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Abstract

In this thesis we provide computational tools for the planning of VTT-
TRAC experiments. VTT-TRAC is a novel method for measuring expres-
sion levels of genes. Monitoring gene expression by measuring the amounts
of transcribed mRNAs (transcriptional profiling) has become an important
experimental method in molecular biology. This has been due to rapid
advance in the high-throughput measurement technology. Methods like
microarrays are capable of measuring thousands of expression levels in one
experiment. However, new methods that are fast and reliable are still
needed. In addition to scientific research, such methods have important
applications for example in medical diagnostics and bioprocess control.

High-throughput technologies require automatic tools for planning of ex-
periments. In VTT-TRAC a special fragment of DNA called a probe has
to be selected for each profiled gene. In addition, the method allows mul-
tiplexing i.e. profiling a large number of genes together as a group called a
pool as long as the probes in each pool can be separated from each other.
Thus, the major computational challenge is to divide the probes into as
small a number of pools as possible so that the whole experiment can be
done as cost-efficiently as possible.

In this thesis we analyze and solve the key computational problems in the
automatic planning of VTT-TRAC experiments. Especially, we show that
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dividing the probes into a minimal number of pools is an NP-hard problem
and give an efficient approximation algorithm that is also practical. In
addition, we develop a flexible method for the selection of probes. We
have implemented our algorithms as a fully automatic planning software.
We show by planning different kinds of real experiments that our tools
allow convenient planning of cost-efficient experiments. We demonstrate
computationally that almost the whole yeast genome could be profiled with
less than 50 pools.

The planning of a VTT-TRAC experiment requires sequence information
that is not available for all organisms. cDNA-AFLP is a method that can
be used to study gene expression without complete sequence information.
We propose a computational method that can be used to optimize cDNA-
AFLP and VTT-TRAC experiments based on partial sequence information
or sequence information on a related organism.

Computing Reviews (1998) Categories and Subject
Descriptors:
J.3 Life and Medical Sciences—biology and genetics
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical

Algorithms and Problems—pattern matching, sequencing and
scheduling

General Terms:
Algorithms

Additional Key Words and Phrases:
Bioinformatics, experiment design, transcriptional profiling, hybridization
probe, multiplexing
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Chapter 1

Introduction

1.1 Multiplexing of experiments in molecular bi-
ology

A revolution in the measurement technology has started a new era in molec-
ular biology. Previously biologists typically studied one entity such as a
single gene or protein at a time. Now the new emerging high-throughput
technologies enable gathering measurement data about dozens or even thou-
sands of genes, proteins, or interactions in a single experiment.

Such powerful technologies also bring along new kinds of challenges.
The new challenges for the analysis of the biological data have been dis-
cussed widely in bioinformatics but the other side of the matter, namely the
experiment planning, has not raised as much interest. As the measurement
technologies become more complex and allow large-scale experiments to be
performed, designing the experiment in such a manner that it produces as
much biological information as possible also becomes a challenge.

The subject of this thesis is how to use computational tools to orga-
nize the measurements as efficiently as possible in a novel method called
VTT-TRAC [SIP+03, SKS, KSA+04, RKS+04]. It is a new gene expression
monitoring method developed at VTT Biotechnology. Our aim is to orga-
nize the measurements in such a way that the whole TRAC experiment can
be done using a minimum amount of resources. If a measurement technique
is such that one can only measure one variable at a time, such as the ex-
pression level of one gene in one condition, the problem is trivial: The cost
of the experiment is the cost of measuring one expression level times the
number of studied genes and conditions. However, VTT-TRAC and many
other new measurement techniques are such that they allow multiplexing
i.e. measuring several variables simultaneously if some constraints are not
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2 Chapter 1. Introduction

violated. Multiplexing can dramatically lower the cost of experiments and
allow large-scale experiments that would not be feasible otherwise.

The multiplexing task in VTT-TRAC and several other methods can
be described as follows. We have a set of variables X of some biological
entities whose values we want to measure, for example the expression levels
of a set of genes. The characteristics of the entities, such as the DNA
sequences of the genes, and the measurement technology used determine
whether a subset of variables can be measured together. In the VTT-TRAC
the constraint posed by the measurement device is simple: The amounts of
several different molecules in the sample can be measured simultaneously
if the molecules have substantially different sizes. We call a pool a subset
of variables that can be measured together. Then the computational task
is to partition X into a minimal number of pools. Such a partition allows
measuring all variables in X with minimal cost.

Other examples of such multiplexing tasks include multiplexing PCR [NS97]
and genotyping using mass spectrometry [AMY03] or all k-mer arrays [SBDY04].
Other examples are likely to arise since the technology is developing rapidly.
For example, quantification of all proteins (proteomics) or metabolites
(metabolomics) in a cell sample are enormous challenges that will require
clever techniques for dividing the task into manageable parts.

Optimization problems like the general multiplexing task described above
are not new in computer science. On the abstract level they are simi-
lar to many planning tasks arising in the fields like warehousing, logistics,
and scheduling [AMO93]. These combinatorial optimization problems have
been one of the major inspirations for algorithm and operations research
ever since the dawn of the computer age in the late 1940s. Typically they
involve selecting the optimal one from a vast but finite number of different
alternatives. Since such a problem can in principle always be solved by
enumerating all possible solutions and choosing the best, the time require-
ment of the algorithm that is used to solve the problem becomes the critical
question.

Since VTT-TRAC measures mRNA levels, the planning of the exper-
iment requires sequence information. One needs to take into account not
only the sequences of the measured mRNAs but also the sequences of all
other mRNAs that might be present in the sample. In some cases the whole
genome of the target organism has to be taken into consideration. Thus, the
planning of VTT-TRAC experiments involves computations on large sets
of sequences. Luckily, the enormous increase in sequence data in biology
has inspired computer scientists to create efficient computational methods
for handling such data. Since biological sequences can be interpreted as
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strings of characters, sequence analysis algorithms are usually algorithms
on strings from the point of view of computer science [Gus97].

In this thesis we apply techniques from both combinatorial optimiza-
tion and string algorithms to create practical automatic tools for the plan-
ning of VTT-TRAC experiments. We believe that similar computational
approaches could be useful for other new measurement methods as well,
especially if the computational aspects are taken into account at the mea-
surement technology development stage, as has been the case with VTT-
TRAC.

1.2 Transcriptional profiling

Monitoring the expression of genes by measuring the amounts of the tran-
scribed mRNAs (transcriptional profiling) has become one of the most im-
portant methods in functional genomics. This is largely due to microar-
rays that allow measuring thousands of mRNA levels in parallel. One
of the first pioneering articles on the microarray technology published in
1996 [LDB+96] started with the following words:

The human genome encodes approximately 100,000 different
genes, and at least partial sequence information for nearly all
will be available soon. Sequence information alone, however, is
insufficient for a full understanding of gene function, expression,
regulation, and splice-site variation. Because cellular processes
are governed by the repertoire of expressed genes, and the levels
and timing of expression, it is important to have experimental
tools for the direct monitoring of large numbers of mRNAs in
parallel.

Now, almost a decade later, the statement is even more true than it
was back then: The whole human genome has now been sequenced and
to everybody’s surprise it might contain as few as about 30,000 protein-
coding genes, only about twice as many as the worm or fly genome [L+01].
Thus, knowing when the genes are expressed, as opposed to simply knowing
the list of genes and their functions, now seems even more important for
understanding complex organisms such as ourselves than could be imagined
a decade ago.

Despite the success of microarrays during the last ten years or so,
there is still a requirement for new methods that enable robust, sensitive,
and cost-efficient transcriptional profiling of a set of genes [RKS+04]. Mi-
croarrays are a highly parallel but expensive technique and have relatively
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low sensitivity and poor reproducibility. There are other high-throughput
methods with their own advantages and disadvantages but none of them
has yet gained wide popularity comparable to microarrays. Conventional
methods such as Northern blots are inherently serial, suitable for measuring
a single mRNA at a time [LDB+96].

1.3 VTT-TRAC

VTT-TRAC (transcriptional profiling with the aid of affinity capture) is a
novel method that allows fast gene expression monitoring [SIP+03, RKS+04].
The key techniques used in TRAC are:

Hybridization Like microarrays, TRAC utilizes hybridization i.e. form-
ing of a double helix by base pairing of two complementary single-
stranded chains of nucleic acids. The amount of an mRNA molecule is
measured using a probe: a fragment of DNA or RNA that is designed
to selectively hybridize with its target mRNA. The probes are fluores-
cently labeled to allow detection and quantification. The probes used
in TRAC can be either short oligonucleotide probes, typically 20..40
bases long, or they can be longer PCR-amplified probes, typically
50..1000 bases long.

PCR PCR (polymerase chain reaction) is a standard method for copying
and amplifying a fragment from a larger sequence, for example from
the whole genome. PCR is also based on specific hybridization. A
pair short fragments of DNA called primers are specifically designed
for the amplified region so that each of them is complementary to 3’
end of one of two strands of the region. Given single stranded DNA
molecules, the primers hybridize to their binding sites flanking the
target region. An enzyme called DNA polymerase adds nucleotides
after the 3’ end of each primer using the other strand as template and
thus builds a copy of the strand started by the primer. Thus, the 3’
ends of the primers are especially important because the polymerase
reaction starts only if the 3’ ends of the primers bind tightly. The
molecules are made single stranded again by heating and the process
is repeated many times (20-30) resulting in an exponential blow-up
in the number of copies of the target region.

Affinity capture The mRNAs are labeled with a small molecule called
biotin so that they can be captured later with streptavidin-coated
magnetic beads. Streptavidin is a protein that binds tightly to biotin.
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Electrophoresis Electrophoresis allows separating nucleic acids according
to their size. Both capillary and gel electrophoresis can be used.
Capillary electrophoresis is routinely used for DNA sequencing, so
the equipment is available in most laboratories.

The main steps of TRAC analysis are as follows [RKS+04]. The steps
are also illustrated in Figure 1.1.

1. The biotin-labeled mRNA sample is hybridized in solution with the
fluorescently labeled detection probes.

2. The mRNA molecules are captured and the rest of the material is
washed off. Thus, the probes that are not bound to the RNAs are
also removed.

3. The hybridized probes are separated from the mRNA molecules.

4. The probes are identified and quantified using electrophoresis. The
size of the probe identifies the mRNA. The fluorescence intensity of
the probe labels gives the quantification.

In TRAC the hybridization is done in solution which removes some
of the problems in the methods [RKS+04] in which the hybridization is
done on a solid phase. TRAC has been shown to be highly sensitive and
reproducible. TRAC analysis is fast compared to many other methods.
The whole analysis can be done in a few hours, which makes TRAC also
suitable for bioprocess control or analysis of clinical samples. A large part
of the TRAC analysis has already been automated and the aim is to fully
automate the process.

From the computational point of view the key feature of TRAC is that
it can be multiplexed: Two mRNAs can be analyzed simultaneously as
long as their probes can be separated by electrophoresis at the end of the
process. An accurate quantification is possible only if different probes are
reliably separated from each other. Thus, the resolution of the electrophore-
sis equipment, i.e. the smallest size difference it can reliably detect, has to
be taken into account in the multiplexing. The speed of the analysis, au-
tomation, and multiplexing together make high-throughput TRAC analysis
possible.

1.4 Planning of TRAC experiments

The subject of this thesis is computational tools that allow efficient planning
and multiplexing of TRAC experiments. As in other hybridization-based
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Figure 1.1: VTT-TRAC analysis [RKS+04]. Biotin-labeled mRNAs are
hybridized with the fluorescently labeled probes (1). The mRNAs are cap-
tured to streptavidin-coated magnetic beads (2). The bound probes are
separated from mRNAs (3) and finally detected using electrophoresis (4).
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methods, a specific hybridization probe has to be selected for each profiled
gene. However, the major new computational challenge in TRAC is the
efficient multiplexing of the measurements. The probes must be divided
into pools such that the probes in each pool can be distinguished from each
other based on their different size. The minimization of the number of
pools is important because the cost of the analysis depends heavily on the
number of pools.

One of the major advantages of TRAC is that a multiplexed analysis is
simple to set up for a any set of genes: for a few dozen genes involved in a
certain biological process or for all genes of a genome if enough resources
are available. Thus, the computational tools should maximally support
that advantage.

The plan of the TRAC experiment should fulfill the following basic
requirements:

� Each profiled gene has a specific probe suitable for hybridization (and
amplification if PCR-based probes are used). In particular, the se-
quence of the probe must identify a unique transcribed region in the
genome to avoid hybridization to other mRNAs except the target of
the probe.

� The probes should be of a size that is within the range of DNA se-
quencers (or within the size range of any other measurement device
used instead of a sequencer). In case of oligonucleotide probes the
length of probes is limited by the technology used to produce the
oligos.

� The probes should be assigned into a minimal number of pools with
the property that the sizes of all the probes in one pool should be
distinct so that they are well separated and quantifiable in the elec-
trophoresis.

We divide the computational problem of finding such a plan into two
major steps:

1. Generate a large set of potential probes called candidate probes. Each
candidate probe should fulfill all the requirements of a good hybridiza-
tion probe. Each profiled gene should have at least one candidate
probe but hopefully many candidate probes of different sizes.

2. Select from the candidate probes a representative probe for each gene
and assign it into one of the pools such that the total number of pools
becomes as small as possible.
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The requirements for the first step depend mainly on the sample, hy-
bridization conditions, and how the probes are produced. The requirements
for the second step depend mainly on the device used to separate and detect
the probes at the end of the experiment. In the software implementation
the two steps are combined into one automatic process.

The description of the computational problem given above also contains
implicit assumptions. In step 1, the properties of each candidate probe are
considered separately. In step 2, the only properties of the probes that
are considered in the pooling are their sizes. Thus, we assume that the
hybridization between different probes in the same pool is not a significant
problem. In addition, we assume that we can select the probes in step 1 so
that the same hybridization temperature can be applied for all pools (we
relax this assumption in Section 3.6). So far, the laboratory experiments
support both assumptions.

1.5 The contributions and the structure of the
thesis

We present a complete set of computational tools for efficient planning and
multiplexing of VTT-TRAC experiments. The main contributions of the
thesis are:

� We identify the key computational problems in the planning of VTT-
TRAC experiments and formalize them. The problem of selecting
hybridization probes (step 1) is very similar to selecting microarray
probes (see e.g. [LS01]). The problem of assigning probes into a
minimum number of pools according to the size (probe assignment,
step 2) is a new one in bioinformatics. However, we show that the
abstract formalization of the problem is similar to certain problems
in the scheduling theory (see e.g. [ES03]).

� We give algorithms for solving the key computational problems. We
show that the probe assignment problem is NP-hard. The main tech-
nical contribution of the thesis is a factor 2 approximation algorithm
for the probe assignment problem. Algorithms for the maximization
version of the same abstract optimization problem have been given
in the scheduling literature. However, our algorithm is the first one
for the minimization version.

� Our computational procedure for generating the candidate probes is
a novel combination of well-known algorithms and software tools. It
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allows strict requirements to be set for the selected probes to ensure
that they are suitable for hybridization. The most important require-
ment is that the sequences of the probes are unique. In addition,
the procedure includes tools for the estimation of the thermodynamic
properties of probes such as the melting temperature. Similar re-
quirements can be set for the primers of the PCR-amplified probes.
The procedure is guaranteed to select only probes that fulfill all the
requirements. It is fast enough for selecting a probe for all genes
of the yeast genome. Somewhat similar approaches have been used
independently in several microarray probe selection tools. However,
to our knowledge our system is the only one that can select both
oligo and PCR-based probes that fulfill stringent requirements. Our
method is practical for both small and large sets of profiled genes.

� We have implemented our algorithms as a software package called
Tracfinder. The software allows fully automatic selection of probes
and their assignment into pools. We show by using the software for
planning of real experiments that our methods are practical. In ad-
dition, we demonstrate with the yeast genome that from a computa-
tional point of view large-scale VTT-TRAC experiments are feasible.
We are able to pack on average about 130 probes into one pool which
means that the whole yeast genome could be easily profiled with one
96-well plate.

� As a partly distinct contribution from the above ones, we study the
selection of enzymes and selective PCR primers for cDNA-AFLP ex-
periments. cDNA-AFLP [BvdHdB+96] is a transcriptional profiling
method that can be used also when complete sequence information
is not available. We study planing of cDNA-AFLP experiments be-
cause the same computational tools could be used to optimize TRAC
experiments for (partly) unknown genomes.

We are the first to study the problem as a rigorous optimization
problem. We show that the general form of the problem is NP-hard.
We give a polynomial algorithm for a restricted case of the problem
and an efficient heuristic algorithm for the general problem. By sim-
ulating cDNA-AFLP for several large data sets, we show that our
optimization methods could save a significant amount of resources in
cDNA-AFLP experiments.

Some of the results on the planning of TRAC experiments were origi-
nally published in [KAK+02] but the topic is covered more extensively in
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this thesis. In particular, the probe assignment problem is shown NP-hard
and its connections to other combinatorial problems are discussed more.

The structure of the thesis is as follows. In Chapter 2, we describe our
method for finding the candidate probes. This Chapter also includes a lit-
erature review of hybridization probe selection. In Chapter 3, we formalize
the problem of assigning the probes into pools, show that the problem is
NP-complete, and give an approximation algorithm for it. In Chapter 4, we
introduce our software for TRAC experiment planning and multiplexing.
In Chapter 5 we describe how we have used and modified the software to do
experiment plans and show the results. In Chapter 6, we propose methods
for optimizing cDNA-AFLP experiments. In the last chapter we summarize
the current state of the automatic planning of VTT-TRAC experiments.



Chapter 2

The selection of hybridization
probes

In this chapter we concentrate on the selection of good hybridization probes.
We start by describing the main characteristics of such probes and then do
a literature review of the other probe selection methods. After that we
describe our own method.

2.1 Probe specificity and sensitivity

The basic demands for a good probe are the same for all hybridization-
based measurement techniques. Thus, most of the discussion in this chapter
applies to microarray techniques [SSDB95, LDB+96] as well as to TRAC.
The most important difference between TRAC and microarrays in terms
of individual probes is that in TRAC the hybridization is done in solution
while in microarrays the probes are attached on a solid phase. However,
there is not enough experimental data yet about differences in solution-
based and solid-phase-based hybridization in order to design the probes
specifically for either platform. We use the existing microarray literature,
many of the basic concepts are from Schena1 [Sch03].

We call a probe a fragment of DNA which is used to hybridize with a
nucleic acid, DNA or RNA, called a target, in order to measure the amount
of the target. Typically, the target is an mRNA molecule whose amount
is measured with a DNA probe in order to assess the expression level of
the corresponding gene. Hybridization is a chemical reaction where two

1Note however that Schena uses the words probe and target in exactly the opposite
manner compared to us. In the microarray technique the mRNA molecules are labeled
and thus Schena calls them probes.

11
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complementary nucleic acid strands form a double helix by base pairing:
guanine (G) with cytosine (C) and adenine (A) with thymine (T) [AJL+02].
We assume that the sequence of the probe is always an exact complement
of a substring of the target sequence. We call this substring the target
substring.

For each gene of length n there are n−m+1 possible candidate probes
of length m. Which one of them is the best? First, a probe has to be
sensitive i.e. it should produce a clear signal by binding to the target
molecule. Second, a probe has to be specific i.e. it should not bind to any
other molecule that might exist in the sample. If a probe binds to such
non-target molecules, the phenomenon is called cross-hybridization. Cross-
hybridization is possible because two nucleic acids can hybridize even if they
are not exact complements. Continuing the expression profiling example,
a probe should not bind to mRNA:s of other genes of the organism. We
call the sequences of non-target molecules non-target sequences. Only if a
probe is both sensitive and specific, it can be used reliably to measure the
amount of its target in a complex mixture of molecules.

The sensitivity of the probe depends on the efficiency of hybridization
reaction between the probe and the target and the strength of the result-
ing duplex molecule. Hybridization occurs by hydrogen bond formation
between the bases of complementary nucleic acids. A base pair of guanine
(G) and cytosine (C) contains three hydrogen bonds but a base pair of
adenine (A) and thymine (T) contains only two hydrogen bonds. Also the
so-called stacking interactions between neighboring base pairs are stronger
for sequences rich in C and G [vHJH98]. Thus, the strength of the duplex
depends heavily both on the length of the probe and its sequence compo-
sition: roughly speaking a long probe which consists mostly of C and G
forms a much stronger duplex with the target than a short probe composed
mostly of A and T.

Hydrogen bonds can also be formed between different bases of one
single-stranded nucleic acid. Such intramolecular base pairing is called
the secondary structure of the nucleic acid. RNA forms stable secondary
structures more easily than DNA. The secondary structure of the target or
probe or both can have a significant effect on their interaction. It is as-
sumed that the duplex formation begins by base pairing of a few unpaired
bases and continues, one base pair at a time, through a zippering process
[SMS99]. Stable secondary structures can inhibit this process.

The interaction of a probe and its target is measured by the melting tem-
perature (Tm) which is the temperature at which half of the complementary
molecules are in the duplex state. In addition to the characteristics of probe
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and target molecules, the melting temperature depends on the conditions
of the experiment such as the salt concentration of the solution. All the
probes that are hybridized together should have similar melting tempera-
tures. Only then the hybridization temperature can be chosen so that the
probes have similar sensitivity in the experiment.

The specificity of a probe depends on its interactions with non-target
molecules. The risk of cross-hybridization is real because genomes con-
tain homologous genes i.e. genes that have similar sequences because they
have evolved from a common ancestral gene. Mismatching base pairs be-
tween the probe and the non-target do reduce hybridization efficiency and
lower the melting temperature of the duplex. The signal from unspecific
hybridization can still be significant for example if the similar non-target
molecules are present in the sample in a higher concentration than the
true target molecule. There probably are cases where there the differences
between homologous genes are so small that they cannot be separated by
hybridization techniques no matter which probe is selected.

2.2 Methods proposed for predicting the sensi-
tivity and specificity of a probe from the se-
quence

In theory, the sensitivity and specificity of a probe can be predicted from
the sequence using thermodynamic principles. Omitting all details, we
simply state that the interesting quantity is the free energy change (∆G)
when a structure is formed. A large negative value of ∆G indicates that the
reaction has a strong tendency to occur [AJL+02]. Thus, an ideal probe
for a target would be the one which has low hybridization free energy for
the target and high hybridization free energy for all non-targets [LS01].

The so-called nearest-neighbor (NN) model is the basic approach to
compute free energy change and melting temperature for hybridization of
two complementary nucleic acids [San98]. The nearest-neighbor model as-
sumes that the stability of a given base pair depends only on itself and the
two neighboring base pairs. Then the free energy change in helix formation
can be approximated for any sequence from the experimentally measured
energy parameters for all combinations of two consecutive base pairs.

A lot of work has been done to extend the approach to a prediction of
secondary structure formation by measuring energy parameters for other
small structures such as mismatching base pairs and loops [ST97, MSZT99].
The assumption is that the energy of a secondary structure can be obtained
by summing the energy contributions of its substructures [HFS+94]. Then
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the minimum free energy structure can be found by dynamic programming.
The algorithm can be generalized in a straightforward manner to predict
the free energy change in hybridization of two nucleic acids that are not
exact complements [MBF+99].

Unfortunately, sequence-based thermodynamic predictions are not com-
pletely reliable at present [MSZT99]. In addition, the dynamic program-
ming algorithm for computing a minimum free energy structure has time
complexity O(n3) where n is the length of the sequence, see for exam-
ple [SM97] (see [Zuk03] for more complete historical notes). Thus, it is
not computationally feasible to use even a crude thermodynamic model to
predict all interactions in a complex mixture of nucleic acids. Finally, the
interactions depend also on the concentrations of different molecules in the
sample but in transcriptional profiling the concentrations of targets are the
variables we want to measure!

Several attempts have been made to use the above thermodynamic
model to predict which short oligonucleotides hybridize best to long tar-
get molecules, see [MBF+99, LBG03, MSN+03] and the references in these
articles. Array technologies have made it possible to test thousands of
probes [LBG03, MSN+03]. First of all, the experiments show that most
short oligos (about 20bp) do not bind efficiently to their RNA targets [LBG03,
TMN+02], at least not in array conditions. The efficiency does correlate
with thermodynamic properties, especially with free energy change in hy-
bridization and to lesser extent with secondary structure of the probe, but
reliable prediction has proven difficult. It seems especially difficult to pre-
dict the effect of the secondary structure of the RNA target even though
some suggest it to be in reality the principal factor influencing the hy-
bridization efficiency [LBG03].

Since hybridization depends heavily on the details of measurement tech-
nology and experiment conditions, we have analyzed measurement data
from experiments that are as close as possible to TRAC technology. In
particular, in all these experiments hybridization were done in solution.
The data consisted of several sets of measurements, one typically evaluat-
ing 2-5 different probes for half a dozen different targets. The details such
as experiment conditions or how the tested probes were selected differed
between sets. The measurements have been done by Jari Rautio at VTT
Biotechnology and by several people2 at the University of Oulu Bioprocess
Engineering Laboratory.

The thermodynamic properties that we have computed and compared
to experimental data were the free energy change in the hybridization

2Daniela Böhm, Christina Falschlehner, Rami Kuivila, and Timo Nieminen
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(computed with program Melting [Nov01]), the melting temperature of
the duplex (Melting [Nov01]), and the free energy change of the probe
(Mfold [Zuk03]) and the target secondary structure (ViennaRNA [HFS+94]).
The most complex of these to estimate is the energy change of the target
secondary structure. We assumed that the global secondary structure of
the RNA molecule is maintained when a short probe binds to it. Thus, we
first computed the minimum energy secondary structure of the target RNA
without any constraints and secondly computed the energy of the structure
that has otherwise the same base pairing but the probe binding site is free.
The energy change of the target secondary structure was approximated as
the difference of these two energies (this measure is called Ac in [LBG03]).
At the beginning, we also experimented with a measure that allows the
global structure of RNA to change (Au in [LBG03]) but since it gave worse
predictions, we discarded it. Note that both measures are simplifications,
for example an RNA molecule can have several different stable secondary
structures.

As one example of the data, the set of measurements done in conditions
that are closest to current oligo-TRAC conditions consisted of 4-5 different
probes for 4 targets, 19 probes in total. The lengths of the DNA probes were
between 25 and 33 bases. The probes had been selected using the program
Primer3 [RS98] so that they have similar melting temperatures and do not
form hairpin loops. Thus, it was not surprising that the hybridization and
probe secondary structure energies did not correlate with the hybridization
signal (correlation coefficients -0.04 and -0.13). On the other hand, the
target secondary structure properties partly explained the remaining signal
differences as shown in Figure 2.1 (correlation coefficient 0.52).

In general, we could not draw any definite conclusions since the number
of tested probes and targets was relatively small. In particular, there were
only a few really bad probes with very low signal. The results also var-
ied depending on the conditions of the experiment and the probe-selection
criteria. As expected, the free energy change in hybridization and melt-
ing temperature correlated with signal intensity unless probes had been
selected using a program that takes the melting temperature into account.
We did not observe any significant correlation between the probe secondary
structure and the hybridization signal. In some sets we did observe a clear
correlation between the target secondary structure and hybridization sig-
nal.

An alternative approach to thermodynamic predictions is trying to learn
to predict probe sensitivity and specificity from simple sequence features
without any explicit physical model [LDB+96]. One advantage of such
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Figure 2.1: The effect of the target RNA secondary structure on a hy-
bridization signal, experimental data from Jari Rautio. The natural loga-
rithm of a relative hybridization signal of the probe is plotted as a function
of the predicted target energy change in hybridization (kcal/mol). The
relative hybridization signal is defined as the signal of the probe divided
by the average signal of all the probes of the same target. Each different
marker in the figure corresponds to one target.

an approach is that simple sequence features are usually faster to compute
than the thermodynamic properties. Tobler et al. [TMN+02] have evaluated
the capability of several machine learning algorithms to predict microarray
probe sensitivity. Not surprisingly, the amount of cytosine (C) was found
to be the most predictive feature.

In several studies cross-hybridization has been tested experimentally
and compared directly with sequence similarity. The concepts used, se-
quence similarity and identity, are not rigorously defined in the articles.
We assume that both refer to the percentage of identical aligned bases in
the best global alignment between two sequences (under some unknown
scoring scheme).

Kane et al. [KJS+00] have tested 50 bases long and Hughes et al. [HMJ+01]
60 bases long oligonucleotide probes in a microarray setting. Kane et al.
suggest that cross-hybridization is small if the sequence similarity between
the target substring and non-target sequence is smaller than 75%. In addi-
tion, if the sequence similarity is 50%-75% then the sequences should not
have a common substring longer than 15 bases. According to Hughes et. al,
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if the sequence identity is less than 70%, the signal from cross-hybridization
is reduced to the background level. They also note the correlation between
hybridization and the free energy of the longest perfectly matching sequence
but suggest no threshold for that.

Evertz et al. [EAYR+01] and Xu et al. [XBD+01] have tested cross-
hybridization of PCR-based microarray probes of variable length. They
both suggest that the overall sequence identity between probe and non-
target sequences should be less than 80% to avoid severe, > 20%, cross-
hybridization. The cross-hybridization was measured as the ratio of the
signal given by the non-target and the signal given by the correct target
when there are equal amounts of both molecules in the sample. Girke et
al. [GTR+00] also provide some evidence that 80% is a good threshold
for overall sequence identity of long PCR probes. Both Evertz et al. and
Xu et al. also note that a relatively long common substring can result in
cross-hybridization even when the overall similarity is not high. Wren et
al. [WKJ+02] have tested the effect of these identical stretches in cross-
hybridization of PCR-based probes. Interestingly, they take into account
the more stable pairing between bases G and C than between A and T.
They use as a measure the maximum number of hydrogen bonds in any
helix corresponding to a common substring of the probe and the non-target
sequence. They observed significant cross-hybridization when the number
of hydrogen bonds is larger than 45 (which corresponds to a ≥ 15 bases
long common substring).

The results probably need to be treated as guidelines, not as exact
thresholds. Most of the cross-hybridization studies are based on evaluation
of a couple of different targets and a few dozen different probes. In addi-
tion, this kind of studies are extremely sensitive to experimental conditions
such as temperature and salt concentration which makes the comparison
of experiments difficult. Nevertheless, it is encouraging that the results
reported in different articles are in quite good agreement. It would be in-
teresting to see how the experimental data correlates with other measures
for comparing sequences or with thermodynamic properties.

2.3 Fast computation of specificity

There has been an avalanche of articles about hybridization probe selection
in the last couple of years, mostly due to the popularity of microarrays.
The situation is a bit discouraging because a large number of quite similar
methods have been developed simultaneously. Thus, at this point it is hard
to notice clear progress towards better methods. Nevertheless, we try to
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provide the most comprehensive literature review to date on this subject.
Hopefully we are able to show what type of approaches have already been
explored so that in the future one could concentrate on either improving
the old ones or discovering totally new ones.

Predicting the specificity of probes seems to the task in probe selection
that has been solved in several different ways. It is also the most compu-
tationally intensive one of the common tasks. There seems to be relatively
wide consensus that at least for short oligos the thermodynamic predictions
based on the nearest-neighbor model would be the most accurate method
to assess the specificity of a probe. However, on a genomic scale it is con-
sidered to be a computationally infeasible approach. Thus, all methods at
least initially use some simple measure for comparing a target substring
to non-target sequences to predict the specificity of the probe. In order
to highlight the differences and especially similarities of the methods, we
classify them according to the applied measure.

Another critical decision is the threshold value of the sequence com-
parison measure that is used to separate the specific probes from the rest.
A good specificity criterion is such that it never accepts a probe that is
not specific and only seldom rejects a probe that is actually specific. In
addition, a good criterion is such that it can be evaluated fast on genomic
scale using a reasonable amount of space. A significant amount of time can
be used to preprocess the sequence data because usually a large number of
probe candidates needs to be evaluated. It is difficult to compare different
methods because both the chosen measure for sequence comparison and the
threshold value have huge impact on the time requirement. On the other
hand, there is not enough experimental cross-hybridization data available
to judge which measures and thresholds are justified and reliable.

In many of the methods a fast string comparison is performed first
to narrow the search to the most similar non-target sequences and then
a slower but more accurate method is used to make the final determina-
tion. The specificity criterion can also be a combination of several sequence
comparison measures.

The discussion will be mostly informal since the methods do not nat-
urally fall into any common framework. A few definitions are still useful.
Let P be the target substring and T the set of all non-target sequences. In
addition, let G be the set of all gene sequences of a genome. Often the task
is to find a specific probe for every gene in a genome. In that case every
probe length substring of every sequence S in G is a potential target sub-
string for a probe. If a probe sequence P is a substring of S, then the set of
non-target sequences T for P is usually G \ {S} (in some cases the sample
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can also include sequences of other organisms that have to be avoided).
The first two measures, edit distance and Hamming distance, are dis-

tance measures between two sequences. They measure how many opera-
tions, or in a biological context how many mutations, are needed to trans-
form one sequence into the other. When a distance measure is used, speci-
ficity prediction becomes equivalent to approximate string matching. We
define approximate string matching problem as follows: Given the target
substring P , the set of all non-target sequences T , an integer k, and a
distance measure d, is there an approximate match i.e. a substring X of
a sequence S in T such that d(P,X) ≤ k, that is, the distance between
pattern P and the substring X is at most k. If the target substring P
has an approximate match in T , its complement is not a specific probe
because the probe might hybridize to the corresponding non-target region.
Approximate string matching has been studied extensively.

Finding specific probes for all genes of the genome G can be seen as a
complement of finding all approximate repeats3 in G [KCO+01]. We define
an approximate repeat as a pair of substrings (X1, X2) of a text such that
their distance is smaller than the given threshold k i.e. d(X1, X2) ≤ k.
Assume that the target substring should be of length m and the probe is
specific if its distance d to all non-target sequences is ≥ k. Then discard-
ing all approximate repeats (X1, X2) of length m in G such that X1 and
X2 are substrings of different sequences guarantees that every remaining
substring defines a specific probe. The connection to repeat finding is rele-
vant because a lot of algorithmic work has been done to find repeats from
sequences [KOS+00].

An alternative way of formalizing the relatedness of two sequences is to
measure their similarity instead of their distance [Gus97]. Then the basic
concept is alignment, placing of two sequences one above the other and
adding spaces so that each character is opposite a unique character or space
in the other sequence. In addition, a scoring scheme is needed to attach a
score s to any alignment, we assume the scheme to be such that high scores
are attached to alignments that have a high number of matching characters.
The similarity measures that have been used to predict probe specificity are
local similarity scores. The maximum local similarity score of two sequences
is the the maximum score of any alignment of their substrings. Accordingly,
we define the local similarity problem as follows: Given the target substring
P and the set of all non-target sequences T , a real value c, and a scoring
scheme C, is there a pair of substrings (X, Y ) such that of X is a substring
of P and Y is a substring of a sequence S in T and s(X, Y ) ≥ c. If there is

3also called degenerate repeats
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such a pair of substrings, the complement of P is not a specific probe.
The basic difference between the similarity- and distance-based ap-

proach is that the former allows defining the specificity using only a part
of the probe when the latter always takes into account the whole probe.
So, one chooses a local similarity score if one wants to approximate the
hybridization of a probe and a non-target as the interaction between their
most complementary parts ignoring the interactions outside this area.

A common assumption behind both the above approaches is that the
specificity of a probe can be predicted by finding the non-target molecule
that hybridizes most efficiently with the probe and approximating all cross-
hybridization by this interaction. The measures that we call aggregate
scores discard this assumption and try to approximate the effect of hy-
bridization between the probe and all non-targets. Thus, an aggregate score
is not defined between two sequences but between the target substring P
and the set of all non-target sequences T .

Finally, the measures we call energy scores try to directly approximate
some thermodynamic property such as free energy in hybridization or a
melting temperature but with some simplification that speeds up the com-
putation. Below we list the methods found in the literature according to the
measure used. Many of the articles belong to several categories. Despite the
wide range of different technical solutions, there are some recurring themes.
One of them is reducing the comparison of two sequences to finding short
common substrings. We call the substrings of length q q-grams [JU91]. The
common q-grams can be used either as a basis for a comparison measure
or as an algorithmic tool to efficiently compute some other measure.

Edit distance. The edit distance between two sequences is the min-
imum number of character changes, insertions, and deletions required to
transform one sequence into the other. In order to separate the basic dis-
tance measure from a measure where operations have different costs, edit
distance is also called unit cost edit distance or Levenshtein distance. The
approximate string matching problem with d being the edit distance is
called string matching with k differences.

Myers’ bit-parallel dynamic programming algorithm solves string match-
ing with k differences problem directly in time O(nm/w) where n is the
total length of text T , m is the length of the pattern P , and w is the size
of the machine word [Mye99]. Still, it is too slow for checking all possible
probe candidates on the genome level. Speeding up approximate string
matching using filters and index structures has been discussed extensively
in string matching literature. Usually the idea is that first a fast filter is
applied to discard the text regions where no approximate match of the pat-
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tern can exist. After that the remaining text is checked using for example
Myers’ algorithm. Often the filter is based on the observation that a small
number of edit operations cannot destroy all substrings of the pattern and
thus the threshold k can be used to compute what kind of substrings of the
pattern must be preserved by any approximate match. We call such filters
q-gram filters.

Hyyrö [Hyy01] tests how fast different q-gram filters and index struc-
tures presented in the literature can check the specificity of short oligonu-
cleotide probes. He defines the specificity of a 25bp long oligonucleotide
probe as edit distance being at least 5 to non-targets (i.e. he solves string
matching with 4 differences). Since there are usually a large number of
candidate probes that need to be checked, it would be useful if several pat-
terns could be processed simultaneously. This has been studied recently
by Fredriksson and Navarro [FN03]. The q-gram filters are very efficient
for small distances but their time requirement grows rapidly after some
threshold as the area that cannot be filtered out expands.

Kurz et al. [KOS+00, KCO+01] take the approximate repeat-finding
approach. Their algorithm first identifies all exact repeats of length > q
where q is chosen so that every approximate repeat has to contain an exact
repeat of that length. The exact repeats are then extended to see whether
there is an approximate repeat. They define the specificity of a 20bp long
PCR primer as an edit distance k = 3. We have found that the time
requirement of their algorithm grows fast when the edit distance is made
larger (data not shown).

Li and Stormo [LS01] use edit distance and Myers’ bit-parallel algo-
rithm as an intermediate step in their method. They first narrow down the
number of candidates by taking those that have the best aggregate score
(see below). These candidates are then checked with Myers’ bit-parallel
algorithm and finally an energy based (see below) score is computed for
the remaining candidates.

Hamming distance. The Hamming distance between two sequences
of equal length is the number of positions with mismatching characters. The
approximate string matching problem with d being the Hamming distance
is called string matching with k mismatches.

Hamming distance has been used to evaluate the specificity of short
oligonucleotide probes [LWY02, ZCJL03]. Both methods are based on iden-
tical [LWY02] or almost identical [ZCJL03] (1 mismatch) q-grams of pattern
P and a match X. Lipson et al. [LWY02] extend their method to take into
account the relative concentrations of non-targets so that a larger distance
is required if the non-target is expected to be present in high concentra-
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tion in the sample. The algorithm of Zheng et al. [ZCJL03] can be seen as
approximate repeat finding. In their test they define a 33bp long oligonu-
cleotide probe to be specific if its Hamming distance to non-targets is at
least 5.

Sung and Lee [SL03] use Hamming distance to evaluate specificity of
oligonucleotide probes that can be as long as 50-70 bases. Their algorithm
appears to be fast and it finds target substrings that have a large Hamming
distance (> 30% of probe length) to all non-target sequences. On the other
hand, one may ask whether Hamming distance can be a relevant measure
for over 50 bases long probe since a single base deletion or insertion can
lead to a large Hamming distance.

All the above methods that are based on distance measures are safe in
the sense that they only return probes that are specific according to the
chosen distance measure (some of the papers also consider faster variants
that do not have this guarantee). Thus, one only needs to consider whether
the distance measure is relevant and the algorithm fast enough with realistic
parameter values.

Local similarity scores. Blast is a heuristic algorithm for finding
high-scoring local alignments fast. A large number of systems either di-
rectly use Blast [AGM+90] local alignment scores or compute some other
score from Blast local alignments as at least one part of specificity pre-
diction [XLW+02, MSG02, NWK03, RZG03, WS03, TDS+03, HSPB04].
Blast should be configured carefully if one wants to use it for this purpose,
especially if the probes are short.

In addition to long similar areas searched with Blast, Wang and Seed [WS03]
emphasize avoiding common substrings (in tests over 15 bases long) between
a probe and non-target sequences. They do not describe the algorithm in
detail and do not give its worst case complexity.

There are two software systems for finding long PCR-based probes [XLW+02,
TDS+03] that use local similarity scores. They both use the Primer3 [RS98]
program for selecting primers. Xu et al. [XLW+02] first determine the spe-
cific areas from the profiled genes, then let the Primer3 [RS98] program
select primers for those areas, and finally check the specificity of primers.
They define the probe as specific if its global sequence identity with any
non-target is lower than a threshold (75%) and it does not have a good
local alignment with any non-target (determined by Blast [AGM+90] E-
value). The initial list of non-target genes that are similar to the target
gene is made with Blast [AGM+90]. These non-target sequences are then
aligned with target sequences using the Smith-Waterman [SW81] full dy-
namic programming algorithm. Thareau et al. [TDS+03] use only Blast for
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predicting specificity.
Aggregate scores. Li and Stormo [LS01] compute for each q-gram

of the candidate target substring, how many times it occurs in the non-
target sequences and the score is the number of these occurrences. They
repeat the computation for different lengths q and for each q save the lowest
scoring probe candidates. The candidates saved most often are ranked as
most likely specific probes for a gene and are given as input for Myers’
algorithm.

Rahmann’s [Rah03b] score is based on the longest common substrings
of the target substring and all non-target sequences. Rahmann computes
for different lengths l the number of non-target sequences for which the
length of the longest common substring with the target substring is l. The
score is based on the number of longest common substrings and weighted
by a factor that depends on the length of the common substring.

Chang and Peck [cCP03] mark all q-grams that appear in more than
one gene sequence. The rest of the q-grams of a target gene are unique.
They define two scores for a target substring based on its content of unique
q-grams: one that measures their density and another that measures their
aggregation. The probes are chosen so that they have high density and low
aggregation of unique q-grams. Somewhat confusingly, they [cCP03] use
Blast to test the validity of their specificity scores.

Energy scores. Rouillard et al. [RZG03] use Blast as the first filter
and then compute the minimum energy structures formed by the probe and
the most similar non-targets given by Blast using the program Mfold [Zuk03].

Li and Stormo [LS01] use heuristic energy computation as the last step
of their three-step process (see above). They compute the best alignment
of the probe and a similar non-target sequence and compute the melting
temperature of duplex only based on the alignment and small modifications
of it. The idea is that since the number of differences between the sequences
is relatively small, the base pairing in the minimum energy structure is
usually close to the best alignment.

Kaderali and Schliep [KS02] compute the melting temperature of the
helix formed by the probe and each non-target. In order to speed up the
computation, they ignore some complex substructures. Their dynamic pro-
gramming algorithm is not guaranteed to find the optimal structure.

Krause et al. [KKM03] first identify non-target substrings that can be
transformed into the target substring with at most few changes and a sin-
gle insertion or deletion. Thus, the method is probably suitable only for
short oligos. For the identified pairs of probes and non-targets the method
computes a heuristic thermodynamic alignment that is similar to the one
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used by Kaderali and Schliep [KS02].
Lipson et al. [LWY02] argue that cross-hybridization is most probably

the result of hybridization initiated around a perfectly complementary area
between the probe and non-target. Thus, they suggest defining the speci-
ficity of a probe based on the highest melting temperature of a common
substring of the target substring and a non-target sequence.

Rahmann’s second paper [Rah03a] takes quite a similar approach as
Lipson et al. In addition to common substrings, he allows one mismatch.
The specificity of the probe is then defined as the difference of hybridization
free energy calculated with the target and minimum hybridization free en-
ergy calculated from these perfect or near-perfect matches to non-targets.
He uses the method to find 19..21 bases long oligonucleotide probes.

Hornshøja et al. [HSPB04] first use Blast and then compute the melting
temperatures of the probe and non-targets identified by the Blast hits.
When computing the melting temperature they only consider mismatches
but not insertions or deletions. Somewhat surprisingly they claim that
before them, “No attempts utilize thermodynamics to estimate a melting
temperature to non-targets for cross-hybridization prediction.”

2.4 The selection of TRAC probes

When selecting candidate probes for TRAC, our aim is to select for each
profiled gene a large number of candidate probes of different length that
each fulfill all requirements of a good hybridization probe. Candidates of
different length are needed because otherwise it is not possible to divide
the probes into a small number of pools in the next step.

Since TRAC can be modified for several different applications, the
method for selecting the candidate probes must also be flexible. Even
though TRAC can in principle be used to profile all genes of the genome,
its strength is the possibility to efficiently profile any subset of interesting
genes. So, ideally the probe-selection method should scale from a few dozen
to thousands of profiled genes.

The probes used in TRAC can either be short oligonucleotides which
are usually directly synthesized in a factory or the probes can be amplified
from a genomic sequence or cDNA library using PCR. How probes are
produced affects the candidate selection process. If PCR is used, a probe
must contain a good PCR primer pair at the ends so that it can be amplified
from the genome. In addition, if the probes are amplified from the genomic
sequence, the whole genome has to be taken into account in probe selection
instead of just the gene sequences. The reason is that PCR primers may
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amplify other regions from the genome than the intended target substring
if their specificity is not checked.

Based on the experimental evidence presented in the literature (see
Section 2.2), we define the specificity of a probe as a combination of two
conditions. We say that the target substring P is specific if

1. there is no non-target sequence S in T such that P and S have a
common substring longer than l and

2. P does not have an approximate match with at most k differences in
T where k = bβ|P |+ 1/2c.

In practice, we change the values of the parameters l and β slightly ac-
cording to the application but for example with yeast we have used values
l = 15 and β = 0.2 both for oligo and PCR probes.

Ideally, we would like to collect for each gene one candidate probe of
every distinct length if one that fulfills all the requirements exists. In most
applications the number of potential target substrings i.e. the number of
probe length fragments of the profiled genes is so large that it is not possible
to evaluate them all. Thus we have adopted the following strategy. We first
discard the areas where there cannot be any specific probe by filtering out
all exact repeats longer than l from the set of gene sequences G. Then we
produce a large set of candidate probes from the remaining areas. Finally
we check the specificity and sensitivity of the candidates so that the most
computationally intensive checks are made last.

We chose the above strategy based on our specificity conditions. Fil-
tering out all exact repeats in the beginning is worthwhile because it guar-
antees that the first condition is met and it can be done efficiently even
for a large set of sequences. In principle, the same approach could be used
to guarantee the second condition. However, we want to able to use fairly
large edit distance which makes finding all approximate repeats difficult.
Therefore, we check the second condition individually for each candidate
probe. Myers’ algorithm is a good general tool for that purpose because
q-gram filters become inefficient as the allowed edit distance grows.

Next we describe the steps of the candidate probe selection in detail. A
diagram of the process is shown in Figure 2.2.

1. Filter out all exact repeats Find all exact repeats longer than l
from the gene sequences G and discard them. This step guarantees
that all selected probes fulfill the first specificity requirement. The
exact repeats are found using program REPuter4 [KOS+00, KCO+01]

4The author would like to thank Dr. R. Giegerich for pointing out that REPuter can
be used to find unique areas from a genome efficiently.
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Figure 2.2: Candidate probe selection. The numbering on the left refers to
steps described in the text.

that finds all exact repeats in linear time in the total size of the input
sequences G and the maximal repeats in it (a repeat is maximal if
it is not contained in any other repeat). It uses the suffix tree as its
main data structure.

2. Select the initial set of candidate probes Select a set of candi-
date probes from each area not filtered out in the first step. When
searching for PCR-based probes, run the Primer3 primer selection
program [RS98] for each such area. For each primer pair suggested
by Primer3 make the sequence fragment that contains the pair and
the sequence between the pair as a candidate probe. When searching
for oligo probes, simply select probe length fragments as candidate
probes. The maximum number of initial candidate probes per gene
can be limited to the user-specified number N to keep the running
time of the program reasonable.
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3. Check the melting temperature and GC-content of the probes
Check that the melting temperature and GC-content of a probe are
within the limits given by the user. The melting temperature is com-
puted using the program Melting [Nov01]. The GC-content is the
fraction G and C in the probe sequence. It can be used for example
as a crude estimate of sensitivity for long PCR probes.

4. Check the specificity of primers This step is needed only if the
probes will be produced by PCR from genomic sequence. For each
candidate probe search alternative binding sites of its primers in the
whole genome. If the primers have alternative binding sites for which
the distance between the left primer and right primer is less than a
threshold α, reject the candidate probe. The value of threshold α
should be chosen so that PCR cannot amplify longer fragments than
α. It can be estimated from the speed of the polymerase reaction and
duration of the PCR cycle.

Since PCR primers also work by hybridization, we define an alter-
native binding of a primer in the same way as we do for the whole
probe. The substring X of a non-target sequence corresponds to an
alternative binding site of the primer if the edit distance between X
and the primer sequence P is ≤ bβ|P |+1/2c. The corresponding ap-
proximate string matching problem is solved using Myers’ algorithm.
For yeast we have used parameter values α = 5000 and β′ = 0.2.

5. Check the specificity of probes Check that a target substring ful-
fills the second specificity requirement. Solve the approximate string
matching problem using Myers’ bit-parallel algorithm [Mye99]. If n
is the total size of the non-target sequences and w is the size of the
machine word, Myers’ algorithm takes time O(nm/w) for each probe
of length m.

6. Check the sensitivity of probes Check that the hybridization free
energy change (computed using program Melting [Nov01]) and target
free energy change (computed using Vienna RNA package [HFS+94])
are within user-given limits. The target free energy change is approx-
imated as explained in Section 2.2. It takes time O(M3) for each
target sequence of length M . This step is done last because the
target energy calculations are typically computationally most expen-
sive. Currently, this step is not usually performed for long PCR-based
probes because there is not enough evidence that the predictions are
accurate for long nucleic acids.



28 Chapter 2. The selection of hybridization probes

The probe free energy change is not calculated separately. However,
if a probe has a stable secondary structure, its binding site in the
target also has a stable secondary structure because the sequences
are exact complements.

7. Output the candidate probes

The above procedure guarantees that all the selected probes fulfill all
the requirements. The method is heuristic only in the sense that it may not
find a probe for a gene even if there is one that fulfills all the requirements.
This may happen if all possible initial candidate probes are not produced in
step 2 because of the limit N . The user can choose whether all initial oligo
candidate probes are produced or not. The number of potential PCR-based
candidate probes is so large that it is not feasible to evaluate them all with
our approach. Thus, the user has to give the upper limit N .

Most of the individual steps in our method appear also in one or sev-
eral of the independently developed microarray probe selection methods
listed in Section 2.3. Many of the programs such as Melting [Nov01] and
Primer3 [RS98] are also used by others. However, our combination of dif-
ferent tools makes the method quite flexible as a whole:

� Filtering of all exact repeats in the beginning is an efficient way to
discard substrings that are not specific. All our initial candidate
probes already fulfill the first specificity condition. The candidate
probes that fulfill the first specificity condition are more likely to
fulfill the second one, as well. Thus, compared to a random selection,
less initial candidate probes are needed to produce the same amount
of good probes.

� The thresholds of the specificity conditions, the length of the common
substring l and the number of differences k, can be varied without an
explosion in the time and space requirement. The time and space
requirement of the suffix tree algorithm for finding repeats depends
linearly on the size of the input and output. They do not directly de-
pend on the length of the repeats as they do in the hashing techniques
that are widely used for this purpose [KCO+01]. The time require-
ment of Myers’ algorithm is independent of the number of differences
k. Thus, a large edit distance can be used which is not possible with
q-gram algorithms.

� The procedure can be modified according to the task. All possible
candidate probes can be evaluated if the aim is to select oligo probes
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for a small set of genes. On the other hand, probes can be searched
for all the genes of a genome by taking only a sample of possible
candidate probes.

� The same overall process is used for selection of both PCR-based and
oligo probes.

2.5 Conclusion

We are by no means able at this point to predict reliably the sensitivity
of oligo-TRAC probes from sequence data. Nevertheless, the literature to-
gether with the experimental evidence suggests that we can increase the
probability of selecting a sensitive probe by discarding the most question-
able ones based on the predicted hybridization free energy change and the
energy change of the target secondary structure. Even a modest decrease
in the number of bad probes that can be achieved by computational means
can save a lot of laboratory work.

The number of different measures and algorithms used for estimating
probe specificity is already high. An expert on string matching algorithms
could probably come up with quite a few new ones. The problem is that
currently there seems to be no way to compare different methods in a
disciplined manner.

Many of the current solutions are based on the assumption that ther-
modynamic calculations are the most accurate computational method to
predict cross-hybridization but too slow for large-scale evaluation of probes.
Thus, one step forward could be to take the pairs of probes and targets for
which there is quantitative experimental data about cross-hybridization
and compute their thermodynamic properties using the most accurate but
slow algorithms.

If the slow energy calculations turn out to predict experimental data
well, then one could set up a large artificial data set to assess the suitability
of different faster measures and algorithms. The artificial data set would
consist of a large set of pairs of probes and targets and hybridization values
attached to each pair. The hybridization values would come from the energy
calculations. Then one could evaluate the fast methods against the artificial
data set. The best one would be the one that predicts most accurately the
hybridization values of the probe-target pairs. This approach would also
allow the optimization of the scoring schemes used in the methods that are
based on sequence comparison.
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Chapter 3

Assigning probes into a small
number of pools

Dividing the hybridization probes into a small number of such pools that
the probes in each pool can be separated using electrophoresis is a central
computational challenge in TRAC. We will call this problem probe assign-
ment and it is the focus of this chapter. First, we define the problem
formally and put it in context by comparing it to similar problems in com-
putational biology and scheduling theory. We show that probe assignment
is NP-hard and derive an efficient optimal algorithm for a relevant special
case and then extend the same idea to get a factor 2 approximation algo-
rithm for the general problem. At the end of the chapter we relax one of
the assumptions made in the formulation of the basic problem and derive
an approximation algorithm for the modified problem.

3.1 Probe assignment problem

Let us assume that we have a set C of candidate probes available. We
assume that the only properties of probes needed in the combinatorial for-
mulation of the probe assignment problem are their lengths and the relation
between the genes and the corresponding candidates. In Section 3.6 we will
also take into account the hybridization temperature but till then we as-
sume that all probes in C can be hybridized in the same temperature. We
assume that each profiled gene has at least one candidate probe in C.

We call a pool a set of probes such that the probes in the pool can
be differentiated by electrophoresis. This requires that the lengths of the
probes in the same pool are different enough. To formalize this, we let
|p| denote the length of the sequence of a probe p. However, we do not
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Figure 3.1: An instance of probe assignment. Three probes that can be
put into the same pool are marked with black. In this case they provide a
solution for k = 1.

require |p| to be an integer. So, even though we will speak of probe length,
the results also apply to any technique that can measure the size of a
fragment of DNA. Moreover, attach to each p an open interval of reals
I(p) = (|p| − d(|p|)/2, |p|+ d(|p|)/2) where d(|p|) > 0 is the required length
difference for fragments of length p. Now, if p and q are two different
elements of the same pool, then I(p) ∩ I(q) must be empty. See also the
example in Figure 3.1.

We assume that the “resolution” function d has the following natural
property. For any three probes p, q, and t such that |p| ≤ |q| ≤ |t|, the
function d must be such that if p and t cannot be in the same pool, then
neither can q and t, i.e. if I(p) ∩ I(t) 6= ∅ then I(q) ∩ I(t) 6= ∅.

In this chapter we will concentrate on the following computational prob-
lem.

Probe Assignment Problem (PA): Let C be a set of candidate probes
for a set of n genes such that C = C1 ∪ C2 ∪ . . . ∪ Cn where Ci is the set
of candidates for gene i and Ci ∩ Cj = ∅ when i 6= j. Moreover, let k ≤ n
be an integer. The PA problem is to select a subset S ⊆ C of size n and
partition it into k disjoint sets S1, S2, . . . , Sk such that i) |S ∩ Ci| = 1 for
each i (i.e. every gene has exactly one probe in S); ii) each Sj is a pool
(i.e., I(p) ∩ I(q) = ∅ whenever p, q ∈ Sj , p 6= q).

We are actually interested in the corresponding optimization problem.
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Probe Assignment Optimization Problem (PA Optimization): Find
the smallest number of the pools k for which the PA problem has a solution.

Note that the trivial solution is to pick one probe from each Ci and put
each probe into its own pool thus using n pools.

Next we describe some basic properties of the PA problem. We use
two concepts from graph theory: interval graphs and colorings. Introduc-
ing these concepts is not absolutely necessary for our purposes (in fact,
our algorithms do not explicitly construct an interval graph). However,
these concepts link the PA problem to the vast amount of research done in
graph theory. Unless shown otherwise we use Golumbic’s book [Gol80] as
a reference on graph theory.

An undirected graph G = (V,E) is called an interval graph if its vertices
can be put into one-to-one correspondence with a set of intervals I of the
real line such that two vertices are connected by an edge of G if and only
if their corresponding intervals have nonempty intersection [Gol80]. Set
I is called an interval representation of G. We use open intervals but
the resulting graph class is the same regardless of whether open or closed
intervals are used.

Graph G is called a proper interval graph if there is an interval repre-
sentation for G such that no interval contains another. Graph G is called
a unit interval graph if there is an interval representation I for G, called a
unit interval representation, such that the intervals in I are of unit length.
Every proper interval graph is also a unit interval graph and vice versa.

We formulated the PA problem using the biological concepts, gene and
probes, but the results and algorithms in this chapter can be applied to any
finite family consisting of disjoint sets of intervals as long as no interval
properly contains another. For any proper interval graph, there is also
a unit interval representation and such a presentation can be computed
efficiently [CKN+95]. A set of unit intervals can always be interpreted as
a set of probes by setting d ≡ 1.

A k-coloring of graph G is a partition of its vertices into disjoint sets V =
X1∪X2∪. . .∪Xk such that each Xi is an independent set. When vertices of
each Xi are “painted” with color i, adjacent vertices always receive different
colors. In general, graph coloring is an NP-hard problem. However, interval
graphs can be colored with a minimum number of colors in linear time in
the number of intervals if the sorted list of interval endpoints is given (we
will describe the algorithm later in this section). Another useful fact is that
for interval graphs the size of the minimum coloring is the same as the size
of the largest clique.
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To come back to the PA problem, notice that it has two components:
selecting n probes from the set of all candidates and partitioning them into
k pools. Assume for a moment that we have already somehow selected the
probes. Then the partition of intervals into a minimum number of pools
can be computed efficiently by coloring the interval graph induced by the
intervals of the probes. Given the coloring, we can construct the pools
by assigning the probes whose vertices have the same color into one pool.
Since two vertices could receive the same color only if the corresponding
intervals did not intersect, the intervals of the probes in each pool are
pairwise disjoint.

The number of colors needed to color the interval graph induced by the
chosen probes equals the size of the largest clique of the graph. On the
other hand, each clique of the graph corresponds to a set of intervals that
intersect a common point on the real line [Gol80]. Thus, the hard part of
PA is selecting n intervals of probes so that for any point x on the real line
at most k intervals intersecting x are selected. This will be the focus of the
next sections. However, it is worthwhile to make note of a special case of
PA which avoids the hard part.

Theorem 3.1 If each of n genes has exactly one candidate probe, the
probes can be partitioned into a minimum number of pools in time O(n log n).

Proof. The endpoints of the intervals of the probes can be sorted in time
O(n log n). After that the partitioning into pools can be done in time O(n)
using interval graph coloring as discussed above and below. 2

We briefly describe an optimal coloring procedure for interval graphs
because we will make use of it more than once. It is a simple greedy al-
gorithm and appears to have been discovered independently several times
[GLL82]. We follow the exposition by Gupta et al. [GLL79] who call the
problem channel assignment. The input of the algorithm is a sorted list
of interval endpoints and it scans the list in the increasing order. If a left
endpoint of an interval is encountered, the interval is colored with the first
available color and the color is made unavailable. If a right endpoint is en-
countered, the color of the interval is made available again. The algorithm
runs in linear time in the number of intervals n if the currently available
colors are kept in a stack. We assume that the stack has been initialized so
that in the beginning there are ≥ n available colors. The correctness of the
algorithms follows from the fact that it never uses more colors than there
are intersecting intervals at any given point.

We end the section by discussing another problem in computational
biology that is similar to probe assignment, namely designing multiplexed
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genotyping assays [Fuc97, YWR00, AMY03]. In genotyping the aim is to
measure genetic variation between individuals. More specifically, the task
is to determine for each site in a set of sites in the human genome which
one of the variants known to occur in that site an individual possesses. The
sites where enough variation is known to exist are called markers and the
different variants of a marker are called alleles. An allele is typically the
value of a single nucleotide (SNP marker) or the number of short repeats
(microsatellite marker).

The genotyping technologies we are interested in have the common fea-
ture that some biochemical technique is used to link each allele of a marker
to a different fragment of DNA. Then determining the allele present in a
sample becomes equivalent to measuring the size of a fragment of DNA
using for example electrophoresis [Fuc97] or mass spectrometry [AMY03].
Multiplexing means determining the alleles of several markers in one assay
(or pool in our terminology), i.e. one has to be able to not only separate
the fragments of different alleles of the same marker but also the fragments
from different markers from each other.

The problem of minimizing the number of genotyping assays is the
same problem as probe assignment except for one crucial difference. As
in probe assignment, a size interval has to be reserved for each fragment
to be detected. The difference is that for each site we have to be able
to detect all alleles. Thus, for each marker, instead of one interval, a
tuple of intervals that has an interval for each allele has to be selected and
assigned to an assay. Probe assignment can thus be seen as a special case of
this more general multiplexing problem. Only heuristic algorithms without
approximation guarantees are known so far for minimizing the number of
assays [AMY03] but for the probe assignment we derive an approximation
algorithm in Section 3.4.

Both minimizing genotyping assays and probe assignment are similar
to problems in scheduling theory on the abstract level. Tuples of intervals
are considered by Bar-Yehuda et al. [BYHN+02]. In fact, they give an
algorithm that can be used in multiplexing to divide the markers into at
most 2t times the optimal number of assays if each marker has exactly one
possible tuple of intervals and each tuple has at most t intervals. Schedul-
ing theory relevant for assessing the complexity of the probe assignment
problem will be discussed in the next section.
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3.2 NP-hardness of probe assignment

In this section we show that probe assignment is an NP-hard decision prob-
lem. So we do not have much hope of finding a polynomial algorithm that
is always guaranteed to find an optimal solution for PA. We have to set-
tle for approximate solutions. At the end of this section we will introduce
NP-hard scheduling problems that are similar to PA. In fact, NP-hardness
of PA could be derived from them. Nevertheless, we proceed to prove NP-
hardness of PA by reducing the 3-dimensional matching problem to it and
justify the decision later.
3-Dimensional Matching Problem (3DM): Set T ⊆W×X×Y , where
W , X, and Y are disjoint sets having the same number of q elements. Does
T contain a 3-dimensional matching, i.e. a subset T ′ ⊆ T such that |T ′| = q
and no two elements of T ′ agree in any coordinate?

In addition, we assume that no element occurs in more than three triples
(bounded 3-dimensional matching where bound B ≡ 3). The problem
remains NP-complete [GJ79]. We show here that PA is NP-hard even when
there is only one pool and two probes can always be in the same pool if
their length difference is at least two nucleotides. On the other hand, in the
next section we will show that PA can be solved optimally for any number
of pools if a length difference of one nucleotide is enough to separate two
probes.

Theorem 3.2 Probe assignment is NP-hard already when all probe lengths
are integers, number of pools k ≡ 1, and resolution d ≡ 2.

Proof. Construct a PA instance C from a bounded 3DM instance T as
follows. See also Figure 3.2.

� For each triple (wi, xj , yk) ∈ T , where 1 ≤ i, j, k ≤ q , add a candidate
probe wijk. If xj occurs in at least two triples, add a probe x′ijk and
if xj occurs in three triples another probe x′′ijk. Similarly, if yk occurs
in at least two triples, add a probe y′ijk and if yk occurs in three
triples, a probe y′′ijk. Set the lengths of the probes so that the interval
I(wijk) given by the resolution function d ≡ 2 intersects all other
intervals from this triple. In addition, set the lengths so that I(x′ijk)
intersects I(x′′ijk) and I(y′ijk) intersects I(y′′ijk) but neither I(x′ijk) nor
I(x′′ijk) intersects I(y′ijk) or I(y′′ijk). There should no intersections of
intervals except the ones listed above. An example of lengths that
satisfy these conditions is I(wijk) = (cijk − 1, cijk + 1), I(x′ijk) =
I(x′′ijk) = (cijk − 2, cijk), and I(y′ijk) = I(y′′ijk) = (cijk, cijk + 2) where
cijk = 4iq2 + 4jq + 4k.
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Figure 3.2: The construction of a PA instance from a 3DM instance when
xj occurs in three triples and yk in two triples.

� Partition the candidate probes into “genes” according to the cor-
responding element in T . For each element wp ∈ W , add a gene
W ′

p = {wijk | i = p}. For each element xp ∈ X that occurs in at least
two triples in T , add a gene X ′

p = {x′ijk | j = p} and for each element
xp that occurs in three triples, add X ′′

p = {x′′ijk | j = p}. Similarly,
for each element yp ∈ Y that occurs in at least two triples in T , add
a gene Y ′

p = {y′ijk | k = p} and for each element that occurs in three
triples add Y ′′

p = {y′′ijk | k = p}.

The idea of the reduction is that we need to choose exactly one probe
from each q genes of the type W ′

i . We add the corresponding triples
(wi, xj , yk) to the 3DM solution T ′. The other genes in C are designed
so that choosing exactly one probe from each ensures that xj or yk cannot
occur in any other triple in T ′ thus making T ′ a 3-dimensional match-
ing. Next we show formally that the 3DM instance T has a 3-dimensional
matching if and only if the PA instance C constructed above has a solution
with one pool.

First, let T ′ = {A1, A2, . . . , Aq} be a 3-dimensional matching in T . For
each triple Aijk = (wi, xj , yk) ∈ T ′, choose the corresponding probe wijk

to the single pool S. Thus, we get exactly one probe for each gene W ′
i

to S. To show that it is possible to choose probes for all other genes as
well, assume that the gene X ′′

j exists. There are three candidate probes in
X ′′

j , and two of them are such that their interval can be intersected by an
interval in S: one by I(wijk) and another by an interval of a probe in X ′

j .
The interval of the third one cannot be intersected by an interval of any
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probe in S because xj can occur only in one triple in T ′. Thus, we can add
to S a probe from X ′′

j and in the same way a probe for all other genes in
C.

There is exactly one probe in S from each of the genes produced by the
construction and no two intervals of probes in S intersect. Thus, S is a PA
solution.

Conversely, suppose there is a one-pool solution S for the PA instance
C. For every probe of type wijk ∈ S, add the triple Aijk = (wi, xj , yk)
to the 3-dimensional matching T ′. Since there are exactly q such probes,
we only need to prove that no element x or y occurs twice in T ′. For the
sake of contradiction, assume that xj occurs twice in T ′ and in three triples
in T (the case in which xj occurs in two triples in T can be handled in
an analogous manner). Then there would be two intervals of probes in S,
denote them I(wijk) and I(wrjs), such that each intersects an interval of
one probe in X ′

j and an interval of one probe in X ′′
j . The intervals of the

remaining two probes in X ′
j ∪X ′′

j , one in X ′
j and one in X ′′

j , intersect. For
this reason, there cannot be a probe from both X ′

j and X ′′
j in S which is a

contradiction. Thus, no xj occurs twice in T ′. One can show in the same
way that no yk occurs twice in T ′.

There are q triples in T ′ and no element occurs twice. Thus, T ′ is a
3-dimensional matching. 2

Results similar to Theorem 3.2 could be derived from scheduling the-
ory1. Erlebach and Spieksma [ES03] extensively discuss scheduling prob-
lems that are similar to probe assignment. We compare the following
scheduling problem to PA.

Job Interval Selection Problem (JISP): Consider an input that con-
sists of n jobs, each of which is given by a set of intervals on a real line,
and a number m of available machines. A feasible solution is a subset of
the given intervals such that i) at most one interval is selected from each
job, and ii) for any point p on the real line, at most m intervals overlapping
x are selected. The goal is to find a feasible solution that maximizes the
number of selected intervals.

JISP is an optimization problem but we can also consider a decision
version (let us call it JISP decision) in which we ask whether all n jobs
can be scheduled to m machines. It is easy to see the similarity between
JISP and PA: PA deals with genes instead of jobs and pools instead of
machines but the combinatorial structures of the problems are identical.
In fact, PA could be easily solved using an algorithm that can solve JISP

1The author would like to thank Dr. M. Halldórsson for pointing out the relevant
references from the vast scheduling literature.
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decision. However, the opposite is not necessarily true, since not all sets of
intervals correspond to legitimate sets of probes. So in order to show the
NP-hardness of PA we would have to use a restricted case of JISP decision
such that it is still NP-hard and any instance of it can be mapped to an
instance of PA.

Keil [Kei92] proves that JISP decision is NP-complete for one machine
and intervals of constant length (improving results by Nakajima and Hakimi
[NH82]). However, their proof uses intervals of length three and we want
to have a proof for intervals of length two in order to avoid a gap between
the polynomially solvable case and the hard case in terms of resolution.
Spieksma [Spi98] proves that JISP is a MAX-SNP-hard optimization prob-
lem by giving an approximation preserving reduction from MAX-3SAT-B
to JISP. The result is valid also for one machine and intervals of length
two with integer endpoints. Thus, the reduction by Spieksma could proba-
bly be used to prove Theorem 3.2 but the reduction is rather complicated.
Therefore we preferred to provide another reduction.

JISP decision is solvable in polynomial time in the special case where
there is a single machine and each job has at most two intervals [Kei92,
Spi98]. Thus, the PA problem can be solved efficiently when there is only
one pool and there are at most two probe candidates for each gene.

To our knowledge, all variants of JISP discussed in the literature are
maximization problems. The goal is to maximize the amount of work that
can be done with a fixed amount of resources. In contrast, probe assignment
is a minimization problem. Every gene needs to be profiled but using as
small amount of resources as possible. Thus, scheduling theory does not
directly provide approximability results, either positive or negative, for the
PA problem. We do not have any inapproximability results either but we
will give an approximation algorithm later in this chapter, though we will
start by solving an easier special case.

3.3 A polynomial algorithm for a special case of
probe assignment

Separating two probes whose lengths differ only by one nucleotide is possible
in TRAC for example when capillary electrophoresis is used to measure
oligonucleotide probes [RKS+04]. When resolution d ≡ 1, the candidate
probe set C becomes such that for any two probes p, q ∈ C, either |p| = |q|
or I(p)∩I(q) = ∅. Even if we do not have a resolution of one nucleotide, we
will in some cases deliberately construct the candidate probe set in such a
way that the candidates have this nice property (see Section 5.2). We give
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Figure 3.3: Constructing graph GC,k. The degree bounds for each vertex
are given in brackets.

a polynomial time algorithm for solving PA in such a case by reducing to
the following well-known subgraph construction problem [Gab83].

Degree-Constrained Subgraph Construction Problem (DCS): Given
a graph G = (V,E) with integer bounds ai and bi associated with each ver-
tex i ∈ V , find a subgraph H with the largest possible number of edges,
such that each vertex has degree ri in H with ai ≤ ri ≤ bi.

DCS can be solved in polynomial-time.

Proposition 3.1 (Gabow [Gab83]) There is an algorithm for DCS that
runs in time O(

√∑
i∈V bi|E|).

DCS is a generalization of matching: Ordinary matching is a DCS prob-
lem where ai = bi = 1 for all i in V . In fact, the following algorithm is
based on the observation that the PA problem reduces to ordinary match-
ing in a bipartite graph when d ≡ 1 and k ≡ 1. Reducing to DCS instead
of matching extends the basic idea also into the case where k > 1.

For a given PA instance (C = C1 ∪ C2 ∪ . . . ∪ Cn, k), construct a DCS
instance GC,k as follows (see also Figure 3.3). Graph GC,k = (V1 ∪ V2, E)
is a bipartite graph where V1 = {1, 2, . . . , n} (the vertices that correspond
to the genes) and V2 = {|p|

∣∣ p ∈ C} (the vertices that correspond to the
lengths of the probes). Moreover, there is an edge e = (i, l) ∈ E if Ci

contains a probe p of length l. Then we say that probe p supports edge e.
Finally, for each i ∈ V1 we set the bounds as ai = bi = 1 and for each l ∈ V2

as ai = 0, bi = k.
A restricted case of PA optimization can be solved exactly by means of

a solution of DCS as follows.
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Lemma 3.1 If a PA instance (C = C1 ∪ C2 ∪ . . . ∪ Cn, k) is such that for
any p, q ∈ C either |p| = |q| or I(p) ∩ I(q) = ∅, then it has a solution if
and only if the corresponding DCS instance GC,k has a solution that has n
edges.

Proof. Let first S = S1 ∪ S2 ∪ . . . ∪ Sk be a solution of (C, k). Then the
subgraph H = (V1 ∪ V2, ES) of GC,k where ES consists of all edges e such
that the underlying probe of e is in S is a solution of the DCS instance: ES

is maximal because |ES | = n and because from the bipartiteness of GC,k

and from the constraints for vertices in V1 it follows that a DCS solution
can not be larger than n edges. Set ES also satisfies the constraints at
the vertices of GC,k: there is exactly one probe in S for each gene, hence
the constraints of V1 are satisfied; there can be at most k probes of equal
length, namely one in each Si, and hence the constraints of V2 are satisfied.

Conversely, a solution H = (V1 ∪ V2, E) of the DCS instance where
|E| = n, gives a solution S of the PA problem containing exactly one
supporting probe for each edge in E. Then at most k elements are of equal
length. This means that k pools suffice as I(p)∩I(q) = ∅ whenever |p| 6= |q|.
2

The algorithm for solving the PA optimization is now easily obtained
by using Gabow’s algorithm for the DCS as a subroutine in a binary search
for the smallest k. More precisely, perform binary search over integers
1, . . . , n to find the smallest k such that Gabow’s algorithm finds for the
DCS instance GC,k a solution of size n. Let us call this procedure Algorithm
1.

Theorem 3.3 Algorithm 1 correctly solves the PA optimization problem
for any instance (C, k) such that I(p) ∩ I(q) = ∅ whenever |p| 6= |q| for all
p, q ∈ C. Its running time is O((mn)3/2 log n) where m is the number of
different lengths of probes in C, and n is the number of genes.

Proof. The correctness should be clear by the construction and Lemma 1.
As regards the running time, we assume that the lengths of the probes

in C are given as input. Then it is straightforward to construct GC,k in
time O(mn) since the number of probes in C is bounded by mn. More-
over, GC,k needs to be constructed only once during the search as the
new GC,k for a different k can be obtained just by updating the bounds
bi = k for vertices i ∈ V2. Hence, O(mn) covers the time for constructing
the GC,ks. Gabow’s algorithm is performed O(log n) times, each taking
time

√∑
bimn by Proposition 1. As

∑
i∈V1∪V2

bi ≤ n + mn, we have√∑
bimn = O((mn)3/2) which completes the proof. 2
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3.4 An approximation algorithm for probe assign-
ment

At least when selecting PCR based probes the length difference of two
probes in the same pool has to be more than one nucleotide. Then instead
of selecting at most k probes of equal length, one is only allowed to select at
most k probes from each group of probes whose intervals intersect. Thus,
in our reduction of PA to DCS given in the previous section we must pose
additional constraints of interval graph nature on the DCS.

We will derive a polynomial-time approximation algorithm for the PA
optimization which has a performance ratio of 2. Hence, the algorithm
produces a valid assignment into pools that is guaranteed to use at most
twice the optimum number of pools.

To generalize the construction of the DCS instance GC,k (see also Figure
3.4), again let GC,k = (V1 ∪V2, E) where V1 = {1, 2, . . . , n} (the genes) but
V2 corresponds to probe groups constructed as follows2. First sort the
probes p in C into increasing order according to the lengths of the probes
|p|. Let p1 be the first probe in this order. Then let g1 be the set of probes q
such that I(p1)∩I(q) 6= ∅. Then g1 must contain p1 and possibly some other
probes after p1 in the order. Let p2 be the first probe not in g1. Then repeat
the above construction to get set g2 and so on, until the whole ordered set
has been assigned to some gi, i = 1, . . . , s. Now let V2 = {g1, . . . , gs}.
Finally, there is an edge e = (i, l) ∈ E if Ci∩ gl is non-empty. All probes in
Ci ∩ gl are said to support the edge (i, l). For each i ∈ V1 the bounds are
again ai = bi = 1 and for each g ∈ V2, ai = 0 and bi = k.

The approximation algorithm first performs Algorithm 1, that is, finds
by binary search the smallest k = kmin such that the DCS instance GC,kmin

,
as just constructed, has a solution of size n. The next step is to construct
a solution of our PA problem from this solution of the DCS. Let S be a
probe set constructed by selecting into S exactly one supporting probe for
each edge of the DCS solution. The algorithm divides S into a minimum
number of pools by coloring the interval graph induced by the intervals of
the probes in S as shown in Section 3.1.

Let us call this entire method Algorithm 2.

Theorem 3.4 Algorithm 2 finds a solution for the PA optimization prob-
lem with at most twice as many pools as in the optimal solution. Its run-

2As pointed out by Dr. V. Mäkinen, the same grouping of fragments is used by Li in
his proof of the approximation ratio of his shortest common superstring algorithm [Li90].
The proof is also given in [Vaz01, pp. 19–22]
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Figure 3.4: Constructing graph GC,k in the general case.

ning time is O((mn)3/2 log n) where m is the number of different lengths of
probes in C, and n is the number of genes.

Proof. Algorithm 2 produces a feasible solution of PA as it selects a probe
for every gene and partitions the selected probes into pools according to a
coloring of the corresponding interval graph. In terms of run time, there
are two new features as compared to Algorithm 1. First, the two sorting
operations can be done in time O(mn log mn). Second, the construction of
the pools at the end can be done in time O(n) after the sorting. Noting also
that the present DCS instance is not larger than in the case of Algorithm
1, the time bound of the theorem follows.

The performance ratio of 2 follows from Lemma 2 and Lemma 3 below.
2

Lemma 3.2 Let kmin be the minimum value of k found by Algorithm 2
and let κ be the number of non-empty pools Si constructed by Algorithm 2.
Then κ ≤ 2kmin.

Proof. The procedure for pooling S into Si’s in Algorithm 2 finds a
minimum coloring of the interval graph IS induced by the intervals of the
probes in S. For interval graphs the size of the minimum coloring is the
same as that of the largest clique [Gol80].

On the other hand, the intervals I(p) and I(q) for some p, q in S can
intersect only if p, q ∈ gi ∪ gi+1 for some i. In order to prove that, assume
for contradiction that an interval of a probe p ∈ gi intersects an interval of
a probe t ∈ gi+2. Algorithm 2 constructs the groups in such a way that the
interval of the shortest probe of gi+1, let it be q, and the shortest probe of
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Figure 3.5: An example of using twice the optimal number of pools.

gi+2 do not intersect. Thus, p ≤ q ≤ t and I(p)∩I(t) 6= ∅ but I(q)∩I(t) = ∅
which contradicts the assumption we made about the intervals of probes
in Section 3.1. This means that all cliques of Is must be of size ≤ 2kmin

because |gi ∩ S| ≤ kmin for any i. 2

Lemma 3.3 Let κ∗ be the optimum (minimum) number of pools. Then
kmin ≤ κ∗.

Proof. Let S∗ be the set of probes in an optimal solution with κ∗ pools.
Then the subgraph of GC,κ∗ whose edges have supporting probes S∗ is a
solution for the DCS instance GC,κ∗ . Hence, kmin ≤ κ∗. 2

The performance ratio of 2 is tight. Consider the PA instance shown in
Figure 3.5. Clearly, kmin = κ∗ = 1 but Algorithm 2 puts p1 and p2 in set
g1 and p3 in set g2. Algorithm 2 can choose either p1 or p2 because they
support the same edge in graph GC,k. If Algorithm 2 chooses p2, it uses
two pools which is twice the optimal.

The crucial point in the proof of Lemma 3.2 is that only the intervals of
the candidate probes in the same or in successive groups can intersect. This
was achieved by constructing the groups so that the intervals of the shortest
probes of any two successive groups gi and gi+1 do not intersect. Actually,
it suffices to construct the groups so that the interval of the longest probe
of group gi−1 and the shortest probe of gi+1 do not intersect. Thus in
practice, we construct graph GC,k in both ways and solve DCS in both
cases and choose the smaller number of pools and the higher lower bound
given by kmin (see Lemma 3.3) from the two results. The lower bound for
the number of pools allows us to give for any PA instance a nontrivial upper
bound κ − kmin for the number of pools Algorithm 2 wastes compared to
an optimal solution.
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Figure 3.6: A flow network that corresponds to the graph GC,k in Figure
3.4.

3.5 The implementation of the approximation al-
gorithm

Since the approximation algorithm for probe assignment given in the pre-
vious section has a central role in the software system for TRAC probe
selection and pooling, we here discuss two issues in the implementation of
the algorithm. First, we show how we solve the DCS problem using net-
work flow and second a post-processing heuristic that in some cases saves
a valuable pool.

We have chosen to solve the DCS problem in Algorithm 2 by reduction
to the network flow problem, instead of using the direct solution given by
Gabow’s algorithm. The reduction to the network flow is simple and fast
(see Chapter 5), and good implementations of network flow algorithms are
readily available.

In Algorithm 2, the DCS instance GC,k is bipartite. In such a case the
reduction to the network flow problem can be done in the same manner as
for ordinary matching [CLR90]. We define the corresponding flow network
G

′
C,k as follows (see also Figure 3.6). We add source s and sink t in the node

set V1 ∪ V2 and define the directed edges of G
′
C,k as follows E′ = {(s, u) |

u ∈ V1} ∪ {(u, v) | u ∈ V1, v ∈ V2, (u, v) ∈ E} ∪ {(v, t) | v ∈ V2}. We assign
capacity k to each edge (v, t), v ∈ V2, and unit capacity to all other edges.

Theorem 3.5 The DCS instance GC,k = (V1 ∪ V2, E) has a solution H =
(V1∪V2, EH) that has n edges if and only if the corresponding flow network
G

′
C,k has an integer-valued maximum flow with value n.

Proof. Let first f be an integer-valued maximum flow with value n in
G

′
C,k. Construct EH = {(u, v)|u ∈ V1, v ∈ V2, f(u, v) > 0}. Since there
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is at most 1 unit of flow entering each node u ∈ V1 and at most k units
leaving each node v ∈ V2 and the flow is an integral-flow, all upper bounds
of nodes in H are satisfied. Since from the source s there are no other edges
than one edge of unit capacity to each u ∈ V1, all these edges have to be
saturated. Thus, all lower bounds of nodes in H are also satisfied. Since
there is 1 unit of flow leaving each node u ∈ V1 and there are no edges from
V1 to the sink t, |EH | is equal to the value of the flow n.

To prove the converse, given a solution H we only need to augment the
flow for each (u, v) ∈ EH along the path s→ u→ v → t and observe that
the net flow across the cut between V1 ∪ {s} and V2 ∪ {t} is |EH | = n.

One can prove that the maximum flow found by a specific maximum
flow algorithm is an integer-valued flow in the same way as in the case of
maximum matching in bipartite graphs. 2

We have used a push-relabel network flow algorithm implementation by
Cherkassky and Goldberg [CG97], the asymptotic running time of which is
O(|V |2

√
|E|). The total running time of this version of Algorithm 2 hence

becomes O((m + n)2
√

mn log n).
When an experiment is set to profile a small number of genes such as a

few dozen, even one additional pool is a significant expense. In practice we
have noticed that when the goal is to put the probes into one or two pools,
the approximation algorithm in some cases uses one extra pool compared
to what seems possible. Thus, we have designed a post-processing heuristic
that tries to improve the solution of the approximation algorithm by doing
local search.

The basic idea of the heuristic is to take the set of n probes chosen
by the approximation algorithm, find the largest set of probes whose in-
tervals intersect i.e. a maximum clique of the interval graph induced by
the intervals of the probes, and try to swap each probe in the set to an-
other candidate of the corresponding gene. Finding a maximum clique and
swapping the corresponding probes is iterated until no useful swap can be
found. A maximum clique can be easily found by modifying the technique
for coloring an interval graph (presented in Section 3.1).

Let ω denote the size of the maximum clique of the interval graph IS

induced by the intervals of the currently selected probes S at any step of
the algorithm. In the beginning S is the solution of the approximation
algorithm. The algorithm tries to decrease the size of a maximum clique
by trying to swap each probe p in the clique for another candidate q of the
same gene.

First the heuristic swaps the probe p for another candidate q if the
interval of the new probe I(q) intersects fewer intervals of probes in S \ p
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than the old one I(p). In other words, swapping decreases the size of a
maximum clique of IS to ω − 1 without creating another of the size ω.
After updating the set S, the algorithm finds a maximum clique of the new
interval graph IS and tries again to find a swap. When no such single swap
is possible any longer, the heuristic swaps if the swap creates a new clique
of size ω and there is a single swap for this new maximum clique. After
each such double swap, the heuristic checks again whether a single swap can
be done in the new set of probes and continues searching for swaps until
neither a single swap nor a double swap is possible.

The heuristic has polynomial worst-case running time. The number
of swaps is bounded by O(n2) because every swap decreases the size of a
maximum clique by one. Thus n swaps must decrease ω by at least one and
ω is at most n in the beginning. A single swap takes time O(n|C|) where
|C| is the size of the candidate probe set because a maximum clique can be
found in O(n) time but when searching a pair of probes for the clique that
can be swapped, the number of intersecting intervals has to be computed
for O(|C|) candidate probes. A double swap tries to do a single swap for
at most |C| − n probes and thus takes time O(n|C|2). Remembering that
|C| < mn gives the total worst-case running time of the heuristic O(m2n5).
In practice, when the solution of the approximation algorithm is used as
starting point, the heuristic takes negligible time compared to the other
steps in the experiment design.

As shown in test results the greedy heuristic has helped to save one
crucial pool when designing a small experiment with PCR probes. However,
it has not improved the solution of the approximation algorithm when the
task has been to pool probes for all genes in a genome. Also, we have
another trick for oligo probes but since that also involves the selection of
candidate probes, we will discuss that later in Section 5.2.

3.6 Partitioning into pools according to size and
hybridization temperature

So far in this chapter we have assumed that the probe size is the only
feature determining which probes can be in the same pool. The assumption
is valid if the candidate probe set has been constructed so that all the probe
candidates can be hybridized in the same temperature. However, in some
cases it is sensible to use existing probes that others have already been
using successfully. For example, when profiling bacterial populations with
TRAC one can use known bacterial species-specific hybridization probes
from databases. In this case, the suitable hybridization temperatures of
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the probes may vary so much that it has to be taken into account when
dividing the probes into pools. On the other hand, there is only one probe
for each gene, thus selecting the probe is not a problem.

The input of the computational problem is a set of n probes and a
length interval Il(p) for each probe p as defined in Section 3.1. In addition,
every probe has an acceptable hybridization temperature interval IT (p). We
assume that the temperature intervals are such that no interval properly
contains another. Two probes, p and q can be in the same pool if their sizes
are separable i.e. Il(p) ∩ Il(q) = ∅ and there is a temperature interval in
which both can be hybridized i.e. IT (p) ∩ IT (q) 6= ∅. If all pairs of probes
in a pool satisfy the pairwise condition on the temperature intervals, there
is a temperature point that is acceptable for all probes in the pool. As
before, the goal is to partition the probes into a minimal number of pools.

2D Probe Partition (2D PP): Let C be a set n probes. Partition the
probes into a minimal number of disjoint sets S1, S2, . . . , Sk and attach a
real number Tj to each set Sj so that i) each subset is a pool i.e. Il(p) ∩
Il(q) = ∅ whenever p, q ∈ Sj , p 6= q and ii) Tj is an acceptable hybridization
temperature for all the probes in the pool i.e. Tj ∈ IT (p) for all p ∈ Sj .

The problem has an intuitive geometric interpretation shown in Figure
3.7. We borrow the idea from closely related t-union graphs discussed by
Bar-Yehuda et al. [BYHN+02]. Think that each probe p corresponds to a
box such that its projection on the x-axis is Il(p) and its projection on the
y-axis is IT (p). Now, two probes p and q can be in the same pool if the
projections of their boxes intersect on the y-axis but do not intersect on
the x-axis.

Note that 2D PP can be solved efficiently if only length or temperature
is considered. The case of only length intervals was shown in Theorem 3.1.
If only temperature intervals are considered, the task is equivalent to finding
a minimum clique cover of the interval graph induced by the intervals IT (p)
(in fact Golumbic has this as an example in his book [Gol80, page 182]). A
clique cover of graph G = (V,E) of size k is a partition of vertices V into k
disjoint subsets such that each subset is a clique. A minimum clique cover
of an interval graph can be computed in time O(n log n) given an interval
representation of the graph with n intervals [GLL82].

We derive a simple greedy algorithm for 2D PP that has an approxima-
tion ratio 2. It is based on the same techniques we have used in the previous
sections. First, divide the probes into groups as was done in the approx-
imation algorithm for PA (Algorithm 2) but do it based on temperature
intervals. Sort the probes p in C into increasing order according to the left
endpoints of the temperature intervals IT (p). Let p1 be the first probe in
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Figure 3.7: The geometric interpretation of 2D probe partition. In this
case, probes p and q can be assigned into the same pool.

this order. Then let g1 be the set of probes q such that IT (p1)∩ IT (q) 6= ∅.
Then repeat the construction to get set g2 and so on, until the whole or-
dered set has been assigned to some gi, i = 1, . . . , s. Second, for each group
gi, partition the probes p in gi into a minimal number of pools according
to the length intervals Il(p) using interval graph coloring. Finally, attach
to every pool constructed from the group gi a hybridization temperature
from interval IT (p1) ∩ IT (pe) where p1 is the first and pe the last probe of
the group. Take the resulting pools and hybridization temperatures as the
solution of 2D PP instance. Let us call this procedure Algorithm 3.

Theorem 3.6 Algorithm 3 finds a solution for the 2D PP problem with at
most twice as many pools as in the optimal solution. The algorithm runs
in time O(n log n).

Proof. Sorting the endpoints of the temperature intervals and construct-
ing the groups can be done in time O(n log n). Partitioning a group gi

into pools takes time O(|gi| log |gi|) (Theorem 3.1). Since the groups are
disjoint, the total time of the partitioning is bounded by O(n log n).

The correctness of the algorithm follows from Lemma 3.4 and the ap-
proximation ratio from Lemma 3.5 below. 2

Lemma 3.4 Algorithm 3 produces a feasible solution for the 2D PP prob-
lem.
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Proof. The length intervals of the probes in the same pool cannot inter-
sect because only probes that belong to the same group can be assigned to
the same pool and the probes in each group are assigned to pools according
to a coloring of the interval graph induced by their length intervals.

The probes in the same pool have a common acceptable hybridization
temperature because they also belong to the same group. Let the group be
gi. The algorithm chooses the hybridization temperature Tj for all pools
constructed from gi from the interval IT (p1) ∩ IT (pe) where I(p1) has the
smallest left endpoint and I(pe) the largest left endpoint of all temperature
intervals of the probes in the group. The temperature interval IT (q) of a
probe q ∈ gi \ {p1, pe} must contain Tj because otherwise IT (p1) properly
contains IT (q) which was not allowed. 2

Lemma 3.5 If an optimal solution of the 2D PP problem uses c∗ pools,
Algorithm 2 uses at most 2c∗ pools.

Proof. Let Podd be the set of probes in the odd-numbered groups, i.e.
Podd = {p | p ∈ gi, i is odd},and let Peven be the set of probes in even-
numbered groups i.e. Peven = C \ Podd. Let codd (ceven) be the number of
pools in which the optimal solution assigns probes in Podd (Peven). Natu-
rally, the optimal solution uses in total at least max(codd, ceven) pools.

On the other hand, Algorithm 3 assigns the probes in Podd (Peven)
into at most codd (ceven) pools because the interval graph coloring scheme
used for each group is optimal and two probes p, q ∈ Podd (similarly for
Peven) can be assigned into the same pool only if they are in the same
group. In order to prove the latter statement, assume the contrary: p is in
gi and q in gj where j ≥ i + 2 and IT (p) ∩ IT (q) 6= ∅. Then IT (p) must
properly contain the first interval of the group gi+1 because the groups were
constructed so that the first interval of the group gi+1 does not intersect
IT (q). But that is a contradiction because we assumed that no temperature
interval properly contains another. Thus, Algorithm 3 uses in total at most
codd + ceven ≤ 2 max(codd, ceven) ≤ 2c∗ pools. 2

Note that Algorithm 3 also gives a nontrivial lower bound for the num-
ber of pools max(codd, ceven) to which the size of the solution given by the
algorithm can be compared. Another useful property of the algorithm is
that it chooses one common hybridization temperature for all the pools con-
structed from the same group. In fact, using similar arguments as in the
proof of Lemma 3.5 one can show that the solution given by Algorithm 3
has at most twice as many different hybridization temperatures as any fea-
sible solution of 2D PP. Having a large number of different hybridization
temperatures would complicate performing the experiment in a laboratory.
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We have not implemented Algorithm 3. Thus, the real practicality of the
approach is yet to be tested.

3.7 Conclusion

There are open combinatorial problems in the topics covered in this chapter
that could warrant some additional research. The probe assignment prob-
lem can be seen as a restricted minimization version of the JISP problem
introduced in Section 3.2. If a practical approximation algorithm could be
derived for the general minimization version of JISP, such an algorithm
could be useful in multiplexing microsatellite markers.

We do not know whether 2D probe partition is an NP-hard problem.
It would also be interesting to know whether 2D PP can be approximated
within a constant factor if more than one candidate probe is allowed for a
gene. For all of these problems, related work can be found from scheduling
literature [ES03, BYHN+02].
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Chapter 4

Software for TRAC experiment
planning

In this chapter, we introduce the Tracfinder software that we have devel-
oped for selection and pooling of TRAC probes. We start by presenting
the functionality that the program provides. After that we describe the
external tools that we have used in the implementation of the software.

4.1 Functionality

We have tried to implement the Tracfinder program so that it is flexible
enough to be used for various TRAC probe selection and pooling tasks. The
software can be used to select both PCR based and oligo probes. It can
select probes for all genes of the genome or for any given subset of genes.
The user can also use the program to divide existing probes into pools or to
just list a large set of candidate probes together with their properties like
GC-content and melting temperature. The program is quite flexible in the
sense that these tasks can be mixed: The user can give her own old good
probes for some of the profiled genes and let the program find new probes
for the rest of the genes. The program computes properties of old and new
probes and pools them together.

The Tracfinder program is used from the command line. The user spec-
ifies probe requirements, sequence files containing both target and non-
target sequences, and other parameters in a configuration file. FASTA
formatted files are used for gene sequences and EMBL genome files for
entire genomes. The program then fully automatically searches for probe
candidates that meet the requirements as described in Section 2.4 and di-
vides them into pools if pooling was requested by the user. Finally the

53
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program writes the probes (oligo-TRAC) or primers (PCR-TRAC) in each
pool into standard output.

The parameters of the program include requirements for probe speci-
ficity and sensitivity discussed in Sections 2.2 and 2.4 and electrophoresis
length range and resolution. There are also several parameters that allow
the user to control the maximum number of candidate probes in different
stages. These parameters are needed because for a large number of profiled
genes or for large genomes it is currently not feasible to test all possible
candidate probes. However, the program can also go through all possible
oligo probes if that is requested.

There is one important parameter that has not been discussed yet.
Often the probe sequence should be chosen so that it is close to the 3’ end
of the gene if possible because of the risk of RNA degradation [AJL+02].
Since the biotin label is often attached to the Poly-A tail of the mRNA, the
closer the probe binding site is to the 3’ end, the smaller is the risk that the
mRNA is cut between the label and the probe binding site. If the mRNA is
cut between the probe binding site and the biotin label, it is not detected.
Tracfinder allows the user to specify how far the probe binding site can be
from the 3’ end as percentage of the transcript length. In the context of the
experiments (Chapter 5), we will discuss many of the parameters in more
detail and provide examples of how we have used them in different cases in
order to find a good experiment plan.

The source code of the Tracfinder program is available at the following
WWW-address:

http://www.cs.helsinki.fi/research/fdk/programs/tracfinder.

4.2 Implementation

The Tracfinder program is a Perl script that uses several external programs
and libraries to perform various subtasks. We have tried to select tools that
are well-documented and also used by others. The external tools used at
each step are shown in the flow chart given in Figure 4.1. So far Tracfinder
has only been used in Linux but moving to another Unix platform should
be straightforward.

All the handling of sequences such as the parsing of sequence files is done
with the aid of the BioPerl toolkit [SBB+02]. The description of the probe
selection procedure in Section 2.4 includes the programs used at each step
but for completeness we also list them here. REPuter [KCO+01] program
developed at the University of Bielefeld is used for finding exact repeats.
The primers for PCR-based probes are selected by program Primer3 by
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Figure 4.1: The flow chart of the Tracfinder program and the external
programs used in each step.

Rozen and Skaletsky [RS98]. The approximate string matching tasks are
solved with Myers’ own implementation of his algorithm [Mye99] (Myer-
grep). The hybridization energies and melting temperatures of probes are
computed with the aid of the program Melting by Le Novère [Nov01]. The
Vienna RNA package [HFS+94] developed at the Institute for Theoretical
Chemistry of the University of Vienna computes the secondary structures
of RNAs and their energies. Finally, as described in Section 3.5, the probe
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assignment algorithm is implemented using a network flow solver [CG97]
by Cherkassky and Goldberg.

4.3 Conclusion

As can be seen from the flow chart in Figure 4.1, the current structure of
Tracfinder is simple: The initial candidate probes go through a series of
checks until only those are left that fulfill the requirements specified by the
user. These probes are then assigned into pools. If none of the initial probe
candidates of a gene pass all the checks, no probe is returned for the gene.
It might be useful to have an iterative structure that allows producing a
new set of candidate probes for a gene if the first set fails.

Currently, if the program does not find probes for all profiled genes, the
user can run the program again and give the good probes already found
as a part of the input. On this second run, the user can relax the re-
quirements or produce more candidate probes for the uncovered genes. For
small sets of profiled genes this strategy works quite well (an example is
given in Section 5.3). For large-scale applications, it would be useful if the
program could automatically cluster the homologous genes for which no
specific probe can be found and pick a common probe for each cluster.



Chapter 5

Experiments

In this chapter, we describe four cases in which we have used the program
to find probes and to pool them. The cases hopefully illustrate the diver-
sity of the experiment-planning tasks. We will also describe some additions
to the computational methods that we have done in order to better adapt
to different situations. We aim to show on one hand that the computa-
tional tasks are not trivial and on the other hand that the algorithms and
the program can solve them. All the experiment plans described in the
next sections have been done in co-operation with biologists from VTT
biotechnology.

5.1 Profiling yeast genes

The purpose of the first set of tests was to demonstrate that from a com-
putational point of view TRAC is a feasible technique for genome-wide
profiling. The aim here is a proof of concept. If a genome-wide experiment
would actually be done, some additional tuning of parameters would prob-
ably be needed as we shall see with the smaller sets of genes. We used the
yeast Saccharomyces cerevisiae genome as the target genome. We tried to
find PCR-based probes for 6132 genes (all CDS with gene qualifier). The
length of the adapters, 32 bases, was added in all probe lengths, resulting
in length range 72..478 bases. Additionally, we set Primer3 so that it first
tries to find probes whose length is near the upper limit in order to also
get long probes into the candidate set. The parameters are summarized in
Table 5.1 (the last three specificity parameters are described in detail in
Section 2.4). Other Primer3 parameters were kept in their default values.
The results are shown in Table 5.2.

We tried two values, 5 and 20, as the maximum number of candidate
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Table 5.1: Parameters for candidate probe selection.
Probe size 72..478 bases
Primer size 19..24 bases
Primer melting temperature 62..67�
Primer optimum temperature 66�
Maximum number of candidate probes N 5/20
Maximum primer distance α 5000 bases
Maximum length of common substring l 15 bases
Minimum differences β and β′ 0.2

probes per gene generated in the primer selection phase. In the larger one
of the two searches (20 candidate probes per gene) we found at least one
candidate probe for 87% of the genes. About 4% of the genes were already
lost in the repeat filtering phase (step 1 in the description of Section 2.4).
An additional 3% were lost in the primer selection phase (step 2) and 5%
in the final specificity checking phase (steps 4 and 5). The search took
170 hours (about a week) from which over 169 hours was taken by the
specificity checking phase (steps 4 and 5). The tests were run on a 1.4GHz
AMD Athlon PC with 1.5GB main memory.

We were able to find a probe that fulfilled all requirements for 87%
of the yeast genes. Only coding sequences were used. One might be able
to find more probes if 3’ UTR sequences (untranslated regions) were also
available. The rest of the genes could be clustered according to sequence
similarity and each homologous cluster of genes could then be probed as
one unit. It should be noted that the 87% coverage is computational, not
biochemical. The TRAC method described does not biochemically differ
from other hybridization-based assays in its capacity to resolve different
gene expression products.

Next we ran the probe assignment for these candidate probe sets with
two different length resolutions. These results are also given in Table 5.2.
We do not know the optimal solutions for these probe assignment instances
but the approximation algorithm for probe assignment (Algorithm 2, Sec-
tion 3.4) gives as a by-product a lower bound kmin for the minimum number
of pools. Comparing the solutions found by the algorithm and the lower
bounds, we see that the approximation algorithm used in all cases less than
1.3 times the optimal number of pools and once even found an optimal so-
lution. The post-processing heuristic (Section 3.5) was not able to improve
the solutions given by the approximation algorithm. The probe assignment
took in all cases less than 6 minutes. Thus, the assignment takes a negli-
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Table 5.2: Results with the yeast genome
Na Coveredb Probes Length resolution

1% or 2 basesc 1.3% or 3 bases
5 4961 (81%) 12283 Poolsd: 52 Pools: 87

Lower bounde: 52 Lower bound: 78
Minimumf: 32 Minimum: 46

20 5334 (87%) 53516 Pools: 40 Pools: 65
Lower bound: 36 Lower bound: 51
Minimum: 34 Minimum: 49

aMaximum allowed number of candidate probes per gene.
bNumber of genes for which at least one candidate probe was found by Algorithm 3.
cThe length difference function was d(l) = max(0.01l, 2).
dNumber of pools used by Algorithm 2.
eLower bound kmin of the number of pools for the given set of candidate probes.
fThe (theoretical) minimum number of pools necessary for the given length range and

resolution (calculated by dividing the number of covered genes by the maximum number
of probes that one could fit into one pool if all probe lengths were available).

gible amount of time compared to the selection of candidate probes. The
results also demonstrate the importance of producing enough candidate
probes per gene so that assignment to pools can be done as efficiently as
possible.

In principle, about 100..150 probes can be packed into one pool (or
multiples of that if several labels are used) depending on the range and
resolution of the electrophoresis. Hence, theoretically a small bacterial
genome could be condensed to 20 or less pools while higher eukaryotes
(30,000 genes assumed) would require about 300 pools.

It is difficult to pack all pools full of probes because of the difficulty to
find a sufficient number of specific probes whose length is near the upper
limit of the electrophoresis. The small number of long probes results from
the second part of our specificity definition that prohibited common sub-
strings with other gene sequences (Section 2.4). As shown in Figure 5.1, at
least 15 bases long repeats split the yeast genes into short fragments. Since
the probes have to be selected from these fragments, this seriously limits
selection of long probes. On the positive side, this verifies that masking
the repeats first is an efficient way to concentrate the probe selection to the
most promising areas. Without repeat filtering, we would waste a lot more
time on probes that are not specific according to our definition.

Nevertheless, our results show that it is possible in practice to assign
on average more than 80 probes into one pool with quite a moderate elec-
trophoresis resolution (1.3% or 3 bases) or more than 130 probes with a
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Figure 5.1: The length distribution of unique fragments of yeast genes.
A unique fragment of the gene sequence is a fragment that includes no
substring longer than l = 15 bases that is a common substring with another
gene sequence. The average length of unique fragments is 135 bases. Only
fragments that are long enough to contain a probe are considered.

somewhat higher resolution (1% or 2 bases). This means that the mRNA
levels of all the yeast genes could be profiled using one 96-well plate.

We have also designed a smaller set of yeast probes for laboratory test-
ing. The set consisted of 80 target genes. The requirements for probes
were identical to the ones given above except for two modifications. The
first laboratory tests hinted that some of the primers did not bind well
enough. Thus, we added the Primer3 parameter GC-clamp that allows the
user to require the specified number of consecutive Gs and Cs at the 3’ end
of primers and set its value to two. In addition, we produced up to 200
candidate probes per gene.

We were not able to find a probe for 5 of the 80 genes. All 5 were such
that we did not find even initial candidates for them. The candidate probe
set for the rest of the genes (75) was successfully assigned into one pool with
resolution d = max(0.013l, 3) for probes of length l. The post-processing
heuristic (Section 3.5) was needed to reduce the number of pools from two
to one. In fact, this application was the one that indicated the need for
such a heuristic.

From the 75 probes 20 have been tested in the laboratory so far (Kari
Kataja, personal communication). After the GC-clamp modification, primers
amplified the probe sequences well. Unfortunately, 4 of the 20 primer pairs
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also amplified an additional PCR product, two pairs to such extent that
they have been rejected. It is not clear yet whether these additional prod-
ucts are the result of a failure in the experiment design. One problem has
been that the factory-made primers have not been pure i.e. many of the
primers have incorrect sequences.

The amplified probes themselves produced a linear signal response to
the amount of the target molecule in the sample. The experiment design
is not responsible for the sensitivity of the probes since in this case it did
not include any sensitivity-related requirements. The result merely shows
that long probes are sensitive in TRAC and the experiment design does not
lack vital sensitivity requirements. This is good news because predicting
thermodynamic properties of several hundred base pairs long nucleic acids
would be a daunting task.

So far the specificity of these probes has not been tested. The linear
signal response has been shown by diluting a complex sample in which the
original amounts of different molecules are unknown. So the experiment
does not give direct evidence of the specificity of the hybridization.

5.2 Oligo probes for a set of fungus genes

Tracfinder has been used to design several sets of probes for the filamen-
tous fungus Trichoderma reesei which is widely used in industrial enzyme
production. As an example, we describe a design for a set of 17 genes. For
6 of them there was already a probe that had been tested and was known to
work well. Thus, the task was to find new probes for the 11 new genes and
pool all the probes together. The experiments would be done using 23..40
bases long oligonucleotide probes. A length difference of at least 2 bases
was needed to separate two probes. The aim was to fit the experiment into
two pools. As at most 9 probes can be put to one pool with this length
range and resolution, all slots except two had to be filled. In addition,
the probes were expected to fulfill fairly stringent requirements concerning
sensitivity, specificity, and melting temperature.

The sequence data that we used consisted of 8623 predicted transcripts
of the newly sequenced T. reesei genome. Unfortunately this data set does
not yet cover all genes of the organism since T. reesei is expected to have
11, 000..14, 000 genes. It took a few iterations to find probe requirements
that were stringent but such that all profiled genes had at least one probe.
The final parameter values used in the experiment design are summarized
in Table 5.3. The thermodynamic parameters are described in Section 2.2.
The values of these parameters have been chosen according to the tests
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Table 5.3: Parameters of the T. reesei design
Probe size 24..40 bases
Probe from 3’ end 0.6
Electrophoresis resolution d 2 bases
Sodium concentration 0.75 mol/l
Nucleic acid concentration 1.0× 10−8mol/l
Minimum melting temperature Tm 55�
Maximum melting temperature Tm 70�
Hybridization temperature 60�
Maximum hybridization free energy change -15 kcal/mol
Minimum target free energy change -10 kcal/mol
GC-content 38..62%
Maximum length of common substring l 15 bases
Minimum difference β 0.2

that are also described in Section 2.2.
Unfortunately the approximation algorithm and the post-processing

heuristic were not able to consistently assign the candidate probe sets into
two pools but often used three. The solution was simple. Since the pools
have to be almost full, the length difference of two consecutive probes has
to be two nearly always. Thus we produced all possible candidate probes
of odd length and no candidate probes of even length. This scheme has the
benefit that the probe assignment algorithm can assign the resulting candi-
date probe set into an optimal number of pools because two probes either
are of the same length or can be put into the same pool (see Section 3.3).

In Figure 5.2 we have shown all the candidate probes of odd length that
fulfilled the requirements classified according to the gene and length. Even
though the total number of candidate probes is high, they are not evenly
distributed between different genes and lengths. For example, in addition
to the six genes that have an old probe, there is one other gene that has
only one candidate probe. There are very few candidate probes of length 23
or 25. In fact, over 80% of the 23..31 bases long candidate probes failed the
second specificity requirement (edit distance) which highlights the difficulty
of finding specific probes of this length. Nevertheless, this candidate probe
set is such that it fits into two pools which was the original goal of the
experiment design. In addition, all probes in the set have sufficiently similar
melting temperatures even though their lengths differ considerably. The
fact that such probes can be found is crucial for the oligo-TRAC analysis.

The computation of candidate probes took about 13.5 hours on a 2.6GHz
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Figure 5.2: T. reesei candidate probes classified according to the gene and
length. Genes are ordered according to the total number of probes. Black
squares mean that the gene does not have any candidate probes of that
length (if there were no black squares, probe assignment would be trivial).
Only odd-length probes were searched. The first six genes have a probe
specified by the user.

Intel Pentium 4 PC with 1GB main memory. About 85% of the process-
ing time was consumed by the computation of target secondary structure
energies. Assigning the probes into pools took about a second. This demon-
strates that when designing a small experiment, it is feasible to go through
all possible candidate probes (as we checked half of them) though taking the
target secondary structure into account can make the computation fairly
slow.

The set of profiled genes in the experiment was so small that even man-
ual assignment to pools would be possible. However, the above automatic
scheme has at least one advantage. The candidate probe set was produced
in such a manner that the probe assignment algorithm guarantees the min-
imal number of pools for the set. This is convenient in practice because
one always knows that the only way to reduce the number of pools is to
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change the candidate probe set.
The three T. reesei pools that have been tested in the laboratory are

described in Table 5.4 (data from Jari Rautio). Neither of the pools de-
scribed above has been used directly but some additional modifications
have been done before the tests. In the tests, T. reesei samples from dif-
ferent conditions were analyzed with TRAC and the results were compared
to Northern blots and data available from other sources. The results of the
comparisons are also given in Table 5.4. There are a few genes that have
a low signal compared to the background (average signal/noise ratio). For
these genes it is not known whether the gene should be expressed in these
conditions. So, it is not clear whether the probes have failed.

The comparison to the conventional Northern blot analysis [AJL+02]
is notable because in Northern blot analysis cross-hybridization should not
be a significant problem. Thus, the fact that the TRAC analysis is in
good agreement with Northern blots gives evidence that the probes de-
signed with Tracfinder are specific. As an example, one of the probes that
were designed manually before the genomic data was available showed clear
cross-hybridization when compared to the Northern blot. This problem dis-
appeared when the probe was replaced with a probe that was designed using
the genomic data and Tracfinder.

Finally, the tests with pools that have several probes have indicated that
the length of the probe does not always predict its migration in capillary
electrophoresis with sufficient accuracy. Thus, a more complex measure
might be needed for the size of the probe. Fortunately, our probe assign-
ment algorithms can be used also with other measures of probe size.

5.3 PCR probes for a set of human genes

We have recently started the experiment design for 32 human genes. The
goal is to design an assay for cancer diagnostics. The probe pool has not
yet been tested in the laboratory.

One of the requirements is that the probes can be amplified by PCR
from genomic DNA. Most human genes are available as cDNAs which sim-
plifies the production of probes. A cDNA is a DNA copy of the mRNA
molecule and thus lacks the introns. Unfortunately, for some of the genes
in this set there is no cDNA easily available. The length of the probes
should be 150..1000 bases (that includes adapters at both ends, so the spe-
cific sequence fragments should be 114..964 bases) and the differences in
probe lengths fairly large: we have used the resolution d = max(0.02l, 7)
for probes of length l i.e. 2% of the length of the probes but at least 7 bases.
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Table 5.4: T. reesei pools, data from Jari Rautio
Gene Sa Nb Mc Length Ac dG Tm Pd

Pool I
1 act 13 x x 23 -7.8 -15.3 63.7
2 mca1 4 25 -5.0 -16.6 65.7 x
3 bip1 10 x x 27 0.0 -13.1 59.9 x
4 hem6 4 x 29 -9.2 -16.4 64.5 x
5 trr1 3 31 -2.0 -16.4 64.0 x
6 hsp70 6 33 -9.3 -16.4 63.9 x
7 rps16b 7 x 35 -9.9 -22.9 70.0 x
8 gsh1 1 37 -3.8 -19.6 66.8 x
9 acs1 3 x 39 -7.9 -22.0 69.0 x
10 AP1 N/A x 41 -8.0 -21.9 68.0 x

Pool II
1 cbh1 268 x x 25 -11.6 -12.3 58.7
2 egl1 27 x x 27 -3.4 -14.0 61.4
3 sod2 3 29 -8.3 -20.4 69.7 x
4 hac1 N/A x x 31 -1.7 -23.7 75.2 x
5 pdi1 13 x x 33 -4.5 -18.6 66.7 x
6 MaL 108 x 35 -2.4 -17.1 64.1 x
7 trx2 6 39 -10.0 -22.2 68.8 x
8 bgl2 5 41 -9.8 -21.9 68.4 x

Pool III
1 eno 2 x 25 -9.2 -16.1 64.7 x
2 rpl16A 6 x 27 -4.9 -19.5 69.3 x
3 gpd1 8 x 29 -0.5 -19.9 69.4 x
4 hsp30 77 31 0.0 -20.4 69.3 x
5 gap1 8 33 -3.2 -21.6 69.9 x
6 orp1 3 x 37 -3.1 -19.6 67.0 x
7 cpa2 2 39 0.0 -20.9 68.5 x
8 nsf1 14 x 41 -5.4 -22.6 69.0 x
9 arg1 2 43 -1.9 -21.8 67.6 x

aAverage signal/noise ratio in steady state conditions.
bMeasured expression level changes between different conditions are consistent with

Northern blot analysis of the same conditions (data not shown). For those not marked
with x no data of Northern blot comparison is available.

cPrediction based on yeast microarray data or published data on expression responses
of respective genes in T. reesei or other organisms. For those not marked with x no
comparable prior data is available.

dThe probes marked with X were selected using Tracfinder.
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Naturally, only one pool should be used. In theory one pool could include
78 probes with this range and resolution. However, this kind of packing
is hard to achieve because of the lack of long probes. Long fragments of-
ten include common substrings with other genes and human genes usually
consist of several exons. Since the probes will be amplified from genomic
DNA, we have to be careful not to choose probes that cross exon/intron
boundaries.

Our sequence data set consisted of 27,176 human transcripts (all mRNA:s
with gene tag parsed from NCBI build 34, version 3). We did not aim to
separate different transcripts of the same gene from each other. So, the
other transcripts of the same gene as the target transcript were not included
in the non-target set. Additionally, we have not checked the specificity of
the PCR primers. In this case there are laboratory techniques that allow
removal of additional amplified fragments if some of the primers are not
specific. The large size of the human genome would have made primer
checking very time consuming. However, we tried to keep the size of the
largest allowed common substring smaller than the minimum primer size.
This guarantees that no non-target gene contains an exact match of both
primers.

Based on some test runs, we concluded that the same set of parameters
cannot be applied to all genes. The parameters used to select probes for
the majority of genes (24) are summarized in Table 5.5. For six genes we
allowed the probe to be selected closer to 5’ primer end (80% of length
from 3’ end allowed instead of half) in order to find probes that fulfilled
the other requirements. The last two genes were also different: one had so
much A and T that we could only find a probe whose GC-content was 35%,
the other was so similar to the other genes of its family that we could not
find a gene-specific probe.

Naturally, it would be better if all probes would fulfill exactly the same
requirements. Still, it is positive that we could apply the same quite strict
specificity requirements to all genes except one. The maximum length of
common substring was 3 bases longer than we have used previously but the
probes are also significantly longer. On the other hand, we have made the
other specificity criterion (edit distance) more stringent than before. The
described set of probes was successfully assigned into one pool.

5.4 Conclusion

Hopefully we have been able to demonstrate that we are able to produce
efficient TRAC experiment designs that do work in the laboratory. In our
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Table 5.5: Parameters of the experiment design for the human genes
Probe size 150..1000 bases
Probe from 3’ end 0.5
Electrophoresis resolution d max(0.02n, 7)
Primer size 19..24 bases
Primer melting temperature 62..67�
Primer optimum temperature 66�
Primer GC-clamp 2
Maximum primer distance 5000
Maximum number of candidate probes N 100
GC-content 40..60%
Maximum length of common substring l 18 bases
Minimum difference β 0.25
Maximum number of probes 200

opinion, Tracfinder software is comparable to any microarray probe selec-
tion system listed in Section 2.3 in terms of finding specific and sensitive
probes. In addition, the program is able to divide the probes into small
number pools.

Even though the program has been flexible enough to cope with different
kinds of designs with small modifications, there is also need for further
improvement. The Tracfinder program was originally designed to select
probes for all the genes of fairly small genomes such as yeast. Now the
main application seems to be designing small probe sets for all kinds of
genomes. The program should be modified to support this kind of use
better. In addition, the emphasis has so far been on implementing the
necessary functionality and not on the speed of the program which could
be improved significantly.

At the moment the program checks the specificity of primers using edit
distance as it does for the whole probe. This probably is not an ideal
solution. First, running Myers’ algorithm takes lots of time when there is a
large amount of non-coding DNA such as in the human genome. Second, in
PCR the binding of the 3’ end of the primer is especially important because
a primer can only start the polymerase reaction if its 3’ end binds. On the
other hand, the 5’ end of a primer can dangle freely and the primer can still
work. Thus, it might be better to use another measure for the specificity of
primers. For example one could check only the 3’ end of the primer using
either exact match or a small Hamming distance.

Naturally, the Tracfinder program has to be modified accordingly when
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we have more quantitative information of the sensitivity and specificity of
the probes designed.



Chapter 6

Transcriptional profiling when
complete sequence data is not
available

6.1 TRAC and cDNA-AFLP

Until now the aim has been to design experiments for profiling the transcrip-
tion of a set of known genes. In this chapter, we concentrate on the TRAC
procedure that also allows identification of previously unknown genes based
on their expression patterns. Despite the huge advances in sequencing ef-
forts, a vast majority of the organisms are not and will not be sequenced.
Even when a genome of an organism has been sequenced, annotating all its
genes is not straightforward. Thus, there is need for techniques that can
identify novel genes that play a role in the biological process studied. The
computational task is to make such experiments as cost-efficient as possible
by using the available incomplete sequence information.

Since the aim is to also identify novel genes, gene-specific probes cannot
be selected in advance. Instead, the basic idea of the technique is as follows.
The starting material is genomic DNA or a cDNA library of the target or-
ganism. Some biochemical techniques are then applied to cut the sequences
into fragments and to amplify and divide the fragments into small subsets.
The fragments and subsets are then used as TRAC probes and pools. As
before, the probes are hybridized with an mRNA sample and hybridized
probes are isolated and separated using gel or capillary electrophoresis.
Because of the missing sequence information, the correspondence between
resulting gel bands and the genes of the organism is largely unknown. How-
ever, if a band has an interesting pattern across the experiments (different
conditions or cell types), the band can be cut out from the gel and the probe
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can be sequenced. The probe sequence can then be used as a fingerprint
when the interesting gene is isolated in a laboratory.

The crucial question is how to produce the probes and pools without
prior sequence knowledge. The technique should be such that as many genes
as possible will have a probe that can be separated from other probes. On
the other hand, the number of pools and probes cannot be too high or
profiling becomes too expensive. One possibility is to use the same tech-
nique as in another transcription profiling method called cDNA-AFLP1.
Differential display methods [VHB+95, BvdHdB+96] such as cDNA-AFLP
[BDV+03, BDC+03, FTS+03] are among the few existing methods that
can be used on a genome-wide level to identify previously unknown genes
that have interesting expression patterns [BZ01]. Thus, in this chapter we
will provide computational tools for optimization of cDNA-AFLP but our
original motivation is to optimize TRAC pools when the complete genome
of the target organism is not known.

In cDNA-AFLP (cDNA Amplified Fragment Length Polymorphism) the
cutting into fragments and division into pools is done using restriction en-
zymes and selective PCR: cDNAs are digested with two different restric-
tion enzymes, adapters are attached to the specific ends of the resulting
fragments, and the fragments are amplified using primers extended with
additional selective nucleotides. Thus, for each selective primer pair only
the fragments whose ends match the primer extensions get amplified and
these fragments end up in the same pool. Finally, the fragments in each
pool are separated by electrophoresis.

In cDNA-AFLP, the whole procedure described above is repeated for
cDNAs produced from different mRNA samples and the resulting pools are
separated using gel electrophoresis. In TRAC however, the procedure is
only done once for the target organism and for as complete cDNA library
as possible to produce the fragments and their division into pools. The
fragments are then treated as TRAC probes that can be hybridized with
many mRNA samples of the same organism. Finally, the hybridized frag-
ments are run in gel electrophoresis. If the sequences of some transcripts
are available for the organism, their location on the gels can be predicted
and thus some bands can be readily identified and their expression patterns
recorded. On the other hand, an interesting yet unidentified band can be
sequenced and this way novel genes relevant for the biological process stud-
ied can be found.

TRAC has two potential advantages over cDNA-AFLP. A large part of

1Initially another method was considered but it was rejected partly because our com-
puter simulations showed it to be inefficient (data not shown).
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the work such as selective PCR has to be done only once and many parts
of the TRAC procedure can be automatized. Additionally, even though
cDNA-AFLP is a very sensitive method i.e. it can detect low abundance
transcripts [FTS+03], it is difficult to get accurate quantitative information
from it because the PCR amplification can distort the relative abundances
of fragments. The TRAC technique on the other hand is both sensitive and
accurate.

Unfortunately, the above procedure does not automatically lead to ef-
ficient profiling of a large number of genes. Only one pair of enzymes does
not in practice produce a fragment for every cDNA molecule in the collec-
tion that could be amplified and detected by electrophoresis. All fragments
from a given cDNA can be too long or too short or, if either of the enzymes
does not have a restriction site in a cDNA molecule, all fragments lack one
of the two specific ends needed for selective PCR. Additionally, several cD-
NAs having the same nucleotides next to the restriction sites can produce
fragments with the same length in which case these fragments end up in
the same gel band and consequently do not give any useful information.

Recently the cDNA-AFLP protocol has been improved to get at most
one fragment from each transcript [BZ01, BDC+03]. After the digestion
with the first enzyme, the 3’ ends of the cDNAs are captured and only they
are digested with the second enzyme leading to at most one fragment per
cDNA which has the specific ends of both enzymes. Obtaining at most
one fragment from each transcript reduces the redundancy of the fragment
pools and by reducing the total number of fragments it also reduces the
number of selected nucleotides needed for reasonable separation of bands on
the gels. Thus, we will concentrate on this variant of cDNA-AFLP which
we will call the 3’-variant, illustrated in Figure 6.1.

For the reasons given above the number of transcripts that can be pro-
filed with a given number of restriction enzymes and selective PCR amplifi-
cations depends crucially on the choice of restriction enzymes and selective
PCR primers. Although sequence information is not absolutely necessary
for cDNA-AFLP experiment design, it is extremely useful for designing the
experiment in such a way that the expression of as many genes as possible
can be measured with reasonable experimental effort. Even when the com-
plete transcriptome of the target organism is not known, there is often lots
of sequence information available that can be utilized in experiment de-
sign such as sequences of genes cloned from the organism, EST collections,
or a genome of a closely related organism. One reason for large amounts
of incomplete or inaccurate sequence data is that careful manual genome
annotation has trouble keeping up with the fast increase in raw sequence
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Figure 6.1: cDNA-AFLP with 3’ end capture [BZ01, FTS+03]. After the
digestion with first restriction enzyme, the biotin (B) labeled 3’ ends are
captured with the aid of streptavidin coated magnetic beads (M) followed
by the digestion with the second restriction enzyme and removal of the 3’
ends. Adapters have to be attached to the fragments to facilitate selective
PCR (the selective nucleotides are marked as N1, N2, N3 and N4).

data.
A computer simulation that uses the available sequence data provides a

simple and inexpensive possibility to explore different options beforehand.
Our method is based on simulating a cDNA-AFLP experiment in silico for
the known genome of a related organism or for a known part of the target
genome. The underlying assumption is that the real target genome has
roughly the same characteristics as the sequence data available. Thus, if
we can find efficient enzymes and selective primers for the given data, they
are also likely to work well on the real target.

At least two programs GenEST [QPJ+01] and AFLPinSilico (also a web
service) [RdPR03]) simulate cDNA-AFLP for one enzyme pair and a set of
sequences given as input. A web service [BMRG04] provides similar AFLP
simulations for a large number of bacterial genomes. In silico simulations
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have also been used to test the efficiency of potential enzyme pairs and
their combinations [BDC+03, FTS+03] before the actual experiment.

In the above methods the coverage of cDNA-AFLP is estimated simply
by counting for each enzyme pair the coverage of the fragments which
are in the length range of electrophoresis. The total coverage of several
enzyme pairs is estimated simply as the union of the coverages of the best
individual pairs. The question of the number of selective nucleotides needed
for reasonable band separation is treated as a separate issue even though the
idea of choosing the most informative combinations of selective nucleotides
has been mentioned [RdPR03].

Our main contribution is to treat choosing enzyme pairs and selective
primers together as one optimization problem. Our model explicitly takes
into account the selective PCR and the electrophoresis so that in an in
silico experiment only the bands that are sufficiently far apart from other
bands in the electrophoresis give information. That allows us to consider all
combinations of enzyme pairs and subsets of selective primers as possible
experiment designs. Unfortunately finding the most efficient experiment
design (the one that enables profiling the largest set of transcripts) from
the vast space of possible designs turns out to be an NP-hard optimization
problem. We device an optimal algorithm for the special case where only
one restriction enzyme pair is used and a heuristic algorithm for the general
case that carefully exploits the combinatorial structure of the problem.
Finally, we test the heuristic algorithm with several data sets. The tests
suggest that optimized selection of enzymes and selective primers could
save a significant amount of resources.

6.2 Pool selection problem

The goal of the optimization is to find an experiment design that enables
profiling as many different transcripts i.e. RNA products of genes as possi-
ble with the available resources. The most costly parts of the cDNA-AFLP
procedure are the running of electrophoresis gels and the manual extraction
and purification of fragments from them for sequencing. Also, using more
than a couple of different restriction enzyme pairs in an experiment would
be unpractical. For example, a specific primer has to be designed for each
enzyme.

In our computational model the cost of the experiment is the number
of pools. In this chapter a pool p is a subset of transcripts determined by
a triple (e1, e2, s) where e1 and e2 are restriction enzymes with specified
restriction sites and s = N1N2 · · ·Nl is a sequence of selective nucleotides
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Ni ∈ Σ, where Σ = {A, T, G,C}. The selective nucleotides can be attached
to either or both primers as long as the positions are fixed i.e. the sequence
s is a concatenation of two sequences: the selective nucleotides attached to
the left primer and the selective nucleotides attached to the right primer
(see for example Figure 6.1).

Including the pool p into an experiment means doing the following lab-
oratory work: the cDNA sample digested with the enzyme pair (e1, e2)
is amplified using primers matching the specific ends of the enzyme pair
(e1, e2) and extended with the selective nucleotides s. The pool p covers a
transcript t or t ∈ p if p can be used to profile t. The profiling is possible if
three conditions are met: i) the enzyme pair (e1, e2) produces a fragment
from t that is in the length range of electrophoresis, ii) the fragment has
the Watson-Crick pairs of nucleotides s in the selective positions, and iii)
p produces no other fragments of the same length so that the fragment of
t can be identified from the gel.

The number of the pools approximates well the amount of resources
needed in the experiment as long as we do not use too many different
enzyme pairs. Thus, we want to maximize the total coverage of the experi-
ment with a given number of pools and enzyme pairs. We get the following
optimization problem (we denote the set of all sequences from the alphabet
Σ by Σ∗).

Pool selection: Let T be a collection of transcripts, E a set of restric-
tion enzymes with specified restriction sites, [dmin, dmax] an electrophoresis
length range, and P the set of all pools each determined by a triple from
the set E × E × Σ∗. Additionally, let k and n be positive integers. Select
from the set of all pools P at most n pools that use at most k different
enzyme pairs such that the pools cover as many transcripts as possible.

In practice we also restrict the maximum number of selective nucleotides
in a primer pair to some small value l. Then each individual pool can be
easily computed as a preprocessing step. However, finding a set of pools
maximizing the total coverage is not as easy. We say that an algorithm
approximates pool selection within a ratio of α < 1 if the number of tran-
scripts covered by the algorithm is at least α-fraction of the number of
transcripts covered by the optimal solution. We prove the following theo-
rem. In the theorem, e = 2.71828 . . . is the base of the natural logarithm.

Theorem 6.1 For any ε > 0, pool selection cannot be approximated in
polynomial time within a ratio of (1− 1/e + ε) unless P = NP.
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Proof. Theorem 6.1 follows from the strong inapproximability result for
max k-cover that Feige gave in his seminal paper on approximating set
cover [Fei98] and from Lemma 6.1 given below. 2

Max k-cover: Let U be a set of m points, C = {C1, C2, . . . Cz} a collection
of subsets of U , and k a positive integer. Select k subsets from C such that
their union contains as many points as possible.

Proposition 6.1 (Feige) For any ε > 0, max k-cover cannot be approxi-
mated in polynomial time within a ratio of (1− 1/e + ε) unless P = NP.

Lemma 6.1 If pool selection can be approximated in polynomial time within
some ratio of α, where 0 < α ≤ 1, max k-cover can also be approximated
within the same ratio.

Proof. Let us consider the special case where no selective PCR is done
but we assume that two fragments are separable from each other if and only
if they are of different length. Thus, the pool selection reduces to selecting
k pools with k different enzyme pairs. Denote the sequence of nucleotides
that starts from position i and ends at position j in transcript t by t[i..j].
Also, denote the sequence of nucleotides that specifies the restriction site
of an enzyme e by r(e).

We aim at mapping any max k-cover instance to a pool selection in-
stance in such a way that a solution for the latter can be used to provide
a solution with at least the same approximation ratio for the former. Set
the electrophoresis length range to [m, 2m]. For each subset Ci ∈ C, add
two new enzymes ei1 and ei2 with no nucleotide A in their restriction sites.
Choose the length of the restriction site to be m + 1 because that enables
constructing the required number of ≤ 2z unique restriction sites since
3m+1 > 2m+1 ≥ 2z.

For each point uj ∈ U , j = 1, . . . ,m, add a transcript tj . Construct the
sequence of the transcript tj as follows (see also Figure 6.2). For each subset
Ci ∈ C such that uj ∈ Ci, set tj [5mi..5mi + m] = r(ei1) and tj [5mi + m +
j..5mi + 2m + j] = r(ei2). Fill the rest of the sequence with nucleotide A.
The total length of the sequences is < 5m2(z+1) and the whole construction
can be done in polynomial time.

It is easy to verify that the sequences and enzymes constructed have the
following desired properties. The enzyme pair (ei1, ei2) produces a fragment
from the transcript tj if and only if uj ∈ Ci. The fragments produced by
the pair (ei1, ei2) have lengths within the length range and if the fragments
are from two different transcripts they have different lengths. So, the pool
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i2i1jt r(e  ) r(e  )

5mi 5mi + m + j 5m(i + 1)

[m, 2m] > 2m

Figure 6.2: Construction of a transcript of the pool selection instance.

with the enzyme pair (ei1, ei2) covers the transcript tj if and only if uj ∈ Ci.
On the other hand, no enzyme pair of type (ep1, eq2) or of type (ep2, eq1),
where p 6= q produces a fragment whose length is within the length range.

Assume that a polynomial time algorithm B approximates pool selec-
tion within a ratio of α. Approximate max k-cover using B in the following
manner. Run B for the pool selection instance constructed as shown above.
For each k pools in the solution given by B, add the corresponding subset
to the solution of max coverage instance. The obtained solution for the
max coverage instance is of the same size as the solution for pool selection
instance because a point is included in the max k-cover solution if and only
if the corresponding transcript is covered by the pool selection solution.

On the other hand, the optimal solution of the max k-cover instance
cannot be larger than the optimal solution of the pool selection instance
because, given the optimal solution of the former, we can use the above
construction to get a solution of the same size for the latter. In summary,
using algorithm B we could approximate max k-cover within the ratio of
α. 2

Note that our formulation of the pool selection problem includes several
input parameters such as the number of different restriction enzymes avail-
able and the length range of the electrophoresis equipment that in reality
get only values from some limited range. So the inapproximability result
merely shows that one is unlikely to find a polynomial time algorithm that
solves the pool selection optimally without restricting the values of some of
the parameters. In the next section we give an efficient algorithm for the
special case where the enzyme pair is given and then in Section 6.4 we use
it to build a heuristic algorithm for the general pool selection problem.

6.3 An algorithm for selecting primers for an en-
zyme pair

In this section we assume that the enzyme pair of the pools is given and
develop an efficient algorithm for selecting the selective nucleotides of the
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primers so that the coverage of the pools is maximized. We will call a
sequence of selective nucleotides s a selective pattern, and since the enzyme
pair is fixed we say that a selective pattern s covers a transcript t if t is in
the pool determined by s and the fixed enzyme pair. The algorithm can
be used to optimize an experiment that uses only one enzyme pair but our
main motivation is to get a building block for our general algorithm for
pool selection.

The 3’-prime variant of cDNA-AFLP allows efficient selection of selec-
tive patterns if we make the following restriction which we will call the
prefix property : If a selective pattern s is chosen, no prefix of s can be
chosen. By a prefix we mean a sequence consisting of the first i contiguous
nucleotides of s for some i < |s|, for example if we choose pattern ATG
we cannot choose its prefix AT . The restriction does not strongly limit the
space of possible solutions because a pattern and its prefixes cover largely
overlapping sets of transcripts.

The prefix property helps designing an optimization algorithm based on
dynamic programming because in this case the pools of an enzyme pair are
disjoint. The digestion with an enzyme pair produces at most one fragment
from each transcript and the selective pattern unambiguously determines
the pool of that fragment. Therefore, if two selective patterns (neither is a
prefix of another) cover transcripts so that the first covers c1 transcripts and
the second one c2 transcripts, together they cover exactly c1+c2 transcripts
because no transcript can be covered by both.

Generally, let cs be the number of transcripts covered by the selective
pattern s. We assume that the coverage of each individual selective pattern
has been computed as a preprocessing step. Let cs[m] be the maximum
number of transcripts covered by m selective patterns with the common
prefix s. Similarly, let cS [m] denote the maximum number of transcripts
that can be covered by m such patterns that each of them has a prefix
in the set of prefixes S. Additionally, let sN denote the pattern which is
a concatenation of s and a nucleotide N . If we allow at most l selective
nucleotides, we can compute cs[m] from the recurrence

cs[m] =


0 if m = 0,
cs if m = 1 and |s| = l,
max{cs, csA[1], csT [1], csG[1], csC [1]} if m = 1 and |s| < l,
max0≤j≤m(c{sA,sT,sG}[j] + csC [m− j]) if m > 1 and |s| < l

(6.1)
where c{sA,sT,sG} can be computed in the same manner

c{sA,sT,sG}[m] = max
0≤j≤m

(c{sA,sT}[j] + csG[m− j]) (6.2)
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and finally c{sA,sT} can be computed directly from the coverages of longer
patterns

c{sA,sT}[m] = max
0≤j≤m

(csA[j] + csT [m− j]). (6.3)

The choice of the order in which the nucleotides are processed is arbitrary.
The correctness of the recurrences (1-3) follows from the fact that because
of the prefix property, the only way to choose more than one pattern with
a common prefix s is to only take patterns longer than s and they differ by
at least one nucleotide. Thus, the corresponding subsets are disjoint and
the size of their union is the sum of sizes of individual subsets.

Our goal is to compute the maximum coverage possible using at most
n selective patterns c[n] = max0≤m≤n(cε[m]) where ε denotes a sequence
of length zero. We cannot simply take the value of cε[n] since the coverage
is not guaranteed to be an increasing function of the number of patterns
m because of the prefix property (for example pattern AT can cover more
than ATT and ATG together but because of our restriction we cannot
choose the coverage of AT and ATT as value of c{sA,sT}[2]). A set of at
most n patterns giving the optimal coverage can be collected afterwards
using traceback if we store the index values giving the maximum coverages
while evaluating the recurrences.

The formulas (1-3) can be evaluated in time O(n2) for a selective pattern
s if the values csN [m] for all N ∈ Σ have already been computed. There
are O(4l) patterns of length ≤ l. Thus, the result c[n] can be computed
in time O(4ln2) which is reasonable because l is in practice quite small,
for example 4. Additionally, the preprocessing step requires following time.
Let M be the total length all the transcripts in T . The fragments produced
by an enzyme pair can be computed in time O(M). Since there are at most
one fragment per transcript that belongs to at most l pools determined by
at most l nucleotides, all the fragments can be divided into pools in time
O(l|T |).

The dynamic programming algorithm approach generalizes to the case
in which a pair of enzymes is used in both orders. Namely, the sample is first
digested using the enzymes in the order (e1, e2) and selectively amplified
and then separately the same is done in the order (e2, e1). Since the 3’-
variant produces an amplified fragment from a gene sequence only if the
second enzyme has a restriction site closer to the 3’ end of the sequence
than the first enzyme, the two enzyme orders can never both produce a
fragment from a transcript. So, two pools, one produced by (e1, e2), another
by (e2, e1), are always distinct i.e. they never contain the same transcripts.

To extend the dynamic programming algorithm, let c1[m] be the already
computed maximum coverage of at most m pools, where m = 1, . . . , n, for



6.4. An algorithm for pool selection 79

the ordered pair (e1, e2) and let c2[m] be the corresponding coverage for
the pair (e2, e1). Then, the maximum number of transcripts covered by the
usage of both ordered pairs denoted by c1,2[n] can be obtained from the
recurrence

c1,2[n] = max
0≤m≤n

(c1[m] + c2[n−m]).

The following theorem summarizes the results for selecting primers for
a fixed enzyme pair.

Theorem 6.2 The optimal set of at most n selective patterns of length ≤ l
for an enzyme pair can be chosen in time O(M + l|T |+ 4ln2) if no chosen
selective pattern is allowed to be a prefix of another chosen pattern.

6.4 An algorithm for pool selection

Our heuristic algorithm is a modification of the greedy algorithm for max k-
cover [Fei98]. As in the greedy max k-cover algorithm, we iteratively select
the enzyme pairs that cover the largest number of yet uncovered transcripts
until we have used all k different enzyme pairs. However, compared to max
k-cover we have the additional freedom to choose how many of the n pools
to allocate for each of the k different enzyme pairs. Thus, when adding
the i:th enzyme pair, we also consider different possibilities to divide the
pools between the i− 1 pairs already chosen and the new one. We can do
it efficiently if we have stored the largest set of transcripts we have been
able to cover using i− 1 pairs and j pools for each j = 1, . . . , n. Then the
dynamic programming algorithm of Section 6.3 can be used to compute
the optimal coverage of the new enzyme pair in the set of yet uncovered
transcripts simultaneously for all numbers of pools m where 1 ≤ m ≤ n−j.
We have to modify the algorithm slightly: instead of directly taking cs, the
number of transcripts covered by the selective pattern s, we only count
transcripts that have not been covered by the j pools already chosen.

The pseudocode of the greedy algorithm is given in Figure 6.3. We
assume that the pools have been computed as a preprocessing step. The
algorithm returns the largest subset of transcripts found Cmax that can be
covered using at most k enzyme pairs and n pools. It stores the intermedi-
ate results in a table Maxcover whose element Maxcover[i, j] contains
the largest set of transcripts found so far that can be covered with i dif-
ferent enzyme pairs and j pools. The procedure Dynamic implements the
modified dynamic programming algorithm and its traceback: Dynamic(A,
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Algorithm Greedy
Input: the set of transcripts T , the set of enzymes E,

the set of all pools,
maximum number of enzyme pairs used k,
maximum number of primers used n

for i ← 1 to k do
for j ← 1 to n do

Maxcover[i, j] ← 0
for j ← 1 to n do

if i = 1 then
C ← ∅

else
C ← Maxcover[i− 1, j]

for each enzyme pair (e1, e2), where e1, e2 ∈ E do
Newcover ← Dynamic(T \ C, n− j, e1, e2)
for m ← 1 to n− j do

Cold ← Maxcover[i, j + m]
Cnew ← Newcover[m]
if (|Cnew|+ |C| > |Cold|) then

Maxcover[i, j + m] ← C ∪ Cnew

return Cmax such that |Cmax| = max1≤j≤n{|Maxcover[k][j]|}

Figure 6.3: The pseudocode of the greedy pool selection algorithm.

m, e1, e2) returns a table with m elements such that the j:th element con-
tains the largest subset that can be covered from the set of transcripts A
using j pools with the enzyme pair (e1, e2). Again, the at most n pools
covering the set of transcripts Cmax can be collected using traceback if some
additional bookkeeping is done during the greedy algorithm.

The running time of the pool optimization consists of the following
parts. The preprocessing takes time O((M + l|T |)|E|2) since there are
O(|E|2) enzyme pairs for which the pools have to be computed. The
most intensive part the greedy algorithm is calling procedure Dynamic
O(k|E|2n) times. In each call computing the recurrences takes the time
O(4ln2) as before. In addition, we need to check for each transcript in a
pool whether it has already been covered. Because a transcript can be in
at most l pools with the same enzyme pair, checking takes time O(l|T |) in
one call of Dynamic. Finally, we need to collect the transcripts covered
by m pools for each m which takes time O(n|T |). Thus, the total running
time of the greedy algorithm is O(k|E|2n2(4ln+ |T |)) assuming that n > l.
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6.5 Simulation results

We have implemented the simulation model described in Section 6.2 and
the greedy algorithm for pool selection described in Section 6.4 and tested
them with yeast (Saccharomyces cerevisiae), plant (Arabidopsis thaliana),
and human (Homo sapiens) sequence data sets. In both large scale cDNA-
AFLP studies reported recently only a single enzyme pair has been used but
in both orders. Breyne et al. [BDC+03, BDV+03] digested a tobacco sample
(Nicotiana tabacum) with MseI and BstYI enzymes and first divided it
into two parts by preamplifying with a BstYI primer with either T or
C nucleotide at the 3’ end of BstYI restriction site PuGATCPy. After
that they made selective amplification with all combinations of two and
three additional selective nucleotides. Fukumura et al. [FTS+03] tested the
coverage of cDNA-AFLP (they call their variant of the technique HiCEP)
in yeast (S. cerevisiae) by using the enzyme pair (MspI, MseI ) with all
combinations of four selective nucleotides.

We simulated experiments in which enzyme pairs were always used in
both orders and the number of pools was between 128 and 512 as in the re-
ported studies but we allowed more than one enzyme pair to be used. We
compared the performance of our greedy algorithm to a simple strategy
that we call fixed. As explained in Section 6.4, the greedy algorithm tries
to select such a combination of enzyme pairs and selective nucleotides that
it covers as many transcripts as possible. Thus, in a greedy design each
restriction enzyme pair may be followed by a different number of PCR
amplifications and selective primers may have different numbers of selec-
tive nucleotides. In contrast, the fixed design always contains all selective
primers for the given number of selective nucleotides, as in the reported
studies. For the fixed design we chose those enzyme pairs that individually
cover the largest number of transcripts with the given number of selective
nucleotides.

We considered all pairs of 10 restriction enzymes with different restric-
tion sites of length four (four-cutters). The used enzymes are listed in
Table 6.1. We excluded enzymes that have ambiguous recognition sites or
produce blunt-ended fragments. We concentrated on four-cutters because
they gave better coverages than other enzymes in preliminary simulations
(data not shown). When simulating electrophoresis we used parameters
similar to ones used by [FTS+03]. We accepted a fragment if its length
was between 40bp and 700bp and assumed that two fragments can be sep-
arated if their length difference was more than 0.5% of their total length.
The maximum number of selective nucleotides in a primer was four.

The test results are summarized in Table 6.2. The reported coverage of
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Table 6.1: The restriction enzymes used in the simulations and their re-
striction sites.

MaeI CTAG
Tru1I TTAA
DpnII GATC
MspI CCGG
NlaIII CATG
Tsp509 AATT
HinP1I GCGC
Csp6I GTAC
TaqI TCGA
MaeII ACGT

a greedy design is the percentage of transcripts it covers from the data set
that was used to optimize the design. The results with the human data set
are shown in more detail in Figure 6.4. The greedy designs with 4 enzyme
pairs and 512 pools are shown in Table 6.3. Interestingly, when using 512
pools the coverage was higher in the human data set than in the much
smaller yeast data set, probably due to the higher average length of the
transcripts in the human data set (2692bp vs. 1412bp). The coverages in
yeast were lower than reported by [FTS+03], possibly because our data set
did not include 3’ UTRs (untranslated regions).

In reality, we cannot expect the target sequences to be available for
the optimization of the experiment design. Therefore, we also tested the
in silico coverage of designs that were optimized using sequences from an-
other organism. We used two closely related, recently sequenced filamen-
tous fungi Neurospora crassa [G+03] (10082 transcripts) and Aspergillus
nidulans [Asp03] (9541 transcripts) as the target organisms. We used the
greedy algorithm and sequence data from different organisms to choose a
design with 3 enzymes and 256 pools (yeast and human data sets were as
described above). Table 6.4 shows how many percents of N. crassa and A.
nidulans transcripts were covered by the designs.

The longest simulation took about 2 days with a 3Ghz PC with 2GB
of main memory running Linux. The implementation is currently written
using Perl and BioPerl [SBB+02]. The running time could be significantly
reduced by writing the most intensive parts in C.

The test results are encouraging even though with a particular number
of enzyme pairs and pools the improvements in in silico coverage achieved
by the optimized designs are fairly modest. Considering a large space of ex-
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Table 6.2: In silico coverages of different experiment designs.
Organism mRNAs Poolsa Design Coverage (%)

1 2 3 4
S. cerevisiae 6355b 128 Fixedc 51 - - -

(112) Greedyd 53 68 75 78
256 Fixed - 72 - -

(217) Greedy 56 73 81 84
384 Fixed - - 81 -

(297) Greedy 57 75 83 86
512 Fixed 57 - - 84

(346, 267) Greedy 57 76 84 88
A. thaliana 18590e 128 Fixed 47 - - -

(116) Greedy 49 59 63 64
256 Fixed - 70 - -

(226) Greedy 57 73 78 81
384 Fixed - - 82 -

(313) Greedy 60 78 84 88
512 Fixed 62 - - 87

(512, 374) Greedy 62 81 88 91
H. sapiens 16138f 128 Fixed 51 - - -

(116) Greedy 53 65 70 71
256 Fixed - 74 - -

(209) Greedy 62 77 83 86
384 Fixed - - 84 -

(268) Greedy 65 82 88 91
512 Fixed 65 - - 89

(433, 329) Greedy 65 84 90 93

aThe number of pools used. The number of pools in the greedy design that covers as
many genes as the fixed design is given in the parenthesis (with 512 pools the first figure
corresponds to 1 enzyme pair and the second one to 4 enzyme pairs).

bAll ORF coding sequences from SGD version dated Jun 23, 2003, no UTRs.
cIn silico coverage (%) using all primers with a fixed number of selective nucleotides

(3 when 128..384 pools, 3 or 4 when 512 pools), enzyme pairs used in both orders.
dIn silico coverage (%) when using the pools chosen by the greedy algorithm, enzyme

pairs used in both orders.
eAll transcripts from UniGene build 42 which have a RefSeq identifier.
fAll transcripts from UniGene build 166 which have a RefSeq identifier.
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Table 6.3: The greedy designs using 4 enzyme pairs and 512 pools.
Organism Enzyme pair Number of primers

1st order 2nd order
S. cerevisiae (DpnII GATC, Csp6I GTAC) 64 64

(TaqI TCGA, NlaIII CATG) 62 65
(Tru1I TTAA, MaeII ACGT) 27 91
(Tru1I TTAA, Tsp509 AATT) 68 70

A. thaliana (Tru1I TTAA, MspI CCGG) 18 115
(MaeI CTAG, TaqI TCGA) 64 54
(MaeII ACGT, NlaIII CATG) 73 47
(TaqI TCGA, Csp6I GTAC) 71 70

H. sapiens (MaeI CTAG, DpnII GATC) 45 49
(Tru1I TTAA, MspI CCGG) 16 108
(DpnII GATC, Csp6I GTAC) 69 85
(MaeII ACGT, NlaIII CATG) 103 37

Table 6.4: The in silico coverages of the designs optimized with an other
organism (3 enzyme pairs and 256 pools)

Target organism Design organism Coverage (%)a

N. crassab N. crassa 76
A. nidulans 74
S. cerevisiae 68
H. sapiens 65

A. nidulansc A. nidulans 83
N. crassa 81
S. cerevisiae 76
H. sapiens 74

aThe percentage of the target organism transcripts that are covered by the design
optimized using the design organism data set.

bAssembly 3 [G+03].
cData Version 3/7/2003 [Asp03].
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Figure 6.4: The in silico coverages in H. sapiens data set of greedy de-
signs with 1..512 pools and 1..4 different restriction enzyme pairs and fixed
designs with 128 (1 enzyme pair), 256 (2), 384 (3), and 512 (4) pools.

periment designs is still worthwhile. Using only the pools giving good gene
coverage (greedy design) allows covering the same amount of genes with a
smaller work load than simply using all pools with a certain restriction en-
zyme combination and number of selective nucleotides (fixed design). For
example, consider the fixed designs with 512 pools and four enzyme pairs
(Table 6.2). The greedy algorithm is able to cover the same amount of
transcripts using also four enzyme pairs but considerably fewer pools in
all data sets: yeast 267 pools (48% reduction), plant 374 pools (27% re-
duction), and human 329 pools (36% reduction). On the other hand, in
the human data set the greedy design covers more transcripts with three
enzyme pairs and 512 pools than the fixed design with four enzyme pairs
and the same number of pools (Figure 6.4).

Table 6.4 shows that if the design has been optimized using sequences
from a closely related organism (A. nidulans and N. crassa), the coverage
of the design is almost as good as using sequences from the organism itself.
As expected, the designs optimized using a distant sequence set of different
size (H. sapiens) perform worse.
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6.6 Conclusion

A computer simulation alone can never precisely predict the coverage of an
cDNA-AFLP experiment or corresponding TRAC procedure. Our knowl-
edge of the transcriptomes is incomplete which is the very reason to use
these methods. Especially the 3’ UTRs (untranslated regions) that are im-
portant when simulating 3’ variant are often poorly characterized. Even
if we would know the whole transcriptome, the coverage also depends on
the number of different expressed transcripts in the experiment, one of the
things the experiment is supposed to measure. For example, the human
sequence data set we used in simulations is certainly far from being the set
of all transcripts but on the other hand it seems unlikely that the whole
human transcriptome would be expressed in a single experiment.

Despite the uncertainties, we feel that using the suggested experiment
optimization together with expert knowledge and experience could result in
considerably more efficient use of resources in cDNA-AFLP experiments.
The described methods give flexible means to explore different ways to
allocate resources during the experiment design process. In addition, our
simulations show that using TRAC to find novel genes is realistic in terms
of required resources.



Chapter 7

Conclusion

The aim of this thesis was to provide practical tools for the automatic plan-
ning of VTT-TRAC experiments. The Tracfinder software that implements
the methods developed has now been used in the planning of real experi-
ments. In these cases we have been able to meet the goals that were set
for the experiment plans. The selected probes fulfill strict specificity and
sensitivity requirements and they fit into the smallest possible number of
pools. Most importantly, the probes that have been tested have worked
well. These experiments have been quite small, a few dozen genes and 1 or
2 pools. Thus, even manual planning would have been possible. However,
the biologists have recognized that our automatic tool saves a lot of work
and most likely improves the quality of the plans. Therefore, we expect
that the automatic planning of experiments will become an integral part of
VTT-TRAC and increase the attractiveness of the technique.

We wanted to demonstrate in silico that the VTT-TRAC procedure can
be multiplexed so efficiently that even a whole genome could be profiled
with a reasonable amount of resources. We used the yeast genome as a test
case. We found at least one PCR-based probe that fulfilled our specificity
requirements for 87% of the genes. We were able to assign the probes into
40 pools which means packing on average more than 130 probes into one
pool. Even though the achieved packing density is somewhat less than
the technical upper limit, about 150 in this case, it clearly shows that our
methods allow efficient multiplexing on the genomic scale.

So far, the program has been used to select probes for all genes of
relatively small genome (yeast) and for small sets of genes of larger genomes
(fungus, human). The current program is too slow for selecting a probe for
all genes if the probes are PCR-amplified from the genomic DNA of human
or other organism that has large amount of non-coding DNA. Currently,
this type of application is not the primary goal.

87



88 Chapter 7. Conclusion

We proposed a computational method for the optimization of cDNA-
AFLP experiments. Our in silico tests suggest that the optimization could
save a substantial amount of resources but the real practical value of the
method has not yet been tested.

The principle behind this thesis has been to treat the experiment-
planning tasks as rigorous optimization problems and to provide solutions
that are both theoretically justified and practical. Hopefully, we have been
able to show that such an approach is fruitful and worth applying to other
experimental techniques as well.
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