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Abstract

The Minimum Description Length (MDL) principle is a general, well-founded
theoretical formalization of statistical modeling. The most important no-
tion of MDL is the stochastic complexity, which can be interpreted as
the shortest description length of a given sample of data relative to a
model class. The exact definition of the stochastic complexity has gone
through several evolutionary steps. The latest instantation is based on the
so-called Normalized Maximum Likelihood (NML) distribution which has
been shown to possess several important theoretical properties. However,
the applications of this modern version of the MDL have been quite rare
because of computational complexity problems, i.e., for discrete data, the
definition of NML involves an exponential sum, and in the case of continu-
ous data, a multi-dimensional integral usually infeasible to evaluate or even
approximate accurately. In this doctoral dissertation, we present mathe-
matical techniques for computing NML efficiently for some model families
involving discrete data. We also show how these techniques can be used
to apply MDL in two practical applications: histogram density estimation
and clustering of multi-dimensional data.
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Preface

This doctoral dissertation consists of an introductory part and six origi-
nal research papers on the Minimum Description Length (MDL) principle.
The focus of the papers is on the practical aspects of the MDL, not the
theoretical properties of it. More precisely, the research papers present
mathematical techniques that allow the efficient use of MDL in practical
model class selection tasks. The papers also discuss how these techniques
can be applied in real-world applications.

To give the reader preliminaries and motivation for easier understanding
of the six research papers, the thesis starts with an introductory text. This
part is intuitive in nature, all the technical details can be found in the
respective research papers. The introductory part starts with a short review
of the MDL principle and the NML distribution, which formally defines
the MDL model class selection criterion (the stochastic complexity). Next,
an overview of the mathematical techniques and algorithms for efficient
computation of the NML is presented. These algorithms are then used in
two practical applications: histogram density estimation and clustering of
multi-dimensional data.

The final part of the introduction consists of two appendices. The first
one provides the reader background to the mathematical tools used in var-
ious parts of the thesis. The topics of this appendix are complex analysis,
formal power series, generating functions and asymptotic analysis of gener-
ating functions. Together these techniques provide a powerful toolbox for
efficient NML computation for several interesting model families. The topic
of the second appendix is the derivation of a novel, very accurate multi-
nomial NML approximation. The derivation is based on the mathematical
techniques described in the first appendix.
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Efficient computation of stochastic complexity. In C. Bishop and
B. Frey, editors, Proceedings of the Ninth International Workshop
on Artificial Intelligence and Statistics. Society for Artificial In-
telligence and Statistics, 2003.

Paper II: P. Kontkanen and P. Myllymäki. A fast normalized maximum
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In Papers I-III we develop algorithms for efficient computation of the NML
in the case of the multinomial and Naive Bayes model family. The topic of
Papers IV–VI is to show how NML can be applied to practical problems.
The main contributions and short descriptions of the six papers are listed
here:

Paper I: We introduce the first polynomial-time algorithm for com-
puting the stochastic complexity (NML) for the multinomial and Naive
Bayes model families. The running time of the algorithm is quadratic with
respect to the sample size. We also present three stochastic complexity
approximation algorithms and study their accuracy empirically.

Paper II: We improve the time complexity of the algorithm presented
in Paper I to O (n log n), where n is the sample size. The new algorithm is
based on the convolution theorem and the Fast Fourier Transform (FFT)
algorithm.

Paper III: We derive a recursion formula that can be used straight-
forwardly to compute the multinomial stochastic complexity in linear time.
The mathematical technique applied here is generating functions.

Paper IV: We regard histogram density estimation as a model class
selection problem and apply the minimum description length (MDL) prin-
ciple to it. Using the results from Paper III, we show how to efficiently
compute the stochastic complexity for the histogram densities. Further-
more, we derive a dynamic programming algorithm that can be used to
find the globally optimal histogram in polynomial time.

Paper V: Clustering is one of the central concepts in the field of unsu-
pervised data analysis. We regard clustering as a problem of partitioning
the data into mutually exclusive clusters so that similar data vectors are
grouped together. The number of clusters is unknown, and determining the
optimal number is part of the clustering problem. For solving this problem,
we suggest an information-theoretic framework based on the MDL princi-
ple. For computing the NML for the clustering model class, we use the
algorithms of Papers I and II.

Paper VI: We compare empirically various algorithms for finding can-
didate solutions to the clustering problem discussed in Paper V. We present
five algorithms for the task and use several real-world data sets to test the
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algorithms. The results show that the traditional EM and K-means algo-
rithms perform poorly. Furthermore, our novel hybrid clustering algorithm
turns out to produce the best results.

In all six papers, the contribution of the current author is significant. In
Paper I, the quadratic-time algorithm for the multinomial model family is
due to Wray Buntine. The idea of applying MDL to the clustering problem
in Paper V is by Petri Myllymäki.
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Chapter 1

Introduction

Many problems in science can be cast as model class selection tasks, i.e., as
tasks of selecting among a set of competing mathematical explanations the
one that describes a given sample of data best. The Minimum description
length (MDL) principle developed in the series of papers [53, 54, 56] is a
well-founded, general framework for performing model class selection and
other types of statistical inference. The fundamental idea behind the MDL
principle is that any regularity in data can be used to compress the data, i.e.,
to find a description or code of it, such that this description uses less symbols
than it takes to describe the data literally. The more regularities there are,
the more the data can be compressed. According to the MDL principle,
learning can be equated with finding regularities in data. Consequently, we
can say that the more we are able to compress the data, the more we have
learned about them.

The MDL principle has several desirable properties. Firstly, it auto-
matically protects against overfitting in the model class selection process.
Secondly, this statistical framework does not – unlike most other frame-
works – assume that there exists some underlying “true” model. The model
class is only used as a technical device for constructing an efficient code for
describing the data. MDL is also closely related to the Bayesian infer-
ence but there are some fundamental differences, the most important being
that MDL does not need any prior distribution; it only uses the data at
hand. For more discussion on the theoretical motivations behind the MDL
principle see, e.g., [56, 5, 72, 57, 21, 58].

MDL model class selection is based on a quantity called stochastic com-
plexity, which is the shortest description length of a given data relative to a
model class. The stochastic complexity is defined via the normalized max-
imum likelihood (NML) distribution [63, 56]. For multinomial (discrete)
data, this definition involves a normalizing sum over all the possible data

1



2 1 Introduction

samples of a fixed size. The logarithm of this sum is called the parametric
complexity or regret, which can be interpreted as the amount of complexity
of the model class. If the data is continuous, the sum is replaced by the
corresponding integral.

The NML distribution has several theoretical optimality properties,
which make it a very attractive candidate for performing model class se-
lection and related tasks. It was originally [56, 5] formulated as the unique
solution to a minimax problem presented in [63], which implied that NML
is the minimax optimal universal model. Later [57], it was shown that
NML is also the solution to a related problem involving expected regret.
See Section 2.2 and [5, 57, 21, 58] for more discussion on the theoretical
properties of the NML.

Many scientific problems involve large data sets. In order to apply NML
for these tasks one needs to develop suitable NML computation methods
since the normalizing sum or integral in the definition of the NML is typ-
ically difficult to compute directly. The introductory part of this thesis
starts by presenting algorithms for efficient computation of the NML for
both one- and multi-dimensional discrete data. The model families used
here are the multinomial and the Naive Bayes, and the discussion is based
on the Papers I–III. In the multinomial case, the most efficient algorithm
based on the technique of generating functions is linear with respect to the
sample size, while the Naive Bayes algorithm is quadratic.

The task of finding efficient NML computation algorithms is a rela-
tively new topic, and there are only few related studies. In [50], NML for
the multinomial model family was written in another form, which resulted
in another linear-time algorithm. The same paper also studied the connec-
tion between the multinomial NML and the so-called birthday problem [15],
which is a classical problem of probability theory. A study of how the multi-
nomial NML can be computed in sub-linear time with a finite precision is
presented in [47]. The algorithm has time complexity O(

√
dn), where d

is the precision in digits and n is the sample size. In [49], new theoreti-
cally interesting recurrence formulas for NML computation are derived. A
new quadratic-time algorithm for computing the parametric complexity in
the case of Naive Bayes is presented in [46]. This algorithm is based on
the so-called Miller formula [25] for computing the powers of formal power
series.

There has also been studies on computing NML for more complex model
families. In [70, 42, 48], algorithms for so-called Bayesian forests are pre-
sented. However, these algorithms are exponential with respect to the
number of values of the domain variables. One solution to this problem
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is suggested in [61], where the NML criterion is modified to a computa-
tionally less demanding form called the factorized NML. Initial empirical
results show that this new criterion can be useful in model class selection
problems.

The second part of the thesis describes how NML can be applied to
practical problems using the techniques of the first part. Due to the com-
putational efficiency problems, there are relatively few applications of NML.
However, the existing applications demonstrate that NML works very well
in practice and provides in many cases superior results when compared to
alternative approaches. The first application discussed in the thesis is the
NML-optimal histogram density estimation suggested in Paper IV. This
framework provides both the optimal number of bins and the location of
the bin borders of the histogram in polynomial time. The second applica-
tion is the NML clustering of multi-dimensional discrete data introduced in
Paper V. The optimization aspect of the clustering problem was studied in
Paper VI, where five algorithms for efficiently searching the exponentially-
sized clustering space were compared. See Chapter 4 for related work and
more discussion on NML applications in general.

This thesis is structured as follows. In Chapter 2 we discuss the basic
properties of the MDL principle and the NML distribution. We also in-
stantiate NML for the two model families. In Chapter 3 we present both
exact and approximative computation algorithms for NML. The chapter
also includes an empirical comparison of three NML approximations for
the multinomial model family. The topic of Chapter 4 is to show how
NML can be applied in two practical tasks: density estimation and data
clustering. Chapter 5 gives some concluding remarks and ideas for future
work. The thesis then continues with two appendices: Appendix A pro-
vides mathematical background to the techniques used in the thesis and
Appendix B gives a full derivation of the accurate multinomial NML ap-
proximation called the Szpankowski approximation. Finally, the six original
research papers are re-printed at the end of the thesis.
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Chapter 2

Stochastic Complexity

The MDL model class selection is based on minimization of the stochastic
complexity. In the following, we first define the model class selection prob-
lem. Then we proceed by giving the definition of the stochastic complexity
based on the normalized maximum likehood distribution and discuss its
theoretical properties. Finally, we instantiate the NML for the multino-
mial and Naive Bayes model families.

2.1 Model Classes and Families

Let xn = (x1, . . . , xn) be a data sample of n outcomes, where each outcome
xj is an element of some space of observations X . The n-fold Cartesian
product X × · · · × X is denoted by X n, so that xn ∈ X n. Consider a
set Θ ⊆ Rd, where d is a positive integer. A class of parametric distributions
indexed by the elements of Θ is called a model class. That is, a model
class M is defined as

M = {P (· | θ) : θ ∈ Θ}, (2.1)

and the set Θ is called the parameter space.
Consider now a set Φ ⊆ Re, where e is a positive integer. Define a set F

by
F = {M(φ) : φ ∈ Φ}. (2.2)

The set F is called a model family, and each of the elements M(φ) is
a model class. The associated parameter space is denoted by Θφ. The
model class selection problem can now be defined as a process of finding
the parameter vector φ, which is optimal according to some pre-determined
criteria. In Sections 2.3− 2.4 we discuss two specific model families, which
will make these definitions more concrete.

5



6 2 Stochastic Complexity

2.2 The Normalized Maximum Likelihood (NML)
Distribution

One of the most theoretically and intuitively appealing model class selection
criteria is the stochastic complexity. Denote first the maximum likelihood
estimate of data xn for a given model class M(φ) by θ̂(xn,M(φ)), i.e.,
θ̂(xn,M(φ)) = arg max

θ∈Θφ

{P (xn | θ)}. The normalized maximum likelihood

(NML) distribution [63] is now defined as

PNML(xn | M(φ)) =
P (xn | θ̂(xn,M(φ)))

C(M(φ), n)
, (2.3)

where the normalizing term C(M(φ), n) in the case of discrete data is given
by

C(M(φ), n) =
∑

yn∈Xn

P (yn | θ̂(yn,M(φ))), (2.4)

and the sum goes over the space of data samples of size n. If the data is
continuous, the sum is replaced by the corresponding integral.

The stochastic complexity of the data xn, given a model class M(φ),
is defined via the NML distribution as

SC(xn | M(φ)) = − logPNML(xn | M(φ)) (2.5)

= − logP (xn | θ̂(xn,M(φ))) + log C(M(φ), n), (2.6)

and the term log C(M(φ), n) is called the (minimax) regret or parametric
complexity. The regret can be interpreted as measuring the logarithm of the
number of essentially different (distinguishable) distributions in the model
class. Intuitively, if two distributions assign high likelihood to the same
data samples, they do not contribute much to the overall complexity of the
model class, and the distributions should not be counted as different for the
purposes of statistical inference. See [4] for more discussion on this topic.

The NML distribution (2.3) has several important theoretical optimality
properties. The most important one is that NML provides a unique solution
to the minimax problem posed in [63]:

min
P̂

max
xn

log
P (xn | θ̂(xn,M(φ)))

P̂ (xn | M(φ))
, (2.7)

where P̂ can be any distribution over the data xn. The minimizing P̂ is
the NML distribution, and the minimax regret

logP (xn | θ̂(xn,M(φ)))− log P̂ (xn | M(φ)) (2.8)
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is given by the parametric complexity log C(M(φ), n). This means that
the NML distribution is the minimax optimal universal model. The term
universal model in this context means that the NML distribution represents
(or mimics) the behaviour of all the distributions in the model classM(φ).
Note that the NML distribution itself does not have to belong to the model
class, and typically it does not. For more discussion on the theoretical
properties of NML, see [5, 57, 21, 58].

2.3 NML for the Multinomial Model Family

In the case of discrete data, the simplest model family is the multinomial.
The data is assumed to be one-dimensional and have only a finite set of
possible values. Although simple, the multinomial model family has prac-
tical applications. In Paper IV, multinomial NML was used for histogram
density estimation, and the problem was regarded as a model class selec-
tion task. The NML-optimal histograms were later [12] used as attribute
models for Naive Bayes classifier.

Assume that our problem domain consists of a single discrete random
variable X with K values, and that our data xn = (x1, . . . , xn) is multino-
mially distributed. The space of observations X is now the set {1, 2, . . . ,K}.
The corresponding model family FMN is defined by

FMN = {M(φ) : φ ∈ ΦMN}, (2.9)

where ΦMN = {1, 2, 3, . . .}. Since the parameter vector φ is in this case a
single integer K, we denote the multinomial model classes by M(K) for
simplicity and define

M(K) = {P (· | θ) : θ ∈ ΘK}, (2.10)

where ΘK is the simplex-shaped parameter space

ΘK = {(π1, . . . , πK) : πk ≥ 0, π1 + · · ·+ πK = 1}, (2.11)

with πk = P (X = k), k = 1, . . . ,K.
Assume the data points xj are independent and identically distributed

(i.i.d.). The NML distribution (2.3) for the model classM(K) is now given
by (see Papers I and V)

PNML(xn | M(K)) =

∏K
k=1

(
hk
n

)hk

C(M(K), n)
, (2.12)
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where hk is the frequency (number of occurrences) of value k in xn, and

C(M(K), n) =
∑
yn

P (yn | θ̂(yn,M(K))) (2.13)

=
∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏
k=1

(
hk
n

)hk

. (2.14)

2.4 NML for the Naive Bayes Model Family

The one-dimensional case discussed in the previous section is not adequate
for many real-world situations, where data are typically multi-dimensional,
involving complex dependencies between the domain variables. In Paper I
a quadratic-time algorithm for computing the NML for a specific multivari-
ate model family, usually called the Naive Bayes, was derived. This model
family has been very successful in practice in mixture modeling [41], clus-
tering of data (Paper V), case-based reasoning [39], classification [22, 40]
and data visualization [33].

Let us assume that our problem domain consists of m primary vari-
ables X1, . . . , Xm and a special variable X0, which can be one of the vari-
ables in our original problem domain or it can be latent. Assume that
the variable Xi has Ki values and that the extra variable X0 has K0

values. The data xn = (x1, . . . ,xn) consist of observations of the form
xj = (xj0, xj1, . . . , xjm) ∈ X , where

X = {1, 2, . . . ,K0} × {1, 2, . . . ,K1} × · · · × {1, 2, . . . ,Km}. (2.15)

The Naive Bayes model family FNB is defined by

FNB = {M(φ) : φ ∈ ΦNB} (2.16)

with ΦNB = {1, 2, 3, . . .}m+1. The corresponding model classes are denoted
by M(K0,K1, . . . ,Km):

M(K0,K1, . . . ,Km) = {PNB(· | θ) : θ ∈ ΘK0,K1,...,Km}. (2.17)

The basic Naive Bayes assumption is that given the value of the special
variable, the primary variables are independent. We have consequently

PNB(X0 = x0, X1 = x1, . . . , Xm = xm | θ) = P (X0 = x0 | θ)

·
m∏
i=1

P (Xi = xi | X0 = x0,θ). (2.18)



2.4 NML for the Naive Bayes Model Family 9

Furthermore, we assume that the distribution of P (X0 | θ) is multinomial
with parameters (π1, . . . , πK0), and each P (Xi | X0 = k,θ) is multinomial
with parameters (σik1, . . . , σikKi

). The whole parameter space is then

ΘK0,K1,...,Km ={(π1, . . . , πK0), (σ111, . . . , σ11K1), . . . , (σmK01, . . . , σmK0Km) :
πk ≥ 0, σikl ≥ 0, π1 + · · ·+ πK0 = 1, σik1 + · · ·+ σikKi

= 1,
i = 1, . . . ,m, k = 1, . . .K0}, (2.19)

and the parameters have interpretations πk = P (X0 = k) and σikl =
P (Xi = l | X0 = k).

Assuming i.i.d., the NML distribution for the Naive Bayes can now be
written as (see Paper V)

PNML(xn | M(K0,K1, . . . ,Km)) =

∏K0
k=1

(
hk
n

)hk ∏m
i=1

∏Ki
l=1

(
fikl
hk

)fikl

C(M(K0,K1, . . . ,Km), n)
,

(2.20)
where hk is the number of times X0 has value k in xn, fikl is the num-
ber of times Xi has value l when the special variable has value k, and
C(M(K0,K1, . . . ,Km), n) is given by

C(M(K0,K1, . . . ,Km), n)

=
∑

h1+···+hK0
=n

n!
h1! · · ·hK0 !

K0∏
k=1

(
hk
n

)hk m∏
i=1

C(M(Ki), hk). (2.21)
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Chapter 3

Efficient Computation of NML

In the previous chapter we saw that in the case of discrete data the definition
of the NML distribution involves a sum over all the possible data samples
of fixed size. Direct computation of this sum takes exponential time even in
the case of a simple multinomial model. In this chapter we present efficient
algorithms for computing this sum for two model families, the multinomial
and Naive Bayes. For interesting algorithms for computing the NML for a
more complex model family called the Bayesian forests, see [70, 42, 48].

3.1 The Multinomial Model Family

3.1.1 Exact Computation Algorithms

In the previous chapter we saw that the NML distribution for the multi-
nomial model family (2.12) consists of two parts: the likelihood and the
parametric complexity (2.14). It is clear that the likelihood term can be
computed in linear time by simply sweeping through the data once and
counting the frequencies hk. However, the normalizing sum C(M(K), n)
(and thus also the parametric complexity log C(M(K), n)) involves a sum
over an exponential number of terms. Consequently, the time complexity
of computing the multinomial NML is dominated by (2.14).

In Paper I, a recursion formula for removing the exponentiality of
C(M(K), n) was presented. This formula is given by

C(M(K), n) =
n∑

r1+r2=0

n!
r1!r2!

(r1

n

)r1 (r2

n

)r2
· C(M(K∗), r1) · C(M(K −K∗), r2), (3.1)

11
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which holds for all K∗ = 1, . . . ,K−1. A straightforward algorithm based on
this formula was then used to compute C(M(K), n) in time O

(
n2 logK

)
.

See Papers I and V for more details.
In Paper II (see also [31]), the quadratic-time algorithm was improved

to O (n log n logK) by writing (3.1) as a convolution-type sum and then
using the Fast Fourier Transform algorithm. However, the relevance of
this result is unclear due to severe numerical instability problems it easily
produces in practice. See Paper II for more details.

Although the algorithms described above have succeeded in removing
the exponentiality of the computation of the multinomial NML, they are
still superlinear with respect to n. In Paper III the first linear-time al-
gorithm based on the mathematical technique of generating functions was
derived for the problem. The algorithm is based on the following theorem:

Theorem 3.1 The C(M(K), n) terms satisfy the recurrence

C(M(K + 2), n) = C(M(K + 1), n) +
n

K
· C(M(K), n). (3.2)

Proof. See Paper III. 2

It is now straightforward to write a linear-time algorithm for computing
the multinomial NML PNML(xn | M(K)) based on Theorem 3.1. The pro-
cess is described in Algorithm 1. The time complexity of the algorithm is

Algorithm 1 The linear-time algorithm for computing PNML(xn | M(K)).
1: Count the frequencies h1, . . . , hK from the data xn

2: Compute the likelihood P (xn | θ̂(xn,M(K))) =
∏K
k=1

(
hk
n

)hk

3: Set C(M(1), n) = 1
4: Compute C(M(2), n) =

∑
r1+r2=n

n!
r1!r2!

(
r1
n

)r1 ( r2
n

)r2
5: for k = 1 to K − 2 do
6: Compute C(M(k + 2), n) = C(M(k + 1), n) + n

k · C(M(k), n)
7: end for
8: Output PNML(xn | M(K)) = P (xn|θ̂(xn,M(K)))

C(M(K),n)

clearly O (n+K), which is a major improvement over the previous meth-
ods. The algorithm is also very easy to implement and does not suffer from
any numerical instability problems. See Paper III for more discussion of
the algorithm.
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3.1.2 NML Approximations

In the previous section we presented exact NML computation algorithms
for multinomial data. The time complexity of the most efficient method
was shown to be linear with respect to the size of the data, which can
sometimes be too slow for demanding tasks. Consequently, it is important
to develop efficient approximations to the multinomial NML. The topic of
this section is to present three such methods. The first two of the methods,
BIC and Rissanen’s asymptotic expansion, are well-known, but the third
one, called the Szpankowski approximation, is novel. Since we are able to
compute the exact NML, it is also possible to assess the accuracy of the
three approximations. This comparison is presented in Section 3.1.3.

In the following, we introduce the three approximations and instanti-
ate them for the multinomial model family. It should be noted that BIC
and Rissanen’s asymptotic expansion are usually considered as approxima-
tions to the stochastic complexity, i.e., the negative logarithm of the NML.
To make the formulas easier to interpret, we will adopt this established
practice.

Bayesian Information Criterion: The Bayesian Information Criterion
(BIC) [62], also known as the Schwarz criterion, is the simplest of the three
approximations. As the name implies, the BIC has a Bayesian interpreta-
tion, but it can also be given a formulation in the MDL setting as showed
in [55]. It is derived by expanding the log-likelihood function as a second
order Taylor series around the maximum likelihood point θ̂ and then inte-
grating this expansion over the parameter space. This procedure is called
the Laplace’s method. The BIC formula is given by

− logPBIC(xn | M) = − logP (xn | θ̂(xn),M) +
d

2
log n+O (1), (3.3)

where d is the Euclidean dimension of the parameter space, i.e., the number
of parameters. Looking at (3.3), we can see that it contains the same
maximum likelihood term as the exact NML equation (2.3). Therefore,
the second term d

2 log(n) can be interpreted as an approximation to the
parametric complexity.

The instantiation of the BIC approximation for the multinomial case is
trivial. If the multinomial variable has K possible values, the number of
parameters is K − 1 and

− logPBIC(xn | M(K)) = − logP (xn | θ̂(xn),M(K))+
K − 1

2
log n+O (1).

(3.4)
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The main advantage of BIC is that it is very simple, intuitive and quick to
compute. However, it is widely acknowledged that in model selection tasks
BIC favors overly simple models (see, e.g., [68]).

Rissanen’s Asymptotic Expansion: As proved in [56], for model classes
that satisfy certain regularity conditions, a sharper asymptotic expansion
than BIC can be derived for the NML. The most important regularity
condition is that the Central Limit Theorem should hold for the maximum
likelihood estimators for all the elements in the model class. The precise
regularity conditions can be found in [56]. Rissanen’s asymptotic expansion
is given by

− logPRIS(xn | M) =

− logP (xn | θ̂(xn),M) +
d

2
log

n

2π
+ log

∫ √
|I(θ)|dθ + o (1), (3.5)

where the integral goes over the parameter space Θ. The matrix I(θ) is
called the (expected) Fisher information matrix defined by

I(θ) = −Eθ
[
∂2 logP (xn | θ,M)

∂θiθj

]
, (3.6)

where θi, θj go through all the possible pairs of parameters and the expec-
tation is taken over the data space X . The first two terms of (3.5) are
essentially the same as in the BIC approximation (3.3). The crucial dis-
tinction is the integral term measuring the complexity that comes from the
local geometrical properties of the model space. For a more precise discus-
sion of the interpretation of this term, see [21]. Note that unlike the BIC
approximation, Rissanen’s expansion is asymptotically correct. This means
that the error in the approximation vanishes as n goes to infinity.

Rissanen’s asymptotic expansion for theM(K) model class was derived
in [56], and it is given by

− logPRIS(xn | M(K)) =

− logP (xn | θ̂(xn),M(K)) +
K − 1

2
log

n

2π
+ log

πK/2

Γ(K/2)
+ o (1), (3.7)

where Γ(·) is the Euler gamma function (see, e.g., [1]). This approximation
is clearly very efficient to compute as well. Note that the derivation of the
Rissanen’s expansion for the Naive Bayes can be found in Paper I.

Szpankowski Approximation: An advanced mathematical tool called
singularity analysis [16] can be used to derive an arbitrarily accurate ap-
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proximation to the multinomial NML. Appendix A.4 gives a brief overview
of the method. The Szpankowski approximation is based on a theorem on
redundancy rate for memoryless sources [66], which gives

− logPSZP(xn | M(K)) = − logP (xn | θ̂(xn),M(K)) (3.8)

+
K − 1

2
log

n

2
+ log

√
π

Γ(K/2)
+
√

2K · Γ(K/2)
3Γ
(
K
2 −

1
2

) · 1√
n

+

(
3 +K(K − 2)(2K + 1)

36
− Γ2(K/2) ·K2

9Γ2
(
K
2 −

1
2

) ) · 1
n

+O
(

1
n3/2

)
.

The full derivation of this approximation is given in Appendix B. Note
that (3.8) is not a general NML approximation. It is only applicable for
the multinomial case.

3.1.3 Comparison of the Approximations

As noted in the previous section, the ability to compute the exact NML for
the multinomial model gives us a unique opportunity to test how accurate
the NML approximations really are. The first thing to notice is that since all
the three presented approximations contain the maximum likelihood term,
we can ignore it in the comparisons and concentrate on the parametric
complexity. Notice that we therefore avoid the problem of trying to choose
representative and unbiased data sets for the experiments.

We conducted two sets of experiments with the three approximations.
Firstly, we studied the accuracy of the approximations as a function of the
size of the data n. In the second set of the experiments we varied the
number of values of the multinomial variable. For all the experiments, the
following names are used for the three approximations:

• BIC: Bayesian information criteria (3.4)

• RIS: Rissanen’s asymptotic expansion (3.7)

• SZP: Szpankowski approximation (3.8)

The results of the first set of experiments can be seen in Figure 3.1,
where the difference between the approximative and exact parametric com-
plexity is plotted when the number of values K is set to 2, 4 and 9, respec-
tively. In each figure the size of data n varies from 1 to 100. From the
figures we can see that the SZP approximation is clearly the best of the
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three. This is naturally anticipated since SZP is theoretically the most
accurate one. What might be surprising is the absolute accuracy of SZP.
The error is practically zero even for very small values of n. The second
best of the approximations is RIS converging monotonically towards the
exact value. However, this convergence gets slower when K increases. The
figures also nicely show the typical behaviour of the BIC approximation.
When the test setting becomes more complex (for K > 3), BIC starts to
overestimate the parametric complexity.

In the second set of experiments we studied the accuracy of the three ap-
proximations when the number of values K varies from 2 to 10. Figure 3.2
shows the difference between the approximative and exact parametric com-
plexity when the size of the data n is fixed to 25, 100 and 500, respectively.
Naturally, the accuracy of the SZP approximation is superior in these tests
as well. The most dramatic thing to notice from the figures is the rapid
decrease in the accuracy of the BIC approximation when K increases. This
is in contrast with the RIS approximation, which clearly gets more accurate
with increasing amount of data, as anticipated by the theory.
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Figure 3.1: The accuracy of the three approximations as a function of the
size of the data for K = 2, 4 and 9.
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Figure 3.2: The accuracy of the three approximations as a function of the
number of values. From top to bottom, the data size n is fixed to 25, 100
and 500.
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3.2 The Naive Bayes Model Family

It is clear that the time complexity of computing the NML for the Naive
Bayes model family (2.20) is also dominated by the parametric complex-
ity C(M(K0,K1, . . . ,Km), n). It turns out (see Papers I and V) that the
recursive formula (3.1) can be generalized to this case:

Theorem 3.2 The terms C(M(K0,K1, . . . ,Km), n) satisfy the recurrence

C(M(K0,K1, . . . ,Km), n) =
∑

r1+r2=n

n!
r1!r2!

(r1

n

)r1 (r2

n

)r2
· CNB(M(K∗,K1, . . . ,Km), r1) · CNB(M(K0 −K∗,K1, . . . ,Km), r2),

(3.9)

where K∗ = 1, . . . ,K0 − 1.

Proof. See Papers I and V. 2

In many practical applications of the Naive Bayes the quantity K0 is
unknown. Its value is typically determined as a part of the model class
selection process. Consequently, it is necessary to compute NML for model
classes M(K0,K1, . . . ,Km), where K0 has a range of values, say, K0 =
1, . . . ,Kmax. The process of computing NML for this case is described in
Algorithm 2. The time complexity of the algorithm is O

(
n2 ·Kmax

)
. If the

value of K0 is fixed, the time complexity drops to O
(
n2 · logKmax

)
. See

Paper V for more details.
Deriving accurate approximations to the Naive Bayes NML is more

challenging than in the multinomial case. BIC and the Rissanen’s asymp-
totic expansion can be computed for the Naive Bayes (see Paper I), but the
equivalent of the Szpankowski approximation for the multinomial model
family (3.8) has not been found. One simple approach is presented in Pa-
per I, where the multinomial NML terms in Algorithm 2 are replaced by the
approximations using (3.8). However, the time complexity of the resulting
algorithm is still quadratic with respect to the size of the data.
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Algorithm 2 The algorithm for computing the NML for the Naive Bayes
model family for K0 = 1, . . . ,Kmax.

1: Compute C(M(k), j) for k = 1, . . . , Vmax, j = 0, . . . , n, where
Vmax = max{K1, . . . ,Km}

2: for K0 = 1 to Kmax do

3: Count the frequencies h1, . . . , hK0 , fik1, . . . , fikKi

for i = 1, . . . ,m, k = 1, . . . ,K0 from the data xn

4: Compute the likelihood: P (xn | θ̂(xn,M(K0,K1, . . . ,Km)))

=
∏K0

k=1

(
hk

n

)hk ∏m
i=1

∏Ki

l=1

(
fikl

hk

)fikl

5: Set C(M(K0,K1, . . . ,Km), 0) = 1

6: if K0 = 1 then

7: Compute C(M(1,K1, . . . ,Km), j) =
∏m

i=1 C(M(Ki), j)
for j = 1, . . . , n

8: else

9: Compute C(M(K0,K1, . . . ,Km), j)

=
∑

r1+r2=j
j!

r1!r2!

(
r1
j

)r1
(

r2
j

)r2

· C(M(1,K1, . . . ,Km), r1)
·C(M(K0 − 1,K1, . . . ,Km), r2) for j = 1, . . . , n

10: end if

11: Output PNML(xn | M(K0,K1, . . . ,Km)) = P (xn|θ̂(xn,M(K0,K1,...,Km)))
C(M(K0,K1,...,Km),n)

12: end for



Chapter 4

MDL Applications

In this chapter, we will show how the NML can be applied to practical
problems using the techniques described in Chapter 3. Due to the compu-
tational efficiency problems, there are relatively few applications of NML.
However, the existing applications have proven that NML works very well
in practice and in many cases provides superior results when compared to
alternative approaches.

We mention here some examples of NML applications. First, in Pa-
pers V and VI, NML was used for clustering of multi-dimensional data
and its performance was compared to the Bayesian approach. The results
showed that the performance of the NML was especially impressive with
small sample sizes. Second, in [60], NML was applied to wavelet denois-
ing of digital images. Since the MDL principle in general can be inter-
preted as separating information from noise, this approach is very natural.
Bioinformatical applications include [43] and [67], where NML was used for
DNA sequence compression and data analysis in genomics, respectively. A
scheme for using NML for histogram density estimation was presented in
Paper IV. In this work, the density estimation problem was regarded as
a model class selection task. This approach allowed finding NML-optimal
histograms with variable-width bins in a computationally efficient way. Fi-
nally, in [12] NML histograms were used for modeling the attributes of the
Naive Bayes classifier.

In the following, we will concentrate on two applications: histogram
density estimation and clustering of multi-dimensional data. A computa-
tionally efficient NML approach for histogram density estimation was pro-
posed in Paper IV. A theoretically interesting recursion formula derived in
Paper III was shown to provide a way to compute the NML for histograms in
linear time with respect to the sample size. The NML clustering framework
was introduced in Paper V. The optimization aspect of the clustering prob-

21
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lem was studied in Paper VI, where five algorithms for efficiently searching
the exponentially-sized clustering space were empirically compared.

4.1 Histogram Density Estimation

Density estimation is one of the central problems in statistical inference and
machine learning. Given a sample of observations, the goal of histogram
density estimation is to find a piecewise constant density that describes the
data best according to some pre-determined criterion. Although histograms
are conceptually simple densities, they are very flexible and can model
complex properties like multi-modality with a relatively small number of
parameters. Furthermore, one does not need to assume any specific form for
the underlying density function: given enough bins, a histogram estimator
adapts to any kind of density.

The NML approach for irregular (variable-width bin) histogram den-
sity estimation described in Paper IV regards the problem as a model class
selection task, where the possible sets of cut points (bin borders) are con-
sidered as model classes. The model parameters are the bin masses, or
equivalently the bin heights. The NML criterion for comparing candidate
histograms can be computed efficiently using the recursion formula derived
in Paper III, where the problem of computing the parametric complexity
for multinomial model was studied.

There is obviously an exponential number of different cut point sets.
Therefore, a brute-force search is not feasible. In Paper IV it was shown
that the NML-optimal cut point locations can be found via dynamic pro-
gramming in a polynomial (quadratic) time with respect to the size of the
set containing the cut points considered in the optimization process.

The histogram density estimation is naturally a well-studied problem,
but unfortunately almost all of the previous studies, e.g. [6, 23, 73], con-
sider regular (equal-width bin) histograms only. Most similar to our work
is [59], in which irregular histograms are learned with the Bayesian mixture
criterion using a uniform prior. The same criterion is also used in [23], but
the histograms are equal-width only. It should be noted that this differ-
ence is significant as the Bayesian mixture criterion does not possess the
optimality properties of the NML.

4.1.1 Definitions

Consider a sample of n outcomes xn = (x1, . . . ,xn) on the interval [xmin,xmax].
Without any loss of generality, we assume that the data is sorted into in-
creasing order. Furthermore, we assume that the data is recorded at a
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finite accuracy ε. This assumption is made to simplify the mathematical
formulation, and as can be seen later, the effect of the accuracy parameter ε
on the stochastic complexity is a constant that can be ignored in the model
selection process.

Let C = (c1, . . . , cK−1) be an increasing sequence of points partitioning
the range [xmin − ε/2,xmax + ε/2] into the following K intervals (bins):

([xmin − ε/2, c1], ]c1, c2], . . . , ]cK−1,xmax + ε/2]). (4.1)

The points ck are called the cut points of the histogram. Define c0 =
xmin − ε/2, cK = xmax + ε/2 and let Lk = ck − ck−1, k = 1, . . . ,K be the
bin lengths. Given a parameter vector θ ∈ Θ,

Θ = {(θ1, . . . , θK) : θk ≥ 0, θ1 + · · ·+ θK = 1}, (4.2)

and a set (sequence) of cut points C, we now define the histogram density fh
by

fh(x | θ, C) =
ε · θk
Lk

, (4.3)

where x ∈ ]ck−1, ck]. Note that (4.3) does not define a density in the purest
sense, since fh(x | θ, C) is actually the probability that x falls into the
interval ]x− ε/2, x+ ε/2].

Given (4.3), the likelihood of the whole data sample xn is easy to write.
We have

fh(xn | θ, C) =
K∏
k=1

(
ε · θk
Lk

)hk

, (4.4)

where hk is the number of data points falling into bin k.

4.1.2 NML Histogram

To instantiate the NML distribution (2.3) for the histogram density fh, we
need to find the maximum likelihood parameters θ̂(xn) = (θ̂1, . . . , θ̂K) and
an efficient way to compute the parametric complexity. It is well-known
that the ML parameters are given by the relative frequencies θ̂k = hk/n,
so that we have

fh(xn | θ̂(xn), C) =
K∏
k=1

(
ε · hk
Lk · n

)hk

. (4.5)

Denote now the parametric complexity of aK-bin histogram by log C(HK , n).
We now have the following theorem:
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Theorem 4.1 The term C(HK , n) is given by

C(HK , n) =
∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏
k=1

(
hk
n

)hk

, (4.6)

i.e., the same as the parametric complexity of a K-valued multinomial
model.

Proof. See research paper IV. 2

This result means that we can compute the parametric complexity for his-
togram densities using Algorithm 1.

We are now ready to write down the stochastic complexity (2.6) for the
histogram model. We have

SC(xn | C) = − log

∏K
k=1

(
ε·hk
Lk·n

)hk

C(HK , n)
(4.7)

=
K∑
k=1

−hk(log(ε · hk)− log(Lk · n)) + log C(HK , n). (4.8)

Equation (4.8) is the basis for measuring the quality of NML histograms,
i.e., comparing different cut point sets. It should be noted that as the term∑K

k=1−hk log ε = −n log ε is a constant with respect to C, the value of ε
does not affect the comparison.

The histogram density estimation problem is now straightforward to de-
fine: find the cut point set C which optimizes the given goodness criterion.
In our case the criterion is based on the stochastic complexity (4.8), and
the cut point sets are considered as model classes. In practical model class
selection tasks, however, the stochastic complexity criterion itself may not
be sufficient. The reason is that it is also necessary to encode the model
class index in some way, as argued in [21]. We assume that the model class
index is encoded with a uniform distribution over all the cut point sets of
the same size. For a K-bin histogram with E possible cut points, there
are clearly

(
E

K−1

)
ways to choose the cut points. Thus, the codelength for

encoding them is log
(
E

K−1

)
.

After these considerations, we define the final criterion (or score) used
for comparing different cut point sets as

B(xn | E,K,C) = SC(xn | C) + log
(

E

K − 1

)
=

K∑
k=1

−hk (log(ε · hk)− log(Lk · n)) + log C(HK , n) + log
(

E

K − 1

)
. (4.9)
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It is clear that there are an exponential number of possible cut point sets,
and thus an exhaustive search to minimize (4.9) is not feasible. However,
the optimal cut point set can be found via dynamic programming, which
works by tabulating partial solutions to the problem. The final solution is
then found recursively. For details, see Paper IV.

To demonstrate the behaviour of the NML histogram method in prac-
tice we implemented the dynamic programming algorithm and ran some
simulation tests (see Paper IV). We generated data samples of various size
from densities of different shapes and then used the dynamic program-
ming method to find the NML-optimal histograms. Figure 4.1 shows two
examples of the generating densities (labeled gm6 and gm8) and the corre-
sponding NML-optimal histograms. The sample size is fixed to 10000, and
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Figure 4.1: The generating densities gm6 and gm8 and the corresponding
NML-optimal histograms.

the generating densities are Gaussian finite mixtures with 6 and 8 compo-
nents, respectively. From the plots we can see that the NML histogram
method is able to capture properties such as multi-modality and long tails.
Another nice feature is that the algorithm automatically places more bins
to the areas where more detail is needed like the high, narrow peaks of gm6.
See Paper IV for more empirical tests and discussion.
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4.2 Clustering

A clustering is a partitional data assignment or data labeling problem,
where the goal is to partition the data into mutually exclusive clusters so
that similar data vectors are grouped together. The number of clusters is
unknown, and determining the optimal number is part of the clustering
problem. The data are assumed to be in a vector form so that each data
item is a vector consisting of a fixed number of attribute values. Within this
framework two fundamental problems can be identified: how to define the
goodness of a clustering (data partitioning) and how to find good clusterings
with respect to the chosen scoring criterion.

Traditionally, the scoring problem has been approached by first fixing
a distance metric, and then by defining a global goodness measure based
on this distance metric. However, although this approach is intuitively
quite appealing, from the theoretical point of view it introduces many
problems such as choosing a suitable distance metric and the handling
of non-continuous attributes. A completely different approach to cluster-
ing is offered by the model-based approach, where for each cluster a data
generating function (a probability distribution) is assumed, and the clus-
tering problem is defined as the task to identify these distributions (see,
e.g., [64, 18, 7]). In other words, the data are assumed to be generated
by a finite mixture model [13, 69, 44]. In this framework the optimality of
a clustering can be defined as a function of the fit of data with the finite
mixture model, not as a function of the distances between the data vectors.

In Paper V we proposed an NML-based approach for clustering. Intu-
itively, the idea is that a good clustering is such that one can encode the
cluster labels together with the data so that the resulting code length is
minimized. When the cluster labels are fixed, the finite mixture model is
essentially the same as the Naive Bayes model, which allows the use of the
techniques described in Section 3.2 for efficient computation of the NML
criteria.

The optimization part of the clustering problem, i.e., how to find good
clusterings with respect to the NML score, was studied in Paper VI. In
that work, five algorithms were proposed to the problem and their perfor-
mance was compared via empirical tests using several real-world datasets.
In Section 4.2.2 we shortly summarize these empirical results.

4.2.1 NML Clustering

Let us assume that our problem domain consists of m discrete variables
X1, . . . , Xm and that the variable Xi has Ki values. The data xn =
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(x1, . . . ,xn) consists of observations xj = (xj1, . . . , xjm) ∈ X , where

X = {1, 2, . . . ,K1} × · · · × {1, 2, . . . ,Km}. (4.10)

We assume that the possibly originally continuous variables have been dis-
cretized. One reason for focusing on discrete data is that in this case we can
model the domain variables by multinomial distributions without having
to make restricting assumptions about unimodality, normality etc., which
is the situation we face in the continuous case.

A clustering of the data set xn is defined as a partitioning of the data
into mutually exclusive subsets, the union of which forms the data set. The
number of subsets is a priori unknown. The clustering problem is the task
to determine the number of subsets, and to decide to which cluster each
data vector belongs.

Formally, we can notate a clustering by using a clustering vector zn =
(z1, . . . , zn), where zj denotes the index of the cluster to which the data
vector xj is assigned to. Denote the clustering variable by X0 so that zn

is a sample from the distribution of X0. The number of clusters, say K0,
is implicitly defined in the clustering vector, as it can be determined by
counting the number of different values appearing in zn.

In Paper V, we suggested the following NML-based criterion for finding
the optimal clustering ẑn:

ẑn = arg max
zn

PNML(xn, zn | M(K0,K1, . . . ,Km)), (4.11)

where M(K0,K1, . . . ,Km) is the Naive Bayes model family with K0 com-
ponents. In the clustering framework this means that the data vectors
should be partitioned so that the vectors belonging to the same cluster can
be compressed well together, i.e., that those data vectors that obey the
same set of underlying regularities are grouped together.

Naturally, the criteria for comparing different clusterings can be based
on other approaches like Bayesian statistics. In the Bayesian case, the NML
distribution in (4.11) is replaced by the Bayesian marginal likelihood (see,
e.g. [8, 24]). The approaches were compared empirically in Paper V, where
it was shown that NML produces the best results especially with small
sample sizes.

4.2.2 Comparison of Clustering Algorithms

The space of potential clusterings is obviously exponential in size, which
means that in practice we need to resort to combinatorial search algorithms
in our attempt to solve the clustering problem. The search algorithm used
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in the empirical tests in Paper V was a simple stochastic greedy algorithm.
In Paper VI, we compared five different algorithms for finding good cluster-
ings using several real-world datasets from the UCI repository [2]. Two sets
of results were presented. The first set concentrates on finding the number
of clusters and the actual clustering minimizing the NML score (4.11). In
the second set of experiments, we tested how long it takes for each of the
five algorithms to find the respective maximum NML value.

The first search algorithm candidate is a simple stochastic greedy (SG)
algorithm suggested in Paper V. Since our definition of clustering is based
on the finite mixture model, the standard mixture learning algorithm, EM
(Expectation-Maximization) (See [11, 41]) is a natural choice as a second
clustering algorithm. The third candidate algorithm is the K-means al-
gorithm (KM), sometimes called the CEM algorithm [45]. It is a simple
modification to the EM algorithm.

Each of the algorithms mentioned above needs to be initialized prior
to the iterative updating procedure. In our tests, we started each algo-
rithm simply by choosing a random clustering. To test the importance of
the initialization, we added two hybrid methods to our set of candidate
search algorithms. The first hybrid algorithm (KMSG) starts by running
the K-means algorithm until convergence and then switches to the stochas-
tic greedy search. The second algorithm (EMSG) is the same except that
the EM algorithm is used as an initializer.

Having fixed the set of candidate search algorithms, the next task is to
define a strategy for finding the optimal number of clusters and the actual
clustering. Since all the five algorithms converge to a local optimum of
the stochastic complexity, the natural strategy is to restart the algorithms
several times from different starting points.

Although the NML scoring criterion can be used for comparing clus-
terings with different number of clusters, the framework does not offer an
explicit way to directly infer the optimal number of clusters (K). Conse-
quently, the second part of our search strategy is to vary the parameter K.
The complete search strategy is described in Algorithm 3.

In the first batch of results we tested which of the five algorithms find the
best clusterings in terms of the stochastic complexity. The results showed
that all five candidate algorithms end up choosing a similar number of
clusters. However, when we looked at the actual SC values, there were
significant differences between the algorithms. Since SC can be interpreted
as a quality of a clustering, these differences are important. The hybrid
EMSG was clearly the best one of the algorithms, especially with more
complex cases, i.e., when the size of data and the optimal number of clusters
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Algorithm 3 The search strategy used in our tests.
repeat

for all D in datasets do
for K = 1 to 20 do

Choose a random initial K-clustering for dataset D
for all A in {SG, KM, EM, KMSG, EMSG} do

Run the algorithm A until converged
end for

end for
end for

until 50 restarts have been made

was bigger. Another interesting observation is that the traditional KM and
EM algorithms were clearly the worst of the candidate algorithms.

In the second set of experiments we recorded how much CPU time each
algorithm required for finding their respective optimal clustering. The most
important thing to notice from these results was that the hybrid EMSG
algorithm, which in the first batch of empirical results was found to produce
comparable or better results than SG, was almost always significantly faster
than the SG algorithm proving the intuitive argument that choosing a good
initial clustering is important. This made the EMSG algorithm a clear
overall winner in our experiments. It is also noteworthy that KM and
EM were often much slower than the other algorithms even though they
produced inferior results. This makes the applicability of KM and EM even
more questionable in the setting used here. See Paper VI for all the details
of the empirical tests.
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Chapter 5

Conclusion

The Normalized Maximum Likelihood (NML) distribution offers a univer-
sal, minimax optimal approach to statistical modeling. In this thesis we
have surveyed efficient algorithms for computing the NML in the case of
discrete data sets and two model families of practical importance. The
first model family we discussed is the multinomial, which can be applied
to problems such as density estimation and discretization. In this case, the
NML can be computed in linear time. For the Naive Bayes model family,
the NML can be computed in quadratic time. Models of this type have been
used extensively in clustering or classification domains with good results.

To demonstrate the applicability of the computation algorithms pre-
sented, we also discussed two NML applications. The first application
was an information-theoretic framework for histogram density estimation.
The selected approach based on the MDL principle has several advantages.
Firstly, the MDL criterion for model class selection (stochastic complex-
ity) has nice theoretical optimality properties. Secondly, by regarding his-
togram density estimation as a model class selection problem, it is possible
to learn generic, variable-width bin histograms and also estimate the op-
timal bin count automatically. Furthermore, the MDL criterion itself can
be used as a measure of quality of a density estimator, which means that
there is no need to assume anything about the underlying generating den-
sity. Since the model selection criterion is based on the NML distribution,
there is also no need to specify any prior distribution for the parameters.

The second application we described was NML clustering of data. We
suggested a framework for this problem based on the idea that a good clus-
tering is such that it allows efficient compression when the data are encoded
together with the cluster labels. We also introduced five optimization algo-
rithms for minimizing the stochastic complexity. Using these algorithms, we
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conducted an extensive set of experiments with several real-world datasets.
In the first part of the tests we recorded the number of clusters chosen
and the quality of the actual clusterings found by the algorithms, while
the idea of the second batch of tests was to see how much CPU time each
algorithm requires for finding the best solution. In the empirical results
we found out that all the five algorithms were useful if the goal is to find
the NML-optimal number of clusters. However, the quality of the individ-
ual clusterings found by the more traditional KM and EM algorithms was
questionable. These algorithms were also found to be slow. The most in-
teresting observation was that the novel hybrid EMSG algorithm produced
the best results and was also fast.

The methods presented are especially suitable for problems that involve
multi-dimensional discrete data sets. Furthermore, unlike the Bayesian
methods, information-theoretic approaches such as ours do not require a
prior for the model parameters. This is a most important aspect, as con-
structing a reasonable parameter prior is a notoriously difficult problem,
particularly in domains with little background knowledge. All in all, infor-
mation theory has been found to offer a natural and successful theoretical
framework for applications in general.

In the future, our plan is to extend the current work to more complex
cases such as general Bayesian networks, which would allow the use of NML
in even more involved modeling tasks. Another natural area of future work
is to apply the methods of this thesis to other practical tasks involving
large discrete databases and compare the results to other approaches, such
as those based on Bayesian statistics.
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Chapter A

Mathematical Background

The purpose of this appendix is to provide the reader with some mathemat-
ical techniques that are used in the other parts of the thesis, especially in
Appendix B. The topics covered are complex analysis, formal power series,
generating functions and asymptotic analysis.

A.1 Review of Complex Analysis

The theory of functions of a complex variable, also called complex analysis
for brevity, is one of the most beautiful as well as useful branches of mathe-
matics. It is an essential part of the mathematical background of physicists,
mathematicians, engineers and other scientists. From the theoretical view-
point this is because many mathematical concepts become clarified and
unified when examined in the light of complex analysis. From the applied
viewpoint the theory is of tremendous value in the solution of problems
such as fluid dynamics, heat flow, aerodynamics, electromagnetic theory
and many other fields of science and engineering.

For a computer scientist, the importance of complex analysis comes
from the fact that the theory can be applied to, e.g., calculation of fi-
nite and infinite sums, analyzing algorithms and finding asymptotic be-
haviour of sequences. In this thesis complex analysis is used for deriving
the accurate NML approximation in Appendix B. The purpose of this ap-
pendix is to briefly review the most relevant definitions and theorems of
complex analysis. For further reading on the subject we recommend the
books [51, 74, 65, 26].
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A.1.1 The Complex Numbers and the Complex Plane

The set C of complex numbers is introduced to permit solutions to equations
like

x2 + 1 = 0, (A.1)

that has no solutions in the set R of real numbers. A complex number has
the form a+bi, where a and b are real numbers and i is called the imaginary
unit and has the property i2 = −1. If z = a + bi, a is called the real part
of z and b is called the imaginary part of z. The symbol z, which can stand
for any of a set of complex numbers, is called a complex variable.

A complex number z = a+bi is uniquely determined by an ordered pair
of real numbers (a, b). Because of this correspondence we can associate z
with a point (a, b) in coordinate plane. This plane is then called the complex
plane. The horizontal or x-axis is called the real axis and the vertical
or y-axis is called the imaginary axis. If P is a point in the complex
plane corresponding to the complex number z = a + bi, then we see from
Figure A.1 that

a = r cos θ, b = r sin θ, (A.2)

where r =
√
a2 + b2 = |a+ bi| is called the modulus or absolute value of z,

and θ is called the argument of z. It follows that we can write

z = a+ bi = r(cos θ + i sin θ), (A.3)

which is called the polar form of the complex number z.
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Figure A.1: The polar form of complex number 2 + 3i.
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A.1.2 Roots of Complex Numbers

A number w is called an nth root of a complex number z if wn = z, and
we write w = z1/n. We can show that if n is a positive integer, then

z1/n = (r(cos θ + i sin θ))1/n (A.4)

= r1/n

[
cos
(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

)]
, (A.5)

for k = 0, 1, 2, . . . , n−1. It follows that there are n different values for z1/n.
For example, the five 5th roots of number 32 are

• 2

• 2
(
cos 2π

5 + i sin 2π
5

)
• 2

(
cos 4π

5 + i sin 4π
5

)
• 2

(
cos 6π

5 + i sin 6π
5

)
• 2

(
cos 8π

5 + i sin 8π
5

)
,

as illustrated in Figure A.2.

R

I
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Figure A.2: The 5th roots of complex number 32.

Note that the roots lie on a circle centered at origin of radius r = 2 and
are spaced at equal angular intervals of 2π/5 radians, i.e., they represent
the vertices of a regular pentagon.
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A.1.3 Analytic Functions

A complex function is a function f whose domain and range are subsets
of the set C of complex numbers. Because R is a subset of the set C,
every real-valued function of a real variable is also a complex function.
Furthermore, every complex function can be defined in terms of two real
functions u(a, b) and v(a, b) as f(z) = u(a, b)+iv(a, b). This implies that the
study of complex functions is closely related to the study of real multivariate
functions of two real variables.

Suppose that a complex function f is defined in a deleted neighborhood
of a point z0 and that l is a complex number. The limit of f as z tends
to z0 exists and is equal to l, written as limz→z0 f(z) = l, if for every ε > 0
there exists a number δ such that |f(z) − l| < ε whenever |z − z0| < δ.
Complex and real limits have many common properties, but there is at
least one very important difference. For limits of complex functions, z is
allowed to approach z0 from any direction in the complex plane, that is,
along any curve or path through z0. In order that limz→z0 f(z) = l, it
is required that f(z) approaches the same complex number l along every
possible curve through z0.

The complex derivative is defined similarly as its real counterpart. Sup-
pose that a complex function f is defined in a neighborhood of a point z0.
The derivative of f at z0 is

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

, (A.6)

provided that the limit exists. Furthermore, the function f is said to be
analytic at a point z0 if the derivative f ′(z0) exists at z0 and at every point
in some neighborhood of z0. If f is analytic at every point in an open
connected set (domain) D we say that f(z) is analytic in D. The term
holomorphic is often used as a synonym for analytic. A function that is
analytic at every point in the complex plane is said to be an entire function.

A remarkable property of analytic functions is the infinite differentia-
bility: if f is analytic in a domain D, then f has derivatives of all orders
in D. This is not necessarily true for functions of real variables. Further-
more, if z0 is a point in D, then by the Taylor’s theorem, f has the series
representation

f(z) =
∑
n≥0

f (n)(z0)
n!

(z − z0)n (A.7)

valid for the largest circle C with center at z0 and radius R that lies entirely
within D. The number R is called the radius of convergence.
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A.1.4 Complex Integration

A complex integral is defined in a manner that is quite similar to that of a
line integral in the Cartesian plane. Let f be a complex function defined
at all points on a smooth curve C. Subdivide C into n parts by means of
z1, . . . , zn−1 chosen arbitrarily. On each arc joining zk−1 and zk choose a
point αk and form a sum

Sn = f(α1)(z1 − z0) + f(α2)(z2 − z1) + · · ·+ f(αn)(zn − zn−1), (A.8)

where z0 and zn are the starting and end poinds of C, respectively. On
writing ∆zk = zk − zk−1, this becomes

Sn =
n∑
k=1

f(αk)∆zk. (A.9)

Let the number of subdivisions n increase in such a way that the largest
of the arc lengths |∆zk| approaches zero. If the sum Sn approaches a limit
which does not depend on the choice of the zk’s we call this limit a complex
(line) integral of f along curve C and denote it by∮

C
f(z)dz. (A.10)

Function f is said to be integrable along curve C. If f is analytic at all
points of a domain D and if curve C is lying in D then f is certainly
integrable along C.

Another remarkable result of complex analysis is the Cauchy’s integral
theorem: Suppose that a function f is analytic at all points within and on
a simple closed curve C. Then,∮

C
f(z)dz = 0. (A.11)

A.1.5 Laurent Expansion

If a complex function f fails to be analytic at a point z0, then this point is
said to be a singularity of the function f . The Taylor expansion (A.7) does
not hold at a singularity point. However, if the singularity z0 is isolated,
i.e., there exists some deleted neighborhood of z0 throughout which f is
analytic, it is possible to represent f by a series involving both negative
and non-negative integer powers of z− z0. This series is called the Laurent
expansion,

f(z) =
∞∑

n=−∞
an(z − z0)n. (A.12)
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Furthermore, the coefficients an are given by

an =
1

2πi

∮
C

f(z)dz
(z − z0)n+1

, (A.13)

where C is any simple closed curve that encloses z0 and that lies entirely
inside a region in which f is analytic.

An isolated singularity z0 of a complex function f is given a classification
depending on whether its Laurent expansion (A.12) contains zero, a finite
number, or an infinite number of terms of negative powers.

1. If all the coefficients a−n are zero, then z0 is called a removable sin-
gularity.

2. If a finite number, say k, of coefficients a−n are non-zero, then z0 is
called a pole of order k.

3. If an infinite number of coefficients a−n are non-zero, then z0 is called
an essential singularity.

If the denominator of a rational function f has a zero of order k at z0, then
the function f has a pole of order k at z0.

A.1.6 The Residue Theorem

The coefficient a−1 in the Laurent series (A.12) has a special meaning. This
coefficient is called the residue of function f at the isolated singularity z0

and denoted by
a−1 = Res

z=z0
f(z). (A.14)

The reason why the residue concept is important is that under some cir-
cumstances we can evaluate complex integrals by summing the residues at
the isolated singularities of a function. More precisely, the Residue theorem
states that if f is analytic inside and on a simple closed curve C, except at
a finite number of isolated singularities z1, z2, . . . , zn within C, then∮

C
f(z)dz = 2πi

n∑
k=1

Res
z=zk

f(z). (A.15)

Note that the residue theorem is an extension of the Cauchy’s integral
theorem (A.11).

The residue theory has many applications. It can be used, e.g., to
evaluate real integrals, to find the locations of zeros of an analytic function,
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to sum infinite series and to find integral transforms such as the Laplace
transform and its inverse.

There are several ways to calculate residues. Obviously, if we can some-
how find the Laurent expansion of a function f at point z0, we can just
pick the coefficient a−1 from the series. Otherwise, if the singularity z0 is
a pole of order k, then

Res
z=z0

f(z) =
1

(k − 1)!
lim
z→z0

dk−1

dzk−1
[(z − z0)kf(z)]. (A.16)

Interestingly, this means that in some cases complex integrals can be eval-
uated by taking derivatives of complex functions.

A.1.7 Puiseux Expansion

We finalize the discussion on complex analysis by a very special topic of
fractional power or Puiseux series. This series is relevant in the derivation
of the accurate NML approximation in Appendix B. Suppose f is a mul-
tivalued analytic function and z0 its special singularity called branch point
of order k − 1. The exact definition of a branch point is complicated and
omitted here, but as an example the function (z− 1)1/3 has a branch point
of order 2 at z0 = 1, and the function

√
z(z − 1) has two branch points

at 0 and 1, each of order 1. In the neighborhood of a branch point z0, the
function f can be represented as a series

f(z) =
∞∑

n=−∞
an(z − z0)n/k. (A.17)

Note that the series (A.17) is an extension of the Laurent expansion (A.12).
Unfortunately, there is no simple formula for calculating the coefficients

of a Puiseux series. For the purposes of this thesis, however, a special result
on inversion of Puiseux series presented in [14] is suitable. In that work,
series expansions are classified into four types of systematic patterns. We
omit the full categorization here, but the category relevant to the main part
of the thesis is called “Type II” and it is of form

f(z) = a0 +
∑
n≥1

an(z − z0)n−1+β, (A.18)

where β > 0. According to the theorem, the inverse function of f can then
be represented as a Puiseux series

F (w) =
∑
n≥0

bn(w − w0)n/β, (A.19)
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for some sequence of coefficients bn. Note that f(z0) = a0 = w0 and F (w0) =
z0. An example of using the inversion is given in Appendix B.

A.2 Formal Power Series

In this appendix we give a short overview of the theory of formal power
series. We concentrate on the issues that are relevant to the other parts of
the thesis. Readers interested to learn more about formal power series can
refer to, e.g., [71, 19].

A.2.1 Definition

A formal power series is an expression of the form

∑
n≥0

anz
n, (A.20)

where the numbers an are called the coefficients of the series. In the theory
of formal power series, the variable z is considered as a formal symbol,
and the convergence of series (A.20) is not an issue. If, however, the series
converges for some values of z, it is a big advantage. For example, the
singularity analysis discussed in Appendix A.4 is based on this analytic
theory of power series. In practice, however, all the operations on series
can be performed without worrying about the convergence.

A.2.2 Linear Combination

The most basic of formal power series operations is taking a linear combi-
nation of two series. Since formal power series are just infinite polynomials,
we have

α
∑
n≥0

anz
n + β

∑
n≥0

bnz
n =

∑
n≥0

(αan + βbn) zn, (A.21)

for numbers α, β.
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A.2.3 Multiplication

Another basic operation is multiplication of two or more power series. By
basic arithmetics,∑
n≥0

anz
n

 ·
∑
n≥0

bnz
n

 = (a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · )

(A.22)

= (a0b0) + (a0b1 + a1b0)z (A.23)

+ (a0b2 + a1b1 + a2b0)z2 + · · ·

=
∑
n≥0

(
n∑
k=0

akbn−k

)
zn. (A.24)

The series (A.24) is called the Cauchy product or convolution.
The multiplication operation also generalizes to a product of three or

more series. For example, the product of three formal power series is∑
n≥0

anz
n

 ·
∑
n≥0

bnz
n

 ·
∑
n≥0

cnz
n

 (A.25)

= (a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · )(c0 + c1z + c2z
2 + · · · )

(A.26)

= (a0b0c0) + (a0b0c1 + a0b1c0 + a1b0c0)z (A.27)

+ (a0b0c2 + a0b1c1 + a0b2c0 + a1b0c1 + a1b1c0 + a2b0c0)z2 + · · ·
(A.28)

=
∑
n≥0

( ∑
r+s+t=n

arbsct

)
zn. (A.29)

A.2.4 Reciprocal Series

A more complex operation is taking the reciprocal of a formal power series.
It is defined as ∑

n≥0

bnz
n =

1∑
n≥0 anz

n
, (A.30)

from which it follows that

(a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · ) ≡ 1, (A.31)
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i.e., the trivial sequence (1, 0, 0, . . . ). Using the product rule (A.24) we
can solve the reciprocal coefficients bn as

a0b0 = 1, b0 =
1
a0

(A.32)

a0b1 + a1b0 = 0, b1 = −a1b0
a0

= −a1

a2
0

(A.33)

a0b2 + a1b1 + a2b0 = 0, b2 = −a1b1 + a2b0
a0

=
a2

1

a3
0

− a2

a2
0

, (A.34)

and so on. This result is used in Appendix B. It is easy to see that the
reciprocal of a series is only defined when a0, the constant term in the
original series, is non-zero.

As a simple example, we show that the reciprocal of (1,−1, 0, 0, . . .) is
the sequence (1, 1, 1, . . .), i.e.,

1
1− z

=
∑
n≥0

zn. (A.35)

This is easy to prove, since

(1− z)(1 + z+ z2 + · · · ) = (1 + z+ z2 + · · · ) + (−z− z2 + · · · ) ≡ 1. (A.36)

A.2.5 Inverse Series

The reciprocal operation is not to be confused with the subtler operation
of inverting a series. Inverse of a series

f(z) =
∑
n≥0

anz
n (A.37)

is defined as a series
g(z) =

∑
n≥0

bnz
n, (A.38)

if

f(g(z)) = g(f(z)) (A.39)

= a0 + a1(b0 + b1z + b2z
2 + · · · ) (A.40)

+ a2(b0 + b1z + b2z
2 + · · · )2 + · · · ≡ z,

i.e., the trivial sequence (0, 1, 0, 0, . . . ). As argued in [71] (Chapter 2.1),
this operation only makes sense if the constant terms a0, b0 are zero or if f
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is a polynomial (finite). Otherwise, the process of finding the coefficients
of the inverse series is infinite. Consequently, we have

f(g(z)) = a1(b1z + b2z
2 + b3z

3 + · · · ) + a2(b1z + b2z
2 + b3z

3 + · · · )2

(A.41)

+ a3(b1z + b2z
2 + b3z

3 + · · · )3 + · · ·
= (a1b1)z + (a1b2 + a2b

2
1)z2 + (a1b3 + 2a2b1b2 + a3b

3
1)z3 + · · · ≡ z,

(A.42)

from which we get by coefficient comparison

a1b1 = 1, b1 =
1
a1

(A.43)

a1b2 + a2b
2
1 = 0, b2 = −a2b

2
1

a1
= −a2

a3
1

(A.44)

a1b3 + 2a2b1b2 + a3b
3
1 = 0, b3 = −2a2b1b2 + a3b

3
1

a1
=

2a2
2

a5
1

− a3

a4
1

. (A.45)

This result is also used in Appendix B.

A.3 Generating Functions

One of the most powerful ways to analyze a sequence of numbers is to
form a power series with the elements of the sequence as coefficients. The
resulting function is called the generating function of the sequence. Gen-
erating functions can be seen as a bridge between discrete mathematics
and continuous analysis. They can be used for finding recurrence formulas
and asymptotic expansions, proving combinatorial identities and finding
statistical properties of a sequence.

In this appendix we will present a short overview of generating functions
and illustrate their use with several examples. Good sources for further
reading on generating functions are [71, 3, 19, 27, 28, 29].

A.3.1 Definition

The (ordinary) generating function of a sequence

〈an〉 = (a0, a1, a2, . . .) (A.46)

is defined as a series
A(z) =

∑
n≥0

anz
n, (A.47)
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where z is a dummy symbol (or a complex variable). The importance
of generating functions is that the function A(z) is a representation of
the whole sequence 〈an〉. By studying this function we can get important
information about the sequence, such as asymptotic form of the coefficients.

The most basic generating function is the one generating the constant
sequence (1, 1, 1, . . .). As already shown in Appendix A.2, this function is
given by

1
1− z

=
∑
n≥0

zn. (A.48)

A.3.2 Fibonacci Numbers

As a first non-trivial example of the power of generating functions we con-
sider the famous Fibonacci sequence

〈Fn〉 = (0, 1, 1, 2, 3, 5, 8, . . .), (A.49)

defined by the recurrence relation

Fn+1 = Fn + Fn−1, (n ≥ 1, F0 = 0, F1 = 1). (A.50)

To find the generating function

F (z) =
∑
n≥0

Fnz
n = z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + · · · , (A.51)

we multiply the recurrence (A.50) by zn and sum over n ≥ 1:∑
n≥1

Fn+1z
n =

∑
n≥1

Fnz
n +

∑
n≥1

Fn−1z
n (A.52)

F (z)− z
z

= F (z) + zF (z) (A.53)

F (z) =
z

1− z − z2
. (A.54)

From the basic complex analysis we know that the function F (z) has a
partial fraction expansion of the form

A

1− αz
+

B

1− βz
=

z

1− z − z2
(A.55)

for some numbers α, β,A,B. To find these constants, we write (A.55) as

A

1− αz
+

B

1− βz
=
A(1− βz) +B(1− αz)

(1− αz)(1− βz)
=

z

1− z − z2
. (A.56)
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For this to hold, we must have

(A+B)− (Aβ +Bα)z = z (A.57)

(1− αz)(1− βz) = 1− z − z2, (A.58)

which can be solved straightforwardly as

α =
1 +
√

5
2

, β =
1−
√

5
2

, A =
1√
5
, B = − 1√

5
. (A.59)

We can now write

F (z) =
A

1− αz
+

B

1− βz
(A.60)

= A
∑
n≥0

(αz)n +B
∑
n≥0

(βz)n (A.61)

=
∑
n≥0

(Aαn +Bβn) zn, (A.62)

and by plugging the solved values (A.59) into Equation (A.62), we get the
closed form solution for the nth Fibonacci number

Fn =
1√
5

((
1 +
√

5
2

)n
−

(
1−
√

5
2

)n)
. (A.63)

A.3.3 Integer Partitions

Let qK(n) be the number of partitions of integer n into K parts, i.e., the
number of finite non-increasing sequences of non-negative integers (h1, . . . , hK)
such that h1 + h2 + · · ·+ hK = n. For example, q3(5) = 5, since we have

5 = 5 + 0 + 0 = 4 + 1 + 0 = 3 + 2 + 0 = 3 + 1 + 1 = 2 + 2 + 1. (A.64)

In this section we want to find the generating function of the numbers qK(n),
i.e.,

QK(z) =
∑
n≥0

qK(n)zn. (A.65)

Note that an asymptotic analysis of QK(n) is discussed in Appendix A.4.
It is well-known (see, e.g., [3]) that the function generating the num-

bers qK(n) is given by

QK(z) =
1

1− z
· 1

1− z2
· 1

1− z3
· · · 1

1− zK
. (A.66)
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Partition Star diagram Conjugate 1.term 2.term 3.term
5, 0, 0 ? ? ? ? ? 1, 1, 1, 1, 1 z5 1 1

4, 1, 0
? ? ? ?
?

2, 1, 1, 1 z3 z2 1

3, 2, 0
? ? ?
? ?

2, 2, 1 z z4 1

3, 1, 1
? ? ?
?
?

3, 1, 1 z2 1 z3

2, 2, 1
? ?
? ?
?

3, 2 1 z2 z3

Table A.1: Partitions and conjugate partitions of integer 5 into 3 parts.

Intuitively, this result can be understood via an example. Take the above-
mentioned case with n = 5,K = 3. The generating function is

Q3(z) =
1

1− z
· 1

1− z2
· 1

1− z3
(A.67)

= (1 + z + z2 + z3 + · · · )(1 + z2 + z4 + z6 + · · · ) (A.68)

· (1 + z3 + z6 + z9 + · · · ).

By the basic definition of generating functions, it is clear that the coefficient
of z5 in the expansion of (A.68) must be q3(5) = 5. To see that this is indeed
the case, take a look at Table A.1, where the partitions of 5 into 3 parts are
listed. Each partition of n can be represented as a star diagram composed
of n stars arranged in rows. The number of stars in each row is determined
by the elements of the partition. Counting the stars by columns instead of
rows, we get the conjugate partition of the original partition. Now, each
conjugate partition represents a way to get the term z5 in (A.68). Take,
for example, the conjugate partition (2, 1, 1, 1):

1. The number of 1’s in the partition is 3, so pick the 3rd order term
from (1 + z + z2 + z3 + · · · ), i.e., z3.

2. The number of 2’s in the partition is 1, so pick the 1st order term
from (1 + z2 + z4 + z6 + · · · ), i.e., z2.

3. The number of 3’s in the partition is 0, so pick the 0th order term
from (1 + z3 + z6 + z9 + · · · ), i.e., 1.
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We end up with the term z3 ·z2 ·1 = z5, as desired. The other four partitions
are treated similarly. We can therefore conclude that the function Q3(z)
generates numbers q3(n). The full proof can be found in [3].

A.4 Asymptotic Analysis of Generating Functions

In this appendix we will present methods for finding asymptotic behaviour
of a sequence based on the theory of generating functions. For the purposes
of this thesis, a powerful method called singularity analysis by Flajolet
and Odlyzko [16] is especially suitable. Additional sources of information
on singularity analysis are [52, 17, 66]. Other asymptotic methods, such
as bootstrapping, Tauberian theorems, Darboux’s method and the saddle
point method are discussed in [10, 20, 19, 71, 66].

Suppose we have found the generating function for a certain sequence
of numbers that interests us. The goal of asymptotic analysis is to find a
simple function of n which approximates well the values of the sequence
when n is large. This can be achieved by analyzing the singularities of the
generating function. Suitable asymptotic analysis method is then chosen
based on the nature of the singularities.

Especially important is the singularity that is nearest to the origo. As
argued in [66], this dominant singularity determines the asymptotic growth
of the coefficients of the generating function. Therefore, it is only necessary
to locate this singularity and analyze the behaviour of the function around
it.

A.4.1 Rational Functions

We start the discussion on asymptotic analysis by a relatively simple case
of rational generating functions, whose only singularities are poles. Let
f(z) be a rational function generating the sequence 〈an〉. Suppose f(z) is
analytic at zero and has poles at points p1, p2, . . . , pm. Then there exists m
polynomials (P1, . . . , Pm) such that exactly

an = [zn]f(z) =
m∑
j=1

Pj(n)p−ni . (A.69)

Furthermore, the degree of Pj is equal to the order of the pole at pj minus
one. In particular, a single pole only contributes a constant term to (A.69).
This theorem is proved in, e.g., [66]. In practice, the polynomials Pj can
be found via residue calculus.
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To illustrate the use of (A.69), let us consider a version of the classic
money changing problem: in how many ways can one pay an amount of
n cents using only coins of 1, 2 and 5 cents? Let mn denote this number.
To solve the problem, we need to find the generating function m(z) for
the sequence 〈mn〉. The money changing problem is closely related to the
counting of integer partitions discussed in Appendix A.3. Using similar
arguments, it is easy to see that the generating function is given by

m(z) =
1

(1− z)(1− z2)(1− z5)
, (A.70)

which is a rational function and analytic at zero, so (A.69) applies.
The first step is to find the poles of (A.70). From the complex root

discussion of Appendix A.1, we have:

• The only pole of (1− z) is 1.

• The poles of (1− z2) are 1,−1.

• The poles of (1− z5) are:

∗ 1

∗ cos 2π
5 + i sin 2π

5

∗ cos 4π
5 + i sin 4π

5

∗ cos 6π
5 + i sin 6π

5

∗ cos 8π
5 + i sin 8π

5 .

Thus, the function m(z) has a triple pole at z = 1 and several single poles.
We choose here to ignore the single poles, since they only contribute a
constant term to (A.69).

By the Laurent’s theorem presented in Appendix A.1, we know thatm(z)
has a Laurent expansion at z = 1,

m(z) =
a−3

(z − 1)3
+

a−2

(z − 1)2
+

a−1

(z − 1)
+
∑
n≥0

an(z − 1)n. (A.71)

The coefficients an can be found via basic residue calculus. By the coeffi-
cient formula (A.13),

a−3 =
1

2πi

∮
C

(z − 1)2

(1− z)(1− z2)(1− z5)
dz (A.72)

=
1

2πi

∮
C

1
(1 + z)(1− z)(1 + z + z2 + z3 + z4)

dz, (A.73)
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which is by the residue theorem (A.15)

a−3 = Res
z=1

1
(1 + z)(1− z)(1 + z + z2 + z3 + z4)

(A.74)

= lim
z→1

z − 1
(1 + z)(1− z)(1 + z + z2 + z3 + z4)

(A.75)

= lim
z→1

−1
(1 + z)(1 + z + z2 + z3 + z4)

(A.76)

= − 1
10
. (A.77)

Similarly we can calculate that a−2 = 1/4 and a−1 = −13/40. The Laurent
expansion is then

m(z) = − 1
10(z − 1)3

+
1

4(z − 1)2
− 13

40(z − 1)
+
∑
n≥0

an(z − 1)n (A.78)

=
1

10(1− z)3
+

1
4(1− z)2

+
13

40(1− z)
+
∑
n≥0

an(z − 1)n. (A.79)

To extract the nth coefficient from the expansion (A.79), we need the
following basic combinatoric result (see, e.g., [71])

[zn]
1

(1− z)k+1
=
(
n+ k

n

)
, (A.80)

so (see also Table A.2)

[zn]
1

(1− z)3
=
(
n+ 2
n

)
=

1
2
n2 +

3
2
n+ 1, (A.81)

[zn]
1

(1− z)2
=
(
n+ 1
n

)
= n+ 1. (A.82)

Now we get the asymptotics for the money changing problem,

mn ∼
1
10

(
1
2
n2 +

3
2
n+ 1

)
+

1
4

(n+ 1) +O (1) (A.83)

=
1
20
n2 +

8
20
n+O (1). (A.84)

To assess the accuracy of the approximation (A.84), we used Maple to
calculate the full expansion of the generating function (A.70) therefore ob-
taining the exact sequence 〈mn〉. The comparison of the exact and asymp-
totic values is given in Figures A.3 and A.4. Clearly, the approximation
works very well.
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Figure A.3: The comparison of the exact and approximative solutions for
the money changing problem with n = 1, . . . , 20.

A.4.2 Asymptotics of Integer Partitions

In this section we briefly discuss the asymptotic analysis of the integer
partition generating function (A.66) introduced in Appendix A.3,

QK(z) =
1

1− z
· 1

1− z2
· 1

1− z3
· · · 1

1− zK
. (A.85)

Clearly, this function has a pole of order K at z = 1. From the discus-
sion of the previous section we know that the highest order pole dominates
the asymptotics of rational generating functions. Furthermore, by Equa-
tion (A.69) a pole of order K contributes a term of degree K − 1. Thus,
we can conclude that the number of partitions of an integer n into K parts
is O

(
nK−1

)
, i.e., asymptotically the same as the number of compositions.

A.4.3 Algebraic-Logarithmic Functions: The Singularity Anal-
ysis

A very general and powerful asymptotic method called singularity analysis
was introduced in [16]. In its most general form it allows to find asymptotics
for algebraic-logarithmic functions of the form

(1− z)−α
(

1
z

log
1

1− z

)β
, (A.86)
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Figure A.4: The comparison of the exact and approximative solutions for
the money changing problem for n = 1, . . . , 100.

for real numbers α, β. For the purposes of the other parts of this the-
sis, however, the following special version is more appropriate: Let α 6=
0,−1,−2, . . .. Then the coefficient of zn in (1− z)−α is given by

[zn](1− z)−α ∼ nα−1

Γ(α)

(
1 +

∞∑
k=1

ek(α)
nk

)
, (A.87)

where ek(α) is a polynomial in α of degree 2k. The first few polynomials
are given by

e1(α) =
α(α− 1)

2
(A.88)

e2(α) =
α(α− 1)(α− 2)(3α− 1)

24
(A.89)

e3(α) =
α2(α− 1)2(α− 2)(α− 3)

48
. (A.90)

The exact definition of these polynomials is complicated but can be found
in [66].

To illustrate the use of (A.87), we show how to calculate the asymptotic
form for the coefficients of (1− az)−1/2, where a is a constant. Firstly, we
notice a simple fact that

[zn](1− az)−α = an[zn](1− z)−α. (A.91)
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Function Coefficients

(1− z)3/2 1√
πn5

(
3
4 + 45

32n + 1155
512n2 +O

(
1
n3

))
(1− z) 0

(1− z)1/2 − 1√
πn3

(
1
2 + 3

16n + 25
256n2 +O

(
1
n3

))
1 0

(1− z)−1/2 1√
πn

(
1− 1

8n + 1
128n2 +O

(
1
n3

))
(1− z)−1 1

(1− z)−3/2
√

n
π

(
2 + 3

4n −
7

64n2 +O
(

1
n3

))
(1− z)−2 n+ 1

(1− z)−3 1
2n

2 + 3
2n+ 1

(1− z)−4 1
6n

3 + n2 + 11
6 n+ 1

Table A.2: Some commonly encountered functions and the asymptotic form
of their coefficients.

The value of α in our example is 1/2, so

[zn](1− az)−1/2 ∼ an · n
−1/2

Γ(1/2)

[
1 +

(1/2)(−1/2)
2n

(A.92)

+
(1/2)(−1/2)(−3/2)(1/2)

24n2
+O

(
1
n3

)]
= an · 1√

πn

(
1− 1

8n
+

1
128n2

+O
(

1
n3

))
. (A.93)

Further examples are listed in Table A.2.
Another very important result of singularity analysis is the following

transfer theorem: If a generating function A(z) satisfies

A(z) = O
(
(1− z)−α

)
, (A.94)

then
[zn]A(z) = O

(
nα−1

)
. (A.95)

The same holds for the o (·)-functions. Comparing the transfer theorem
(A.95) to Equation (A.87), we can see that it is actually very intuitive.
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We finalize this section by summarizing the method of singularity anal-
ysis into the following recipe:

1. Find the generating function A(z) for the sequence we are interested
in.

2. Find the dominant singularity of A(z).

3. Expand A(z) into series around the dominant singularity.

4. Apply Theorems (A.87) and (A.95) to get the asymptotic form for
the coefficients.

A highly non-trivial example of using this recipe is presented in Appendix B.
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Chapter B

The Szpankowski Approximation

In this appendix we will first derive a generating function for the sequence
of multinomial regret terms. This function is used twice in the other parts
of this thesis: The elegant recursion formula for exact NML computation in
Section 3.1.1 and the accurate Szpankowski approximation in Section 3.1.2
are based on this generating function. Secondly, we give full derivation of
the Szpankowski approximation.

B.1 The Regret Generating Function

Let us start with the sequence 〈nn/n!〉. As in [66], we denote the function
generating this sequence by B(z). Unfortunately, there is no closed-form
formula for B(z). As we will see later, this function is nevertheless suitable
for our purposes. The connection between B(z) and the multinomial regret

57
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terms can be seen by squaring B(z),

B2(z) =

∑
r≥0

rr

r!
zr

 ·
∑
s≥0

ss

s!
zs

 (B.1)

=
∑
r,s≥0

rrss

r!s!
zr+s (B.2)

=
∑
n≥0

( ∑
r+s=n

nn

n!
n!
r!s!

rrss

nr+s

)
zn (B.3)

=
∑
n≥0

nn

n!

( ∑
r+s=n

n!
r!s!

( r
n

)r ( s
n

)s)
zn (B.4)

=
∑
n≥0

nn

n!
C(M(2), n)zn, (B.5)

where M(2) is the multinomial model class with two values. Thus, B2(z)
generates the sequence 〈nn

n! C(M(2), n)〉. This easily generalizes to

BK(z) =
∑
n≥0

nn

n!

 ∑
h1+···+hK=n

n!
h1! · · ·hK !

(
h1

n

)h1

· · ·
(
hk
n

)hk

 zn (B.6)

=
∑
n≥0

nn

n!
C(M(K), n)zn, (B.7)

generating the sequence 〈nn

n! C(M(K), n)〉. Note that to be precise, the
function BK(z) is the tree-like generating function [66] of the sequence
〈C(M(K), n)〉. For simplicity, however, we just call it the regret generating
function.

To make the Equation (B.7) useful, we will derive a relation of BK(z)
and the so-called Cayley’s tree function T (z) [30, 9], which generates the
sequence 〈nn−1/n!〉, i.e.,

T (z) =
∑
n≥1

nn−1

n!
zn, (B.8)

as shown in [66]. This sequence counts the rooted labeled trees, hence the
name of the function. The tree function is defined by the functional equa-
tion

T (z) = zeT (z). (B.9)
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Differentiating and multiplying (B.8) by z, we get

zT ′(z) = z ·
∑
n≥1

n · nn−1

n!
zn−1 (B.10)

=
∑
n≥1

nn

n!
zn (B.11)

=
∑
n≥0

nn

n!
zn − 1, (B.12)

from which we get
B(z) = zT ′(z) + 1. (B.13)

On the other hand, differentiating the functional equation (B.9) gives

T ′(z) = eT (z) + zeT (z) · T ′(z) (B.14)

T ′(z)(1− zeT (z)) = eT (z) (B.15)
zT ′(z)(1− T (z)) = T (z) (B.16)

zT ′(z) =
T (z)

1− T (z)
. (B.17)

Combining the Equations (B.13) and (B.17), we get

B(z) =
T (z)

1− T (z)
+ 1 =

1
1− T (z)

, (B.18)

and thus
BK(z) =

1
(1− T (z))K

. (B.19)

This final form can now applied in NML computation by using the proper-
ties of the tree function T (z).

B.2 The Derivation

The proof of the Szpankowski approximation (3.8) was only outlined in [66].
We will now present a full derivation. Our starting point is the regret
generating function already discussed in Appendix B.1,

BK(z) =
1

(1− T (z))K
=
∑
n≥0

nn

n!
C(M(K), n)zn. (B.20)

To make the presentation easier to follow, the derivation is split into the
following steps:
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1. Find the dominant singularity of the regret generating functionBK(z).

2. Expand the inverse of the tree function T (z) into series around the
dominant singularity point.

3. Invert this series to get the expansion of the tree function.

4. Find the series for B(z) = 1/(1− T (z)).

5. Find the series for BK(z).

6. Apply the singularity analysis theorem (A.87) term by term.

7. Multiply by n!/nn to extract the asymptotic form of the regret terms.

8. Take the logarithm to prove (3.8).

Step 1: To get the asymptotic form for the coefficients of (B.20), we need
to expand the function BK(z) around its dominant singularity, i.e., the one
nearest to the origo. It is well-known (see, e.g., [9]) that the dominant
singularity of T (z) occurs at z = 1/e. This point is also the dominant
singularity of (B.20), since the zero of the denominator (pole) is also at z =
1/e. This can be seen by solving z from the functional equation (B.9),

z = F (T ) = Te−T , (B.21)

and then plugging T = 1 into it.
Step 2: Deriving the series expansion for (B.20) is a very non-trivial task,
since there is no explicit formula for B(z) or T (z). It turns out that the
inverse function F (T ) is a good starting point, since it is an entire function
(analytic everywhere). To get the expansion of T (z) around z = 1/e, we
can first expand F (T ) around T = 1, and then use the series inversion
method described in Appendix A.2.5. Since F (T ) is entire, its expansion
is a simple Taylor series, which can be found by calculating the derivatives
of F (T ) at T = 1. We have

F ′(T ) = e−T + T · (−e−T ) = e−T (1− T ) (B.22)
F ′′(T ) = −e−T (1− T )− e−T = −e−T (2− T ) (B.23)
F ′′′(T ) = e−T (2− T ) + e−T = e−T (3− T ) (B.24)
F ′′′′(T ) = −e−T (3− T )− e−T = −e−T (4− T ), (B.25)
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which leads to

F (T ) =F (1) + F ′(1)(T − 1) +
F ′′(1)

2!
(T − 1)2 +

F ′′′(1)
3!

(T − 1)3+ (B.26)

F ′′′′(1)
4!

(T − 1)4 + · · ·

=1/e− 1/e
2

(T − 1)2 +
1/e
3

(T − 1)3 − 1/e
8

(T − 1)4 + · · · (B.27)

=1/e− 1/e
2

(1− T )2 − 1/e
3

(1− T )3 − 1/e
8

(1− T )4 + · · · . (B.28)

Step 3: Looking at Equation (B.22), we can see that the first deriva-
tive vanishes at T = 1. As suggested in Appendix A.2.5, this unfortu-
nately means that inverting the series (B.28) is not straightforward. In-
tuitively, this complication can be understood via Figure B.1, where the
function F (T ) is plotted near the point T = 1 (in real number space).
Clearly, F (T ) is non-monotonic in every neighborhood of T = 1, and the
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)
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T * exp(-T)

Figure B.1: Plot of F (T ) = Te−T around T = 1.

inverse function thus multiple-valued. It follows that the expansion of T (z)
around point z = 1/e must also contain multiple-valued terms. As we will
soon see, this is indeed the case: the inverted series will be a Puiseux se-
ries with fractional power terms. To read more about Puiseux series, see
Appendix A.1.7.

To find the inverse of (B.28), we can use a theorem from [14], which
classifies series expansions into four types of systematic patterns based on
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the first few terms of the series. With the terminology of [14], our series
falls into category “Type II” with the order parameter β set to 2 (see also
Appendix A.1.7). For this category, the series inversion is performed by
starting with variable transformations

v = 1− T (B.29)

w = (1/e− F (T ))1/β = (1/e− z)1/2, (B.30)

and then examining the function

w = A(v) = (1/e− F (T ))1/2 (B.31)

= (f2v
2 + f3v

3 + f4v
4 + · · · )1/2, (B.32)

where, from (B.28),

f2 =
1/e
2
, f3 =

1/e
3
, f4 =

1/e
8
. (B.33)

Next we need to find the series expansion for function A(v), i.e., coeffi-
cients sn such that(

f2v
2 + f3v

3 + f4v
4 + · · ·

)1/2 = s1v + s2v
2 + s3v

3 + · · · . (B.34)

It is easy to prove (see also Figure B.1) that 1/e−F (T ) ≥ 0 for all T ∈ R,
from which it follows that we can square both sides of (B.34)

f2v
2 + f3v

3 + f4v
4 + · · · =

(
s1v + s2v

2 + s3v
3 + · · ·

)2 (B.35)

= s2
1v

2 + 2s1s2v
3 + (2s1s3 + s2

2)v4 + · · · , (B.36)

and by coefficient comparison

s2
1 = f2, s1 =

√
f2 (B.37)

2s1s2 = f3, s2 =
f3

2s1
=

f3

2
√
f2

(B.38)

2s1s3 + s2
2 = f4, s3 =

f4 − s2
2

2s1
=

4f2f4 − f2
3

8f3/2
2

. (B.39)

The function A(v) can now be written as

A(v) =
√
f2v +

f3

2
√
f2
v2 +

4f2f4 − f2
3

8f3/2
2

v3 + · · · , (B.40)
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from which we can finally see the idea behind the transformations (B.29)
and (B.30). That is, series (B.40) is an ordinary power series with zero
constant coefficient therefore having a well-defined inverse, say,

v = D(w) = d1w + d2w
2 + d3w

3 + · · · , (B.41)

where the coefficients dn are given by (see Appendix A.2.5)

d1 =
1
s1

=
1√
f2

=
√

2e (B.42)

d2 = −s2

s3
1

= − f3

2f2
2

= −2
3
e (B.43)

d3 =
2s2

2

s5
1

− s3

s4
1

=
5f2

3 − 4f2f4

8f7/2
2

=
11
√

2
36

e3/2. (B.44)

Transforming back to original variables gives the series expansion for the
tree function

T (z) = 1−D(w) (B.45)

= 1−
√

2e(1/e− z)1/2 +
2
3
e(1/e− z)− 11

√
2

36
e3/2(1/e− z)3/2 + · · · ,

(B.46)

which can be further written as

T (z) = 1−
√

2(1− ez)1/2 +
2
3

(1− ez)− 11
√

2
36

(1− ez)3/2 + · · · . (B.47)

This final form makes is more convenient to apply singularity analysis in
Step 6.
Step 4: After deriving the expansion for T (z), the next task is to find
series for

B(z) =
1

1− T (z)
, (B.48)

i.e., the reciprocal series of

1− T (z) =
√

2(1− ez)1/2 − 2
3

(1− ez) +
11
√

2
36

(1− ez)3/2 + · · · . (B.49)

It is clear that the reciprocal is of the form

B(z) = a(1− ez)−1/2 + b+ c(1− ez)1/2 + · · · , (B.50)
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for some numbers (a, b, c, . . .). By the definition of the reciprocal series, we
must then have

B(z)(1− T (z)) =
[
a(1− ez)−1/2 + b+ c(1− ez)1/2 + · · ·

]
·
[√

2(1− ez)1/2 − 2
3

(1− ez) +
11
√

2
36

(1− ez)3/2 + · · ·
]
≡ 1, (B.51)

i.e., the trivial sequence (1, 0, 0, . . .). The coefficients (a, b, c, . . .) can be
calculated by comparing coefficients

√
2a = 1, a =

1√
2

(B.52)

−2
3
a+
√

2b = 0, b =
2

3
√

2
a =

1
3

(B.53)

11
√

2
36

a− 2
3
b+
√

2c = 0, c = −11
36
a+

2
3
√

2
b = −

√
2

24
, (B.54)

and thus we get the series expansion

B(z) =
1√
2

(1− ez)−1/2 +
1
3
−
√

2
24

(1− ez)1/2 + · · · . (B.55)

Step 5: The final step for deriving the series expansion for the regret
generating function (B.20) is to expand

BK(z) =
1

(1− T (z))K
=

(
1√
2

(1− ez)−1/2 +
1
3
−
√

2
24

(1− ez)1/2 + · · ·

)K
.

(B.56)
The first term of this series, i.e., the one with the smallest exponent, is
obtained by raising the first term of (B.56) into Kth power(

1√
2

(1− ez)−1/2

)K
=
(

1√
2

)K
(1−ez)−K/2 =

1
2K/2

(1−ez)−K/2. (B.57)

To get the next term we raise the first term of (B.56) into (K− 1)th power
and then multiply by the second term. There are K different ways to choose
the second term, which gives

K ·
(

1√
2

)K−1

· 1
3
· (1− ez)−

K
2

+ 1
2 =

K

3 · 2
K
2
− 1

2

(1− ez)−
K
2

+ 1
2 . (B.58)

For the third term, we need to consider two cases:
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1. Raise the first term of (B.56) into (K−1)th power and then multiply
by the third term. The third term can be chosen in K different ways.

2. Raise the first term of (B.56) into (K−2)th power and then multiply
by the square of the second term. We have

(
K
2

)
= K(K − 1)/2 ways

to do that.

Thus, the third term of BK(z) is

[
K ·

(
1√
2

)K−1

· −
√

2
24

+
K(K − 1)

2
·
(

1√
2

)K−2

·
(

1
3

)2
]
·(1−ez)−

K
2

+1

=
4K(K − 1)− 3K

36 · 2K/2
(1− ez)−

K
2

+1. (B.59)

As we will soon see, it is not necessary to calculate more terms. The series
expansion for the regret generating function is now

BK(z) =
1

2K/2
(1− ez)−K/2 +

K

3 · 2
K
2
− 1

2

(1− ez)−
K
2

+ 1
2

+
4K(K − 1)− 3K

36 · 2K/2
(1− ez)−

K
2

+1 + · · · . (B.60)

Step 6: We are now ready to apply the singularity analysis theorem (A.87)
to series (B.60). Proceeding term by term basis,

[zn]
(

1
2K/2

(1− ez)−K/2
)
∼ (B.61)

en · n
K
2
−1

2K/2 · Γ(K/2)

(
1 +

K(K − 1)
2n

+O
(
1/n2

))
[zn]

(
K

3 · 2
K
2
− 1

2

(1− ez)−
K
2

+ 1
2

)
∼ (B.62)

en · K · n
K
2
− 3

2

3 · 2
K
2
− 1

2 · Γ(K2 −
1
2)

(
1 +

K(K − 1)
2n

+O
(
1/n2

))
[zn]

(
4K(K − 1)− 3K

36 · 2K/2
(1− ez)−

K
2

+1

)
∼ (B.63)

en · (4K(K − 1)− 3K) · n
K
2
−2

36 · 2K/2 · Γ(K2 − 1)

(
1 +

K(K − 1)
2n

+O
(
1/n2

))
.
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After some tedious algebra we get the asymptotic form for the nth coeffi-
cient of the regret generating function:

[zn]BK(z) ∼ en ·
[

1
2K/2 · Γ(K/2)

· n
K
2
−1 +

K

2
K
2
− 1

2 · 3Γ(K2 −
1
2)
· n

K
2
− 3

2

+
K(K − 2)(2K + 1)

2K/2 · 36Γ(K/2)
· n

K
2
−2 +O

(
n

K
2
− 5

2

)]
. (B.64)

Step 7: To extract the asymptotic form of the terms C(M(K), n), we need
to multiply Equation (B.64) by n!/nn. By the celebrated Stirling’s formula,

n!
nn

=
√

2πn · e−n
(

1 +
1

12n
+O

(
1
n2

))
, (B.65)

which nicely cancels the en term in (B.64). Multiplying (B.64) by (B.65)
gives after simplifications

C(M(K), n) ∼
(n

2

)K−1
2 ·

√
π

Γ(K/2)

[
1 +
√

2K · Γ(K/2)
3Γ(K2 −

1
2)

· 1√
n

(B.66)

+
K(K − 2)(2K + 1)

36
· 1
n

+O
(

1
n3/2

)]
·
[
1 +

1
12n

+O
(

1
n2

)]
=
(n

2

)K−1
2 ·

√
π

Γ(K/2)

[
1 +
√

2K · Γ(K/2)
3Γ(K2 −

1
2)

· 1√
n

(B.67)

+
3 +K(K − 2)(2K + 1)

36
· 1
n

+O
(

1
n3/2

)]
.

Step 8: The final step is to take the logarithm of (B.67). Consider the
standard Taylor series of the (natural) logarithm function

log(1 + z) = z − z2

2
+
z3

3
+ · · · . (B.68)

Plugging

z =
a√
n

+
b

n
+O

(
1

n3/2

)
(B.69)
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into series (B.68) gives

log
[
1 +

a√
n

+
b

n
+O

(
1

n3/2

)]
=

a√
n

+
b

n
− 1

2

[
a√
n

+
b

n
+O

(
1

n3/2

)]2

(B.70)

=
a√
n

+ (b− 1
2
a2) · 1

n
+O

(
1

n3/2

)
,

(B.71)

for numbers a, b. By applying (B.71) to (B.67) we get the asymptotic
formula for the multinomial regret terms:

log C(M(K), n) =
K − 1

2
log

n

2
+ log

√
π

Γ(K/2)
+
√

2K · Γ(K/2)
3Γ(K2 −

1
2)

· 1√
n

(B.72)

+

(
3 +K(K − 2)(2K + 1)

36
− Γ2(K/2) ·K2

9Γ2
(
K
2 −

1
2

) ) · 1
n

(B.73)

+O
(

1
n3/2

)
.

The proof of (3.8) follows trivially.
An important thing to notice is that in all the steps of the derivation

we could have calculated an arbitrary number of terms for the series expan-
sions. It follows that the derivation does not limit the accuracy of the final
result. However, as shown in Section 3.1.3, O

(
1/n3/2

)
is accurate enough

for practical purposes.
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Birkhäuser Boston, 1982.

[21] P. Grünwald. The Minimum Description Length Principle. MIT Press,
2007.

[22] P. Grünwald, P. Kontkanen, P. Myllymäki, T. Silander, and H. Tirri.
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[37] P. Kontkanen and P. Myllymäki. An empirical comparison of NML
clustering algorithms. In M. Dehmer, M. Drmota, and F. Emmert-
Streib, editors, Proceedings of the International Conference on In-
formation Theory and Statistical Learning (ITSL-08). CSREA Press,
2008.
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network structure learning using factorized NML universal models.
In Information Theory and Applications Workshop, San Diego, CA,
January 2008.

[62] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6:461–464, 1978.

[63] Y. M. Shtarkov. Universal sequential coding of single messages. Prob-
lems of Information Transmission, 23:3–17, 1987.

[64] P. Smyth. Probabilistic model-based clustering of multivariate and se-
quential data. In D. Heckerman and J. Whittaker, editors, Proceedings
of the Seventh International Conference on Artificial Intelligence and
Statistics, pages 299–304. Morgan Kaufmann Publishers, 1999.

[65] M. Spiegel. Schaum’s Outline of Theory and Problems of Complex
Variables. McGraw-Hill, 1981.

[66] W. Szpankowski. Average case analysis of algorithms on sequences.
John Wiley & Sons, 2001.

[67] I. Tabus, J. Rissanen, and J. Astola. Classification and feature gene
selection using the normalized maximum likelihood model for discrete
regression. Signal Processing, Special issue on Genomic Signal Pro-
cessing, 83(4):713–727, 2003.



References 75

[68] H. Tirri. Plausible Prediction by Bayesian Inference. PhD thesis,
Report A-1997-1, Department of Computer Science, University of
Helsinki, June 1997.

[69] D. Titterington, A. Smith, and U. Makov. Statistical Analysis of Finite
Mixture Distributions. John Wiley & Sons, New York, 1985.

[70] H. Wettig, P. Kontkanen, and P. Myllymäki. Calculating the nor-
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