design could beimproved with several extensions of the work described here.Contributions and research history. For building predictive models,numerous alternatives to the approach discussed in this work are avail-able, including non-probabilistic and probabilistic neural networks, decisiontrees, rule-based systems, statistical discrimination techniques, and generalBayesian network modeling. Recently other multiple-model approaches suchas boosting [50] and bagging [16] have also been introduced. Although theBayesian prediction described in this work provides a consistent and the-oretically justi�ed formal framework for prediction, one can ask what ourwork has to o�er to the practitioner developing predictive models. There areseveral answers to this question:� Principled approach to avoid over�tting of data when the model is con-structed. Bayesian methods with any model family have an \in-built"mechanism for the appropriate tradeo� between the model complexityand �t to the data. Thus the ad hoc approaches to selection of themodel structure, or extra regularization and penalization terms usedin many machine learning and neural network approaches, are not ne-cessary.� Time-e�cient prediction. Although general Bayesian networks useconditional independence to simplify Bayesian prediction, even ap-proximate prediction using an arbitrary Bayesian network for discretevariables is NP-hard [34]. By restricting our approach to �nite mixturemodels (corresponding to a one-level Bayesian tree), exact Bayesianprediction can be performed e�ciently.� Controlled model construction time. For the general mixture modelslearning time, i.e., the time to search for the best model, is relative tothe number of local maximum models explored by stochastic search.



8 1 IntroductionThus the more time one has, the better the resulting models are. Forfast results, one can limit the number of searches and use the bestmodel found up to that point. If one restricts the search to modelsfrom the Naive Bayes model family, the model construction requiresonly one pass through the data and consequently is very e�cient.� Good prediction performance with small data sets. As opposed to tra-ditional single-model based approaches such as feed-forward neuralnetworks with backpropagation learning or decision trees, the possib-ility to use multiple-model prediction allows construction of modelsthat predict well even with small data sets. This is important in manypractical applications, where gathering of observational data is expens-ive. Both the evidence based prediction and the stochastic complexitybased prediction with the Naive Bayes model family exhibit this be-havior.� Natural handling of incomplete data. Many traditional model con-struction approaches produce inaccurate models in the presence ofmissing data, and typically omit data if part of the values are miss-ing. The Bayesian approach described in this work models the fulljoint probability distribution of the domain; thus it can handle miss-ing values in inputs for both model construction and the predictionphases.� Very few \technical" parameters to be provided by the user. Manymethods to construct predictive models require the user to specifya substantial number of technical parameters that control the modelsearch process, feed-forward backpropagation neural networks beingperhaps the most notorious example. In our approach the user needsto provide very few parameters if non-informative priors are used andthe prediction method is �xed. For the general mixture models only theconvergence criteria for the search algorithm, the maximum number ofmixture components and the number of individual searches for eachmixture size are required. The Naive Bayes prediction exhibits theextreme case by requiring only the information about which one of thevariables is the class variable.Many of the ideas and results in this monograph have been published inpreliminary form as joint works with various members in the Complex Sys-tems Computation Group. This monograph aims to be more approachablethan those research papers by containing some introductory material as welland by presenting the Bayesian inference especially to the computer science



9audience. Furthermore, in some cases the published ideas and results appearhere in an improved and polished form.The main contribution of Chapters 3 and 4, the formulation and com-parison of the three alternative methods for predicting with the Naive Bayesmodel family, is joint work with Peter Gr�unwald from CWI and was pub-lished in [86]. To our knowledge, this comparison is the �rst of its nature, inparticular concerning the formulation and application of the predictive formof Rissanen's recent version of stochastic complexity.The empirical comparisons of the evidence approximations discussed inChapter 5 for the complete data evidence case appeared in [88], and thosefor the incomplete data evidence case in [91]. The latter is unique in therespect that it evaluates the Cheeseman-Stutz approximation against cross-validation, an empirical technique commonly used for model class selectionin machine learning, neural network community and statistics. In addition,both of these studies use natural data sets instead of synthetic data sets suchas the ones used in [65].Many of the empirical prediction results presented in Chapter 6 werepublished in [90, 136]. Some of the results have been improved since then,and we have added here the results achieved with the Naive Bayes modelfamily. The latter paper also discusses the novel idea of viewing lazy learn-ing from Bayesian perspective (the related discussion on Bayesian Case-Based Reasoning appeared in [135]). The details of the EM algorithm forthe speci�c Bayesian �nite mixture case for multinomial distributions werepresented in [89]. The updated results reported in Chapter 6 also indicatethat our C-SIDE/D-SIDE implementation of the Bayesian �nite mixture ap-proach outperforms any Naive Bayes classi�er and general Bayesian networklearning algorithm of which we are currently aware.
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Chapter 2Bayesian language for inference\Inside every nonBayesian there is a Bayesian struggling to get out."|Dennis V. LindleyIn any realistic application, HAL cannot have perfect information on which itcould base its inference. Therefore, to be able to perform as well as possible,HAL has to be provided with a plausible inference framework, which allowsit to evaluate the plausibility of unknown facts given its incomplete \viewof the world." In particular it needs a procedure to change its beliefs whennew observable data arrive. This chapter discusses the Bayesian alternativeamong such frameworks.We start by de�ning a set of simple desirable properties HAL shouldexhibit when performing plausible inference. For our purposes it is su�cientto assume that HAL reasons about two-valued logic propositions. From theproperties de�ned in Section 2.1 the \grammar of Bayesian inference" arisesas a natural consequence (Section 2.2). Therefore the rules that tell HALhow to calculate the plausibilities of new compound propositions from theplausibilities of the original propositions are the product and sum rules inthe Bayesian probability theory, on which all the work here is based.The grammar, however, is only half of of the required theory. HAL stillfaces the problem of initial plausibility assignments, i.e., how to assign nu-merical values for the propositions in the �rst place. This topic is brieyaddressed in Section 2.3. We conclude the chapter by discussing Bayes' the-orem, which gives HAL an update rule to adjust its plausibility assessmentswhen the state of knowledge regarding the proposition of interest changesthrough the acquisition of new data (Section 2.4). This central viewpointof Bayesian inference|that belief is fundamentally an update process|isquite natural one for computer science; however, historically it has been the11



12 2 Bayesian language for inferencemain reason for the rejection of the Bayesian approach because the startingpoint of this process, the use of priors, is controversial.Many di�erent sets of desirable properties for plausible inference, akinto the ones used here for HAL, have been proposed in the literature [36, 58,113, 122]. Perhaps the most famous of these is the widely cited work byCox [32, 33] (for a recent re�ned version of the original formal derivationby Cox see [106] and for the counterexample to the original proof see [61]),the properties used here follow the ones introduced by Jaynes in [69, 70](see also the discussion in [22, 68, 94]). Interestingly, each of these sets ofproperties leads to the same set of rules|the rules of Bayesian probabilitytheory. In the presence of alternative frameworks for plausible inference,such as fuzzy logic [148] or Dempster-Shafer theory [127], in our view thisinsensitivity to the choice of properties provides a particularly compellingargument for using Bayesian probability as a measure for plausibility. It isalso notable that a rigorous mathematical framework can be erected upon asuch an apparently vague notion of a measure of degree of plausibility.2.1 The desiderata for plausible inferenceLet us now de�ne the qualitative properties to be satis�ed by HAL's plausibleinference.Desideratum 2.1 Degrees of plausibility are represented by real numbers.This representation property is essentially motivated by the requirementthat, to be able to manipulate plausibilities, HAL has to be able to storeand modify them, and thus they must be associated with some physicalquantity. Therefore there has to be some kind of association between degreesof plausibility and real numbers. More theoretical justi�cations for using realnumbers as plausibilities can be found in [70, 107]. We take it as a conventionthat propositions with the same truth value must have equal plausibility, andthat a greater plausibility will correspond to a greater number. In additionwe assume also a continuity property, a very small increase in plausibilityought to correspond only to a slightly greater number.In general HAL assigns the plausibility to some proposition H given thetruth of proposition D. Following the common notation we indicate this bythe symbol H jD which can be called the (conditional) plausibility that H istrue, given thatD is true1. It should be noticed that plausibilities are alwaysconditional, i.e., they are always relative to HAL's state of knowledge. Wefrequently need several conditioning propositions, thus logical conjunction is1IfHjD appears in the running text, for clarity of expression we often add parentheses.



2.1 The desiderata for plausible inference 13denoted by HD and logical disjunction by H +D. In addition, the logicalnegation of H is denoted by �H. Finally (H jDI) is not de�ned when D andI are mutually contradictory.Desideratum 2.2 Direction of inference has a qualitative correspondencewith common sense.This second desideratum is related to HAL being able to perform inferencethat does not contradict common sense. It should be noticed that for us thisdoes not mean an attempt to model human common sense, we just want toinclude a property which we argue \rational" inference should have|afterall, our approach to HAL's design is normative. Accordingly if HAL has oldinformation I which gets updated to I 0 in such a way that the plausibility ofH is increased, i.e., (H jI 0) > (H jI);and the plausibility of D given H is not changed, i.e.,(DjHI 0) = (DjHI);this can produce only an increase in the plausibility that both H and D aretrue. In other words for such a situation(HDjI 0) � (HDjI);and the plausibility that H is false has to be decreased( �HjI 0) < ( �HjI):This qualitative property of inference simply gives HAL a sense of directionin its inference. It should be observed that the property says nothing abouthow much the plausibilities change, except that our continuity assumptionnow requires that if the change in (H jD) is small, it can induce only a smallchange in (HDjI) and ( �HjI).The last set of desiderata is related to consistency of inference. Thisconsistency requirement can be described with three di�erent properties.Desideratum 2.3 (Internal consistency.) If a conclusion can be inferredin more than one way, every possible way must lead to the same result.Desideratum 2.4 (Propriety.) HAL always takes into account all of theinformation that is relevant to a question.Desideratum 2.5 (Jaynes consistency.) Equivalent states of knowledgemust be represented by equivalent plausibility assignments.



14 2 Bayesian language for inferenceOf these desiderata the last two properties can be seen as input/outputrequirements for HAL 's inference. The \Propriety" desideratum requires thatin plausible inference all the relevant evidence has to be used, in particularthat all the relevant input data has to be taken into account. From the\Jaynes consistency" property (introduced by Jaynes in [69]) it follows that ifin two problems HAL 's state of knowledge is the same (excluding propositionlabeling), then the same plausibilities must be assigned in both cases.Perhaps somewhat surprisingly, the set of properties listed above, to-gether with some technical properties of monotonic functions, uniquely de-termines how HAL must perform inference, i.e., there is only one set of math-ematical operations for manipulating plausibilities which has all these prop-erties.2.2 The probability axioms: the grammar ofBayesian inferenceHaving now formulated the requirements for plausible inference it is a matterof straightforward mathematics to work out the consequences of our desid-erata. Given two or more propositions, other more complicated propositionscan be built by considering them together. Thus we need rules to tell ushow the plausibilities of the new compound propositions can be calculatedfrom the the plausibilities of the original propositions, i.e., we would like to�nd out the \grammar" for our theory. Here we assume that the originalplausibilities are given. How such initial assignments are done is the topicof Section 2.3.In order to be useful, the plausibility calculus has to be powerful enoughto enable HAL to calculate the plausibility of any proposition built from otherpropositions using Boolean algebra. Since it is well known that only a subsetof the common logical operations is needed to generate all possible proposi-tions, we can restrict our discussion on only two of them: conjunction andnegation. The properties listed in Section 2.1 are su�cient to specify therules for calculating the plausibility of a negated proposition and of the con-junction of two propositions leading to the sum rule and the product rule,correspondingly. Full detailed derivation of these rules is quite involvedand lengthy and thus omitted, as our interest here is to focus on develop-ing Bayesian inference for a particular domain, i.e., for the �nite mixturemodel family. The argumentation in the proofs, however, is interesting forthe intuitive justi�cation of Bayesian inference, and since the details of theoriginal proofs by Cox [32, 33], Acz�el [1] and Jaynes [69, 70] are not widelyknown, we will outline the intuitive idea in the derivation of the product



2.2 The probability axioms: the grammar of Bayesian inference 15rule, and present results of the analogous derivation of the sum rule. Forfurther details the references mentioned in the beginning of this chapter maybe consulted.2.2.1 The product ruleWe �rst seek a consistent rule relating the plausibility of the logical product(HD) to the plausibilities of H and D separately. In particular, let us �nd(HDjI). The separate plausibilities of H and D that may be known to usinclude the four quantitiesu = (H jI); x = (DjI); y = (H jDI); v = (DjHI):By the \Propriety" Desideratum, we should use all of these assuming theyare relevant.Now Desideratum 2.2 can be used to determine if only a subset of thesefour quantities is actually relevant. For example, common sense indicatesthat (HDjI) cannot depend on only one of x; y; u; or v. This leaves elevencombinations of two or more of these plausibilities. A little deeper thoughtreveals that most of these combinations violate common sense. For example,if (HDjI) depended only on u and x we would have no way of expressingthe possibility that H and D are exclusive. Carrying out this somewhattedious analysis, Tribus [139] shows that all but two of the possibilities canexhibit qualitative violations of common sense in some extreme case. Theonly possible relevant combinations are x and y, or u and v. Intuitively thisfollows from the fact that there are two ways a decision about the truth of(HD) can be broken down into decisions about H and D. We can eitherdecide that H is true, and then, accepting the truth of H decide that Dis true. Or, vice versa, we �rst decide that D is true and then make ourdecision about H given the truth of D. By the commutativity of logicalconjunction, we can exchange H and D in all the quantities. Consequently,since the di�erent pairs x; y and u; v merely reect the ordering of H andD, we may focus on one pair.Let us now denote z = (HDjI). Thus we seek for a function F such thatz = F (x; y): (2.1)At this point the \Internal consistency" (Desideratum 2.3) can be used bysetting up a problem that can be solved two di�erent ways, and by requiringthe solutions to be identical. Suppose we try to �nd the plausibility that threepropositions H;D; I would be true simultaneously. The joint proposition



16 2 Bayesian language for inference(HDI) can be built in two di�erent ways: (HDI) = H(DI) = (HD)I .From the former of these equations and (2.1) we know that(HDI jJ) = F ((DI jJ); (H jDIJ));where (DI) is treated as a single proposition. Similarly from the secondequality we get (HDI jJ) = F ((I jJ); (HDjIJ)):Repeated application of (2.1) and the \Internal consistency" now requiresthat the function F obeys the equationF (F (x; y); z) = F (x; F (y; z));for all real values of x, y, and z, i.e., \the associativity equation" of Acz�el [1]who derives the general solution in Equation (2.2). The better known shorterproof presented by Cox [33] assumes di�erentiability. The general solutionto this functional equation isF (x; y) = w�1(w(x)w(y)); (2.2)where w(x) is any positive, continuous, monotonic function of plausibility.Thus we have not uniquely speci�ed F , but constrained its form. Using thissolution with (2.1), the consistency requirement tells us thatw(HDjI) = w(H jDI)w(DjI) (2.3)Equation (2.3) is called henceforth the product rule. The result has beenderived as a necessary condition for the Internal consistency property. Con-versely, it is evident that (2.3) is also su�cient to ensure this consistencyfor any number of joint propositions.The requirements of qualitative correspondence with common sense im-pose further conditions on the function w(x). For example, suppose thatin Equation (2.3) H is certain, given I . Then in the context produced byknowledge of I , the propositions (HD) andD are the same, in the sense thatone is true if and only if the other is true. By the most primitive propertyof all, propositions with the same truth value must have equal plausibility,hence (HDjI) = (DjI)and also we will have (H jDI) = (H jI)



2.2 The probability axioms: the grammar of Bayesian inference 17because if H is already certain given I , then given any other information Dwhich does not contradict I , it is still certain. In this case, (2.3) reduces tow(DjI) = w(H jI)w(DjI)and this must hold no matter how plausible or implausible D is to HAL. Thusthe function w(x) must have the property that certainty is represented byw(H jI) = 1.Similarly we can suppose that H is impossible, given I . It follows thatthe proposition (HD) is also impossible given I :(HDjI) = (H jI)and if H is already impossible given I , then given any further informationD which does not contradict I , H would still be impossible:(H jDI) = (H jI):In this case, (2.3) reduces tow(H jI) = w(H jI)w(DjI) (2.4)and again this equation must hold no matter what plausibility D mighthave. There are only two possible values of w(H jI) that could satisfy thiscondition; it could be 0 or +1 (the choice �1 is ruled out because thenby continuity w(DjI) would have to be capable of negative values and (2.4)would then be a contradiction).In summary, qualitative correspondence with common sense requires thatw(x) be a positive continuous monotonic function. It may be either increas-ing or decreasing. If increasing, the function must range from zero for im-possibility up to one for certainty, if decreasing, it must range from 1 forimpossibility down to one for certainty. Thus far, our conditions say nothingat all about how it varies between these limits. However, these two possibil-ities of representation are not di�erent in content. Given any function w1(x)which is acceptable by the above criteria and represents impossibility by1,we can de�ne a new function w2(x) � 1=w1(x), which will be equally accept-able and represents impossibility by zero. Therefore, there will be no lossof generality in adopting the familiar choice 0 � w(x) � 1, but one shouldobserve that it is chosen here as a convention.2.2.2 The sum ruleThe propositions being considered are of the Aristotelian logical type whichmust be either true or false, hence we know that the logical product (H �H)



18 2 Bayesian language for inferenceis always false, and the logical sum (H + �H) always true. The plausibilitythat H is false must depend in some way on the plausibility that it is true.In other words, if we de�ne r � w(H jD) and s � w( �HjD), there must existsome functional relation s = S(r). Similar to the derivation in the previoussection Desiderata 2.2 and 2.3 lead to a functional equation whose solutionimplies that for some positive m (see [69, 70])wm(H jD) + wm( �HjD) = 1: (2.5)From the discussion above we know that associativity of the logical productrequires that some monotonic function w(x) of the plausibility x = (H jD)must obey the product rule 2.3. Now this same function must also obey thesum rule in (2.5). We can write the product rule equally well aswm(HDjI) = wm(H jI)wm(DjHI) = wm(DjI)wm(H jDI)which shows that the value of m is actually irrelevant; for whatever value ischosen, we are free to make a simple change of variables from w(x) to thedi�erent monotonic function p(x) � wm(x), so that we may always writep(HDjI) = p(H jI)p(DjHI) = p(DjI)p(HjDI) (2.6)and p(H jD) + p( �HjD) = 1: (2.7)It should be observed that this entails no loss of generality, for the onlyrequirement imposed on the function w(x) is that it is a continuous mono-tonic increasing function ranging from w = 0 for impossibility to w = 1for certainty. But if w(x) satis�es this, then so does wm(x), 0 < m < 1.Consequently allowing di�erent values of m does not give us any freedomthat did not exist already in the arbitrariness of w(x). All possibilities al-lowed by our desiderata are contained in (2.6) and (2.7) in which p(x) is anycontinuous monotonic increasing function with the range 0 � p(x) � 1.2.2.3 Relation to logical inferenceWe have seen that the equations (2.6) and (2.7) follow as natural con-sequences from the properties assumed for HAL's plausible inference. Justas conjunction and negation are an adequate set for logical inference, HAL isable to derive all legitimate relationships between plausibilities from theseproduct and sum rules.Plausible inference allows HAL to reason in the presence of uncertainty.In the extreme case where all the necessary information is available, however,



2.2 The probability axioms: the grammar of Bayesian inference 19HAL's inference should not contradict logical inference. Let us now briey ex-amine how the plausible inference based on equations (2.6) and (2.7) relatesto logical inference.From (2.7) it is obvious that in the limit as p(H jD) approaches 0 orp(H jD) approaches 1, if H is true, then �H must be false. Logical inferenceis based on the two syllogismsH ) DH trueD true H ) DD falseH false (2.8)and their consequences. From (2.6) we getp(DjHI) = p(HDjI)p(H jI) p(H j �DI) = p(H �DjI)p( �DjI) (2.9)Now if we de�ne I � (H ) D), from (2.8) it follows that p(HDjI) = p(H jI)and p(H �DjI) = 0 and thus (2.9) becomesp(DjHI) = 1 p(H j �DI) = 0 (2.10)as stated in the original syllogisms. Therefore HAL will perform logical in-ference \in the limit", i.e., when it becomes more and more certain on itsconclusions.After this exercise the connection between plausible inference and theBayesian probability theory becomes evident. Equations (2.6) and (2.7) arethe familiar \axioms" of probability theory, and thus we can identify thequantity p(H jD) as the probability (i.e., belief) of H given D. That is,probability in this study is taken to be a technical term referring to a mono-tonic function of plausibility obeying the equations (2.6) and (2.7). Oneshould not be deceived by the intuitive simplicity of this result|it showsthat assuming the desiderata presented in Section 2.1 together with sometechnicalities required during the derivation every allowed extension of Ar-istotelian logic to plausibility theory is isomorphic to Bayesian probabilitytheory2. The di�erent choices of the monotonic function p(x) correspond2One should observe that one of the underlying assumptions is that we extend two-valued logic to plausible inference. A proposition H can only be true or false, but theBayesian probability theory tells us how plausible the truth of H is. Therefore our dis-cussion does not directly address approaches to plausible inference which violate the \lawof excluded middle", in particular it does not address the fuzzy approaches [92]. In fact,some of the fuzzy approaches violate already our desiderata by assuming independence inthe product rule [21, 68].



20 2 Bayesian language for inferenceonly to di�erent ways HAL stores plausibility values internally; HAL's ex-ternally observable behavior would be just the same. In fact, since p(x) isa monotonic function of x, the plausibility x is a monotonic function of pde�ned in 0 � p(x) � 1. Of all the possible functions x(p) one can thenchoose the one speci�ed by x(p) = p, since this leads to the simplest rulesof combination, equations (2.6) and (2.7).Hereinafter we will move from talking about plausibilities to using prob-abilities, and state the product rule and sum rule as axioms. In the followinglet H;D; I be propositions.Axiom 2.1 (Product rule) The probability of the logical product (HDjI)is the (arithmetic) product of the probabilities (H jI) and (DjHI), i.e.,p(HDjI) = p(H jI)p(DjHI):Axiom 2.2 (Sum rule) The sum of the probability of a proposition (H jI)and the probability of its logical negation ( �HjI) is 1, i.e.,p(H jI) + p( �HjI) = 1:As noted already earlier, this isomorphism of allowed plausibility theoriesto probability theory can be derived for similar sets of properties other thanthe one used here for HAL. It should be observed, however, that alternativechoices for implementing HAL's plausible inference exist, the most notableones being the various fuzzy logic approaches [92, 149], and the Dempster-Shafer theory [127]. There is an ongoing debate about the advantages anddisadvantages of these approaches with respect to Bayesian inference, butreviewing this discussion is beyond the scope of our work (for more detailsan interested reader is referred to the recent monograph by Paris [106] andthe articles by Cheeseman [21, 22]).We are interested in building intelligent systems capable of inference withincomplete information. From this perspective, the logical approach for theBayesian inference presented is the most natural one. We should point out,however, that the foundations of Bayesian probability theory can also bebased on other than logical aspects, such as the operational considerationspresented in [9].2.3 Assigning probabilities: the vocabulary of in-ferenceWe have discussed the rules by which HAL can manipulate plausibilities,and observed that the equations derived are in fact the axioms of Bayesian



2.3 Assigning probabilities: the vocabulary of inference 21probability theory. We have left open, however, the problem how HAL assignsactual numerical values to propositions. The situation is analogous to logicalinference, where the truth of certain propositions can be inferred given thetruth or falseness of other assumed propositions, which are provided as inputto the theory. Similarly, for plausible inference we need to assume thatsome \input" probabilities are assigned directly, as opposed to being derivedfrom other probabilities using Axioms 2.1 and 2.2. Thus we seek rulesfor converting information about propositions into numerical assignments ofprobabilities. In Bayesian probability theory all probabilities are conditionedby propositions that indicate exactly what was assumed in the assignmentof a probability, i.e., the probabilities are not properties of the propositionsthemselves. In this sense they are \subjective" and describe HAL's stateof knowledge, not states of nature. But they are \objective" in that allconditioning information has to be taken into account (Desideratum 2.4) andthat equivalent states of knowledge are represented by equal probabilities(Desideratum 2.5).Finding general rules for converting information D into a probabilityassignment p(H jD) is an important part of the Bayesian probability theoryand present in the choice of prior distributions (see discussion in Section 2.4).Development of such rules for di�erent types of information is still a topicof ongoing research. Here we will only briey outline some of the mostelementary approaches (for more detailed discussion see e.g., [8, 55, 70]).2.3.1 Non-informative probabilitiesThe simplest type of information we can have about some propositionH1 is aspeci�cation of the alternatives fH2,H3, : : :g to it. Probability assignmentsthat use only this information are referred to as non-informative probabilities.For example assume Problem I where we have two propositions H1 andH2 and we only know that these propositions form an exhaustive set ofexclusive alternatives. For notational reasons let us de�ne I � H1 +H2 toindicate the conditioning information. The propositions are exclusive, thusp(H1H2jI) = 0 and Equation (2.7) implies that p(H2jI) = 1� p(H1jI). Letus now consider Problem II which di�ers from Problem I only in relabelingof the propositions in such a way that H2 is replaced by H 01 and H1 by H 02.The \new" conditioning information is thenI 0 = H 01 +H 02 = H1 +H2 = I:Evidently p(H 01jI) = p(H2jI), and p(H 02jI) = p(H1jI). Now, if informationI is indi�erent toH1 and H2, the state of knowledge in Problem II regardingH 01 and H 02 (including their labeling), is the same as that in Problem I. By



22 2 Bayesian language for inferenceDesideratum 2.5 we have assumed that HAL represents equivalent states ofknowledge by equivalent probability assignments, hencep(H 01jI) = p(H1jI): (2.11)But from this observation it follows that p(H2jI) = p(H1jI) which by Ax-iom (2.2) implies p(H1jI) = p(H2jI) = 1=2;i.e., we can assign a numerical value for the probabilities. It is easy tosee that the above line of reasoning with symmetry equations (as equationssimilar to (2.11) are called [70]) can be generalized to a set fH1; : : : ; Hng ofn exclusive, exhaustive propositions, leading to the assignmentsp(HijI) = 1=n; (1 � i � n); (2.12)better known as the Principle of Indi�erence. As noted by Jaynes [70], thisintuitive result has important consequences for HAL's behavior; if it were toassign any values di�erent from (2.12), by mere permutation of labels therewould exist another problem where HAL's state of knowledge is the same, butit would assign di�erent probabilities. In the experimental part of the workdescribed here this Principle of Indi�erence is present in the use of uniformprior densities for model parameters.Principle of Indi�erence is useful to HAL when the set of possibilities is�nite, but the analysis becomes much more di�cult when the set of altern-atives is in�nite, e.g., when we want to assign probabilities to the possiblevalues of continuous parameters. For such an in�nite case the \transforma-tion trick" of transforming the original problem to an equivalent one may bevery hard. For the �nite case above, the only transformation that preservesthe identity of the alternatives is permutation. In the continuous case, there isan in�nite number of possible re-parameterizations. Obvious generalizationof Laplace's Principle of Indi�erence is problematic as it lacks invarianceunder transformation (see [9, 118] for discussion). In one of the continu-ations of the work reported here [87] we illustrate the di�erences when moresophisticated non-informative probability assignments, such as Je�reys' in-variance principle [72], are used instead of uniform densities. For a moredetailed discussion on rules for assigning non-informative probabilities incontinuous cases the reader is encouraged to consult the excellent book byBerger (Chapter 3) [8] and the references therein.



2.3 Assigning probabilities: the vocabulary of inference 232.3.2 Informative probabilities and the Principle of Max-imum EntropyIn addition to the speci�cation of alternatives fH1,H2, : : :g, we may havesome additional informationwhich leads us to probability assignments di�er-ent from the non-informative ones discussed above. It is obvious that sometypes of prior information are too vague to be translatable into mathemat-ical terms usable by HAL. Therefore in practice the minimum requirement oftestability of information is needed before HAL can assign prior probabilit-ies. The information IE is testable with respect to Hi if, given any priorprobability assignment over the Hi, there exists a procedure that determinesunambiguously whether the assignment is consistent with the informationIE . In general there may exist several distributions consistent with test-able information IE. A classical example of testable information is the casewhere the prior mean is speci�ed (e.g., the mean value of many rolls ofdice being 2.5) and among the prior distributions with this mean the mostnon-informative distribution is sought. If we denote by F the operation ofaltering a non-informative distribution to reect testable information IE, wecan write p(H jIIE) = F(p(H jI); IE):Interestingly it can be shown [70, 128] that the desiderata presented in Sec-tion 2.1 are su�cient to uniquely specify the operationF . Thus for such caseHAL will select among all the possible normalized distributions (p1; : : : ; pn)satisfying the constraints imposed by IE , the one with maximum informationentropy as de�ned (in the �nite case) byH(p1; : : : ; pn) = � nXi=1 pi lg pi: (2.13)This Maximum Entropy Principle assignment represents the most objectivedescription of what HAL knows about the propositions fH1,H2, : : :g. Like thePrinciple of Indi�erence, also Equation (2.13) can be generalized to the in�n-ite case, but its use comes more complicated due to the lack of a completelynatural de�nition of entropy for continuous spaces. For illustrative workedexamples of the maximum entropy assignments see [118, pp. 210{314].Above we have discussed the justi�cation of the Principle of Indi�er-ence based on the desiderata we assumed for HAL's inference. When HALassigns uniform prior probabilities, it is in fact applying maximum entropy(albeit in such a simple case that the formalization and derivation in [128]are unnecessarily complex). In practice, however, much more information iscommonly used in prior probability assignments by assuming that the distri-bution has a speci�c (parametric) form, which in fact expresses independence



24 2 Bayesian language for inferenceassumptions. The motivation for such assumptions is often computationaland mathematical convenience, which is one of the main advantages of theuse of the so called conjugate priors discussed later on.2.4 Bayes' theoremHAL can derive all legitimate relationships between probabilities from theproduct and sum rules in Axioms 2.1 and 2.2. There is, however, onestraightforward consequence of Axiom 2.1 which has proven to be so usefulthat it is usually stated as a theorem.Theorem 2.1 (Bayes' theorem, Bayes 1763, Laplace 1774) Let usassume that fH1; : : : ; Hng is a set of n exclusive, exhaustive propositions,and 1 � j � n. Thenp(HjjDI) = p(HjjI)p(DjHjI)Pnj=1 p(DjHjI)p(HjjI) :Proof 2.1 Let us �rst derive a generalized sum rule from Axioms 2.1and 2.2. p(H +DjI) = 1� p( �H �DjI)= 1� p( �HjI)p( �Dj �HI)= 1� p( �HjI)(1� p(Dj �HI))= p(H jI)+ p( �HDjI))= p(H jI)+ p(DjI)p( �HjDI))= p(H jI)+ p(DjI)� p(HDjI)):The equation p(H +DjI) = p(H jI) + p(DjI)� p(HDjI)) (2.14)is clearly a generalization of the sum rule in Axiom 2.2.Now to the actual derivation. Propositions (HD) and (DH) are obvi-ously identical as the ordering is irrelevant. Axiom 2.1 implies thatp(HiDjI) = p(HijDI)p(DjI) = p(DjHiI)p(HijI)from which we can solvep(HijDI) = p(HiDjI)p(DjI) = p(DjHiI)p(HijI)p(DjI) :The theorem now follows from the generalized sum rule (2.14) when it isapplied to proposition D = DH1 +DH2 + : : :DHn. �



2.4 Bayes' theorem 25The four elements, p(HijI); p(DjHiI); p(HijDI) and p(DjI) present inBayes' theorem appear throughout Bayesian statistics with di�erent names.In order to have a standard terminology we de�ne them as follows.De�nition 2.1 Let fH1; : : : ; Hng be a set of n exclusive, exhaustive pro-positions, and D; I propositions. Then (1 � i � n)� p(HijI) are called the prior probabilities of the Hi,� p(DjHiI) are called the likelihoods of the Hi given D,� p(HijDI) are called the posterior probabilities of the Hi given D,� p(DjI) are called the evidence of the D.The likelihood term is also known as the sampling distribution, and the evid-ence is sometimes called the marginal likelihood or predictive probability [9].This last term such not be confused with the predictive distribution as usedin this work.Theorem 2.1 has proven to be so important in the Bayesian probabilitytheory that the whole �eld is so-called due to its wide use of Bayes' theoremto assess hypotheses. This becomes obvious by giving proper interpretationsto the propositions H;D and I . Typically Hi is a hypothesis HAL wants toassess, D some relevant data (to the hypothesis) that HAL has, and I somebackground information indicating the way in which Hi and D are related,also specifying any alternatives that may exist for Hi. Here we can see theintimate relationship between Bayes' theorem and HAL's learning. Bayes'theorem is an \update rule" that indicates how HAL adjusts its plausibilityassessments when the state of knowledge regarding the hypothesis changesthrough the acquisition of new data.One should be careful not to misinterpret the terms \prior probability"and \posterior probability" necessarily to mean \earlier in time" and \laterin time". Their semantics is only with respect to the particular chain ofinference being made. The distinction is only conventional, not fundamental.Similarly the separation of the information available to prior information anddata is a choice made by the modeler, and used only to organize a chain ofinferences. Thus there is only one kind of probability; the di�erent namesrefer only to a particular way of organizing HAL's calculation in a particularcase.Up to this point HAL's inference framework has only been used with a�nite set of hypotheses fH1; : : : ; Hng. In addition the arguments of theformal probability symbol p(�) have been propositions such as



26 2 Bayesian language for inferenceH � \Class CS101 has N students, of which M are blue-eyed.We pick one student randomly and observe."D � \The student selected is blue-eyed."From next chapter on, we will be continuously interested in hypotheses withreal-valued parameters, and thus follow the custom of most contemporaryworks and relax our notation to allow also real-valued variables such as �, ornumerical values such as xi as arguments, i.e., we allow for example notationp(x1; x2; : : : ; xm�1j�):In addition, when using variables, values and sets as arguments of the prob-ability p, to avoid ambiguity in denoting the conjunctions, we will move fromusing catenation to using \," instead, i.e., p(xij�b;Mk) means the conditionalprobability ofXi = xi given both � = �b andM =Mk. Finally, HAL's infer-ence can be extended to allow continuous variables (values) � as arguments(see the discussion in [70, p. 419]), in which case we in fact use probabilitydensity functions. For simplicity we will use the same notation for continu-ous density functions and discrete probability mass functions, in additiondi�erent distributions in the same expression will each be denoted by p(�).This slight abuse of strict mathematical accuracy will result in a compactstandard notation used in much of the Bayesian literature (see e.g., [9, 55]).



Chapter 3Models and plausible predictions\All models are false, but some are useful."|Jos�e Bernardo and Adrian Smith in Bayesian TheoryChapter 2 established the general Bayesian framework for the study of plaus-ibilities and their evolution in the light of new information. We will nowturn to the detailed development of these ideas, and return to our originalmotivation of giving HAL a means for predicting yet unobserved quantitiesconditional on having observed some other quantities (data). Naturally HAL'spredictions should be based on logical inference whenever enough informa-tion is at hand to allow it. In the case of real problems, however, almostinvariably the necessary information is not available and HAL's \intelligence"is dependent on how optimal its processing of incomplete information is.From this chapter on we will move our focus from general plausible infer-ence to prediction using probabilistic theories, with the criterion that thebest theory is the one with the greatest predictive power (Section 3.1).The predictive Bayesian inference discussed in this work is deeply re-lated to the minimum encoding approaches of Wallace [144, 145], Ris-sanen [116, 117] and Solomono� [130]. In Section 3.3 we briey discussthis information theoretic formulation, which in many cases provides an in-teresting complementary view of the Bayesian approach, and demonstratessome advantages over the traditional approach.3.1 Predictive models3.1.1 The prediction problemHAL's predictions are based on conditional probabilities. This conditioning,however, needs information about on which propositions (variables) the con-27



28 3 Models and plausible predictionsditionings are made. This information is expressed as a model. Obviouslythis is not particular only to Bayesian modeling, any predictive system suchas HAL has to use a model of the quantities to be predicted. In very broadsense a set of models, de�ned for example by structural equations, can be un-derstood as the language used to describe the constraints that the observedquantities satisfy. In our case this language is the language of computableprobability mass functions or density functions, thus all HAL's models areprobabilistic.Let us now consider that HAL's events of interest are de�ned explicitly interms of quantities ~d1; : : : ; ~dL. These quantities are typically vector-valuedwith continuous or discrete component values, and will be hereinafter called(observable) data. Furthermore, let us assume that HAL wants to predict theas yet unobserved data Dq = ~dN+1; : : : ; ~dL on the basis of its backgroundinformation and the observed dataD = ~d1; : : : ; ~dN , (1 � N < L ). Followingthe discussion in Chapter 2, HAL's plausibilities for data are derived from thespeci�cation of a joint probability density function p(~d1; : : : ; ~dLjU), where Uis a \universal" model family, i.e., a model space containing all the modelsthat are available to HAL to express conditioning information. The explicitconditioning with model space U is usually dropped for notational simplicity;consequently, unless there is a possibility for confusion, this joint probabilitydensity will be denoted by p(~d1; : : : ; ~dL). In our Bayesian framework HAL'sprediction problem can be expressed as the problem of identifying the jointconditional density p(~dN+1; : : : ; ~dLj~d1; : : : ; ~dN). From Axiom 2.1 we havep(~dN+1; : : : ; ~dLj~d1; : : : ; ~dN) = p(~d1; : : : ; ~dL)p(~d1; : : : ; ~dN) ; (3.1)i.e., HAL's (posterior) predictive density for new data Dq can be reduced tocalculating the ratio of the joint densities p(Dq; D) and p(D). Following theconvention adopted in the computational intelligence and machine learningcommunities, we call the data sets Dq and D test data and training data,respectively.Intuitively the Bayesian ideal to calculate the predictive density p(�)would require HAL to use all the models in the universal model family U ,which clearly is not feasible in practice. In Sections 3.2 and 3.3 we will givethree alternative de�nitions of a predictive density for HAL to use for pre-diction, all of which approximate the ideal predictive density p(�) by usingdi�erent sets of models from the model space U . However, �rst we proceedby introducing some concepts and notation used in Bayesian modeling.



3.1 Predictive models 293.1.2 Model families, model classes and modelsPrediction and learning, whether Bayesian or not, are always relative to a setof possible models. There seems to be sometimes confusion in the machinelearning literature about this issue, as for example the pure instance-basedmethods only store the training data D, and do not form an explicit modelduring learning. In such approaches the model is, however, formed for eachprediction dynamically, as indicated by the more appropriate recent term\lazy learning" [3].Let us now introduce some general notation, used subsequently in ourcontext of predictive modeling. The training data D denotes a (random)sample of N independent and identically distributed (i.i.d.) data vectors~d1; : : : ; ~dN . For simplicity, we assume here that the data is coded by us-ing only �nite-valued attributes X1; : : : ; Xm. More precisely, we regardeach attribute Xi as a random variable with possible values from the setfxi1; : : : ; xinig. Consequently, each data vector ~d is represented as a valueassignment of the form (X1 = x1; : : : ; Xm = xm), where xi 2 fxi1; : : : ; xinig.The approach described here extends naturally to continuous attributes aswell, the only exceptions being the predicted attributes for certain types ofde�nitions of the predictive density.In the following, let M � U denote a model family, a set of modelseach determining some probability distribution on the problem domain. Ex-amples of model families include the set of feed-forward neural networkmodels [12, 95], the set of Bayesian networks [66], and the set of decisiontrees [74], which all can be viewed as sets of models representing probab-ility distributions. For notational convenience, it is often useful to parti-tion the models within a model familyM to some �nite number of subsets,model classes Mi, where all the models within a model class share the sameparametric form, i.e., the same number of parameters. Consequently, themodel classes usually correspond to some speci�c model structure. Ex-amples of such structures are the topology of a feed-forward neural networkor a Bayesian network. A model � is here de�ned as a parameter instanti-ation within some parametric model classMi, fully determining a probabilitydistribution in the data vector space1. It should be noted that in some of theliterature what we call a \model class", is called a \model", and our \modelselection" (see the next section) is called \parameter estimation".Let us now reect all this modeling discussion to the general Bayesianframework discussed in Chapter 2. A model can be seen as a hypothesis Hi1We will also sometimes use the notation �(D0) to indicate the data set D0 from whichthe model is constructed. Usually D0 = D, and in such cases for notational simplicity wedrop D and use simply � instead of �(D).



30 3 Models and plausible predictionsfrom a continuous range of hypotheses, the data D is the \problem-speci�c"information given to HAL, and the choice of the set of models to be considered(M and partitioning fMig) is the background information I .One of the advantages of the Bayesian approach is that the assumptionsof the model family are made explicit. This helps us to avoid the confu-sion often present in the computational intelligence and machine learningliterature, where in many cases it is di�cult to see which set of models issearched during the learning process, and what models are preferred in the�rst place. The latter point corresponds to the Bayesian priors, where thepreferences, or the lack of them, are also made explicit. In addition theBayesian framework also allows clear conceptual separation between the cri-teria of the quality of a model and the algorithm searching for good models,instead of coding the quality measure into the search algorithms itself. Thisseparation of the search mechanism and the model quality measure o�ersHAL more exibility|it can use di�erent search algorithms for the same cri-teria. Although all the work reported here is based on a particular searchalgorithm and its variants, various competitive alternatives exist [84].3.1.3 Prediction and the posterior density for modelsLet us assume that we have programmed HAL by de�ning a model familyMwith models � partitioned into model classes fMig, where each model classhas the same parametric form �Mi . Furthermore, we provide HAL with theprior information p(�jM). We now give HAL some additional information inthe form of training data D, and ask it to give a predictive distribution fora new data vector ~d, i.e., to give p(~djD) (since we have �xed HAL's modelfamily, all the discussion is relative to M and for notational simplicity wedrop it from the conditioning part). How should HAL predict?The answer is somewhat surprising, especially for those used to think-ing learning in terms of building non-probabilistic models. HAL's predictivedistribution for a new data vector is given byp(~djD) = ZM p(~d; �jD)d�= ZM p(~djD; �)p(�jD)d�= ZM p(~dj�)p(�jD)d� (3.2)The second equation follows from Axiom 2.1 and the third one from theconditional independence of ~d and D given �. The integrand in (3.2) re-quires HAL to calculate the posterior density p(�jD). Since we provided HAL



3.1 Predictive models 31with the prior p(�jM), it can apply Bayes' theorem. Thus the Bayesianpredictive distribution is achieved by model averaging, i.e., by combiningthe predictions of all the models in M weighted by their posterior density.This weighted averaging over models reects HAL's uncertainty about themodel, i.e., this predictive distribution is the expected distribution of ~d overall possible parameter settings (models). Notice that if the training dataD severely restricts the set of possible distributions, the posterior densitywill be highly peaked, and the e�ect is approximately the same as if onlya single model � were used. Intuitively this is the reason for the observa-tion that with large training data sets, HAL usually can predict well alreadywith a single model|the additional data reduces the uncertainty about theparameters thus making the posterior more peaked, in which case the singlemodel approximation is more viable.In most practical situations averaging over all the models in a modelfamily is not feasible, and HAL should try to approximate this average. Onegeneral approach to approximate the integral in Equation (3.2) is to �nda good model structure, and then use all the models with that structure.In our framework this corresponds to the case, where HAL uses model classposterior to �nd a highly probable model class M̂ indicated by the trainingdata D, and then averages over all the models in M̂ , i.e.,p(~djD) = ZM̂ p(~dj�)p(�jD)d�: (3.3)Notice that Equation (3.3) still allows HAL to use an in�nite number of mod-els. Equation (3.3) requires an integral over all models � of �xed structure.If this integral is hard to compute, HAL can make a further approximationby using model posterior (within a model class) to select a single goodmodel �̂, and then perform the predictions with that one model. It shouldbe noticed that the prevailing approaches in the traditional machine learningand computational intelligence achieve usually even less, since instead ofusing the posterior, they typically resort to assigning ad hoc selection scoresto models. In the light of this hierarchy of approximations it is easy tosee why the traditional, single model based approaches in machine learninghave only been moderately successful, in particular with small data setsD. It also explains why the new averaging approaches such as bagging [16]or boosting [50] have produced improved results over the use of individualmodels.In both of the approximation steps above, HAL faces the problem of select-ing the best representative of a posterior distribution. Let us now investigatewhether the Bayesian framework introduced in Chapter 2 o�ers HAL any help



32 3 Models and plausible predictionsfor solving also this selection problem.Summarizing the posterior density by using an estimate is a nontrivialproblem, since its solution is outside the pure inference framework and re-quires Bayesian decision theory [8]. Bayesian probability theory alone canonly solve the inference problem, i.e., can provide only a probability densityrepresenting HAL's state of knowledge. The criteria for selecting a singlemodel to represent this density is dependent on how the model will be used.Thus the task of selecting a single model �0 summarizing the posterior isdependent on a loss function l(�0; �), which describes the \loss" occurring if�0 is used instead of the model �. The Bayesian approach to �nding the bestrepresentative model �b requires then the minimization of the expected loss[9, pp. 255{258]: �b = argmin�0 ZM l(�0; �)p(�jD)d�:In many cases the loss function l(�0; �) is hard to de�ne or not known. There-fore it is common practice to use the mode of the posterior �̂ as �b to sum-marize the posterior distribution2. If the posterior is very strongly peaked,the predictive distribution of (3.2) can be replaced by the prediction madeusing the mode �̂, with a negligible loss of accuracy. Therefore HAL will usethe posterior mode at each level of selection:i. Model family selectionIn the extreme case we could imagine that HAL could also choosebetween alternative model families. In such cases the model familycould be chosen by maximizing the posterior probability p(MjD;U),M̂ = argmaxM p(MjD;U);where U is the set of all possible models of any form3. This extremecase of computing the model family posterior density for all the pos-sible model families is a hopelessly intractable task. Therefore anyHALM is designed to work with some model family M �xed in ad-vance, based on designer's prior knowledge or personal preferences.ii. Model class selectionAs opposed to model family selection, model class selection is com-monly encountered in practice. The model class to be selected is the2It should be noted that the most commonly used choices for �b, the mode and themean of the posterior, have no fundamental status in Bayesian inference as they bothchange under nonlinear re-parameterizations.3For this case the model families Mi become model classes of the \universal" modelfamily U .



3.1 Predictive models 33class with the maximal posterior probability,M̂ = argmaxM p(M jD;M):From Bayes' theorem we know thatp(M jD;M) = p(DjM;M)p(M jM)p(DjM) :The denominator p(DjM) is a constant, and can be ignored. In manycases we can assume that all the model classes are equally probable apriori (according to the Principle of Indi�erence). Then it is su�cientto maximize p(D M;M), i.e., the evidence (see De�nition 2.1) of thedata, p(DjM;M) = Z p(Dj�;M;M)p(�jM;M)d�: (3.4)iii. Model selectionFinally, selecting a single model within a model classM corresponds tochoosing the maximum a posteriori (MAP) values �̂ of the parameters,�̂ = argmax� p(�jD;M;M):Again from Bayes' theorem we havep(�jD;M;M) / p(Dj�;M;M)p(�jM;M); (3.5)analogously to the model class selection case.Due to the update nature of Bayes' theorem in posterior calculation, it hasalso proven to be useful to introduce the notion of conjugacy, and use socalled natural conjugate priors [55]. For a given likelihood p(Dj�) all dens-ities p0(�) having a functional form such that the posterior p(�jD) will followthe same form as p0(�), are called conjugate priors of p(Dj�). In addition tocomputational convenience, conjugate priors have the practical advantage ofbeing interpretable as additional data. In this work we will always be usingconjugate priors, which in our case will be Dirichlet densities [55].Before concluding the discussion on posterior densities, one commonsource of confusion should be pointed out. The assumption of uniformpriors for model classes does not mean that HAL would consider complexstructures equally plausible to simple structures. The data-dependent termp(DjM;M) in Bayes' theorem, i.e., the likelihood, embodies preference for



34 3 Models and plausible predictionssimpler models automatically4, which can intuitively explained as follows.Complex model classes, by their nature, are capable of making a greatervariety of predictions than simple ones. Therefore, if model class Mc hasmore complex structure thanMs, the likelihood p(DjMc;M) is spread morethinly over the data space than p(DjMs;M). In the case where the data arecompatible with both model classes, the simpler model class Ms will turnout to be more probable than Mc, without the need to assign an additional\penalizing" prior for complex structures.3.2 Bayesian predictive inferenceLet us now return to HAL's general prediction problem as described by Equa-tion (3.1). Here we formulate a restricted version of the problem, where HALneeds to predict the value of a single attribute of a new partially observeddata vector. This restricted version corresponds to a typical attribute-based classi�cation problem in machine learning and computational intel-ligence [75].As discussed in Section 3.1.1, given the training dataD, HAL should baseits predictions on the conditional distribution of a new test vector ~d, that ison p(~djD), where p(~djD) = p(~d;D)p(D) : (3.6)We now focus on the following prediction problem: Given the values of thevariables X1; : : : ; Xm�1, and the training data D, HAL needs to predict thevalue of variable Xm. For notational simplicity, in the sequel we drop thevariable names, and denote a value assignment(X1 = x1; X2 = x2; : : : ; Xm�1 = xm�1)by writing (x1; x2; : : : ; xm�1). Now for each possible value xmi,xmi 2 fxm1; : : : ; xmnmgwe wish to compute the probabilitiesp(Xm = xmij(x1; : : : ; xm�1); D):4This preference for simplicity is usually know as the \Ockham's Razor" and creditedto William of Ockham (c. 1285-1349).



3.2 Bayesian predictive inference 35Let ~d[xmi] denote the vector (X1 = x1; : : : ; Xm�1 = xm�1; Xm = xmi).From Axiom 2.1 we know thatp(Xm = xmij(x1; : : : ; xm�1); D) = p((x1; : : : ; xm�1); Xm = xmi; D)p((x1; : : : ; xm�1); D) ;from which by writing explicitly the marginalization we getp(Xm = xmij(x1; : : : ; xm�1); D) = p((x1; : : : ; xm�1); Xm = xmi; D)Pnmk=1 p((x1; : : : ; xm�1); Xm = xmk; D) :Now using the ~d[xmi] notation we havep(Xm = xmij(x1; : : : ; xm�1); D) = p(~d[xmi]; D)Pnmk=1 p(~d[xmk]; D)= p(~d[xmi]jD)Pnmk=1 p(~d[xmk]jD): (3.7)Consequently, the conditional distribution for variableXm can be computedby using the complete data vector conditional distributions (3.6) for eachof the possible complete vectors ~d[xmi]. The resulting distribution is calledthe predictive distribution of Xm. This approach can be straightforwardlyextended to cases with more than one uninstantiated variable, but it shouldbe noted that in the general case the number of comparisons needed growsexponentially with respect to the number of free variables. In Chapter 4 wewill see that for certain model families HAL can in fact address this generalproblem more e�ciently.HAL's ability to express constraints for the data was restricted to the lan-guage of some parametric family of models M, where each instantiation ofparameters � corresponds to a single distribution. We now turn to the prob-lem that given this language, how should HAL de�ne p(�). In the following weconsider two alternative de�nitions for p(�), and in Section 3.3.1 we will adda third, minimum encoding based approach introduced by Rissanen [117].3.2.1 The MAP predictive distributionThe �rst de�nition for the distribution p(�) is the most elementary one, i.e.,the one based on the best model in a �xed model class M . Since here ourdiscussion will always be relative to a �xed model family M, to simplifynotation we dropM from the conditioning part. Given a prior distributionp(�jM) over the space of parameters,we can arrive at a posterior distributionp(�jD;M) by using Bayes' theorem:p(�jD;M)/ p(Dj�;M)p(�jM): (3.8)



36 3 Models and plausible predictionsIn the maximum a posteriori (MAP) probability approach, distribution p(�)is replaced by the distribution conditioned by the single model�̂(D) = argmax� p(�jD;M);i.e., the mode of the posterior distribution p(�jD;M):pmap(~d;D) = p(~d;Dj�̂;M):In orthodox statistical approach, the MAP model is replaced by the max-imum likelihood (ML) model ~�, i.e., by the model maximizing the data likeli-hood p(Dj�;M). Since throughout this work we use non-informative priors(see Section 2.3.1), and assume the prior distribution p(�jM) to be uniform,the MAP model is equal to the ML model, as can clearly be seen from (3.8).Now the corresponding predictive distribution (3.7) is in this casepmap(Xm = xmij(x1; : : : ; xm�1); D) = pmap(~d[xmi]; D)Pnmk=1 pmap(~d[xmk]; D)= p(~d[xmi]; Dj�̂;M)Pnmk=1 p(~d[xmk]; Dj�̂;M) :Since the data are i.i.d., ~d[xmi] and D are independent given �, thuspmap(Xm = xmij(x1; : : : ; xm�1); D) = p(~d[xmi]j�̂;M)p(Dj�̂;M)Pnmk=1 p(~d[xmk]j�̂;M)p(Dj�̂;M)= p(~d[xmi]j�̂;M)Pnmk=1 p(~d[xmk]j�̂;M) : (3.9)3.2.2 The evidence predictive distributionA more sophisticated de�nition for the distribution p(�) is based on theobservation that instead of using a single model from a �xed model classM , HAL could use all the models in that class. This can be achieved byintegrating over the model class M , i.e., by averaging over all the models �(here we again dropM from our notation):pev(~d;D) = Z p(~d;Dj�;M)p(�jM)d�: (3.10)The integral in Equation (3.10) is in fact the normalization factor of Bayes'theorem, i.e., the evidence. The resulting predictive distribution can now begiven as pev(Xm = xmij(x1; : : : ; xm�1); D) = pev(~d[xmi]; D)Pnmk=1 pev(~d[xmk]; D):



3.3 Information theoretic view 37From (3.10) we getpev(Xm = xmij(x1; : : : ; xm�1); D) = R p(~d[xmi]; Dj�;M)p(�jM)d�Pnmk=1 R p(~d[xmk]; Dj�;M)p(�jM)d�:(3.11)Computing the MAP predictive distribution (3.9), or at least a good ap-proximation of it, is often feasible in practice. In particular it is feasiblefor the model family of �nite mixtures discussed in Chapter 4. Calculatingthe evidence predictive distribution (3.11) |or even good approximationsto it|is very hard for most model families. We will show, however, thatthe evidence predictive distribution can be computed e�ciently for a specialclass of discrete �nite mixture models, which corresponds to the Naive Bayesclassi�er in the machine learning literature (see e.g., [82]).3.3 Information theoretic viewThe Bayesian predictive inference frameworkwe have discussed has an inter-esting information theoretical formulation|prediction of data with minimaldescriptions. From elementary information theory [31] we know that for anycomplete code C , there is a corresponding probability distribution pC suchthat for all sets D, � log pC(D) is the length of the encoding of D whenthe encoding is done using C. Similarly, for all probability distributionsp over data sets D there is a code CP such that for any data set D thecode-length of D when encoded with CP is equal to d� log p(D)e. Thus wecan equate HAL's probabilities of data with the lengths (in bits) of messageswhich communicate data without loss to a receiver.The intuition behind the inference in the information theoretic approachis that the most probable model has the shortest encoding of the modeland data combined. We have learned that the most probable model in theBayesian approach is de�ned by the mode of the posterior, which is calcu-lated by Bayes' theorem (here we again drop the model familyM from thenotation) p(�jD) = p(Dj�)p(�)p(D) : (3.12)Taking the negative logarithm of this expression turns the products intosums, and gives us� log p(�jD) = � log p(Dj�)� log p(�) + constant: (3.13)



38 3 Models and plausible predictionsSince HAL is only interested in the relative probability of the di�erent models�, the last term in Equation (3.12) can be ignored. Now the connectionbetween Bayesian probability theory and the coding approach becomes clear:from information theory we know that � log p(~di) is the minimum messagelength to encode a particular data vector ~di5.The minimum message length in (3.13) is the sum of two terms. The�rst term is the information required to encode the data, given the model �,and decreases for suitably selected more complex models. The second termis the information to describe the model �, which is larger for more complex,and thus less probable, models. This type of codes are called two-part codes.Theoretically this idea of predicting sequences using minimal e�ectivedescriptions dates back to the formulation by Solomono� [130]. In variousforms aiming at practical applications, the idea of data modeling in statisticalprediction by encodings was proposed by Wallace et al. [144, 145] and Ris-sanen [114, 115, 116] leading to related two-part code formulations known asMinimum Message Length (MML) andMinimum Description Length (MDL)principles. These two principles, MML and MDL, are very seldom distin-guished in the literature, which is understandable as both involve coding theparameters of models and then selecting the model with the shortest two-partmessage length.Although both MML andMDL involve a process of \coding the paramet-ers," the codes used di�er in many important respects. MML is a Bayesianapproach as it requires an explicit prior distribution on parameters. MDLrejects the use of priors and uses distribution independent universal codes.A universal code tries to assign every possible value of the parameter thesame prior probability (for discussion on universal codes see [116]). By notincluding a prior, MDL codes di�er from MML codes by at least a constant,and can a�ect the model chosen if the data set is small. Asymptoticallythere is no di�erence, the model chosen will be the same. Predictive infer-ence in this coding framework now involves a minimization problem, whereHAL should select the model �, which minimizes the code length � log p(�jD).Given the existing \traditional" Bayesian probabilistic formulation, anatural question is what added value can be gained by this coding frame-work? First of all, the description length concept is useful for motivatingprior probability distributions, in fact in many cases it is easier to express astructural prior as a coding of the model rather than an explicit distributionover the possible model structures. Second, the coding approach has interest-ing advantages over the traditional Bayesian maximum a posteriori model5We will always assume that the base of the log is 2, and thus the message length isin bits.



3.3 Information theoretic view 39selection. As pointed out earlier, the mode of the posterior is not invari-ant under nonlinear transformations of the parameter space, whereas MMLis known to be invariant under one-to-one transformations [145]. Third,MML/MDL has its uses as pedagogical tool|many of the Bayesian con-cepts can be elegantly introduced, at least for computer scientists, with thecoding analogies.Without going deeply into technical details which lay outside the scope ofthis work, it is not possible to discuss the existing �ne distinctions betweenthe two approaches. For our present purposes it is enough to restate that theuse of either of these two-part code approaches for prediction correspondsto HAL's maximum a posteriori prediction with a single (most probable)model. From the Bayesian framework we know, however, that for predictivepurposes we can do better when we average predictions over a set of models.The corresponding information theoretic notion for model averaging is thestochastic complexity (SC) [114, 116].There seems to be even more confusion about the relationship betweenthe notion of stochastic complexity and MML/MDL encodings. MML/MDLmethods use a single model to encode the data, and thus encode also theparameters, stochastic complexity uses a set of models M to encode thedata. Let LC(D) be the code-length for data D when coded by the code C.It is always true that LSC(D) < LMML/MDL(D);although if the data set D is large, it is quite likely that the single bestmodel will do nearly as well as predicting with the full model class (whichwe of course know already from the Bayesian interpretation). Due to thecorrespondence of complete codes and probability distributions we knowthat the stochastic complexity code can be written as � log psc where psc is aprobability distribution that, in a sense to be explained later, gives as muchprobability as possible to all D. Therefore HAL can use psc for prediction.Let us now discuss this third, and �nal one, of HAL's alternative de�nitionsfor the predictive distribution.3.3.1 The stochastic complexity predictive distributionThe original de�nition of the stochastic complexity, as given in [115], isthe minus logarithm of the evidence, i.e., � log pev(D). Recently, however,Rissanen [117] has shown that there exists an improved code that is itself notdependent on any prior distributions of parameters, and which in generalyields even shorter code-lengths than the code with lengths � log pev(D).Here by shorter we mean that for some data sets the code-length will be



40 3 Models and plausible predictionsconsiderably shorter, while for most data sets it will be only negligible longer.Hence psc will give a much higher probability than pev to some data sets andapproximately equal probability to all other ones. In the case of discretedata, the new stochastic complexity for data (~d;D) with respect to modelclass M can be written as � log psc(~d;D) withpsc(~d;D) = P (~d;Dj~�(~d;D);M)P~d0;D0 P (~d0; D0j~�(~d0; D0);M) ; (3.14)where the sum in the denominator goes over all the possible instantiations ofthe data set D[ ~d, and ~�(~d;D) 2M denotes the maximum likelihood modelfor this data (~d;D).In [117] it is shown that under some regularity conditions on the class ofmodels, which hold for the �nite mixture models studied here, psc is asymp-totically equivalent to pev when pev is used with Je�rey's prior. Thereforethe \old" and \new" de�nition of stochastic complexity are asymptoticallythe same, but this does not necessarily hold for small data sets.We can now obtain the stochastic complexity predictive distribution asfollows: psc(Xm = xmij(x1; : : : ; xm�1); D) = psc(~d[xmi]; D)Pnmk=1 psc(~d[xmk]; D):From (3.14) we getpsc(Xm = xmij(x1; : : : ; xm�1); D) = p(~d[xmi];Dj~�(~d[xmi];D;M))P~d0;D0 p(~d0;D0j~�(~d0;D0);M)Pnmk=1 p(~d[xmk];Dj~�(~d[xmk ];D);M)P~d0;D0 p(~d0;D0j~�(~d0;D0);M) : (3.15)At �rst sight, this probability may seem hard to compute as we have tosum over all the exponentially many possible instantiations of the data setD [ ~d. But a closer inspection reveals that the two exponential sums in therightmost part of (3.15) cancel out and thus we obtain:psc(Xm = xmij(x1; : : : ; xm�1); D) = p(~d[xmi]; Dj~�(~d[xmi]; D);M)Pnmk=1 p(~d[xmk]; Dj~�(~d[xmk]; D);M):



3.3 Information theoretic view 41Since data are i.i.d., ~d[xmi] and D are independent given ~�, thuspsc(Xm = xmij(x1; : : : ; xm�1); D)= p(~d[xmi]j~�(~d[xmi]; D);M)p(Dj~�(~d[xmi]; D);M)Pnmk=1 p(~d[xmk]j~�(~d[xmk]; D);M)p(Dj~�(~d[xmk]; D);M):(3.16)This formula looks similar to that of the maximum likelihood predictor (3.9).However, it should be noted that the probabilitiesp(Dj~�(~d[xmk]; D;M)do not cancel out here since the maximum likelihood estimator appearingin the denominator of (3.16) depends on xmk and hence is not a constant.Moreover, the maximum likelihood estimator ~�(~d[xmi]; D) is now computedby using the augmented data set D [ ~d, not just D.



42 3 Models and plausible predictions



Chapter 4Predicting with �nite mixtures\In the back of his book," Norman remembered, \Thorpannounces in a cryptic sentence or two that he devised,but failed to implement, a system to beat roulette. Ithought on reading this that it was utter hogwash.Roulette is a random game. You can't devise any bettingscheme that will win. But on rereading Thorp, we realizedthat you might be able to develop a predictive scheme,and that's what he was talking about."|Thomas A. Bass in The Newtonian CasinoIn the previous chapter we discussed HAL's plausible predictions by predict-ive Bayesian inference relative to an arbitrary model family M. We willnow proceed by �xing a particular set of models, which will give HAL a con-crete instance of the general predictive framework. In Section 4.1 we �rstpresent the family of �nite mixtures of multinomials, and briey discuss itsadvantages with respect to some commonly used model families in machinelearning (Section 4.2). We then proceed to describing in detail, how HALperforms Bayesian predictive inference with �nite mixtures (Section 4.3).In Chapter 3 we presented three alternative schemes to perform predic-tions. If HAL's model familyM is restricted to a subset of the general �nitemixture model, all these three prediction methods (together with Bayesianinduction of the required models) can be implemented without the approx-imations needed in the general case. This makes it possible for us to performan empirical study of the prediction performance and learning rate of thesethree methods|a comparison which to our knowledge is �rst of its kind(Section 4.4). 43



44 4 Predicting with finite mixtures4.1 Finite mixture modelsPreviously we have already committed HAL to model its problem domain bym discrete variables X1; : : : ; Xm (we can assume that continuous values, ifneeded, are discretized), and that a data vector ~di 2 D is sampled from thejoint distribution of the variables X1; : : : ; Xm. We now make an additionalmodeling assumption that the data D can be viewed as if it were generatedby K di�erent mechanisms, which all can have a distribution of their own.Furthermore, it is assumed that each data vector originates from exactlyone of these mechanisms. Whether or not this actually is the case, is notof importance here. As we have already pointed out, model family is onlya language in which HAL can express the constraints in data. From theseassumptions it follows that the data vector space is divided into K localregions usually called clusters or classes, each of which consists of the datavectors generated by the corresponding mechanism.The underlying intuitive idea is that a set of data vectors can be modeledby describing a set of clusters, and then describing the data vectors usingthese cluster descriptions. Each description gives the distribution of thevariablesX1; : : : ; Xm, conditioned that the data vector belongs to the cluster.The cluster descriptions should be chosen in such a way that the informationrequired to describe data vectors in the cluster can be signi�cantly reducedbecause they are similar to the \prototype" described by the cluster. In such\cluster language" a data set D can be described by �rst giving the clusterindex for each data vector, and then by describing the di�erences betweenthe observed and expected values.An appropriate model family for this type of modeling is the set of dis-crete �nite mixtures ([46], [138]), where the joint domain probability distri-bution is approximated as a weighted sum of mixture distributions.De�nition 4.1 Let X1; : : : ; Xm be a set of m (m � 1) discrete (random)variables, and ~d 2 D is a sample from the joint distribution of the variablesX1; : : : ; Xm. Then the �nite mixture distribution for ~d can be written as(K � 1)p(~d ) = p(X1 = x1; : : : ; Xm = xm)= KXk=1 [p(Y = yk)p(X1 = x1; : : : ; Xm = xmjY = yk)] ;where Y denotes a latent clustering random variable, the values of which arenot given in the data D, and K is the number of possible values of Y .



4.1 Finite mixture models 45Thus in �nite mixture models the problem domain probability distribu-tion is approximated by a weighted sum of component distributions, whereeach mixture component p(X1 = x1; : : : ; Xm = xmjY = yk) models one dataproducing mechanism. The �nite mixture model family is universal in thesense that it can approximate any distribution arbitrarily close as long as asu�cient number of components is used [138].If the variables X1; : : : ; Xm are independent given the value of the clus-tering variable Y , (4.1) becomesp(~d ) = KXk=1 p(Y = yk) mYi=1 p(Xi = xijY = yk)! : (4.1)In this work we will always make this independence assumption and con-sequently use (4.1).Finite mixtures as de�ned in Equation (4.1) is a generic model family,since we still have to �x the cluster distribution p(Y ) and the intra-classconditional distributions p(XijY = yk)1. Most commonly used compon-ent functions in the literature are the univariate normal distributions (seee.g., [138]). HAL models its problem domains by discrete variables Xi, thusit is not necessary to make an assumption of the form of the distribution.Consequently a natural choice for the intra-class conditional distribution isthe multivariate generalization of the binomial distribution called the multi-nomial distribution [55], i.e, the likelihood function is given byp(Xi = xj j�) = �j ; j = 1; : : : ; xn;where parameter �j represents the probability of the value xj . Analogouslywe assume that the cluster distribution p(Y ) is multinomial. Thus in orderto get a model, HAL needs to �x the number of the mixing distributions (K),i.e., the model class M , and determine the values of the model parameters.For technical reasons it will be convenient to make a notational distinctionbetween the mixture weight parameters and the parameters of the intra-class conditional distributions. Therefore let us denote the mixture weightprobabilities by �k = p(Y = yk);and the conditional distributions by�kil = p(Xi = xiljY = yk):1Here we consider only mixtures in which all the component distributions come fromthe same parametric class.



46 4 Predicting with finite mixturesNow if we denote �ki = (�ki1; : : : ; �kini);we can express HAL's model as � = (�; �); � 2 M, where� = (�1; : : : ; �K) and � = (�11; : : : ; �1m; : : : ; �K1; : : : ; �Km)Finally, HAL needs to �x the prior distributions for the parameters. Asdiscussed earlier (see Section 3.1.3), in order to allow HAL to use posteriorsas new priors in further applications, the functional form of parameter distri-bution should remain invariant in the prior-to-posterior transformation. Thefamily of Dirichlet (multivariate Beta) densities is conjugate to the family ofmultinomials [37, 55], therefore we assume that HAL's prior distributions ofthe parameters are from the Dirichlet family.Let k index the mixture components, i the variables, and l the values ofa variable, i.e., 1 � k � K; 1 � i � m; 1 � l � ni:Then the prior distributions for the parameters in � are(�1; : : : ; �K) � Di (�1; : : : ; �K) and (�ki1; : : : ; �kini) � Di (�ki1; : : : ; �kini) :Here �k and �kil are called the hyper-parameters of the corresponding dis-tributions. The general form of the Dirichlet density used above is (seee.g., [55, p. 477],) p(�) = Di(�j�1; : : : ; �K)= �(PKk=1 �k)QKk=1 �(�k) KYk=1 ��k�1k : (4.2)The density (4.2) is subject to constraintsPKk=1 �k = 1; �k > 0 and �k � 0.Assuming that the parameter vectors � and �ki are independent, the jointprior distribution of all the parameters can be expressed as a product ofDirichlet densitiesDi (�1; : : : ; �K) KYk=1 mYi=1Di (�ki1; : : : ; �kini) :We have pointed out earlier that the �nite mixture model family isuniversal in the sense that it can approximate any distribution arbitrarilyclose. Unfortunately such generality of a model family typically implies alsothat certain types of prediction methods, in particular calculating the evid-ence predictive distribution, become computationally very costly. There is,



4.2 Finite mixtures in perspective 47however, a simple class of discrete �nite mixtures for which HAL can computeall the predictive distributions discussed in Section 3.2 e�ciently without ap-proximations. This class follows from Equation (4.1) when we remove thelatency of Y and assume that one of the variables X1; : : : ; Xm gives us thepartitioning of the data (for notational simplicity we will assume that it isalways Xm). This new model family MNB corresponds to a speci�c modelclass Mnm of the more general case, thus the joint probability distributionfor a data vector ~d can be expressed asp(~d) = p(X1 = x1; : : : ; Xm = xm)= p(Xm = xm)m�1Yi=1 p(Xi = xijXm = xm): (4.3)The connection to the general mixture formulation of Equation (4.1) can beseen if we write (4.3) in the formp(~d) = p(X1 = x1; : : : ; Xm�1 = xm�1; Xm = k)= nmXj=1 P (Xm = j)m�1Yi=1 p(Xi = xijXm = k)! :This model familyMNB is known in the machine learning community as theNaive Bayes or Simple Bayes classi�er [43, 82]. Despite of its simplicity andapparent strict conditional independence assumptions, it has shown compet-itive performance when compared to the results achieved by more complexmodel families [39, 99]. Naive Bayes model family illustrates also nicelythe fact that in classi�cation tasks for the general mixture models the parti-tioning of the data to clusters is not necessarily based on the class variablevalue assignments. In some cases the latent variable Y based clustering cancoincide with the class value based clustering, but in the general case eventhe number of clusters di�ers from the number of classes nm. Naive Bayesmodel family MNB results if we assume these clusterings to be equal.4.2 Finite mixtures in perspectiveDue to the contrast caused by the generality of the generic Bayesian ap-proach, which is \parameterized" by using the notion of model family, onemight underestimate the exibility of the �nite mixtures modeling language.It is well known that the �nite mixtures of multinomials correspond to aspecial subclass of Bayesian networks. On the other hand such model famil-ies as Specht's probabilistic neural networks [131], kernel estimators [124]|and consequently also Radial Basis functions [100])|together with instance-based (memory-based) models [2, 4], are instantiations of �nite mixture



48 4 Predicting with finite mixturesmodels, if viewed in the probabilistic framework (albeit some of them mix-tures of Gaussians instead of mixtures of multinomials). Below we will alsodiscuss the interesting interpretation of the lazy learning approach from theBayesian perspective.4.2.1 Related workNeural approaches. Finite mixture models are an ideal model family formassively parallel hardware [103], and thus can be realized by neural archi-tectures [98, 102]. In continuous domains mixture models have proven to be aviable family for supervised learning tasks as demonstrated by the \mixturesof experts" architecture of Jordan et al. [74, 146]. In supervised learning oneassumes that the attribute to be predicted is known at model constructiontime, and this information is used in the model construction process. InHAL's case, instead of the supervised learning framework, we explore the un-supervised case where we do not �x in advance the predictive distributionsto be estimated, and build a full probability model of the problem domain.Therefore the most related work to ours in the neural network community isthe work by Bishop et al. on \mixture density networks", which, however,are mixtures of Gaussians (see [11, 13]). In addition the Bayesian approachcan also be used for constructing Self-Organizing Maps [80], which bringsthe method close to HAL's model construction|again with the di�erence thatmixtures of Gaussians are used [14, 142].AutoClass. AutoClass system [23, 24] is a Bayesian classi�cation2 pro-gram, which uses Bayesian mixture modeling for discovering \natural"classes in data. In our terminology it performs Bayesian induction to �ndcluster descriptions, i.e., mixture components for explorative purposes. Con-sequently, AutoClass work is interested in �nding the most probable mixturemodel given the data and the priors, and then use these descriptions in aknowledge discovery process, e.g., LandSat data clustering [24]. In HAL'sdesign we are only interested in the predictive capability of our models, nottheir semantic interpretation. The work for HAL presented here combinesboth Bayesian deductive inference and Bayesian induction with mixturesand is unique in this respect.Bayesian networks. Perhaps the most common model family used withBayesian inference is the family of Bayesian networks [64, 66, 107], which2Term \classi�cation" in statistics means usually unsupervised discovery of clusteringsof data, not prediction of a discrete value as it is understood in machine learning orcomputational intelligence communities.



4.2 Finite mixtures in perspective 49describe the independence assumptions as directed acyclic graphs. In theframework of the theory of Bayesian networks, HAL's �nite mixture modelscan be seen as \one-level Bayesian trees", where the root of the tree repres-ents a latent (hidden) variable, corresponding to the mixing distributions,and the leaves represent the actual random variables of the problem do-main (see the discussion in [104]). The theoretical framework in Chapter 2and 3 can be developed for general Bayesian networks [64], why then doesour design for HAL prefer mixture models over the more general Bayesiannetwork family?Although Bayesian networks are an intuitively appealing model family,in practice the Bayesian approach leads to some serious computational prob-lems when working with general Bayesian network structures. ConstructingBayesian networks from data is computationally a very di�cult problem,since the search space, i.e., the number of possible network structures, growsexponentially with respect to the number of variables. In addition, Bayesiandeductive inference used for prediction in multi-connected Bayesian net-works is an NP-hard problem [30, 34, 120], and hence very probably notcomputationally feasible. By restricting HAL to �nite mixture models wegain the bene�t of e�cient Bayesian deduction phase, and just have to con-cern ourselves with the complexity of the Bayesian induction problem. Evenin the induction phase HAL does not need to search over the exponentiallymany Bayesian network structures, since for mixture models we have a �xedmodel structure. In order to �nd good models, however, HAL has to searchover the missing values of the unobserved latent variable in the dataset. Intheory there is an exponential number of possible value combinations for thislatent variable, but in HAL's case e�cient algorithms for estimating this typeof missing data exist.One of the often advocated advantages of Bayesian networks is the factthat the independence structures can be �xed by human experts, and theBayesian induction is not necessary. Although admittedly HAL's �nite mix-tures are semantically not quite as intuitive as Bayesian networks, in manycases the domain experts seem to be able to express their expert knowledgevery easily by using prototypical examples or distributions. These examplescould then be coded as mixing distributions in HAL's �nite mixture frame-work. In this work we are interested in combination of both Bayesian deduct-ive inference and Bayesian induction, thus this knowledge acquisition aspectis not of importance here. One important related observation is in order.When constructing �nite mixture models from data, it should be noticedthat neither in the Bayesian nor in any other framework, are �nite mixturemodels always identi�able, i.e., there is not necessarily a unique characteriz-



50 4 Predicting with finite mixturesation for a distribution [59, 138]. HAL's focus is in prediction, therefore thisnon-identi�ability is not of any concern for it: if HAL wants to select a singlemodel � for prediction, it can pick any of these characterizations as they willperform equally well.Single parametric and non-parametric methods. When compared tosingle parametric distribution methods and non-parametricmethods (such askernel density estimators [124]), HAL's �nite mixture models have many ap-pealing properties. Firstly, in natural domains the distribution to be modeledis often so complicated that probabilistic modeling through single paramet-ric distribution (e.g., normal, multinomial, Poisson [55]) does not lead togood prediction performance. It seems that in real life domain distributionmultimodality is more a rule than an exception, at least with small data sets.Finite mixtures have a natural means to model multimodality by placing acomponent distribution around each mode. Secondly, �nite mixtures canmodel quite complex distributions with few parameters and a high degreeof accuracy. Thirdly, many non-parametric approaches depend directly onthe sample size. Consequently, if the training sample is large, deductive in-ference with non-parametric techniques becomes very ine�cient in terms ofcomputation time and space. Finite mixture models compress the inform-ation present in the data set at two levels: �rst by grouping similar datavectors to a same cluster, and second by modeling a set of clusters by asingle mixing distribution.4.2.2 Bayesian lazy learningFrom Section 3.1.3 we know that the standard approach to machine learningcan be viewed as a three phase modeling process. Initially, the models tobe considered are restricted to some limited set of models, the model family.In the second phase, some speci�c model class, i.e., a skeleton or a templatestructure for a model, without any parameters, is selected from the chosenmodel family. In the third phase, the parameter values for the selected modelclass are estimated from the sample data. The resulting full model (modelstructure + parameter values) is then used for making predictions.In contrast to the traditional approach described above, in the instance-based (also known as the memory-based or the case-based) approach [2, 6,78, 101, 132], the learning algorithms base their predictions directly on thesample data, without producing any explicit (stored) models. This type ofmachine learning is often referred to as lazy learning, since the algorithmsdefer all the essential computation until the prediction phase [3]. In [143],the lazy learning prediction type of a process is called transductive inference.



4.2 Finite mixtures in perspective 51For making predictions, lazy learning algorithms typically use a distancefunction (e.g., Euclidean distance) for determining the most relevant dataitems for the prediction task in question. Some simple function, such asmajority voting in classi�cation problems, is then used for determining theprediction from the most relevant data items. It has been shown in vari-ous studies (see e.g., [99] for references) that this type of an approach insome cases produces quite accurate predictions, when compared to altern-ative machine learning methods. The method su�ers, however, from severaldrawbacks when applied in practice (see, e.g., the discussion in [136]). Mostimportantly, the performance of lazy learning algorithms seems to be highlysensitive to the selection of distance function to be used, as demonstratedin recent work reported in [7, 51].One possible Bayesian framework for lazy learning using the �nite mix-ture model family has been discussed in [102, 103, 135, 136]. The approachsuggested in those studies can be seen as a partially lazy approach [3], i.e.,a hybrid between the traditional machine learning and the lazy learningapproach, which is based solely on the given data. In this probabilistic ap-proach the given data vectors are transformed into local distributions, whichcan be seen as sample points in a distribution space. Thus the predictivedistributions required for making predictions could then be computed by us-ing the lazy learning approach in the distribution space, i.e., by introducinga probabilistic \distance metric". Somewhat similar frameworks have beensuggested in [48, 49, 76].From the design of HAL we can see that there is a new, improved prob-abilistic formalization of the purely lazy learning approach, which extendsthe earlier results by presenting a Bayesian approach for making (discrete)predictions directly from data, without the transformation step between theoriginal sample space and the distribution space. Intuitively this new ap-proach is based on the central idea in Bayesian inference: if we wish tomake predictions by using only the data given, avoiding the notion of in-dividual models, from the Bayesian point of view we can take this as arequirement for marginalizing, i.e., integrating, out the models. This meansthat the predictions will be made by using all the (in�nitely many) models,corresponding to di�erent parameter settings. From this point of view, pre-diction can be viewed as a missing data problem, where the criterion for�lling in the missing data (for making the predictions) is the integral overall the possible models. Therefore using the evidence predictive distribu-tion (4.8) that will be introduced in the next section will actually performoptimal (with respect to the model familyMNB) lazy learning. To avoid ter-minological confusion it should be observed that even lazy learning is with



52 4 Predicting with finite mixturesrespect to some model family. The illusion of not having any model familyin traditional lazy learning approaches is due to the fact that the model fam-ily is implicitly induced by the combination of the distance function and thedomain of the data, also in the cases where the distance function is allowedto vary locally.4.3 Predictive inference with �nite mixturesInference with general �nite mixturesFrom (3.2) in Section 3.1.3 we know that the correct Bayesian procedurefor HAL to make predictions would be to use all possible mixture models byweighting them by their posterior density. Unfortunately this is not feasiblefor the �nite mixture model family, so HAL needs to resort to approximationswith fewer models. In Section 3.1.2 we argued that in many cases it is naturalto partition the model familyM to a �nite number of model classes, whereeach model class M consisted of models sharing the same parametric form.In the �nite mixture case, a natural choice for determining the model classesis to distinguish di�erent models by the number of the mixing distributionsused. In practice the number of model classes, i.e., the maximal number ofmixing distributions, can be assumed to be bounded by the size of the dataset D. Since HAL cannot use all mixture models in M for prediction, let usnow turn to the question whether it can predict with a single model classM . Since we are now in a �xed model family, we will again drop M fromour notation.Following the discussion in Section 3.1.3 if HAL were to use a single modelclass, it should use the class M with the maximal posterior probability, i.e.,M̂ = argmaxM p(DjM)p(M)p(D) :Assuming equal priors for the model classes, the posterior probabilityP (MkjD) is proportional to the evidence P (DjMk) (or alternatively viewed,the likelihood of the model class M), hence HAL should �nd the model classwith the highest evidence. Assuming maximum a posteriori model class M̂has been found, HAL can then use the evidence predictive distribution inEquation (3.11)pev(Xm = xmij(x1; : : : ; xm�1); D) / Z p(~d[xmi]; Dj�; M̂)p(�jM̂)d�:Consequently, if we wish to select the most likely data vector from a smallset of alternatives, they can be compared by using the equation (3.11). An



4.3 Predictive inference with �nite mixtures 53example of such task would be a standard classi�cation problem in machinelearning.Unfortunately we will demonstrate in Chapter 5 that this model classbased prediction su�ers from the problem that calculating the evidencesp(DjM) for the general �nite mixture family requires computing a sum ex-ponential in the size of the data set D. This exponential sum follows fromHAL's incomplete information about the assignments to the clusters (compon-ents), which forces HAL to sum over all the possible assignments. Thus inpractice HAL has two choices: approximate the actual evidence or use a singlemodel � from M̂ for prediction. Since the notion of evidence is also centralfor model class selection in Bayesian induction, we defer the derivation ofthe exact closed form solution in the �nite mixture case to Section 5.3, anddiscuss here the use of a single MAP model for prediction.In many practical situations HAL may face with a more complex predic-tion problem, where it wishes to compute the conditional predictive distribu-tion for a set of uninstantiated variables Xi, given that some other variablesare instantiated. In the special case of the �nite mixture family solving thisslightly more general problem is as easy as solving the prediction problemfor single Xm discussed in Section 3.2.3Therefore we will discuss HAL's single model prediction in this multipleprediction framework. Let I = fi1; : : : ; itg be the indices of the instantiatedvariables, and X = fXis = xisls; 1 � s � tg denote the correspondingassignments. Now we want HAL to determinep(~d[xil]jD;X ; M̂) = Z p(~d[xil]jD;X ; �; M̂)p(�jD;X ; M̂)d�; (4.4)for each value xil of each uninstantiated variable Xi, i =2 I. As observedabove, using the evidence predictive distribution for this purpose is infeasibleas it requires HAL to sum over all the possible clusterings of the data. On theother hand, if HAL instead of integrating over all the model class parametersettings � uses a single, maximum a posteriori model �̂, we can calculate thepredictive distribution of Xi directly. For notational convenience, let us �rstde�ne pY (�) � p(Y = ykj�̂)and pXis (�) � p(Xis = xislsjY = yk ; �̂):Since Xi is conditionally independent of M and D, given the maximum a3In fact this result is true also for the general Bayesian network model family, see [66].



54 4 Predicting with finite mixturesposteriori model �̂, we havep(Xi = xiljD; �̂;X ;M) = p(Xi = xilj�̂;X ) = p(Xi = xil;X j�̂)p(X j�̂) :Using the notation introduced above, we havep(Xi = xil;X j�̂)p(X j�̂) = PKk=1 �pY (�)p(Xi = xiljY = yk; �̂)Qts=1 pXis (�)�PKk=1 �pY (�)Qts=1 pXis (�)�= PKk=1 ��̂k�̂kilQts=1 �̂kisls�PKk=1 ��̂kQts=1 �̂kisls� : (4.5)Here the model class M is assumed to be a class of �nite mixtures with Kcomponents. Expressing the probabilities �̂k and �̂kil as su�cient statist-ics of D will be discussed in Section 5.1, when we address the problem ofBayesian induction, i.e., constructing �nite mixture models from the dataD. The Equation (4.5) o�ers HAL an alternative to (3.9) for calculatingthe MAP predictive distribution pmap when HAL is only interested in thepredictive distribution of Xm.As opposed to general Bayesian networks, Bayesian deductive inferencewith �nite mixtures is e�cient, since the conditional predictive distributionof Xi can be calculated in time O(Ktni), where K is the number of clusters,t the number of instantiated variables and ni the number of values of Xi.K is usually small compared to the sample size N , and thus the predictioncomputation can be performed very e�ciently4.Inference with Naive Bayes model familyWe have already indicated earlier that there exists a trade-o� between thecomplexity of the model family and the degree of model averaging approx-imations needed. If we restrict HAL's set of possible models enough, we arealso able to integrate (marginalize) over models. Consequently, if we restrictHAL's language to be the Naive Bayes model family MNB, in addition toMAP predictive distributions HAL can also compute the more sophisticatedevidence (3.11) and stochastic complexity (3.15) predictive distributions ex-actly without having to resort to any approximations. Following the Principleof Indi�erence we will set all hyperparameters �k and �kij to 1, i.e., HAL usesuniform Dirichlet priors for both MAP and evidence prediction. Once the4If massively parallel hardware is available, the computations can be made even fasteras the algorithms are easily parallelizable [102, 103].



4.3 Predictive inference with �nite mixtures 55priors are �xed the predictive distributions (3.9),(3.11), and (3.16) can bewritten in an explicit form. For notational simplicity, in the following dis-cussion we leave out the the normalizing constant, i.e., the denominator. Inaddition, to conform to the notation we have adopted for the general �nitemixture model family where Y is latent, for the Naive Bayes case we will useindex k instead of the actual value xmk for the variable Xm that gives thepartitioning of the data (for example ~d[xmk], �̂xmk and nm will be denotedsimply by ~d[k], �̂k and K, respectively).We will express the predictive distributions using the su�cient statist-ics [8], which are functions of data which summarize all the available datasample information concerning the model �. These su�cient statistics of thetraining data D are hk and fkil, where hk is the number of data vectors inclass k, and fkil is the number of data vectors in class k with variable Xihaving value xil.The MAP predictive distribution is proportional to the likelihood of thetest vector ~d[k]:pmap(Xm = kj(x1; : : : ; xm�1); D) / p(~d[k]j�̂) = �̂k m�1Yi=1 �̂kixi : (4.6)The mode parameters �j of a Dirichlet distribution Di(�1; : : : ; �K) are givenby (see e.g., [55]) �j � 1�0 �K ; where �0 � KXk=1�k:Now we can express the right hand side of (4.6) with su�cient statistics ashk + �k � 1N +PKk0=1 �k0 �K m�1Yi=1 fkixi + �kixi � 1hk +Pnil=1 �kil � ni : (4.7)The evidence predictive distribution (3.11) is de�ned as an integral,which in our case can be solved analytically. The derivation is somewhattechnical, and uses the results in [29, 66]. The predictive probabilities forpev can be expressed with su�cient statistics as follows:pev(Xm = kj(x1; : : : ; xm�1); D)/ hk + �kN +PKk0=1 �k0 m�1Yi=1 fkixi + �kixihk +Pnil=1 �kil : (4.8)The stochastic complexity predictive distribution psc is proportional tothe likelihood of the combined data set D+ = D [ ~d[k]. Therefore it will be



56 4 Predicting with finite mixturesexpressed with the su�cient statistics of D+, h+k and f+kil, which are de�nedanalogously to hk and fkil. The derivation is similar to the MAP predictivedistribution, thus the havepsc(Xm = kj(x1; : : : ; xm�1); D) / p(~d[k]; Dj~�(~d[k]; D))= KYk0=1 (~�k0)h+k0 m�1Yi=1 niYl=1(~�k0il)f+k0il! :(4.9)where ~�k = (h+k )=(N + 1) and ~�kil = f+kil=h+k :The �nal expressions for calculating the MAP predictive distributionpmap, the evidence predictive distribution pev, and the stochastic complexitypredictive distribution psc are worthy of a closer inspection. First impressionis that they look very similar in form, with only slight di�erences in thesu�cient statistics expressions �̂k and �̂kil. In fact for many model familiesof this type, and for the general Bayesian networks in particular,pev(~d[k]; D) = p(~d[k]j�̂(~d[k]; D)) (4.10)i.e., the evidence predictive distribution is the same as the map predictivedistribution calculated from the combined data set D+ = D [ ~d[k]. Fromthe small di�erence in the su�cient statistics one could then deduce thateven for very small data sets there would not be any signi�cant di�erence.In the empirical comparison of Section 4.4, however, we will see that this isnot the case, and that the above reasoning has overlooked two things. First,the parameters �̂k and �̂kil are multiplied with each other, which ampli�esthe e�ect for even small additive changes. However, more importantly, for a�xed k0, 1 � k0 � K the probabilitypev(~d[k0]; D) = p(~d[k0]j�̂(~d[k0]; D));i.e., the maximum a posterior model �̂(~d[k0]; D) is di�erent for each k0 asopposed to pmap, where all the predictions p(~d[k0]j�̂(D)) use the same �̂(D).From the observation (4.10) and the Equation (3.16) we can also see theconnection between pev and psc for uniform priors: psc is pev \corrected" bythe factor p(Dj~�(D+)), i.e., how likely the training data are assuming theML model of the combined data D+.



4.4 Comparing predictive inference methods 574.4 Comparing predictive inference methodsWe have discussed the three alternative predictive distributions pmap; pev,and psc that HAL could use for approximating the predictive distribution p(�)presented in Section 3.1.1. Each of them exploits a di�erent joint probabilitydistribution for the variables, but they are all de�ned with respect to thesame parametric model family M. Prediction with pmap is the traditionalapproach based on the single most probable model. Using the evidencepredictive distribution pev is the Bayes optimal approach with respect to agiven model class M , and psc is optimal in the shortest possible code-lengthsense [117]. An interesting question then is, given a choice, which predictivedistribution should HAL use, or is there any di�erence at all in practice?Computing the pmap or psc predictive distribution, or at least a good ap-proximation of them, is often feasible in practice, but the evidence approachrequires integrating over M , which is infeasible for many commonly usedmodel families. With the Naive Bayes model family we have an exceptionalsituation, where all three predictive distributions can be represented in aform allowing a computationally e�cient implementation, as demonstratedin Section 4.3. We will now proceed by evaluating and comparing the pre-dictive accuracy of the three predictive inference methods empirically byusing publicly available natural classi�cation data sets. We are not awareof any earlier comparisons of this nature, where all these prediction meth-ods are compared together (in fact we are not aware of any studies, wherethe recent new version of stochastic complexity has been applied in naturaldomains).Our interest here is to get information on the general behavior of theprediction methods. However, we would like to point out that, despite thesimplicity of the parametric form, the family of Naive Bayes models is widelyused in practice [43, 39, 82, 99], and thus the results have relevance also froma practitioner's point of view.In our experiments �ve public domain classi�cation data sets from theUCI data repository5 were used: Australian, Hepatitis, Glass, Primary Tu-mor and Heart Disease (for the description of the data sets see Appendix A).These data sets were chosen to represent samples with di�erent attributenumber and size combinations. The same data sets, among others, are lateron also used for the classi�cation experiments in Chapter 6.For each data set two separate sets of experiments were performed. Inthe �rst set of experiments we explored HAL's learning rate with the altern-5The data sets can be obtained from the UCI data repository at URL\http://www.ics.uci.edu/�mlearn/".



58 4 Predicting with finite mixturesative approaches, i.e., how the prediction quality of the di�erent predictivedistributions depends on the size of the training set D. In the second setof experiments we make a more detailed investigation on the di�erences inprediction quality between the three approaches for a �xed training set size.Prediction performance and the training set sizeIn this set of experiments we randomly partitioned each data set in a trainingreservoir Dr containing 70% of the data instantiations and a test set Dqcontaining the remaining 30%.One data instantiation ~d1 was then randomly taken out of the trainingreservoir and used as HAL's training set D1 = f~d1g. This initial training setD1 was used to generate the predictive distributionspmap(Xm = kj(x1; : : : ; xm�1); D);pev(Xm = kj(x1; : : : ; xm�1); D);psc(Xm = kj(x1; : : : ; xm�1); D)for all ~dj 2 Dq, and the predictions thus obtained for each ~d were comparedto the actual outcomes k in a manner to be described below.Next the training set D1 was extended by another data instantiation ~d2,unequal to the element already in D1 but otherwise randomly picked fromthe training reservoir Dr. This new training set is denoted by D2. For all~dj 2 Dq the three predictive distributions were determined and again, thepredictions thus obtained were compared to the actual outcomes k. Thisprocedure of adding one training element to Di to form Di+1, determiningall predictive distributions using Di+1 and predicting the value of Xm foreach entry in the test set was repeated until Di+1 = Dr, i.e., contained thefull training reservoir.The 0=1-score results lose quite a lot of information about the predicteddistributions, as we can only see whether or not the mode of the predictedprobability distribution coincides with the correct class k, but not whatthe predicted probability was. In order to be able to get more detailedinformation about the predictive distributions each prediction was evaluatedby both log-score and 0=1-score. The log-score of a predictive distributionp(Xmj(x1; : : : ; xm�1); D) is de�ned as� log p(Xm = kj(x1; : : : ; xm�1); Di);where k is the actual outcome of Xm.6 For 0=1-score we simply determinethe k for which p(Xm = kj(x1; : : : ; xm�1); D) is the maximum, and then6As we used logarithm of base two, the log-score has also a coding interpretation: If



4.4 Comparing predictive inference methods 59predict Xm to take the value k. If the actual outcome is indeed k, then the0=1-score is de�ned to be 1; if it is not equal to k, the 0=1-score is de�nedto be 0.This whole procedure of partitioning the data set and successively pre-dicting using larger and larger subsets of the training reservoir as our trainingdata was repeated 100 times. In Figure 4.1 the performance of the three pre-dictive distributions on the Glass data set is shown for both log-score and0=1-score. The vertical axis indicates the average score where the average istaken over the predictions of all class values in the test set and all the 100training sets of the size indicated on the horizontal axis.We can see that both scores rapidly increase as the size of the trainingset increases in all three approaches. For these experiments the �nal levelof accuracy achieved (when full training reservoir is used) is quite similar,no meaningful di�erences can be seen. Let us now focus on the interestingquestion, what happens in HAL's learning with small training set sizes.For the log-score, pev performs already well with training set sizes of20 (i.e., 10 % of the full data set), while both the pmap and the psc predic-tions show weak performance. For the 0=1-score, the stochastic complexitypredictive distribution shows the same behavior, while the pmap predictionstend to behave in a manner more similar to the pev. These results with theGlass data set are quite representative|analogous, though sometimes lessextreme, behavior was found for all of the �ve data sets used. Additionalexamples are shown in Figure 4.2, where the graphs for the Australian andHepatitis data sets are presented (for the log-score). Hepatitis presents anextreme case for pev, where on the average three data vectors is enough toachieve essentially as good performance as if the full training reservoir wereused. Corresponding �gures for all the data sets appear in Figures B.3{B.2in Appendix B.Figures 4.1 and 4.2 describe average behavior over many training sets;this raises the question of how well the methods perform for individual train-ing sets. In Figure 4.3 the log-score performance averages for pev and psc areshown together with the maximum and the minimum prediction performancefor the Glass data set. For each training set size N , the maximum (min-imum) performance is de�ned to be the prediction performance of the onetraining set out of the 100 training sets of size N that had the best (worst)performance on the test set. We see that after HAL has seen about 20 dataone encodes the data using the code corresponding to p(Xmj(x1; : : : ; xm�1);D), then� log p(Xm = kj(x1; : : : ; xm�1);D)is equal to the number of bits one needs to describe the actual outcome k.
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4.4 Comparing predictive inference methods 63vectors (about 10% of the data), the worst case pev prediction suddenly goesup. This \phase transition" behavior also occurs for the stochastic com-plexity predictive distribution psc, but only after about 80 data items. Thecorresponding graphs for the other data sets used and for the 0=1-score showsimilar tendencies (Figures B.12{B.11 in Appendix B). This observationis, however, more a property of the particular sample than the \learningbehavior"|the \phase transition" moves to larger training set sizes if thenumber of training sets is increased.From this set of experiments one can conclude two things. First, someof these commonly used data sets are quite redundant, and when properlyused, only a very small sample of these data sets is needed to construct goodmodels. Second, at least for the Naive Bayes model family, pev with uniformpriors can be an extremely \safe" choice for HAL's predictive distribution:even for small sample sizes it predicts well in most cases.If HAL uses evidence predictive distribution pev, in the extreme cases itwould need only few data items to predict well, and for almost every case lessthan 20% of the training data would be enough to achieve good predictiveperformance. If HAL used pmap prediction for the same data, it would requiremuch more data vectors to \catch up" the pev performance. The predictionswith stochastic complexity predictive distribution psc for the log-score are inmost cases in between these two extremes. How can this be explained?If one looks at the actual predictions made, the pev prediction is muchmore \conservative" than the pmap prediction. The latter is in our case equalto using the maximum likelihood predictive distribution, and it is a well-known fact that, for small sample sizes, the ML predictor is too dependent onthe observed data and does not take into account that future data may turnout to be di�erent. A very simple example illustrates this point. Supposeour data consists of a string of ones and zeros generated by some Bernoulli-process. If we have seen an initial string consisting of just one `1', thenthe pmap prediction will determine that the probability of the second symbolbeing a 1 is unity. Using the pev prediction with uniform priors, however,this probability is 23 . If the next data item turns out to be a 0, then the log-score of the pmap prediction will be �1 while that of the evidence predictivedistribution pev will be log 2� log 3.The behavior of the stochastic complexity predictive distribution psc liessomewhere in between that of pmap and that of the pev. In our example, theprobability of the second symbol being a 1 will be 45 : the stochastic complex-ity predictive distribution is less conservative than the evidence predictivedistribution, but still more conservative than the pmap, which explains partof the small sample size behavior for the log-score.



64 4 Predicting with finite mixturesData set MAP-01 EV-01 SC-01 MAP-LS EV-LS SC-LSAustralian 0.851 0.848 0.848 -0.456 -0.457 -0.458Primary Tumor 0.460 0.490 0.434 -3.247 -1.930 -2.112Heart Disease 0.830 0.837 0.837 -0.476 -0.439 -0.444Glass 0.701 0.668 0.636 -1.216 -0.981 -1.015Hepatitis 0.847 0.820 0.827 -0.853 -0.666 -0.692Table 4.1: Leave-one-out cross-validation results on the �ve data sets used.Predictive performance with �xed training set sizeIn our second set of experiments, we tested HAL's three prediction methodsusing leave-one-out cross-validation [133], both for the log-score and the 0=1-score. As the training sets in leave-one-out cross-validation are almost aslarge as the full data sets, Figures 4.1-4.3 already suggest that the methodswill show quite similar performance. Our results on the �ve data sets aresummarized in Table 4.1. The middle columns show the cross-validatedresults for the 0=1-score, the three rightmost columns show the results forthe log-score. Though the di�erences in performances are all quite small,we see that for the log-score, the evidence predictive distribution predictionpev performs consistently better than the stochastic complexity predictivedistribution, which itself outperforms the use of pmap predictions. For the0=1-score, the picture is not as clear-cut, but it seems that the pmap predictionperforms slightly better than both the evidence and stochastic complexitydistribution predictions. This is not particularly surprising since 0=1-scoreis very coarse, and it is not important what actual probability HAL attachesto a class value being k; all probability distributions over the class valuesfor which k gets the maximum probability will lead to the same prediction.Thus it can very well happen that, while the pmap captures less well theregularities underlying the data (and hence performs worse with respect tolog-score), it still captures them well enough to give maximum probabilityto the class value that should indeed receive maximum probability.This comparison was performed using MNB, i.e., in the complete datacase. For the general �nite mixture models the class variableXm is assumedto be a latent variable, thus the three predictive distributions described herecan only be solved analytically by summing over all the possible instanti-ations of the missing data, which are exponential in number. Analogously tothe comparison performed here we could also compare the methods for gen-eral �nite mixtures, but in such a case one would have to consider also thee�ect of the approximations (see Chapter 5). Many of these approximations



4.4 Comparing predictive inference methods 65are asymptotic, and thus would render the type of study about learning rateperformed here meaningless.
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Chapter 5Constructing �nite mixtures\Too many machine learning programs su�er from an extreme case of thisde�ciency [requirement for parameter tuning], which is named the\China Syndrome" because sometimes the only person who is able to makea program run is in China."|Buchanan, 1987 talk paraphrased inMegainduction: machine learning on very large databasesWe have now completed the construction of HAL's machinery for predict-ing with Bayesian deductive inference in the case of �nite mixture modelfamily. In order to be able to use its prediction formulae, however, HALneeds either the maximum a posteriori model class M̂ , or the maximum aposterior model �̂ in M̂ . Unfortunately, for the �nite mixture family bothcalculating the maximum of the posterior p(�jM) for models in a �xed modelclass, and the posterior p(M jD) for the model classes involves computationexponential in the amount of data. Consequently for any realistic data setHAL has to use approximations to the actual maximum a posteriori model ormodel class.This chapter is concerned with Bayesian inductive inference, which inHAL's case reduces to �nding high posterior �nite mixture models or modelclasses, to be used for its predictions. At this point we will see the advant-age of being able to separate the criterion for good models (model classes)and the search process: we can discuss the problem of computing the pos-terior probability of di�erent models �, given a model classM (Section 5.1),without being forced to �x any particular search algorithm. Section 5.2then discusses how to use a variant of the Expectation-Maximization (EM)algorithm to search over the model class for models with high posteriorprobability, but as shown in [84], other alternatives exist.It has become apparent that the model class evidence p(DjM) has a67



68 5 Constructing finite mixturesvery central role in HAL's prediction process. We thus discuss �rst the exactform of the model class evidence for �nite mixtures (Section 5.3), and thenstudy the performance of some e�cient approximations to it (Section 5.4).We conclude the chapter by summarizing the Bayesian model constructionprocedure (Section 5.5).5.1 Selecting �nite mixture modelsLet us now turn to the problem of computing the posterior of the models� in a given model class M . Use of Bayes' theorem gives us the posteriorprobability of a model � as (Equation (3.5))p(�jD;M) / p(Dj�;M)p(�jM): (5.1)From the discussion in Chapter 4 we know that a �nite mixture model �in model class MK assumes that the data is sampled from K distributions,i.e., the �nite mixture model � imposes a partitioning of the data into Kclusters. This partitioning can be modeled by introducing an unobservedlatent variable Zj for each data vector ~dj , the value of which gives the clusterindex of the cluster vector ~dj belongs to. We can now think a vectorZ = (z1; : : : ; zN)consisting of the values of the latent variables Z1; : : : ; ZN , as a randomsample from the distribution of Y like D is a random sample from thejoint distribution of X1; : : : ; Xm. However, for technical reasons it is moreconvenient to consider each value zj as a vector of cluster indicator variablevalues, zj = (zj1; : : : ; zjK), wherezjk = (1; if ~dj is sampled from p(�jY = yk);0; otherwise.The vector Z is unknown, thus in order to calculate the incomplete datalikelihood p(Dj�) in (5.1), we need to marginalize it out. Thereforep(Dj�) =XZ p(D;Zj�);where the summation is over all the possible KN values of the vector Z.The joint likelihood terms p(D;Zj�) in the sum are called complete datalikelihoods. Let us introduce an indicator variable vjil to simplify the formof the complete data likelihood de�nition:vjil = (1; if dji = xil;0; otherwise.



5.1 Selecting �nite mixture models 69Here we have adopted the notation that dij is the value of the variable Xi ofdata vector ~dj .We have assumed that the data are i.i.d., thus the complete data likeli-hood p(D;Zj�) can be written as a productp(D;Zj�) = NYj=1 KYk=1 �k mYi=1 niYl=1�vjilkil !zjk : (5.2)The incomplete data likelihood can be expressed as marginalized completedata likelihoodp(Dj�) =XZ p(D;Zj�) =XZ 0@ NYj=1 KYk=1 �k mYi=1 niYl=1�vjilkil !zjk1A : (5.3)This sum has exponential number of terms, where each term represents oneof the possible clusterings of the data. This is the reason for the di�culty of�nding the MAP �nite mixture model: no computationally feasible solutionfor maximizing the incomplete data posterior (5.1) is known.On the other hand we saw already above that maximizing the completedata likelihood does not involve any exponential sum anymore, as the clusterassignments Z are given. Since this indicates that calculating the completedata posterior is feasible, we can approach the incomplete posterior maxim-ization indirectly as follows.Here we again choose Dirichlet prior distribution for the parameters (seethe discussion in Section 4.1), i.e.,(�; �) � Di (�1; : : : ; �K) KYk=1 mYi=1Di (�ki1; : : : ; �kini) : (5.4)Consequently the joint density p(�) can be written asp(�) = � KXk=1�k! KYk=1 ��k�1k�(�k)! KYk=1 mYi=1 � niXl=1 �kil! niYl=1 ��kil�1kil�(�kil)! :(5.5)We will use use the su�cient statistics introduced already in Chapter 4:hk , which is the number of instantiations in cluster k, and fkil denoting thenumber of instantiations in cluster k with variableXi having value xil. Thesesu�cient statistics can now be expressed using the indicator variables zjkand vjil: hk = NXj=1 zjk and fkil = NXj=1 zjkvjil:



70 5 Constructing finite mixturesSince we have chosen a conjugate prior, it follows that the posteriordistribution is also a product of Dirichlet distributions and is given byDi (�1 + h1; : : : ; �K + hK) KYk=1 mYi=1Di (�ki1 + fki1; : : : ; �kini + fkini) :Therefore the complete data posterior density p(�jD;Z) can be expressedp(�jD;Z) = � KXk=1(�k + hk)! KYk=1 ��k+hk�1k�(�k + hk)!� KYk=1 mYi=1 � niXl=1(�kil + fkil)! niYl=1 ��kil+fkil�1kil�(�kil + fkil)! : (5.6)The parameters �k and �kil appear disjointly in (5.6), and hence can bemaximized separately. We can again use the information about the mode ofthe Dirichlet density (see Section 4.3) to �nd the MAP values of the completedata posterior:�k = hk + �k � 1N +PKk0=1 �k0 �K ; �kil = fkil + �kil � 1hk +Pnil0=1 �kil0 � ni : (5.7)By the solution given in (5.7) we have actually solved HAL's problem of�nding the MAP model for the Naive Bayes model family MNB, since thecluster assignments Z are already given by the class variable Xm. Thusthe MAP parameter values �̂k and �̂kil in (4.7) are the maximums of thecomplete data posterior p(�jD). Consequently, for the model family MNBHAL can calculate the MAP model directly from the training data withoutany search process.Here we can make an important observation: all HAL's computationaldi�culties in predicting with the �nite mixture model family result fromthe uncertainty about the clustering of the data. On the other hand, thecomplete cases of the posterior and evidence can be solved e�ciently. Manyof the approximations for the incomplete cases try to make use of this fact.In particular, we will next discuss a method of �nding the local maximum ofthe incomplete data posterior by maximizing the expectation of the completedata posterior.5.2 Searching models with EMWe have seen that �nding the MAP parameter values � for the incompletedata posterior is not feasible in practice. The problem could, however,



5.2 Searching models with EM 71be solved by augmenting the observed data D with the missing clusterassignments Z. This is a typical missing data problem [93], which hasbeen addressed in several di�erent ways. One of the most commonly usedgeneric missing data algorithms is the Expectation-Maximization (EM) al-gorithm [38]. In the following, we will apply EM in our case to �nd goodapproximations to the MAP parameters of the incomplete data posteriorp(Dj�).The EM algorithm is an iterative procedure consisting of two steps: Ex-pectation (E)-step and Maximization (M)-step. In the E-step, the expectedcomplete data posterior given the incomplete data and the current estimatedparameter values is determined. In the M-step, the parameter values areupdated in such a way that the obtained expected posterior is maximized.The underlying intuition is that we would like to maximize the incompletedata posterior but since it cannot be done, we maximize the expectation ofthe complete data posterior instead.The E-step in Algorithm 5.2.1 requires the evaluation of the function Q,which is an expectation over missing data. In our case the missing data isthe cluster assignment vector Z, which has KN possible values. It followsthat the exact determination of Q is again computationally infeasible. For-tunately, in our case there is a standard way to overcome this problem. Wecan apply the Bayes' theorem sequentially considering only one data vectorat a time, and then approximating the resulting posterior in a suitable way.This procedure is called the Quasi-Bayes algorithm [138] or fractional updat-ing [137]. In the Quasi-Bayes algorithm, instead of taking the expectation ofthe whole posterior, the missing data is simply replaced by its expectation.This gives us an approximation to the function Q.In order to de�ne the expectations of the su�cient statistics �hk and �fkilwe need the expectations of the cluster indicators zjk :wjk = E[zjkjD; �(t)] = p(zjk = 1j~dj; �(t));since the data are i.i.d. From Bayes' theorem we now havewjk = p(zjk = 1j�(t))p(~djjzjk = 1; �(t))p(~djj�(t))= �(t)k Qmi=1Qnil=1 ��(t)kil�vjilPKk0=1 ��(t)k0 Qmi=1Qnil=1 ��(t)k0il�vjil� : (5.8)



72 5 Constructing finite mixturesAlgorithm 5.2.1General Expectation-Maximization algorithm (EM)i. Initialize parameters randomly. Set t = 0.ii. ITERATE until selected convergence criteria are satis�ed:(a) E-step: Determine Q(�; �(t)) = E[log p(�jD;Z)jD; �(t)].(b) M-step: Set �(t+1) = argmax� fQ(�; �(t)) � 2 Mg,where �(t) are the parameter estimates in time step t.(c) Set t = t + 1.iii. Return �(t).Using (5.8) the expectations of the su�cient statistics can be expressed as�hk = E[hkjD; �(t)] = NXj=1wjk;�fkil = E[fkiljD; �(t)] = NXj=1wjkvjil:Now the approximation to the function Q is given byQ̂(�; �(t)) = Di ��1 + �h1; : : : ; �K + �hk�� KYk=1 mYi=1Di ��ki1 + �fki1; : : : ; �kini + �fkini� : (5.9)This approximation can be intuitively explained as follows. By replacingunknown zjk's by their expectations, each data vector is divided betweenthe clusters based on the probabilities that it originates from these clusters.Summing of these probabilities is justi�ed by the incremental nature of theDirichlet distribution1. An analysis of the convergence of the Quasi-Bayesprocedure and a comparison to other similar methods is given in [138].In the M-step, we can now make use of the fact that computing the com-plete data posterior is feasible. The functional form of (5.9) is the same as1By incrementality we mean here the property that when a new data vector arrives,the parameters of Dirichlet distribution are updated by adding the contribution of thenew data vector to the old value of each parameter.



5.2 Searching models with EM 73Algorithm 5.2.2Expectation-Maximization algorithm for incomplete data posteriori. Initialize parameters randomly. Set t = 0.ii. ITERATE until selected convergence criteria are satis�ed:(a) E-step: for each j; k computewjk = E[zjkjD; �(t)] = �(t)k Qmi=1Qnil=1 ��(t)kil�vjilPKk0=1 ��(t)k0 Qmi=1Qnil=1 ��(t)k0il�vjil� :(b) M-step: Update parameters as�(t+1)k = PNj=1 wjk + �k � 1N +PKk=1 �k �K ;�(t+1)kil = PNj=1 wjkvjil + �kil � 1PNj=1 wjk +Pnil=1 �kil � ni :(c) Set t = t+ 1.iii. Return �(t)k and �(t)kil.the complete data posterior (5.6), therefore the same maximization formulas(5.7) apply. Thus �(t) that maximizes the Equation (5.9) can be found e�-ciently. Algorithm 5.2.2 presents the (Quasi-Bayes) EM algorithm for our�nite mixture case. In principle the EM algorithm can be shown to havelinear convergence [38], i.e., near the mode � = �̂ of the posterior,k �(t+1) � �̂ k= � k �̂(t) � �̂ k;where � 2 R; � < 1 is the convergence rate of EM. The convergence ofEM is monotonic and the algorithm is assured to converge to a local op-timum. Although the two main competitors of EM, the Method of Scoringand Newton-Raphson (see e.g., [138]), have a quadratic convergence rate,the methods lack the nice monotonic convergence property (and may notconverge at all), and are also usually more di�cult to apply than EM. Inpractice, at least in all the experiments related to the work here, a relativelysmall number of iterations is su�cient for �nding good models � in terms



74 5 Constructing finite mixturescl weight small big red green blueRandom 1 0.754348 0.236773 0.763227 0.203462 0.278712 0.5178262 0.245652 0.484881 0.515119 0.468076 0.358158 0.173766Round 1 1 0.727074 0.181035 0.818965 0.180993 0.178833 0.6401742 0.272926 0.739309 0.260691 0.738858 0.134891 0.126251Round 2 1 0.687241 0.067032 0.932968 0.067016 0.222526 0.7104582 0.312759 0.918675 0.081325 0.918186 0.044528 0.037286Round 3 1 0.668115 0.006017 0.993983 0.006015 0.247537 0.7464482 0.331885 0.992419 0.007581 0.991921 0.004451 0.003627Table 5.1: The values of the parameters (probabilities) initially and aftereach iteration of the Algorithm 5.2.2.of the prediction error (see also the discussion in [84]). This allows HAL tosearch for good approximations of the global optimum �̂ by iteratively run-ning algorithm 5.2.2 with randomly chosen initializations of the parametersas many times as possible within a given time limit.We conclude our discussion on model selection by illustrating the be-havior of Algorithm 5.2.2 with a small example. Let us assume thatHAL's observable domain consists of balls with two attributes: color =fred,green,blueg and size = fbig,smallg. We thus have two variablesXcolor andXsize. Furthermore assume that we want to �nd a model � 2M2,i.e., a two-cluster model. In this case the model is� = (�1; �2; �111; �112; : : : ; �222):The data set D used for model construction isD = f(small; red); (small; red); (big; blue);(big; blue); (big; blue); (big; green)g:The convergence criteria for the EM is set to 3 iterations. Table 5.1 givesthe model parameter values, i.e., the probability estimates �i, in the initialrandom state and after each iteration of the algorithm. The same distributioninformation is presented graphically in Figure 5.1. As we can see, startingfrom a random initial assignment, EM converges towards a model �b withclusters \big and blue" (Cluster 1) and \small and red" (Cluster 2). HALcan now represent the queries \If I observe that the ball is green, what is itssize?" and \If I observe that the ball is big, what is its color?" as new datavectors d1 and d2 with missing values, i.e.,(�; green)? and (big; �)?



5.3 Selecting �nite mixture model classes 75

Figure 5.1: The parameter distributions initially and after each iteration ofthe Algorithm 5.2.2.Then the predictions with the model �b using the MAP prediction arep(smalljgreen; �) = 0:015;p(bigjgreen; �) = 0:985;p(redjbig; �) = 0:010;p(greenjbig; �) = 0:247;p(bluejbig; �) = 0:743: (5.10)The same predictive distributions are presented graphically in Figure 5.2.5.3 Selecting �nite mixture model classesWe have seen that in the Bayesian framework one of the terms in the Bayes'theorem, the evidence p(DjM), has a very central role: the posterior prob-ability for each �xed model class p(M jD) is directly proportional to the
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Figure 5.2: The predictive distributions to the queries (�,green) and (big,�).evidence, with uniform priors p(M) it gives HAL the optimal number of mix-ing distributions (clusters), and by using (3.11) HAL can use the evidencedirectly for predictions. We now turn to the problem of computing the evid-ence p(DjM) = Z p(Dj�;M)p(�jM)d� (5.11)for a �xed model class M , and consequently drop M from the conditioningparts of our expressions.As discussed earlier, each instantiation of Z represents a cluster assign-ment of all the N data vectors to the K possible classes. The incompletedata evidence (5.11) can now be computed by marginalizing, i.e., summingover the KN complete data evidences, i.e.,p(D) =XZ p(D;Z); (5.12)where the summing goes over all the possible clusterings.Let us now consider the complete data evidence P (D;Z),p(D;Z) = Z p(D;Zj�)p(�)d�: (5.13)Let us now recall from (5.2) thatp(D;Zj�) = NYj=1 KYk=1 �k mYi=1 niYl=1�vjilkil !zjk (5.14)



5.3 Selecting �nite mixture model classes 77and from (5.5) thatp(�) = � KXk=1�k! KYk=1 ��k�1k�(�k)! KYk=1 mYi=1 �( niXl=1 �kil) niYl=1 ��kil�1kil�(�kil)! :(5.15)Then we see that the integrand p(D;Zj�)p(�) can be written asC � KYk=1�hk+�k�1k ! KYk=1 mYi=1 niYl=1�fkil+�kil�1kil ; (5.16)where C is the normalizing constant,C = � �PKk=1 �k�QKk=1 �(�k) KYk=1 mYi=1 � �Pnil=1 �kil�Qnil=1 �(�kil) : (5.17)Now we can make use of the fact that the parameters � and �ki appeardisjointly in (5.16), and decompose the integral (5.14) into a product ofintegrals:p(D;Z) = C �  Z KYk=1�hk+�k�1k d�! KYk=1 mYi=1 Z niYl=1�fkil+�kil�1kil d�ki:(5.18)These integral forms are called Dirichlet integrals with a known solution (see[147, p. 178]), consequently (5.18) becomesp(D;Z) = C � QKk=1 �(hk + �k)� �PKk=1(hk + �k)� � KYk=1 mYi=1 Qnil=1 �(fkil + �kil)� �Pnil=1(fkil + �kil)� :(5.19)From (5.19) and (5.17) we then havep(D;Z) = � �PKk=1 �k�� �N +PKk=1 �k� KYk=1 �(hk + �k)�(�k)� KYk=1 mYi=1 � �Pnil=1 �kil�� �hk +Pnil=1 �kil� niYl=1 �(fkil + �kil)�(�kil) ! : (5.20)The complete data evidence formula (5.20) for the discrete �nite mixturefamily can be seen as a generalization of the work in [60], where a similarresult was derived for �nite mixtures with only binary variables and uniformprior distributions for the parameters (we used discrete variables with Di-richlet priors). The result was derived independently of [66], where a similar



78 5 Constructing finite mixturesresult is given for the general family of Bayesian networks. Consequently, as�nite mixture models can be regarded as a special case of Bayesian networks,the formula for computing the evidence can also be obtained by adapting thecorresponding general result for Bayesian networks.From this derivation it now follows that we can in principle computethe incomplete data evidence (5.11) by using Equation (5.12) together with(5.20). Analogously to computing the incomplete data posterior, the incom-plete data evidence also requires summing over all the possible clusterings,i.e., computing an exponential sum. Thus in practical situations HAL has twochoices:i. Use Naive Bayes model family MNBHAL can restrict the model family from the general discrete �nite mix-tures to the Naive Bayes model family, for which the complete dataevidence (5.20) can be computed e�ciently. With MNB HAL can pre-dict using pev with no approximations.ii. Use an approximation to p(D)HAL can use a computationally feasible approximation of the evidence.The choice between these two alternatives is dependent on the fact, whetherthe stronger independence assumptions of MNB can be justi�ed (even ap-proximately) in the problem in question. The experimental work Chapter 6indicates that in general the alternatives produce comparable predictions.Most approximations to p(D) are based on Laplace's method of integra-tion (see the discussion in e.g., [9, 77]), where the logarithm of the integrandof the evidence (5.11) is expanded at the posterior mode �̂. Laplace's ap-proximation is based on the assumption that when the amount of data Ngrows, the posterior p(�jD) / p(Dj�)p(�)can be approximated as a multivariate Gaussian distribution. In order toapproximate log(p(Dj�)p(�)) one can use a second degree Taylor polynomialabout �̂, and thus obtainlog(p(Dj�)p(�))� log(p(Dj�̂)p(�̂))� 12(� � �̂)T ~�(� � �̂); (5.21)where ~� is the negative Hessian of log(p(Dj�)p(�)) evaluated at �̂. Substi-tuting (5.21) to (5.11), integrating and taking the logarithm we now haveLaplace's approximation:log p(D) � log p(Dj�̂) + log p(�̂) + dim2 log(2�)� 12 log j~�j; (5.22)



5.4 Approximating the evidence 79where dim is the dimension of the model, i.e., the number of parameters.In practice for computing e�ciency Laplace's approximation is appliedin alternative forms by retaining only those terms in (5.22) that depend onN : log p(Dj�̂) and log j~�j. An example of this type of an approximation isthe Bayesian Information Criterion (BIC) [123], also known as the Schwarzcriterion, which is based on the observation that for large N the determinantj~�j / Ndimand that �̂ can be approximated by ~�, thus leading to an approximationwithout any need for prior terms given bylog p(D) � log p(Dj~�)� 12dim logN; (5.23)where dim is the number of parameters. This approximation can also begiven an information theoretic interpretation in the Minimum DescriptionLength (MDL) setting, as demonstrated in [116].The BIC approximation can also be used as a motivation for anotherapproximation method. From (5.23) we know that with increasing N theevidence p(D) � p(Dj~�) � C, where C is a term depending only on N , andon the dimensionality of �. Similarly, we getp(D;Z) � p(D;Zj~�) � C:Now solving C in both cases givesp(D) � p(D;Z) � p(Dj�̂)p(D;Zj�̂) : (5.24)If we now replace ~� by �̂, take the logarithm of the right-side of (5.24) andreplace the unobserved data Z with its conditional expectation given thedata D and the parameters �̂, we get the Cheeseman-Stutz (C-S) approxim-ation, which is used in the AutoClass system [24]2.5.4 Approximating the evidenceIn the literature several methods for computing the evidence P (D) approx-imately, including the ones discussed (BIC and Cheeseman-Stutz), have beensuggested (see e.g., [5, 15, 24, 77, 116, 123, 134]). The quality of most of2An alternative way of deriving the C-S approximation is given by Chickering andHeckerman in [25].



80 5 Constructing finite mixturesthese approximations is not well known, except for some asymptotic results.As can be seen from the experiments in Chapter 6, typical data sets thatHAL encounters in real life are small in the asymptotic sense. Therefore wewill now investigate empirically the performance of the most common in-complete evidence p(D) approximations in an attempt to understand theirsmall sample behavior in the �nite mixture framework. In many earlier sim-ilar studies (see e.g., [112, 119]), the model family used has either been toorestricted for extending the results to real-world domains, or too general toallow an exact solution to be used for the comparisons.The evaluation of the quality of the approximations faces the obviousproblem that for any reasonable sized data set calculating the exact incom-plete data evidence (5.11) is not feasible. In a recent continuation of thework discussed here [85], some of the incomplete evidence approximationsare compared to p(D), which is computed by the \brute force method," i.e.,by actually computing complete data evidence for all the clusterings of thedata vectors. The study supported our empirical observation of the viabil-ity of the Cheeseman-Stutz approximation, but also revealed the sensitivityof the approximation to the selection of approximate �0 � �̂, if the exact �̂cannot be found.In [25], the problem of not knowing the actual incomplete evidence iscircumvented by using synthetic data, in which case the correct value is\implicitly known," and the number of mixing distributions used for gen-erating data can be controlled. Unfortunately such an empirical study canface a serious validity problem, as one does not know whether the resultscould be generalized to real-world problem domains, or whether they aresimply caused by some anomaly in the arti�cial data generating method. Itshould be pointed out that when validating approximative evidence meas-ures against generated data, one should be extremely careful in providingsamples that are representative to the intended mixing distributions. Negat-ive results, i.e., approximations suggesting model classes di�ering from the\true number" of mixture components Mk can also be caused by the factthat the data in the sample can indeed be described best with a di�erentmodel classMk0 , since no �nite sample can capture all the information of thegenerating process. The amounts of data needed to represent the underlyingdistribution are substantial (thousands of data vectors for parameter spacesof only moderate dimensionality), which de�es the whole purpose of �ndingout the approximation quality for small sample sizes encountered in real life.The results reported in [25] clearly reect this di�culty.In order to investigate this issue of incomplete evidence approximationwe performed two sets of experiments with three approximations from the



5.4 Approximating the evidence 81Laplace's approximation family. We �rst study the behavior of Akaike In-formation Criteria AIC [5] and BIC [123] with respect to complete evidencep(D;Z). As Cheeseman-Stutz [24] o�ers an approximation for the incom-plete evidence using the complete evidence, we could not include it in thisset of experiments. In the second set of experiments, however, we compareCheeseman-Stutz against cross-validation [133] for a typical use of the in-complete evidence: model class selection. The �rst set of experiments usedreal data sets and the second both synthetic (generated) and real data sets.The data sets used here are among those discussed in Chapter 6.AIC and BIC approximations vs. complete evidenceFrom Section 5.3 (Equations (5.11) and (5.13)) we know that each term inthe exponential sum required for computing the incomplete evidence is itselfan integral of the same form. This in fact is one of the intuitions behindthe Cheeseman-Stutz approximation. Therefore it might be reasonable toassume that any method capable of approximating such integrals well ingeneral is also a good approximator for computing the incomplete evidence.Hence in the �rst set of experiments we use the complete data integral whichis closest to the incomplete data integral, corresponding to the Z assignmentwith the highest probability. We compute the complete data evidence fordi�erent model classes by using (5.20), and compare the results to the resultsobtained by Bayesian Information Criterion (BIC), and Akaike InformationCriterion (AIC), to be de�ned below. It should be observed that we donot suggest here that one complete data evidence term should be used forpractical model selection tasks|it is used only as a tool for evaluating thequality of the BIC and AIC approximations.Let us recall that the Bayesian Information Criterion [123] approximatesthe incomplete data evidence bylog p(D) � log p(Dj~�)� 12dim logN; (5.25)where dim is the number of parameters (dim = K(1+Pmi=1 ni)� (Km+1)).The Akaike Information Criteria approximation [5] is a Laplace's approxim-ation which is even simpler:log p(D) � log p(Dj~�)� dim:Both of these approximations are interesting in the sense that they are quiteintuitive and do not require assessing any prior. Namely, they contain alikelihood term measuring how well the Maximum Likelihood (or MAP ifuniform priors are used) model in the model class predicts the data, and a
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Figure 5.3: Results with the Primary Tumor dataset.\regularization term" that penalizes the complexity of the model. For moretechnical justi�cations of these approximations, see e.g., [5, 77, 123].In order to be able to compute the complete data evidence, we need thecluster assignment Z. Here we have chosen to use the clustering corres-ponding to the approximate MAP parameters, and use the EM-algorithmdescribed earlier to �nd a good approximation of ~�. Finding the cluster as-signments Z for a �xed model � is trivial: each data vector is assigned tothe most probable cluster by settingzjk = 8<:1; for k = argmaxk0=1;:::;Kf�k0 Qmi=1 �k0idjig0; otherwise. (5.26)In our experiments, we used �ve public domain classi�cation datasetsfrom the same collection as before. The datasets were of varying size, andcontained natural data from various problem domains. We chose these �vedata sets from the larger set to reect various di�erent features in the do-mains HAL could encounter in practice: very small training data set (Iris),large data set with many attributes (DNA), a binary classi�cation case (Dia-betes), a multi-class classi�cation (Primary Tumor) and a\di�cult" casewhere the results with various alternative prediction methods have a highvariance (Glass).



5.4 Approximating the evidence 83For each dataset, and for each model class MK ; K = 1; 2; : : :, we es-timated the optimal clustering Z by the EM-algorithm. In each case, thealgorithm was repeated 500 (with the DNA dataset 50) times by startingwith randomly chosen initial states. In each trial, the algorithm was run un-til converged, which took typically 10{20 iterations. Like for all the empiricaltests in this work, uniform priors were used (i.e., we set �k = 1; �kil = 1,for all k, i, and l). Consequently the clusterings could be ranked accordingto their likelihoods P (Dj�̂Z), where �̂Z denotes the MAP parameter valuescorresponding to a clustering Z. The best of the 500 locally optimal clus-terings found was then chosen to be the clustering used in our experiments,and the complete data evidence was then computed by using (5.20). Theresult was then compared to the approximations given by the BIC and theAIC methods.The results for each of the �ve datasets are presented in Figures C.1{C.5given in the Appendix C. Here we show only one illustrative example in Fig-ure 5.3, which depicts the results from the experiments with the Primary Tu-mor data set (EBC denotes here the exact evidence formula given by (5.20)).In the Appendix, where the complete results are given, the graphs are sortedin ascending order by the size of the corresponding dataset. From the resultswe can see that the approximations give estimates which are consistently toolarge (AIC) or too small (BIC), when compared to the exact solution. Thisis not important, however, if we are interested in using the criterion for com-paring di�erent model classes, in which case the relative shape of the curves,and the location of the maxima are more interesting. As we can see, theapproximation curves follow quite accurately the shape of the exact solutioncurve, especially with the larger datasets. An interesting observation is thatthe approximative model class estimators perform very well already with asample size of about 300 data vectors for an 18-dimensional problem (i.e., 18domain attributes), and extremely well for a 181-dimensional problem witha sample size of 3000.Cheeseman-Stutz approximation vs. cross-validationIn Chickering and Heckerman's study [25] the Cheeseman-Stutz approxima-tion was found to outperform AIC and BIC for synthetic data, which seemsto indicate that C-S is a good approximation of p(D) for the speci�c pur-pose of selecting the \true" model class M . Their approach corresponds toan exploratory data mining setting were one wants to examine whether theBayesian model class selection scheme can be used for determining the \cor-rect" model class for the problem domain in question. As pointed out earlier,in this exploratory type of an analysis one has to be careful in generating the



84 5 Constructing finite mixturessample to be representative enough, otherwise the evidence measure tendsto suggest overly simple structures. We will illustrate this by evaluating C-Sin an experiment with also synthetic data sets, which clearly demonstratethis problem when the dimensionality of the model is increased.Even putting the philosophical issues aside, since we know that in thegeneral case the non-identi�ability of �nite mixtures [138] prevents HAL fromuniquely determining the components from data, this exploratory view pointis only of marginal interest to us. For HAL the \correct" model class of thedata isM which produces the best predictions. Hence an interesting questionis, what is the quality of the Cheeseman-Stutz approximationwhen evaluatedby the predictive performance of the model class it selects. To evaluate thefeasibility of C-S approximation for predictive modeling, i.e., for determiningthe optimal model class for predictive purposes, we use natural data sets andcompare the results to those suggested by cross-validation.The data sets used in these experiments are again from the same col-lection of data sets used also in Chapter 6. The Australian, Heart Diseaseand Lymphography domains are illustrative of the behavior of the C-S ap-proximation for all the data sets. DG10 and DG20 are synthetic datasetswith 2000 data vectors generated by sampling random mixture models witha variable number of clusters, the number of domain attributes being 10 and20, respectively. The number of possible attribute values varied between2 and 4.The Cheeseman-Stutz measure requires the calculation of the MAP es-timate �̂. Since we know that the EM algorithmproduces only locally optimalapproximations of �, for each test case 50 repetitions of EM with randominitialization were performed, of which the highest posterior �b was chosento represent the maximum a posteriori model �̂. Convergence of the EMalgorithm proved to be very fast, in the order of 100 or less iterations foreach individual run.Figures D.1, D.2 and D.3 in Appendix D illustrate the behavior of theCheeseman-Stutz approximation and the cross-validation results for modelclasses with K = 1; : : : ; 10. We will show here only the results for theLymphography data set (Figure 5.4). For all three datasets the Cheeseman-Stutz model class suggestions coincide with the cross-validation results witha relatively high accuracy. It should be pointed out, however, that the cross-validated results themselves are an approximation, and therefore not decisivefor both theoretical and pragmatic reasons. For e�ciency reasons only 10-fold cross-validation was used, which can have high variance depending onthe partitioning to folders (see the discussion in Chapter 6). This factorcould be removed if computationally more demanding leave-one-out cross-



5.4 Approximating the evidence 85
-2180

-2160

-2140

-2120

-2100

-2080

-2060

-2040

1 2 3 4 5 6 7 8 9 10

C
he

es
em

an
 -

 S
tu

tz

Number of clusters (K)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8 9 10

S
uc

ce
ss

 r
at

e 
(%

)

Number of clusters (K)Figure 5.4: The C-S measure (up) and the cross-validation results (below)with the Lymphography dataset. The property of interest here is the modelclass selected, i.e., the number of clusters for which the measures give themaximum value.



86 5 Constructing finite mixtures
-27100

-27000

-26900

-26800

-26700

-26600

-26500

-26400

-26300

1 2 3 4 5 6 7 8 9 10

C
he

es
em

an
 -

 S
tu

tz

Number of clusters (K)Figure 5.5: The C-S measure for cluster counts 8 with the DG20 dataset.validation were used. Even if we had used leave-one-out cross-validation,we cannot expect a perfect match for two theoretical reasons, which againillustrate the problem of validating evidence approximations.First of all, one should keep in mind that the cross-validation error iscomputed by measuring the accuracy of one single classi�cation variable,whereas the evidence criterion is a measure of the overall accuracy of theunderlying probability distribution for all the variables. Second, we knowthat the cross-validation measure is in fact an average value of one of theterms in the sequential decomposition of the evidence [26]. That is the logevidence can be decomposed as a sum of \online" predictive performances:log p(DjM) = log p(~d1jM) + log p(~d2j~d1;M) +log p(~d3j~d1; ~d2;M) + log p(~dN j~d1; : : : ; ~dN�1;M):Cross-validation examines the average value of just the last termlog p(~dN j~d1; : : : ; ~dN�1;M)under random re-orderings of the data.Thus we are in fact judging the quality of an approximation againstanother approximation, albeit a pragmatic one. The relationship between theevidence (called \scienti�c criterion") and cross-validation measure (called



5.4 Approximating the evidence 87Algorithm 5.4.1Bayesian model construction for �nite mixtures withCheeseman-Stutz approximationInput: D, data setKlimit, maximum number of componentsin the model classEMlimit, number of EM runs per model classEMconv, EM convergence criteriaOutput: locally optimal MAP approximation �0from M 0 that approximates M̂ .i. ITERATE K from 1 until Klimit:(a) ITERATE R from 1 until EMlimit:i. Run Algorithm 5.2.2 until EMconv.(b) Let �0K = argmax�R fp(�RjD;MK)g.ii. Let K 0 = argmaxK fCheeseman-Stutz(K)jK = 1; : : : ;Klimitg.iii. Return the model �0K0 from model class MK0 .\engineering criterion") together with some additional experimental resultsin model class selection tasks are discussed in [65].As with the natural data, in the synthetic data experiments theCheeseman-Stutz approximation was determined for model classes K =1; : : : ; 10. The synthetic data was generated by varying the number of gener-ating clusters (G) from 2 to 8, and the Cheeseman-Stutz behavior was com-pared to the so called \gold standard", i.e., the number of components usedin the data generation. As seen from the Figures D.4{D.7 in Appendix D, theCheeseman-Stutz approximation coincides well with the underlying clusterstructure with both datasets when the number of clusters is less than 8.For the 8 cluster case shown here (Figure 5.5) the datasets are clearly toosmall to be able to represent the problem domain probability distributionwell enough, and we see that the data \justi�es" a simpler structure than wehave used in the data generation process.



88 5 Constructing finite mixtures5.5 Model construction in a \nutshell"We conclude the discussion on HAL's model construction by summarizing thediscussion of this chapter as Algorithm 5.4.1. Naturally HAL could replacethe Cheeseman-Stutz incomplete evidence approximation by other Laplace'sapproximations (see Section 5.3). From pragmatic point of view it should beobserved that HAL needs to decide only on very few input parameters: themaximum size of the model class Klimit, the number of EM runs performedfor each model class EMlimit, and the convergence criteria EMconv for anindividual EM run.



Chapter 6Bayesian classi�cation with �nitemixtures\The word \valid" would be better dropped from the statistical vocabulary.The only real validation of statistical analysis, or of any scienti�c enquiry, iscon�rmation by independent observations."|Anscombe in Topics in the investigation of linearrelations �tted by the method of least squaresIn the preceding chapters we have discussed HAL's predictive framework,starting from the general principles of using probabilities as plausibilities,and ending in Bayesian methods for using a speci�c model family of �nitemixtures of multinomial components for plausible predictions in the presenceof uncertainty. It is now time to put these ideas to test, and see how thedeveloped machinery for predictive inference can be applied. HAL's designwas motivated by the need to infer predictive models from data, i.e., �nd-ing data constraints (expressed with the language of models) that help itto predict properties of unknown quantities. The advantage of predictivemodels is that they can be validated at least to a degree by inspecting theactual predictive performance, either with benchmark data sets or with realapplications. The Bayesian predictive framework described here has beentested in both respects. In this chapter we report empirical results with com-mon benchmarks, and evaluate the Bayesian predictions with �nite mixturesagainst the results achieved with other popular model families such as neuralnetworks and decision trees. Some of the results described in this chapterhave appeared in preliminary form in [136].89



90 6 Bayesian classification with finite mixtures

Figure 6.1: A snapshot of the interface of the D-SIDE prediction engine.6.1 Data sets and experimental settingThe general Bayesian approach for performing plausible predictions o�ers atheoretically justi�able and consistent framework for HAL to predict unknownproperties of new arriving data. We have \instantiated" the Bayesian frame-work in the case where HAL's models are �nite mixtures of multinomial dis-tributions. The approach described forms the kernel of the D-SIDE/C-SIDEsoftware programmed in Java/C. The Bayesian prediction engine D-SIDEalso provides a exible graphical user interface for displaying predictive dis-tributions and the mixture structure (see Figure 6.1), and can be used withany Java compatible World Wide Web-browser1.From the discussion in Chapters 4 and 5 we know that for a restric-ted sub-family of �nite mixtures, the Naive Bayes familyMNB, HAL can be\fully Bayesian" and integrate out all the models, but for the general �nitemixture case it has to use approximations in its predictions. These approx-imations are theoretically justi�ed, but the quality of the approximations is1A running demonstration of the D-SIDE software can be accessed through the CoSCohomepage at URL \http://www.cs.Helsinki.FI/research/cosco/".



6.1 Data sets and experimental setting 91only known asymptotically, i.e., when the data set D is large. Unfortunatelyin many application domains, especially industrial, we know that this is notthe case. We have already pointed out that using synthetic data for empiricaltests requires substantial amounts of data to allow any reliable conclusions(see the discussion in Section 5.4 and below), which de�es the whole purposeof �nding out the performance behavior with small data sets. Therefore theonly true test of the approaches we have presented is to perform empiricaltesting with real data sets. In addition such tests have to be comparative innature, otherwise we would not have any idea how well HAL is doing. Thislatter requirement makes it very di�cult to use real industrial applicationdata sets, as usually for such data sets no previous results with alternativemethods exist.A thorough comparison would use synthetic data or real application datasets, and compare several di�erent methods by an extensive set of exper-iments. This is a very time-consuming task, but would allow us also tocalculate for example the standard statistical signi�cance values for the dif-ferences found. In such a comparative study, however, a serious validityproblem would exist. Almost all of the learning/prediction algorithms pro-posed in the literature are parameterized (model size, parameter estimationconvergence speed, post-processing parameters etc.). This is natural, sinceany model construction procedure has to somehow decide the set of modelsexplored and the search algorithm that it uses, both of which require �xingsome parameters. Consequently, the results of a particular method are alsosensitive to the parameter selection. Setting the proper parameters usuallyrequires good understanding of the method itself, and a�ects drastically theresults achieved (see e.g., the improvements achieved by an automated para-meter selection process reported in [79]). Since it is not feasible to assumethat we are experts in all the possible di�erent types of algorithms, the com-parison results would be severely hampered by our (in)competence in themethod used2. Therefore, instead of using arti�cial or real industrial datawe decided to test HAL's prediction performance for publicly available realdata sets.We are well aware of the inherent problems in using such data sets,especially for comparison purposes: it is very di�cult to identify underlyingcauses for performance di�erences, there is a high variance in the observedperformance di�erences etc. The main advantage of using natural datasets isthat they are produced without any knowledge of the particular procedures2See the discussion on an attempt to a fair comparison of several machine learningand computational intelligence approaches in the StatLog-project [99], and the di�cultiesencountered.



92 6 Bayesian classification with finite mixturesthat they are tested on. In addition, although there is no way of telling howthe results for a real data set generalizes to other problems, we at least knowthat there are some domains where the results have practical relevance.Below we report results from extensive experimentation with theBayesian �nite mixture framework using publicly available data sets forclassi�cation problems, which conform to the general prediction problem asde�ned in Section 3.2. To be able to compare the predictive performance, wehave collected from the literature performance results for alternative meth-ods using the same data sets. While we make no claims that the list ofthe results of alternative algorithms is exhaustive, for each data set we haveincluded the best results we have found in the literature. The selection ofdata sets in the comparison was done on the basis of their reported use, i.e.,we have preferred data sets that have been used for testing many di�erentmethods over data sets with only isolated results. Therefore many of theresults are from the StatLog project [99], but we have also included morerecent results. The descriptions of the data sets and the testing proceduresused for each data set are given in Appendix A. A more detailed descriptionof these data sets can be found in [99] and in the documentation in the UCIdata repository.It should be observed that with the exception of the DNA dataset, all ourresults are cross-validated. In fact, to evaluate HAL's predictive performancethere is no technical reason not to cross-validate DNA results also, the choiceof a \train and test" result was purely for comparative reasons. Whenpossible (for the StatLog datasets) we have used the same cross-validationscheme as described in [99]. It should be observed that the same does nothold for many of the results for the other methods. In many cases the testingprocedure either was not reported, or the best result with a single test setwas given. In the comparisons we have adopted the conservative viewpointthat all the results are comparable to our cross-validated results. Even more,as demonstrated below, any cross-validation procedure departing from theleave-one-out scheme used in Section 4.4 su�ers from the variance caused bythe selection of the folds.Final remark concerns the preprocessing of the data sets. Most of thedata sets were already discrete from the beginning. Those that were notcould have been discretized by using a discretization scheme based on theBayesian approach itself [83]. Here we have used a simpler method, wherethe attributes were discretized by using k-means clustering (a special case ofthe EM algorithm with \hard" clusters) starting from a uniform initial state.As demonstrated in the experiments reported in [45], in general the predic-tion results are not very sensitive to the discretization scheme, assuming that



6.2 Empirical results 93a reasonable standard scheme such as ours is used.6.2 Empirical resultsTwo sets of experiments were performed with these data sets. The �rst setof experiments used the Naive Bayes model family MNB with all the threepredictive distributions pmap (4.7), pev (4.8) and psc (4.9). The second setof experiments used the general mixture family with MAP prediction (4.5).Both sets of experiments used 0=1 score as the performance measure, i.e.,the percentage of correct classi�cations.6.2.1 Naive Bayes resultsFor the Naive Bayes model family we tested all the three prediction methodswith the ten data sets. We partitioned each data set (except DNA) to randomcross-validation folds 100 times using the number of folds reported in theliterature, and evaluated the results for each partitioning. The minimum,mean, maximum and the variance of the results for each data set for eachmethod are summarized in Table 6.1.Before entering the discussion on the results themselves, we want topoint out the problem of the comparative methodology when k-fold crossvalidated results from di�erent sources are compared, a practice commonin the machine learning and computational intelligence communities. As theNaive Bayes results demonstrate, there is a considerable di�erence in theresults depending on which partitioning to folds was used. Obviously, thisproblem ceases to exist if one moves to leave-one-out cross-validation, butunfortunately it is very seldom used in the literature. As the results reportedin the literature are not cross-validation means (and in some cases not evencross-validated results), in the bar-charts in Figures 6.2{6.6 we have usedthe maximums. We want to stress that this is done for comparative purposesonly in order to put our results in perspective with alternative approaches.HAL's true prediction performance is closer to the means of the results.The results are consistent with the leave-one-out cross-validated experi-ments in Chapter 4 when the di�erences between the predictive distributionswere considered. Both the pmap and pev show consistent good performance,and we can see that the larger the data set, the smaller is the performance dif-ference. This is of course only an empirical con�rmation of the observationalready mentioned in Section 3.1.3; if the training set size D is increased theposterior becomes more peaked and therefore the single MAP model tendsto represent the posterior well. Similarly, as expected, the variance of pmap



94 6 Bayesian classification with finite mixturesData set NB-MAP NB-EV NB-SCDNA train & test 0.945 0.944 0.885Diabetes minimum 0.746 0.746 0.745mean 0.756 0.757 0.755maximum 0.766 0.767 0.765variance 0.000074 0.000037 0.000067Australian minimum 0.843 0.843 0.843mean 0.850 0.850 0.849maximum 0.857 0.857 0.855variance 0.000007 0.000006 0.000006Primary Tumor minimum 0.428 0.467 0.280mean 0.456 0.487 0.339maximum 0.478 0.507 0.395variance 0.000106 0.000080 0.000533Breast Cancer minimum 0.700 0.710 0.703mean 0.720 0.722 0.722maximum 0.745 0.741 0.749variance 0.000074 0.000037 0.000067Heart Disease minimum 0.819 0.826 0.826mean 0.835 0.840 0.840maximum 0.856 0.852 0.856variance 0.000039 0.000031 0.000037Glass minimum 0.621 0.631 0.612mean 0.687 0.666 0.649maximum 0.729 0.696 0.673variance 0.000204 0.000146 0.000176Hepatitis minimum 0.827 0.793 0.800mean 0.845 0.817 0.822maximum 0.873 0.847 0.847variance 0.000095 0.000101 0.000073Iris minimum 0.927 0.933 0.933mean 0.939 0.944 0.947maximum 0.953 0.953 0.960variance 0.000259 0.000122 0.000034Lymphography minimum 0.777 0.811 0.635mean 0.811 0.844 0.772maximum 0.845 0.872 0.838variance 0.000259 0.001214 0.002865Table 6.1: Naive Bayes model family cross-validation results on the ten datasets and for MAP (NB-MAP), evidence (NB-EV) and stochastic complexity(NB-SC) predictive distributions. The results are for 0=1-score. For eachdata set (except DNA) the minimum, mean, maximum and variance of the100 partitionings to folds is reported.



6.2 Empirical results 95performance is higher than that of pev, for which we know the small samplebehavior to be the most robust from the earlier results.The performance of psc is comparable, but slightly worse than pmap orpev on the average. One has to remember, however, that psc was designed tobe a good predictor in the coding sense, i.e., it is designed to minimize thelog-score, not the 0=1 score. And that it indeed does. Although not repor-ted here, for the log-score results psc shows as good or only slightly worseperformance than pev, which itself outperforms clearly the pmap predictionsin all the ten data sets. This warns us to be careful not to draw too generalconclusions about the predictive methods based on results for a single lossfunction, especially as coarse one as 0=1. The log-score results indicate thatfor other types of loss functions, where a more precise estimate of the pre-dictive distribution than the mode is needed, both the psc and pev will verylikely outperform pmap.Finally, when compared to the results in the literature, the Naive Bayesresults are very competitive and actually in some cases outperform theresults with �nite mixtures (Figures 6.2{6.6). In the bar-charts the res-ults with the Naive Bayes family have been denoted by D-SIDE NB (MAP),D-SIDE NB (EV), and D-SIDE NB (SC) corresponding to pmap, pev, and psc,respectively. It should be observed that with the exception of the Heart Dis-ease data set, when the Naive Bayes result outperforms the �nite mixtureresult, either the evidence or stochastic complexity predictive distributionhas been used for predictions. In general HAL is able to �nd a better singlemodel in the �nite mixture family than from the Naive Bayes family.6.2.2 Finite mixture resultsUsing the Naive Bayes family has the advantage that no approximations areneeded, thus the prediction performance is mainly restricted by the simpli-city of the language to express the constraints in the data. For �nite mixturesthe situation is completely di�erent. Choosing the optimal model class Mwith incomplete evidence requires an approximation like Cheeseman-Stutzor BIC, and even for �nding the MAP parameters within a model class HALhas to submit to the local maxima found by the EM algorithm. Thereforelet us now explore the trade-o� between a more expressive model languageand the need to approximate the Bayesian ideal in the prediction.For the �nite mixture model family we repeated the procedure describedabove, but for comparison we report only the achieved maximums. Theselection of the model class was performed by using the Cheeseman-Stutzapproximation, and from the chosen model class M among the 50 modelsproduced by EM the model � with the highest posterior was used for pre-



96 6 Bayesian classification with finite mixturesData set Model class FM-MAP NB-MAP NB-EV NB-SCDNA 13 0.970 0.945 0.944 0.885Diabetes 20 0.773 0.766 0.767 0.765Australian 17 0.872 0.857 0.857 0.855Primary Tumor 21 0.504 0.478 0.507 0.395Breast Cancer 21 0.766 0.745 0.741 0.749Heart Disease 8 0.848 0.856 0.852 0.856Glass 30 0.874 0.729 0.696 0.673Hepatitis 9 0.880 0.873 0.847 0.847Iris 4 0.980 0.953 0.953 0.960Lymphography 19 0.866 0.845 0.872 0.838Table 6.2: Cross-validation results on the ten data sets for �nite mixtureMAP predictive distribution (FM-MAP) and Naive Bayes model familyMAP (NB-MAP), evidence (NB-EV) and stochastic complexity (NB-SC)predictive distributions. The results are for 0=1-score, and we have reportedalso the best model class M .diction.The results for the �nite mixture family (denoted by D-SIDE ) for theindividual datasets together with the corresponding Naive Bayes results arepresented in Table 6.2. The comparison of both the Naive Bayes and �nitemixture results to the ones in the literature are presented as bar-charts inFigures 6.2{6.6. As can be expected, from the results we see that for 7 outof the 10 data sets the �nite mixture MAP prediction outperforms predic-tions with the Naive Bayes family. However, in most cases the performancedi�erences are small|in particular considering the variance caused by thefold selection.6.2.3 The results in perspectiveIf we compare the results to the results of the alternative approaches repor-ted in the literature, the Bayesian predictive approach o�ers consistentlycompetitive performance over the various data sets. The observation thatthe �nite mixture based prediction outperforms the memory based methodssuch as K-NN, K�, IB3, or ALLOC80 is not especially surprising in the lightof the given discussion about the probabilistic interpretation of the instance-based methods (Section 4.2, see also [136]). A more interesting observationis that our Bayesian approach with the �nite mixture model family outper-forms also all other Bayesian approaches including CASTLE and Bayes treein the StatLog comparison, recent variants of the Naive Bayes algorithm



6.2 Empirical results 97such as Tree Augmented Naive-Bayes (TAN) and Bayesian networks withMDL score functions [40, 53]3.We would like to point out that in the comparison the important issue isnot so much to focus on the actual performance percentages for individualdata sets, since in most cases the di�erences between the well-performingmethods are very small. A more interesting aspect is the consistent highrankings of the Bayesian �nite mixture approaches regardless of the dataset|a property which is not shared by the alternative approaches (see thediscussion in [99]). The results above can also be interpreted as support forthe common hypothesis that many real data distributions can be naturallymodeled as mixtures of multinomial distributions.6.2.4 On implementation performanceOur focus has been HAL's predictive performance, and we have not yet dis-cussed any aspects of the implementation performance. It is well-knownthat for many model families the \training time," i.e., model constructiontime in our terminology, can be substantial both in theory and practice. Onthe other hand for many model families the actual prediction can be per-formed fast, typically in linear time in the number of inputs. An illustrativeexample for this type of an implementation performance behavior is the fam-ily of feed-forward neural networks accompanied with the back-propagationalgorithm [19], which tends to be notoriously slow in �nding locally op-timal models, but once a model is found, the prediction can be performede�ciently. At the opposite end of spectrum are the lazy approaches dis-cussed in Section 4.2, where almost all computation is deferred until the theprediction phase. The commonly used model family of decision trees fallsin between these two extremes|at least for the sub-families of boundedrank [44]. Where then do the Bayesian �nite mixture approaches stand?For the Naive Bayes model familyMNB the situation is very straightfor-ward: the model construction does not require any search, only calculationof the su�cient statistics, and the prediction is based on calculating a simpleproduct in the number of variables. For the �nite mixtures the situation ismore complex as HAL has to search for the optimal model class by an evidenceapproximation (e.g., Cheeseman-Stutz), and after �xing the model class, HALhas to search for a good model �. Since the evidence approximations alsoneed a good model, most of the time in the model construction phase is3It should be noticed that the Naive (and Successive) Bayes results for the BreastCancer and Primary Tumor data set by Kononenko are averages over 10 random 70/30%splits of the data, where the variance of the results is even higher than for 10-fold cross-validation.



98 6 Bayesian classification with finite mixturesconsumed by the EM algorithm. We have pointed out earlier in Section 5.2that in practice already a relatively small number of EM iterations (< 100)is su�cient for �nding good models �. This makes it possible for HAL toapproximate the global optimum �̂ by several repeated trials with randomlychosen initializations of the parameters. Therefore the model constructiontime is adjustable depending on the application requirements|in principleone should use all the available time for searching better and better (in theposterior probability) models. This type of stochastic search parallelizes ex-tremely well without any need to special hardware, and allows very e�cientuse of the available computing resources. The prediction phase using �nitemixture models is similar to that of Naive Bayes models except for a sum-mation over the probabilities in each mixture. Since the number of mixturecomponents K is typically much smaller than the size of the training dataset N , the prediction is also very e�cient.Su�cient e�ciency is a relative concept: an embedded real-time applic-ation for telecommunications sets very di�erent performance criteria thana medical diagnostic expert system. To give an idea of the implementationperformance of our C-SIDE/D-SIDE software for �nite mixture based predic-tion, let us consider an experiment we performed with a data set of 2 milliondata vectors, each consisting of 17 discrete attributes having 2-4 values anda class variable with 21 di�erent values|the largest class containing 24.8%of the data.The construction of a 100 cluster �nite mixture model by running theEM-algorithm for 10 iterations took 9 hours 27 minutes and 34 secondselapsed time on a 200MHz Pentiummachine running Linux/C-SIDE. Testingthe model with 0=1 pmap prediction for the same 2 million data vectorstook 26 minutes 33.71 seconds i.e., about 1255 classi�cations per second,or 0.8 milliseconds per classi�cation. The resulting model achieved 70.5%prediction accuracy.Naive Bayes model construction with the same data set took 17.02seconds. The \learning" handled 117509 data vectors per second, i.e., 8.5microseconds per one data vector. Testing with 0=1 pev prediction the modelwith same 2 million training vectors took 29 minutes 13.57 seconds. Thatis 1141 vectors were classi�ed in one second, i.e., classi�cation of one datavector took 0.9 milliseconds. The prediction accuracy was 61.7%. The sizeof this data set serves also as an example of the scalability of our approach.
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Figure 6.2: Experimental results on the DNA and the Diabetes data sets.
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Figure 6.3: Experimental results on the Australian and the Primary Tumordata sets.



6.2 Empirical results 101

45 50 55 60 65 70 75 80Success rate (% correct)
BREAST CANCER

Human expert in [82] 64.0K-NN in [67] 65.3Quadratic discr. in [67] 65.6IB1 in [28] 66.1LazyDT in [52] 68.55K� in [28] 70.8Backprop in [67] 71.5Linear discr. in [67] 71.6C4 in [67] 72.0RMHC-PF1 in [129] 72.31Rw in [67] 72.7MC1 in [129] 72.9CN2 in [67] 73.0C4.5-AP in [79] 73.9D-SIDE NB (SC) 74.9ID3 in [67] 76.2D-SIDE 76.6CART in [67] 77.1Assistant in [67] 78.0Successive Bayes in [81] 78.4Naive Bayes in [81] 79.2M(12) in [20] 80.0
65 70 75 80 85Success rate (% correct)

HEART DISEASE
MDL-Disc in [108] 76.11Rw in [67] 76.6IB3 in [4] 78.0K-NN in [67] 79.2Flexible Bayes in [73] 80.0Backprop. in [67] 80.6MC1 in [129] 80.7LazyDT in [52] 81.1C4.5 in [53] 81.1NBCFSS in [53] 81.9BNG in [53] 82.2RMHC-P in [129] 82.3C4.5 discr. in [40] 82.6MSG in [53] 83.0TAN in [53] 83.3Naive Bayes in [40] 84.0D-SIDE 84.8D-SIDE NB (SC) 85.6

Figure 6.4: Experimental results on the Breast cancer and Heart Diseasedata sets.
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Figure 6.5: Experimental results on the Glass and Hepatitis data sets.
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Figure 6.6: Experimental results on the Iris and Lymphography data sets.



Chapter 7Conclusion \Good : : :morning : : :Doctor : : :Chandra : : :This: : : is : : :HAL : : : I : : :am : : :ready : : : for: : :my : : :�rst lesson : : : today : : :"|Arthur C. Clarke and Stanley Kubrick in 2001: A Space OdysseyWe have now completed HAL's design, and demonstrated its performancewith empirical experiments. It's time to reect on what we have achieved,and what issues remain open.HAL in perspective. The �rst interesting question is, would HAL'sBayesian plausible predictions be considered \intelligent" in the sense of thetwo de�nitions given in Chapter 1? Let us look at the descriptive de�nitionof computational intelligence [10].A more careful inspection at Bezdek's de�nition reveals that it has ac-tually two di�erent types of requirements. The de�nition begins with verygeneral statements and then gives a list of qualitative and quantitative re-quirements HAL should satisfy in a nontrivial task. It is quite debatable,whether HAL, or any similar predictive system, really can conform to thegeneral requirements given. Does HAL \deal only with numerical (low-level)data" when it manipulates plausibilities represented as real numbers (De-sideratum 2.1), or does it have \a pattern recognition component" if it iscapable of classifying a given data vector with respect to a set of prede�nedclasses? In fact our choice for HAL's model family allowed HAL to performalso clustering, i.e., constructing predictive concepts for the problem domainfrom the data available. In this sense HAL can be said to recognize patterns.The meaning of the �nal point \does not use knowledge in the AI sense"is even more unclear. HAL's design requires �xing the model family, which103



104 7 Conclusionis structural information about the variables of interest and their independ-ence relations represented e.g., as a graph structure. In this sense HAL usesknowledge typical to symbolic AI programs and thus violates the require-ment. Interestingly this same argumentation holds for any neural networkor fuzzy system.Addressing HAL's compatibility with the more explicit list of functionalrequirements for computationally intelligent system is easier:i. Computational adaptivity. As discussed in Chapters 3 and 5Bayes' theorem allows HAL to learn, i.e., update its model when newdata arrives.ii. Computational fault tolerance. This is an issue we have not ex-plicitly addressed in this work. Related to fault tolerance, two thingsshould be observed. HAL's mixture models are inherently robust inthe sense that if one or more of the mixture components in the modelare not available, the prediction performance degrades gracefully, sincethe predictions are based on a weighted average of the components.But we should point out an even more general observation: the modelaveraging philosophy (Equation (3.2)) inherent in Bayesian inferencefor any model family is also robust in this sense. From the imple-mentation point of view (which is probably the fault tolerance meantin the de�nition), we know that HAL's deductive and inductive in-ference can be implemented as a neural network at least for somemodel families. Such families include mixtures of multinomial distri-butions and Gaussians, and layered feed-forward networks with sig-moidal units [12, 74, 96, 102].iii. Speed approaching human-like turnaround. For the discrete pre-diction tasks HAL is programmed for, both deductive (prediction) andinductive inference (learning) surpass human performance. Notice thatin some cases with the Naive Bayes model family we saw HAL demon-strating extremely fast learning rate reaching good prediction perform-ance level with 2-3 examples from the data.iv. Error rates that approximate human performance. In the Stat-Log project [99] some of the data set results included also human ex-perts, which usually did not perform well when compared to the topranking algorithms. Human performance given only the raw data canusually be outperformed easily by most approaches. This type of com-parison is in most cases quite meaningless, as from HAL's point of viewthe important issue is whether or not we can provide HAL with the sameinformation that is available to a human expert.



105In Chapter 1 we discussed also a second, normative de�nition of intel-ligence, which is concerned mainly with rational action. At this point itshould be quite evident that the motivation for HAL's Bayesian approach toplausible reasoning HAL coincides perfectly with the de�nition of Russel andNorvig. In HAL's case the performance measure to be maximized is the pre-diction performance (with respect to 0=1-score), and HAL's principled designforces it to choose the best prediction given \the percept sequence" (data)and \built-in knowledge" (the model family and priors).Extending HAL's design. Let us now turn to di�erent ways of improvingHAL's design. Extending HAL can be discussed at various levels of abstractionfrom minor \version improvements" to total \redesign".Starting from the minor technical improvements one should observe thatHAL's design is given for discrete data sets (but continuous model spaces).The Bayesian predictive framework with �nite mixture model family extendsnaturally to continuous attributes also (see e.g., the work by Bishop [11, 12]).However, moving from discrete to continuous values does not always im-prove HAL's prediction performance, as additional assumptions of the formof the density have to be made (e.g., independent Gaussian distributionswith appropriate conjugate priors), which can cancel out the possible im-provements. Although the extension to mixtures of Gaussians is in principlestraightforward, the technical details together with implementation issuesare quite involved. Another technical improvement would be to allow HAL touse more sophisticated non-informative priors, such as Je�rey's prior. Thistype of an extension to HAL's inference is given in [87], where predictionwith pev using Je�rey's prior is discussed in the context of the more generalmodel family of Bayesian networks.We have discussed HAL's Bayesian prediction in the standard classi�c-ation context, where HAL's model used for classifying is �rst constructedby using the training data available, and each classi�cation problem is thensolved independently by using the model produced. The framework formu-lated in Section 3.2 could be extended by allowing multiple predictions tobe made at the same time. In this batch classi�cation case, all the classi�ca-tion problems are given simultaneously, and instead of dealing with a singlequery vector to be classi�ed, HAL's task is to �nd a correct classi�cation fora set of query vectors.The batch classi�cation problem can be viewed as a missing data prob-lem, where the missing data consists of the correct classi�cations of queryvectors. One could expect that HAL, when using batch classi�cation mode,would produce better results than when it classi�es the queries independ-



106 7 Conclusionently. This assumption follows from the fact that in the batch case the dataavailable for making predictions consists not only of the original trainingdata, but also of the set of all the query vectors, and HAL would have moredata for constructing its model. There is a downside, however. In batchclassi�cation case the amount of missing data will also increase, making themissing data estimation problem more di�cult than in the traditional case.Therefore it would be interesting to investigate the trade-o� between theadvantage of using the increased information available in the query batch,and the disadvantage of increased complexity in the search process.One of the elegant features of the Bayesian language for inference isthat it is \parameterized" by the model family|all the general principlesand formulas in Chapters 2 and 3 apply when HAL's in-built mixture modelfamily assumptions are replaced with some other assumptions. As discussedbefore, the general Bayesian network based design of HAL is a topic of muchcurrent research. One important motivation for this research is the needto build decision support systems, where Bayesian inference is not enough,since the systems are required to suggest actions rather than output justpredictive distributions. All the work presented here with HAL is concernedwith Bayesian inference, but for this decision support framework one needsto address also Bayesian decision-theoretical issues: the e�ect of di�erentloss functions, the selection of proper estimators from the posterior etc. HAL'sclassi�cation with 0=1-loss function is a very elementary example of thisgeneral framework.Finally, there is still lot to be said about the intriguing relationshipbetween the information theoretic and Bayesian data modeling approaches,which was only briey discussed in Section 3.3. The conversion from theminimum encoding inference formulation to Bayesian inference formulationor vice versa is a nontrivial task. In contrast to the old de�nition that cor-responded to the evidence term p(DjM), the new version of stochastic com-plexity does not have a simple \Bayesian interpretation". A straightforwardreverse transformation from the Bayesian inference to minimum encodingapproach is also problematic, since the continuous parameter values have tobe carefully quantized, otherwise the code-lengths obtained will lead to mis-leading results (see the discussion e.g., in [145]). On the other hand, the useof discrete hypothesis spaces in MML/MDL inference has it advantages incases, where the Bayesian inference encounters in�nite probability densities,circumventing which in the Bayesian framework requires multi-step decisionprocedures.Regardless of any individual work (including the work at hand) in themachine learning, computational intelligence or arti�cial intelligence com-



107munities, the debate on the proper foundations for building intelligent sys-tems will continue, as it should. Whether a truly \intelligent" HAL will bebuilt on Bayesian, minimum encoding or some other principles, or built atall, remains to be seen|meanwhile we feel privileged to pursue the Bayesianperspective.
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Appendix AData sets used in the experimentsThis Appendix presents the description of all the public domain data setsused in the experiments. The selection of datasets in the comparison wasdone on the basis of their reported use, i.e., we have preferred datasets thathave been used for testing many di�erent methods over datasets with onlyisolated results. Consequently many of the data sets have been used in theStatLog project [99], but we have also included other frequently used datasets. The descriptions of the data sets and the testing procedures used foreach data set are given in Table A.11. The last column, the default value,denotes the success rate of a simple classi�er, which classi�es all the instancesto the most common class. A more detailed description of these data setscan be found in [99] and in the documentation in the UCI data repository.
1The data sets can be obtained from the UCI data repository at URL\http://www.ics.uci.edu/�mlearn/". 123



124 A Data sets used in the experiments
Data set Size #Attrs #Classes Test method DefaultDNA 3186 181 3 train&test 50.8Diabetes 768 9 2 12-fold CV 65.0Australian 690 15 2 10-fold CV 56.0Primary Tumor 339 18 21 10-fold CV 24.8Breast Cancer 286 10 2 11-fold CV 70.3Heart Disease 270 14 2 9-fold CV 79.4Glass 214 10 6 7-fold CV 40.7Hepatitis 150 20 2 5-fold CV 55.6Iris 150 5 3 5-fold CV 33.3Lymphography 148 19 4 5-fold CV 54.7Table A.1: The public domain data sets and the number of cross-validationfolds used in our experiments.



Appendix BPerformance of the di�erentpredictive distributionsThis Appendix presents the results of the comparison of HAL's three altern-ative prediction methods discussed in Section 4.4. The results for all the �vedata sets (Australian, Hepatitis, Glass, Primary Tumor and Heart disease)are presented in Figures B.3{B.11. For a brief description of the data setssee Appendix A.Figures B.3{B.2 give the mean prediction performance of pmap; pev, andpsc in the test set calculated by averaging the results from 100 partitions ofthe data (maximum training set size 70 % and test set size 30 %). Each �gureshows the performance of the methods for both log-score and 0=1-score.Figures B.12{B.11 give the maximum and the minimum prediction per-formance of pmap; pev, and psc in the 100 partitions described above. Each�gure shows both the log-score and 0=1-score performance.
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Appendix CAIC and BIC approximations vs.complete evidenceThis Appendix presents the results of the comparison of the evidence ap-proximations in the complete data case, as discussed in Section 5.4. Theresults for each of the �ve datasets (Iris, Glass, Primary Tumor, Diabetes,DNA) are presented in Figures C.1{C.5. Here \EBC" denotes the exactevidence formula given by (5.20). It should be observed that the graphs aresorted in ascending order by the size of the corresponding dataset.
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Figure C.1: Results with the Iris dataset.147
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Figure C.2: Results with the Glass dataset.
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Figure C.3: Results with the Primary Tumor dataset.
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Figure C.4: Results with the Diabetes dataset.
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Appendix DCheeseman-Stutz approximation vs.cross-validationThis Appendix presents both the results of comparing the Cheeseman-Stutzevidence approximation and cross-validation in the incomplete data case withreal data sets, and the performance of C-S approximation with synthetic data(see the discussion in Section 5.4). The Cheeseman-Stutz measure requiresthe calculation of the MAP estimate �̂. In these experiments for each testcase 50 repetitions of EM with random initialization were performed, ofwhich the highest posterior �b was chosen to represent �̂. EM convergenceproved to be very fast, in the order of 100 or less iterations for each individualrun.Figures D.1, D.2, and D.3 illustrate the behavior of the Cheeseman-Stutz approximation and the cross-validation results for model classes withK = 1; : : : ; 10. Similarly in the synthetic data experiments the Cheeseman-Stutz approximation was determined for model classes K = 1; : : : ; 10.The synthetic data was generated by varying the number of generatingclusters (G) from 2 to 8, and the Cheeseman-Stutz behavior was comparedto the so called \gold standard", i.e., the number of components used in thegeneration of data. The property of interest in both set of experiments isthe model class selected, i.e., the number of clusters for which the measuresgive the maximum value. The results are shown in Figures D.4{D.7.
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