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Abstract

Place identification refers to the process of analyzing sensor data in order
to detect places, i.e., spatial areas that are linked with activities and as-
sociated with meanings. Place information can be used, e.g., to provide
awareness cues in applications that support social interactions, to provide
personalized and location-sensitive information to the user, and to support
mobile user studies by providing cues about the situations the study par-
ticipant has encountered. Regularities in human movement patterns make
it possible to detect personally meaningful places by analyzing location
traces of a user. This thesis focuses on providing system level support for
place identification, as well as on algorithmic issues related to the place
identification process.

The move from location to place requires interactions between location sens-
ing technologies (e.g., GPS or GSM positioning), algorithms that identify
places from location data and applications and services that utilize place
information. These interactions can be facilitated using a mobile platform,
i.e., an application or framework that runs on a mobile phone. For the
purposes of this thesis, mobile platforms automate data capture and pro-
cessing and provide means for disseminating data to applications and other
system components. The first contribution of the thesis is BeTelGeuse, a
freely available, open source mobile platform that supports multiple run-
time environments.
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The actual place identification process can be understood as a data analysis
task where the goal is to analyze (location) measurements and to identify
areas that are meaningful to the user. The second contribution of the the-
sis is the Dirichlet Process Clustering (DPCluster) algorithm, a novel place
identification algorithm. The performance of the DPCluster algorithm is
evaluated using twelve different datasets that have been collected by differ-
ent users, at different locations and over different periods of time. As part
of the evaluation we compare the DPCluster algorithm against other state-
of-the-art place identification algorithms. The results indicate that the
DPCluster algorithm provides improved generalization performance against
spatial and temporal variations in location measurements.
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C.3 [Computer Systems Organization]:

Special-Purpose and Application-Based Systems
H.5.m [Information Interfaces and Presentation]:

Miscellaneous
I.5.3 [Pattern Recognition]:

Clustering

General Terms:
Algorithms, Design, Experimentation

Additional Key Words and Phrases:
location-awareness, place identification, spatial clustering, mobile systems,
mobile platforms, ubiquitous computing, pervasive computing, mobile
computing



Acknowledgements

I am extremely grateful to my supervisor Patrik Floréen, who has supported
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Guttmann, Ákos Vétek, Péter Pál Boda and Esko Kurvinen.

I am grateful to my pre-examiners Rene Mayrhofer and Jeffrey High-
tower for their comments and suggestions. I also thank everyone else who
has given me advice and feedback on my work, including Greger Lindén,
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Chapter 1

Introduction

Mobile devices have fundamentally changed the way people interact with
computing devices [30]. Nowadays people are no longer tied to a specific
usage situation, but they can use computing services wherever, whenever
and whatever they do. In mobile environments, the information needs of
the user often depend on the user’s situation [23, 105]. Hence, providing
the appropriate information or assistance to the user requires taking into
consideration the situation of the user.

Location is the most widely used source of situational information.
Whereas other sources of situational information (e.g., activity or social
context) are difficult to identify or measure, location information can be
readily accessed [59]. Location also plays a fundamental role in our daily
lives. For example, location information is widely used in human com-
munication [116] and humans structure their daily activities around loca-
tions [48]. Location can also influence the user’s information needs [37,
58, 76, 95, 105] or to give clues about other users’ communication con-
text [72, 87].

Contemporary mobile phones readily support at least one location tech-
nology (see Chapter 2). The location systems that mobile devices support
typically provide location information as a pair of coordinates (e.g., lati-
tude and longitude). However, humans do not refer to locations as a pair
of coordinates, but using semantic expressions that are imbued with mean-
ings, such as at home or in a library (see Sec. 3.1). Thus there is more
to location than mere coordinates. The notion of place provides a way to
represent location information that is consistent with the way people them-
selves refer to location information. Places are roughly defined as physical
locations that are linked with semantical descriptions and meaningful ac-
tivities (see Sec. 3.2). This suggests that place information could be used,
e.g., in applications and services that support social interactions.
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2 1 Introduction

This thesis focuses on the process of providing place information to ap-
plications and services for mobile phones. The first two chapters of the
thesis provide background information on topics that are relevant to the
thesis and the original research contributions are discussed in the subse-
quent chapters. We begin in Chapter 2 by introducing the Global Posi-
tioning System (GPS) and the Global System for Mobile Communications
(GSM), two commonly used technologies for providing location informa-
tion to mobile devices. Chapter 3 describes human practices surrounding
the use of location information in everyday situations and introduces the
notion of place.

Chapter 4 discusses the process of providing place information from a
system perspective. We describe mobile platforms, which are applications
or frameworks that run on the mobile phone. For the purposes of this thesis,
mobile platforms facilitate collecting suitable location data and providing
information about places to applications, services and other system com-
ponents. The chapter also introduces BeTelGeuse, an open source mobile
platform1 that has been developed during the research towards this thesis.

Chapter 5 shifts the focus to a data analysis perspective and surveys dif-
ferent approaches for identifying places from location measurements. The
chapter also introduces the Dirichlet process clustering, a novel algorithm
for place identification. Chapter 6 evaluates different place identification
techniques, focusing on the accuracy and generalization performance of the
techniques. The chapter also identifies weaknesses in current place iden-
tification algorithms and provides directions for future research. Finally,
Chapter 7 summarizes the main contributions of this thesis, dicusses the
limitations of the work and describes directions for further work on the
topic.

1.1 Main Results of the Thesis

Articles I and II focus on mobile platforms and, in particular, the BeTel-
Geuse platform. The first version of BeTelGeuse, described in Article I,
was designed to facilitate data collection from Bluetooth-enabled sensors.
Since then we have extended the BeTelGeuse platform, e.g., by incorpo-
rating support for phone internal and Internet-based sensors, by building
plug-ins that enrich the collected sensor data, and by providing additional
mechanisms for accessing collected sensor data. The most recent version
of BeTelGeuse is described in Article II and Chapter 4. Article II also
presents a performance evaluation of the BeTelGeuse platform.

1Available from: http://betelgeuse.hiit.fi



1.2 Contributions of the Author 3

Articles III and IV focus on algorithms for identifying places from lo-
cation data. Article III introduces and compares four different algorithms.
Two of the algorithms were designed for cell transition data, whereas the
remaining two operated on coordinate data. Unfortunately these algo-
rithms were sensitive to parameter values, which lead us to develop a novel
place identification algorithm, the Dirichlet process clustering, that offers
improved generalization performance. The Dirichlet process clustering al-
gorithm is described in Chapter 5 and Article IV.

1.2 Contributions of the Author

In Articles I and II, the concept of BeTelGeuse is due to the present au-
thor and he has been responsible for leading the development team. The
evaluation, write-up and illustrations are joint work.

All aspects of Article III are joint work with J. Koolwaaij.
In Article IV, the concepts and the main results are due to the present

author; S. Bhattacharya has participated in the implementation and visu-
alization.
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Chapter 2

Location Systems

Enabling location-awareness requires technologies that provide information
about the user’s location. A large number of different location sensing tech-
nologies have been developed over the years, ranging from infrared sensing
to satellite positioning systems such as GPS or Galileo1. Most location sys-
tems require some form of infrastructure investments and potentially also
changes to the hardware of the device that is being located. For example, ul-
trasound or infrared systems require tags that the user carries around [115],
whereas accurate network-based GSM positioning requires upgrading GSM
cell towers with expensive location-measurement units [109].

Mass deployment of location-aware services requires location technolo-
gies that can be used on mobile phones without additional hardware. Cur-
rent smart phones readily support GPS and GSM positioning. In the follow-
ing sections we describe background information on these two technologies;
for information about other location systems we refer to the survey in [51].

In comparison to GSM, the main advantage of GPS is that it pro-
vides more accurate location information. The main disadvantage of GPS
measurements is that collecting them typically requires the user to carry
an external GPS receiver with her. While increasingly many phones are
equipped with integrated GPS receivers, high battery consumption of the
receivers hinders using them for long term data collection [114]. In contrast
to GPS, GSM can be used to provide location information also indoors and
GSM can be used to provide location estimates without additional hard-
ware. In terms of place identification, most algorithms for detecting places
operate on GPS data, though also approaches that operate using GSM cell
identifiers have been developed; see Chapter 5.

1http://ec.europa.eu/transport/galileo/index_en.htm [Retrieved: 2009-08-
03]
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6 2 Location Systems

2.1 Global Positioning System (GPS)

The Global Positioning System (GPS) is a satellite navigation system that
was developed by the U.S. Department of Defense [35]. The first satellites
were launched in 1970s and the system became fully operational in 1995.
Originally GPS was developed for the needs of tactical bombers that re-
quire accurate three-dimensional position worldwide and that could only
use passive receivers in order not to reveal their location to the enemy [46].

GPS is based on lateration, i.e., the idea that one’s position can be
determined given the distance to objects whose position is known [35]. The
GPS architecture is based on a constellation of 24+ satellites2 that orbit the
earth. Each satellite knows its own orbital location and system time very
accurately. The satellites regularly broadcast navigation messages that
contain information, e.g., about the satellites orbital position and clock
offset [79]. The signals that are broadcasted are relatively weak, but they
can be heard if there are few radio frequency barriers between the receiver
and the satellites. Accordingly, GPS measurements are mainly available
when the user is outdoors, but measurements can be received also, e.g.,
inside wood frame buildings.

GPS receivers use time-difference-of-arrival measurements to determine
their distance from satellites. If the receiver and satellite clocks are synchro-
nized and there are no propagation delays, the distance from the satellite
equals c(tr − ts) where c is the speed of light, tr is the system time of
the receiver and ts is the system time of the satellite when the broadcast
message was sent. Let u denote the user (GPS receiver) and let g denote
a satellite. The range between the satellite and the user is given by the
Euclidean distance between u and g:

ρu,g =

√
(xu − xg)2 + (yu − yg)2 + (zu − zg)2. (2.1)

Knowing the range and location of (at least) three satellites defines a set of
non-linear equations where the unknown variables correspond to the user’s
three-dimensional position. These equations can be solved, e.g., using non-
linear least squares or Kalman filtering to yield an estimate of the receiver’s
position [70].

The formulation above assumes that the receiver and satellite clocks
are synchronized and that the signals propagate without additional delays.
In reality the receiver and satellite clocks contain errors and, e.g., iono-
spheric and tropospheric refractions, multipath effects and measurement

2Currently 31 satellites; for up-to-date information see http://www.navcen.uscg.

gov/navinfo/Gps/ActiveNanu.aspx [Retrieved: [2009-07-01]
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(a) (b) (c)

Figure 2.1: GPS estimates contain inaccuracies due to errors in pseudorange
measurements (a) and satellite geometry (b,c).

noise delay the propagation of signals [36, 70]. Hence, the receiver can
only calculate a biased estimate of the range. The biased range estimates
are referred to as pseudoranges [31]. The basic pseudorange model can be
written as follows:

ru,g = ρu,g + c(∆tu �∆tg) + εg. (2.2)

Here ∆tu denotes the clock offset of the receiver, ∆tg denotes the clock
offset of the satellite and ε is an error term that encapsulates other sources
of error. The satellite clock offset can be approximated using information
in the navigation messages, but the receiver clock offset must be solved
from the pseudorange equations. The final set of equations thus contains
four unknowns and requires information from a minimum of four satellites.

The accuracy of the estimated GPS position is proportional to the pseu-
dorange measurement error, but it also depends on satellite geometry [36].
According to lateration principles, each distance measurement to a known
reference point defines a circular curve and the position of the client is a
point along this curve. When the distance measurements contain errors,
the curve corresponds to a circular sector within which the client is located;
see Fig. 2.1(a). When we combine measurements from multiple reference
points, the intersection between the circular sectors defines the area where
the client is located; see Fig. 2.1(b). The size of the intersection, and thus
also the overall uncertainty in the position estimate, depends on the ge-
ometric relationships between the reference points. This is illustrated in
Fig. 2.1(b) and Fig. 2.1(c). In the former the reference objects are almost
orthogonal and the intersection is relatively small. In the latter example the
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reference objects are closer and the resulting uncertainty in the estimates
is higher.

The geometric dilution of precision (GDOP) is a metric that relates the
pseudorange equations to an estimate of the goodness of satellite geometry.
Let A denote the matrix of partial derivatives of pseudoranges with respect
to the unknown variables (longitude, latitude, altitude and clock offset)
and define Q = A′A−1, where A′ is the transpose of matrix A. The GDOP
value is defined as the root of the trace of the matrix Q, i.e.,

GDOP =
√
q11 + q22 + q33 + q44. (2.3)

Rather than examining the goodness of all estimates, we can separate the
different error components. These components are called DOPs (dilution
of precision) and they cover a specific subset of the unknown variables.
Commonly used DOP values include

PDOP =
√
q11 + q22 + q33

HDOP =
√
q11 + q22

VDOP =
√
q33

TDOP =
√
q44

(2.4)

PDOP measures the overall dilution of precision in the position es-
timate, whereas the HDOP and VDOP measure horizontal and vertical
dilution of precision. Finally, TDOP measures the dilution of precision in
the clock offset estimates. Location-aware services typically require two-
dimensional position information, which means that the HDOP value is the
most relevant DOP value for our purposes.

The GPS satellite constellation has been designed to provide a good
satellite geometry worldwide. However, tall buildings or other obstacles can
block signals and decrease the accuracy of the location estimates. These
situations can usually be detected from high dilution of precision values.
As a general rule of thumb, with modern GPS receivers, measurements
with HDOP values greater than 6.0 should not be considered due to po-
tentially large error deviations; see, e.g., the experiments in [102]. In our
case HDOP and satellite visibility information are used to filter out invalid
GPS measurements from the place identification process; see Chapter 5.

When a GPS receiver is started or when it loses visibility of satellites,
it must acquire information about the positions of satellites. The speed
of the signal acquisition depends on when the receiver was last used and
when it was last able to see sufficiently many satellites. When the receiver
has no information about the satellites, the acquisition is called a cold
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Figure 2.2: A simplified view of the GSM network architecture

start. With modern GPS receivers, a cold start typically takes around one
minute. However, with older receivers a cold start can require up to 20
minutes; see, e.g., [19]. The situation where the receiver remembers its last
location and it has coarse orbital information about the positions of the
satellites (almanac data) is called a warm start. The time to position fix in
a warm start is typically within 30 seconds. However, the acquisition time
can be higher if the location of the receiver has changed from the previously
known valid location. Finally, the situation where the receiver has accurate
orbital data about the satellites is called a hot start. In a hot start, the
acquisition typically takes only a few seconds.

2.2 Global System for Mobile Communications
(GSM)

The Global System for Mobile Communications (GSM) is a worldwide dig-
ital cellular telephone standard. GSM was first deployed in 1992 and since
then it has become the most widespread cellular system in the world with
deployments in over 200 countries [85]. A simplified view of the GSM net-
work architecture is shown in Fig. 2.2. The network is divided into base
stations (BTS) and cells. Each cell has a unique identifier and it is served
by one base station. One base station can serve multiple cells. The cells
are grouped into clusters and cells belonging to the same cluster have the
same location area identifier (LAI).

In addition to providing speech and data services, GSM supports posi-
tioning. Contrary to GPS, GSM signals can penetrate buildings and hence
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GSM positioning works also indoors. The positioning is based on different
signal measurements that can be made either on the client device or on
the network side. Three main positioning techniques exist: cell identifier
positioning, lateration and fingerprinting. In the following we discuss these
techniques.

2.2.1 Cell Identifier Positioning

The cell identifier method is the simplest positioning algorithm for mobile
phones. In the cell identifier method, the position of the client device is
estimated using the coordinates of the base station to which the device is
currently connected. If the exact coordinates of the base station are not
available, the locations of the base stations can be estimated from empirical
measurements; see, e.g., [21]. The accuracy of cell identifier positioning
is relatively poor and depends on various factors such as cell size, cell
density and environment characteristics. Trevisani and Vitaletti [109] have
shown that the accuracy of this method is several hundreds of meters within
densely populated areas and several kilometers within sparsely populated
areas. The cell coverage areas typically overlap and location estimates can
be improved using information from multiple cells. In the centroid method,
the location of the handset is estimated as a weighted average of several
base stations [69]. The cell identifier method can also be improved using
timing advance (TA) measurements [109]. The TA is a discrete measure
that gives rough estimates of the distance from the handset to the base
station. One TA unit corresponds to approximately 500 meters and hence
TA mainly helps positioning within large cells. While the accuracy of the
cell identifier method is relatively poor, the advantage of the method is
that it does not require any changes to existing mobile terminals or to the
network infrastructure.

2.2.2 Lateration

Lateration is an extension of the cell identifier method that estimates the
distance or angle between the mobile station and base stations. Each es-
timate defines a circle or hyperbola along which the client is assumed to
be located. Measurements from multiple base stations are used to resolve
ambiguity in the individual estimates.

Similarly to GPS, signal propagation time can be used to estimate the
position of the client. When the clocks of the base station and the mobile
receiver are synchronized, measuring the time it takes for a signal to tra-
verse from the mobile client to the base station or vice versa is sufficient.
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Figure 2.3: Example of distance-based lateration. Each estimated distance
defines a circle and the interaction of three circles can be used to estimate
the location of the handset unambigiously.

Otherwise the estimates must be based on round-trip times. Radio signals
travel at the speed of light so by knowing the time the distance between
the handset and base station can be estimated. Each distance measure-
ment constraints the position of the mobile device along a circular locus
centered around the base station. The ambiguity in the location estimates
can be resolved by estimating distances to multiple base stations and using
the intersection of the loci as the location estimate; see Fig. 2.3.

Distances can also be estimated using time-difference-of-arrival (TDOA)
measurements [34]. TDOA measures arrival time differences between pairs
of base stations. Each TDOA measurement defines a hyperbolic locus and
multiple measurements can be used to resolve ambiguity in the estimates.
Also observed signal strengths can be used to estimate distances. Related
techniques include using angle of arrival or combination of angle and dis-
tance measurements to constrain the location estimates; see, e.g., [34, 85].

The accuracy of lateration depends on the accuracy of the distance and
angle measurements. In practice, deriving accurate estimates is compli-
cated due to a wide variety of random effects. For example, buildings and
other obstacles cause signal decay and multipath refractions, other radio de-
vices can cause interference that corrupts measurements, and so forth [85].
Furthermore, accurate time or angle measurements require costly upgrades
to the network infrastructure, which makes these approaches unattractive.
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2.2.3 GSM Fingerprinting

Instead of modeling radio propagation, fingerprinting exploits spatial vari-
ations in observed signal strengths for positioning. Fingerprinting operates
by creating a database that maps pre-recorded network measurements with
known locations. When the client needs to be positioned, the current net-
work characteristics are compared to the measurements in the database and
the position of the client is estimated, e.g., calculating a weighted average
of the coordinates from the top k measurements.

Fingerprinting is not limited to GSM, but it can be used with any radio
technology (e.g., GSM, WLAN, FM radio). Fingerprinting was originally
developed for indoor positioning and the first approaches used observed sig-
nal strengths from WLAN access points [8]. Typically the fingerprints that
are used consist of radio source identifiers and observed signal strengths.
However, also other types of measurements are possible. For example, the
RightSPOT system operates on radio channel identifiers that are sorted
based on signal strength [65], whereas hyperbolic fingerprinting operates
using signal strength differences between pairs of radio beacons [61].

In GSM fingerprinting, the fingerprints typically consist of one to six
cell identifiers and observed signal strengths for each cell. The use of mul-
tiple cells can improve positioning accuracy [21], though many handsets
restrict the information to the cell the device is currently connected to.
Further improvements can be obtained using wide signal fingerprints that
contain readings from additional cells that are too weak for communication
purposes [86, 112].



Chapter 3

From Location to Place

GPS and GSM positioning return location information in coordinate form.
This type of location information is useful for a variety of applications and
services. For example, disaster management can use coordinates to locate
an emergency number caller [100]. Location-based games can change the
state of the game according to the user’s location in the physical world [14].
Mobile guides can provide information about restaurants, movie theaters
etc. that are nearby [11, 64] and navigation systems [12] can provide in-
structions to reach the destination. However, as we discuss in Sec. 3.1,
people themselves do not refer to locations using coordinates, but using se-
mantic descriptions (at home, at the supermarket, at an opera performance
etc.). Moving from coordinates to representations that are consistent with
the way people themselves refer to location information can enable novel
and more powerful opportunities for social coordination and interaction. In
this thesis we focus on the notion of place, which aims to provide such a
representation. Places can be roughly defined as a combination of a phys-
ical location, meanings and activities that relate to the physical location;
see Sec. 3.2.

3.1 Users and Location Information

According to ethnomethodologist tradition, the design of technologies can
be informed using observations about everyday practices; see, e.g., [33].
Accordingly, the design of location-aware applications that support social
interactions can benefit from observations about how location information
is used within everyday practices. Following this tradition, various studies
have investigated location disclosure during mobile phone calls. For exam-
ple, Laurier [71] analyzed how mobile workers talk about location while

13
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traveling by car. The study indicated that mobile workers actively used
location information and that the main use for location information was to
establish a shared context with the other participant. Arminen [5] analyzed
mobile phone calls within different contexts and found further uses for lo-
cation information. According to Arminen, location can be used as a cue
of interactional availability, as a precursor for mutual activity, as part of
an ongoing activity (e.g., to coordinate), as a social fact or as an emergent
feature that bears relevance to the current activity.

While location is widely used during conversations, it is seldom used in
geographic terms, but it is made relevant as part of the joint activities in
which the participants are involved [5]. Weilenmann and Leuchovius [116]
studied the nature of information that is disclosed during phone calls and
their results suggest that the type of location information that is disclosed
depends on the role of the activity and the mutual context between the
people communicating. For example, during coordination activities, loca-
tion is disclosed in reference to what it means to move between locations,
whereas familiar terms are used for other purposes (e.g., I’m at home).

Another important question is what kind of locations people name.
This issue has been investigated using diary studies and data gathered from
mobile applications that support labeling of locations [72, 122]. The results
of the studies have been rather consistent and indicate that people tend to
assign labels to both private (home, work) and public locations (library,
train station). Furthermore, some labels relate to a shared context (e.g.,
referring to a friend’s home or a regular place to meet friends) whereas
some labels are related to a specific activity (e.g., gym, swimming hall).

In most studies, location disclosure has been investigated within a spe-
cific social setting (e.g., between friends or family). Consolvo et al. [24]
investigated how the nature of the social relationship influences the will-
ingness to disclose location and the granularity of information that people
are willing to disclose. They found that people typically formulated their
location information in a fashion that they though was useful for the other
person. Typically participants returned specific location information and
vague or blurred expressions were rarely used. The social relation between
the persons also played a major role. While people were willing to disclose
their location information practically always to significant others and to
family, they were not willing to disclose location to colleagues outside work
hours. Moreover, workers were even more hesitant about disclosing their
location information to their managers.

According to the interactionist view of context [32], the use of context
relates to the practices of the people and these practices change dynamically
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over time as people invent new uses and become more familiar with the
technology and its possibilities. Exposing people to novel technologies can
thus result in novel ways of using context information. Oulasvirta et al. [87,
88] investigated the role of location as an availability cue by augmenting the
contact book and recent calls view of a smartphone, e.g., with information
about the location and phone profile of a contact. Location and profile
information were found to be important cues for determining availability
when people knew each other, but location information was not as useful
for determining the interruptability of a stranger.

3.2 The Notion of Place

Place is a word that occurs frequently in daily communication and that
is imbued with meanings of common sense. People talk about place in
a variety of contexts, which suggests the notion of place pervades various
aspects of daily life and that finding a single definition can be difficult. This
is also evidenced by the variety of research fields that have investigated
(some aspects of) the notion of place. For example, architects and urban
planners try to evoke a sense of place, ecology and ecosystems management
talk about ecological places and bio-regions, and artists and writers try to
reconstruct places in their work [27].

The definitions of a place that are most relevant for computer science
originate from the field of humanistic geography where place is considered
an experiential entity [27, 63, 110]. For example, Relph [97] defines a place
as a combination of a physical setting, the activities supported by the place
and the meanings attributed to a place; whereas Tuan [111] defines places
as spaces that are embodied with meanings. Note that, while places relate
to a space, the existence of a physical space is not required but also virtual
spaces exhibit place-related behavior. For example, people posting to a
particular newsgroup adopt the norms of the specific group and people in-
teracting in virtual environments form small-scale communities that adopt
their own behavioral norms [50].

Meaningfulness is central to the definitions of place, yet nothing is said
about what makes a place meaningful. According to Gustafson [49], the
meanings can be related to a three-pole model where the poles correspond to
self, others and environment. Meanings associated with places can relate to
one of the poles or relationships between multiple poles. Also other aspects
influence the meanings attributed to places. For example, Krämer [63]
shows that places can be categorized into generic place-types based on
their specificity, functionality and privacy.
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Place information can be used in mobile applications in various ways.
As discussed, place information can be used to support awareness by pro-
viding cues about the user’s generic situation and interruptability. Place
information can also be used to support place-centered information delivery.
Jones et al. [58] investigated how places influence user information needs.
They found that the information that people need in a place depends on
how often the user visits the place and how stable the information is. For
example, a user that takes the same train every morning does not normally
need information about train schedules (stable information) unless there is
a major delay (dynamic information).

Places correlate strongly with location and time information. As part
of a study on human mobility patterns, Gonzalez et al. [48] showed that
humans visit a relatively small number of locations during a day. This
indicates that the activities of the users are necessarily structured around
locations where humans spend significant amount of time. Lehikoinen and
Kaikkonen [72], on the other hand, have shown that the time the user stays
at a location is an important factor that influences whether the user is likely
to label the location or not. However, users are unlikely to consider traffic
jams or traffic lights meaningful, even if they are visited often and for long
periods of time. In Chapter 5, we show how time and location information
can be used to accurately determine meaningful places from user’s location
trajectories.



Chapter 4

Mobile Platforms

From a system perspective, the move from location to place requires in-
teractions between location systems, algorithms that identify places from
location measurements and applications and services that utilize place in-
formation. These interactions can be facilitated using a data collection
platform that automates data capture and processing, and provides means
for disseminating data to applications and other system components. This
chapter introduces data collection platforms for mobile devices and de-
scribes BeTelGeuse1, a mobile platform that has been developed as part of
the research towards this thesis, and that is described in Articles I and II.

4.1 Survey of Existing Mobile Platforms

Frameworks are defined as computational environments that are designed
to simplify application development and system management for special-
ized application domains [16]. Mobile platforms are frameworks that run on
a mobile device. Mobile platforms can be categorized based on the nature
of data they collect. First of all, platforms that support collecting objective
data log different types of sensor information, e.g., about user interactions,
device state, location and the user’s environment. Platforms that collect
only objective data are usually designed to support application develop-
ment and, for this reason, these platforms usually also provide interfaces
for disseminating data to other system components. These platforms usu-
ally also provide some form of support for automatically refining the sensor
data, e.g., in the form of activity recognition (see, e.g., [67, 77]) or place
identification. The second class of platforms focuses on collecting subjec-

1BeTelGeuse is freely available under the GNU Lesser General Public License (LGPL)
from the project website: http://betelgeuse.hiit.fi/
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tive self-reporting data from the user. The main goal of these platforms
is to support field studies in mobile human-computer interaction. Most
platforms that collect subjective data also collect objective data. How-
ever, contrary to platforms that focus on objective data, these platforms
tend to have limited support for using sensor information in applications
and services. In the following we describe existing platforms in these two
categories. We limit our survey to platforms that run on a mobile phone
and support, in addition to collecting sensor data, automatic processing
of sensor data or collection of subjective data. Thus middleware, such
as Muffin [118], and wearable platforms, such as Mobile Sensing Platform
(MSP) [22]), are excluded from the following discussion.

4.1.1 Platforms and Toolkits for Objective Data Collection

Various toolkits that focus on specific types of data have been proposed.
One example is the Place Lab open source toolkit for location sensing [53,
69, 104]. The architecture of a Place Lab client consists of three kinds of
components: spotters, mappers and trackers. Spotters are modules that
are responsible for collecting information about radio beacons in the user’s
vicinity. For example, a WLAN spotter would periodically scan for available
WLAN access points. Mappers, on the other hand, are responsible for
maintaining radio map information on the device. In the basic form, the
radio maps consist of radio beacon identifiers and estimated locations for
each beacon. Additional information can contain learned radio propagation
models, antenna altitude information etc. Finally, trackers are responsible
for calculating location estimates for the clients using the information stored
by the mappers. Place Lab supports various platforms and it can be used
on laptops, mobile phones and PDAs. Another example of a toolkit is
the Context Recognition Network (CRN) [9, 10], which enables creating
distributed, multimodal activity-recognition systems. The CRN supports
collecting data from distributed sensors and it provides a collection of ready-
to-use signal processing algorithms. However, the CRN supports only the
Posix operating system and thus currently iPhone is the only mobile phone
where the CRN can be used.

ContextPhone [92, 93] is a platform that collects various sensor data,
provides system services that facilitate building and running custom appli-
cations, and provides an abstraction to the device’s communication mech-
anisms. The sensor data that ContextPhone collects consists of location
data (GSM identifier, Bluetooth GPS), communication behavior (calls, sent
and received SMS), physical environment (nearby Bluetooth devices, opti-
mal marker recognition) and user interaction data (active application, idle
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or active status). ContextPhone also automatically detects places from
GSM cell identifier data; see Sec. 5.2.5. In terms of system services, Con-
textPhone provides support for automatically launching applications and
background services. ContextPhone also contains a watchdog mechanism
that monitors running applications and restarts them if they have crashed.
The main limitation of ContextPhone is that it only supports Nokia S60
smartphones. A related platform is the ContextWatcher [62], which also
supports place identification and runs on Nokia S60 smartphones. The
main difference between ContextPhone and ContextWatcher is that Con-
textPhone is a background service that is automatically started, whereas
ContextWatcher is an application that the user must manually launch.

4.1.2 Platforms for Subjective Data Collection

Mobile phones are used in a wide variety of everyday situations [92, 106],
which makes it possible to use mobile phones to collect rich data about
the thoughts, feelings and behaviors of humans in a wide range of everyday
situations. Experience sampling is a study technique that uses a signaling
device to elicit subjective self-report data from participants over a longer
period of time [28, 41]. Initially experience sampling studies were con-
ducted using a pager and a paper-based self-report, but improvements in
the capabilities of mobile phones have made it possible to conduct expe-
rience sampling studies using mobile phones [41, 55, 56, 92]. Experience
sampling can also be used to study how people interact with mobile de-
vices and applications [89, 105], and to evaluate mobile applications and
services [25].

The benefits of subjective data collection have resulted in various mobile
platforms that support collecting subjective data. While some of these tools
support collecting both sensor data and subjective data, the focus of all of
these platforms has been on supporting experience sampling studies. As a
consequence, these platforms provide scant support for utilizing sensor data
in applications. The first tools were designed for PDAs, but contemporary
tools are exclusively targeted at mobile phones. Two examples of early tools
are the Experience Sampling Program (ESP) [41] and the Context-Aware
Experience Sampling tool (CAES) [55, 56]. The main difference between
the two tools is that CAES supports collecting sensor data whereas ESP
does not. CAES also enables event-based prompting, i.e., showing the
questionnaires in pre-defined situations. The main limitation of these tools
is that they were not designed to run on the user’s personal devices. As
a consequence, the tools require exclusive access to the device and may
interrupt the user at inappropriate times [43, 54].
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More recent platforms support also collecting objective data. An exam-
ple is the Xensor [54], which is an extensible platform that runs on Win-
dows Mobile smartphones. Xensor supports collecting data, e.g., about
the user’s situation (various Bluetooth-enabled sensors: GPS, accelerome-
ter, heart rate monitor), device data (remaining battery, GSM information,
WiFi access point information) and it also provides a socket interface that
allows logging customized application data. Subjective data can be col-
lected using interval-based experience sampling. The Xensor platform has
been used, e.g., to study the influence of contextual factors on availability
inferences [107].

MyExperience is another open source platform that supports logging
sensor data and capturing subjective user data [43]. The sensor data that
MyExperience collects from the phone is richer than what the Xensor col-
lects. Among other things, MyExperience collects usage data (e.g., phone
calls or application usage), user context information (e.g., calendar appoint-
ments) and environmental data (e.g., nearby devices or external GPS re-
ceiver). Subjective data is collected using questionnaires that can be trigged
at certain intervals (i.e., interval-based experience sampling) or whenever a
certain pre-condition is met (i.e., event-based experience sampling). MyEx-
perience is implemented using a sensor-trigger-action model. The sensors
are abstractions of hardware and software sensors which collect the objec-
tive data. The triggers, on the other hand, define an event mechanism,
which allows specifying when to send data to other components or to per-
form an action. The actions themselves are code snippets that are executed
on the phone, whenever the corresponding trigger condition is met. Simi-
larly to the Xensor, MyExperience only runs on devices with the Windows
Mobile operating system.

4.2 BeTelGeuse

BeTelGeuse is an open source mobile platform that has been developed
during the research towards this thesis. The first version of BeTelGeuse
was developed between August 2006 and February 2007. At that time, mo-
bile phones had limited support for integrated sensors and they provided
limited programming interfaces. However, Bluetooth support was becom-
ing standard and many phones supported accessing Bluetooth using Java
programming interfaces. Bluetooth-enabled sensors were also increasingly
available on the market (e.g., GPS receivers, accelerometers and heart rate
monitors). Because of these reasons, the first version of BeTelGeuse was
developed using mobile Java and it focused on facilitating data collection
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from Bluetooth-enabled sensors; see Article I.

Since our first version, the capabilities of mobile phones have rapidly
increased. Contemporary mobile phones have ample processing power and
storage capacity, which enables performing more processing directly on the
phone. Sensors are increasingly integrated into mobile phones, for exam-
ple the Nokia N95 contains an integrated GPS receiver, as well as tilt
and three-dimensional acceleration sensors. Mobile data connectivity tech-
nologies have become faster, and relatively cheap flat rate subscription
fees combined with improvements in mobile web browsers have resulted
in widespread usage of mobile Internet. Mobile operating systems have
opened up, which enables users to install custom third-party applications
to the phone. Finally, the programming interfaces of mobile devices have
improved, which has made it easier to access resources and sensors on the
phone. These are among the issues that have influenced the latest version of
BeTelGeuse, which includes support for accessing data from phone internal
sensors, different mechanisms for accessing collected sensor data, and plug-
ins that augment the sensor data by providing additional information or by
inferring higher level context information. The BeTelGeuse platform sup-
ports different platforms and we have tested it on Nokia and Sony Ericsson
mobile phones, desktop computers running Linux or Windows operating
systems, as well as PDAs running the Microsoft Windows Mobile operat-
ing system. In the following we briefly describe the different components
in the BeTelGeuse architecture. More detailed information, including a list
of supported sensors and a performance evaluation, can be found in Article
II. The datasets that are used in Chapter 6 to evaluate place identification
algorithms have all been collected using BeTelGeuse and we are currently
in the process of integrating place identification support into BeTelGeuse.

BeTelGeuse Architecture

BeTelGeuse’s high-level system architecture has been inspired by the micro-
kernel architecture pattern. We have a separate core which offers a minimal
set of functionalities that are needed to run the tool. The core also defines
interfaces for components that provide extended functionalities. The core
consists of a blackboard and three communication modules. The black-
board can be thought of as a shared message board where components can
write new messages and read messages from other components [117]. The
communication modules, on the other hand, encapsulate the communica-
tion mechanisms of the mobile device and provide mechanisms that enable
applications to obtain sensor data.

The interfaces for obtaining sensor data differ across phone manufactur-
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ers, which makes it difficult to have a single implementation of the sensor
interfaces. In BeTelGeuse, the core defines only an interface for sensors
and the actual sensors are abstracted as context parsers that are outside
the core2. BeTelGeuse can also be extended with plug-ins that provide
extra functionalities, e.g., high-level context inference or support for expe-
rience sampling studies. In the following we describe the different types of
components.

Blackboard: The BeTelGeuse blackboard acts as a communication hub
for the communications between different system components. Java com-
ponents that run on the phone can communicate with the blackboard using
direct method calls, whereas other components (local or external) can use a
socket connection. The communications with the blackboard use a Simple
Sensor Interface-like protocol3 (SSI), which supports sending data packets
as well as command messages that modify the current system configuration.
The blackboard itself is data-type agnostic and components that read data
from the blackboard are responsible for interpreting the data. By default,
the interactions with the blackboard follow a publish-subscribe paradigm
where the blackboard notifies the appropriate components when new data
is available. The blackboard supports events, which enable refining when
to send data.

Context Parsers: Context parsers are responsible for collecting data
from sensors and for making the data available to the blackboard. Each
parser can operate in streaming or periodic mode. In the streaming mode,
data is continually read from a sensor, whereas in the periodic mode the
sensor is polled for data at predefined intervals. BeTelGeuse supports col-
lecting data from (i) phone internal sensors, (ii) external Bluetooth-enabled
sensors, and (iii) sensors that provide data from the Internet. Developers
can add new sensors to BeTelGeuse or they can extend the functionalities
of existing parsers. The parsers for phone internal sensors need to be im-
plemented using native code (e.g., Python S60 or Symbian C++ for Nokia
S60 devices, and C# for Windows Mobile devices), whereas Bluetooth sen-
sors can be implemented using Java. Internet sensors can be implemented
either as plug-ins (typically Java) that pull data from the Internet or as
services that run on external web servers and push data to the BeTelGeuse
blackboard.

2A small set of parsers for common Bluetooth-enabled sensors is included in the core.
3http://en.wikipedia.org/wiki/Simple_Sensor_Interface_protocol [Retrieved:

2009-08-04]
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Communication Modules: The current implementation of BeTelGeuse
contains three communication modules: the Bluetooth manager, the data
transmitter and the mobile HTTP server. The Bluetooth manager is re-
sponsible for scanning the device’s Bluetooth environment and for creating
and managing connections to Bluetooth-enabled sensors. The data trans-
mitter is responsible for synchronizing sensor data with remote storage and
for making the data available to external components. Similarly to the
blackboard, the data transmitter supports events that can be used to de-
fine when to send data to the server. Finally, the mobile HTTP provides
a callback mechanism that enables applications running on the mobile de-
vice’s browser to access sensor data.

Plug-Ins: We have currently two plug-ins for BeTelGeuse. The location
plug-in provides position information to the device using GSM fingerprint-
ing, whenever GPS signal is not available, and it also provides semantic
information about nearby locations that users have tagged; see [17] for infor-
mation about the latter. The second plug-in, the activity plug-in, provides
information about the user’s activity based on accelerometer data [83]. We
are also currently developing an experience sampling plug-in that provides
support for running user studies with BeTelGeuse.
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Chapter 5

Algorithms for Place Identification

Place identification can be understood as a data analysis task where the
goal is to analyze (location) measurements and to identify areas that are
meaningful to the user. In this section we first describe the place iden-
tification process and introduce techniques that are used in the different
phases. After this we review existing place identification algorithms and
describe the Dirichlet process clustering algorithm, a novel place identifica-
tion algorithm that has been developed as part of the research towards this
thesis, and that is described in Article IV. The Dirichlet process clustering
provides improved generalization performance and is less sensitive to pa-
rameter values than the algorithms that we have developed in our earlier
work, described in Article III.

5.1 The Place Identification Process

The steps of the place identification process are shown in Fig. 5.1. Four
of the phases focus on analyzing the location measurements, whereas one
phase, labeling, focuses on associating semantics with location information.
The operations in the first data analysis phase, data preparation, depend
on the particulars of the underlying location sensing technology and are
common to all algorithms. The operations in the other analysis phases,
preprocessing, cluster analysis and post-processing, are specific to the used
place identification algorithm. The labeling step, on the other hand, is
often considered the final step of the place identification process, but it can
also be performed before data analysis. In the following we discuss each of
the phases in more detail.

25
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Figure 5.1: The place identification process.

5.1.1 Data Preparation

The data that we use consists of timestamped GPS measurements (see
Sec. 6.1.1). In the data preparation phase we remove invalid measurements
and transform the data into (latitude, longitude, duration) tuples
where the duration values indicate the time the user has spent at each
location. We also clean the data by removing invalid measurements that
are caused by a warm start of the GPS receiver (see Sec. 2.1).

Duration Estimation

Most place identification algorithms use information about the time the
user has spent at a location to identify meaningful places. As our data is
collected non-continuously and as the data sampling rate varies, we need
to perform some processing steps to estimate the time the user has stayed
at each location. Our first processing step is to classify the points as valid
or invalid. We consider a measurement valid, if the GPS receiver is able
to see at least four satellites and if the HDOP value is below 6.0 (see
Sec. 2.1). Otherwise the measurement is considered invalid. Most of the
invalid measurements are from areas where the user has stayed indoors,
but we also observed some inaccurate measurements; see Fig. 5.2. After
classifying the points, we segment the data into sessions. The segmentation
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Figure 5.2: Illustrating the notions of valid and invalid points. The left-
most picture contains all measurements we have collected from Tokyo,
Japan. The picture indicates that there are many invalid measurements
which appear as straight lines originating from a frequent location. From
the picture in the middle we have removed points where less than four satel-
lites were visible and from the right-most picture we have removed points
for which the HDOP value exceeds 6.0.

is necessary to ensure that missing measurements have no influence on the
duration estimates. In our case data may be missing for various reasons.
For example, as the data collection was based on voluntary participation,
the participants might choose not to log data from a particular area. Other
reasons include participants forgetting to start the data logging application
and the mobile device or the GPS receiver running out of battery.

Similarly to segmentation algorithms used, e.g., in web log analysis [101]
and driver trip analysis [44], our segmentation uses a threshold on the time
difference between successive location measurements. If successive loca-
tion measurements are at least 8 minutes apart, we assume they belong to
different sessions. This threshold was selected based on two constraints.
Firstly, Bluetooth scans require at least two minutes due to limitations in
the J2ME Bluetooth API [81]. Secondly, many place identification algo-
rithms use ten minutes as a threshold for detecting meaningful locations
and thus the threshold value should be below 10 minutes to ensure that
missing measurements cannot result in erroneous place detections.

In the actual duration estimation phase we consider each measurement
in turn and compare it against the previous measurement. We only compare
points that belong to the same session. The action to perform depends on
whether the current and previous measurement are valid or invalid:

• Current and previous point valid: When both the current and
the previous measurement are valid the user is outdoors. In this case



28 5 Algorithms for Place Identification

we compare the measurements and merge them if they are the same1.
Otherwise we use the mode of the sampling rate as the duration
estimate for the previous point.

• Current point invalid, previous point valid: When GPS con-
nectivity is lost, we store the last seen valid point. If the session ends
before a new valid point is seen, we use the mode of the sampling rate
multiplied by the counter value as the estimate for the previously seen
valid point.

• Current point valid, previous point invalid: If the points are
the same, we merge them and use the difference in timestamps as the
duration estimate. Otherwise we use the mode of the sampling rate
to estimate the duration of the last seen valid point.

• Current point invalid, previous point invalid: When both mea-
surements are invalid, we do nothing.

Most duration values are estimated using the difference in timestamps be-
tween successive measurements. When successive measurements are valid,
there is usually some fluctuations in the measurements and we cannot eval-
uate exactly the time the user has stayed at a location. To reduce influence
of sampling rate variations, in this case we estimate the duration using the
mode of the sampling rate. In the processing phase we also discard invalid
measurements. Accordingly, the final data set contains the coordinates of
the valid measurements and a duration estimate for each point.

Data Cleaning

Data cleaning (also known as cleansing or scrubbing) refers to the process
of detecting and correcting errors and inconsistencies in data [94]. In place
identification, the main source of errors is the used positioning technology.
As all of our data has been collected using GPS, in this section we focus
only on handling errors in GPS measurements.

The most common sources of errors in GPS measurements are signal
shadowing and lack of GPS signal. These errors can be handled simply
by examining the number of satellites and the estimated horizontal error,
i.e., the HDOP value. In our case these measurements are removed in the
duration estimation phase; see above. Another potential source of errors

1We consider two measurements the same, if the latitude and longitude coordinates
are exactly the same. Alternatively a small radius threshold can be used to reduce fluc-
tuations caused by uncertainty and errors in the location estimates. The latter approach
is used in the algorithm of Ashbrook and Starner; see Sec. 5.2.1.
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is related to GPS receiver warm starts, i.e., when the receiver is restarted
after it has been off for a longer period of time and it has lost some of
the orbital data that is used to estimate locations; see Sec. 2.1. In this
case the first measurements are based on the receiver’s last known position
and coarse orbital parameters. If the receiver has moved significantly from
the last known position, the first estimates can be in the wrong location.
This can cause a sudden jump in the estimated location when the receiver
obtains accurate orbital data from the satellites.

To correct errors due to receiver warm starts, we first use an outlier
detection algorithm to detect jumps in the measurements. The simplest
way to detect outliers from GPS measurements is to look at velocity in-
formation. We considered a measurement an outlier if the user’s velocity
exceeds 100 meters per second (360 km/h). As our velocity calculations are
approximate (see Sec. 5.1.2) we selected a high threshold value to ensure
that measurements would not be wrongly detected as outliers.

The outliers correspond to measurements that precede the point where
the GPS receiver obtains accurate orbital data. Accordingly, the outliers
define the last point that should be removed. To remove all invalid mea-
surements, we combine the outlier detection with the session segmentation
algorithm described in Sec. 5.1.1 so that points belonging to the same ses-
sion and preceding the outlier point are also removed.

5.1.2 Preprocessing

Data preprocessing refers to tasks that are performed on the data before
analysis [40]. We have made a distinction between the tasks that are com-
mon to all algorithms and the tasks that the individual algorithms perform
on the data before analysis. In this section we focus on the latter issue
and introduce velocity based pruning, which many place identification al-
gorithms use to filter measurements.

Velocity Based Pruning

Areas where the user moves fast typically correspond to commuting and are
unlikely to be meaningful to the user. This suggests that velocity informa-
tion could be used to remove data from non-meaningful areas. Removing
redundant data reduces the needed computations and potentially improves
the resulting clustering accuracy. We approximate the actual velocity by
considering the distance (in meters) and time (in seconds) between succes-
sive measurements. The velocity values are calculated during the duration
estimation phase; see Sec. 5.1.1. While the duration estimates are not nec-
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Figure 5.3: Illustration of the use of velocity information to prune data.
The data in the example was collected in Tokyo, Japan. The original data
set is shown on the left and the pruned data on the right. Most of the
removed measurements correspond to points where the user was traveling
by train.

essarily based on timestamps, velocity values are estimated using differences
between timestamps.

The use of velocity information to prune data is illustrated in Fig. 5.3.
In the example commuting traces have been removed from the data and the
pruned data gives a better indication of the potentially significant areas.
The figure also illustrates a potential pitfall as some of the unpruned points
actually correspond to intermediate train stations. Accordingly, using only
velocity and time information can leave areas that are insignificant, but
where the user has stayed for a longer period of time; see Sec. 6.2.

5.1.3 Cluster Analysis

Cluster analysis focuses on detecting hidden groups, or clusters, among a
set of objects [18]. Cluster analysis is the main phase in the place identi-
fication process. In place identification, the clusters typically correspond
to frequently visited locations, or candidate places. The post-processing
phase, discussed in the next section, then attempts to separate the mean-
ingful clusters, i.e., places, from the non-meaningful ones.

Clustering can be performed using sequential or batch algorithms. Se-
quential algorithms analyze data one point at a time as new measurements
arrive, whereas batch algorithms analyze data in larger chunks. Note that,
while some place identification algorithms use sequential clustering, the
actual place identification usually operates in a batch mode. The reason
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Figure 5.4: A plot of the number of places that the algorithm of Ash-
brook and Starner detects as the radius parameter is varied. The solid line
corresponds to the automatically selected knee value.

for this is that sequential clustering algorithms typically rely on various
parameters and finding the optimal parameter values requires repeating
the clustering with different parameter values. The cluster analysis step
is discussed in Sec. 5.2. Next we introduce the scree criterion, a popular
technique for determining optimal parameter values.

The Scree Criterion

The scree criterion is a subjective method where the experimenter man-
ually determines the appropriate parameter values. The idea in the scree
criterion is to investigate graphically how variations in parameter values af-
fect the quantity of interest, e.g., model fit or number of meaningful places.
Originally the scree criterion was designed for multivariate statistics where
it was used to determine the number of components in factor analysis [20].
In place identification, the scree criterion can be used, e.g., to determine
the optimal value of the radius parameter for radius-based algorithms; see
Sec. 5.2.1.

To illustrate the use of the scree criterion, in Fig. 5.4 we have plotted
the number of places that the algorithm of Ashbrook and Starner (see
Sec. 5.2.1) finds from the Buenos Aires dataset (see Sec. 6.1.1) as the radius
parameter is varied. The figure does not indicate any clear cutoff points,
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though the steepest point in the plot is at around 350 meters. As the
example illustrates, applying the scree criterion in place identification can
be difficult and the resulting interpretations can be highly subjective. For
example, if we are told that the correct number of places in the Buenos Aires
data set is six, we could argue that the knee point is at around 600 meters.
On the other hand, if we are told that the number of places is eleven, we
could argue that the knee point is at around 300 meters. To reduce biases
from subjective interpretations, an objective criterion for selecting the knee
point is needed.

From a mathematical point of view the knee point corresponds to a
point where the slope of the function we are investigating changes signif-
icantly. Ashbrook and Starner [7] have suggested a way to automatically
determine the knee point. In their scheme, the values of the function are
examined from right to left. For each point, we calculate the mean of the
next n points to the right of the current point. If the mean point exceeds a
predefined threshold ψ, the current value is selected as the knee point. In
our experiments we have used this scheme for all algorithms that use the
scree criterion. As the parameter values we use n = 15 and ψ = 1.5. The
solid line in Fig. 5.4 indicates the scree point that this scheme selects for
the Buenos Aires data.

5.1.4 Post-Processing

The post-processing phase refines the results of cluster analysis using spatial
and temporal information. In this section we first discuss the merging of
clusters, after which we discuss the use of temporal and spatial information
to remove clusters that are assumed non-meaningful.

Cluster Merging

Variations in location measurements easily cause situations where multiple
places are detected around a relatively small spatial area. In this kind
of cases we might want to merge the different places into a larger place,
especially if the activities or temporal patterns associated with the places
are similar.

The simplest way to detect whether two clusters should be merged is to
calculate the distance between the cluster means and merge the clusters,
if the difference is smaller than a predefined threshold. For example, the
algorithm of Kang et al. (see Sec. 5.2.1) uses a fixed threshold d to detect
clusters, and it merges clusters that are within distance d/3 from each
other.
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An alternative which considers also the spatial and temporal distribu-
tion of data near the places is to use the joint Kullback-Leibler divergence.
The Kullback-Leibler divergence measures distance between two probabil-
ity distributions p and q and it is defined as follows [26]:

DKL(p||q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (5.1)

As Kullback-Leibler divergence is not symmetric, the joint Kullback-Leibler
divergence is defined as the sum DKL(p||q)+DKL(q||p). When both p and q
are modeled using Gaussian distributions, the Kullback-Leibler divergence
can be calculated analytically using the formula:

DKL(p||q) =
1

2
log
|Σp|
|Σq|

+ tr
(
Σ−1p Σq

)
+ (µp − µq) Σ−1p (µp − µq)′ − d.

(5.2)

Here µp, µq,Σp and Σq are the mean vectors and covariance matrices of the
corresponding Gaussian distributions. The variable d is the dimensional-
ity of the corresponding Gaussian distribution and tr refers to the matrix
trace operation. When this criterion is used, clusters are merged whenever
DKL(p||q) +DKL(q||p) ≤ λ where λ is a predefined threshold value.

Temporal Pruning

The most common post-processing step is to use temporal information for
pruning the clustering results. As discussed in Sec. 3.2, the time the user has
stayed at a location often serves as a strong indicator of the meaningfulness
of a location. The common way to use temporal pruning is to fix a threshold
t and remove all clusters where the total stay of the user is less than t. A
common threshold value is to use t = 10 minutes. Alternatively, the pruning
can utilize information about the number of times the user has visited a
location. For example, the comMotion system, discussed in Sec. 5.2.1,
requires that a cluster is visited at least three times before it considers it a
meaningful place.

Spatial Pruning

Spatial pruning refers to the use of spatial information to prune clustering
results. The underlying idea behind spatial pruning is illustrated in Fig. 5.5.
The figure shows two clusters that have been detected from a user’s loca-
tion measurements. The first cluster corresponds to the person’s home,
whereas the second cluster contains mainly commuting measurements. As
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Figure 5.5: Example illustrating two clusters detected from data. The
first cluster corresponds to the person’s home, whereas the second covers a
commuting trace.

the figure illustrates, the distribution of points around the home cluster is
dense whereas the distribution around the commuting cluster is spread out.
Accordingly, the example suggests that cluster density and variance could
be used to prune clustering results.

Spatial pruning is utilized by density-based clustering (see Sec. 5.2.2)
and by the Dirichlet process clustering algorithm (see Sec. 5.3). As density-
based algorithms utilize information about neighborhood densities in the
clustering process, the spatial pruning is integrated into the actual cluster-
ing phase. With Dirichlet process clustering, spatial pruning is performed
separately after the clustering phase.

As the example in Fig. 5.5 illustrates, clusters that correspond to mean-
ingful places tend to have smaller variances than the non-meaningful clus-
ters. The spatial pruning used in our Dirichlet process clustering is based
on this idea. In the pruning phase, we calculate the maximum variance of
each cluster2. The resulting cluster variances are clustered into two classes
and an upper threshold is used to ensure that the size of the resulting clus-
ter remains small enough. We use the k-means algorithm for clustering the
maximum variances. As k-means is known to be sensitive to initialization,
we repeat the clustering 1000 times and use the best clustering result. As
the upper threshold we use 300 meters, or the median of the maximum

2The maximum of the variances along the longitude and latitude axes.
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variances, if it is higher than the threshold.

5.1.5 Labeling

While frequently visited locations can be detected from location data, they
should be considered as places only if the user can associate semantics with
the location, i.e., if they can be labeled (see Sec. 5.1). In most of the existing
work, labeling is considered as the final step of the place identification
process. For example, the comMotion system (see Sec. 5.2.1) prompts the
user to label newly discovered clusters, whereas the Opportunity Knocks
system asks the user to take a photo (see Sec. 5.2.4). Wang and Canny [113]
studied different annotation techniques from a usability perspective and
found the combination of online photo and offline editable text to be the
best method for assigning labels.

An alternative is to allow users to label arbitrary locations and to learn
a suitable representation for the locations from data. In this case the place
representation is initially tied to some location information and later re-
fined using place identification. The main advantage of this approach is
that users can immediately provide semantics instead of needing to wait
for the place identification algorithm to detect them. The main problem,
on the other hand, is that the original location representations may be
inaccurate and linking the initial representations with the results of place
identification can be difficult. For example, Lehikoinen and Kaikkonen [72]
associated semantics with the current GSM cell. A similar approach has
been used by Li and Jonsson [73]. As the size of a GSM cell can be several
kilometers (see Sec. 2.2), one cell can cover multiple places and it might be
difficult to later associate a place with the appropriate label. As part of our
current work we are constructing SerPens [17], a tool that links the semantic
labels with whatever location related information is available. Accordingly,
location labels can be linked, e.g., to GSM cell identifiers, GPS coordinates,
fingerprints of the radio environment or combinations of multiple sources.

Also the possibility to automatically associate labels has been investi-
gated in the literature. These approaches either use additional information,
such as time of day and point-of-interest databases, to determine the type
of building, or attempt to assign labels by comparing places across users.
For example, Adams et al. [2] use time of day information to classify dis-
covered clusters as either home, work or other. A cluster is assumed to
represent home, if it is the clusters with the maximal duration before 7 in
the morning or after 7 in the evening. Respectively, a cluster is labeled as
work, if it has the maximal duration during working hours on weekdays.
As another example, Liao et al. [74] use time of day information together
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with information extracted from geographic databases to associate place
labels. They consider the following categories: work, home, friend, parking
and other. The results in [74] indicate over 90% overall accuracy and 100%
accuracy at detecting the user’s home and workplace.

5.2 Survey of Existing Algorithms

In this section we review existing place identification algorithms. As dis-
cussed in the previous section, we assume that the data is represented
as (latitude, longitude, duration) tuples. We use the variable i =
1, . . . , n to index data points and the variable j = 1, . . . , k to index clusters
(i.e., candidate places). The coordinates of a data point are represented
using the variable yi and the variable ti is used to represent the duration
measurement associated with point i. Note that the variable yi corresponds
to the (latitude, longitude) pair associated with measurement i. The
variable ci is used to indicate the place to which data point i is assigned.
The variable nj is used to denote the number of points assigned to a clus-
ter and µj is used to denote the geographic mean of the coordinates of the
points that are assigned to cluster j. Finally, boldfaced variable names are
used to represent vectors, i.e., y = (y1, . . . , yn) denotes the vector of all
data points.

5.2.1 Radius-Based Algorithms

The idea in radius-based algorithms is to fix a radius and to merge all
points that are within the radius into a cluster. Significant places are
detected using temporal heuristics to prune either the data or the results
of the clustering. Radius-based algorithms have been a popular choice for
place identification because they are simple to implement and because they
are relatively fast. The main disadvantage of radius-based algorithms is
that they rely on multiple parameters whose values are determined using
various heuristics. The effectiveness of these heuristics often depends on
the properties of the underlying dataset and hence it can be difficult to
generalize the algorithms to other datasets; see Sec. 6.3.

comMotion

The comMotion system was one of the first applications to utilize place
identification. The place identification in comMotion is based on GPS
signal loss [76]. The algorithm compares the location where GPS signal is
lost with the next valid GPS measurement, i.e., the point where the user
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re-appears. If these two measurements are within a pre-defined radius, the
location is considered to be a building. If the user visits the building several
times (three in the original comMotion system [99]), the algorithm considers
the building as a place and prompts the user to label it. Only locations
the user has labeled are considered meaningful. The main disadvantages
of the comMotion algorithm are that it can only recognize places that are
indoors and that are visited at least three times. As most of our datasets
contain places that are outdoors and that are visited infrequently, we do not
consider the comMotion algorithm as part of our evaluation in Chapter 6.

Ashbrook and Starner

The algorithm of Ashbrook and Starner [6, 7] is a variation of the com-
Motion algorithm. In the original approach, Ashbrook and Starner log
measurements only when the user moves at a speed of at least one mile
per hour [6]. A preprocessing step is used to segment the measurements
into a set of candidate places that consists of areas where we observe a
continuous gap of at least 10 minutes. Finally, a clustering step is used to
merge nearby places. The authors have later modified the algorithm so that
speed information is no longer considered, but candidate places are created
at locations where the GPS signal is lost [7]. The reliance on GPS signal
loss makes the algorithm unable to detected outdoor places. Toyama et
al. [108] have modified the algorithm by performing a clustering step that
merges nearby points before creating candidate places. The radius param-
eter for this clustering step should be relatively small and depend on the
accuracy of the underlying positioning technology. We have adopted a sim-
ilar approach to Toyama et al. In our case the radius parameter for the
first clustering step was set to 20 meters.

The modified algorithm of Ashbrook and Starner is shown in Alg. 1.
The first step is to preprocess the data (line 2) by merging nearby location
measurements and dropping measurements with a duration less than 10
minutes. After the preprocessing step, a radius-based clustering algorithm
is used on the remaining data. The clustering iterates over the remaining
data points (line 3), and, during each iteration, a random data point is
selected and used to initialize a new cluster mean (lines 4 and 6). Next
all data points within a predefined radius ε from the current mean are
discovered (line 7) and the mean of these points is used as the new cluster
mean (line 8). This process is repeated until the cluster mean stabilizes
(line 9). The resulting cluster is added to the set of places and the points
that belong to the cluster are removed from further consideration (lines 10
and 11). This process is continued until all points have been processed.
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Algorithm 1 C = AshbrookStarner(y, ε)

1: C = ∅
2: T = preprocess(y)
3: while T 6= ∅ do . Repeat until all points have been processed
4: Select random data point z ∈ T
5: repeat
6: µ = z . Store the current cluster mean
7: Q = {w |w ∈ T, d(w, z) ≤ ε}
8: z = mean(Q) . Calculate new cluster mean
9: until d(z, µ) < MIN ERROR . Loop until mean does not change

10: C = C
⋃
{Q} . Store cluster

11: T = T \Q . Remove points from consideration
12: end while

The clustering step relies on a radius parameter ε. Ashbrook and
Starner determine the optimal value of ε automatically using the scree cri-
terion, i.e., the clustering is repeated with different values of ε and the value
corresponding to the knee-point of the resulting graph is considered the op-
timal choice. In the experiments in Chapter 6 we have used the algorithm
described in Sec. 5.1.3 to automatically determine the knee value.

Kang et al. Iterative Radius-Based Clustering

Kang et al. [60] have proposed an iterative radius-based algorithm for place
identification. The basic idea is similar to the modified Ashbrook and
Starner algorithm: nearby points are clustered into candidate places, a
time threshold is used to determine which candidate places are meaningful,
and a cluster merge step is used to combine multiple visits to the same
place. The main difference to other algorithms is that Kang et al. use
a temporary buffer to reduce the effects of minor fluctuations in location
measurements. The temporary buffer ensures a new cluster is created only
once enough successive measurements are outside the cluster.

In the experiments we use a batch version of the algorithm; see Alg. 2.
The algorithm iteratively compares data points against the current cluster
mean (line 8). If the point is within distance ε from the current cluster,
the point is added to the cluster and the temporary buffer is cleared (lines
9 and 10). Otherwise the algorithm either adds the point to the temporary
buffer (line 38) or, when the temporary buffer is full, creates a new cluster
(lines 13 - 36). Before creating a new cluster, the algorithm checks whether
the user stayed long enough within a cluster (line 14). If the stay was
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Algorithm 2 (c1, . . . , cn) = ClusterKang(y, ε, ψ, γ)

1: q = 1 . Initialize cluster counter
2: c1 = q . Initialize first cluster
3: T = ∅ . Create temporary buffer
4: i = 2
5: while i ≤ n do
6: Q = {w | cw = q} . Points in cluster q
7: µq = mean(Q) . Calculate the mean of the cluster
8: if d(yi, µq) < ε then . Compare point i with current cluster
9: ci = q . Add point to cluster

10: T = ∅ . Clear temporary buffer
11: i = i+ 1
12: else
13: tT =

∑
w:w∈T tw . The duration of points in T

14: if tT > γ then . If point outside and temporary buffer full
15: tq =

∑
w:cw=q tw . The time the user stayed in the cluster

16: if tq > ψ then . If user stayed long enough in the cluster
17: for j = 1, . . . , q − 1 do
18: if d(µq, µj) < ε/3 then
19: ∀w s. t. cw = j : cw = q . Merge clusters
20: end if
21: end for
22: q = q + 1 . Start new cluster
23: else . User did not stay long enough in the cluster
24: ∀w s. t. cw = q : cw = −1 . Label as noise
25: end if
26: w = first(T )
27: cw = q
28: T = T \ w
29: for all w ∈ T do
30: zw = 1 . Mark point as processed
31: if d(w, µq) < ε then
32: cw = q
33: Z = {w ∈ T | zw = 1}
34: T = T \ Z . Remove all processed points
35: end if
36: end for
37: else . Temporary buffer not full
38: T = T ∪ {yi} . Add point to temporary buffer
39: i = i+ 1
40: end if
41: end if
42: end while
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Figure 5.6: Illustrations of the concepts of ε-neighborhood (left) and
density-joinability (right).

long enough, the cluster is kept; otherwise the cluster is discarded and
the points are labeled as noise (lines 16 - 25). If the cluster is kept, the
algorithm checks whether the cluster can be merged with an existing cluster
(lines 17 - 21). Two clusters are merged if the distance between the cluster
means is no greater than ε/3. After the merge step the algorithm initializes
a new cluster using the first point in the temporary buffer (lines 26 and
27). The point is removed from the temporary buffer (line 28) and the
remaining points are processed as if they were new location measurements.
Accordingly, the points are added to the newly created cluster, if they are
close enough to the cluster mean, and otherwise the points remain in the
temporary buffer (lines 31 - 35). When a point from the temporary buffer is
added to the cluster, points that precede it are removed from the temporary
buffer (lines 33 and 34).

5.2.2 Density-Based Algorithms

Density-based algorithms utilize topological properties between points to
cluster data. The idea is to detect areas within which points are closer
together than outside of it, i.e., where the density of points is high. Before
discussing the use of density-based clustering in place identification, we
define some basic concepts related to density-based clustering.

The central notion in density-based clustering is the ε-neighborhood of
a point. Let x denote an arbitrary point. The ε-neighborhood of point x
is defined as Nε(x) = {z | d(x, z) < ε}, i.e., as the set of points that are
within distance ε from x. The actual shape of the neighborhood depends
on the used distance function. The most common choice is the Euclidean
distance, which leads to circular clusters. The notion of ε-neighborhood is
illustrated on the left-hand side of Fig. 5.6.
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Density-based clustering requires that the neighborhood of a point is
dense. This requirement is encoded into a second parameter, MinPts,
which specifies how many points the ε-neighborhood of a point must contain
for it to be considered dense. If the neighborhood of a point is not dense,
the point is labeled as noise.

The final notion we consider is density joinability. Points p and q are
density joinable, if there exists a point x such that x ∈ Nε(p) and x ∈ Nε(q),
i.e., x belongs to the ε-neighborhood of both p and q. If two points are
density joinable, the clusters to which they belong to can be merged [121].
This is illustrated on the right-hand side of Fig. 5.6. Clusters A and B
share a common point and hence they can be merged, whereas cluster C
cannot be merged with cluster A or B.

Density-based algorithms can be seen as a generalization of radius-based
algorithms. The ε-parameter serves a similar function as the radius parame-
ter andMinPts inherently encodes the requirement that the user must have
stayed long enough within an area. The main difference between the two
classes of algorithms is in the way the places are represented. Radius-based
algorithms typically use circles or ellipsoids to represent clusters whereas
density-based clustering allows arbitrary shapes. This also influences the
way clusters are merged: radius-based clustering merges clusters based on
distance properties whereas density-based clustering relies on topological
connectivity properties. As we show in Chapter 6, density-based algo-
rithms are often superior to radius-based algorithms. In the following we
describe two density-based algorithms, DBScan and DJCluster, which have
been utilized for place identification. Also the spectral clustering algorithm
described in Article III belongs to the class of density-based algorithms.

DBScan

The Density-Based Spatial Clustering of Applications with Noise (DB-
Scan) [39] is probably the best known density-based clustering algorithm.
The DBScan algorithm is described in Alg. 3. The algorithm considers
each point in turn (line 3). If the current point is unlabeled (line 4), the
algorithm attempts to create a cluster around the point. The first step in
the expansion is to calculate the ε-neighborhood of the current point (line
5). If the neighborhood is not dense, the point is labeled as noise (lines 6
and 7). Otherwise a new cluster is created and the current point and all
points in its neighborhood are added to the cluster (line 9). The algorithm
attempts to recursively expand the new cluster by considering the points
in the neighborhood of the current point as seed points (line 11). For each
seed point, the algorithm forms the ε-neighborhood (line 12). If the neigh-
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Algorithm 3 (c1, . . . , cn) = DBScan(y, ε, MinPts)

1: q = 1 . Initialize cluster counter
2: ∀i = 1, . . . , n : ci = 0 . Initialize cluster indicators
3: for i = 1, . . . , n do
4: if ci = 0 then
5: T = Nε(yi). . Form the ε-neighborhood of the point
6: if #T < MinPts then
7: ci = −1 . Label the point as noise
8: else
9: ∀x ∈ T : cx = q . Create a cluster

10: while T 6= ∅ do
11: x = first(T ) . Select the first item in T
12: Q = Nε(x) . Form the ε-neighborhood of x
13: if #Q ≥MinPts then
14: for all w ∈ Q do
15: if cw = 0 then
16: T = T

⋃
{w} . Add unlabeled points to T

17: end if
18: cw = q . Merge clusters
19: end for
20: end if
21: T = T \ {x} . Remove x
22: end while
23: q = q + 1 . Update cluster counter
24: end if
25: end if
26: end for

borhood is dense, the points in the neighborhood are added to the current
cluster and all previously unlabeled points are added to the seed set (lines
13 - 20). This process is continued as long as the cluster can be expanded.

The values of the parameters can be either fixed beforehand or selected
according to some heuristic. Ester et al. [39] use a heuristic where the
MinPts parameter is set to a predefined value k and the distance from
each point to its kth neighbor is calculated. The value of ε is then selected
using the scree criterion (see Sec. 5.1.3). After experimenting with different
values, Ester et al. use k = 4 in their experiments.

The basic DBScan algorithm suffers from some limitations. First, form-
ing the ε-neighborhood of a point can be slow. Unless suitable indexing
schemes are used, the time complexity of a single ε-neighborhood query is
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O(n). The situation can be improved using a spatial index. For example,
using an R∗-tree [13] reduces the complexity to O(log n). In practice the
complexity of neighborhood queries is an issue only if GPS data is sampled
continually. A more severe limitation is related to the memory requirements
of the algorithm. The recursive nature of the cluster expansion (lines 10 -
22 in Alg. 3) can require large amounts of memory and significantly slow
down the algorithm [121]. Finally, the performance of the algorithm can
be sensitive to the values of the parameters ε and MinPts [119].

Adams et al. [1] have applied the DBScan algorithm for place identifi-
cation. To overcome the limitations in cluster expansion, Adams et al. use
velocity filtering to prune the data before clustering; see Sec. 5.1.2. The
velocity threshold for filtering is set to the median of the user’s velocity3.
In more recent work, Adams et al. [2] use an incremental variant of the
DBScan algorithm, proposed in [38]. The incremental DBScan limits the
cluster expansion operations to a small subset of the data, which often leads
to significant performance improvements. Adams et al. fixed the values of
the parameters beforehand: ε was set to approximately 60 meters4 and
MinPts was set to correspond to 5 minutes of data. After experimenting
with different values, we used ε = 150 meters in our experiments.

DJCluster

Zhou et al. [120, 121] have developed a modified DBScan algorithm, Density-
and-Join based clustering (DJCluster), for place identification; see Alg. 4.
The main difference to DBScan relates to the operations that are performed
for an individual point. If the ε-neighborhood of a point contains enough
points, instead of expanding the ε-neighborhood, DJCluster compares the
ε-neighborhood with existing clusters (lines 9 - 15) and merges the neighbor-
hood with all density joinable clusters (lines 10 - 12). This can significantly
reduce the memory requirements of the clustering and hence the algorithm
is better suited to mobile devices than the standard form of DBScan.

The original version of DJCluster [120] applied velocity pruning to re-
duce the amount of data that is processed. In their more recent work the
filtering was not applied to the data [121]. For this reason we did not use

3Originally Adams et al. [1] used the mean velocity during a day as the velocity
threshold and in their more recent work [2] two different velocity thresholds are used
to prune out points so that the resulting data sets does not contain points that exceed
slow walking speed. We use the median velocity as it gave slightly better results for our
datasets.

4The value of ε was specified in degrees. When converted to meters, it corresponds to
approximately 60 meters.
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Algorithm 4 (c1, . . . , cn) = DJCluster(y, ε, MinPts)

1: q = 1 . Initialize cluster counter
2: ∀i = 1, . . . , n : ci = 0 . Initialize cluster indicators
3: for i = 1, . . . , n do
4: if ci = 0 then
5: Q = Nε(yi) . Form the ε-neighborhood of a point
6: if #Q < MinPts then
7: ci = −1 . Label as noise
8: else . Check if we can merge clusters
9: for j = 1, . . . , q − 1 do

10: if Q density joinable with cluster j then
11: ∀w s.t. cw = j : cw = q . Merge clusters
12: end if
13: ∀x ∈ Q : cx = q . Create a cluster
14: q = q + 1
15: end for
16: end if
17: end if
18: end for

velocity pruning with DJCluster in the experiments. After experiment-
ing with various values, we set ε = 50 meters and determine the value of
MinPts using the scree criterion (see Sec. 5.1.3).

5.2.3 Probabilistic Clustering

Probabilistic clustering assumes the measurements are a sample from a set
of random variables. Each random variable j corresponds to a cluster which
can be represented by some (parametric) density function fj(θj), where θj
denotes the parameters of the density function. The parameters of the
density functions are assumed unknown and clustering is considered as an
inference problem where the goal is to estimate the parameters θj from
data [15, 18]. A common choice is to assume that the density functions
are Gaussian, in which case the parameters θj correspond to the mean
vector and covariance matrix of the underlying Gaussian. In this section we
describe the agglomerative Gaussian clustering proposed by Aipperspach
et al. [3]. Also our Dirichlet process clustering, described in Sec. 5.3, and
Article IV belongs to the class of probabilistic clustering algorithms.



5.2 Survey of Existing Algorithms 45

Algorithm 5 (c1, . . . , cn) = AgglomerativeGMM(y, λ1, τ , λ2)

1: ∀i = 1, . . . , n : di = (yi,
∑

q=1,...,i tq) . Initialize data
2: ∀i = 1, . . . , n : ci = i . Assign each point to its own cluster
3: for i = 1, . . . , n do
4: for all k do . Merge adjacent clusters
5: Ti = {dw : cw = i}, Tk = {dw : cw = k}
6: µi = mean(Ti), µk = mean(Tk)
7: Σi = covariance(Ti), Σk = covariance(Tk)
8: KL = JointKLDivergence(µi, µk, Σi, Σk)
9: if KL < λ1 then

10: ∀w s.t. cw = k : cw = i
11: end if
12: end for
13: if

∑
w:cw=i tw < τ then . Check if duration of stay long enough

14: ∀w s.t. cw = i : cw = 0
15: else
16: for all k do . Merge spatially adjacent visits
17: Ti = {(yw) : cw = i}, Tk = {(yw) : cw = k}
18: µi = mean(Ti), µk = mean(Tk)
19: Σi = covariance(Ti), Σk = covariance(Tk)
20: KL = JointKLDivergence(µi, µk, Σi, Σk)
21: if KL < λ2 then
22: ∀w s.t. cw = k : cw = i
23: end if
24: end for
25: end if
26: end for

Agglomerative Gaussian clustering

Aipperspach et al. [3] have developed an agglomerative probabilistic clus-
tering algorithm, which can be interpreted essentially as a probabilistic
variant of radius-based algorithms. Originally the algorithm was developed
for detecting places from high precision location measurements within a
home. The algorithm represents candidate places using three-dimensional
Gaussian distributions. Two of the dimensions correspond to position and
one to time. The algorithm is described in Alg. 5.

Initially the algorithm assigns each point to its own cluster (line 2).
Next the algorithm merges clusters that are spatially and temporally ad-
jacent (lines 4 - 12). As the merge criterion the algorithm considers a
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threshold on the joint Kullback-Leibler divergence between the Gaussian
distributions of the clusters (Eq. 5.2 in Sec. 5.1.4). Similarly to radius-
based algorithms, the next step is to drop clusters that do not explain
a sufficiently long duration of the data (line 13). The remaining clusters
correspond to continuous stays within a sufficiently small area. The final
step in the algorithm merges clusters that correspond to visits to the same
place (lines 16 - 24). Also the second merge operation is based on the joint
Kullback-Leibler divergence. However, whereas the first merge step con-
siders both position and time information, the second merge step considers
only position information.

The algorithm relies on three parameters, two merge thresholds λ1 and
λ2, and one duration threshold τ . The data in our setting differs from the
original use of the algorithm and thus the same parameter values cannot be
used directly. Our data is collected periodically and the distances between
measurements in our data are much larger than within a home. After
experimenting with different values, we set the duration threshold τ to 10
minutes. As the merge thresholds we used λ1 = 10 and λ2 = 10.

5.2.4 Grid Based Clustering

Grid-based algorithms are closely related to radius-based clustering ap-
proaches. Though, instead of comparing successive measurements, grid-
based algorithms distribute measurements to discrete patches and compare
adjacent patches. When a street map is available, the patches usually cor-
respond to continuous street segments. Otherwise rectangular grid cells are
used. The place identification phase then measures the time the user has
spent at each patch and, if the time exceeds a predefined threshold, the
patch is considered a candidate place. Finally, spatial clustering is used to
merge recurring visits and places in adjacent patches.

Opportunity Knocks is a transportation assistance system that has been
targeted at people with cognitive disabilities [91]. Opportunity Knocks uses
a hierarchical dynamic Bayesian network (see, e.g., [82]) for learning and
reasoning about the user’s transportation routines, to predict likely desti-
nations and to recognize anomalous behavior. The underlying model con-
siders the world as a graph where edges represent road sections and nodes
correspond to intersections [75, 90]. Opportunity Knocks also integrates a
grid-based clustering approach, which follows the generic pattern described
above, i.e., a time threshold is used to determine significant nodes and
clustering is used to merge multiple visits and nearby nodes [75, 91].

Liao et al. [74] use conditional random fields (see, e.g., [68]) for simul-
taneous place and activity detection. The first step of the algorithm is



5.2 Survey of Existing Algorithms 47

to associate location measurements with patches. This is done using a
conditional random field that considers consistency and smoothness of the
mapping. Consistency ensures that successive measurements are mapped
to patches that are next to each other, whereas smoothness ensures users
do not frequently switch between different streets. The next step in the
algorithm is to associate activities with patches. Two types of activities
are considered: navigation activities (commuting, walking, driving a car)
and other activities. The activity detection relies on time and speed infor-
mation and on information extracted from geographic databases. Patches
where the user performs other activities than navigation are marked as
places and, finally, spatial clustering is used to merge multiple visits and
nearby patches.

In our work, we have experimented with grid-based algorithms within
the Context Watcher application [62] and Article III. In practice the grid-
based algorithms suffer from the same problems as radius-based algorithms,
i.e., the performance is sensitive to the time thresholds and the algorithms
easily make mistakes, e.g., at traffic lights and at tram stops; see Sec. 6.2.
Though, the results of Liao et al. [74] indicate that considering also activity
information can be used to overcome some of these weaknesses.

5.2.5 Radio Beacon Algorithms

Instead of operating on coordinates, radio beacon algorithms use informa-
tion about the radio environment to identify meaningful places. In the
simplest case the beacons correspond to the identifier of the current GSM
base station. For example, Laasonen et al. [66] recursively merge GSM cells
into clusters and detect places by considering the number of visits and the
time the user stays in a cluster. The algorithm of Laasonen et al. has also
been integrated into the ContextPhone platform; see Sec. 4.1.1. Meneses
and Moriera [80] use the frequency of GSM transitions to filter the mea-
surements. The underlying intuition is that, when the user is mobile, cell
transitions occur at a more frequent rate than when the user is stationary.
Each stationary period, i.e., period between successive mobility detections,
is represented as a fingerprint. The fingerprints contain the cell identifiers
that were seen during the stationary period and the relative percentage of
time that the phone was connected to each cell. Finally, a clustering step
is used to merge stationary periods with similar fingerprints. The results
indicate that the use of cell identifier fingerprints and corresponding tran-
sition patterns enables detecting places that are smaller than the diameter
of the corresponding GSM cells [80].

In Article III, we describe a heuristic graph clustering algorithm that
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operates on GSM cell identifiers that are augmented with GPS coordinates.
The algorithm calculates the mean of the location measurements collected
from a single GSM cell and it merges multiple cells together if the cor-
responding means are within a predefined radius. Due to the large size
of GSM cells, the clusters that the algorithm recognizes are often large.
Moreover, the size of the clusters tends to grow over time as more cells are
merged together. Article III also describes an algorithm that uses GSM
cell transition patterns to merge GSM cells into clusters. More specifically,
let A and B denote two GSM cells, the algorithm compares the transi-
tion probabilities P (A,B) and P (B,A) against a predefined threshold and
merges the two cells into a cluster if both probabilities exceed the threshold.
This algorithm suffers from the same problems as the other GSM identifier
based approaches, i.e., that the size of the clusters can be relative large
due to large GSM cell size. In addition, the algorithm is sensitive to the
threshold value.

The BeaconPrint [52] algorithm continually gathers information about
GSM and WiFi beacons and uses this information to identify places. The
basic idea is to fix a time window and to assume the user is in a place if
the scan remains sufficiently stable for the duration of the time window.
Stability is controlled by a certainty parameter that ensures the fraction f
of scans with the same set of visible beacons is large enough over the time
window. Each place is represented as a fingerprint that contains a so-called
response rate histogram (see [69]) of beacons that were visible in at least f
percent of the scans over the time window. Finally, fingerprints that share
at least 68% (one standard deviation of a Normal distribution) of beacon
identifiers are merged together. Once the system has been deployed, the
same heuristic is used to recognize when the user is visiting the place.

5.3 Dirichlet Process Clustering

The Dirichlet Process Clustering (DPCluster), described in Article IV, is a
probabilistic place identification algorithm that is based on Dirichlet pro-
cess mixture models [4, 42, 84, 96], which are a special case of finite mix-
ture models [78]. The algoritm can automatically learn the correct number
of places from data and it offers good generalization performance against
spatio-temporal variations. In the following we first discuss the underlying
statistical model, after which we discuss how the model can be applied in
practice. We end the section with a discussion about performance issues.
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Symbol Description

yi Coordinates of an individual data point
y The vector (y1, . . . , yn) of data points
ci Cluster indicator for data point i
tj The total time the user has stayed at cluster j
c Vector (c1, . . . , ck) of cluster indicators
k The number of active clusters
n Number of data points
y Sample mean
Σ Sample precision
µj The mean vector of cluster j
Sj The precision matrix of cluster j
λ Mean vector for the prior on cluster means µj
R Precision matrix for the prior on cluster means µj
β Degrees of freedom for the prior on cluster precision

matrices Sj
W Inverse scaling matrix for the prior on cluster preci-

sion matrices Sj
α Concentration parameter of the Dirichlet process

prior

Table 5.1: A summary of the notation that is used.

5.3.1 Statistical Model

The DPCluster algorithm is based on the statistical model shown in Fig. 5.7.
The notation we use is summarized in Table 5.1. In the model, each cluster
j is modeled as a multivariate Normal distribution with unknown mean µj
and precision5 matrix Sj . The distribution of a single data point yi is thus
given by

yi|ci = j, µj , Sj ∼ N
(
µj , S

−1
j

)
. (5.3)

To infer the mean vectors and precision matrices from data, we assign
prior distributions for them. We use conjugate priors since they provide
a good balance between computational simplicity and clustering perfor-
mance. The conjugate prior for the multivariate Normal distribution is to
assign a Normal distribution on the mean vector and a Wishart distribution

5Inverse covariance
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Figure 5.7: The statistical model underlying the Dirichlet process place
identification algorithm.

on the precision matrix; see, e.g., [45]. Accordingly, we have

µj ∼ N
(
λ,R−1

)
(5.4)

Sj ∼ Wi

(
2β,

1

2
W−1

)
, (5.5)

where λ, β,R and W are hyperparameters. Following Rasmussen [96], we
use a hierarchical model and assign priors to all hyperparameters. If we
would want clusters that are on average of specific size, we could fix the
values of β and W beforehand. This can be done, for example, by assigning
W to be the sample covariance and setting β so that the product βW−1

corresponds to the desired cluster size6.

Let y denote the sample mean and Σ the sample precision. We assign
λ a Normal distribution whose mean equals the sample mean and whose
covariance matrix corresponds to the sample covariance, i.e.,

λ ∼ N
(
y,Σ−1

)
. (5.6)

6The product βW−1 corresponds to the expectation of the Wishart distribution on
the cluster precision matrices.
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The distribution of λ has full support over the set of data points. This
implies that samples from the prior on cluster means µj also have full
support over the data points. The prior also implies that values of µj that
are near the sample mean are most likely. A potential problem with this
prior is that it puts more weight on the center (sample mean) of the data
points, but this does not necessarily correspond to a place. For example,
in large cities people often commute for a long period of time to get to
work. In this case, the sample mean corresponds to the midpoint of the
travel route and samples from the prior on cluster means rarely fall near
the actual clusters (home or work). Thus, the algorithm can take longer
time to convergence. An alternative is to assign λ a uniform distribution
over the set of data points.

The matrix R specifies the precision matrix for the cluster means. In-
tuitively, we would want the expectation of the distribution on R to cor-
respond to the sample precision Σ as in this case the values for µj are on
average drawn from a distribution that is specified by the sufficient statis-
tics of the data. However, we also have to ensure that the resulting Wishart
distribution is well defined7. These goals can be achieved by assigning the
following distribution on R:

R ∼ Wi

(
2,

1

2
Σ

)
. (5.7)

The hyperparameters for the prior on precision matrices are more com-
plicated. We start from the variable β, which defines the degrees of freedom
for the Wishart distribution on Sj . We do not want to limit the size of clus-
ters beforehand and hence we need to assign a vague prior on β. Again we
need to ensure that the Wishart distribution over Sj remains well defined.
These two goals can be achieved by assigning β a flat, continuous distri-
bution over the interval [1,∞). In order to achieve this, we consider the
variable (β − 1)−1 and assign a Gamma prior for it:

(β − 1)−1 ∼ G
(

1

2
, 2

)
. (5.8)

Samples for β − 1 follow a flat inverse-Gamma distribution and they are
within the interval (0,∞). Thus the distribution of β is as desired.

For the hyperparameter W , i.e., the inverse scale matrix of the prior on
Sj , we assign the following Wishart prior:

W ∼ Wi

(
2,

1

2
Σ−1

)
. (5.9)

7A Wishart distribution Wi(b,W ) is well defined whenever the p × p matrix W is
positive definite and b ≥ p holds for the degrees of freedom parameter b.
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The expectation of W equals the sample covariance and, since the expec-
tation of Sj equals βW−1, samples from Sj are on average scaled variants
of the sample precision matrix.

The cluster indicators ci are assigned a Dirichlet process prior. Follow-
ing Neal [84], the prior distribution of ci can be written in the following
form:

ci = j|c−i ∼
n−i,j

n− 1 + α

ci 6= q|c−i ∼
α

n− 1 + α
(∀q ∈ {1, . . . , k}) .

(5.10)

Here n−i,j denotes the number of data points that belong to cluster j
when the data point i is ignored. The variable α is the concentration
parameter of the Dirichlet process prior that, together with the priors
on µj and Sj , governs the rate at which new clusters are created and
c−i is a vector that contains all other cluster indicators except ci, i.e.,
c−i = (c1, . . . , ci−1, ci+1, . . . , cn). The support of the prior on ci is the
countably infinite set {1, 2, . . . , k, . . .} where k denotes the number of clus-
ters that have currently data points associated with them. For each of the
represented clusters j ∈ {1, . . . , k}, the prior assigns a probability mass of
n−i,j/(n − 1 + α). A probability mass of α/(n − 1 + α) is assigned for
all of the unrepresented clusters combined. Thus, although the number of
clusters is potentially infinite, only some of them are represented at a given
time and we do not need to make a distinction between the clusters that
are unrepresented.

To finalize our model specification, we need to assign a prior on the
concentration parameter α. We assign a vague inverse-Gamma prior for
this purpose so that

α−1 ∼ G
(

1

2
, 2

)
. (5.11)

This prior results in a flat distribution that has support over (0,∞).

5.3.2 The Dirichlet Process Algorithm

The actual place identification consists of two steps. In the first phase we
estimate the parameters of the statistical model from data (i.e., perform
clustering) and in the second phase we prune the clusters. A common way
to estimate the parameters is to use Markov Chain Monte Carlo (MCMC)
techniques [45, 47]. In our case we use Gibbs sampling (see, e.g., [47, 84]),
which is an MCMC technique that sequentially updates each parameter
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in turn. The updates are sampled from probability distributions that are
conditioned on the values of other parameters. Thus, when sampling a new
parameter value, the values of other parameters are assumed fixed. The
sampling process and the required conditional distributions are described
in more detail in Article IV.

As the first step of the post-processing phase we re-estimate the cluster
indicators. While the parameter estimation phase provides estimates also
for the cluster indicators, some assignments necessarily have a small prob-
ability due to the model’s tendency to favour a small number of compact
clusters. We take advantage of this property to identify non-meaningful
areas and to label some measurements as noise. To re-estimate the cluster
indicators, for each data point yi we find the cluster q which has the largest
likelihood of generating the point, i.e.,

q = arg max
j=1,...,k

p(yi|θj , S−1j ). (5.12)

If this probability exceeds 0.01, we assign the point to cluster q and other-
wise we label the point as noise. Typically the likelihood values are either
extremely small (order of magnitude of 10−32) or extremely large, which
means the re-estimation phase is not sensitive to the used threshold value.
We also tested this empirically by re-creating the evaluation results with
different parameter values. Larger threshold values slightly improve the
results, and thus the threshold value we use in the experiments is conserva-
tive. Once the algorithm is deployed within a real world system, the same
procedure can be used to recognize visits to a place.

After the cluster indicators have been re-estimated, we apply temporal
and spatial pruning to the results. The temporal pruning drops all clusters
where the user stayed less than five minutes, whereas the spatial pruning
uses an upper threshold on the maximum cluster variance of a cluster. The
threshold for the cluster variance is determined automatically using the
constrained clustering procedure described in the spatial pruning part of
Sec. 5.1.4.

5.3.3 Performance

The performance of the Dirichlet process algorithm depends, among other
things, on the number of points and on the spatial distribution of data.
When the data is relatively evenly distributed, the cluster indicators mix
properly and the algorithm converges rapidly. However, when the data is
spread out, i.e., it has long and narrow commuting traces, the mixing is
much slower. The mixing is also slow when there is a large number of
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dense areas within a relatively small area. In general, for a given number
of clusters, the cluster parameters converge in a few hundred (100 - 500)
iterations, but the cluster indicators require 1000 to 10000 iterations to
converge. With our current implementation, running 100 iteration for 1000
data points takes around 5 minutes on a desktop computer. The develop-
ment of more efficient inference algorithms for Dirichlet process models is an
active research area and many improvements have been recently suggested
in the literature [29, 57].



Chapter 6

Comparison of Algorithms

Existing evaluations of place identification algorithms tend to focus on
datasets that have been collected only by few participants [52] or that
exhibit little spatial and temporal variation [7, 58, 121]. Moreover, these
evaluations seldom compare more than two or three algorithms. This chap-
ter presents an evaluation of the DPCluster algorithm using twelve datasets
that have been collected at different locations and over different periods of
time. The dataset contain a wide variety of different activities including
tourism, business visits as well as everyday activities of people living in
the location. We also compare the DPCluster algorithm against five other
place identification algorithms. The algorithm of Ashbrook and Starner
and the iterative radius-based clustering algorithm of Kang et al. were se-
lected as representative examples of radius-based algorithms; see Sec. 5.2.1.
Density-based algorithms are represented by the DBScan and the DJCluster
algorithms; see Sec. 5.2.2. Finally, we consider the agglomerative Gaussian
clustering as an example of probabilistic algorithms; see Sec. 5.2.3. As grid-
based algorithms (see Sec. 5.2.4) are practically identical to radius-based
algorithms when no additional information is considered, and as radio-
beacon algorithms (see Sec. 5.2.5) require additional data, these classes of
algorithms were excluded from the comparison.

6.1 Experiment Setup

6.1.1 Description of Data Sets

The data that was used in the evaluation was collected using BeTelGeuse
(see Sec. 4.2) and an external Bluetooth GPS receiver. Five out of the
twelve datasets were collected in Helsinki, Finland by different individuals
and over different periods of time. For these datasets, the GPS receiver

55
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Dataset Measurements Duration Rate Participant

Buenos Aires 378 12h 60s A
Canberra 1500 2d 8h 50min 60s A
Calcutta 2042 2d 16h 55min 60s B
Gran Canaria 465 8h 30min 60s C
Innsbruck 350 23h 15min 60s A
Petra 743 15h 55min 60s A
Tokyo 1279 4d 1h 60s A
Helsinki 1 676 1d 1h 20min 20s D
Helsinki 2 914 3d 7h 10min 20s E
Helsinki 3 1241 6d 20h 20s F
Helsinki 4 10317 14d 19h 55min 20s G
Helsinki 5 16591 12d 3h 40min 20s H

TOTAL: 36496 ≈ 49d 20h

Table 6.1: Summary of the datasets that were used in the evaluation.

was sampled at 20 second intervals. The remaining seven datasets were
collected from different locations and over different periods of time. The
sampling rate for these datasets was 60 seconds. The location measure-
ments were processed before analysis using the the operations described in
Sec. 5.1.1. Table 6.1 presents summary statistics for the datasets. Note
that the summaries have been calculated after the data preparation phase
and the original number of measurements is significantly higher. In the
following we give a brief characterization of each dataset:

• Buenos Aires: Tourism-oriented traces collected from three short
visits to the city of Buenos Aires, Argentina during February 2009.
The places contain, e.g., hotels, the ferry and bus stations and main
tourist sights in Buenos Aires.

• Canberra: Dataset containing everyday and tourism-oriented traces
collected intermittently over a period of three months from December
2007 to February 2008. The places in the dataset contain, e.g., home,
workplace and the main museums in Canberra.

• Calcutta: Dataset containing everyday activities collected during
two weeks in December 2008. The places in the dataset contain, e.g.,
home, two restaurants and homes of several relatives and friends.

• Gran Canaria: Tourism-oriented dataset collected during a single
day in February 2008. The places correspond to the main sights on
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the island.

• Innsbruck: Dataset containing a mixture of tourism and business-
related location measurements collected during Ubicomp 2007 in Inns-
bruck, Austria. The places contain, e.g., a hotel, the location of Ubi-
comp banquet and tourist sights within the city. As no data was
collected during the conference sessions, the conference venue is not
part of the places.

• Petra: Tourism-oriented traces collected from the archaeological site
of Petra, Jordan, in October 2007. The places contain, e.g., a hotel
and the main sights within the Petra area.

• Tokyo: Dataset collected in May 2009 during a business trip to
Tokyo, Japan. The places in the dataset contain the hotel where the
person was staying and different universities that the person visited.

• Helsinki 1: Dataset containing traces collected by a visitor to our
university during February 2009. The places contain, e.g., the flat
where the person was staying, the university and restaurants.

• Helsinki 2-5: Datasets containing everyday activities collected over
a three month period from July 2008 to September 2008. The places
in these datasets contain, e.g., homes, workplaces, shops, homes of
friends and relatives, libraries and kindergartens. Each Helsinki dataset
was collected by a different individual.

6.1.2 Evaluation Procedure

In the evaluation phase we applied the place identification algorithms on
the datasets and compared the resulting clusters against information about
the actual locations of places. We represent places as individual points and
clusters as ellipsoids. As most place identification algorithms merely esti-
mate the cluster indicators, i.e., which points correspond to a place, but
not the cluster parameters, we needed to estimate the ellipsoid parameters
from the points that are assigned to each cluster. The error ellipses that
are estimated from the data also cover all the points. To this end, the
ellipsoids of the DPCluster algorithm are centered at the estimated cluster
means, whereas the ellipsoids of the other algorithms are centered at the
geographic mean of the data points assigned to the cluster. The principal
axes of the ellipsoids are determined from cluster covariances so that the
resulting ellipsoids correspond to 95% error ellipses; see, e.g., [103]. With
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the DPCluster algorithm we use the estimated cluster covariances to cal-
culate the error ellipses, and we use the sample covariance of the points
assigned to a cluster with the other algorithms.

To obtain information about the actual locations of places, we visualized
the datasets using Google Earth and asked the person who had collected
the data to mark the places in the data. We also showed the resulting
clusters to the participant who was allowed to augment the place annota-
tions by creating spurious places that correspond to (i) clusters that form
around a meaningful place and could be merged with the place; (ii) places
that the participant did not initially mark but that she recognizes (e.g.,
places that are visited infrequently or for a short period of time). Finally,
we compare the clustering results against the place labels and classify the
detected clusters into the following categories:

• Correct (C): The cluster corresponds to an actual place.

• Spurious (S): The cluster corresponds to a place that the participant
has labeled as spurious.

• Failed (F): The cluster is a mistake and does not correspond to any
location where the participant has intentionally spent time.

• Missing (M): Places that were not detected even though the par-
ticipant expected the algorithm to be able to detect them from data.
A place is considered missing if it was not detected and it is not
spurious.

In the comparison phase we match a cluster with a place if it satisfies one of
the following criteria: (i) the mean of the cluster is within 150 meters of the
place; (ii) the closest cluster point is within 150 meters of the place and the
cluster mean is within 300 meters of the place; (iii) the place is inside the
cluster and within 300 meters of the cluster mean. As we represent places
as simple dots, the heuristics are used to ensure that small discrepancies
between place locations and clusters do not influence the results. In reality
places seldom correspond to simple dots, but tend to correspond to more
complex geometries [123]. The heuristics also ensure that large clusters
are not considered places unless they are actually centered near the actual
place.

6.1.3 Metrics

We evaluate the algorithms based on accuracy and completeness of the place
identification. We use precision, i.e., the proportion of correctly identified
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C S F M Precision Recall F1-Score

DPCluster 57 22 28 27 0.74 0.68 0.71
DJCluster 51 24 19 33 0.80 0.61 0.69
Kang et al.a 64 40 80 20 0.57 0.76 0.65
A & Sb 62 31 68 22 0.58 0.74 0.65
DBScan 67 40 92 17 0.54 0.80 0.64
AGCc 53 20 44 31 0.62 0.63 0.63

aIterative radius-based clustering of Kang et al.
bAlgorithm of Ashbrook and Starner
cAgglomerative Gaussian clustering

Table 6.2: The results of the study sorted by F1-score.

places, as a measure of clustering accuracy, and we use recall, i.e., the
fraction of places that the algorithm is able to identify, as a measure of
clustering completeness [98]. The precision and recall values are typically
closely related so that an increase in precision often causes a decrease in
recall and vice versa. For this reason we consider the F1-score, a combined
measure (harmonic mean) of precision and recall, as our main evaluation
criterion. The precision, recall and F1-score were calculated as follows:

Precision =
Correct + Spurious

Correct + Failed + Spurious
(6.1)

Recall =
Correct

Correct + Missing
(6.2)

F1-score =
2(Precision · Recall)

Precision + Recall
(6.3)

The spurious clusters are by definition correctly identified places. For this
reason we consider the spurious clusters while calculating precision values.
However, since the participant does not expect the algorithms to detect
spurious clusters, we do not consider them while calculating recall values.

6.2 Results

Table 6.2 summarizes the results of the evaluation. The DPCluster al-
gorithm has the highest F1-score and it is the best performing algorithm
on five of the twelve datasets. In total, DPCluster is also among the top
three algorithms for nine of the datasets. The second best performing algo-
rithm, DJCluster, has the highest precision but it suffers from poor recall.
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DJCluster is best on three datasets and it is among the three best algo-
rithms for a total of seven datasets. The remaining algorithms, i.e., the
iterative radius-based clustering, the algorithm of Ashbrook and Starner,
the DBScan algorithm and the agglomerative Gaussian clustering perform
practically equally.

The results indicate that most algorithms have a significant trade-off
between precision and recall. For example, DJCluster has the highest pre-
cision but second worst recall. Another example is the DBScan algorithm,
which has the highest recall but poorest precision. Moreover, DBScan
identifies more failed clusters than any other algorithm. Another observa-
tion from the results is that the optimal parameter values seem to depend
on the dataset. Temporal thresholds are more resistant to variations in
the datasets than the spatial thresholds. The best performing algorithms,
DPCluster and DJCluster, learn the parameter values during the cluster-
ing phase, whereas most of the other algorithms rely on fixed parameter
thresholds, or they would require manual tuning of parameters for each
dataset. As our goal was to evaluate the generalization performance of the
algorithms, we used fixed parameter values for all datasets.

We also examined whether algorithms that rely on fixed parameter val-
ues would perform better on certain types of datasets (e.g., everyday life
or tourism oriented), but this was not the case. For example, the DBScan
algorithm was the best performing algorithm on the Helsinki 5 dataset,
but it had the worst performance on the Helsinki 4 dataset. Both of these
datasets have been collected in the same spatial area and from everyday
life situations.

We also separately evaluated the influence of spurious clusters. Con-
sidering spurious clusters as mistakes, or ignoring them while calculating
precision values, slightly influences the precision values, but the differences
between the algorithms remain practically the same.

6.3 Discussion

The evaluation also indicated various shortcomings in existing place identi-
fication algorithms. This section discusses some of these shortcomings and
suggests possible ways to improve the performance of place identification
algorithms.

6.3.1 Commuting Stops, Traffic Lights, Traffic Jams etc.

Most place identification algorithms rely exclusively on temporal criteria to
determine whether detected clusters are meaningful or not. The temporal
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(a) (b)

Figure 6.1: Many place identification algorithms erroneously recognize non-
meaningful stops such as commuting stops or traffic lights as places. The
pins represent cluster means, the ellipses correspond to error ellipses and
the toruses represent places.

criteria can be encoded as a minimum threshold on the number of visits to a
place or as a minimum threshold on the time the participant has stayed at a
location. Relying only on temporal information can cause the algorithm to
detect non-meaningful clusters that correspond, e.g., to tram stops, traffic
jams or traffic lights. For example, Fig. 6.1(a) illustrates how the algorithm
of Ashbrook and Starner detects non-meaningful places along a tram route
from the Helsinki 2 dataset. The two non-meaningful places correspond
to traffic lights that are near a tram stop. Velocity pruning can further
magnify this problem as it removes information about the density of points
around a cluster. This is illustrated in Fig. 6.1(b), which shows how the
DBScan algorithm detects practically all tram stops along the route as well
as a traffic light.

The DPCluster algorithm is relatively robust against this effect as most
of the non-meaningful stops are pruned out in the spatial pruning phase.
During the clustering phase the algorithm creates a new cluster for each
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(a) (b)

Figure 6.2: Incorrect parameter values may lead to situations where places
that are nearby are merged together or where the algorithm creates a large
number of non-meaningful clusters around the actual places. The pins
represent cluster means, the ellipses correspond to error ellipses and the
toruses represent places.

non-meaningful stop. However, since the density around the intermediate
points is not high enough for creating another new cluster, these points will
be assigned to one of the clusters corresponding to a stop. This increases
the cluster variance and makes it possible to prune out the cluster in the
post-processing phase. Thus our results suggest that utilizing information
about the spatial density of points around the place can help detecting
and removing non-meaningful clusters. Note that this is in contrast with
density-based clustering, which looks at the density of points within a clus-
ter, not around it.

6.3.2 Place Granularity

When multiple places are near each other, place identification algorithms
may fail to distinguish the individual places. This problem is illustrated in
Fig. 6.2(a), which shows how the agglomerative Gaussian clustering algo-
rithm merges home and shops into the same place in the Helsinki 2 dataset.
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Similar effects can be observed from the results of the heuristic graph clus-
tering algorithm in Article III. Varying place granularity influences espe-
cially place identification algorithms that are based on sequential clustering
(i.e., radius-based clustering and the agglomerative Gaussian clustering) as
they merge multiple visits to the same place over time. Problems with
merging clusters are further illustrated in Fig. 6.2(b), which shows the cor-
responding results for the iterative radius-based clustering of Kang et al.;
see Sec. 5.2.1. This algorithm uses a small merge threshold which causes the
algorithm to fail to merge the appropriate clusters. This problem could be
alleviated by adapting the clustering thresholds based on the local density
of points and considering information about visiting patterns to different
places in the merge step.

The granularity of places can cause problems also for density-based algo-
rithms. For example, both the DBScan and DJCluster algorithms created
only one cluster which was centered around the shop area. Only two algo-
rithms, the algorithm of Ashbrook and Starner and the DPCluster, were
able to correctly identify the two different places in the example. Generally
speaking the granularity of places does not influence the accuracy of the
DPCluster algorithm, but it can slow down the mixing of cluster indicators,
which means the Gibbs sampler would require more iterations to converge.

6.3.3 Altitude variations

Practically all place identification algorithms are based on (Euclidean)
distances that are calculated from two-dimensional position information.
These distances are accurate only when there are no altitude variations
between measurements. Ignoring altitude variations can thus skew the dis-
tance calculations and result in inaccuracies during the clustering phase.
This problem is illustrated in Fig. 6.3, which shows how the DPCluster
algorithm creates a large cluster around two places (one spurious, the lake,
and one actual place, the banquet) in the Innsbruck dataset. In the exam-
ple, altitude variations cause distance measurements to be underestimated
and, as a consequence, the algorithm is unable to split the points into two
places. The underestimation can also be evidenced from the differences in
the cluster variances along the latitude and longitude axes.

All place identification algorithms are vulnerable to altitude variations,
though density-based algorithms and the DPCluster algorithm are more
vulnerable than the other approaches as they rely on information about
the density of points. As the figure illustrates, altitude variations can also
skew variance estimates in the DPCluster algorithm.

Altitude information is typically ignored because existing location sys-
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Figure 6.3: Altitude variations can skew distance calculations and cause
overly large cluster variances. The pin represents the mean of a cluster, the
ellipse represents the error ellipse and the toruses represent places.

tems do not support high quality altitude measurements. Fingerprinting
systems are unable to estimate the client’s altitude and GPS altitude esti-
mates tend to be of lower quality than the latitude and longitude measure-
ments [70]. GPS errors tend to be systematic across a specific period of
time, which suggests that relative altitude information, i.e., differences be-
tween successive measurements, could be used in place identification. This
is one of the issues we plan to tackle as part of our future work.

6.4 Summary of Place Identification Algorithms

Table 6.3 summarizes the place identification algorithms and their strengths
as well as weaknesses; see Table 6.2 for the abbreviations that are used in
the table.
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Chapter 7

Conclusions

In this thesis we have investigated the process of moving from coordinate
information to information that corresponds to places that are meaningful
to the user. Information about meaningful places can be used, e.g., to
provide awareness cues in applications that support social interactions, to
provide personalized and location-sensitive information to the user, and
to support mobile user studies by providing cues about the situations the
user has been in. Enabling the use of place information for these purposes
requires both system level support and algorithmic solutions. On a system
level, there is a need for platforms that facilitate the interactions between
location systems, place identification algorithms and applications, whereas
on the algorithmic level there is a need for techniques that are accurately,
and without offline tuning, able to identify place information from data
collected by the user. The contributions of this thesis address these needs by
providing an open source mobile platform that provides the desired system
level support, and by providing a novel place identification technique that
does not require tuning for different datasets and that performs better than
existing approaches.

The research towards this thesis has also opened up new questions that
have not been addressed in this thesis, many of which we are currently
addressing as part of our ongoing activities. On a system level, the per-
formance evaluation of BeTelGeuse in Article II indicated that high bat-
tery consumption of Internet connectivity is currently a major obstacle for
location-aware applications and services. To this end, we are currently de-
signing intelligent data uploading policies that aim to reduce the need for
Internet connectivity. More specifically, we are focusing on policies that
determine when to send location updates to a remote server in a way that
balances battery consumption and freshness of location information.

In terms of place identification algorithms, the evaluation of different

67
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approaches in Chapter 6 identified limitations with all approaches. For
example, the best algorithms were ones that search the parameter space
for optimal values and, as a consequence, are slower than algorithms that
fix the parameters beforehand. A potential direction for future investiga-
tions is to examine locally adaptive algorithms that search for the optimal
parameter values within a small neighborhood of points. Other areas for
potential improvements include development of algorithms that efficiently
discard, e.g., non-meaningful traffic stops, and that consider altitude infor-
mation in the place identification process.

Existing work, including this thesis, has mainly focused on place iden-
tification from GPS measurements. Although the algorithms discussed in
this thesis can be used on any coordinate data, a major limitation of all
of the algorithms is that they do not consider errors in location measure-
ments. When GPS measurements are not available, GSM positioning can
be used to estimate the user’s location. However, since GSM positioning er-
rors are typically larger than GPS measurement errors, place identification
algorithms that operate on a combination of GPS and GSM data should
consider the differing errors in the location estimates. In order to extend
the DPCluster algorithm, presented in this thesis and Article IV, to take
into account uncertainty in location estimates, error models that character-
ize the measurement error of the underlying technology are needed. While
GPS errors are relatively well understood, no generic models that charac-
terize GSM positioning errors are currently available.

In the thesis we focused on offline evaluation of place identification
algorithms. While offline evaluations provide insights into the algorithms’
capabilities of detecting places after they have been visited, they fail to
provide insights into how well the algorithms can support applications and
services. In real world systems, detecting when the user revisits a place
is equally important as discovering the places from data. Moreover, the
recognition should adhere to the users’ mental models about places, e.g.,
recognize that the user is at home only when she actually is inside the home,
not near it. As discussed in Sec. 5.3.2, recognizing visits to detected places
is an inherent part of the DPCluster algorithm, however, not all algorithms
have inherent capabilities for recognizing visits to places. Evaluating and
comparing the recognition capabilities of different algorithms remains an
important piece of future work.

Deploying place identification algorithms into real world systems poses
challenges to system design and data management. First of all, place iden-
tification algorithms can operate directly on the mobile device or data can
be sent to a server for analysis. As places are personal and as location in-
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formation can be potentially sensitive, the former approach is better from
a privacy perspective. The latter approach, on the other hand, provides
better scalability as place identification algorithms do not need to be de-
ployed on the mobile handsets. The latter approach also provides better
support for social interactions as a server-based approach makes it easier
to share place information across users. The second deployment aspect we
consider is whether the place identification algorithms operate in a batch
mode or sequentially as the data arrives. As the evaluation in Chapter 6
indicated, algorithms that operate in a batch mode have better accuracy
and are less vulnerable, e.g., to non-meaningful stops. On the other hand,
batch algorithms suffer from latency as applications and services can only
access place information after the suitable batch of data has been collected
and analyzed1. In our current work we are investigating the possibility to
use user-provided semantics to provide rough estimates of places and to
use batch algorithms to refine the place estimates afterwards. The final
deployment issue we consider is how to maintain place information when
the system is used for a long period of time. The places that are relevant
to a user can change over time and the system should be able, not only to
learn new places, but also to forget places that are no longer relevant to a
user. Understanding and modeling the relevance of places over time is an
important and interesting direction for future research.

As discussed in Chapter 3, the meanings people attribute to places are
not necessarily personal, but they can relate to social situations. However,
current algorithmic solutions are typically unable to detect these places
as the users are not necessarily stationary or because the physical loca-
tions that are linked with the social situations change (e.g., different coffee
shops). Places that are related to meaningful social interactions provide a
novel, largely unexplored perspective to the topics addressed in this thesis.
For example, how can these situations be detected; how can sensor data
measuring social interactions be combined with location data; how can peo-
ple use this information; what interaction possibilities does this open; how
can place information be shared across users; what privacy implications
does this have for the users?

1Storage space requirements are negligible for contemporary devices. Collecting data
for a single day requires approximately 45 kilobytes of storage space when the GPS
receiver is sampled once every minute. When the receiver is sampled every 10 seconds,
approximately 270 kilobytes of storage space is required.
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